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Introduction to Unconstrained 
Optimization

Mathematica  has  a  collection  of  commands  that  do  unconstrained  optimization  (FindMinimum

and  FindMaximum)  and  solve  nonlinear  equations  (FindRoot)  and  nonlinear  fitting  problems

(FindFit).  All  these  functions  work,  in  general,  by  doing  a  search,  starting  at  some  initial

values  and  taking  steps  that  decrease  (or  for  FindMaximum,  increase)  an  objective  or  merit

function. 

The  search  process  for  FindMaximum  is  somewhat  analogous  to  a  climber  trying  to  reach  a

mountain peak in a thick fog; at any given point, basically all that climbers know is their posi-

tion,  how  steep  the  slope  is,  and  the  direction  of  the  fall  line.  One  approach  is  always  to  go

uphill. As long as climbers go uphill steeply enough, they will eventually reach a peak, though it

may not  be the highest  one.  Similarly,  in  a  search for  a  maximum, most  methods are  ascent

methods where every step increases the height and stops when it reaches any peak, whether it

is the highest one or not. 

The  analogy  with  hill  climbing  can  be  reversed  to  consider  descent  methods  for  finding  local

minima. For the most part, the literature in optimization considers the problem of finding min-

ima, and since this applies to most of the Mathematica commands, from here on, this documen-

tation will follow that convention. 

For example, the function x sinHx + 1L  is not bounded from below, so it has no global minimum,

but it has an infinite number of local minima.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the function x Sin@x + 1D.

In[2]:= Plot@x Sin@x + 1D, 8x, -10, 10<D

Out[2]=
-10 -5 5 10

-10

-5

5



This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 0.

In[3]:= FindMinimumPlot@x Sin@x + 1D, 8x, 0<D

Out[3]= :8-0.240125, 8x Ø -0.520269<<, 8Steps Ø 5, Function Ø 6, Gradient Ø 6<,

-0.5 -0.4 -0.3 -0.2 -0.1

-0.20

-0.15

-0.10

-0.05

>

The  FindMinimumPlot  command  is  defined  in  the  Optimization`UnconstrainedProblems`

package loaded automatically by this notebook. It runs FindMinimum, keeps track of the func-

tion and gradient evaluations and steps taken during the search (using the EvaluationMonitor

and StepMonitor  options), and shows them superimposed on a plot of the function. Steps are

indicated with blue lines, function evaluations are shown with green points, and gradient evalua-

tions are shown with  red points.  The minimum found is  shown with  a  large black point.  From

the plot, it is clear that FindMinimum has found a local minimum point. 

This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 2.

In[4]:= FindMinimumPlot@x Sin@x + 1D, 8x, 2<D

Out[4]=

Starting  at  2,  FindMinimum  heads  to  different  local  minima,  at  which  the  function  is  smaller

than at the first minimum found.

From these two plots, you might come to the conclusion that if you start at a point where the

function is sloping downward, you will always head toward the next minimum in that direction.

However,  this  is  not  always  the  case;  the  steps  FindMinimum  takes  are  typically  determined

using  the  value  of  the  function  and  its  derivatives,  so  if  the  derivative  is  quite  small,

FindMinimum may think it has to go quite a long way to find a minimum point.
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This shows the steps taken by FindMinimum  for the function x Sin@x + 1D starting at x = 7.

In[5]:= FindMinimumPlot@x Sin@x + 1D, 8x, 7<D

Out[5]=

When  starting  at  x = 7,  which  is  near  a  local  maximum,  the  first  step  is  quite  large,  so

FindMinimum returns a completely different local minimum. 

All these commands have "find" in their name because, in general, their design is to search to

find any point where the desired condition is satisfied. The point found may not be the only one

(in the case of roots) or even the best one (in the case of fits, minima, or maxima), or, as you

have seen, not even the closest one to the starting condition. In other words, the goal is to find

any  point  at  which  there  is  a  root  or  a  local  maximum or  minimum.  In  contrast,  the  function

NMinimize  tries  harder  to  find  the  global  minimum  for  the  function,  but  NMinimize  is  also

generally given constraints to bound the problem domain. However, there is a price to pay for

this generality~NMinimize has to do much more work and, in fact, may call one of the "Find"

functions to polish a result at the end of its process, so it generally takes much more time than

the "Find" functions.

In two dimensions, the minimization problem is more complicated because both a step direction

and step length need to be determined.

This shows the steps taken by FindMinimum  to find a local minimum of the function 
cosIx2 - 3 yM + sinIx2 + y2M starting at the point 8x, y< = 81, 1<.

In[6]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[6]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 9, Function Ø 13, Gradient Ø 13<,

0.8 1.0 1.2 1.4 1.6
1.0

1.2

1.4

1.6

1.8

2.0

>

Unconstrained Optimization     3

:8-41.4236, 8x Ø 41.4356<<, 8Steps Ø 3, Function Ø 14, Gradient Ø 14<,
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The FindMinimumPlot command for two dimensions is similar to the one-dimensional case, but

it  shows  the  steps  and  evaluations  superimposed  on  a  contour  plot  of  the  function.  In  this

example,  it  is  apparent  that  FindMinimum  needed  to  change  direction  several  times  to  get  to

the local minimum. You may notice that the first step starts in the direction of steepest descent

(i.e.,  perpendicular  to  the  contour  or  parallel  to  the  gradient).  Steepest  descent  is  indeed  a

possible strategy for local  minimization, but it  often does not converge quickly.  In subsequent

steps in this example, you may notice that the search direction is not exactly perpendicular to

the  contours.  The  search  is  using  information  from past  steps  to  try  to  get  information  about

the curvature of the function, which typically gives it a better direction to go. Another strategy,

which usually converges faster, but can be more expensive, is to use the second derivative of

the function. This is usually referred to as "Newton's" method. 

This shows the steps taken using Newton's method.

In[7]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method Ø NewtonD

Out[7]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 5, Function Ø 6, Gradient Ø 6, Hessian Ø 6<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>

In  this  example,  it  is  clear  that  the  extra  information  that  "Newton's"  method  uses  about  the

curvature of the function makes a big difference in how many steps it takes to get to the mini-

mum. Even though Newton's method takes fewer steps, it may take more total execution time

since  the  symbolic  Hessian  has  to  be  computed  once  and  then  evaluated  numerically  at  each

step. 

Usually there are tradeoffs between the rate of convergence or total number of steps taken and

cost per step. Depending on the size of the problems you want to solve, you may want to pick a

particular  method  to  best  match  that  tradeoff  for  a  particular  problem.  This  documentation  is

intended  to  help  you  understand  those  choices  as  well  as  some  ways  to  get  the  best  results

from the  functions  in  Mathematica.  For  the  most  part,  examples  will  be  used  to  illustrate  the

ideas, but a limited exposition on the mathematical theory behind the methods will be given so

that you can better understand how the examples work.
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For the most part, local minimization methods for a function f  are based on a quadratic model

(1)qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p.

The subscript k  refers to the kth  iterative step. In Newton's method, the model is based on the

exact Hessian matrix, Bk = “2 f HxkL , but other methods use approximations to “2 f HxkL, which are

typically less expensive to compute. A trial step sk  is typically computed to be the minimizer of

the model, which satisfies the system of linear equations.

Bk sk = -“ f HxkL

If f  is sufficiently smooth and xk  is sufficiently close to a local minimum, then with Bk = “2 f HxkL,

the sequence of steps xk+1 = sk + xk  is guaranteed to converge to the local minimum. However, in

a  typical  search,  the  starting  value  is  rarely  close  enough  to  give  the  desired  convergence.

Furthermore,  Bk  is  often  an  approximation  to  the  actual  Hessian  and,  at  the  beginning  of  a

search, the approximation is frequently quite inaccurate. Thus, it is necessary to provide addi-

tional control  to the step sequence to improve the chance and rate of convergence. There are

two frequently used methods for controlling the steps: line search and trust region methods. 

In a "line search" method, for each trial step sk  found, a one-dimensional search is done along

the direction of sk  so that xk+1 = xk + ak sk. You could choose ak  so that it minimizes f Hxk+1L in this

direction,  but  this  is  excessive,  and  with  conditions  that  require  that  f Hxk+1L  decreases  suffi-

ciently in value and slope, convergence for reasonable approximations Bk can be proven. Mathe-

matica uses a formulation of these conditions called the Wolfe conditions.

In a "trust region" method, a radius Dk  within which the quadratic model qkHpL  in equation (1) is

“trusted” to be reasonably representative of the function. Then, instead of solving for the uncon-

strained minimum of (1), the trust region method tries to find the constrained minimum of (1)

with °p¥ § Dk. If the xk  are sufficiently close to a minimum and the model is good, then often the

minimum  lies  within  the  circle,  and  convergence  is  quite  rapid.  However,  near  the  start  of  a

search, the minimum will lie on the boundary, and there are a number of techniques to find an

approximate  solution  to  the  constrained  problem.  Once  an  approximate  solution  is  found,  the

actual  reduction  of  the  function  value  is  compared  to  the  predicted  reduction  in  the  function

value and, depending on how close the actual value is to the predicted, an adjustment is made

for Dk+1.
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For symbolic minimization of a univariate smooth function, all that is necessary is to find a point

at  which  the  derivative  is  zero  and  the  second  derivative  is  positive.  In  multiple  dimensions,

this  means  that  the  gradient  vanishes  and  the  Hessian  needs  to  be  positive  definite.  (If  the

Hessian is positive semidefinite, the point is a minimizer, but is not necessarily a strict one.) As

a  numerical  algorithm converges,  it  is  necessary  to  keep  track  of  the  convergence  and  make

some judgment as to when a minimum has been approached closely enough. This is based on

the sequence of steps taken and the values of the function, its gradient, and possibly its Hes-

sian  at  these  points.  Usually,  the  Mathematica  Find…  functions  will  issue  a  message  if  they

cannot be fairly certain that this judgment is correct. However, keep in mind that discontinuous

functions or functions with rapid changes of scale can fool any numerical algorithm.

When  solving  "nonlinear  equations",  many  of  the  same  issues  arise  as  when  finding  a  "local

minimum".  In  fact,  by  considering  a  so-called  merit  function,  which  is  zero  at  the  root  of  the

equations, it is possible to use many of the same techniques as for minimization, but with the

advantage  of  knowing  that  the  minimum value  of  the  function  is  0.  It  is  not  always  advanta-

geous to use this approach, and there are some methods specialized for nonlinear equations. 

Most examples shown will be from one and two dimensions. This is by no means because Mathe-

matica  is  restricted  to  computing  with  such  small  examples,  but  because  it  is  much  easier  to

visually illustrate the main principles behind the theory and methods with such examples.
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Methods for Local Minimization

Introduction to Local Minimization

The essence of most methods is in the local quadratic model 

qkHpL = f HxkL + “ f HxkLT p +
1

2
pT Bk p

that  is  used  to  determine  the  next  step.  The  FindMinimum  function  in  Mathematica  has  five

essentially different ways of choosing this model, controlled by the method option. These meth-

ods are similarly used by FindMaximum and FindFit.

"Newton" use the exact Hessian or a finite difference approximation 
if the symbolic derivative cannot be computed

"QuasiNewton" use the quasi-Newton BFGS approximation to the Hessian 
built up by updates based on past steps

"LevenbergMarquardt" a Gauss|Newton method for least-squares problems; the 
Hessian is approximated by JT J, where J is the Jacobian of 
the residual function

"ConjugateGradient" a nonlinear version of the conjugate gradient method for 
solving linear systems; a model Hessian is never formed 
explicitly

"PrincipalAxis" works without using any derivatives, not even the gradi -
ent, by keeping values from past steps; it requires two 
starting conditions in each variable

Basic method choices for FindMinimum .

With  Method -> Automatic,  Mathematica  uses  the  "quasi-Newton"  method  unless  the  problem

is structurally a sum of squares, in which case the Levenberg|Marquardt variant of the "Gauss|

Newton"  method  is  used.  When  given  two  starting  conditions  in  each  variable,  the  "principal

axis" method is used.
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Newton's Method

One significant advantage Mathematica provides is that it can symbolically compute derivatives.

This  means  that  when  you  specify  Method -> "Newton"  and  the  function  is  explicitly  differen-

tiable, the symbolic derivative will  be computed automatically. On the other hand, if  the func-

tion is not in a form that can be explicitly differentiated, Mathematica  will  use finite difference

approximations to compute the Hessian, using structural information to minimize the number of

evaluations  required.  Alternatively  you  can  specify  a  Mathematica  expression,  which  will  give

the Hessian with numerical values of the variables. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In this example, FindMinimum  computes the Hessian symbolically and substitutes numerical 
values for x and y when needed.

In[2]:= FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<, Method -> "Newton"D

Out[2]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

This defines a function that is only intended to evaluate for numerical values of the variables.

In[3]:= f@x_?NumberQ, y_?NumberQD := Cos@x^2 - 3 yD + Sin@x^2 + y^2D

The derivative of this function cannot be found symbolically since the function has been defined

only to evaluate with numerical values of the variables. 

This shows the steps taken by FindMinimum  when it has to use finite differences to compute 
the gradient and Hessian.

In[4]:= FindMinimumPlot@f@x, yD, 88x, 1<, 8y, 1<<, Method -> "Newton"D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[4]= :8-2., 8x Ø 1.37638, y Ø 1.67867<<,

8Steps Ø 4, Function Ø 89, Gradient Ø 26, Hessian Ø 5<,

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

1.8

>
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When  the  gradient  and  Hessian  are  both  computed  using  finite  differences,  the  error  in  the

Hessian  may  be  quite  large  and  it  may  be  better  to  use  a  different  method.  In  this  case,

FindMinimum  does  find  the  minimum  quite  accurately,  but  cannot  be  sure  because  of  inade-

quate  derivative  information.  Also,  the  number  of  function  and  gradient  evaluations  is  much

greater  than  in  the  example  with  the  symbolic  derivatives  computed  automatically  because

extra evaluations are required to approximate the gradient and Hessian, respectively. 

If it is possible to supply the gradient (or the function is such that it can be computed automati-

cally),  the  method  will  typically  work  much  better.  You  can  give  the  gradient  using  the

Gradient option, which has several ways you can "specify derivatives".

This defines a function that returns the gradient for numerical values of x and y.

In[5]:= g@x_?NumberQ, y_?NumberQD = Map@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒD &, 8x, y<D

Out[5]= 92 x CosAx2 + y2E - 2 x SinAx2 - 3 yE, 2 y CosAx2 + y2E + 3 SinAx2 - 3 yE=

This tells FindMinimum  to use the supplied gradient. The Hessian is computed using finite 
differences of the gradient.

In[6]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<, Gradient Ø g@x, yD, Method Ø "Newton"D

Out[6]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

If  you  can  provide  a  program that  gives  the  Hessian,  you  can  provide  this  also.  Because  the

Hessian is only used by Newton's method, it is given as a method option of Newton.

This defines a function that returns the Hessian for numerical values of x and y.

In[7]:= h@x_?NumberQ, y_?NumberQD =
Outer@D@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, ÒÒD &, 8x, y<, 8x, y<D

Out[7]= 99-4 x2 CosAx2 - 3 yE + 2 CosAx2 + y2E - 2 SinAx2 - 3 yE - 4 x2 SinAx2 + y2E,

6 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E=,

96 x CosAx2 - 3 yE - 4 x y SinAx2 + y2E, -9 CosAx2 - 3 yE + 2 CosAx2 + y2E - 4 y2 SinAx2 + y2E==

This tells FindMinimum  to use the supplied gradient and Hessian.

In[8]:= FindMinimum@f@x, yD, 88x, 1<, 8y, 1<<,
Gradient Ø g@x, yD, Method Ø 8"Newton", "Hessian" Ø h@x, yD<D

Out[8]= 8-2., 8x Ø 1.37638, y Ø 1.67868<<

In  principle,  Newton's  method  uses  the  Hessian  computed  either  by  evaluating  the  symbolic

derivative  or  by  using  finite  differences.  However,  the  convergence  for  the  method  computed
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this  way  depends  on  the  function  being  convex,  in  which  case  the  Hessian  is  always  positive

definite. It is common that a search will  start at a location where this condition is violated, so

the algorithm needs to take this possibility into account.

Here is an example where the search starts near a local maximum.

In[9]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.2<, 8y, .5<<, Method -> "Newton"D

Out[9]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 4, Function Ø 11, Gradient Ø 11, Hessian Ø 5<,

1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55
0.5

1.0

1.5

2.0

>

When sufficiently near a local maximum, the Hessian is actually negative definite. 

This computes the eigenvalues of the Hessian near the local maximum.

In[10]:= Eigenvalues@h@1.2, .5DD

Out[10]= 8-15.7534, -6.0478<

If  you were to only apply the Newton step formula in cases where the Hessian is  not  positive

definite,  it  is  possible  to  get  a  step  direction  that  does  not  lead  to  a  decrease  in  the  function

value. 

This computes the directional derivative for the direction found by solving “2 f HxkL s0 = -“ f HxkL. 
Since it is positive, moving in this direction will locally increase the function value.

In[11]:= LinearSolve@h@1.2, .5D, -g@1.2, .5DD.g@1.2, .5D

Out[11]= 0.0172695

It is crucial for the convergence of line search methods that the direction be computed using a

positive  definite  quadratic  model  Bk  since  the  search  process  and  convergence  results  derived

from it depend on a direction with sufficient descent.  See "Line Search Methods". Mathematica
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modifies the Hessian by a diagonal matrix Ek with entries large enough so that Bk = “2 f HxkL + Ek is

positive  definite.  Such  methods  are  sometimes  referred  to  as  modified  Newton  methods.  The

modification to Bk  is done during the process of computing a Cholesky decomposition somewhat

along the lines described in [GMW81], both for dense and sparse Hessians. The modification is

only  done  if  “2 f HxkL  is  not  positive  definite.  This  decomposition  method  is  accessible  through

LinearSolve if you want to use it independently. 

This computes the step using B0 s0 = -“ f HxkL, where B0 is determined as the Cholesky factors of 
the Hessian are being computed.

In[12]:= LinearSolve@h@1.2, .5D, -g@1.2, .5D,
Method Ø 8"Cholesky", "Modification" Ø "Minimal"<D

Out[12]= 80.00405502, 0.0196737<

The computed step is in a descent direction.

In[13]:= %.g@1.2, .5D

Out[13]= -0.00645255

Besides the robustness of the (modified) Newton method, another key aspect is its convergence

rate.  Once  a  search  is  close  enough  to  a  local  minimum,  the  convergence  is  said  to  be  q-

quadratic, which means that if x* is the local minimum point, then 

°xk+1 - x*¥ § b °xk - x*¥2

for some constant b > 0.

At machine precision, this does not always make a substantial difference since it is typical that

most of the steps are spent getting near to the local minimum. However, if you want a root to

extremely  high  precision,  Newton's  method  is  usually  the  best  choice  because  of  the  rapid

convergence. 

This computes a very high-precision solution using Newton's method. The precision is adap-
tively increased from machine precision (the precision of the starting point) to the maximal 
working precision of 100000 digits. Reap is used with Sow to save the steps taken. Counters 
are used to track and print the number of function evaluations and steps used.

In[14]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1.<, 8y, 1.<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 27 evaluations
Out[14]= 4.56134
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When  the  option  WorkingPrecision -> prec  is  used,  the  default  for  the  AccuracyGoal  and

PrecisionGoal is prec ê 2. Thus, this example should find the minimum to at least 50000 digits.

This computes a symbolic solution for the position of the minimum which the search approaches.

In[15]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD

Out[15]= : -
9

2
- p +

3

2
9 + 10 p ,

1

2
-3 + 9 + 10 p >

This computes the norm of the distance from the search points at the end of each step to the 
exact minimum.

In[16]:= N@Map@Norm@exact - ÒD &, pointsDD

Out[16]= 90.140411, 0.0156607, 0.000236558, 6.09444µ10-8, 3.8255µ10-15, 1.59653µ10-29, 3.24619µ10-58,

4.8604µ10-108, 1.26122µ10-212, 5.865676867279906µ10-406, 1.755647053247051µ10-791,
4.345222958143836µ10-1581, 1.099183429735576µ10-3141, 1.614858677992596µ10-6262,
5.998002325828813µ10-12514, 1.543301971989607µ10-25010, 1.131416408748486µ10-50010=

The  reason  that  more  function  evaluations  were  required  than  the  number  of  steps  is  that

Mathematica  adaptively  increases  the  precision  from  the  precision  of  the  initial  value  to  the

requested maximum WorkingPrecision. The sequence of precisions used is chosen so that as

few computations are done at the most expensive final precision as possible under the assump-

tion  that  the  points  are  converging  to  the  minimum.  Sometimes  when  Mathematica  changes

precision, it is necessary to reevaluate the function at the higher precision.

This shows a table with the precision of each of the points with the norm of their errors.

In[17]:= TableForm@Transpose@8Map@Precision, pointsD, N@Map@Norm@exact - ÒD &, pointsDD<DD

Out[17]//TableForm=

MachinePrecision 0.140411
MachinePrecision 0.0156607
MachinePrecision 0.000236558

MachinePrecision 6.09444µ10-8

24.4141 3.8255µ10-15

48.8283 1.59653µ10-29

97.6565 3.24619µ10-58

195.313 4.8604µ10-108

390.626 1.26122µ10-212

781.252 5.865676867279906µ10-406

1562.5 1.755647053247051µ10-791

3125.01 4.345222958143836µ10-1581

6250.02 1.099183429735576µ10-3141

12500. 1.614858677992596µ10-6262

25000.1 5.998002325828813µ10-12514

50000.2 1.543301971989607µ10-25010

100000. 1.131416408748486µ10-50010

12     Unconstrained Optimization



Note  that  typically  the  precision  is  roughly  double  the  scale  Ilog10M of  the  error.  For  Newton's

method this  is  appropriate  since  when the  step  is  computed,  the  scale  of  the  error  will  effec-

tively double according to the quadratic convergence.

FindMinimum  always starts with the precision of the starting values you gave it. Thus, if you do

not want it to use adaptive precision control, you can start with values, which are exact or have

at least the maximum WorkingPrecision. 

This computes the solution using only precision 100000 throughout the computation. (Warning: 
this takes a very long time to complete.)

In[18]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,

88x, 1<, 8y, 1<<, Method -> "Newton", WorkingPrecision Ø 100000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

17 steps and 18 evaluations
Out[18]= 1259.84 Second

Even though this may use fewer function evaluations, they are all done at the highest precision,

so typically adaptive precision saves a lot of time. For example, the previous command without

adaptive precision takes more than 50 times as long as when starting from machine precision.

With Newton’s method, both "line search" and "trust region" step control are implemented. The

default, which is used in the preceding examples, is the line search. However, any of them may

be done with the trust region approach. The approach typically requires more numerical linear

algebra computations per step, but because steps are better controlled, may converge in fewer

iterations.

This uses the unconstrained problems package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[19]:= p = GetFindMinimumProblem@RosenbrockD

Out[19]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F
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This shows the steps taken by FindMinimum  with a trust region Newton method for a Rosen-
brock function.

In[20]:= FindMinimumPlot@p, Method Ø 8"Newton", "StepControl" -> "TrustRegion"<D

Out[20]= :92.14681µ10-26, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 21, Function Ø 22, Gradient Ø 22, Hessian Ø 22<,
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>

This shows the steps taken by FindMinimum  with a line search Newton method for the same 
function.

In[21]:= FindMinimumPlot@p, Method Ø "Newton"D

Out[21]= :94.96962µ10-18, 8X1 Ø 1., X2 Ø 1.<=,

8Steps Ø 22, Function Ø 29, Gradient Ø 29, Hessian Ø 23<,
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>

You  can  see  from the  comparison  of  the  two  plots  that  the  trust  region  method  has  kept  the

steps  within  better  control  as  the  search  follows  the  valley  and  consequently  converges  with

fewer function evaluations.

The following table summarizes the options you can use with Newton's method.

option name default value

"Hessian" Automatic an expression to use for computing the 
Hessian matrix 

"StepControl" "LineSearch" how to control steps; options include 
"LineSearch", "TrustRegion", or None

Method options for Method -> "Newton". 
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Quasi-Newton Methods

There  are  many  variants  of  quasi-Newton  methods.  In  all  of  them,  the  idea  is  to  base  the

matrix Bk in the quadratic model

qkHpL = f HxkL + “ f HxkLT p +
1
2
pT Bk p

on an approximation of the Hessian matrix built up from the function and gradient values from

some or all steps previously taken.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the quasi-Newton method. The path is much less direct 
than for Newton’s method. The quasi-Newton method is used by default by FindMinimum  for 
problems that are not sums of squares.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1<, 8y, 1<<D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 13, Gradient Ø 13<,
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>

The  first  thing  to  notice  about  the  path  taken  in  this  example  is  that  it  starts  in  the  wrong

direction. This direction is  chosen because at the first  step all  the method has to go by is  the

gradient,  and  so  it  takes  the  direction  of  steepest  descent.  However,  in  subsequent  steps,  it

incorporates  information  from  the  values  of  the  function  and  gradient  at  the  steps  taken  to

build up an approximate model of the Hessian. 

The  methods  used  by  Mathematica  are  the  Broyden|Fletcher|Goldfarb|Shanno  (BFGS)  updates

and, for large systems, the limited-memory BFGS (L-BFGS) methods, in which the model Bk  is

not stored explicitly, but rather Bk-1 “ f HxkL  is calculated by gradients and step directions stored

from past steps.
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The  BFGS method  is  implemented  such  that  instead  of  forming  the  model  Hessian  Bk  at  each

step,  Cholesky  factors  Lk  such  that  Lk.LkT= Bk  are  computed  so  that  only  OIn2M  operations  are

needed to solve the system Bk sk = -“ f HxkL [DS96] for a problem with n variables.

For large-scale sparse problems, the BFGS method can be problematic because, in general, the

Cholesky factors (or the Hessian approximation Bk  or its inverse) are dense, so the OIn2M mem-

ory and operations requirements become prohibitive compared to algorithms that  take advan-

tage  of  sparseness.  The  L-BFGS  algorithm  [NW99]  forms  an  approximation  to  the  inverse

Hessian based on the last m past steps, which are stored. The Hessian approximation may not

be as complete, but the memory and order of operations are limited to OHn mL for a problem with

n variables. In Mathematica 5, for problems over 250 variables, the algorithm is switched auto-

matically  to  L-BFGS.  You  can  control  this  with  the  method  option  "StepMemory" -> m.  With

m = ¶, the full BFGS method will always be used. Choosing an appropriate value of m is a trade-

off between speed of convergence and the work done per step. With m < 3, you are most likely

better off using a "conjugate gradient" algorithm.

This shows the same example function with the minimum computed using L-BFGS with m = 5.

In[3]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method Ø 8"QuasiNewton", "StepMemory" Ø 5<D

0.8 1 1.2 1.4 1.6
1

1.2

1.4

1.6

1.8

Out[3]= 88-2., 8x Ø 1.37638, y Ø 1.67868<<, 8Steps Ø 10, Function Ø 13, Gradient Ø 13<, Ü ContourGraphics Ü<

Quasi-Newton  methods  are  chosen  as  the  default  in  Mathematica  because  they  are  typically

quite fast and do not require computation of the Hessian matrix, which can be quite expensive

both  in  terms  of  the  symbolic  computation  and  numerical  evaluation.  With  an  adequate  "line

search",  they  can  be  shown  to  converge  superlinearly  [NW99]  to  a  local  minimum where  the

Hessian is positive definite. This means that 
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lim
kØ¶

°xk+1 - x*¥

°xk - x*¥
= 0

or, in other words, the steps keep getting smaller. However, for very high precision, this does

not compare to the q-quadratic convergence rate of "Newton's" method.

This shows the number of steps and function evaluations required to find the minimum to high 
precision for the problem shown.

In[4]:= First@Timing@Block@8e = 0, s = 0<, 88min, minpoint<, 8points<< =
Reap@FindMinimum@Cos@x^2 - 3 yD + Sin@x^2 + y^2D, 88x, 1.<, 8y, 1.<<,

Method -> "QuasiNewton", WorkingPrecision Ø 10000,
StepMonitor ß Hs++; Sow@8x, y<DL, EvaluationMonitor ß e++DD;

Print@s, " steps and ", e, " evaluations"DDDD

95 steps and 106 evaluations
Out[4]= 2.79623

Newton's  method  is  able  to  find  ten  times  as  many  digits  with  far  fewer  steps  because  of  its

quadratic  convergence  rate.  However,  the  convergence  with  the  quasi-Newton  method  is  still

superlinear since the ratio of the errors is clearly going to zero.

This makes a plot showing the ratios of the errors in the computation. The ratios of the errors 
are shown on a logarithmic scale so that the trend can clearly be seen over a large range of 
magnitudes.

In[5]:= exact = 8x, y< ê. Last@Solve@8x^2 + y^2 ã 3 Pi ê 2, x^2 - 3 y ã -Pi<, 8x, y<DD;
errs = Map@Norm@N@exact - ÒDD &, pointsD;
ListPlot@Log@10, Drop@errs, 1D ê Drop@errs, -1DDD

Out[5]=

20 40 60 80

-100

-80

-60

-40

-20

The following table summarizes the options you can use with quasi-Newton methods.

option name default value

"StepMemory" Automatic the effective number of steps to 
"remember" in the Hessian approximation; 
can be a positive integer or Automatic

"StepControl" "LineSearch" how to control steps; can be 
"LineSearch" or None

Method options for Method -> "QuasiNewton". 
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Gauss|Newton Methods

For minimization problems for which the objective function is a sum of squares,

f HxL =
1

2
‚
j=1

m

r jHxL2 =
1

2
rHxL.rHxL,

it  is  often  advantageous  to  use  the  special  structure  of  the  problem.  Time  and  effort  can  be

saved by computing the residual function rHxL,  and its derivative, the Jacobian JHxL.  The Gauss|

Newton  method  is  an  elegant  way  to  do  this.  Rather  than  using  the  complete  second-order

Hessian matrix for the quadratic model, the Gauss|Newton method uses Bk = JkT Jk  in (1) such

that the step pk is computed from the formula

JkT Jk pk = -“ fk = - JkT rk,

where  Jk = JHxkL,  and  so  on.  Note  that  this  is  an  approximation  to  the  full  Hessian,  which  is

JT J +⁄j=1
m r j “2 r j. In the zero residual case, where r = 0 is the minimum, or when r varies nearly

as  a  linear  function  near  the  minimum point,  the  approximation  to  the  Hessian  is  quite  good

and the quadratic convergence of "Newton’s method" is commonly observed. 

Objective functions, which are sums of squares, are quite common, and, in fact, this is the form

of  the  objective  function  when  FindFit  is  used  with  the  default  value  of  the  NormFunction

option.  One  way  to  view  the  Gauss|Newton  method  is  in  terms  of  least-squares  problems.

Solving the Gauss|Newton step is the same as solving a linear least-squares problem, so apply-

ing  a  Gauss|Newton  method  is  in  effect  applying  a  sequence  of  linear  least-squares  fits  to  a

nonlinear  function.  With  this  view,  it  makes  sense  that  this  method is  particularly  appropriate

for the sort of nonlinear fitting that FindFit does.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This uses the Unconstrained Problems Package to set up the classic Rosenbrock function, which 
has a narrow curved valley.

In[2]:= p = GetFindMinimumProblem@RosenbrockD

Out[2]= FindMinimumProblemBH1 - X1L
2 + 100 I-X1

2 + X2M
2
, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<F
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When  Mathematica  encounters  a  problem  that  is  expressly  a  sum  of  squares,  such  as  the

Rosenbrock  example,  or  a  function  that  is  the  dot  product  of  a  vector  with  itself,  the  Gauss|

Newton method will be used automatically. 

This shows the steps taken by FindMinimum  with the Gauss|Newton method for Rosenbrock’s 
function using a trust region method for step control.

In[3]:= FindMinimumPlot@p, Method Ø AutomaticD

Out[3]= :80., 8X1 Ø 1., X2 Ø 1.<<, 8Steps Ø 15, Residual Ø 21, Jacobian Ø 16<,
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>

If you compare this with the same example done with "Newton’s method", you can see that it

was  done  with  fewer  steps  and  evaluations  because  the  Gauss|Newton  method  is  taking

advantage of the special structure of the problem. The convergence rate near the minimum is

just as good as for Newton’s method because the residual is zero at the minimum. 

The  Levenberg|Marquardt  method  is  a  Gauss|Newton  method  with  "trust  region"  step  control

(though  it  was  originally  proposed  before  the  general  notion  of  trust  regions  had  been  devel-

oped).  You  can  request  this  method  specifically  by  using  the  FindMinimum  option

Method -> "LevenbergMarquardt" or equivalently Method -> "GaussNewton".

Sometimes it is awkward to express a function so that it will explicitly be a sum of squares or a

dot product of a vector with itself. In these cases, it is possible to use the "Residual" method

option to  specify  the residual  directly.  Similarly,  you can specify  the derivative of  the residual

with  the  "Jacobian"  method  option.  Note  that  when  the  residual  is  specified  through  the

"Residual"  method  option,  it  is  not  checked  for  consistency  with  the  first  argument  of

FindMinimum. The values returned will depend on the value given through the option.

This finds the minimum of Rosenbrock’s function using the specification of the residual.

In[4]:= FindMinimumB
1

2
JH1 - X1L2 + 100 I-X1

2 + X2M
2
N, 88X1, -1.2`<, 8X2, 1.`<<,

Method Ø 9"LevenbergMarquardt", "Residual" Ø 91 - X1, 10 I-X1
2 + X2M==F

Out[4]= 80., 8X1 Ø 1., X2 Ø 1.<<
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option name default value

"Residual" Automatic allows you to directly specify the residual r 
such that f = 1 ê2 r.r

"EvaluationMonitor" Automatic an expression that is evaluated each time 
the residual is evaluated

"Jacobian" Automatic allows you to specify the (matrix) deriva -
tive of the residual

"StepControl" "TrustRegion" must be "TrustRegion", but allows you 
to change control parameters through 
method options

Method options for Method -> "LevenbergMarquardt".

Another natural  way of  setting up sums of  squares problems in Mathematica  is  with FindFit,

which computes nonlinear fits to data. A simple example follows.

Here is a model function.

In[5]:= fm@a_, b_, c_, x_D := a If@x > 0, Cos@b xD, Exp@c xDD

Here is some data generated by the function with some random perturbations added.

In[6]:= Block@8e = 0.1, a = 1.2, b = 3.4, c = 0.98<,
data = Table@8x, fm@a, b, c, xD + e RandomReal@ 8-.5, .5<D<, 8x, -5, 5, .1<DD;

This finds a nonlinear least-squares fit to the model function.

In[7]:= fit = FindFit@data, fm@a, b, c, xD, 88a, 1<, 8b, 3<, 8c, 1<<, xD

Out[7]= 8a Ø 1.20826, b Ø 3.40018, c Ø 1.0048<

This shows the fit model with the data.

In[8]:= Show@8ListPlot@dataD,
Plot@fm@a, b, c, xD ê. fit, 8x, -5, 5<, PlotStyle Ø RGBColor@0, 1, 0DD<D

Out[8]=

In  the  example,  FindFit  internally  constructs  a  residual  function  and  Jacobian,  which  are  in

turn  used  by  the  Gauss|Newton  method  to  find  the  minimum  of  the  sum  of  squares,  or  the
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nonlinear least-squares fit. Of course, FindFit  can be used with other methods, but because a

residual  function  that  evaluates  rapidly  can  be  constructed,  it  is  often  faster  than  the  other

methods.

Nonlinear Conjugate Gradient Methods

The basis for a nonlinear conjugate gradient method is to effectively apply the linear conjugate

gradient method, where the residual is replaced by the gradient. A model quadratic function is

never explicitly formed, so it is always combined with a "line search" method.

The first nonlinear conjugate gradient method was proposed by Fletcher and Reeves as follows.

Given a step direction pk, use the line search to find ak such that xk+1 = xk + ak pk. Then compute

(1)bk+1 =
“ f Ixk+1M.“ f Ixk+1M

“ f IxkM.“ f IxkM

pk+1 = bk+1 pk - “ f Hxk+1L.

It  is  essential  that  the  line  search  for  choosing  ak satisfies  the  strong  Wolfe  conditions;  this  is

necessary to ensure that the directions pk are descent directions [NW99]]. 

An alternate method, which generally (but not always) works better in practice, is that of Polak

and Ribiere, where equation (2) is replaced with 

(2)bk+1 =
“ f Ixk+1M.( “ f Ixk+1M-“ f IxkMM

“ f IxkM.“ f IxkM
.

In formula (3), it is possible that bk+1 can become negative, in which case Mathematica uses the

algorithm modified by using pk+1 = maxHbk+1, 0L pk - “ f Hxk+1L. In Mathematica, the default conjugate

gradient method is  Polak|Ribiere,  but the Fletcher|Reeves method can be chosen by using the

method option

Method Ø 8"ConjugateGradient", Method -> "FletcherReeves"<.

The advantage of conjugate gradient methods is that they use relatively little memory for large-

scale problems and require no numerical linear algebra, so each step is quite fast. The disadvan-

tage is that they typically converge much more slowly than "Newton" or "quasi-Newton" meth-

ods.  Also,  steps  are  typically  poorly  scaled  for  length,  so  the  "line  search"  algorithm  may

require more iterations each time to find an acceptable step.
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This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a plot of the steps taken by the nonlinear conjugate gradient method. The path is 
much less direct than for Newton’s method. 

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1<, 8y, 1<<, Method -> "ConjugateGradient"D

Out[2]= :8-2., 8x Ø 1.37638, y Ø 1.67868<<,

8Steps Ø 9, Function Ø 22, Gradient Ø 22<,
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One  issue  that  arises  with  nonlinear  conjugate  gradient  methods  is  when  to  restart  them.  As

the search moves, the nature of the local quadratic approximation to the function may change

substantially.  The  local  convergence  of  the  method  depends  on  that  of  the  linear  conjugate

gradient  method,  where the quadratic  function is  constant.  With a constant  quadratic  function

for n  variables and an exact line search, the linear algorithm will  converge in n  or fewer itera-

tions. By restarting (taking a steepest descent step with bk+1 = 0) every so often, it is possible

to eliminate information from previous points, which may not be relevant to the local quadratic

model at the current search point. If you look carefully at the example, you can see where the

method was restarted and a steepest  descent  step was taken.  One option is  to  simply restart

after  every  k  iterations,  where  k <= n.  You  can  specify  this  using  the  method  option

"RestartIterations" -> k.  An  alternative  is  to  restart  when  consecutive  gradients  are  not

sufficiently orthogonal according to the test

“ f HxkL.“ f Hxk-1L

“ f HxkL.“ f HxkL
< n,

with  a  threshold  n  between  0  and  1.  You  can  specify  this  using  the  method  option

"RestartThreshold" -> n.
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The table summarizes the options you can use with the conjugate gradient methods.

option name default value

"Method" "PolakRibiere" nonlinear conjugate gradient method can 
be "PolakRibiere" or 
"FletcherReeves"

"RestartThreshold" 1ê10 threshold n for gradient orthogonality 
below which a restart will be done

"RestartIterations" ¶ number of iterations after which to restart

"StepControl" "LineSearch" must be "LineSearch", but you can use 
this to specify line search methods

Method options for Method -> "ConjugateGradient".

It should be noted that the default method for FindMinimum  in Mathematica 4 was a conjugate

gradient method with a near exact line search. This has been maintained for legacy reasons and

can  be  accessed  by  using  the  FindMinimum  option  Method -> "Gradient".  Typically,  this  will

use  more  function  and  gradient  evaluations  than  the  newer  Method -> "ConjugateGradient",

which itself often uses far more than the methods that Mathematica currently uses as defaults.

Principal Axis Method

"Gauss|Newton" and "conjugate gradient"  methods use derivatives.  When Mathematica  cannot

compute symbolic derivatives, finite differences will  be used. Computing derivatives with finite

differences  can  impose  a  significant  cost  in  some  cases  and  certainly  affects  the  reliability  of

derivatives,  ultimately  having  an  effect  on  how  good  an  approximation  to  the  minimum  is

achievable. For functions where symbolic derivatives are not available, an alternative is to use a

derivative-free  algorithm,  where  an  approximate  model  is  built  up  using  only  values  from

function evaluations. 

Mathematica uses the principal axis method of Brent [Br02] as a derivative-free algorithm. For

an n-variable problem, take a set of search directions u1, u2, …, un  and a point x0.  Take xi  to be

the  point  that  minimizes  f  along  the  direction  ui  from  xi-1  (i.e.,  do  a  "line  search"  from  xi-1),

then replace ui with ui+1. At the end, replace un with xn - x0. Ideally, the new ui should be linearly

independent, so that a new iteration could be undertaken, but in practice, they are not. Brent's

algorithm involves using the singular value decomposition (SVD) on the matrix U = Hu1, u2, ... unL
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to realign them to the principal directions for the local quadratic model. (An eigen decomposi-

tion  could  be  used,  but  Brent  shows  that  the  SVD  is  more  efficient.)  With  the  new  set  of  ui

obtained, another iteration can be done. 

Two distinct starting conditions in each variable are required for this method because these are

used  to  define  the  magnitudes  of  the  vectors  ui.  In  fact,  whenever  you  specify  two  starting

conditions in each variable, FindMinimum, FindMaximum, and FindFit will use the principal axis

algorithm by default. 

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the search path and function evaluations for FindMinimum  to find a local minimum 
of the function cosIx2 - 3 yM + sinIx2 + y2M.

In[2]:= FindMinimumPlot@Cos@x^2 - 3 yD + Sin@x^2 + y^2D,
88x, 1.4, 1.5<, 8y, 1, 1.1<<, Method Ø "PrincipalAxis"D

Out[2]= :8-2., 8x Ø 2.12265, y Ø 0.454686<<, 8Steps Ø 4, Function Ø 148<,

1.4 1.6 1.8 2.0 2.2 2.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

>

The basics of the search algorithm can be seen quite well from the plot since the derivative-free

line search algorithm requires a substantial number of function evaluations. First a line search is

done in the x direction, then from that point, a line search is done in the y direction, determin-

ing the step direction. Once the step is taken, the vectors ui  are realigned appropriately to the

principal  directions  of  the  local  quadratic  approximation  and  the  next  step  is  similarly  com-

puted. 

The algorithm is efficient in terms of convergence rate; it has quadratic convergence in terms of

steps. However, in terms of function evaluations, it is quite expensive because of the derivative-

free line search required.  Note that  since the directions given to the line search (especially  at

the beginning) are not necessarily descent directions, the line search has to be able to search in

both  directions.  For  problems  with  many  variables,  the  individual  linear  searches  in  all  direc-

tions become very expensive, so this method is typically better suited to problems without too

many variables.
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Methods for Solving Nonlinear Equations

Introduction to Solving Nonlinear Equations

There  are  some  close  connections  between  finding  a  "local  minimum"  and  solving  a  set  of

nonlinear  equations.  Given  a  set  of  n  equations  in  n  unknowns,  seeking  a  solution  rHxL ã 0  is

equivalent to minimizing the sum of squares rHxL. rHxL when the residual is zero at the minimum,

so there is a particularly close connection to the "Gauss|Newton" methods. In fact, the Gauss|

Newton  step  for  local  minimization  and  the  "Newton"  step  for  nonlinear  equations  are  exactly

the same. Also, for a smooth function, "Newton’s method" for local minimization is the same as

Newton’s  method  for  the  nonlinear  equations  “ f = 0.  Not  surprisingly,  many  aspects  of  the

algorithms are similar; however, there are also important differences.

Another  thing  in  common  with  minimization  algorithms  is  the  need  for  some  kind  of  "step

control". Typically, step control is based on the same methods as minimization except that it is

applied to a merit function, usually the smooth 2-norm squared, rHxL. rHxL.

"Newton" use the exact Jacobian or a finite difference approximation 
to solve for the step based on a locally linear model

"Secant" work without derivatives by constructing a secant approxi -
mation to the Jacobian using n past steps; requires two 
starting conditions in each dimension

"Brent" method in one dimension that maintains bracketing of 
roots; requires two starting conditions that bracket a root

Basic method choices for FindRoot.

Newton's Method

Newton's method for nonlinear equations is based on a linear approximation

rHxL =MkHpL = rHxkL + JHxkL p, p = Hx - xkL,

so the Newton step is found simply by setting MkHpL = 0, 

JHxkL pk = -rHxkL.
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Near  a  root  of  the  equations,  Newton's  method  has  q-quadratic  convergence,  similar  to

"Newton's"  method  for  minimization.  Newton's  method  is  used  as  the  default  method  for

FindRoot. 

Newton's  method can be used with either  "line search" or  "trust  region" step control.  When it

works, the line search control is typically faster, but the trust region approach is usually more

robust.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

Here is the Rosenbrock problem as a FindRoot problem.

In[2]:= p = GetFindRootProblem@RosenbrockD

Out[2]= FindRootProblemA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<, 8<, Rosenbrock, 82, 2<E

This finds the solution of the nonlinear system using the default line search approach. (Newton's 
method is the default method for FindRoot.)

In[3]:= FindRootPlot@pD

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 15, Residual Ø 27, Jacobian Ø 15<,
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Note that each of the line searches started along the line x == 1. This is a particular property of

the Newton step for this particular problem.

This computes the Jacobian and the Newton step symbolically for the Rosenbrock problem.

In[4]:= J = OuterAD, 910 I-X1
2 + X2M, 1 - X1=, 8X1, X2<E;

LinearSolveAJ, -910 I-X1
2 + X2M, 1 - X1=E

Out[4]= 91 - X1, 2 X1 - X1
2 - X2=

When  this  step  is  added  to  the  point,  8X1, X2<,  it  is  easy  to  see  why  the  steps  go  to  the  line

X1 = 1.  This  is  a  particular  feature  of  this  problem,  which  is  not  typical  for  most  functions.
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Because  the  "trust  region"  approach  does  not  try  the  Newton  step  unless  it  lies  within  the

region bound, this  feature does not  show up so strongly when the trust  region step control  is

used.

This finds the solution of the nonlinear system using the trust region approach. The search is 
almost identical to the search with the "Gauss|Newton" method for the Rosenbrock objective 
function in FindMinimum .

In[5]:= FindRootPlot@p, Method Ø 8"Newton", "StepControl" Ø "TrustRegion"<D

Out[5]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 16, Residual Ø 21, Jacobian Ø 16<,
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When the structure of the Jacobian matrix is sparse, Mathematica will use SparseArray  objects

both to compute the Jacobian and to handle the necessary numerical linear algebra. 

When  solving  nonlinear  equations  is  used  as  a  part  of  a  more  general  numerical  procedure,

such  as  solving  differential  equations  with  implicit  methods,  often  starting  values  are  quite

good, and complete convergence is not absolutely necessary. Often the most expensive part of

computing  a  Newton  step  is  finding  the  Jacobian  and  computing  a  matrix  factorization.  How-

ever,  when close  enough to  a  root,  it  is  possible  to  leave the  Jacobian frozen for  a  few steps

(though this does certainly affect the convergence rate). You can do this in Mathematica using

the method option "UpdateJacobian",  which gives the number of steps to go before updating

the Jacobian. The default is "UpdateJacobian" -> 1, so the Jacobian is updated every step.

This shows the number of steps, function evaluations, and Jacobian evaluations required to find 
a simple square root when the Jacobian is only updated every three steps.

In[6]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, Method Ø 8"Newton", "UpdateJacobian" Ø 3<,

EvaluationMonitor ß e++, StepMonitor ß s++,
Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D

Out[6]= 88x Ø 1.41421<, 5, 9, 2<

This shows the number of steps, function evaluations, and Jacobian evaluations required to find 
a simple square root when the Jacobian is updated every step.

In[7]:= Block@8s = 0, e = 0, j = 0<,
8FindRoot@x^2 - 2, 88x, 1.5<<, EvaluationMonitor ß e++, StepMonitor ß s++,

Jacobian Ø 8Automatic, EvaluationMonitor ß j++<D, s, e, j<D
Out[7]= 88x Ø 1.41421<, 4, 5, 4<
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Of course for a simple one-dimensional root, updating the Jacobian is trivial in cost, so holding

the update is only of use here to demonstrate the idea.

option name default value

"UpdateJacobian" 1 number of steps to take before updating 
the Jacobian

"StepControl" "LineSearch" method for step control, can be 
"LineSearch", "TrustRegion", or 
None (which is not recommended)

Method options for Method -> "Newton" in FindRoot.

The Secant Method

When derivatives cannot be computed symbolically, "Newton’s" method will be used, but with a

finite  difference  approximation  to  the  Jacobian.  This  can  have  cost  in  terms  of  both  time  and

reliability. Just as for minimization, an alternative is to use an algorithm specifically designed to

work without derivatives. 

In  one  dimension,  the  idea  of  the  secant  method  is  to  use  the  slope  of  the  line  between two

consecutive  search  points  to  compute  the  step  instead  of  the  derivative  at  the  latest  point.

Similarly in n dimensions, differences between the residuals at n points are used to construct an

approximation of sorts to the Jacobian. Note that this is similar to finite differences, but rather

than trying to make the difference interval small in order to get as good a Jacobian approxima-

tion  as  possible,  it  effectively  uses  an  average derivative  just  like  the  one-dimensional  secant

method. Initially, the n points are constructed from two starting points that are distinct in all n

dimensions. Subsequently, as steps are taken, only the n points with the smallest merit function

value are kept. It is rare, but possible, that steps are collinear and the secant approximation to

the Jacobian becomes singular. In this case, the algorithm is restarted with distinct points.

The  method requires  two starting  points  in  each  dimension.  In  fact,  if  two  starting  points  are

given  in  each  dimension,  the  secant  method  is  the  default  method  except  in  one  dimension,

where "Brent’s" method may be chosen.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`
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This shows the solution of the Rosenbrock problem with the secant method.

In[2]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2, -1.<, 8X2, 1., .9<<E

Out[2]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 21, Residual Ø 70<,
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Note  that,  as  compared  to  "Newton’s"  method,  many  more  residual  function  evaluations  are

required.  However,  the  method  is  able  to  follow  the  relatively  narrow  valley  without  directly

using derivative information. 

This shows the solution of the Rosenbrock problem with Newton’s method using finite differ-
ences to compute the Jacobian.

In[3]:= FindRootPlotA910 I-X1
2 + X2M, 1 - X1=, 88X1, -1.2<, 8X2, 1.<<,

Method Ø 8"Newton", StepControl -> "TrustRegion"<, Jacobian -> "FiniteDifference"E

Out[3]= :8X1 Ø 1., X2 Ø 1.<, 8Steps Ø 17, Residual Ø 70, Jacobian Ø 16<,
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However,  when  compared  to  Newton’s  method  with  finite  differences,  the  number  of  residual

function  evaluations  is  comparable.  For  sparse  Jacobian  matrices  with  larger  problems,  the

finite difference Newton method will usually be more efficient since the secant method does not

take advantage of sparsity in any way.

Brent’s Method

When searching for a real simple root of a real valued function, it is possible to take advantage

of  the  special  geometry  of  the  problem,  where  the  function  crosses  the  axis  from negative  to
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positive  or  vice  versa.  Brent’s  method  [Br02]  is  effectively  a  safeguarded  secant  method  that

always keeps a point where the function is positive and one where it is negative so that the root

is always bracketed. At any given step, a choice is made between an interpolated (secant) step

and a bisection in such a way that eventual convergence is guaranteed. 

If  FindRoot  is  given  two  real  starting  conditions  that  bracket  a  root  of  a  real  function,  then

Brent’s  method  will  be  used.  Thus,  if  you  are  working  in  one  dimension  and  can  determine

initial conditions that will bracket a root, it is often a good idea to do so since Brent’s method is

the most robust algorithm available for FindRoot.

Even though essentially all the theory for solving nonlinear equations and local minimization is

based on smooth functions, Brent’s method is sufficiently robust that you can even get a good

estimate for a zero crossing for discontinuous functions.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows the steps and function evaluations used in an attempt to find the root of a discontinu-
ous function.

In[2]:= FindRootPlot@2 UnitStep@Sin@xDD - 1, 8x, 3, 4<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]= :8x Ø 3.14159<, 8Steps Ø 50, Residual Ø 51<,
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The method gives  up and issues  a  message when the root  is  bracketed very  closely,  but  it  is

not able to find a value of the function, which is zero. This robustness carries over very well to

continuous functions that are very steep.

This shows the steps and function evaluations used to find the root of a function that varies 
rapidly near its root.

In[3]:= FindRootPlot@ArcTan@10000 Sin@xD D, 8x, 3, 4<, PlotRange Ø AllD

Out[3]= :8x Ø 3.14159<, 8Steps Ø 18, Residual Ø 19<,
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Step Control

Introduction to Step Control

Even with "Newton methods" where the local model is based on the actual Hessian, unless you

are close to a root or minimum, the model step may not bring you any closer to the solution. A

simple example is given by the following problem.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

This shows a simple example for root finding with step control disabled where the iteration 
alternates between two points and does not converge. Note: On some platforms, you may see 
convergence. This is due to slight variations in machine-number arithmetic, which may be 
sufficient to break the oscillation.

In[2]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<,
Method Ø 8Newton, StepControl Ø None<D

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[2]=

This shows the same example problem with step control enabled. Since the first evaluation 
point has not reduced the size of the function, the line search restricts the step and so the 
iteration converges to the solution.

In[3]:= FindRootPlot@Sin@xD, 8x, 1.1655611852072114<, Method Ø "Newton"D

Out[3]= :8x Ø 0.<, 8Steps Ø 2, Residual Ø 3, Jacobian Ø 2<,
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A  good  step-size  control  algorithm  will  prevent  repetition  or  escape  from  areas  near  roots  or

minima from happening. At the same time, however, when steps based on the model function

are appropriate, the step-size control algorithm should not restrict them, otherwise the conver-

gence  rate  of  the  algorithm  would  be  compromised.  Two  commonly  used  step-size  control

algorithms  are  "line  search"  and  "trust  region"  methods.  In  a  line  search  method,  the  model

function  gives  a  step  direction,  and  a  search  is  done  along  that  direction  to  find  an  adequate

point  that  will  lead  to  convergence.  In  a  trust  region  method,  a  distance  in  which  the  model

function will be trusted is updated at each step. If the model step lies within that distance, it is

used; otherwise, an approximate minimum for the model function on the boundary of the trust

region  is  used.  Generally  the  trust  region  methods  are  more  robust,  but  they  require  more

numerical linear algebra.

Both step control methods were developed originally with minimization in mind. However, they

apply well to finding roots for nonlinear equations when used with a merit function. In Mathemat -

ica, the 2-norm merit function rHxL.rHxL is used.

Line Search Methods

A method like "Newton’s" method chooses a step, but the validity of that step only goes as far

as  the  Newton quadratic  model  for  the  function  really  reflects  the  function.  The idea of  a  line

search is  to  use the direction of  the chosen step,  but  to  control  the length,  by solving a one-

dimensional problem of minimizing 

f HaLã f Ha pk + xkL,

where pk is the search direction chosen from the position xk. Note that 

f ' HaLã“ f Ha pk + xkL.pk,

so if you can compute the gradient, you can effectively do a one-dimensional search with deriva-

tives. 

Typically,  an  effective  line  search  only  looks  toward  a > 0  since  a  reasonable  method  should

guarantee that the search direction is a descent direction, which can be expressed as f£ a < 0.

It  is  typically  not  worth the effort  to  find an exact  minimum of  f  since the search direction is

rarely exactly the right direction. Usually it is enough to move closer. 

32     Unconstrained Optimization



One condition that measures progress is called the Armijo or sufficient decrease condition for a

candidate a*.

fHa*L § fH0L + m f ' H0L, 0 < m < 1

Often with this condition, methods will converge, but for some methods, Armijo alone does not

guarantee convergence for smooth functions. With the additional curvature condition, 

†f ' Ha*L§ § h †f ' H0L§, 0 < m § h < 1,

many methods can be proven to converge for smooth functions. Together these conditions are

known  as  the  strong  Wolfe  conditions.  You  can  control  the  parameters  m  and  h  with  the

"DecreaseFactor" -> m and "CurvatureFactor" -> h options of "LineSearch".

The  default  value  for  "CurvatureFactor" -> h  is  h 0.9,  except  for

Method -> "ConjugateGradient" where h = 0.1 is used since the algorithm typically works better

with a closer-to-exact line search. The smaller h is, the closer to exact the line search is. 

If you look at graphs showing iterative searches in two dimensions, you can see the evaluations

spread out along the directions of the line searches. Typically, it only takes a few iterations to

find a point satisfying the conditions. However, the line search is not always able to find a point

that  satisfies  the  conditions.  Usually  this  is  because  there  is  insufficient  precision  to  compute

the points closely enough to satisfy the conditions, but it can also be caused by functions that

are not completely smooth or vary extremely slowly in the neighborhood of a minimum.

This loads a package that contains some utility functions.

In[1]:= << Optimization`UnconstrainedProblems`

In[2]:= FindMinimum@x^2 ê 2 + Cos@xD, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à
Out[2]= 81., 8x Ø 0.000182658<<
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This runs into problems because the real differences in the function are negligible compared to

evaluation differences around the point, as can be seen from the plot.

In[24]:= Plot@x^2 ê 2 + Cos@xD, 8x, 0, .0004<, PlotRange Ø 81 - 10^-15, 1 + 10^-15<D

Out[24]=
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Sometimes it  can help to subtract out the constants so that small  changes in the function are

more significant.

In[18]:= FindMinimum@x^2 ê 2 + Cos@xD - 1, 8x, 1<D

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[18]= 91.11022µ10-16, 8x Ø 0.00024197<=

In  this  case,  however,  the  approximation  is  only  slightly  closer  because  the  function  is  quite

noisy near 0, as can be seen from the plot.

In[19]:= Plot@x^2 ê 2 + Cos@xD - 1, 8x, 0, .0004<D

Out[19]=
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8.µ 10-16

1.µ 10-15

Thus,  to  get  closer  to  the  correct  value  of  zero,  higher  precision  is  required  to  compute  the

function more accurately.

For some problems, particularly where you may be starting far from a root or a local minimum,

it  may be  desirable  to  restrict  steps.  With  line  searches,  it  is  possible  to  do  this  by  using  the

"MaxRelativeStepSize"  method option.  The default  value  picked for  this  is  designed to  keep

searches from going wildly out of control, yet at the same time not prevent a search from using

reasonably large steps if appropriate.
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