
Wolfram Mathematica ® Tutorial Collection

ADVANCED NUMERICAL DIFFERENTIAL
EQUATION SOLVING IN MATHEMATICA

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Mark Sofroniou and Rob Knapp

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction . 1

Overview . 1

The Design of the NDSolve Framework . 11

ODE Integration Methods . 17

Methods . 17

Controller Methods . 66

Extensions . 162

Partial Differential Equations . 174
The Numerical Method of Lines . 174

Boundary Value Problems . 243
Shooting Method . 243
Chasing Method . 248
Boundary Value Problems with Parameters . 255

Differential-Algebraic Equations . 256
Introduction . 256
IDA Method . 264

Delay Differential Equations . 274
Comparison and Contrast with ODEs . 275
Propagation and Smoothing of Discontinuities . 280
Storing History Data . 284
The Method of Steps . 285
Examples . 290

Norms in NDSolve . 294
ScaledVectorNorm . 296

Stiffness Detection . 298
Overview . 298
Introduction . 299
Linear Stability . 301
"StiffnessTest" Method Option . 304
"NonstiffTest" Method Option . 305
Examples . 315
Option Summary . 323

Structured Systems . 324

Structured Systems . 324
Numerical Methods for Solving the Lotka|Volterra Equations . 324
Rigid Body Solvers . 329

Components and Data Structures . 339
Introduction . 339
Example . 340
Creating NDSolve`StateData Objects . 341
Iterating Solutions . 343
Getting Solution Functions . 344
NDSolve`StateData methods . 348

DifferentialEquations Utility Packages . 351
InterpolatingFunctionAnatomy . 351
NDSolveUtilities . 356

References . 358

Introduction to Advanced Numerical
Differential Equation Solving in
Mathematica

Overview

The Mathematica function NDSolve is a general numerical differential equation solver. It can

handle a wide range of ordinary differential equations (ODEs) as well as some partial differential

equations (PDEs). In a system of ordinary differential equations there can be any number of

unknown functions xi, but all of these functions must depend on a single “independent variable”

t, which is the same for each function. Partial differential equations involve two or more indepen-

dent variables. NDSolve can also solve some differential-algebraic equations (DAEs), which are

typically a mix of differential and algebraic equations.

NDSolve@8eqn1,eqn2,…<,
u,8t,tmin,tmax<D

find a numerical solution for the function u with t in the
range tmin to tmax

NDSolve@8eqn1,eqn2,…<,
8u1,u2,…<,8t,tmin,tmax<D

find numerical solutions for several functions ui

Finding numerical solutions to ordinary differential equations.

NDSolve represents solutions for the functions xi as InterpolatingFunction objects. The

InterpolatingFunction objects provide approximations to the xi over the range of values tmin

to tmax for the independent variable t.

In general, NDSolve finds solutions iteratively. It starts at a particular value of t, then takes a

sequence of steps, trying eventually to cover the whole range tmin to tmax.

In order to get started, NDSolve has to be given appropriate initial or boundary conditions for

the xi and their derivatives. These conditions specify values for xi@tD, and perhaps derivatives

xi ‘@tD, at particular points t. When there is only one t at which conditions are given, the equa-

tions and initial conditions are collectively referred to as an initial value problem. A boundary

value occurs when there are multiple points t. NDSolve can solve nearly all initial value prob-

lems that can symbolically be put in normal form (i.e. are solvable for the highest derivative

order), but only linear boundary value problems.

 can solve nearly all initial value prob-

lems that can symbolically be put in normal form (i.e. are solvable for the highest derivative

order), but only linear boundary value problems.

This finds a solution for x with t in the range 0 to 2, using an initial condition for x at t ã 1.

In[1]:= NDSolve@8x‘@tD == x@tD, x@1D == 3<, x, 8t, 0, 2<D

Out[1]= 88x Ø InterpolatingFunction@880., 2.<<, <>D<<

When you use NDSolve, the initial or boundary conditions you give must be sufficient to deter-

mine the solutions for the xi completely. When you use DSolve to find symbolic solutions to

differential equations, you may specify fewer conditions. The reason is that DSolve automati-

cally inserts arbitrary symbolic constants C@iD to represent degrees of freedom associated with

initial conditions that you have not specified explicitly. Since NDSolve must give a numerical

solution, it cannot represent these kinds of additional degrees of freedom. As a result, you must

explicitly give all the initial or boundary conditions that are needed to determine the solution.

In a typical case, if you have differential equations with up to nth derivatives, then you need to

either give initial conditions for up to Hn - 1Lth derivatives, or give boundary conditions at n

points.

This solves an initial value problem for a second-order equation, which requires two conditions,
and are given at t == 0.

In[2]:= NDSolve@8x‘‘@tD == x@tD^2, x@0D == 1, x‘@0D == 0<, x, 8t, 0, 2<D

Out[2]= 88x Ø InterpolatingFunction@880., 2.<<, <>D<<

This plots the solution obtained.

In[3]:= Plot@Evaluate@x@tD ê. %D, 8t, 0, 2<D

Out[3]=

0.5 1.0 1.5 2.0

2

3

4

5

6

2 Advanced Numerical Differential Equation Solving in Mathematica

Here is a simple boundary value problem.

In[4]:= NDSolve@8y‘‘@xD + x y@xD == 0, y@0D == 1, y@1D == -1<, y, 8x, 0, 1<D

Out[4]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

You can use NDSolve to solve systems of coupled differential equations as long as each variable

has the appropriate number of conditions.

This finds a numerical solution to a pair of coupled equations.

In[5]:= sol = NDSolveB:x‘‘@tD ã y@tD x@tD, y‘@tD ã -
1

x@tD2 + y@tD2
,

x@0D ã 1, x‘@0D ã 0, y@0D ã 0>, 8x, y<, 8t, 0, 100<F

Out[5]= 88x Ø InterpolatingFunction@880., 100.<<, <>D, y Ø InterpolatingFunction@880., 100.<<, <>D<<

Here is a plot of both solutions.

In[6]:= Plot@Evaluate@8x@tD, y@tD< ê. %D, 8t, 0, 100<, PlotRange Ø All, PlotPoints Ø 200D

Out[6]=

20 40 60 80 100

-6

-4

-2

You can give initial conditions as equations of any kind. If these equations have multiple

solutions, NDSolve will generate multiple solutions.

The initial conditions in this case lead to multiple solutions.

In[7]:= NDSolve@8y‘@xD^2 - y@xD^3 == 0, y@0D^2 == 4<, y, 8x, 1<D

NDSolve::mxst :
Maximum number of 10000 steps reached at the point x == 1.1160976563722613`*^-8. à

Out[7]= 98y Ø InterpolatingFunction@880., 1.<<, <>D<, 8y Ø InterpolatingFunction@880., 1.<<, <>D<,

9y Ø InterpolatingFunctionA990., 1.1161µ10-8==, <>E=,
8y Ø InterpolatingFunction@880., 1.<<, <>D<=

NDSolve was not able to find the solution for y‘@xD ã -Sqrt@y@xD^3D, y@0D ã -2 because of

problems with the branch cut in the square root function.

Advanced Numerical Differential Equation Solving in Mathematica 3

This shows the real part of the solutions that NDSolve was able to find. (The upper two solu-
tions are strictly real.)

In[8]:= Plot@Evaluate@Part@Re@y@xD ê. %D, 81, 2, 4<DD, 8x, 0, 1<D

Out[8]=

0.2 0.4 0.6 0.8 1.0

-2

2

4

6

8

10

12

NDSolve can solve a mixed system of differential and algebraic equations, referred to as differen-

tial-algebraic equations (DAEs). In fact, the example given is a sort of DAE, where the equa-

tions are not expressed explicitly in terms of the derivatives. Typically, however, in DAEs, you

are not able to solve for the derivatives at all and the problem must be solved using a different

method entirely.

Here is a simple DAE.

In[9]:= NDSolve@8x‘‘@tD + y@tD ã x@tD,
x@tD^2 + y@tD^2 ã 1, x@0D ã 0, x‘@0D ã 1<, 8x, y<, 8t, 0, 2<D

NDSolve::ndsz :
At t == 1.6656481721762058`, step size is effectively zero; singularity or stiff system suspected. à

Out[9]= 88x Ø InterpolatingFunction@880., 1.66565<<, <>D, y Ø InterpolatingFunction@880., 1.66565<<, <>D<<

Note that while both of the equations have derivative terms, the variable y appears without any

derivatives, so NDSolve issues a warning message. When the usual substitution to convert to

first-order equations is made, one of the equations does indeed become effectively algebraic.

Also, since y only appears algebraically, it is not necessary to give an initial condition to deter-

mine its values. Finding initial conditions that are consistent with DAEs can, in fact, be quite

difficult. The tutorial "Numerical Solution of Differential-Algebraic Equations" has more

information.

4 Advanced Numerical Differential Equation Solving in Mathematica

This shows a plot of the solutions.

In[10]:= Plot@Evaluate@8x@tD, y@tD< ê. %D, 8t, 0, 1.66<D

Out[10]=

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

From the plot, you can see that the derivative of y is tending to vary arbitrarily fast. Even

though it does not explicitly appear in the equations, this condition means that the solver can-

not continue further.

Unknown functions in differential equations do not necessarily have to be represented by single

symbols. If you have a large number of unknown functions, for example, you will often find it

more convenient to give the functions names like x@iD or xi.

This constructs a set of twenty-five coupled differential equations and initial conditions and
solves them.

In[11]:= n = 25;
x0@t_D := 0;
xn@t_D := 1;
eqns =

TableA9xi‘@tD ã n2 H xi+1@tD - 2 xi@tD + xi-1@tDL, xi@0D ã Hi ê nL10=, 8i, n - 1<E;
vars = Table@xi@tD, 8i, n - 1<D;
NDSolve@eqns, vars, 8t, 0, .25<D

Out[16]= 88x1@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x2@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x3@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x4@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x5@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x6@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x7@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x8@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x9@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x10@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x11@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x12@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x13@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x14@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x15@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x16@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x17@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x18@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x19@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x20@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x21@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x22@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x23@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x24@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD<<

Advanced Numerical Differential Equation Solving in Mathematica 5

This actually computes an approximate solution of the heat equation for a rod with constant

temperatures at either end of the rod. (For more accurate solutions, you can increase n.)

The result is an approximate solution to the heat equation for a 1-dimensional rod of length 1
with constant temperature maintained at either end. This shows the solutions considered as
spatial values as a function of time.

In[17]:= ListPlot3D@Table@vars ê. First@%D, 8t, 0, .25, .025<DD

Out[17]=

An unknown function can also be specified to have a vector (or matrix) value. The dimensional-

ity of an unknown function is taken from its initial condition. You can mix scalar and vector

unknown functions as long as the equations have consistent dimensionality according to the

rules of Mathematica arithmetic. The InterpolatingFunction result will give values with the

same dimensionality as the unknown function. Using nonscalar variables is very convenient

when a system of differential equations is governed by a process that may be difficult or ineffi-

cient to express symbolically.

This uses a vector valued unknown function to solve the same system as earlier.

In[18]:= f@x_?VectorQD := n^2 * ListConvolve@81, -2, 1<, x, 82, 2<, 81, 0<D;
NDSolve@8X‘@tD ã f@X@tDD, X@0D ã HRange@n - 1D ê nL^10<, X, 8t, 0, .25<D

Out[19]= 88X Ø InterpolatingFunction@880., 0.25<<, <>D<<

NDSolve is able to solve some partial differential equations directly when you specify more

independent variables.

6 Advanced Numerical Differential Equation Solving in Mathematica

5

10

15

20

5

10

0.0
0.2

0.4
0.6

0.8

NDSolve@8eqn1,eqn2,…<,u,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for a func-
tion u@t, x …D with t in the range tmin to tmax and x in the
range xmin to xmax, …

NDSolve@8eqn1,eqn2,…<,8u1,u2,…<,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for several
functions ui

Finding numerical solutions to partial differential equations.

Here is a solution of the heat equation found directly by NDSolve.

In[20]:= NDSolveA9D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã x10,
u@0, tD ã 0, u@1, tD ã 1=, u, 8x, 0, 1<, 8t, 0, .25<E

Out[20]= 88u Ø InterpolatingFunction@880., 1.<, 80., 0.25<<, <>D<<

Here is a plot of the solution.

In[21]:= Plot3D@Evaluate@First@u@x, tD ê. %DD, 8x, 0, 1<, 8t, 0, .25<D

Out[21]=

NDSolve currently uses the numerical method of lines to compute solutions to partial differen-

tial equations. The method is restricted to problems that can be posed with an initial condition

in at least one independent variable. For example, the method cannot solve elliptic PDEs such

as Laplace's equation because these require boundary values. For the problems it does solve,

the method of lines is quite general, handling systems of PDEs or nonlinearity well, and often

quite fast. Details of the method are given in "Numerical Solution of Partial Differential

Equations".

Advanced Numerical Differential Equation Solving in Mathematica 7

0.0

0.5

1.0
0.0

0.1

0.2

0.0

0.5

1.0

This finds a numerical solution to a generalization of the nonlinear sine-Gordon equation to two
spatial dimensions with periodic boundary conditions.

In[22]:= NDSolveA9D@u@t, x, yD, t, tD ã
D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,

u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -5, yD ã u@t, 5, yD ã 0, u@t, x, -5D ã u@t, x, 5D ã 0=,

u, 8t, 0, 3<, 8x, -5, 5<, 8y, -5, 5<E

Out[22]= 88u Ø InterpolatingFunction@880., 3.<, 8-5., 5.<, 8-5., 5.<<, <>D<<

Here is a plot of the result at t == 3.

In[23]:= Plot3D@First@u@3, x, yD ê. %D, 8x, -5, 5<, 8y, -5, 5<D

Out[23]=

As mentioned earlier, NDSolve works by taking a sequence of steps in the independent variable

t. NDSolve uses an adaptive procedure to determine the size of these steps. In general, if the

solution appears to be varying rapidly in a particular region, then NDSolve will reduce the step

size to be able to better track the solution.

NDSolve allows you to specify the precision or accuracy of result you want. In general, NDSolve

makes the steps it takes smaller and smaller until the solution reached satisfies either the

AccuracyGoal or the PrecisionGoal you give. The setting for AccuracyGoal effectively deter-

mines the absolute error to allow in the solution, while the setting for PrecisionGoal deter-

mines the relative error. If you need to track a solution whose value comes close to zero, then

you will typically need to increase the setting for AccuracyGoal. By setting

AccuracyGoal -> Infinity, you tell NDSolve to use PrecisionGoal only. Generally,

AccuracyGoal and PrecisionGoal are used to control the error local to a particular time step.

For some differential equations, this error can accumulate, so it is possible that the precision or

accuracy of the result at the end of the time interval may be much less than what you might

expect from the settings of AccuracyGoal and PrecisionGoal.

8 Advanced Numerical Differential Equation Solving in Mathematica

t == 3.

0

5 –5

–5 0

5

–0.2

–0.1

0.0

NDSolve uses the setting you give for WorkingPrecision to determine the precision to use in

its internal computations. If you specify large values for AccuracyGoal or PrecisionGoal, then

you typically need to give a somewhat larger value for WorkingPrecision. With the default

setting of Automatic, both AccuracyGoal and PrecisionGoal are equal to half of the setting

for WorkingPrecision.

NDSolve uses error estimates for determining whether it is meeting the specified tolerances.

When working with systems of equations, it uses the setting of the option NormFunction -> f to

combine errors in different components. The norm is scaled in terms of the tolerances, given so

that NDSolve tries to take steps such that

f
err1

tolr Abs@x1D + tola
,

err2

tolr Abs@x2D + tola
, … § 1

where erri is the ith component of the error and xi is the ithcomponent of the current solution.

This generates a high-precision solution to a differential equation.

In[24]:= NDSolve@8x‘‘‘@tD == x@tD, x@0D == 1, x‘@0D == x‘‘@0D == 0<, x, 8t, 1<,
AccuracyGoal -> 20, PrecisionGoal -> 20, WorkingPrecision -> 25D

Out[24]= 88x Ø InterpolatingFunction@880, 1.000000000000000000000000<<, <>D<<

Here is the value of the solution at the endpoint.

In[25]:= x@1D ê. %

Out[25]= 81.168058313375918525580620<

Through its adaptive procedure, NDSolve is able to solve “stiff” differential equations in which

there are several components varying with t at extremely different rates.

NDSolve follows the general procedure of reducing step size until it tracks solutions accurately.

There is a problem, however, when the true solution has a singularity. In this case, NDSolve

might go on reducing the step size forever, and never terminate. To avoid this problem, the

option MaxSteps specifies the maximum number of steps that NDSolve will ever take in attempt-

ing to find a solution. For ordinary differential equations, the default setting is

MaxSteps -> 10000.

Advanced Numerical Differential Equation Solving in Mathematica 9

NDSolve stops after taking 10,000 steps.

In[26]:= NDSolve@8y‘@xD == 1 ê x^2, y@-1D == 1<, y@xD, 8x, -1, 0<D

NDSolve::mxst : Maximum number of 10000 steps reached at the point x == -1.00413µ10-172. à

Out[26]= 99y@xD Ø InterpolatingFunctionA99-1., -1.00413µ10-172==, <>E@xD==

There is in fact a singularity in the solution at x = 0.

In[27]:= Plot@Evaluate@y@xD ê. %D, 8x, -1, 0<D

Out[27]=

-1.0 -0.8 -0.6 -0.4 -0.2

4

6

8

10

12

The default setting MaxSteps -> 10000 should be sufficient for most equations with smooth

solutions. When solutions have a complicated structure, however, you may sometimes have to

choose larger settings for MaxSteps. With the setting MaxSteps -> Infinity there is no upper

limit on the number of steps used.

NDSolve has several different methods built in for computing solutions as well as a mechanism

for adding additional methods. With the default setting Method -> Automatic, NDSolve will

choose a method which should be appropriate for the differential equations. For example, if the

equations have stiffness, implicit methods will be used as needed, or if the equations make a

DAE, a special DAE method will be used. In general, it is not possible to determine the nature of

solutions to differential equations without actually solving them: thus, the default Automatic

methods are good for solving as wide variety of problems, but the one chosen may not be the

best one available for your particular problem. Also, you may want to choose methods, such as

symplectic integrators, which preserve certain properties of the solution.

Choosing an appropriate method for a particular system can be quite difficult. To complicate it

further, many methods have their own settings, which can greatly affect solution efficiency and

accuracy. Much of this documentation consists of descriptions of methods to give you an idea of

when they should be used and how to adjust them to solve particular problems. Furthermore,

NDSolve has a mechanism that allows you to define your own methods and still have the

equations and results processed by NDSolve just as for the built-in methods.

10 Advanced Numerical Differential Equation Solving in Mathematica

When NDSolve computes a solution, there are typically three phases. First, the equations are

processed, usually into a function that represents the right-hand side of the equations in normal

form. Next, the function is used to iterate the solution from the initial conditions. Finally, data

saved during the iteration procedure is processed into one or more InterpolatingFunction

objects. Using functions in the NDSolve` context, you can run these steps separately and, more

importantly, have more control over the iteration process. The steps are tied by an

NDSolve`StateData object, which keeps all of the data necessary for solving the differential

equations.

The Design of the NDSolve Framework

Features

Supporting a large number of numerical integration methods for differential equations is a lot of

work.

In order to cut down on maintenance and duplication of code, common components are shared

between methods.

This approach also allows code optimization to be carried out in just a few central routines.

The principal features of the NDSolve framework are:

† Uniform design and interface

† Code reuse (common code base)

† Objection orientation (method property specification and communication)

† Data hiding

† Separation of method initialization phase and run-time computation

† Hierarchical and reentrant numerical methods

† Uniform treatment of rounding errors (see [HLW02], [SS03] and the references therein)

† Vectorized framework based on a generalization of the BLAS model [LAPACK99] using
optimized in-place arithmetic

Advanced Numerical Differential Equation Solving in Mathematica 11

† Tensor framework that allows families of methods to share one implementation

† Type and precision dynamic for all methods

† Plug-in capabilities that allow user extensibility and prototyping

† Specialized data structures

Common Time Stepping

A common time-stepping mechanism is used for all one-step methods. The routine handles a

number of different criteria including:

† Step sizes in a numerical integration do not become too small in value, which may happen
in solving stiff systems

† Step sizes do not change sign unexpectedly, which may be a consequence of user program-
ming error

† Step sizes are not increased after a step rejection

† Step sizes are not decreased drastically toward the end of an integration

† Specified (or detected) singularities are handled by restarting the integration

† Divergence of iterations in implicit methods (e.g. using fixed, large step sizes)

† Unrecoverable integration errors (e.g. numerical exceptions)

† Rounding error feedback (compensated summation) is particularly advantageous for high-
order methods or methods that conserve specific quantities during the numerical integration

Data Encapsulation

Each method has its own data object that contains information that is needed for the invocation

of the method. This includes, but is not limited to, coefficients, workspaces, step-size control

parameters, step-size acceptance/rejection information, and Jacobian matrices. This is a general -

ization of the ideas used in codes like LSODA ([H83], [P83]).

12 Advanced Numerical Differential Equation Solving in Mathematica

Method Hierarchy

Methods are reentrant and hierarchical, meaning that one method can call another. This is a

generalization of the ideas used in the Generic ODE Solving System, Godess (see [O95], [O98]

and the references therein), which is implemented in C++.

Initial Design

The original method framework design allowed a number of methods to be invoked in the solver.

NDSolve ö “ExplicitRungeKutta“

NDSolve ö “ImplicitRungeKutta“

First Revision

This was later extended to allow one method to call another in a sequential fashion, with an

arbitrary number of levels of nesting.

NDSolve ö “Extrapolation“ ö “ExplicitMidpoint“

The construction of compound integration methods is particularly useful in geometric numerical

integration.

NDSolve ö “Projection“ ö “ExplicitRungeKutta“

Second Revision

A more general tree invocation process was required to implement composition methods.

NDSolve ö “Composition“

ç “ExplicitEuler“

ª ª

ö “ImplicitEuler“

ª ª

é “ExplicitEuler“

This is an example of a method composed with its adjoint.

Advanced Numerical Differential Equation Solving in Mathematica 13

Current State

The tree invocation process was extended to allow for a subfield to be solved by each method,

instead of the entire vector field.

This example turns up in the ABC Flow subsection of "Composition and Splitting Methods for

NDSolve".

NDSolve ö “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö “ImplicitMidpoint“ f2
é “LocallyExact“ f1

User Extensibility

Built-in methods can be used as building blocks for the efficient construction of special-purpose

(compound) integrators. User-defined methods can also be added.

Method Classes

Methods such as “ExplicitRungeKutta“ include a number of schemes of different orders.

Moreover, alternative coefficient choices can be specified by the user. This is a generalization of

the ideas found in RKSUITE [BGS93].

Automatic Selection and User Controllability

The framework provides automatic step-size selection and method-order selection. Methods are

user-configurable via method options.

For example a user can select the class of “ExplicitRungeKutta“ methods, and the code will

automatically attempt to ascertain the "optimal" order according to the problem, the relative

and absolute local error tolerances, and the initial step-size estimate.

14 Advanced Numerical Differential Equation Solving in Mathematica

Here is a list of options appropriate for “ExplicitRungeKutta“.

In[1]:= Options@NDSolve`ExplicitRungeKuttaD

Out[1]= :Coefficients Ø EmbeddedExplicitRungeKuttaCoefficients, DifferenceOrder Ø Automatic,
EmbeddedDifferenceOrder Ø Automatic, StepSizeControlParameters Ø Automatic,

StepSizeRatioBounds Ø :
1

8
, 4>, StepSizeSafetyFactors Ø Automatic, StiffnessTest Ø Automatic>

MethodMonitor

In order to illustrate the low-level behaviour of some methods, such as stiffness switching or

order variation that occurs at run time , a new “MethodMonitor“ has been added.

This fits between the relatively coarse resolution of “StepMonitor“ and the fine resolution of

“EvaluationMonitor“ .

StepMonitor

MethodMonitor

EvaluationMonitor

This feature is not officially documented and the functionality may change in future versions.

Shared Features

These features are not necessarily restricted to NDSolve since they can also be used for other

types of numerical methods.

† Function evaluation is performed using a NumericalFunction that dynamically changes
type as needed, such as when IEEE floating-point overflow or underflow occurs. It also calls
Mathematica's compiler Compile for efficiency when appropriate.

† Jacobian evaluation uses symbolic differentiation or finite difference approximations, includ-
ing automatic or user-specifiable sparsity detection.

† Dense linear algebra is based on LAPACK, and sparse linear algebra uses special-purpose
packages such as UMFPACK.

Advanced Numerical Differential Equation Solving in Mathematica 15

† Common subexpressions in the numerical evaluation of the function representing a differen-
tial system are detected and collected to avoid repeated work.

† Other supporting functionality that has been implemented is described in "Norms in
NDSolve".

This system dynamically switches type from real to complex during the numerical integration,

automatically recompiling as needed.

In[2]:= y@1 ê 2D ê. NDSolve@8y‘@tD ã Sqrt@y@tDD - 1, y@0D ã 1 ê 10<,
y, 8t, 0, 1<, Method Ø “ExplicitRungeKutta“D

Out[2]= 8-0.349043 + 0.150441 Â<

Some Basic Methods

order method formula

1 Explicit Euler yn+1 = yn + hn f Htn, ynL

2 Explicit Midpoint yn+1ê2 = yn +
hn
2

f Htn, ynL

yn+1 = yn + hn f Htn+1ê2, yn+1ê2L

1 Backward or Implicit Euler
(1-stage RadauIIA)

yn+1 = yn + hn f Htn+1, yn+1L

2 Implicit Midpoint (1-stage
Gauss)

yn+1 = yn + hn f Jtn+1ê2,
1
2
Hyn+1 + ynLN

2 Trapezoidal (2-stage Lobatto
IIIA)

yn+1 = yn +
hn
2
H f Htn, ynL + f Htn+1, yn+1LL

1 Linearly Implicit Euler HI - hn JL Hyn+1 - ynL = hn f Htn, ynL

2 Linearly Implicit Midpoint JI - hn
2

JN Hyn+1ê2 - ynL =
hn
2

f Htn, ynL

JI - hn
2

JN
ID yn-D yn-1ê2M

2
=

hn
2

f Htn+1ê2, yn+1ê2L - D yn-1ê2

Some of the one-step methods that have been implemented.

Here D yn = yn+1 - yn+1ê2, I denotes the identity matrix, and J denotes the Jacobian matrix ∂ f
∂y

Htn, ynL.

Although the implicit midpoint method has not been implemented as a separate method, it is

available through the one-stage Gauss scheme of the “ImplicitRungeKutta“ method.

16 Advanced Numerical Differential Equation Solving in Mathematica

ODE Integration Methods

Methods

"ExplicitRungeKutta" Method for NDSolve

Introduction

This loads packages containing some test problems and utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Euler's Method

One of the first and simplest methods for solving initial value problems was proposed by Euler:

(1)yn+1 = yn + h f Htn, ynL.

Euler's method is not very accurate.

Local accuracy is measured by how high terms are matched with the Taylor expansion of the

solution. Euler's method is first-order accurate, so that errors occur one order higher starting at

powers of h2.

Euler's method is implemented in NDSolve as “ExplicitEuler“.

In[5]:= NDSolve@8y‘@tD ã -y@tD, y@0D ã 1<, y@tD, 8t, 0, 1<,
Method Ø “ExplicitEuler“, “StartingStepSize“ Ø 1 ê 10D

Out[5]= 88y@tD Ø InterpolatingFunction@880., 1.<<, <>D@tD<<

Generalizing Euler's Method

The idea of Runge|Kutta methods is to take successive (weighted) Euler steps to approximate a

Taylor series. In this way function evaluations (and not derivatives) are used.

Advanced Numerical Differential Equation Solving in Mathematica 17

For example, consider the one-step formulation of the midpoint method.

(1)

k1 = f Htn, ynL

k2 = f Jtn +
1
2

h, yn +
1
2

h k1N

yn+1 = yn + h k2

The midpoint method can be shown to have a local error of OIh3M, so it is second-order accurate.

The midpoint method is implemented in NDSolve as “ExplicitMidpoint“.

In[6]:= NDSolve@8y‘@tD ã -y@tD, y@0D ã 1<, y@tD, 8t, 0, 1<,
Method Ø “ExplicitMidpoint“, “StartingStepSize“ Ø 1 ê 10D

Out[6]= 88y@tD Ø InterpolatingFunction@880., 1.<<, <>D@tD<<

Runge|Kutta Methods

Extending the approach in (1), repeated function evaluation can be used to obtain higher order

methods.

Denote the Runge|Kutta method for the approximate solution to an initial value problem at

tn+1 = tn + h, by:

(1)

gi = yn + h ⁄j=1
s ai, j k j,

ki = f Htn + ci h, giL, i = 1, 2, …, s,
yn+1 = yn + h ⁄i=1

s bi ki

where s is the number of stages.

It is generally assumed that the row-sum conditions hold:

(2)ci =⁄i=1
s ai, j

These conditions effectively determine the points in time at which the function is sampled and

are a particularly useful device in the derivation of high-order Runge|Kutta methods.

The coefficients of the method are free parameters that are chosen to satisfy a Taylor series

expansion through some order in the time step h. In practice other conditions such as stability

can also constrain the coefficients.

Explicit Runge|Kutta methods are a special case where the matrix A is strictly lower triangular:

ai, j = 0, j ¥ i, j = 1, …, s.

18 Advanced Numerical Differential Equation Solving in Mathematica

It has become customary to denote the method coefficients c = @ciDT, b = @biDT, and A = Aai, jE using a

Butcher table, which has the following form for explicit Runge|Kutta methods:

(3)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

cs as,1 as,2  as,s-1 0
b1 b2  bs-1 bs

The row-sum conditions can be visualized as summing across the rows of the table.

Notice that a consequence of explicitness is c1 = 0, so that the function is sampled at the begin-

ning of the current integration step.

Example

The Butcher table for the explicit midpoint method (1) is given by:

(1)

0 0 0
1
2

1
2

0

0 1

FSAL Schemes

A particularly interesting special class of explicit Runge|Kutta methods, used in most modern

codes, are those for which the coefficients have a special structure known as First Same As Last

(FSAL):

(1)as,i = bi, i = 1, …, s - 1 and bs = 0.

For consistent FSAL schemes the Butcher table (3) has the form:

(2)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

cs-1 as-1,1 as-1,2  0 0
1 b1 b2  bs-1 0

b1 b2  bs-1 0

The advantage of FSAL methods is that the function value ks at the end of one integration step

is the same as the first function value k1 at the next integration step.

Advanced Numerical Differential Equation Solving in Mathematica 19

The function values at the beginning and end of each integration step are required anyway

when constructing the InterpolatingFunction that is used for dense output in NDSolve.

Embedded Pairs and Local Error Estimation

An efficient means of obtaining local error estimates for adaptive step-size control is to consider

two methods of different orders p and p` that share the same coefficient matrix (and hence

function values).

(1)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  0 ª

cs-1 as-1,1 as-1,2  0 0
cs as,1 as,2  as,s-1 0

b1 b2  bs-1 bs

b
`
1 b

`
2  b

`
s-1 b

`
s

These give two solutions:

(2)yn+1 = yn + h ⁄i=1
s bi ki

(3)y`n+1 = yn + h ⁄i=1
s b

`
i ki

A commonly used notation is pHp` L, typically with p` = p - 1 or p` = p + 1.

In most modern codes, including the default choice in NDSolve, the solution is advanced with

the more accurate formula so that p` = p - 1, which is known as local extrapolation.

The vector of coefficients e = Bb1 - b
`
1, b2 - b

`
2, …, bs - b

`
sF
T
 gives an error estimator avoiding subtrac-

tive cancellation of yn in floating-point arithmetic when forming the difference between (2) and

(3).

errn = h ‚
i=1

s

ei ki

The quantity °errn¥ gives a scalar measure of the error that can be used for step size selection.

20 Advanced Numerical Differential Equation Solving in Mathematica

Step Control

The classical Integral (or I) step-size controller uses the formula:

(1)hn+1 = hn K
Tol

±errnµ
O
1íp~

where p
~
= minIp` , pM + 1.

The error estimate is therefore used to determine the next step size to use from the current

step size.

The notation Tol ê°errn¥ is explained within "Norms in NDSolve".

Overview

Explicit Runge|Kutta pairs of orders 2(1) through 9(8) have been implemented.

Formula pairs have the following properties:

† First Same As Last strategy.

† Local extrapolation mode, that is, the higher-order formula is used to propagate the
solution.

† Stiffness detection capability (see "StiffnessTest Method Option for NDSolve").

† Proportional-Integral step-size controller for stiff and quasi-stiff systems [G91].

Optimal formula pairs of orders 2(1), 3(2), and 4(3) subject to the already stated requirements

have been derived using Mathematica, and are described in [SS04].

The 5(4) pair selected is due to Bogacki and Shampine [BS89b, S94] and the 6(5), 7(6), 8(7),

and 9(8) pairs are due to Verner.

For the selection of higher-order pairs, issues such as local truncation error ratio and stability

region compatibility should be considered (see [S94]). Various tools have been written to

assess these qualitative features.

Methods are interchangeable so that, for example, it is possible to substitute the 5(4) method

of Bogacki and Shampine with a method of Dormand and Prince.

Summation of the method stages is implemented using level 2 BLAS which is often highly

optimized for particular processors and can also take advantage of multiple cores.

Advanced Numerical Differential Equation Solving in Mathematica 21

Example

Define the Brusselator ODE problem, which models a chemical reaction.

In[7]:= system = GetNDSolveProblem@“BrusselatorODE“D

Out[7]= NDSolveProblemB:9HY1L
£@TD ã 1 - 4 Y1@TD + Y1@TD

2 Y2@TD, HY2L
£@TD ã 3 Y1@TD - Y1@TD

2 Y2@TD=,

:Y1@0D ã
3

2
, Y2@0D ã 3>, 8Y1@TD, Y2@TD<, 8T, 0, 20<, 8<, 8<, 8<>F

This solves the system using an explicit Runge|Kutta method.

In[8]:= sol = NDSolve@system, Method Ø “ExplicitRungeKutta“D

Out[8]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

Extract the interpolating functions from the solution.

In[9]:= ifuns = system@“DependentVariables“D ê. First@solD;

Plot the solution components.

In[10]:= ParametricPlot@Evaluate@ifunsD, Evaluate@system@“TimeData“DDD

Out[10]=

1.0 1.5 2.0 2.5 3.0 3.5

2

3

4

Method Comparison

Sometimes you may be interested to find out what methods are being used in NDSolve.

Here you can see the coefficients of the default 2(1) embedded pair.

In[11]:= NDSolve`EmbeddedExplicitRungeKuttaCoefficients@2, InfinityD

Out[11]= ::81<, :
1

2
,
1

2
>>, :

1

2
,
1

2
, 0>, 81, 1<, :-

1

2
,
2

3
, -

1

6
>>

22 Advanced Numerical Differential Equation Solving in Mathematica

You also may want to compare some of the different methods to see how they perform for a

specific problem.

Utilities

You will make use of a utility function CompareMethods for comparing various methods. Some

useful NDSolve features of this function for comparing methods are:

† The option EvaluationMonitor, which is used to count the number of function evaluations

† The option StepMonitor, which is used to count the number of accepted and rejected
integration steps

This displays the results of the method comparison using a GridBox.

In[12]:= TabulateResults@labels_List, names_List, data_ListD :=
DisplayForm@

FrameBox@
GridBox@
Apply@8labels, ÒÒ< &, MapThread@Prepend, 8data, names<DD,
RowLines Ø True, ColumnLines Ø True

D
D

D ê; SameQ@Length@namesD, Length@dataDD;

Reference Solution

A number of examples for comparing numerical methods in the literature rely on the fact that a

closed-form solution is available, which is obviously quite limiting.

In NDSolve it is possible to get very accurate approximations using arbitrary-precision adaptive

step size; these are adaptive order methods based on “Extrapolation“.

The following reference solution is computed with a method that switches between a pair of
“Extrapolation“ methods, depending on whether the problem appears to be stiff.

In[13]:= sol = NDSolve@system, Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32D;

refsol = First@FinalSolutions@system, solDD;

Automatic Order Selection

When you select “DifferenceOrder“ -> Automatic, the code will automatically attempt to

choose the optimal order method for the integration.

Two algorithms have been implemented for this purpose and are described within

"SymplecticPartitionedRungeKutta Method for NDSolve".

Advanced Numerical Differential Equation Solving in Mathematica 23

Example 1

Here is an example that compares built-in methods of various orders, together with the method

that is selected automatically.

This selects the order of the methods to choose between and makes a list of method options to
pass to NDSolve.

In[15]:= orders = Join@Range@2, 9D, 8Automatic<D;

methods = Table@8“ExplicitRungeKutta“, “DifferenceOrder“ Ø Part@orders, iD,
“StiffnessTest“ Ø False<, 8i, Length@ordersD<D;

Compute the number of integration steps, function evaluations, and the endpoint global error.

In[17]:= data = CompareMethods@system, refsol, methodsD;

Display the results in a table.

In[18]:= labels = 8“Method“, “Steps“, “Cost“, “Error“<;

TabulateResults@labels, orders, dataD
Out[19]//DisplayForm=

Method Steps Cost Error

2 8124381, 0< 248764 1.90685µ10-8

3 84247, 2< 12749 3.45492µ10-8

4 8940, 6< 3786 8.8177µ10-9

5 8188, 16< 1430 1.01784µ10-8

6 8289, 13< 2418 1.63157µ10-10

7 8165, 19< 1842 2.23919µ10-9

8 887, 16< 1341 1.20179µ10-8

9 891, 24< 1842 1.01705µ10-8

Automatic 891, 24< 1843 1.01705µ10-8

The default method has order nine, which is close to the optimal order of eight in this example.

One function evaluation is needed during the initialization phase to determine the order.

Example 2

A limitation of the previous example is that it did not take into account the accuracy of the

solution obtained by each method, so that it did not give a fair reflection of the cost.

Rather than taking a single tolerance to compare methods, it is preferable to use a range of

tolerances.

The following example compares various “ExplicitRungeKutta“ methods of different orders

using a variety of tolerances.

24 Advanced Numerical Differential Equation Solving in Mathematica

This selects the order of the methods to choose between and makes a list of method options to
pass to NDSolve.

In[20]:= orders = Join@Range@4, 9D, 8Automatic<D;

methods = Table@8“ExplicitRungeKutta“, “DifferenceOrder“ Ø Part@orders, iD,
“StiffnessTest“ Ø False<, 8i, Length@ordersD<D;

The data comparing accuracy and work is computed using CompareMethods for a range of
tolerances.

In[22]:= data = Table@Map@Rest, CompareMethods@system, refsol,
methods, AccuracyGoal Ø tol, PrecisionGoal Ø tolDD, 8tol, 3, 14<D;

The work-error comparison data for the various methods is displayed in the following logarith-
mic plot, where the global error is displayed on the vertical axis and the number of function
evaluations on the horizontal axis. The default order selected (displayed in red) can be seen to
increase as the tolerances are increased.

In[23]:= ListLogLogPlot@Transpose@dataD, Joined Ø True, Axes Ø False, Frame Ø True,
PlotMarkers Ø Map@Style@Ò, MediumD &, Join@Drop@orders, -1D, 8“A“<DD,
PlotStyle Ø 88Black<, 8Black<, 8Black<, 8Black<, 8Black<, 8Black<, 8Red<<D

Out[23]=

4
4

4
4

4
4

4
4

4
4

4
4

55

5
5

5
5

5
5

5
5

5
5

6
6
6
6
6
6
6
6
6
6
6 6

7
7 7

7
7 7

7
7
7
7
7
7

8

8 8
8
8
8
8
8
8
8
8
8

9
9
9
9 9

9
9
9
9
9
9
9

A
A

A
A
A
A
A
A
A
A
A
A

500 1000 5000 1µ 104 5µ 104 1µ 105
10-15

10-12

10-9

10-6

0.001

The order-selection algorithms are heuristic in that the optimal order may change through the

integration but, as the examples illustrate, a reasonable default choice is usually made.

Ideally, a selection of different problems should be used for benchmarking.

Coefficient plug-in

The implementation of “ExplicitRungeKutta“ provides a default method pair at each order.

Sometimes, however, it is convenient to use a different method, for example:

† To replicate the results of someone else.

† To use a special-purpose method that works well for a specific problem.

† To experiment with a new method.

Advanced Numerical Differential Equation Solving in Mathematica 25

The Classical Runge|Kutta Method

This shows how to define the coefficients of the classical explicit Runge|Kutta method of order
four, approximated to precision p.

In[24]:= crkamat = 881 ê 2<, 80, 1 ê 2<, 80, 0, 1<<;
crkbvec = 81 ê 6, 1 ê 3, 1 ê 3, 1 ê 6<;
crkcvec = 81 ê 2, 1 ê 2, 1<;
ClassicalRungeKuttaCoefficients@4, p_D := N@8crkamat, crkbvec, crkcvec<, pD;

The method has no embedded error estimate and hence there is no specification of the coeffi-

cient error vector. This means that the method is invoked with fixed step sizes.

Here is an example of the calling syntax.

In[27]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 4,
“Coefficients“ Ø ClassicalRungeKuttaCoefficients<, StartingStepSize Ø 1 ê 10D

Out[27]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

ode23

This defines the coefficients for a 3(2) FSAL explicit Runge|Kutta pair.

The third-order formula is due to Ralston, and the embedded method was derived by Bogacki

and Shampine [BS89a].

This defines a function for computing the coefficients to a desired precision.

In[28]:= BSamat = 881 ê 2<, 80, 3 ê 4<, 82 ê 9, 1 ê 3, 4 ê 9<<;
BSbvec = 82 ê 9, 1 ê 3, 4 ê 9, 0<;
BScvec = 81 ê 2, 3 ê 4, 1<;
BSevec = 8-5 ê 72, 1 ê 12, 1 ê 9, -1 ê 8<;
BSCoefficients@4, p_D :=

N@8BSamat, BSbvec, BScvec, BSevec<, pD;

The method is used in the Texas Instruments TI-85 pocket calculator, Matlab and RKSUITE

[S94]. Unfortunately it does not allow for the form of stiffness detection that has been chosen.

A Method of Fehlberg

This defines the coefficients for a 4(5) explicit Runge|Kutta pair of Fehlberg that was popular in

the 1960s [F69].

The fourth-order formula is used to propagate the solution, and the fifth-order formula is used

only for the purpose of error estimation.

26 Advanced Numerical Differential Equation Solving in Mathematica

This defines the function for computing the coefficients to a desired precision.

In[33]:= Fehlbergamat = 8
81 ê 4<,
83 ê 32, 9 ê 32<,
81932 ê 2197, -7200 ê 2197, 7296 ê 2197<, 8439 ê 216, -8, 3680 ê 513, -845 ê 4104<,
8-8 ê 27, 2, -3544 ê 2565, 1859 ê 4104, -11 ê 40<<;

Fehlbergbvec = 825 ê 216, 0, 1408 ê 2565, 2197 ê 4104, -1 ê 5, 0<;
Fehlbergcvec = 81 ê 4, 3 ê 8, 12 ê 13, 1, 1 ê 2<;
Fehlbergevec = 8-1 ê 360, 0, 128 ê 4275, 2197 ê 75240, -1 ê 50, -2 ê 55<;
FehlbergCoefficients@4, p_D :=

N@8Fehlbergamat, Fehlbergbvec, Fehlbergcvec, Fehlbergevec<, pD;

In contrast to the classical Runge|Kutta method of order four, the coefficients include an addi-

tional entry that is used for error estimation.

The Fehlberg method is not a FSAL scheme since the coefficient matrix is not of the form (2); it

is a six-stage scheme, but it requires six function evaluations per step because of the function

evaluation that is required at the end of the step to construct the InterpolatingFunction.

A Dormand|Prince Method

Here is how to define a 5(4) pair of Dormand and Prince coefficients [DP80]. This is currently

the method used by ode45 in Matlab.

This defines a function for computing the coefficients to a desired precision.

In[38]:= DOPRIamat = 8
81 ê 5<,
83 ê 40, 9 ê 40<,
844 ê 45, -56 ê 15, 32 ê 9<,
819372 ê 6561, -25360 ê 2187, 64448 ê 6561, -212 ê 729<,
89017 ê 3168, -355 ê 33, 46732 ê 5247, 49 ê 176, -5103 ê 18656<,
835 ê 384, 0, 500 ê 1113, 125 ê 192, -2187 ê 6784, 11 ê 84<<;

DOPRIbvec = 835 ê 384, 0, 500 ê 1113, 125 ê 192, -2187 ê 6784, 11 ê 84, 0<;
DOPRIcvec = 81 ê 5, 3 ê 10, 4 ê 5, 8 ê 9, 1, 1<;
DOPRIevec =

871 ê 57600, 0, -71 ê 16695, 71 ê 1920, -17253 ê 339200, 22 ê 525, -1 ê 40<;
DOPRICoefficients@5, p_D :=

N@8DOPRIamat, DOPRIbvec, DOPRIcvec, DOPRIevec<, pD;

The Dormand|Prince method is a FSAL scheme since the coefficient matrix is of the form (2); it

is a seven-stage scheme, but effectively uses only six function evaluations.

Here is how the coefficients of Dormand and Prince can be used in place of the built-in choice.
Since the structure of the coefficients includes an error vector, the implementation is able to
ascertain that adaptive step sizes can be computed.

In[43]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 5,
“Coefficients“ Ø DOPRICoefficients, “StiffnessTest“ Ø False<D

Out[43]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica 27

Method Comparison

Here you solve a system using several explicit Runge|Kutta pairs.

For the Fehlberg 4(5) pair, the option “EmbeddedDifferenceOrder“ is used to specify the
order of the embedded method.

In[44]:= Fehlberg45 = 8“ExplicitRungeKutta“, “Coefficients“ Ø FehlbergCoefficients,
“DifferenceOrder“ Ø 4, “EmbeddedDifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

The Dormand and Prince 5(4) pair is defined as follows.

In[45]:= DOPRI54 = 8“ExplicitRungeKutta“, “Coefficients“ Ø DOPRICoefficients,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

The 5(4) pair of Bogacki and Shampine is the default order-five method.

In[46]:= BS54 = 8“ExplicitRungeKutta“,
“Coefficients“ Ø “EmbeddedExplicitRungeKuttaCoefficients“,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

Put the methods and some descriptive names together in a list.

In[47]:= names = 8“Fehlberg 4H5L“, “Dormand-Prince 5H4L“, “Bogacki-Shampine 5H4L“<;

methods = 8Fehlberg45, DOPRI54, BS54<;

Compute the number of integration steps, function evaluations, and the endpoint global error.

In[49]:= data = CompareMethods@system, refsol, methodsD;

Display the results in a table.

In[50]:= labels = 8“Method“, “Steps“, “Cost“, “Error“<;

TabulateResults@labels, names, dataD
Out[51]//DisplayForm=

Method Steps Cost Error

Fehlberg 4 H5L 8320, 11< 1977 1.52417µ10-7

Dormand - Prince 5 H4L 8292, 10< 1814 1.73878µ10-8

Bogacki - Shampine 5 H4L 8188, 16< 1430 1.01784µ10-8

The default method was the least expensive and provided the most accurate solution.

Method Plug-in

This shows how to implement the classical explicit Runge|Kutta method of order four using the

method plug-in environment.

28 Advanced Numerical Differential Equation Solving in Mathematica

This definition is optional since the method in fact has no data. However, any expression can be
stored inside the data object. For example, the coefficients could be approximated here to avoid
coercion from rational to floating-point numbers at each integration step.

In[52]:= ClassicalRungeKutta ê:
NDSolve`InitializeMethod@ClassicalRungeKutta, __D := ClassicalRungeKutta@D;

The actual method implementation is written using a stepping procedure.

In[53]:= ClassicalRungeKutta@___D@“Step“@f_, t_, h_, y_, yp_DD :=
Block@8deltay, k1, k2, k3, k4<,
k1 = yp;
k2 = f@t + 1 ê 2 h, y + 1 ê 2 h k1D;
k3 = f@t + 1 ê 2 h, y + 1 ê 2 h k2D;
k4 = f@t + h, y + h k3D;
deltay = h H1 ê 6 k1 + 1 ê 3 k2 + 1 ê 3 k3 + 1 ê 6 k4L;
8h, deltay<

D;

Notice that the implementation closely resembles the description that you might find in a text-

book. There are no memory allocation/deallocation statements or type declarations, for exam-

ple. In fact the implementation works for machine real numbers or machine complex numbers,

and even using arbitrary-precision software arithmetic.

Here is an example of the calling syntax. For simplicity the method only uses fixed step sizes,
so you need to specify what step sizes to take.

In[54]:= NDSolve@system, Method Ø ClassicalRungeKutta, StartingStepSize Ø 1 ê 10D

Out[54]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

Many of the methods that have been built into NDSolve were first prototyped using top-level

code before being implemented in the kernel for efficiency.

Stiffness

Stiffness is a combination of problem, initial data, numerical method, and error tolerances.

Stiffness can arise, for example, in the translation of diffusion terms by divided differences into

a large system of ODEs.

In order to understand more about the nature of stiffness it is useful to study how methods

behave when applied to a simple problem.

Advanced Numerical Differential Equation Solving in Mathematica 29

Linear Stability

Consider applying a Runge|Kutta method to a linear scalar equation known as Dahlquist's

equation:

(1)

The result is a rational function of polynomials RHzL where z = h l (see for example [L87]).

This utility function finds the linear stability function RHzL for Runge|Kutta methods. The form

depends on the coefficients and is a polynomial if the Runge|Kutta method is explicit.

Here is the stability function for the fifth-order scheme in the Dormand|Prince 5(4) pair.

In[55]:= DOPRIsf = RungeKuttaLinearStabilityFunction@DOPRIamat, DOPRIbvec, zD

Out[55]= 1 + z +
z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

600

This function finds the linear stability function RHzL for Runge|Kutta methods. The form depends

on the coefficients and is a polynomial if the Runge|Kutta method is explicit.

The following package is useful for visualizing linear stability regions for numerical methods for
differential equations.

In[56]:= Needs@“FunctionApproximations`“D;

You can now visualize the absolute stability region †RHzL§ = 1.

In[57]:= OrderStarPlot@DOPRIsf, 1, zD

Out[57]=

30 Advanced Numerical Differential Equation Solving in Mathematica

y£HtL = l yHtL, l œ , ReHlL < 0.

Depending on the magnitude of l in (1), if you choose the step size h such that †RHh lL§ < 1, then

errors in successive steps will be damped, and the method is said to be absolutely stable.

If †RHh lL§ > 1, then step-size selection will be restricted by stability and not by local accuracy.

Stiffness Detection

The device for stiffness detection that is used with the option “StiffnessTest“ is described

within "StiffnessTest Method Option for NDSolve".

Recast in terms of explicit Runge|Kutta methods, the condition for stiffness detection can be

formulated as:

(2)l
~
=

±ks-ks-1µ

±gs-gs-1µ

with gi and ki defined in (1).

The difference gs - gs-1 can be shown to correspond to a number of applications of the power

method applied to h J.

The difference is therefore a good approximation of the eigenvector corresponding to the lead-

ing eigenvalue.

The product £h l
~
ß gives an estimate that can be compared to the stability boundary in order to

detect stiffness.

An s-stage explicit Runge|Kutta has a form suitable for (2) if cs-1 = cs = 1.

(3)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

1 as-1,1 as-1,2  0 0
1 as,1 as,2  as,s-1 0

b1 b2  bs-1 bs

The default embedded pairs used in “ExplicitRungeKutta“ all have the form (3).

An important point is that (2) is very cheap and convenient; it uses already available informa-

tion from the integration and requires no additional function evaluations.

Another advantage of (3) is that it is straightforward to make use of consistent FSAL

methods (1).

Advanced Numerical Differential Equation Solving in Mathematica 31

Another advantage of (3) is that it is straightforward to make use of consistent FSAL

methods (1).

Examples

Select a stiff system modeling a chemical reaction.

In[58]:= system = GetNDSolveProblem@“Robertson“D;

This applies a built-in explicit Runge|Kutta method to the stiff system.

By default stiffness detection is enabled, since it only has a small impact on the running time.

In[59]:= NDSolve@system, Method Ø “ExplicitRungeKutta“D;

NDSolve::ndstf :
At T == 0.012555829610695773`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

The coefficients of the Dormand|Prince 5(4) pair are of the form (3) so stiffness detection is
enabled.

In[60]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 5, “Coefficients“ Ø DOPRICoefficients<D;

NDSolve::ndstf :
At T == 0.009820727841725293`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

Since no “LinearStabilityBoundary“ property has been specified, a default value is
chosen. In this case the value corresponds to a generic method of order 5.

In[61]:= genlsb = NDSolve`LinearStabilityBoundary@5D

Out[61]= RootA240 + 120 Ò1 + 60 Ò12 + 20 Ò13 + 5 Ò14 + Ò15 &, 1E

You can set up an equation in terms of the linear stability function and solve it exactly to find
the point where the contour crosses the negative real axis.

In[62]:= DOPRIlsb = Reduce@Abs@DOPRIsfD ã 1 && z < 0, zD

Out[62]= z ã RootA600 + 300 Ò1 + 100 Ò12 + 25 Ò13 + 5 Ò14 + Ò15 &, 1E

The default generic value is very slightly smaller in magnitude than the computed value.

In[63]:= N@8genlsb, DOPRIlsb@@2DD<D

Out[63]= 8-3.21705, -3.30657<

In general, there may be more than one point of intersection, and it may be necessary to

choose the appropriate solution.

32 Advanced Numerical Differential Equation Solving in Mathematica

The following definition sets the value of the linear stability boundary.

In[64]:= DOPRICoefficients@5D@“LinearStabilityBoundary“D =
Root@600 + 300 * Ò1 + 100 * Ò1^2 + 25 * Ò1^3 + 5 * Ò1^4 + Ò1^5 &, 1, 0D;

Using the new value for this example does not affect the time at which stiffness is detected.

In[65]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 5, “Coefficients“ Ø DOPRICoefficients<D;

NDSolve::ndstf :
At T == 0.009820727841725293`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

The Fehlberg 4(5) method does not have the correct coefficient structure (3) required for stiff-

ness detection, since cs = 1 ê2 ≠ 1.

The default value “StiffnessTest“ -> Automatic checks to see if the method coefficients

provide a stiffness detection capability; if they do, then stiffness detection is enabled.

Step Control Revisited

There are some reasons to look at alternatives to the standard Integral step controller (1) when

considering mildly stiff problems.

This system models a chemical reaction.

In[66]:= system = GetNDSolveProblem@“Robertson“D;

This defines an explicit Runge|Kutta method based on the Dormand|Prince coefficients that does
not use stiffness detection.

In[67]:= IERK = 8“ExplicitRungeKutta“, “Coefficients“ Ø DOPRICoefficients,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

This solves the system and plots the step sizes that are taken using the utility function
StepDataPlot.

In[68]:= isol = NDSolve@system, Method Ø IERKD;
StepDataPlot@isolD

Out[69]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0015

Solving a stiff or mildly stiff problem with the standard step-size controller leads to large oscilla-

tions, sometimes leading to a number of undesirable step-size rejections.

The study of this issue is known as step-control stability.

Advanced Numerical Differential Equation Solving in Mathematica 33

It can be studied by matching the linear stability regions for the high- and low-order methods in

an embedded pair.

One approach to addressing the oscillation is to derive special methods, but this compromises

the local accuracy.

PI Step Control

An appealing alternative to Integral step control (1) is Proportional-Integral or PI step control.

In this case the step size is selected using the local error in two successive integration steps

according to the formula:

(1)hn+1 = hn K
Tol

±errnµ
O
k1íp

~

K
±errn-1µ

±errnµ
O
k2íp

~

This has the effect of damping and hence gives a smoother step-size sequence.

Note that Integral step control (1) is a special case of (1) and is used if a step is rejected:

k1 = 1, k2 = 0 .

The option “StepSizeControlParameters“ -> 8k1, k2< can be used to specify the values of k1
and k2.

The scaled error estimate in (1) is taken to be °errn-1¥ = °errn¥ for the first integration step.

Examples

Stiff Problem

This defines a method similar to IERK that uses the option “StepSizeControlParameters“ to

specify a PI controller.

Here you use generic control parameters suggested by Gustafsson:

k1 = 3 ê10, k2 = 2 ê5

This specifies the step-control parameters.

In[70]:= PIERK = 8“ExplicitRungeKutta“,
“Coefficients“ Ø DOPRICoefficients, “DifferenceOrder“ Ø 5,
“StiffnessTest“ Ø False, “StepSizeControlParameters“ Ø 83 ê 10, 2 ê 5<<;

34 Advanced Numerical Differential Equation Solving in Mathematica

Solving the system again, it can be observed that the step-size sequence is now much
smoother.

In[71]:= pisol = NDSolve@system, Method Ø PIERKD;
StepDataPlot@pisolD

Out[72]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0015

Nonstiff Problem

In general the I step controller (1) is able to take larger steps for a nonstiff problem than the PI

step controller (1) as the following example illustrates.

Select and solve a nonstiff system using the I step controller.

In[73]:= system = GetNDSolveProblem@“BrusselatorODE“D;

In[74]:= isol = NDSolve@system, Method Ø IERKD;
StepDataPlot@isolD

Out[75]=

0 5 10 15 20

0.100

0.050

0.020

0.200

0.030

0.015

0.150

0.070

Using the PI step controller the step sizes are slightly smaller.

In[76]:= pisol = NDSolve@system, Method Ø PIERKD;
StepDataPlot@pisolD

Out[77]=

0 5 10 15 20
0.010

0.100

0.050

0.020
0.030

0.015

0.150

0.070

For this reason, the default setting for “StepSizeControlParameters“ is Automatic , which is

interpreted as:

† Use the I step controller (1) if “StiffnessTest“ -> False.

† Use the PI step controller (1) if “StiffnessTest“ -> True.

Advanced Numerical Differential Equation Solving in Mathematica 35

Fine-Tuning

Instead of using (1) directly, it is common practice to use safety factors to ensure that the error

is acceptable at the next step with high probability, thereby preventing unwanted step

rejections.

The option “StepSizeSafetyFactors“ -> 8s1, s2< specifies the safety factors to use in the step-

size estimate so that (1) becomes:

(1)hn+1 = hn s1 K
s2 Tol
±errnµ

O
k1íp

~

K
±errn-1µ

±errnµ
O
k2íp

~

.

Here s1 is an absolute factor and s2 typically scales with the order of the method.

The option “StepSizeRatioBounds“ -> 8srmin, srmax< specifies bounds on the next step size to

take such that:

(2)srmin § ¢
hn+1
hn

¶ § srmax.

Option summary

Options of the method “ExplicitRungeKutta“.

36 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

"Coefficients" EmbeddedExplicÖ
itRungeKuttaÖ
Coefficients

specify the coefficients of the explicit
Runge|Kutta method

"DifferenceOrder" Automatic specify the order of local accuracy

"EmbeddedDifferenceOrder" Automatic specify the order of the embedded method
in a pair of explicit Runge|Kutta methods

"StepSizeControlParameters
"

Automatic specify the PI step-control parameters (see
(1))

"StepSizeRatioBounds" :
1
8
,4> specify the bounds on a relative change in

the new step size (see (2))

"StepSizeSafetyFactors" Automatic specify the safety factors to use in the step-
size estimate (see (1))

"StiffnessTest" Automatic specify whether to use the stiffness detec -
tion capability

The default setting of Automatic for the option “DifferenceOrder“ selects the default coeffi-

cient order based on the problem, initial values-and local error tolerances, balanced against the

work of the method for each coefficient set.

The default setting of Automatic for the option “EmbeddedDifferenceOrder“ specifies that the

default order of the embedded method is one lower than the method order. This depends on

the value of the “DifferenceOrder“ option.

The default setting of Automatic for the option “StepSizeControlParameters“ uses the values

81, 0< if stiffness detection is active and 83 ê 10, 2 ê 5< otherwise.

The default setting of Automatic for the option “StepSizeSafetyFactors“ uses the values

817 ê 20, 9 ê 10< if the I step controller (1) is used and 89 ê 10, 9 ê 10< if the PI step controller

(1) is used. The step controller used depends on the values of the options

“StepSizeControlParameters“ and “StiffnessTest“.

The default setting of Automatic for the option “StiffnessTest“ will activate the stiffness test

if if the coefficients have the form (3).

"ImplicitRungeKutta" Method for NDSolve

Introduction

Implicit Runge|Kutta methods have a number of desirable properties.

The Gauss|Legendre methods, for example, are self-adjoint, meaning that they provide the

same solution when integrating forward or backward in time.

This loads packages defining some example problems and utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Coefficients

A generic framework for implicit Runge|Kutta methods has been implemented. The focus so far

is on methods with interesting geometric properties and currently covers the following schemes:

† “ImplicitRungeKuttaGaussCoefficients“

† “ImplicitRungeKuttaLobattoIIIACoefficients“

Advanced Numerical Differential Equation Solving in Mathematica 37

† “ImplicitRungeKuttaLobattoIIIBCoefficients“

† “ImplicitRungeKuttaLobattoIIICCoefficients“

† “ImplicitRungeKuttaRadauIACoefficients“

† “ImplicitRungeKuttaRadauIIACoefficients“

The derivation of the method coefficients can be carried out to arbitrary order and arbitrary

precision.

Coefficient Generation

† Start with the definition of the polynomial, defining the abscissas of the s stage coefficients.
For example, the abscissas for Gauss|Legendre methods are defined as ds

dxs
xsH1 - xLs.

† Univariate polynomial factorization gives the underlying irreducible polynomials defining the
roots of the polynomials.

† Root objects are constructed to represent the solutions (using unique root isolation and
Jenkins|Traub for the numerical approximation).

† Root objects are then approximated numerically for precision coefficients.

† Condition estimates for Vandermonde systems governing the coefficients yield the precision
to take in approximating the roots numerically.

† Specialized solvers for nonconfluent Vandermonde systems are then used to solve equa-
tions for the coefficients (see [GVL96]).

† One step of iterative refinement is used to polish the approximate solutions and to check
that the coefficients are obtained to the requested precision.

This generates the coefficients for the two-stage fourth-order Gauss|Legendre method to 50
decimal digits of precision.

In[5]:= NDSolve`ImplicitRungeKuttaGaussCoefficients@4, 50D

Out[5]= 8880.2500,
-0.038675134594812882254574390250978727823800875635063<,

80.53867513459481288225457439025097872782380087563506,
0.2500<<,

80.5000,
0.5000<,

80.21132486540518711774542560974902127217619912436494,
0.78867513459481288225457439025097872782380087563506<<

The coefficients have the form 9a, bT , cT=.

38 Advanced Numerical Differential Equation Solving in Mathematica

This generates the coefficients for the two-stage fourth-order Gauss|Legendre method exactly.
For high-order methods, generating the coefficients exactly can often take a very long time.

In[6]:= NDSolve`ImplicitRungeKuttaGaussCoefficients@4, InfinityD

Out[6]= :::
1

4
,

1

12
3 - 2 3 >, :

1

12
3 + 2 3 ,

1

4
>>, :

1

2
,
1

2
>, :

1

6
3 - 3 ,

1

6
3 + 3 >>

This generates the coefficients for the six-stage tenth-order RaduaIA implicit Runge|Kutta
method to 20 decimal digits of precision.

In[7]:= NDSolve`ImplicitRungeKuttaRadauIACoefficients@10, 20D

Out[7]= 8880.040000000000000000000, -0.087618018725274235050,
0.085317987638600293760, -0.055818078483298114837, 0.018118109569972056127<,

80.040000000000000000000, 0.12875675325490976116, -0.047477730403197434295,
0.026776985967747870688, -0.0082961444756796453993<,

80.040000000000000000000, 0.23310008036710237092, 0.16758507013524896344,
-0.032883343543501401775, 0.0086077606722332473607<,

80.040000000000000000000, 0.21925333267709602305, 0.33134489917971587453,
0.14621486784749350665, -0.013656113342429231907<,

80.040000000000000000000, 0.22493691761630663460, 0.30390571559725175840,
0.30105430635402060050, 0.072998864317903324306<<,

80.040000000000000000000, 0.22310390108357074440, 0.31182652297574125408,
0.28135601514946206019, 0.14371356079122594132<,

80, 0.13975986434378055215, 0.41640956763108317994,
0.72315698636187617232, 0.94289580388548231781<<

Examples

Load an example problem.

In[8]:= system = GetNDSolveProblem@“PerturbedKepler“D;
vars = system@“DependentVariables“D;

This problem has two invariants that should remain constant. A numerical method may not be
able to conserve these invariants.

In[10]:= invs = system@“Invariants“D

Out[10]= :-
1

400 IY1@TD2 + Y2@TD2M
3ë2

-
1

Y1@TD2 + Y2@TD2
+
1

2
IY3@TD

2 + Y4@TD
2M, -Y2@TD Y3@TD + Y1@TD Y4@TD>

This solves the system using an implicit Runge|Kutta Gauss method. The order of the scheme is
selected using the “DifferenceOrder“ method option.

In[11]:= sol = NDSolve@system, Method Ø
8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “DifferenceOrder“ Ø 10<<,

StartingStepSize Ø 1 ê 10D
Out[11]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica 39

A plot of the error in the invariants shows an increase as the integration proceeds.

In[12]:= InvariantErrorPlot@invs, vars, T, sol,
PlotStyle Ø 8Red, Blue<, InvariantErrorSampleRate Ø 1D

Out[12]=

0 20 40 60 80 100
0

5.µ 10-11

1.µ 10-10

1.5µ 10-10

2.µ 10-10

The “ImplicitSolver“ method of “ImplicitRungeKutta“ has options AccuracyGoal and

PrecisionGoal that specify the absolute and relative error to aim for in solving the nonlinear

system of equations.

These options have the same default values as the corresponding options in NDSolve, since

often there is little point in solving the nonlinear system to much higher accuracy than the local

error of the method.

However, for certain types of problems it can be useful to solve the nonlinear system up to the
working precision.

In[13]:= sol = NDSolve@system,
Method Ø 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “DifferenceOrder“ Ø 10,

“ImplicitSolver“ Ø 8“Newton“, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision,
“IterationSafetyFactor“ Ø 1<<<, StartingStepSize Ø 1 ê 10D

Out[13]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

The first invariant is the Hamiltonian of the system, and the error is now bounded, as it should

be, since the Gauss implicit Runge|Kutta method is a symplectic integrator.

40 Advanced Numerical Differential Equation Solving in Mathematica

The second invariant is conserved exactly (up to roundoff) since the Gauss implicit Runge|Kutta
method conserves quadratic invariants.

In[14]:= InvariantErrorPlot@invs, vars, T, sol,
PlotStyle Ø 8Red, Blue<, InvariantErrorSampleRate Ø 1D

Out[14]=

0 20 40 60 80 100
0

1.µ 10-11

2.µ 10-11

3.µ 10-11

4.µ 10-11

5.µ 10-11

6.µ 10-11

This defines the implicit midpoint method as the one-stage implicit Runge|Kutta method of

order two.

For this problem it can be more efficient to use a fixed-point iteration instead of a Newton
iteration to solve the nonlinear system.

In[15]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ ->
“ImplicitRungeKuttaGaussCoefficients“, “DifferenceOrder“ Ø 2,

“ImplicitSolver“ Ø 8“FixedPoint“, “AccuracyGoal“ Ø MachinePrecision,
“PrecisionGoal“ Ø MachinePrecision, “IterationSafetyFactor“ Ø 1 <<<;

In[16]:= NDSolve@system, 8T, 0, 1<, Method Ø ImplicitMidpoint, StartingStepSize Ø 1 ê 100D

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

At present, the implicit Runge|Kutta method framework does not use banded Newton tech-

niques for uncoupling the nonlinear system.

Advanced Numerical Differential Equation Solving in Mathematica 41

Option Summary

"ImplicitRungeKutta" Options

Options of the method “ImplicitRungeKutta“.

The default setting of Automatic for the option “StepSizeSafetyFactors“ uses the values

89 ê 10, 9 ê 10<.

"ImplicitSolver" Options

option name default value

AccuracyGoal Automatic specify the absolute tolerance to use in
solving the nonlinear system

“IterationSafetyFactor“ 1
100

specify the safety factor to use in solving
the nonlinear system

MaxIterations Automatic specify the maximum number of iterations
to use in solving the nonlinear system

PrecisionGoal Automatic specify the relative tolerance to use in
solving the nonlinear system

Common options of “ImplicitSolver“.

42 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

"Coefficients" "ImplicitRungeÖ
KuttaGausÖ
sCoefficiÖ
ents"

specify the coefficients to use in the
implicit Runge|Kutta method

"DifferenceOrder" Automatic specify the order of local accuracy of the
method

"ImplicitSolver" "Newton" specify the solver to use for the nonlinear
system; valid settings are FixedPoint or
"Newton"

"StepSizeControlParameters
"

Automatic specify the step control parameters

"StepSizeRatioBounds" :
1
8
,4> specify the bounds on a relative change in

the new step size

"StepSizeSafetyFactors" Automatic specify the safety factors to use in the step
size estimate

Options specific to the “Newton“ method of “ImplicitSolver“.

"SymplecticPartitionedRungeKutta" Method for NDSolve

Introduction

When numerically solving Hamiltonian dynamical systems it is advantageous if the numerical

method yields a symplectic map.

† The phase space of a Hamiltonian system is a symplectic manifold on which there exists a
natural symplectic structure in the canonically conjugate coordinates.

† The time evolution of a Hamiltonian system is such that the Poincaré integral invariants
associated with the symplectic structure are preserved.

† A symplectic integrator computes exactly, assuming infinite precision arithmetic, the evolu-
tion of a nearby Hamiltonian, whose phase space structure is close to that of the original
system.

If the Hamiltonian can be written in separable form, H Hp, qL = T HpL + V HqL, there exists an efficient

class of explicit symplectic numerical integration methods.

An important property of symplectic numerical methods when applied to Hamiltonian systems is

that a nearby Hamiltonian is approximately conserved for exponentially long times (see [BG94],

[HL97], and [R99]).

Hamiltonian Systems

Consider a differential equation

(1)
dy
dt
= FHt, yL, yHt0L = y0.

Advanced Numerical Differential Equation Solving in Mathematica 43

option name default value

"JacobianEvaluationParameÖ
ter"

1
1000

specify when to recompute the Jacobian
matrix in Newton iterations

"LinearSolveMethod" Automatic specify the linear solver to use in Newton
iterations

"LUDecompositionEvaluatioÖ
nParameter"

6
5

specify when to compute LU decomposi-
tions in Newton iterations

A d-degree of freedom Hamiltonian system is a particular instance of (1) with

y = Hp1, …, pd, q1 …, qdLT, where

(2)
dy
dt
= J-1 “ H.

Here “ represents the gradient operator:

“= H∂ ê∂ p1, …, ∂ ê∂ pd, ∂ ê∂q1, … ∂ ê∂qdLT

and J is the skew symmetric matrix:

J =
0 I
-I 0

where I and 0 are the identity and zero d×d matrices.

The components of q are often referred to as position or coordinate variables and the compo-

nents of p as the momenta.

If H is autonomous, dH êdt = 0. Then H is a conserved quantity that remains constant along

solutions of the system. In applications, this usually corresponds to conservation of energy.

A numerical method applied to a Hamiltonian system (2) is said to be symplectic if it produces a

symplectic map. That is, let Hp*, q*L = yHp, qL be a C1 transformation defined in a domain W.:

" Hp, qL œ W, y£ T J y£ =
∂ Hp*, q*LT

∂ Hp, qL
J
∂ Hp*, q*L

∂ Hp, qL
= J

where the Jacobian of the transformation is:

y£ =
∂ Hp*, q*L

∂ Hp, qL
=

∂p*

∂p
∂p*

∂q

∂q*

∂p
∂q*

∂q

.

The flow of a Hamiltonian system is depicted together with the projection onto the planes

formed by canonically conjugate coordinate and momenta pairs. The sum of the oriented areas

remains constant as the flow evolves in time.

44 Advanced Numerical Differential Equation Solving in Mathematica

p2

q2

q1

p1

Ct
A2

p dq

p dq

A1

Partitioned Runge|Kutta Methods

It is sometimes possible to integrate certain components of (1) using one Runge|Kutta method

and other components using a different Runge|Kutta method. The overall s-stage scheme is

called a partitioned Runge|Kutta method and the free parameters are represented by two

Butcher tableaux:

(1)

a11  a1 s
ª  ª

as1  ass
b1  bs

A11  A1 s
ª  ª

As1  Ass
B1  Bs

.

Symplectic Partitioned Runge|Kutta (SPRK) Methods

For general Hamiltonian systems, symplectic Runge|Kutta methods are necessarily implicit.

However, for separable Hamiltonians HHp, q, tL = THpL + VHq, tL there exist explicit schemes

corresponding to symplectic partitioned Runge|Kutta methods.

Advanced Numerical Differential Equation Solving in Mathematica 45

Instead of (1) the free parameters now take either the form:

(1)

0  0 0
b1 0  ª

ª   ª

b1  bs-1 0
b1  bs-1 bs

B1  0 0
B1 B2  ª

ª ª  ª

B1 B2  Bs

B1 B2  Bs

or the form:

(2)

b1  0 0
b1 b2  ª

ª ª  ª

b1 b2  bs
b1 b2  bs

0  0 0
B1 0  ª

ª   ª

B1  Bs-1 0
B1  Bs-1 Bs

.

The 2 d free parameters of (2) are sometimes represented using the shorthand notation

@b1, …, bsD HB1, …BsL.

The differential system for a separable Hamiltonian system can be written as:

dpi

dt
= f Hq, tL = -

∂VHq, tL

∂qi
,

dqi

dt
= gHpL =

∂THpL

∂ pi
, i = 1, …, d.

In general the force evaluations -∂VHq, tL ê∂q are computationally dominant and (2) is preferred

over (1) since it is possible to save one force evaluation per time step when dense output is

required.

Standard Algorithm

The structure of (2) permits a particularly simple implementation (see for example [SC94]).

Algorithm 1 (Standard SPRK)

P0 = pn
Q1 = qn

for i = 1, …, s

46 Advanced Numerical Differential Equation Solving in Mathematica

Pi = Pi-1 + hn+1 bi f HQi, tn + Ci hn+1L
Qi+1 = Qi + hn+1 Bi gHPiL

Return pn+1 = Ps and qn+1 = Qs+1.

The time-weights are given by: C j =⁄i=1
j-1Bi, j = 1, …, s.

If Bs = 0 then Algorithm 1 effectively reduces to an s - 1 stage scheme since it has the First Same

As Last (FSAL) property.

Example

This loads some useful packages.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

The Harmonic Oscillator

The Harmonic oscillator is a simple Hamiltonian problem that models a material point attached

to a spring. For simplicity consider the unit mass and spring constant for which the Hamiltonian

is given in separable form:

HHp, qL = THpL + VHqL = p2 ë2 + q2 ë2.

The equations of motion are given by:

(1)
dp
dt

= - ∂H
∂q

= -q, dq
dt

= ∂H
∂p

= p, qH0L = 1, pH0L = 0.

Input

In[3]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
eqs = 8system@“System“D, system@“InitialConditions“D<;
vars = system@“DependentVariables“D;
H = system@“Invariants“D;
time = 8T, 0, 100<;
step = 1 ê 25;

Explicit Euler Method

Numerically integrate the equations of motion for the Harmonic oscillator using the explicit Euler
method.

In[9]:= solee = NDSolve@eqs, vars, time, Method Ø “ExplicitEuler“,
StartingStepSize Ø step, MaxSteps Ø InfinityD;

Advanced Numerical Differential Equation Solving in Mathematica 47

Since the method is dissipative, the trajectory spirals into or away from the fixed point at the
origin.

In[10]:= ParametricPlot@Evaluate@vars ê. First@soleeDD, Evaluate@timeD, PlotPoints Ø 100D

Out[10]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

A dissipative method typically exhibits linear error growth in the value of the Hamiltonian.

In[11]:= InvariantErrorPlot@H, vars, T, solee, PlotStyle Ø GreenD

Out[11]=

0 20 40 60 80 100
0

5

10

15

20

25

Symplectic Method

Numerically integrate the equations of motion for the Harmonic oscillator using a symplectic
partitioned Runge|Kutta method.

In[12]:= sol = NDSolve@eqs, vars, time, Method Ø 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 2, “PositionVariables“ Ø 8Y1@TD<<,

StartingStepSize Ø step, MaxSteps Ø InfinityD;

48 Advanced Numerical Differential Equation Solving in Mathematica

The solution is now a closed curve.

In[13]:= ParametricPlot@Evaluate@vars ê. First@solDD, Evaluate@timeDD

Out[13]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

In contrast to dissipative methods, symplectic integrators yield an error in the Hamiltonian that
remains bounded.

In[14]:= InvariantErrorPlot@H, vars, T, sol, PlotStyle Ø BlueD

Out[14]=

0 20 40 60 80 100
0.00000

0.00005

0.00010

0.00015

0.00020

Rounding Error Reduction

In certain cases, lattice symplectic methods exist and can avoid step-by-step roundoff accumula-

tion, but such an approach is not always possible [ET92].

Advanced Numerical Differential Equation Solving in Mathematica 49

Consider the previous example where the combination of step size and order of the method is
now chosen such that the error in the Hamiltonian is around the order of unit roundoff in IEEE
double-precision arithmetic.

In[15]:= solnoca = NDSolve@eqs, vars, time, Method Ø 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 10, “PositionVariables“ Ø 8Y1@TD<<,

StartingStepSize Ø step, MaxSteps Ø Infinity, “CompensatedSummation“ Ø FalseD;

InvariantErrorPlot@H, vars, T, solnoca, PlotStyle Ø BlueD

Out[16]=

0 20 40 60 80 100
0

5.µ 10-16

1.µ 10-15

1.5µ 10-15

There is a curious drift in the error in the Hamiltonian that is actually a numerical artifact of

floating-point arithmetic.

This phenomenon can have an impact on long time integrations.

This section describes the formulation used by “SymplecticPartitionedRungeKutta“ in order

to reduce the effect of such errors.

There are two types of errors in integrating a flow numerically, those along the flow and those

transverse to the flow. In contrast to dissipative systems, the rounding errors in Hamiltonian

systems that are transverse to the flow are not damped asymptotically.

50 Advanced Numerical Differential Equation Solving in Mathematica

yH,h

y
`
H,h

et
ey

Many numerical methods for ordinary differential equations involve computations of the form:

yn+1 = yn + dn

where the increments dn are usually smaller in magnitude than the approximations yn.

Let eHxL denote the exponent and mHxL, 1 > mHxL ¥ 1 ê b, the mantissa of a number x in precision p

radix b arithmetic: x = mHxLä beHxL.

Then you can write:

yn = mHynLä beHynL = ynh + ynl ä beHdnL

and

dn = mHdnLä beHdnL = dn
h + dn

l ä beHynL-p.

Aligning according to exponents these quantities can be represented pictorially as:

ynl ynh

dn
l dn

h

where numbers on the left have a smaller scale than numbers on the right.

Of interest is an efficient way of computing the quantities dnl that effectively represent the radix

b digits discarded due to the difference in the exponents of yn and dn.

Advanced Numerical Differential Equation Solving in Mathematica 51

Compensated Summation

The basic motivation for compensated summation is to simulate 2 n bit addition using only n bit

arithmetic.

Example

This repeatedly adds a fixed amount to a starting value. Cumulative roundoff error has a signifi-
cant influence on the result.

In[17]:= reps = 106;
base = 0.;
inc = 0.1;
Do@base = base + inc, 8reps<D;
InputForm@baseD

Out[21]//InputForm= 100000.00000133288

In many applications the increment may vary and the number of operations is not known in

advance.

Algorithm

Compensated summation (see for example [B87] and [H96]) computes the rounding error

along with the sum so that

yn+1 = yn + h f HynL

is replaced by:

Algorithm 2 (Compensated Summation)

yerr = 0
for i = 1, …, N

D yn = h f HynL + yerr
yn+1 = yn + D yn
yerr = Hyn - yn+1L + D yn

The algorithm is carried out component-wise for vectors.

Example

The function CompensatedPlus (in the Developer` context) implements the algorithm for

compensated summation.

52 Advanced Numerical Differential Equation Solving in Mathematica

By repeatedly feeding back the rounding error from one sum into the next, the effect of round-
ing errors is significantly reduced.

In[22]:= err = 0.;
base = 0.;
inc = 0.1;
Do@

8base, err< =
Developer`CompensatedPlus@base , inc, errD,

8reps<D;
InputForm@baseD

Out[26]//InputForm= 100000.

An undocumented option CompensatedSummation controls whether built-in integration methods

in NDSolve use compensated summation.

An Alternative Algorithm

There are various ways that compensated summation can be used.

One way is to compute the error in every addition update in the main loop in Algorithm 1.

An alternative algorithm, which was proposed because of its more general applicability,

together with reduced arithmetic cost, is given next. The essential ingredients are the incre-

ments D Pi = Pi - pn and D Qi = Qi - qn.

Algorithm 3 (Increment SPRK)

D P0 = 0
D Q1 = 0

for i = 1, …, s
D Pi = D Pi-1 + hn+1 bi f Hqn + D Qi, tn + Ci hn+1L
D Qi+1 = D Qi + hn+1 Bi gHpn + D PiL

Return D pn+1 = D Ps and D qn+1 = D Qs+1.

The desired values pn+1 = pn + D pn+1 and qn+1 = qn + D qn+1 are obtained using compensated

summation.

Compensated summation could also be used in every addition update in the main loop of Algo-

rithm 3, but our experiments have shown that this adds a non-negligible overhead for a rela-

tively small gain in accuracy.

Advanced Numerical Differential Equation Solving in Mathematica 53

Numerical Illustration

Rounding Error Model

The amount of expected roundoff error in the relative error of the Hamiltonian for the harmonic

oscillator (1) will now be quantified. A probabilistic average case analysis is considered in prefer-

ence to a worst case upper bound.

For a one-dimensional random walk with equal probability of a deviation, the expected absolute

distance after N steps is OI n M.

The relative error for a floating-point operation +, -, *, ê using IEEE round to nearest mode

satisfies the following bound [K93]:

eround § 1 ê2 b-p+1 º 1.11022ä10-16

where the base b = 2 is used for representing floating-point numbers on the machine and p = 53

for IEEE double-precision.

Therefore the roundoff error after n steps is expected to be approximately:

k e n

for some constant k.

In the examples that follow a constant step size of 1/25 is used and the integration is

performed over the interval [0, 80000] for a total of 2µ106 integration steps. The error in the

Hamiltonian is sampled every 200 integration steps.

The 8th-order 15-stage (FSAL) method D of Yoshida is used. Similar results have been obtained

for the 6th-order 7-stage (FSAL) method A of Yoshida with the same number of integration

steps and a step size of 1/160.

Without Compensated Summation

The relative error in the Hamiltonian is displayed here for the standard formulation in Algorithm

1 (green) and for the increment formulation in Algorithm 3 (red) for the Harmonic oscillator (1).

54 Advanced Numerical Differential Equation Solving in Mathematica

Algorithm 1 for a 15-stage method corresponds to n = 15µ2µ106 = 3µ107.

In the incremental Algorithm 3 the internal stages are all of the order of the step size and the

only significant rounding error occurs at the end of each integration step; thus n = 2µ106, which

is in good agreement with the observed improvement.

This shows that for Algorithm 3, with sufficiently small step sizes, the rounding error growth is

independent of the number of stages of the method, which is particularly advantageous for high

order.

With Compensated Summation

The relative error in the Hamiltonian is displayed here for the increment formulation in Algo-

rithm 3 without compensated summation (red) and with compensated summation (blue) for the

Harmonic oscillator (1).

Using compensated summation with Algorithm 3, the error growth appears to satisfy a random

walk with deviation h e so that it has been reduced by a factor proportional to the step size.

Advanced Numerical Differential Equation Solving in Mathematica 55

Arbitrary Precision

The relative error in the Hamiltonian is displayed here for the increment formulation in Algo-

rithm 3 with compensated summation using IEEE double-precision arithmetic (blue) and with

32-decimal-digit software arithmetic (purple) for the Harmonic oscillator (1).

However, the solution obtained using software arithmetic is around an order of magnitude

slower than machine arithmetic, so strategies to reduce the effect of roundoff error are

worthwhile.

Examples

Electrostatic Wave

Here is a non-autonomous Hamiltonian (it has a time-dependent potential) that models n per-

turbing electrostatic waves, each with the same wave number and amplitude, but different

temporal frequencies wi (see [CR91]).

(1)HHp, qL = p2

2
+

q2

2
+ e⁄i=1

n HcosHq - wiLL.

This defines a differential system from the Hamiltonian (1) for dimension n = 3 with frequencies
w1 = 7, w2 = 14, w3 = 21.

In[27]:= H = p@tD^2 ê 2 + q@tD^2 ê 2 + Sum@Cos@q@tD - 7 i tD, 8i, 3<D;
eqs = 8p‘@tD ã -D@H, q@tDD, q‘@tD ã D@H, p@tDD<;
ics = 8p@0D ã 0, q@0D == 4483 ê 400<;
vars = 8q@tD, p@tD<;
time = 8t, 0, 10000 µ 2 p<;
step = 2 p ê 105;

56 Advanced Numerical Differential Equation Solving in Mathematica

A general technique for computing Poincaré sections is described within "EventLocator Method

for NDSolve". Specifying an empty list for the variables avoids storing all the data of the numeri-

cal integration.

The integration is carried out with a symplectic method with a relatively large number of steps

and the solutions are collected using Sow and Reap when the time is a multiple of 2 p.

The “Direction“ option of “EventLocator“ is used to control the sign in the detection of
the event.

In[33]:= sprkmethod = 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 4, “PositionVariables“ -> 8q@tD<<;

sprkdata =
Block@8k = 1<,
Reap@
NDSolve@8eqs, ics<, 8<, time,

Method Ø 8“EventLocator“, “Direction“ Ø 1, “Event“ ß Ht - 2 k PiL,
“EventAction“ ß Hk++; Sow@8q@tD, p@tD<DL, Method Ø sprkmethod<,

StartingStepSize Ø step, MaxSteps Ø Infinity
D;

D
D;

NDSolve::noout : No functions were specified for output from NDSolve.

This displays the solution at time intervals of 2 p.

In[35]:= ListPlot@sprkdata@@-1, 1DD, Axes Ø False,
Frame Ø True, AspectRatio Ø 1, PlotRange Ø AllD

Out[35]=

Advanced Numerical Differential Equation Solving in Mathematica 57

–30 –20 –10 0 10 20 30

–20

–10

0

10

20

30

For comparison a Poincaré section is also computed using an explicit Runge|Kutta method of the
same order.

In[36]:= rkmethod = 8“FixedStep“, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 4<<;

rkdata =
Block@8k = 1<,
Reap@
NDSolve@8eqs, ics<, 8<, time,

Method Ø 8“EventLocator“, “Direction“ Ø 1, “Event“ ß Ht - 2 k PiL,
“EventAction“ ß Hk++; Sow@8q@tD, p@tD<DL, Method Ø rkmethod<,

StartingStepSize Ø step, MaxSteps Ø Infinity
D;

D
D;

NDSolve::noout : No functions were specified for output from NDSolve.

Fine structural details are clearly resolved in a less satisfactory way with this method.

In[38]:= ListPlot@rkdata@@-1, 1DD, Axes Ø False,
Frame Ø True, AspectRatio Ø 1, PlotRange Ø AllD

Out[38]=

Toda Lattice

The Toda lattice models particles on a line interacting with pairwise exponential forces and is

governed by the Hamiltonian:

H Hp, qL =‚
k=1

n 1

2
pk2 + Hexp Hqk+1 - qkL - 1L .

Consider the case when periodic boundary conditions qn+1 = q1 are enforced.

The Toda lattice is an example of an isospectral flow. Using the notation

ak = -
1

2
pk, bk =

1

2
exp

1

2
Hqk+1 - qkL

58 Advanced Numerical Differential Equation Solving in Mathematica

–10 –5 0 5 10

–10

–5

0

5

10

then the eigenvalues of the following matrix are conserved quantities of the flow:

L =

a1 b1 bn
b1 a2 b2 0

b2 a3 b3
  

0 bn-2 an-1 bn-1
bn bn-1 an

.

Define the input for the Toda lattice problem for n = 3.

In[39]:= n = 3;

periodicRule = 8qn+1@tD Ø q1@tD<;

H = ‚
k=1

n pk@tD2

2
+ HExp@qk+1@tD - qk@tDD - 1L ê. periodicRule;

eigenvalueRule = 9ak_@tD ß -pk@tD ê 2, bk_@tD ß 1 ê 2 Exp@1 ê 2 Hqk+1@tD - qk@tDLD=;

L =

a1@tD b1@tD b3@tD
b1@tD a2@tD b2@tD
b3@tD b2@tD a3@tD

ê. eigenvalueRule ê. periodicRule;

eqs = 8q1‘@tD == D@H, p1@tDD, q2‘@tD == D@H, p2@tDD, q3‘@tD == D@H, p3@tDD,
p1‘@tD == -D@H, q1@tDD, p2‘@tD == -D@H, q2@tDD, p3‘@tD == -D@H, q3@tDD<;

ics = 8q1@0D ã 1, q2@0D ã 2, q3@0D ã 4, p1@0D ã 0, p2@0D ã 1, p3@0D ã 1 ê 2<;
eqs = 8eqs, ics<;
vars = 8q1@tD, q2@tD, q3@tD, p1@tD, p2@tD, p3@tD<;
time = 8t, 0, 50<;

Define a function to compute the eigenvalues of a matrix of numbers, sorted in increasing
order. This avoids computing the eigenvalues symbolically.

In[49]:= NumberMatrixQ@m_D := MatrixQ@m, NumberQD;
NumberEigenvalues@m_?NumberMatrixQD := Sort@Eigenvalues@mDD;

Integrate the equations for the Toda lattice using the “ExplicitMidpoint“ method.

In[51]:= emsol =
NDSolve@eqs, vars, time, Method Ø “ExplicitMidpoint“, StartingStepSize Ø 1 ê 10D;

The absolute error in the eigenvalues is now plotted throughout the integration interval.

Options are used to specify the dimension of the result of NumberEigenvalues (since it is not

an explicit list) and that the absolute error specified using InvariantErrorFunction should

include the sign of the error (the default uses Abs).

Advanced Numerical Differential Equation Solving in Mathematica 59

The eigenvalues are clearly not conserved by the “ExplicitMidpoint“ method.

In[52]:= InvariantErrorPlot@NumberEigenvalues@LD,
vars, t, emsol, InvariantErrorFunction Ø HÒ1 - Ò2 &L,
InvariantDimensions Ø 8n<, PlotStyle Ø 8Red, Blue, Green<D

Out[52]=

0 10 20 30 40 50

-0.5

0.0

0.5

1.0

Integrate the equations for the Toda lattice using the
“SymplecticPartitionedRungeKutta“ method.

In[53]:= sprksol = NDSolve@eqs, vars, time,
Method Ø 8“SymplecticPartitionedRungeKutta“, DifferenceOrder Ø 2,

“PositionVariables“ Ø 8q1@tD, q2@tD, q3@tD<<, StartingStepSize Ø 1 ê 10D;

The error in the eigenvalues now remains bounded throughout the integration.

In[54]:= InvariantErrorPlot@NumberEigenvalues@LD,
vars, t, sprksol, InvariantErrorFunction Ø HÒ1 - Ò2 &L,
InvariantDimensions Ø 8n<, PlotStyle Ø 8Red, Blue, Green<D

Out[54]=

0 10 20 30 40 50

-0.005

0.000

0.005

Some recent work on numerical methods for isospectral flows can be found in [CIZ97],

[CIZ99], [DLP98a], and [DLP98b].

60 Advanced Numerical Differential Equation Solving in Mathematica

Available Methods

Default Methods

The following table lists the current default choice of SPRK methods.

Order f evaluations Method Symmetric FSAL
1 1 Symplectic Euler No No
2 1 Symplectic pseudo Leapfrog Yes Yes
3 3 McLachlan and Atela AMA92E No No

4 5 Suzuki AS90E Yes Yes

6 11 Sofroniou and Spaletta ASS05E Yes Yes

8 19 Sofroniou and Spaletta ASS05E Yes Yes

10 35 Sofroniou and Spaletta ASS05E Yes Yes

Unlike the situation for explicit Runge|Kutta methods, the coefficients for high-order SPRK

methods are only given numerically in the literature. Yoshida [Y90] only gives coefficients

accurate to 14 decimal digits of accuracy for example.

Since NDSolve also works for arbitrary precision, you need a process for obtaining the coeffi-

cients to the same precision as that to be used in the solver.

When the closed form of the coefficients is not available, the order equations for the symmetric

composition coefficients can be refined in arbitrary precision using FindRoot, starting from the

known machine-precision solution.

Alternative Methods

Due to the modular design of the new NDSolve framework it is straightforward to add an alterna-

tive method and use that instead of one of the default methods.

Several checks are made before any integration is carried out:

† The two vectors of coefficients should be nonempty, the same length, and numerical approxi-
mations should yield number entries of the correct precision.

† Both coefficient vectors should sum to unity so that they yield a consistent (order 1)
method.

Advanced Numerical Differential Equation Solving in Mathematica 61

Example

Select the perturbed Kepler problem.

In[55]:= system = GetNDSolveProblem@“PerturbedKepler“D;
time = 8T, 0, 290<;
step = 1 ê 25;

Define a function for computing a numerical approximation to the coefficients for a fourth-order
method of Forest and Ruth [FR90], Candy and Rozmus [CR91], and Yoshida [Y90].

In[58]:= YoshidaCoefficients@4, prec_D :=
N@
88Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,

Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D, Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D<,

8Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, Root@1 - 3 * Ò1 + 3 * Ò1^2 + 3 * Ò1^3 &,
1, 0D, Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, 0<<,

precD;

Here are machine-precision approximations for the coefficients.

In[59]:= YoshidaCoefficients@4, MachinePrecisionD

Out[59]= 880.675604, -0.175604, -0.175604, 0.675604<, 81.35121, -1.70241, 1.35121, 0.<<

This invokes the symplectic partitioned Runge|Kutta solver using Yoshida's coefficients.

In[60]:= Yoshida4 =
8“SymplecticPartitionedRungeKutta“, “Coefficients“ Ø YoshidaCoefficients,
“DifferenceOrder“ Ø 4, “PositionVariables“ Ø 8Y1@TD, Y2@TD<<;

Yoshida4sol = NDSolve@system, time,
Method Ø Yoshida4, StartingStepSize Ø step, MaxSteps Ø InfinityD;

This plots the solution of the position variables, or coordinates, in the Hamiltonian formulation.

In[62]:= ParametricPlot@Evaluate@8Y1@TD, Y2@TD< ê. Yoshida4solD, Evaluate@timeDD

Out[62]=
-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

62 Advanced Numerical Differential Equation Solving in Mathematica

Automatic Order Selection

Given that a variety of methods of different orders are available, it is useful to have a means of

automatically selecting an appropriate method. In order to accomplish this we need a measure

of work for each method.

A reasonable measure of work for an SPRK method is the number of stages s (or s - 1 if the

method is FSAL).

Definition (Work per unit step)

Given a step size hk and a work estimate k for one integration step with a method of order k,

the work per unit step is given by k =k êhk.

Let P be a nonempty set of method orders, Pk denote the kth element of P, and †P§ denote the

cardinality (number of elements).

A comparison of work for the default SPRK methods gives P = 82, 3, 4, 6, 8, 10<.

A prerequisite is a procedure for estimating the starting step hk of a numerical method of order

k (see for example [GSB87] or [HNW93]).

The first case to be considered is when the starting step estimate h can be freely chosen. By

bootstrapping from low order, the following algorithm finds the order that locally minimizes the

work per unit step.

Algorithm 4 (h free)

Set W =¶

for k = 1, …, †P§
compute hPk

if  >Pk
ëhPk

 set  =Pk
ëhPk

else if k = †P§ return Pk

else return Pk-1.

The second case to be considered is when the starting step estimate h is given. The following

algorithm then gives the order of the method that minimizes the computational cost while

satisfying given absolute and relative local error tolerances.

Advanced Numerical Differential Equation Solving in Mathematica 63

Algorithm 5 (h specified)

for k = 1, …, †P§
compute hPk

if hPk
> h or k = †P§ return Pk.

Algorithms 4 and 5 are heuristic since the optimal step size and order may change through the

integration, although symplectic integration often involves fixed choices. Despite this, both

algorithms incorporate salient integration information, such as local error tolerances, system

dimension, and initial conditions, to avoid poor choices.

Examples

Consider Kepler's problem that describes the motion in the configuration plane of a material

point that is attracted toward the origin with a force inversely proportional to the square of the

distance:

(1)HHp, qL = 1
2
Ip12 + p22M -

1

q12+q22
.

For initial conditions take

p1H0L = 0, p2H0L =
1 + e

1 - e
, q1H0L = 1 - e, q2H0L = 0

with eccentricity e = 3 ê5.

Algorithm 4

The following figure shows the methods chosen automatically at various tolerances for the

Kepler problem (1) according to Algorithm 4 on a log-log scale of maximum absolute phase

error versus work.

64 Advanced Numerical Differential Equation Solving in Mathematica

It can be observed that the algorithm does a reasonable job of staying near the optimal

method, although it switches over to the 8th-order method slightly earlier than necessary.

This can be explained by the fact that the starting step size routine is based on low-order deriva-

tive estimation and this may not be ideal for selecting high-order methods.

Algorithm 5

The following figure shows the methods chosen automatically with absolute local error tolerance

of 10-9 and step sizes 1/16, 1/32, 1/64, 1/128 for the Kepler problem (1) according to Algo-

rithm 5 on a log-log scale of maximum absolute phase error versus work.

With the local tolerance and step size fixed the code can only choose the order of the method.

For large step sizes a high-order method is selected, whereas for small step sizes a low-order

method is selected. In each case the method chosen minimizes the work to achieve the given

tolerance.

Advanced Numerical Differential Equation Solving in Mathematica 65

Option Summary

Options of the method “SymplecticPartitionedRungeKutta“.

Controller Methods

"Composition" and "Splitting" Methods for NDSolve

Introduction

In some cases it is useful to split the differential system into subsystems and solve each

subsystem using appropriate integration methods. Recombining the individual solutions often

allows certain dynamical properties, such as volume, to be conserved. More information on

splitting and composition can be found in [MQ02, HLW02], and specific aspects related to

NDSolve are discussed in [SS05, SS06].

Definitions

Of concern are initial value problems y ‘ HtL = f HyHtLL, where yH0L = y0 œn.

"Composition"

Composition is a useful device for raising the order of a numerical integration scheme.

In contrast to the Aitken|Neville algorithm used in extrapolation, composition can conserve

geometric properties of the base integration method (e.g. symplecticity).

66 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

"Coefficients" "SymplecticParÖ
titionedRÖ
ungeKuttaÖ
CoefficieÖ
nts"

specify the coefficients of the symplectic
partitioned Runge|Kutta method

"DifferenceOrder" Automatic specify the order of local accuracy of the
method

"PositionVariables" 8< specify a list of the position variables in the
Hamiltonian formulation

Let F f, gi h
HiL be a basic integration method that takes a step of size gi h with g1, …, gs given real

numbers.

Then the s-stage composition method Y f ,h is given by

Y f ,h = F f ,gs h
HsL È ÈF f ,g1 h

H1L .

Often interest is in composition methods Y f ,h that involve the same base method
F = FHiL, i = 1, …, s.

An interesting special case is symmetric composition: gi = gs-i+1, i = 1, …, ds ê2t.

The most common types of composition are:

† Symmetric composition of symmetric second-order methods

† Symmetric composition of first-order methods (e.g. a method F with its adjoint F*)

† Composition of first-order methods

"Splitting"

An s-stage splitting method is a generalization of a composition method in which f is broken up

in an additive fashion:

f = f1 + + fk, k § s.

The essential point is that there can often be computational advantages in solving problems

involving fi instead of f .

An s-stage splitting method is a composition of the form

Y f ,h = F fs,gs h
HsL È ÈF f1,g1 h

H1L ,

with f1, …, fs not necessarily distinct.

Each base integration method now only solves part of the problem, but a suitable composition

can still give rise to a numerical scheme with advantageous properties.

If the vector field fi is integrable, then the exact solution or flow j fi,h can be used in place of a

numerical integration method.

Advanced Numerical Differential Equation Solving in Mathematica 67

A splitting method may also use a mixture of flows and numerical methods.

An example is Lie|Trotter splitting [T59]:

Split f = f1 + f2 with g1 = g2 = 1; then Y f ,h = j f2,h
H2L È j f1,h

H1L yields a first-order integration method.

Computationally it can be advantageous to combine flows using the group property

j fi,h1+h2 = j fi,h2 È j fi,h1 .

Implementation

Several changes to the new NDSolve framework were needed in order to implement splitting

and composition methods.

† Allow a method to call an arbitrary number of submethods.

† Add the ability to pass around a function for numerically evaluating a subfield, instead of
the entire vector field.

† Add a “LocallyExact“ method to compute the flow; analytically solve a subsystem and
advance the (local) solution numerically.

† Add cache data for identical methods to avoid repeated initialization. Data for numerically
evaluating identical subfields is also cached.

A simplified input syntax allows omitted vector fields and methods to be filled in cyclically.

These must be defined unambiguously:

8 f1, f2, f1, f2< can be input as 8 f1, f2<.

8 f1, f2, f3, f2, f1< cannot be input as 8 f1, f2, f3< since this corresponds to 8 f1, f2, f3, f1, f2<.

68 Advanced Numerical Differential Equation Solving in Mathematica

Nested Methods

The following example constructs a high-order splitting method from a low-order splitting using

“Composition“.

NDSolve ö “Composition“

ç “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

ª ª

ö “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

ª ª

é “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

Simplification

A more efficient integrator can be obtained in the previous example using the group property of

flows and calling the “Splitting“ method directly.

NDSolve ö “Splitting“ f = f1 + f2

ç
“LocallyExact“ f1
ImplicitMidpoint f2

ª ª

ö

“LocallyExact“ f1
ImplicitMidpoint f2
“LocallyExact“ f1

ª ª

é
ImplicitMidpoint f2
“LocallyExact“ f1

Examples

The following examples will use a second-order symmetric splitting known as the Strang split-

ting [S68], [M68]. The splitting coefficients are automatically determined from the structure of

the equations.

Advanced Numerical Differential Equation Solving in Mathematica 69

This defines a method known as symplectic leapfrog in terms of the method
“SymplecticPartitionedRungeKutta“.

In[2]:= SymplecticLeapfrog = 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 2, “PositionVariables“ :> qvars<;

Load a package with some useful example problems.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;

Symplectic Splitting

Symplectic Leapfrog

“SymplecticPartitionedRungeKutta“ is an efficient method for solving separable Hamiltonian

systems HHp, qL = THpL + VHqL with favorable long-time dynamics.

“Splitting“ is a more general-purpose method, but it can be used to construct partitioned

symplectic methods (though it is somewhat less efficient than

“SymplecticPartitionedRungeKutta“).

Consider the harmonic oscillator that arises from a linear differential system that is governed by
the separable Hamiltonian HHp, qL = p2 ë2 + q2 ë2.

In[5]:= system = GetNDSolveProblem@“HarmonicOscillator“D

Out[5]= NDSolveProblemB:8Y1
£@TD ã Y2@TD, Y2

£@TD ã -Y1@TD<,

8Y1@0D ã 1, Y2@0D ã 0<, 8Y1@TD, Y2@TD<, 8T, 0, 10<, 8<, :
1

2
IY1@TD

2 + Y2@TD
2M>>F

Split the Hamiltonian vector field into independent components governing momentum and
position. This is done by setting the relevant right-hand sides of the equations to zero.

In[6]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 1, 2D = 0;
Y2 = eqs;
Part@Y2, 2, 2D = 0;

This composition of weighted (first-order) Euler integration steps corresponds to the symplectic
(second-order) leapfrog method.

In[11]:= tfinal = 1;
time = 8T, 0, tfinal<;
qvars = 8Subscript@Y, 1D@TD<;
splittingsol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,

Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2, “Equations“ Ø 8Y1, Y2, Y1<,
“Method“ Ø 8“ExplicitEuler“, “ExplicitEuler“, “ExplicitEuler“<<D

Out[14]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

70 Advanced Numerical Differential Equation Solving in Mathematica

The method “ExplicitEuler“ could only have been specified once, since the second and third

instances would have been filled in cyclically.

This is the result at the end of the integration step.

In[15]:= InputForm@splittingsol ê. T Ø tfinalD

Out[15]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

This invokes the built-in integration method corresponding to the symplectic leapfrog integrator.

In[16]:= sprksol =
NDSolve@system, time, StartingStepSize Ø 1 ê 10, Method Ø SymplecticLeapfrogD

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The result at the end of the integration step is identical to the result of the splitting method.

In[17]:= InputForm@sprksol ê. T Ø tfinalD

Out[17]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

Composition of Symplectic Leapfrog

This takes the symplectic leapfrog scheme as the base integration method and constructs a
fourth-order symplectic integrator using a symmetric composition of Ruth|Yoshida [Y90].

In[18]:= YoshidaCoefficients =
RootReduce@81 ê H2 - 2^H1 ê 3LL, -2^H1 ê 3L ê H2 - 2^H1 ê 3LL, 1 ê H2 - 2^H1 ê 3LL<D;

YoshidaCompositionCoefficients@4, p_D := N@YoshidaCoefficients, pD;

splittingsol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8“Composition“, “Coefficients“ Ø YoshidaCompositionCoefficients,
“DifferenceOrder“ Ø 4, “Method“ Ø 8SymplecticLeapfrog<<D

Out[20]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

This is the result at the end of the integration step.

In[21]:= InputForm@splittingsol ê. T Ø tfinalD

Out[21]//InputForm= {{Subscript[Y, 1][1] -> 0.5403078808898406, Subscript[Y, 2][1] -> -0.8414706295697821}}

Advanced Numerical Differential Equation Solving in Mathematica 71

This invokes the built-in symplectic integration method using coefficients for the fourth-order
methods of Ruth and Yoshida.

In[22]:= SPRK4@4, prec_D := N@88Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D, Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D<,

8Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, Root@1 - 3 * Ò1 + 3 * Ò1^2 + 3 * Ò1^3 &,
1, 0D, Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, 0<<, precD;

sprksol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8“SymplecticPartitionedRungeKutta“, “Coefficients“ Ø SPRK4,

“DifferenceOrder“ Ø 4, “PositionVariables“ Ø qvars<D
Out[23]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The result at the end of the integration step is identical to the result of the composition method.

In[24]:= InputForm@sprksol ê. T Ø tfinalD

Out[24]//InputForm= {{Subscript[Y, 1][1] -> 0.5403078808898406, Subscript[Y, 2][1] -> -0.8414706295697821}}

Hybrid Methods

While a closed-form solution often does not exist for the entire vector field, in some cases it is

possible to analytically solve a system of differential equations for part of the vector field.

When a solution can be found by DSolve, direct numerical evaluation can be used to locally

advance the solution.

This idea is implemented in the method “LocallyExact“.

Harmonic Oscillator Test Example

This example checks that the solution for the exact flows of split components of the harmonic
oscillator equations is the same as applying Euler's method to each of the split components.

In[25]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 1, 2D = 0;
Y2 = eqs;
Part@Y2, 2, 2D = 0;
tfinal = 1;
time = 8T, 0, tfinal<;

In[33]:= solexact = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y1, Y2, Y1<, “Method“ Ø 8“LocallyExact“<<D;

In[34]:= InputForm@solexact ê. T Ø 1D

Out[34]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

72 Advanced Numerical Differential Equation Solving in Mathematica

In[37]:= soleuler = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y1, Y2, Y1<, “Method“ Ø 8“ExplicitEuler“<<D;

InputForm@soleuler ê. T Ø tfinalD
Out[38]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

Hybrid Numeric-Symbolic Splitting Methods (ABC Flow)

Consider the Arnold, Beltrami, and Childress flow, a widely studied model for volume-preserving
three-dimensional flows.

In[39]:= system = GetNDSolveProblem@“ArnoldBeltramiChildress“D

Out[39]= NDSolveProblemB::Y1
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD,

Y2
£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, Y3

£@TD ã Cos@Y1@TDD +
3

4
Sin@Y2@TDD>,

:Y1@0D ã
1

4
, Y2@0D ã

1

3
, Y3@0D ã

1

2
>, 8Y1@TD, Y2@TD, Y3@TD<, 8T, 0, 100<, 8<, 8<>F

When applied directly, a volume-preserving integrator would not in general preserve symme-

tries. A symmetry-preserving integrator, such as the implicit midpoint rule, would not preserve

volume.

This defines a splitting of the system by setting some of the right-hand side components to zero.

In[40]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 2, 2D = 0;
Y2 = eqs;
Part@Y2, 81, 3<, 2D = 0;

In[45]:= Y1

Out[45]= :Y1
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD, Y2

£@TD ã 0, Y3
£@TD ã Cos@Y1@TDD +

3

4
Sin@Y2@TDD>

In[46]:= Y2

Out[46]= 8Y1
£@TD ã 0, Y2

£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, Y3
£@TD ã 0<

The system for Y1 is solvable exactly by DSolve so that you can use the “LocallyExact“

method.

Y2 is not solvable, however, so you need to use a suitable numerical integrator in order to

obtain the desired properties in the splitting method.

Advanced Numerical Differential Equation Solving in Mathematica 73

This defines a method for computing the implicit midpoint rule in terms of the built-in
“ImplicitRungeKutta“ method.

In[47]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ Ø
“ImplicitRungeKuttaGaussCoefficients“, “DifferenceOrder“ Ø 2,

ImplicitSolver Ø 8FixedPoint, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

This defines a second-order, volume-preserving, reversing symmetry-group integrator [MQ02].

In[48]:= splittingsol = NDSolve@system,
StartingStepSize Ø 1 ê 10,
Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<,
“Method“ Ø 8“LocallyExact“, ImplicitMidpoint, “LocallyExact“<<D

Out[48]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

Lotka|Volterra Equations

Various numerical integrators for this system are compared within "Numerical Methods for

Solving the Lotka|Volterra Equations".

Euler's Equations

Various numerical integrators for Euler's equations are compared within "Rigid Body Solvers".

Non-Autonomous Vector Fields

Consider the Duffing oscillator, a forced planar non-autonomous differential system.

In[49]:= system = GetNDSolveProblem@“DuffingOscillator“D

Out[49]= NDSolveProblemB::Y1
£@TD ã Y2@TD, Y2

£@TD ã
3 Cos@TD

10
+ Y1@TD - Y1@TD

3 +
Y2@TD

4
>,

8Y1@0D ã 0, Y2@0D ã 1<, 8Y1@TD, Y2@TD<, 8T, 0, 10<, 8<, 8<>F

This defines a splitting of the system.

In[50]:= Y1 = :Y1£@TD ã Y2@TD, Y2£@TD ã
Y2@TD

4
>;

Y2 = :Y1£@TD ã 0, Y2£@TD ã
3 Cos@TD

10
+ Y1@TD - Y1@TD3>;

74 Advanced Numerical Differential Equation Solving in Mathematica

The splitting of the time component among the vector fields is ambiguous, so the method issues
an error message.

In[52]:= splittingsol = NDSolve@system, StartingStepSize Ø 1 ê 10,
Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y1<, “Method“ Ø 8“LocallyExact“<<D

NDSolve::spltdep:

The differential system :0,
3 Cos@TD

10
+Y1@TD-Y1@TD3> in the method Splitting depends on T

which is ambiguous. The differential system should be in autonomous form. à

NDSolve::initf : The initialization of the method NDSolve`Splitting failed.

Out[52]= 88Y1@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD<<

The equations can be extended by introducing a new "dummy" variable Z@TD such that
Z@TD == T and specifying how it should be distributed in the split differential systems.

In[53]:= Y1 = :Y1£@TD ã Y2@TD, Y2£@TD ã
Y2@TD

4
, Z‘@TD ã 1>;

Y2 = :Y1£@TD ã 0, Y2£@TD ã
3 Cos@Z@TDD

10
+ Y1@TD - Y1@TD3, Z‘@TD ã 0>;

eqs = Join@system@“System“D, 8Z‘@TD ã 1<D;
ics = Join@system@“InitialConditions“D, 8Z@0D ã 1<D;
vars = Join@system@“DependentVariables“D, 8Z@TD<D;
time = system@“TimeData“D;

This defines a geometric splitting method that satisfies l1 + l2 = -d for any finite time interval,
where l1 and l2 are the Lyapunov exponents [MQ02].

In[59]:= splittingsol = NDSolve@8eqs, ics<, vars, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<, “Method“ Ø 8“LocallyExact“<<D

Out[59]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Z@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica 75

Here is a plot of the solution.

In[60]:= ParametricPlot@Evaluate@system@“DependentVariables“@DD ê. First@splittingsolDD,
Evaluate@timeD, AspectRatio -> 1D

Out[60]=

-3 -2 -1 1 2 3

-5

5

Option Summary

The default coefficient choice in “Composition“ tries to automatically select between

“SymmetricCompositionCoefficients“ and “SymmetricCompositionSymmetricMethodÖ

Coefficients “ depending on the properties of the methods specified using the Method option.

option name default value

“Coefficients“ Automatic specify the coefficients to use in the compo-
sition method

“DifferenceOrder“ Automatic specify the order of local accuracy of the
method

Method None specify the base methods to use in the
numerical integration

Options of the method “Composition“.

76 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

“Coefficients“ 8< specify the coefficients to use in the split-
ting method

“DifferenceOrder“ Automatic specify the order of local accuracy of the
method

“Equations“ 8< specify the way in which the equations
should be split

Method None specify the base methods to use in the
numerical integration

Options of the method “Splitting“.

Submethods

"LocallyExact" Method for NDSolve

Introduction

A differential system can sometimes be solved by analytic means. The function DSolve imple-

ments many of the known algorithmic techniques.

However, differential systems that can be solved in closed form constitute only a small subset.

Despite this fact, when a closed-form solution does not exist for the entire vector field, it is

often possible to analytically solve a system of differential equations for part of the vector field.

An example of this is the method “Splitting“, which breaks up a vector field f into sub-

fields f1, …, fn such that f = f1 + + fn.

The idea underlying the method “LocallyExact“ is that rather than using a standard numerical

integration scheme, when a solution can be found by DSolve direct numerical evaluation can be

used to locally advance the solution.

Since the method “LocallyExact“ makes no attempt to adaptively adjust step sizes, it is

primarily intended for use as a submethod between integration steps.

Examples

Load a package with some predefined problems.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;

Advanced Numerical Differential Equation Solving in Mathematica 77

Harmonic Oscillator

Numerically solve the equations of motion for a harmonic oscillator using the method
“LocallyExact“. The result is two interpolating functions that approximate the solution and
the first derivative.

In[2]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
vars = system@“DependentVariables“D;
tdata = system@“TimeData“D;

sols =
vars ê. First@NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “LocallyExact“DD

Out[5]= 8InterpolatingFunction@880., 10.<<, <>D@TD, InterpolatingFunction@880., 10.<<, <>D@TD<

The solution evolves on the unit circle.

In[6]:= ParametricPlot@Evaluate@solsD, Evaluate@tdataD, AspectRatio Ø 1D

Out[6]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Global versus Local

The method “LocallyExact“ is not intended as a substitute for a closed-form (global) solution.

Despite the fact that the method “LocallyExact“ uses the analytic solution to advance the

solution, it only produces solutions at the grid points in the numerical integration (or even

inside grid points if called appropriately). Therefore, there can be errors due to sampling at

interpolation points that do not lie exactly on the numerical integration grid.

78 Advanced Numerical Differential Equation Solving in Mathematica

Plot the error in the first solution component of the harmonic oscillator and compare it with the
exact flow.

In[7]:= Plot@Evaluate@First@solsD - Cos@TDD, Evaluate@tdataDD

Out[7]=
2 4 6 8 10

-2.µ 10-7

-1.µ 10-7

1.µ 10-7

2.µ 10-7

Simplification

The method “LocallyExact“ has an option “SimplificationFunction“ that can be used to

simplify the results of DSolve.

Here is the linearized component of the differential system that turns up in the splitting of the
Lorenz equations using standard values for the parameters.

In[8]:= eqs = 8Y1‘@TD ã s HY2@TD - Y1@TDL, Y2‘@TD ã r Y1@TD - Y2@TD, Y3‘@TD ã -b Y3@TD< ê.
8s Ø 10, r Ø 28, b Ø 8 ê 3<;

ics = 8Y1@0D ã -8, Y2@0D ã 8, Y3@0D ã 27<;
vars = 8Y1@TD, Y2@TD, Y3@TD<;

Advanced Numerical Differential Equation Solving in Mathematica 79

This subsystem is exactly solvable by DSolve.

In[11]:= DSolve@eqs, vars, TD

Out[11]= ::Y1@TD Ø

1

2402
1201 ‰

1

2
-11- 1201 T

+ 9 1201 ‰
1

2
-11- 1201 T

+ 1201 ‰
1

2
-11+ 1201 T

- 9 1201 ‰
1

2
-11+ 1201 T

C@1D -

10 ‰
1

2
-11- 1201 T

- ‰
1

2
-11+ 1201 T

C@2D

1201
,

Y2@TD Ø -

28 ‰
1

2
-11- 1201 T

- ‰
1

2
-11+ 1201 T

C@1D

1201
+

1

2402
1201 ‰

1

2
-11- 1201 T

- 9 1201 ‰
1

2
-11- 1201 T

+

1201 ‰
1

2
-11+ 1201 T

+ 9 1201 ‰
1

2
-11+ 1201 T

C@2D, Y3@TD Ø ‰-8 Të3 C@3D>>

Often the results of DSolve can be simplified. This defines a function to simplify an expression
and also prints out the input and the result.

In[12]:= myfun@x_D :=
Module@8simpx<,
Print@“Before simplification “, xD;
simpx = FullSimplify@ExpToTrig@xDD;
Print@“After simplification “, simpxD;
simpx

D;

The function can be passed as an option to the method “LocallyExact“.

In[13]:= NDSolve@8eqs, ics<, vars, 8T, 0, 1<, StartingStepSize Ø 1 ê 10,
Method Ø 8“LocallyExact“, “SimplificationFunction“ Ø myfun<D

80 Advanced Numerical Differential Equation Solving in Mathematica

Before simplification

:
1

2402
1201 ‰

1

2
J-11- 1201 N T

+ 9 1201 ‰
1

2
J-11- 1201 N T

+

1201 ‰
1

2
J-11+ 1201 N T

- 9 1201 ‰
1

2
J-11+ 1201 N T Y1@TD -

10 ‰
1

2
J-11- 1201 N T

- ‰
1

2
J-11+ 1201 N T Y2@TD

1201
,

-

28 ‰
1

2
J-11- 1201 N T

- ‰
1

2
J-11+ 1201 N T Y1@TD

1201
+

1

2402
1201 ‰

1

2
J-11- 1201 N T

- 9 1201 ‰
1

2
J-11- 1201 N T

+

1201 ‰
1

2
J-11+ 1201 N T

+ 9 1201 ‰
1

2
J-11+ 1201 N T Y2@TD, ‰-8 Tê3 Y3@TD>

After simplification

:
1

1201
‰-11 Tê2 1201 CoshB

1201 T

2
F Y1@TD + 1201 SinhB

1201 T

2
F

H-9 Y1@TD + 20 Y2@TDL , ‰-11 Tê2 CoshB
1201 T

2
F Y2@TD +

‰-11 Tê2 SinhB 1201 T
2

F H56 Y1@TD + 9 Y2@TDL

1201
, ‰-8 Tê3 Y3@TD>

Out[13]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The simplification is performed only once during the initialization phase that constructs the data

object for the numerical integration method.

Option Summary

option name default value

“SimplificationFunction“ None function to use in simplifying the result of
DSolve

Option of the method “LocallyExact“.

Advanced Numerical Differential Equation Solving in Mathematica 81

"DoubleStep" Method for NDSolve

Introduction

The method “DoubleStep“ performs a single application of Richardson's extrapolation for any

one-step integration method.

Although it is not always optimal, it is a general scheme for equipping a method with an error

estimate (hence adaptivity in the step size) and extrapolating to increase the order of local

accuracy.

“DoubleStep“ is a special case of extrapolation but has been implemented as a separate

method for efficiency.

Given a method of order p:

† Take a step of size h to get a solution y1.

† Take two steps of size h ê2 to get a solution y2.

† Find an error estimate of order p as:

(1)e = y2- y1
2p- 1

.

† The correction term e can be used for error estimation enabling an adaptive step-size
scheme for any base method.

† Either use y2 for the new solution, or form an improved approximation using local extrapola-
tion as:

(2)y`2 = y2 + e.

† If the base numerical integration method is symmetric, then the improved approximation
has order p + 2; otherwise it has order p + 1.

Examples

Load some package with example problems and utility functions.

In[5]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Select a nonstiff problem from the package.

In[7]:= nonstiffsystem = GetNDSolveProblem@“BrusselatorODE“D;

82 Advanced Numerical Differential Equation Solving in Mathematica

Select a stiff problem from the package.

In[8]:= stiffsystem = GetNDSolveProblem@“Robertson“D;

Extending Built-in Methods

The method “ExplicitEuler“ carries out one integration step using Euler's method. It has no

local error control and hence uses fixed step sizes.

This integrates a differential system using one application of Richardson's extrapolation (see
(2)) with the base method “ExplicitEuler“.

The local error estimate (1) is used to dynamically adjust the step size throughout the
integration.

In[9]:= eesol = NDSolve@nonstiffsystem, 8T, 0, 1<,
Method Ø 8“DoubleStep“, Method Ø “ExplicitEuler“<D

Out[9]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

This illustrates how the step size varies during the numerical integration.

In[10]:= StepDataPlot@eesolD

Out[10]=

0.0 0.2 0.4 0.6 0.8 1.0

0.00010

0.00020

0.00015

The stiffness detection device (described within "StiffnessTest Method Option for NDSolve")
ascertains that the “ExplicitEuler“ method is restricted by stability rather than local
accuracy.

In[11]:= NDSolve@stiffsystem, Method Ø 8“DoubleStep“, Method Ø “ExplicitEuler“<D

NDSolve::ndstf :
At T == 0.007253212186800964`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[11]= 88Y1@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica 83

An alternative base method is more appropriate for this problem.

In[12]:= liesol =
NDSolve@stiffsystem, Method Ø 8“DoubleStep“, Method Ø “LinearlyImplicitEuler“<D

Out[12]= 88Y1@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD<<

User-Defined Methods and Method Properties

Integration methods can be added to the NDSolve framework.

In order for these to work like built-in methods it can be necessary to specify various method

properties. These properties can then be used by other methods to build up compound

integrators.

Here is how to define a top-level plug-in for the classical Runge|Kutta method (see "NDSolve
Method Plug-in Framework: Classical Runge|Kutta" and "ExplicitRungeKutta Method for
NDSolve" for more details).

In[13]:= ClassicalRungeKutta@___D@“Step“@f_, t_, h_, y_, yp_DD :=
Block@8deltay, k1, k2, k3, k4<,
k1 = yp;
k2 = f@t + 1 ê 2 h, y + 1 ê 2 h k1D;
k3 = f@t + 1 ê 2 h, y + 1 ê 2 h k2D;
k4 = f@t + h, y + h k3D;
deltay = h H1 ê 6 k1 + 1 ê 3 k2 + 1 ê 3 k3 + 1 ê 6 k4L;
8h, deltay<

D;

Method properties used by “DoubleStep“ are now described.

Order and Symmetry

This attempts to integrate a system using one application of Richardson's extrapolation based
on the classical Runge|Kutta method.

In[14]:= NDSolve@nonstiffsystem, Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta<D;

NDSolve::mtdp:
ClassicalRungeKutta does not have a correctly defined property DifferenceOrder in DoubleStep. à

NDSolve::initf : The initialization of the method NDSolve`DoubleStep failed. à

Without knowing the order of the base method, “DoubleStep“ is unable to carry out Richard-

son's extrapolation.

This defines a method property to communicate to the framework that the classical Runge|Kutta
method has order four.

In[15]:= ClassicalRungeKutta@___D@“DifferenceOrder“D := 4;

84 Advanced Numerical Differential Equation Solving in Mathematica

The method “DoubleStep“ is now able to ascertain that ClassicalRungeKutta is of order
four and can use this information when refining the solution and estimating the local error.

In[16]:= NDSolve@nonstiffsystem, Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta<D

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

The order of the result of Richardson's extrapolation depends on whether the extrapolated

method has a local error expansion in powers of h or h2 (the latter occurs if the base method is

symmetric).

If no method property for symmetry is defined, the “DoubleStep“ method assumes by default

that the base integrator is not symmetric.

This explicitly specifies that the classical Runge|Kutta method is not symmetric using the
“SymmetricMethodQ“ property.

In[17]:= ClassicalRungeKutta@___D@“SymmetricMethodQ“D := False;

Stiffness Detection

Details of the scheme used for stiffness detection can be found within "StiffnessTest Method

Option for NDSolve".

Stiffness detection relies on knowledge of the linear stability boundary of the method, which

has not been defined.

Computing the exact linear stability boundary of a method under extrapolation can be quite

complicated. Therefore a default value is selected which works for all methods. This

corresponds to considering the p-th order power series approximation to the exponential at 0

and ignoring higher order terms.

† If “LocalExtrapolation“ is True then a generic value is selected corresponding to a
method of order p + 2 (symmetric) or p + 1.

† If “LocalExtrapolation“ is False then the property “LinearStabilityBoundary“ of the
base method is checked. If no value has been specified then a default for a method of order
p is selected.

This computes the linear stability boundary for a generic method of order 4.

In[18]:= ReduceBAbsBSumB
zi

i!
, 8i, 0, 4<FF ã 1 && z < 0, zF

Out[18]= z ã RootA24 + 12 Ò1 + 4 Ò12 + Ò13 &, 1E

Advanced Numerical Differential Equation Solving in Mathematica 85

A default value for the “LinearStabilityBoundary“ property is used.

In[19]:= NDSolve@stiffsystem,
Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta, “StiffnessTest“ Ø True<D;

NDSolve::ndstf : At T == 0.00879697198122793`, system appears to be stiff. Methods
Automatic, BDF or StiffnessSwitching may be more appropriate. à

This shows how to specify the linear stability boundary of the method for the framework. This
value will only be used if “DoubleStep“ is invoked with “LocalExtrapolation“ Ø True .

In[20]:= ClassicalRungeKutta@___D@“LinearStabilityBoundary“D :=
RootA24 + 12 Ò1 + 4 Ò12 + Ò13 &, 1E;

“DoubleStep“ assumes by default that a method is not appropriate for stiff problems (and
hence uses stiffness detection) when no “StiffMethodQ“ property is specified. This shows
how to define the property.

In[21]:= ClassicalRungeKutta@___D@“StiffMethodQ“D := False;

Higher Order

The following example extrapolates the classical Runge-Kutta method of order four using two

applications of (2).

The inner specification of “DoubleStep“ constructs a method of order five.

A second application of “DoubleStep“ is used to obtain a method of order six, which uses

adaptive step sizes.

Nested applications of “DoubleStep“ are used to raise the order and provide an adaptive step-
size estimate.

In[22]:= NDSolve@nonstiffsystem,
Method Ø 8“DoubleStep“, Method Ø 8“DoubleStep“, Method -> ClassicalRungeKutta<<D

Out[22]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

In general the method “Extrapolation“ is more appropriate for constructing high-order

integration schemes from low-order methods.

86 Advanced Numerical Differential Equation Solving in Mathematica

Option Summary

option name default value

“LocalExtrapolation“ True specify whether to advance the solution
using local extrapolation according to (2)

Method None specify the method to use as the base
integration scheme

“StepSizeRatioBounds“ :
1
8
,4> specify the bounds on a relative change in

the new step size hn+1 from the current
step size hn as low § hn+1êhn § high

“StepSizeSafetyFactors“ Automatic specify the safety factors to incorporate
into the error estimate (1) used for adap-
tive step sizes

“StiffnessTest“ Automatic specify whether to use the stiffness detec-
tion capability

Options of the method “DoubleStep“.

The default setting of Automatic for the option “StiffnessTest“ indicates that the stiffness

test is activated if a nonstiff base method is used.

The default setting of Automatic for the option “StepSizeSafetyFactors“ uses the values

89 ê 10, 4 ê 5< for a stiff base method and 89 ê 10, 13 ê 20< for a nonstiff base method.

"EventLocator" Method for NDSolve

Introduction

It is often useful to be able to detect and precisely locate a change in a differential system. For

example, with the detection of a singularity or state change, the appropriate action can be

taken, such as restarting the integration.

An event for a differential system:

Y ‘ HtL = f Ht, YHtLL

is a point along the solution at which a real-valued event function is zero:

gHt, YHtLL = 0

It is also possible to consider Boolean-valued event functions, in which case the event occurs

when the function changes from True to False or vice versa.

Advanced Numerical Differential Equation Solving in Mathematica 87

The “EventLocator“ method that is built into NDSolve works effectively as a controller

method; it handles checking for events and taking the appropriate action, but the integration of

the differential system is otherwise left completely to an underlying method.

In this section, examples are given to demonstrate the basic use of the “EventLocator“

method and options. Subsequent sections show more involved applications of event location,

such as period detection, Poincaré sections, and discontinuity handling.

These initialization commands load some useful packages that have some differential equations
to solve and define some utility functions.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;
Needs@“GUIKit`“D;

A simple example is locating an event, such as when a pendulum started at a non-equilibrium

position will swing through its lowest point and stopping the integration at that point.

This integrates the pendulum equation up to the first point at which the solution y@tD crosses
the axis.

In[5]:= sol = NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 10<, Method Ø 8“EventLocator“, “Event“ Ø y@tD<D

Out[5]= 88y Ø InterpolatingFunction@880., 1.67499<<, <>D<<

From the solution you can see that the pendulum reaches its lowest point y@tD = 0 at about

t = 1.675. Using the InterpolatingFunctionAnatomy package, it is possible to extract the value

from the InterpolatingFunction object.

This extracts the point at which the event occurs and makes a plot of the solution (black) and
its derivative (blue) up to that point.

In[6]:= end = InterpolatingFunctionDomain@First@y ê. solDD@@1, -1DD;
Plot@Evaluate@8y@tD, y‘@tD< ê. First@solDD,
8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<<D

Out[7]=
0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

When you use the event locator method, the events to be located and the action to take upon

finding an event are specified through method options of the “EventLocator“ method.

88 Advanced Numerical Differential Equation Solving in Mathematica

The default action on detecting an event is to stop the integration as demonstrated earlier. The

event action can be any expression. It is evaluated with numerical values substituted for the

problem variables whenever an event is detected.

This prints the time and values each time the event y‘@tD = y@tD is detected for a damped
pendulum.

In[8]:= NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã 0, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 10<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD - y@tD,

“EventAction“ ß Print@“y‘@“, t, “D = y@“, t, “D = “, y@tDD<D

y‘@2.49854D = y@2.49854D = -0.589753

y‘@5.7876D = y@5.7876D = 0.501228

y‘@9.03428D = y@9.03428D = -0.426645
Out[8]= 88y Ø InterpolatingFunction@880., 10.<<, <>D<<

Note that in the example, the “EventAction“ option was given using RuleDelayed (ß) to

prevent it from evaluating except when the event is located.

You can see from the printed output that when the action does not stop the integration, multi-

ple instances of an event can be detected. Events are detected when the sign of the event

expression changes. You can restrict the event to be only for a sign change in a particular

direction using the “Direction“ option.

This collects the points at which the velocity changes from negative to positive for a damped
driven pendulum. Reap and Sow are programming constructs that are useful for collecting data
when you do not, at first, know how much data there will be. Reap@exprD gives the value of
expr together with all expressions to which Sow has been applied during its evaluation. Here

Reap encloses the use of NDSolve and Sow is a part of the event action, which allows you to
collect data for each instance of an event.

In[9]:= Reap@NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã .1 Cos@tD, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 50<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD,

“Direction“ Ø 1, “EventAction“ ß Sow@8t, y@tD, y‘@tD<D<DD

Out[9]= 988y Ø InterpolatingFunction@880., 50.<<, <>D<<,

9993.55407, -0.879336, 1.87524µ10-15=, 910.4762, -0.832217, -5.04805µ10-16=,

917.1857, -0.874939, -4.52416µ10-15=, 923.7723, -0.915352, 1.62717µ10-15=,

930.2805, -0.927186, -1.17094µ10-16=, 936.7217, -0.910817, -2.63678µ10-16=,

943.1012, -0.877708, 1.33227µ10-15=, 949.4282, -0.841083, -8.66494µ10-16====

You may notice from the output of the previous example that the events are detected when the

derivative is only approximately zero. When the method detects the presence of an event in a

step of the underlying integrator (by a sign change of the event expression), then it uses a

numerical method to approximately find the position of the root. Since the location process is

numerical, you should expect only approximate results. Location method options

AccuracyGoal, PrecisionGoal, and MaxIterations can be given to those location methods

that use FindRoot to control tolerances for finding the root.

Advanced Numerical Differential Equation Solving in Mathematica 89

You may notice from the output of the previous example that the events are detected when the

derivative is only approximately zero. When the method detects the presence of an event in a

numerical method to approximately find the position of the root. Since the location process is

numerical, you should expect only approximate results. Location method options

AccuracyGoal, PrecisionGoal, and MaxIterations can be given to those location methods

that use FindRoot to control tolerances for finding the root.

For Boolean valued event functions, an event occurs when the function switches from True to

False or vice versa. The “Direction“ option can be used to restrict the event only from

changes from True to False (“Direction“ -> -1) or only from changes from False to True

(“Direction“ -> 1).

This opens up a small window with a button, which when clicked changes the value of the
variable stop to True from its initialized value of False.

In[10]:= NDSolve`stop = False;
GUIRun@Widget@“Panel“, 8Widget@“Button“, 8

“label“ Ø “Stop“,
BindEvent@“action“,
Script@NDSolve`stop = TrueDD<D<DD;

This integrates the pendulum equation up until the button is clicked (or the system runs out of
memory).

In[12]:= NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 1, y‘@0D ã 0<, y, 8t, 0, ¶<,
Method Ø 8“EventLocator“, “Event“ ß NDSolve`stop<, MaxSteps Ø ¶D

Out[12]= 88y Ø InterpolatingFunction@880., 620015.<<, <>D<<

Take note that in this example, the “Event“ option was specified with RuleDelayed (:>) to

prevent the immediate value of stop from being evaluated and set up as the function.

You can specify more than one event. If the event function evaluates numerically to a list, then

each component of the list is considered to be a separate event. You can specify different

actions, directions, etc. for each of these events by specifying the values of these options as

lists of the appropriate length.

This integrates the pendulum equation up until the point at which the button is clicked. The
number of complete swings of the pendulum is kept track of during the integration.

In[13]:= NDSolve`stop = False;
swings = 0; 8
NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 0, y‘@0D ã 1<, y,
8t, 0, 1000000<, Method Ø 8“EventLocator“, “Event“ ß 8y@tD, NDSolve`stop<,

“EventAction“ ß 8swings++, Throw@Null, “StopIntegration“D<,
“Direction“ Ø 81, All<<, MaxSteps Ø InfinityD, swings<

Out[13]= 888y Ø InterpolatingFunction@880., 24903.7<<, <>D<<, 3693<

90 Advanced Numerical Differential Equation Solving in Mathematica

As you can see from the previous example, it is possible to mix real- and Boolean-valued event

functions. The expected number of components and type of each component are based on the

values at the initial condition and needs to be consistent throughout the integration.

The “EventCondition“ option of “EventLocator“ allows you to specify additional Boolean

conditions that need to be satisfied for an event to be tested. It is advantageous to use this

instead of a Boolean event when possible because the root finding process can be done more

efficiently.

This stops the integration of a damped pendulum at the first time that y HtL = 0 once the decay
has reduced the energy integral to -0.9.

In[14]:= sol = NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã 0, y‘@0D ã 1, y@0D ã 0<,
y, 8t, 0, 100<, Method Ø 8“EventLocator“, “Event“ Ø y@tD,

“EventCondition“ Ø Hy‘@tD^2 ê 2 - Cos@y@tDD < -0.9L,
“EventAction“ ß Throw@end = t, “StopIntegration“D<D

Out[14]= 88y Ø InterpolatingFunction@880., 19.4446<<, <>D<<

This makes a plot of the solution (black), the derivative (blue), and the energy integral (green).
The energy theshold is shown in red.

In[15]:= Plot@Evaluate@8y@tD, y‘@tD, y‘@tD^2 ê 2 - Cos@y@tDD, -.9< ê. First@solDD,
8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<, 8Green<, 8Red<<D

Out[15]=
5 10 15

-0.5

0.5

1.0

The Method option of “EventLocator“ allows the specification of the numerical method to use

in the integration.

Event Location Methods

The “EventLocator“ method works by taking a step of the underlying method and checking to

see if the sign (or parity) of any of the event functions is different at the step endpoints. Event

functions are expected to be real- or Boolean-valued, so if there is a change, there must be an

event in the step interval. For each event function which has an event occurrence in a step, a

refinement procedure is carried out to locate the position of the event within the interval.

There are several different methods which can be used to refine the position. These include

simply taking the solution at the beginning or the end of the integration interval, a linear interpo-

lation of the event value, and using bracketed root-finding methods. The appropriate method to

use depends on a trade off between execution speed and location accuracy.

Advanced Numerical Differential Equation Solving in Mathematica 91

If the event action is to stop the integration then the particular value at which the integration is

stopped depends on the value obtained from the “EventLocationMethod“ option of

“EventLocator“.

Location of a single event is usually fast enough so that the method used will not significantly

influence the overall computation time. However, when an event is detected multiple times, the

location refinement method can have a substantial effect.

"StepBegin" and "StepEnd" Methods

The crudest methods are appropriate for when the exact position of the event location does not

really matter or does not reflect anything with precision in the underlying calculation. The stop

button example from the previous section is such a case: time steps are computed so quickly

that there is no way that you can time the click of a button to be within a particular time step,

much less at a particular point within a time step. Thus, based on the inherent accuracy of the

event, there is no point in refining at all. You can specify this by using the “StepBegin“ or

“StepEnd“ location methods. In any example where the definition of the event is heuristic or

somewhat imprecise, this can be an appropriate choice.

"LinearInterpolation" Method

When event results are needed for the purpose of points to plot in a graph, you only need to

locate the event to the resolution of the graph. While just using the step end is usually too

crude for this, a single linear interpolation based on the event function values suffices.

Denote the event function values at successive mesh points of the numerical integration:

wn = gHtn, ynL, wn+1 = gHtn+1, yn+1L

Linear interpolation gives:

we =
wn

wn+1 - wn

A linear approximation of the event time is then:

te = tn + we hn

92 Advanced Numerical Differential Equation Solving in Mathematica

Linear interpolation could also be used to approximate the solution at the event time. However,

since derivative values fn = f Htn, ynL and fn+1 = f Htn+1, yn+1L are available at the mesh points, a

better approximation of the solution at the event can be computed cheaply using cubic Hermite

interpolation as:

ye = kn yn + kn+1 yn+1 + ln fn + ln+1 fn+1

for suitably defined interpolation weights:

kn = Hwe - 1L2 H2 we + 1L
kn+1 = H3 - 2 weL we

2

ln = hn Hwe - 1L2 we

ln+1 = hn Hwe - 1L we
2

You can specify refinement based on a single linear interpolation with the setting

“LinearInterpolation“.

This computes the solution for a single period of the pendulum equation and plots the solution
for that period.

In[16]:= sol = First@NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0<,
y, 8t, 0, ¶<, Method Ø 8“EventLocator“,

“Event“ Ø y‘@tD,
“EventAction“ ß Throw@end = t, “StopIntegration“D, “Direction“ Ø -1,
“EventLocationMethod“ -> “LinearInterpolation“,
Method -> “ExplicitRungeKutta“<DD;

Plot@Evaluate@8y@tD, y‘@tD< ê. solD, 8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<<D

Out[17]=
5 10 15

-3

-2

-1

1

2

3

At the resolution of the plot over the entire period, you cannot see that the endpoint may not

be exactly where the derivative hits the axis. However, if you zoom in enough, you can see the

error.

Advanced Numerical Differential Equation Solving in Mathematica 93

This shows a plot just near the endpoint.

In[18]:= Plot@Evaluate@y‘@tD ê. solD, 8t, end * H1 - .001L, end<, PlotStyle Ø BlueD

Out[18]=

16.150 16.155

0.0005

0.0010

0.0015

0.0020

The linear interpolation method is sufficient for most viewing purposes, such as the Poincaré

section examples shown in the following section. Note that for Boolean-valued event functions,

linear interpolation is effectively only one bisection step, so the linear interpolation method may

be inadequate for graphics.

Brent's Method

The default location method is the event location method “Brent“, finding the location of the

event using FindRoot with Brent's method. Brent's method starts with a bracketed root and

combines steps based on interpolation and bisection, guaranteeing a convergence rate at least

as good as bisection. You can control the accuracy and precision to which FindRoot tries to get

the root of the event function using method options for the “Brent“ event location method. The

default is to find the root to the same accuracy and precision as NDSolve is using for local error

control.

For methods that support continuous or dense output, the argument for the event function can

be found quite efficiently simply by using the continuous output formula. However, for methods

that do not support continuous output, the solution needs to be computed by taking a step of

the underlying method, which can be relatively expensive. An alternate way of getting a solu-

tion approximation that is not accurate to the method order, but is consistent with using

FindRoot on the InterpolatingFunction object returned from NDSolve is to use cubic Her-

mite interpolation, obtaining approximate solution values in the middle of the step by interpola-

tion based on the solution values and solution derivative values at the step ends.

94 Advanced Numerical Differential Equation Solving in Mathematica

Comparison

This example integrates the pendulum equation for a number of different event location meth-

ods and compares the time when the event is found.

This defines the event location methods to use.

In[19]:= eventmethods = 8“StepBegin“, “StepEnd“, “LinearInterpolation“, Automatic<;

This integrates the system and prints out the method used and the value of the independent
variable when the integration is terminated.

In[20]:= Map@
NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0<,

y, 8t, 0, ¶<, Method Ø 8“EventLocator“,
“Event“ Ø y‘@tD,
“EventAction“ ß Throw@Print@Ò, “: t = “, t, “ y‘@tD = “, y‘@tDD,

“StopIntegration“D, “Direction“ Ø -1, Method -> “ExplicitRungeKutta“,
“EventLocationMethod“ Ø Ò<D &,

eventmethods
D;

StepBegin: t = 15.8022 y‘@tD = 0.0508999

StepEnd: t = 16.226 y‘@tD = -0.00994799

LinearInterpolation: t = 16.1567 y‘@tD = -0.000162503

Automatic: t = 16.1555 y‘@tD = -2.35922 µ 10-16

Examples

Falling Body

This system models a body falling under the force of gravity encountering air resistance (see

[M04]).

The event action stores the time when the falling body hits the ground and stops the integration.

In[21]:= sol = y@tD ê. First@NDSolve@8y‘‘@tD ã -1 + y‘@tD^2, y@0D ã 1, y‘@0D ã 0<,
y, 8t, 0, Infinity<, Method Ø 8“EventLocator“, “Event“ ß y@tD,

“EventAction“ ß Throw@tend = t, “StopIntegration“D<DD
Out[21]= InterpolatingFunction@880., 1.65745<<, <>D@tD

Advanced Numerical Differential Equation Solving in Mathematica 95

This plots the solution and highlights the initial and final points (green and red) by encircling
them.

In[22]:= plt = Plot@sol, 8t, 0, tend<, Frame Ø True,
Axes Ø False, PlotStyle Ø Blue, DisplayFunction Ø IdentityD;

grp = Graphics@
88Green, Circle@80, 1<, 0.025D<, 8Red, Circle@8tend, sol ê. t Ø tend<, 0.025D<<D;

Show@plt, grp, DisplayFunction Ø $DisplayFunctionD

Out[24]=

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

Period of the Van der Pol Oscillator

The Van der Pol oscillator is an example of an extremely stiff system of ODEs. The event locator

method can call any method for actually doing the integration of the ODE system. The default

method, Automatic, automatically switches to a method appropriate for stiff systems when

necessary, so that stiffness does not present a problem.

This integrates the Van der Pol system for a particular value of the parameter m = 1000 up to the
point where the variable y2 reaches its initial value and direction.

In[25]:= vsol = NDSolveBK
y1‘@tD ã y2@tD y1@0D ã 2

y2‘@tD ã 1000 H1 - y1@tD^2L y2@tD - y1@tD y2@0D ã 0
O,

8y1, y2<, 8t, 3000<,
Method Ø 8“EventLocator“, “Event“ Ø y2@tD, “Direction“ Ø -1<F

Out[25]= 88y1 Ø InterpolatingFunction@880., 1614.29<<, <>D,
y2 Ø InterpolatingFunction@880., 1614.29<<, <>D<<

Note that the event at the initial condition is not considered.

By selecting the endpoint of the NDSolve solution, it is possible to write a function that returns

the period as a function of m.

96 Advanced Numerical Differential Equation Solving in Mathematica

This defines a function that returns the period as a function of m.

In[26]:= vper@m_D := ModuleB8vsol<,

vsol = FirstBy2 ê. NDSolveBK
y1‘@tD ã y2@tD y1@0D ã 2

y2‘@tD ã m H1 - y1@tD^2L y2@tD - y1@tD y2@0D ã 0
O,

8y1, y2<, 8t, Max@100, 3 mD<,
Method Ø 8“EventLocator“, “Event“ Ø y2@tD, “Direction“ Ø -1<FF;

InterpolatingFunctionDomain@vsolD@@1, -1DDF;

This uses the function to compute the period at m = 1000.

In[27]:= vper@1000D

Out[27]= 1614.29

Of course, it is easy to generalize this method to any system with periodic solutions.

Poincaré Sections

Using Poincaré sections is a useful technique for visualizing the solutions of high-dimensional

differential systems.

For an interactive graphical interface see the package EquationTrekker.

The Hénon|Heiles System

Define the Hénon|Heiles system that models stellar motion in a galaxy.

This gets the Hénon|Heiles system from the NDSolveProblems package.

In[28]:= system = GetNDSolveProblem@“HenonHeiles“D;
vars = system@“DependentVariables“D;
eqns = 8system@“System“D, system@“InitialConditions“D<

Out[29]= :9HY1L
£@TD ã Y3@TD, HY2L

£@TD ã Y4@TD, HY3L
£@TD ã -Y1@TD H1 + 2 Y2@TDL,

HY4L
£@TD ã -Y1@TD

2 + H-1 + Y2@TDL Y2@TD=, :Y1@0D ã
3

25
, Y2@0D ã

3

25
, Y3@0D ã

3

25
, Y4@0D ã

3

25
>>

The Poincaré section of interest in this case is the collection of points in the Y2 - Y4 plane when

the orbit passes through Y1 = 0.

Since the actual result of the numerical integration is not required, it is possible to avoid storing

all the data in InterpolatingFunction by specifying the output variables list (in the second

argument to NDSolve) as empty, or 8<. This means that NDSolve will produce no

InterpolatingFunction as output, avoiding storing a lot of unnecessary data. NDSolve does

give a message NDSolve::noout warning there will be no output functions, but it can safely be

turned off in this case since the data of interest is collected from the event actions.

Advanced Numerical Differential Equation Solving in Mathematica 97

The linear interpolation event location method is used because the purpose of the computation

here is to view the results in a graph with relatively low resolution. If you were doing an exam-

ple where you needed to zoom in on the graph to great detail or to find a feature, such as a

fixed point of the Poincaré map, it would be more appropriate to use the default location

method.

This turns off the message warning about no output.

In[30]:= Off@NDSolve::nooutD;

This integrates the Hénon|Heiles system using a fourth-order explicit Runge|Kutta method with
fixed step size of 0.25. The event action is to use Sow on the values of Y2 and Y4.

In[31]:= data =
Reap@
NDSolve@eqns, 8<, 8T, 10000<,

Method Ø 8“EventLocator“, “Event“ Ø Y1@TD, “EventAction“ ß
Sow@8Y2@TD, Y4@TD<D, “EventLocationMethod“ -> “LinearInterpolation“,

“Method“ Ø 8“FixedStep“, “Method“ Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 4<<<,

StartingStepSize Ø 0.25, MaxSteps Ø ¶D;
D;

This plots the Poincaré section. The collected data is found in the last part of the result of Reap
and the list of points is the first part of that.

In[32]:= psdata = data@@-1, 1DD;
ListPlot@psdata, Axes Ø False, Frame Ø True, AspectRatio Ø 1D

Out[33]=

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

Since the Hénon|Heiles system is Hamiltonian, a symplectic method gives much better qualita-

tive results for this example.

98 Advanced Numerical Differential Equation Solving in Mathematica

This integrates the Hénon|Heiles system using a fourth-order symplectic partitioned Runge|
Kutta method with fixed step size of 0.25. The event action is to use Sow on the values of Y2
and Y4.

In[34]:= sdata =
Reap@
NDSolve@eqns, 8<, 8T, 10000<,

Method Ø 8“EventLocator“, “Event“ Ø Y1@TD, “EventAction“ ß
Sow@8Y2@TD, Y4@TD<D, “EventLocationMethod“ -> “LinearInterpolation“,

“Method“ Ø 8“SymplecticPartitionedRungeKutta“, “DifferenceOrder“ Ø 4,
“PositionVariables“ Ø 8Y1@TD, Y2@TD<<<,

StartingStepSize Ø 0.25, MaxSteps Ø ¶D;
D;

This plots the Poincaré section. The collected data is found in the last part of the result of Reap
and the list of points is the first part of that.

In[35]:= psdata = sdata@@-1, 1DD;
ListPlot@psdata, Axes Ø False, Frame Ø True, AspectRatio Ø 1D

Out[36]=

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

The ABC Flow

This loads an example problem of the Arnold|Beltrami|Childress (ABC) flow that is used to
model chaos in laminar flows of the three-dimensional Euler equations.

In[37]:= system = GetNDSolveProblem@“ArnoldBeltramiChildress“D;
eqs = system@“System“D;
vars = system@“DependentVariables“D;
icvars = vars ê. T Ø 0;

This defines a splitting Y1, Y2 of the system by setting some of the right-hand side components
to zero.

In[41]:= Y1 = eqs; Y1@@2, 2DD = 0; Y1

Out[41]= :HY1L
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD, HY2L

£@TD ã 0, HY3L
£@TD ã Cos@Y1@TDD +

3

4
Sin@Y2@TDD>

In[42]:= Y2 = eqs; Y2@@81, 3<, 2DD = 0; Y2

Out[42]= 8HY1L
£@TD ã 0, HY2L

£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, HY3L
£@TD ã 0<

Advanced Numerical Differential Equation Solving in Mathematica 99

This defines the implicit midpoint method.

In[43]:= ImplicitMidpoint =
8“ImplicitRungeKutta“, “Coefficients“ Ø “ImplicitRungeKuttaGaussCoefficients“,
“DifferenceOrder“ Ø 2, “ImplicitSolver“ Ø 8“FixedPoint“,

AccuracyGoal Ø 10, PrecisionGoal Ø 10, “IterationSafetyFactor“ Ø 1<<;

This constructs a second-order splitting method that retains volume and reversing symmetries.

In[44]:= ABCSplitting = 8“Splitting“,
“DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<,
“Method“ Ø 8“LocallyExact“, ImplicitMidpoint, “LocallyExact“<<;

This defines a function that gives the Poincaré section for a particular initial condition.

In[45]:= psect@ics_D :=
Module@8reapdata<,
reapdata =
Reap@
NDSolve@8eqs, Thread@icvars ã icsD<, 8<, 8T, 1000<,
Method Ø 8“EventLocator“,
“Event“ Ø Y2@TD, “EventAction“ ß Sow@8Y1@TD, Y3@TD<D,
“EventLocationMethod“ -> “LinearInterpolation“, Method Ø ABCSplitting<,

StartingStepSize Ø 1 ê 4, MaxSteps Ø ¶D
D;

reapdata@@-1, 1DD
D;

100 Advanced Numerical Differential Equation Solving in Mathematica

This finds the Poincaré sections for several different initial conditions and flattens them together
into a single list of points.

In[46]:= data =
Mod@Map@psect, 884.267682454609692, 0, 0.9952906114885919<,

81.6790790859443243, 0, 2.1257099470901704<,
82.9189523719753327, 0, 4.939152797323216<,
83.1528896559036776, 0, 4.926744120488727<,
80.9829282640373566, 0, 1.7074633238173198<,
80.4090394012299985, 0, 4.170087631574883<,
86.090600411133905, 0, 2.3736566160602277<,
86.261716134007686, 0, 1.4987884558838156<,
81.005126683795467, 0, 1.3745418575363608<,
81.5880780704325377, 0, 1.3039536044289253<,
83.622408133554125, 0, 2.289597511313432<,
80.030948690635763183, 0, 4.306922133429981<,
85.906038850342371, 0, 5.000045498132029<<D,

2 pD;
ListPlot@data, ImageSize Ø MediumD

Out[47]=

1 2 3 4 5 6

1

2

3

4

5

Bouncing Ball

This example is a generalization of an example in [SGT03]. It models a ball bouncing down a

ramp with a given profile. The example is good for demonstrating how you can use multiple

invocations of NDSolve with event location to model some behavior.

This defines a function that computes the solution from one bounce to the next. The solution is
computed until the next time the path intersects the ramp.

In[48]:= OneBounce@k_, ramp_D@8t0_, x0_, xp0_, y0_, yp0_<D :=
Module@8sol, t1, x1, xp1, y1, yp1, gramp, gp<,
sol = First@NDSolve@

8x‘‘@tD ã 0, x‘@t0D ã xp0, x@t0D ã x0,
y‘‘@tD ã -9.8 , y‘@t0D ã yp0, y@t0D ã y0<,

8x, y<,
8t, t0, ¶<, Method Ø 8“EventLocator“, “Event“ ß y@tD - ramp@x@tDD<,
MaxStepSize Ø 0.01DD;

t1 = InterpolatingFunctionDomain@x ê. solD@@1, -1DD;
8x1, xp1, y1, yp1< =
Reflection@k, rampD@8x@t1D, x‘@t1D, y@t1D, y‘@t1D< ê. solD;

Sow@8x@tD ê. sol, t0 § t § t1<, “X“D;
Sow@8 y@tD ê. sol, t0 § t § t1<, “Y“D;
Sow@8x1, y1<, “Bounces“D;
8t1, x1, xp1, y1, yp1<D

Advanced Numerical Differential Equation Solving in Mathematica 101

This defines the function for the bounce when the ball hits the ramp. The formula is based on
reflection about the normal to the ramp assuming only the fraction k of energy is left after a
bounce.

In[49]:= Reflection@k_, ramp_D@8x_, xp_, y_, yp_<D := Module@8gramp, gp, xpnew, ypnew<,
gramp = -ramp‘@xD;
If@Not@NumberQ@grampDD,
Print@“Could not compute derivative “D;
Throw@$FailedDD;

gramp = 8-ramp‘@xD, 1<;
If@ gramp.8xp, yp< ã 0,
Print@“No reflection“D;
Throw@$FailedDD;

gp = 81, -1< Reverse@grampD;
8xpnew, ypnew< = Hk ê Hgramp.grampLL Hgp gp.8xp, yp< - gramp gramp.8xp, yp<L;
8x, xpnew, y, ypnew<D

This defines the function that runs the bouncing ball simulation for a given reflection ratio,
ramp, and starting position.

In[50]:= BouncingBall@k_, ramp_, 8x0_, y0_<D :=
Module@8data, end, bounces, xmin, xmax, ymin, ymax<,
If@y0 < ramp@x0D,
Print@“Start above the ramp“D;
Return@$FailedDD;

data = Reap@
Catch@Sow@8x0, y0<, “Bounces“D;
NestWhile@OneBounce@k, rampD, 80, x0, 0, y0, 0<,
Function@1 - Ò1@@1DD ê Ò2@@1DD > 0.01D, 2, 25DD, _, RuleD;

end = data@@1, 1DD;
data = Last@dataD;
bounces = H“Bounces“ ê. dataL;
xmax = Max@bounces@@All, 1DDD;
xmin = Min@bounces@@All, 1DDD;
ymax = Max@bounces@@All, 2DDD;
ymin = Min@bounces@@All, 2DDD;
Show@8Plot@ramp@xD, 8x, xmin, xmax<, PlotRange Ø 88xmin, xmax<, 8ymin, ymax<<,

Epilog Ø 8PointSize@.025D, Map@Point, bouncesD<,
AspectRatio Ø Hymax - yminL ê Hxmax - xminLD,

ParametricPlot@Evaluate@8Piecewise@“X“ ê. dataD, Piecewise@“Y“ ê. dataD<D,
8t, 0, end<, PlotStyle Ø RGBColor@1, 0, 0DD<DD

This is the example that is done in [SGT03].

In[51]:= ramp@x_D := If@x < 1, 1 - x, 0D;
BouncingBall@.7, ramp, 80, 1.25<D

Out[52]=

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

102 Advanced Numerical Differential Equation Solving in Mathematica

The ramp is now defined to be a quarter circle.

In[53]:= circle@x_D := If@x < 1, Sqrt@1 - x^2D, 0D;
BouncingBall@.7, circle, 8.1, 1.25<D

Out[54]=

1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

This adds a slight waviness to the ramp.

In[55]:= wavyramp@x_D := If@x < 1, 1 - x + .05 Cos@11 Pi xD , 0D;
BouncingBall@.75, wavyramp, 80, 1.25<D

Out[56]=

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

Event Direction

Ordinary Differential Equation

This example illustrates the solution of the restricted three-body problem, a standard nonstiff

test system of four equations. The example traces the path of a spaceship traveling around the

moon and returning to the earth (see p. 246 of [SG75]). The ability to specify multiple events

and the direction of the zero crossing is important.

Advanced Numerical Differential Equation Solving in Mathematica 103

The initial conditions have been chosen to make the orbit periodic. The value of m corresponds
to a spaceship traveling around the moon and the earth.

In[57]:= m =
1

82.45
;

m* = 1 - m;

r1 = Hy1@tD + mL2 + y2@tD2 ;

r2 = Hy1@tD - m*L2 + y2@tD2 ;

eqns = :8y1£@tD ã y3@tD, y1@0D ã 1.2<, 8y2£@tD ã y4@tD, y2@0D ã 0<,

:y3£@tD ã 2 y4@tD + y1@tD -
m* Hy1@tD + mL

r1
3

-
m Hy1@tD - m*L

r2
3

, y3@0D ã 0>,

:y4£@tD ã -2 y3@tD + y2@tD -
m* y2@tD

r1
3

-
m y2@tD

r2
3

,

y4@0D ã -1.04935750983031990726`20.020923474937767>>;

The event function is the derivative of the distance from the initial conditions. A local maximum
or minimum occurs when the value crosses zero.

In[62]:= ddist = 2 Hy3@tD Hy1@tD - 1.2L + y4@tD y2@tDL;

There are two events, which for this example are the same. The first event (with Direction 1)
corresponds to the point where the distance from the initial point is a local minimum, so that
the spaceship returns to its original position. The event action is to store the time of the event
in the variable tfinal and to stop the integration. The second event corresponds to a local
maximum. The event action is to store the time that the spaceship is farthest from the starting
position in the variable tfar.

In[63]:= sol = First@NDSolve@eqns, 8y1, y2, y3, y4<, 8t, ¶<,
Method Ø 8“EventLocator“,

“Event“ -> 8ddist, ddist<,
“Direction“ Ø 81, -1<,
“EventAction“ ß 8Throw@tfinal = t, “StopIntegration“D, tfar = t<,
Method Ø “ExplicitRungeKutta“<DD

Out[63]= 8y1 Ø InterpolatingFunction@880., 6.19217<<, <>D, y2 Ø InterpolatingFunction@880., 6.19217<<, <>D,
y3 Ø InterpolatingFunction@880., 6.19217<<, <>D, y4 Ø InterpolatingFunction@880., 6.19217<<, <>D<

The first two solution components are coordinates of the body of infinitesimal mass, so plotting

one against the other gives the orbit of the body.

This displays one half-orbit when the spaceship is at the furthest point from the initial position.

In[64]:= ParametricPlot@8y1@tD, y2@tD< ê. sol, 8t, 0, tfar<D

Out[64]=

-1.0 -0.5 0.5 1.0

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

104 Advanced Numerical Differential Equation Solving in Mathematica

This displays one complete orbit when the spaceship returns to the initial position.

In[65]:= ParametricPlot@8y1@tD, y2@tD< ê. sol, 8t, 0, tfinal<D

Out[65]=
-1.0 -0.5 0.5 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

Delay Differential Equation

The following system models an infectious disease (see [HNW93], [ST00] and [ST01]).

In[66]:= system = 8y1‘@tD ã -y1@tD y2@t - 1D + y2@t - 10D,
y1@t ê; t § 0D ã 5, y2‘@tD ã y1@tD y2@t - 1D - y2@tD,
y2@t ê; t § 0D ã 1 ê 10, y3‘@tD ã y2@tD - y2@t - 10D, y3@t ê; t § 0D ã 1<;

vars = 8y1@tD, y2@tD, y3@tD<;

Collect the data for a local maximum of each component as the integration proceeds. A sepa-
rate tag for Sow and Reap is used to distinguish the components.

In[68]:= data =
Reap@
sol = First@NDSolve@system, vars, 8t, 0, 40<,

Method Ø 8“EventLocator“,
“Event“ ß 8y1‘@tD, y2‘@tD, y3‘@tD<,
“EventAction“ ß
8Sow@8t, y1@tD<, 1D, Sow@8t, y2@tD<, 2D, Sow@8t, y3@tD<, 3D<,

“Direction“ Ø 8-1, -1, -1<<DD,
81, 2, 3<

D;

Display the local maxima together with the solution components.

In[69]:= colors = 88Red<, 8Blue<, 8Green<<;
plots = Plot@Evaluate@vars ê. solD, 8t, 0, 40<, PlotStyle Ø colorsD;
max = ListPlot@Part@data, -1, All, 1D, PlotStyle Ø colorsD;
Show@plots, maxD

Out[72]=

10 20 30 40

1

2

3

4

5

6

Advanced Numerical Differential Equation Solving in Mathematica 105

Discontinuous Equations and Switching Functions

In many applications the function in a differential system may not be analytic or continuous

everywhere.

A common discontinuous problem that arises in practice involves a switching function g:

fI Ht, yL if g Ht, yL > 0
fII Ht, yL if g Ht, yL < 0

In order to illustrate the difficulty in crossing a discontinuity, consider the following example

[GØ84] (see also [HNW93]):

t2 + 2 y2 if Jt + 1
20
N
2
+ Jy + 3

20
N
2
§ 1

2 t ^2 + 3 y@tD^2 - 2 if Jt + 1
20
N
2
+ Jy + 3

20
N
2
> 1

Here is the input for the entire system. The switching function is assigned to the symbol event,
and the function defining the system depends on the sign of the switching function.

In[73]:= t0 = 0;

ics0 =
3

10
;

event = t +
1

20

2

+ y@tD +
3

20

2

- 1;

system = 9y‘@tD ã IfAevent <= 0, t2 + 2 y@tD2, 2 t2 + 3 y@tD2 - 2E, y@t0D ã ics0=;

The symbol odemethod is used to indicate the numerical method that should be used for the
integration. For comparison, you might want to define a different method, such as
“ExplicitRungeKutta“, and rerun the computations in this section to see how other meth-
ods behave.

In[77]:= odemethod = Automatic;

This solves the system on the interval [0, 1] and collects data for the mesh points of the integra-
tion using Reap and Sow.

In[78]:= data = Reap@
sol = y@tD ê. First@NDSolve@system, y, 8t, t0, 1<,

Method Ø odemethod, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD
D@@2, 1DD;

sol
Out[79]= InterpolatingFunction@880., 1.<<, <>D@tD

106 Advanced Numerical Differential Equation Solving in Mathematica

y£ =

y£ =

Here is a plot of the solution.

In[80]:= dirsol = Plot@sol, 8t, t0, 1<D

Out[80]=

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

Despite the fact that a solution has been obtained, it is not clear whether it has been obtained

efficiently.

The following example shows that the crossing of the discontinuity presents difficulties for the

numerical solver.

This defines a function that displays the mesh points of the integration together with the num-
ber of integration steps that are taken.

In[81]:= StepPlot@data_, opts___?OptionQD :=
Module@8sdata<,
sdata = Transpose@8data, Range@Length@dataDD<D;
ListPlot@sdata, opts, Axes Ø False, Frame Ø True, PlotRange Ø AllD

D;

As the integration passes the discontinuity (near 0.6 in value), the integration method runs into
difficulty, and a large number of small steps are taken~a number of rejected steps can also
sometimes be observed.

In[82]:= StepPlot@dataD

Out[82]=

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

One of the most efficient methods of crossing a discontinuity is to break the integration by

restarting at the point of discontinuity.

The following example shows how to use the “EventLocator“ method to accomplish this.

Advanced Numerical Differential Equation Solving in Mathematica 107

This numerically integrates the first part of the system up to the point of discontinuity. The
switching function is given as the event. The direction of the event is restricted to a change
from negative to positive. When the event is found, the solution and the time of the event are
stored by the event action.

In[83]:= system1 = 9y‘@tD ã t2 + 2 y@tD2, y@t0D ã ics0=;

data1 = Reap@sol1 = y@tD ê. First@NDSolve@system1, y, 8t, t0, 1<,
Method Ø 8“EventLocator“, “Event“ -> event, Direction Ø 1,

EventAction ß Throw@t1 = t; ics1 = y@tD; , “StopIntegration“D,
Method Ø odemethod<, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD

D@@2, 1DD;
sol1

Out[85]= InterpolatingFunction@880., 0.623418<<, <>D@tD

Using the discontinuity found by the “EventLocator“ method as a new initial condition, the

integration can now be continued.

This defines a system and initial condition, solves the system numerically, and collects the data
used for the mesh points.

In[86]:= system2 = 9y‘@tD ã 2 t2 + 3 y@tD2 - 2, y@t1D ã ics1=;

data2 = Reap@
sol2 = y@tD ê. First@NDSolve@system2, y, 8t, t1, 1<,

Method Ø odemethod, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD
D@@2, 1DD;

sol2
Out[88]= InterpolatingFunction@880.623418, 1.<<, <>D@tD

A plot of the two solutions is very similar to that obtained by solving the entire system at once.

In[89]:= evsol = Plot@If@t § t1, sol1, sol2D, 8t, 0, 1<D

Out[89]=

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

108 Advanced Numerical Differential Equation Solving in Mathematica

Examining the mesh points, it is clear that far fewer steps were taken by the method and that
the problematic behavior encountered near the discontinuity has been eliminated.

In[90]:= StepPlot@Join@data1, data2DD

Out[90]=

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

The value of the discontinuity is given as 0.6234 in [HNW93], which coincides with the value

found by the “EventLocator“ method.

In this example it is possible to analytically solve the system and use a numerical method to

check the value.

The solution of the system up to the discontinuity can be represented in terms of Bessel and
gamma functions.

In[91]:= dsol = FullSimplify@First@DSolve@system1, y@tD, tDDD

Out[91]= :y@tD Ø t 3 BesselJB-
3

4
,

t2

2
F GammaB

1

4
F + 10 µ 21ë4 BesselJB

3

4
,

t2

2
F GammaB

3

4
F ì

2 -3 BesselJB
1

4
,

t2

2
F GammaB

1

4
F + 10 µ 21ë4 BesselJB-

1

4
,

t2

2
F GammaB

3

4
F >

Substituting in the solution into the switching function, a local minimization confirms the value
of the discontinuity.

In[92]:= FindRoot@event ê. dsol, 8t, 3 ê 5<D

Out[92]= 8t Ø 0.623418<

Avoiding Wraparound in PDEs

Many evolution equations model behavior on a spatial domain that is infinite or sufficiently large

to make it impractical to discretize the entire domain without using specialized discretization

methods. In practice, it is often the case that it is possible to use a smaller computational

domain for as long as the solution of interest remains localized.

Advanced Numerical Differential Equation Solving in Mathematica 109

In situations where the boundaries of the computational domain are imposed by practical consid-

erations rather than the actual model being studied, it is possible to pick boundary conditions

appropriately. Using a pseudospectral method with periodic boundary conditions can make it

possible to increase the extent of the computational domain because of the superb resolution of

the periodic pseudospectral approximation. The drawback of periodic boundary conditions is

that signals that propagate past the boundary persist on the other side of the domain, affecting

the solution through wraparound. It is possible to use an absorbing layer near the boundary to

minimize these effects, but it is not always possible to completely eliminate them.

The sine-Gordon equation turns up in differential geometry and relativistic field theory. This

example integrates the equation, starting with a localized initial condition that spreads out. The

periodic pseudospectral method is used for the integration. Since no absorbing layer has been

instituted near the boundaries, it is most appropriate to stop the integration once wraparound

becomes significant. This condition is easily detected with event location using the

“EventLocator“ method.

The integration is stopped when the size of the solution at the periodic wraparound point
crosses a threshold of 0.01, beyond which the form of the wave would be affected by periodicity.

In[93]:= TimingAsgsol = FirstANDSolveA9∂t,tu@t, xD ã ∂x,xu@t, xD - Sin@u@t, xDD,

u@0, xD ã ‰-Hx-5L2 + ‰-Hx+5L2ë2, uH1,0L@0, xD ã 0, u@t, -50D ã u@t, 50D=,
u, 8t, 0, 1000<, 8x, -50, 50<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“,
“DifferenceOrder“ -> “Pseudospectral“<,

Method Ø 8“EventLocator“, “Event“ ß Abs@u@t, -50DD - 0.01,
“EventLocationMethod“ -> “StepBegin“<<EEE

Out[93]= 80.301953, 8u Ø InterpolatingFunction@880., 45.5002<, 8-50., 50.<<, <>D<<

This extracts the ending time from the InterpolatingFunction object and makes a plot of
the computed solution. You can see that the integration has been stopped just as the first
waves begin to reach the boundary.

In[94]:= end = InterpolatingFunctionDomain@u ê. sgsolD@@1, -1DD;
DensityPlot@u@t, xD ê. sgsol, 8x, -50, 50<,
8t, 0, end<, Mesh Ø False, PlotPoints Ø 100D

Out[95]=

110 Advanced Numerical Differential Equation Solving in Mathematica

–40 –20 0 20 40
0

10

20

30

40

The “DiscretizedMonitorVariables“ option affects the way the event is interpreted for
PDEs; with the setting True, u@t, xD is replaced by a vector of discretized values. This is much
more efficient because it avoids explicitly constructing the InterpolatingFunction to
evaluate the event.

In[96]:= TimingAsgsol = FirstANDSolveA9∂t,tu@t, xD ã ∂x,xu@t, xD - Sin@u@t, xDD,

u@0, xD ã ‰-Hx-5L2 + ‰-Hx+5L2ë2, uH1,0L@0, xD ã 0, u@t, -50D ã u@t, 50D=,
u, 8t, 0, 1000<, 8x, -50, 50<, Method Ø 8“MethodOfLines“,

“DiscretizedMonitorVariables“ Ø True,
“SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<,

Method Ø 8“EventLocator“, “Event“ ß Abs@First@u@t, xDDD - 0.01,
“EventLocationMethod“ -> “StepBegin“<<EEE

Out[96]= 80.172973, 8u Ø InterpolatingFunction@880., 45.5002<, 8-50., 50.<<, <>D<<

Performance Comparison

The following example constructs a table making a comparison for two different integration

methods.

This defines a function that returns the time it takes to compute a solution of a mildly damped
pendulum equation up to the point at which the bob has momentarily been at rest 1000 times.

In[97]:= EventLocatorTiming@locmethod_, odemethod_D := BlockB8Second = 1, y, t, p = 0<,

FirstB

TimingBNDSolveB:y‘‘@tD +
1

1000
y‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0>,

y, 8t, ¶<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD,
“EventAction“ ß If@p++ ¥ 1000, Throw@end = t, “StopIntegration“DD,
“EventLocationMethod“ Ø locmethod, “Method“ Ø odemethod<,

MaxSteps Ø ¶FFF

F;

This uses the function to make a table comparing the different location methods for two differ-
ent ODE integration methods.

In[98]:= elmethods = 8“StepBegin“, “StepEnd“, “LinearInterpolation“,
8“Brent“, “SolutionApproximation“ -> “CubicHermiteInterpolation“<, Automatic<;

odemethods = 8Automatic, “ExplicitRungeKutta“<;
TableForm@Outer@EventLocatorTiming, elmethods, odemethods, 1D,
TableHeadings Ø 8elmethods, odemethods<D

Out[100]//TableForm=

Automatic ExplicitRungeKutta
StepBegin 0.234964 0.204969
StepEnd 0.218967 0.205968
LinearInterpolation 0.221967 0.212967
8Brent, SolutionApproximation Ø CubicHermiteInterpolation< 0.310953 0.314952
Automatic 0.352947 0.354946

Advanced Numerical Differential Equation Solving in Mathematica 111

While simple step begin/end and linear interpolation location are essentially the same low cost,

the better location methods are more expensive. The default location method is particularly

expensive for the explicit Runge|Kutta method because it does not yet support a continuous

output formula~it therefore needs to repeatedly invoke the method with different step sizes

during the local minimization.

It is worth noting that, often, a significant part of the extra time for computing events arises

from the need to evaluate the event functions at each time step to check for the possibility of a

sign change.

In[101]:= TableFormB

:MapB

BlockB8Second = 1, y, t, p = 0<,

FirstBTimingBNDSolveB:y‘‘@tD +
1

1000
y‘@tD + Sin@y@tDD ã 0,

y@0D ã 3, y‘@0D ã 0>, y, 8t, end<, Method Ø Ò, MaxSteps Ø ¶FFFF &,
odemethods

F>,

TableHeadings Ø 8None, odemethods<F

Out[101]//TableForm=
Automatic ExplicitRungeKutta
0.105984 0.141979

An optimization is performed for event functions involving only the independent variable. Such

events are detected automatically at initialization time. For example, this has the advantage

that interpolation of the solution of the dependent variables is not carried out at each step of

the local optimization search~it is deferred until the value of the independent variable has been

found.

Limitations

One limitation of the event locator method is that since the event function is only checked for

sign changes over a step interval, if the event function has multiple roots in a step interval, all

or some of the events may be missed. This typically only happens when the solution to the ODE

varies much more slowly than the event function. When you suspect that this may have

occurred, the simplest solution is to decrease the maximum step size the method can take by

using the MaxStepSize option to NDSolve. More sophisticated approaches can be taken, but the

best approach depends on what is being computed. An example follows that demonstrates the

problem and shows two approaches for fixing it.

112 Advanced Numerical Differential Equation Solving in Mathematica

This should compute the number of positive integers less than ‰5 (there are 148). However,
most are missed because the method is taking large time steps because the solution x@tD is so
simple.

In[102]:= BlockA8n = 0<, NDSolveA9y‘@tD ã y@tD, y@-1D ã ‰-1=, y, 8t, 5<,
Method Ø 8“EventLocator“, “Event“ Ø Sin@p y@tDD, “EventAction“ ß n++<E; nE

Out[102]= 18

This restricts the maximum step size so that all the events are found.

In[103]:= BlockA8n = 0<, NDSolveA9y‘@tD ã y@tD, y@-1D ã ‰-1=, y, 8t, 5<,
Method Ø 8“EventLocator“, “Event“ Ø Sin@p y@tDD, “EventAction“ ß n++<,
MaxStepSize Ø 0.001E; nE

Out[103]= 148

It is quite apparent from the nature of the example problem that if the endpoint is increased, it

is likely that a smaller maximum step size may be required. Taking very small steps every-

where is quite inefficient. It is possible to introduce an adaptive time step restriction by setting

up a variable that varies on the same time scale as the event function.

This introduces an additional function to integrate that is the event function. With this
modification and allowing the method to take as many steps as needed, it is possible to find the
correct value up to t = 10 in a reasonable amount of time.

In[104]:= BlockA8n = 0<, NDSolveA
9y‘@tD ã y@tD, y@-1D ã ‰-1, z‘@tD ã D@Sin@p y@tDD, tD, z@-1D ã SinAp ‰-1E=,
8y, z<, 8t, 10<, Method Ø 8“EventLocator“, “Event“ Ø z@tD, “EventAction“ ß n++<,
MaxSteps Ø ¶E; nE

Out[104]= 22026

Advanced Numerical Differential Equation Solving in Mathematica 113

Option Summary

"EventLocator" Options

option name default value

“Direction“ All the direction of zero crossing to allow for
the event; 1 means from negative to
positive, -1 means from positive to nega-
tive, and All includes both directions

“Event“ None an expression that defines the event; an
event occurs at points where substituting
the numerical values of the problem
variables makes the expression equal to
zero

“EventAction“ Throw[Null,
“StopIntegratio
n“]

what to do when an event occurs: problem
variables are substituted with their numeri-
cal values at the event; in general, you
need to use RuleDelayed (ß) to prevent
the option from being evaluated except
with numerical values

“EventLocationMethod“ Automatic the method to use for refining the location
of a given event

“Method“ Automatic the method to use for integrating the
system of ODEs

“EventLocator“ method options.

"EventLocationMethod" Options

“Brent“ use FindRoot with Method -> “Brent“ to locate the
event; this is the default with the setting Automatic

“LinearInterpolation“ locate the event time using linear interpolation; cubic
Hermite interpolation is then used to find the solution at
the event time

“StepBegin“ the event is given by the solution at the beginning of the
step

“StepEnd“ the event is given by the solution at the end of the step

Settings for the “EventLocationMethod“ option.

114 Advanced Numerical Differential Equation Solving in Mathematica

Ö

"Brent" Options

option name default value

“MaxIterations“ 100 the maximum number of iterations to use
for locating an event within a step of the
method

“AccuracyGoal“ Automatic accuracy goal setting passed to FindRoot;
if Automatic, the value passed to
FindRoot is based on the local error
setting for NDSolve

“PrecisionGoal“ Automatic precision goal setting passed to
FindRoot; if Automatic, the value
passed to FindRoot is based on the local
error setting for NDSolve

“SolutionApproximation“ Automatic how to approximate the solution for evaluat-
ing the event function during the refine-
ment process; can be Automatic or
“CubicHermiteInterpolation“

Options for event location method “Brent“.

"Extrapolation" Method for NDSolve

Introduction

Extrapolation methods are a class of arbitrary-order methods with automatic order and step-

size control. The error estimate comes from computing a solution over an interval using the

same method with a varying number of steps and using extrapolation on the polynomial that

fits through the computed solutions, giving a composite higher-order method [BS64]. At the

same time, the polynomials give a means of error estimation.

Typically, for low precision, the extrapolation methods have not been competitive with Runge|

Kutta-type methods. For high precision, however, the arbitrary order means that they can be

arbitrarily faster than fixed-order methods for very precise tolerances.

The order and step-size control are based on the codes odex.f and seulex.f described in

[HNW93] and [HW96].

This loads packages that contain some utility functions for plotting step sequences and some
predefined problems.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Advanced Numerical Differential Equation Solving in Mathematica 115

"Extrapolation"

The method “DoubleStep“ performs a single application of Richardson's extrapolation for any

one-step integration method and is described within "DoubleStep Method for NDSolve".

“Extrapolation“ generalizes the idea of Richardson's extrapolation to a sequence of refine-

ments.

Consider a differential system

(1)y£HtL = f Ht, yHtLL, yHt0L = y0.

Let H > 0 be a basic step size; choose a monotonically increasing sequence of positive integers

n1 < n2 < n3 < < nk

and define the corresponding step sizes

h1 > h2 > h3 > > hk

by

hi =
H

ni
, i = 1, 2, …, k.

Choose a numerical method of order p and compute the solution of the initial value problem by

carrying out ni steps with step size hi to obtain:

Ti,1 = yhi Hto + HL, i = 1, 2, …, k.

Extrapolation is performed using the Aitken|Neville algorithm by building up a table of values:

(2)Ti, j = Ti, j-1 +
Ti, j-1-Ti-1, j-1

ni
ni- j+1

w
-1

, i = 2, …, k, j = 2, …, i,

where w is either 1 or 2 depending on whether the base method is symmetric under

extrapolation.

116 Advanced Numerical Differential Equation Solving in Mathematica

A dependency graph of the values in (2) illustrates the relationship:

T11
å

T21 ô T22
å å

T31 ô T32 ô T33
å å å

T41 ô T42 ô T43 ô T44
       

Considering k = 2, n1 = 1, n2 = 2 is equivalent to Richardson's extrapolation.

For non-stiff problems the order of Tk,k in (2) is p + Hk - 1L w. For stiff problems the analysis is

more complicated and involves the investigation of perturbation terms that arise in singular

perturbation problems [HNW93, HW96].

Extrapolation Sequences

Any extrapolation sequence can be specified in the implementation. Some common choices are

as follows.

This is the Romberg sequence.

In[5]:= NDSolve`RombergSequenceFunction@1, 10D

Out[5]= 81, 2, 4, 8, 16, 32, 64, 128, 256, 512<

This is the Bulirsch sequence.

In[6]:= NDSolve`BulirschSequenceFunction@1, 10D

Out[6]= 81, 2, 3, 4, 6, 8, 12, 16, 24, 32<

This is the harmonic sequence.

In[7]:= NDSolve`HarmonicSequenceFunction@1, 10D

Out[7]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

A sequence that satisfies Ini ëni- j+1M
w
¥ 2 has the effect of minimizing the roundoff errors for an

order-p base integration method.

Advanced Numerical Differential Equation Solving in Mathematica 117

For a base method of order two, the first entries in the sequence are given by the following.

In[8]:= NDSolve`OptimalRoundingSequenceFunction@1, 10, 2D

Out[8]= 81, 2, 3, 5, 8, 12, 17, 25, 36, 51<

Here is an example of adding a function to define the harmonic sequence where the method
order is an optional pattern.

In[9]:= Default@myseqfun, 3D = 1;

myseqfun@n1_, n2_, p_.D := Range@n1, n2D

The sequence with lowest cost is the Harmonic sequence, but this is not without problems since

rounding errors are not damped.

Rounding Error Accumulation

For high-order extrapolation an important consideration is the accumulation of rounding errors

in the Aitken|Neville algorithm (2).

As an example consider Exercise 5 of Section II.9 in [HNW93].

Suppose that the entries T11, T21, T31, … are disturbed with rounding errors e, -e, e, … and com-

pute the propagation of these errors into the extrapolation table.

Due to the linearity of the extrapolation process (2), suppose that the Ti, j are equal to zero and

take e = 1.

This shows the evolution of the Aitken|Neville algorithm (2) on the initial data using the har-

monic sequence and a symmetric order-two base integration method, w = p = 2.

1.
-1. -1.66667
1. 2.6 3.13333
-1. -3.57143 -5.62857 -6.2127
1. 4.55556 9.12698 11.9376 12.6938
-1. -5.54545 -13.6263 -21.2107 -25.3542 -26.4413
1. 6.53846 19.1259 35.0057 47.6544 54.144 55.8229
-1. -7.53333 -25.6256 -54.3125 -84.0852 -105.643 -116.295 -119.027

Hence, for an order-sixteen method approximately two decimal digits are lost due to rounding

error accumulation.

118 Advanced Numerical Differential Equation Solving in Mathematica

This model is somewhat crude because, as you will see later, it is more likely that rounding

errors are made in Ti+1,1 than in Ti,1 for i ¥ 1.

Rounding Error Reduction

It seems worthwhile to look for approaches that can reduce the effect of rounding errors in high-

order extrapolation.

Selecting a different step sequence to diminish rounding errors is one approach, although the

drawback is that the number of integration steps needed to form the Ti,1 in the first column of

the extrapolation table requires more work.

Some codes, such as STEP, take active measures to reduce the effect of rounding errors for

stringent tolerances [SG75].

An alternative strategy, which does not appear to have received a great deal of attention in the

context of extrapolation, is to modify the base-integration method in order to reduce the magni-

tude of the rounding errors in floating-point operations. This approach, based on ideas that

dated back to [G51], and used to good effect for the two-body problem in [F96b] (for back-

ground see also [K65], [M65a], [M65b], [V79]), is explained next.

Base Methods

The following methods are the most common choices for base integrators in extrapolation.

† “ExplicitEuler“

† “ExplicitMidpoint“

† “ExplicitModifiedMidpoint“ (Gragg smoothing step (1))

† “LinearlyImplicitEuler“

† “LinearlyImplicitMidpoint“ (Bader|Deuflhard formulation without smoothing step (1))

† “LinearlyImplicitModifiedMidpoint“ (Bader|Deuflhard formulation with smoothing step
(1))

For efficiency, these have been built into NDSolve and can be called via the Method option as

individual methods.

The implementation of these methods has a special interpretation for multiple substeps within

“DoubleStep“ and “Extrapolation“.

Advanced Numerical Differential Equation Solving in Mathematica 119

The NDSolve. framework for one step methods uses a formulation that returns the increment or

update to the solution. This is advantageous for geometric numerical integration where numeri-

cal errors are not damped over long time integrations. It also allows the application of efficient

correction strategies such as compensated summation. This formulation is also useful in the

context of extrapolation.

The methods are now described together with the increment reformulation that is used to

reduce rounding error accumulation.

Multiple Euler Steps

Given t0, y0 and H, consider a succession of n = nk integration steps with step size h = H ên carried

out using Euler's method:

(1)

y1 = y0 + h f Ht0, y0L
y2 = y1 + h f Ht1, y1L
y3 = y2 + h f Ht2, y2L
ª ª ª

yn = yn-1 + h f Htn-1, yn-1L

where ti = t0 + i h.

Correspondence with Explicit Runge|Kutta Methods

It is well-known that, for certain base integration schemes, the entries Ti, j in the extrapolation

table produced from (2) correspond to explicit Runge|Kutta methods (see Exercise 1, Section

II.9 in [HNW93]).

For example, (1) is equivalent to an n-stage explicit Runge|Kutta method:

(1)
ki = f It0 + ci H, y0 + H ⁄j=1

n ai, j k jM, i = 1, …, n,

yn = y0 + H ⁄i=1
n bi ki

where the coefficients are represented by the Butcher table:

(2)

0
1 ên 1 ên
ª ª 

Hn - 1L ên 1 ên  1 ên
1 ên  1 ên 1 ên

120 Advanced Numerical Differential Equation Solving in Mathematica

Reformulation

Let D yn = yn+1 - yn. Then the integration (1) can be rewritten to reflect the correspondence with

an explicit Runge|Kutta method (1, 2) as:

(1)

D y0 = h f Ht0, y0L
D y1 = h f Ht1, y0 + D y0L
D y2 = h f Ht2, y0 + HD y0 + D y1LL
ª ª ª

D yn-1 = h f Itn-1, y0 + ID y0 + D y1 + + Dyn-2MM

where terms in the right-hand side of (1) are now considered as departures from the same

value y0.

The D yi in (1) correspond to the h ki in (1).

Let SD yn =⁄i=0
n-1D yi; then the required result can be recovered as:

(2)yn = y0 + SD yn

Mathematically the formulations (1) and (1, 2) are equivalent. For n > 1, however, the computa-

tions in (1) have the advantage of accumulating a sum of smaller OHhL quantities, or increments,

which reduces rounding error accumulation in finite-precision floating-point arithmetic.

Multiple Explicit Midpoint Steps

Expansions in even powers of h are extremely important for an efficient implementation of

Richardson's extrapolation and an elegant proof is given in [S70].

Consider a succession of integration steps n = 2 nk with step size h = H ên carried out using one

Euler step followed by multiple explicit midpoint steps:

(1)

y1 = y0 + h f Ht0, y0L
y2 = y0 + 2 h f Ht1, y1L
y3 = y1 + 2 h f Ht2, y2L
ª ª ª

yn = yn-2 + 2 h f Htn-1, yn-1L

Advanced Numerical Differential Equation Solving in Mathematica 121

If (1) is computed with 2 nk - 1 midpoint steps, then the method has a symmetric error expan-

sion ([G65], [S70]).

Reformulation

Reformulation of (1) can be accomplished in terms of increments as:

(1)

D y0 = h f Ht0, y0L
D y1 = 2 h f Ht1, y0 + D y0L - D y0
D y2 = 2 h f Ht2, y0 + HD y0 + D y1LL - D y1
ª ª ª

D yn-1 = 2 h f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL - D yn-2

Gragg's Smoothing Step

The smoothing step of Gragg has its historical origins in the weak stability of the explicit mid-

point rule:

(1)S yhHnL = 1 ê4 Hyn-1 + 2 yn + yn+1L

In order to make use of (1), the formulation (1) is computed with 2 nk steps. This has the advan-

tage of increasing the stability domain and evaluating the function at the end of the basic step

[HNW93].

Notice that because of the construction, a sum of increments is available at the end of the

algorithm together with two consecutive increments. This leads to the following formulation:

(2)S D yhHnL = S yhHnL - y0 = SD yn + 1 ê4 HD yn - D yn-1L.

Moreover (2) has an advantage over (1) in finite-precision arithmetic because the values yi,

which typically have a larger magnitude than the increments D yi, do not contribute to the

computation.

Gragg's smoothing step is not of great importance if the method is followed by extrapolation,

and Shampine proposes an alternative smoothing procedure that is slightly more efficient

[SB83].

The method “ExplicitMidpoint“ uses 2 nk - 1 steps and “ExplicitModifiedMidpoint“ uses

2 nk steps followed by the smoothing step (2).

122 Advanced Numerical Differential Equation Solving in Mathematica

Stability Regions

The following figures illustrate the effect of the smoothing step on the linear stability domain

(carried out using the package FunctionApproximations.m).

Linear stability regions for Ti,i, i = 1, …, 5 for the explicit midpoint rule (left) and the explicit
midpoint rule with smoothing (right).

In[11]:=

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Out[11]=

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Since the precise stability boundary can be complicated to compute for an arbitrary base

method, a simpler approximation is used. For an extrapolation method of order p, the intersec-

tion with the negative real axis is considered to be the point at which:

‚
i=1

p zi

i !
= 1

The stabillity region is approximated as a disk with this radius and origin (0,0) for the negative

half-plane.

Advanced Numerical Differential Equation Solving in Mathematica 123

Implicit Differential Equations

A generalization of the differential system (1) arises in many situations such as the spatial

discretization of parabolic partial differential equations:

(1)M y£HtL = f Ht, yHtLL, yHt0L = y0.

where M is a constant matrix that is often referred to as the mass matrix.

Base methods in extrapolation that involve the solution of linear systems of equations can

easily be modified to solve problems of the form (1).

Multiple Linearly Implicit Euler Steps

Increments arise naturally in the description of many semi-implicit and implicit methods. Con-

sider a succession of integration steps carried out using the linearly implicit Euler method for

the system (1) with n = nk and h = H ên.

(1)

HM - h JLD y0 = h f Ht0, y0L
y1 = y0 + D y0

HM - h JLD y1 = h f Ht1, y1L
y2 = y1 + D y1

HM - h JLD y2 = h f Ht2, y2L
y3 = y2 + D y2
ª ª ª

HM - h JLD yn-1 = h f Htn-1, yn-1L

Here M denotes the mass matrix and J denotes the Jacobian of f :

J =
∂ f

∂y
Ht0, y0L.

The solution of the equations for the increments in (1) is accomplished using a single LU decom-

position of the matrix M - h J followed by the solution of triangular linear systems for each right-

hand side.

The desired result is obtained from (1) as:

yn = yn-1 + D yn-1.

124 Advanced Numerical Differential Equation Solving in Mathematica

Reformulation

Reformulation in terms of increments as departures from y0 can be accomplished as follows:

(1)

HM - h JLD y0 = h f Ht0, y0L
HM - h JLD y1 = h f Ht1, y0 + D y0L
HM - h JLD y2 = h f Ht2, y0 + HD y0 + D y1LL

ª ª ª

HM - h JLD yn-1 = h f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL

The result for yn using (1) is obtained from (2).

Notice that (1) and (1) are equivalent when J = 0, M = I.

Multiple Linearly Implicit Midpoint Steps

Consider one step of the linearly implicit Euler method followed by multiple linearly implicit

midpoint steps with n = 2 nk and h = H ên, using the formulation of Bader and Deuflhard [BD83]:

(1)

HM - h JLD y0 = h f Ht0, y0L
y1 = y0 + D y0

HM - h JL HD y1 - D y0L = 2 Hh f Ht1, y1L - D y0L
y2 = y1 + D y1

HM - h JL HD y2 - D y1L = 2 Hh f Ht2, y2L - D y1L
y3 = y2 + D y2
ª ª ª

HM - h JL HD yn-1 - D yn-2L = 2 Hh f Htn-1, yn-1L - D yn-2L

If (1) is computed for 2 nk - 1 linearly implicit midpoint steps, then the method has a symmetric

error expansion [BD83].

Reformulation

Reformulation of (1) in terms of increments can be accomplished as follows:

(1)

HM - h JLD y0 = h f Ht0, y0L
HM - h JL HD y1 - D y0L = 2 Hh f Ht1, y0 + D y0L - D y0L
HM - h JL HD y2 - D y1L = 2 Hh f Ht2, y0 + HD y0 + D y1LL - D y1L

ª ª ª

HM - h JL HD yn-1 - D yn-2L = 2 Hh f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL - D yn-2L

Advanced Numerical Differential Equation Solving in Mathematica 125

Smoothing Step

An appropriate smoothing step for the linearly implicit midpoint rule is [BD83]:

(1)S yh HnL =
1
2
Hyn-1 + yn+1L.

Bader's smoothing step (1) rewritten in terms of increments becomes:

(2)S D yh HnL = S yh HnL - y0 = SD yn +
1
2
HD yn - D yn-1L.

The required quantities are obtained when (1) is run with 2 nk steps.

The smoothing step for the linearly implicit midpoint rule has a different role from Gragg's

smoothing for the explicit midpoint rule (see [BD83] and [SB83]). Since there is no weakly

stable term to eliminate, the aim is to improve the asymptotic stability.

The method “LinearlyImplicitMidpoint“ uses 2 nk - 1 steps and “LinearlyImplicitÖ

ModifiedMidpoint “ uses 2 nk steps followed by the smoothing step (2).

Polynomial Extrapolation in Terms of Increments

You have seen how to modify Ti,1, the entries in the first column of the extrapolation table, in

terms of increments.

However, for certain base integration methods, each of the Ti, j corresponds to an explicit Runge|

Kutta method.

Therefore, it appears that the correspondence has not yet been fully exploited and further

refinement is possible.

Since the Aitken|Neville algorithm (2) involves linear differences, the entire extrapolation pro-

cess can be carried out using increments.

This leads to the following modification of the Aitken|Neville algorithm:

(1)D Ti, j = D Ti, j-1 +
D Ti, j-1-D Ti-1, j-1

ni
ni- j+1

p
-1

, i = 2, …, k, j = 2, …, i.

126 Advanced Numerical Differential Equation Solving in Mathematica

The quantities D Ti, j = Ti, j - y0 in (1) can be computed iteratively, starting from the initial quanti-

ties Ti,1 that are obtained from the modified base integration schemes without adding the contri-

bution from y0.

The final desired value Tk,k can be recovered as D Tk,k + y0.

The advantage is that the extrapolation table is built up using smaller quantities, and so the

effect of rounding errors from subtractive cancellation is reduced.

Implementation Issues

There are a number of important implementation issues that should be considered, some of

which are mentioned here.

Jacobian Reuse

The Jacobian is evaluated only once for all entries Ti,1 at each time step by storing it together

with the associated time that it is evaluated. This also has the advantage that the Jacobian

does not need to be recomputed for rejected steps.

Dense Linear Algebra

For dense systems, the LAPACK routines xyyTRF can be used for the LU decomposition and the

routines xyyTRS for solving the resulting triangular systems [LAPACK99].

Adaptive Order and Work Estimation

In order to adaptively change the order of the extrapolation throughout the integration, it is

important to have a measure of the amount of work required by the base scheme and extrapola-

tion sequence.

A measure of the relative cost of function evaluations is advantageous.

The dimension of the system, preferably with a weighting according to structure, needs to be

incorporated for linearly implicit schemes in order to take account of the expense of solving

each linear system.

Advanced Numerical Differential Equation Solving in Mathematica 127

Stability Check

Extrapolation methods use a large basic step size that can give rise to some difficulties.

"Neither code can solve the van der Pol equation problem in a straightforward way because of

overflow..." [S87].

Two forms of stability check are used for the linearly implicit base schemes (for further discus-

sion, see [HW96]).

One check is performed during the extrapolation process. Let err j = ±T j, j-1 - T j, jµ.

If err j ¥ err j-1 for some j ¥ 3, then recompute the step with H = H ê2.

In order to interrupt computations in the computation of T1,1, Deuflhard suggests checking if the

Newton iteration applied to a fully implicit scheme would converge.

For the implicit Euler method this leads to consideration of:

(1)
HM - h JLD0 = h f Ht0, y0L
HM - h JLD1 = h f Ht0, y0 + D0L - D0

Notice that (1) differs from (1) only in the second equation. It requires finding the solution for a

different right-hand side but no extra function evaluation.

For the implicit midpoint method, D0 = D y0 and D1 = 1 ê2 HD y1 - D y0L, which simply requires a few

basic arithmetic operations.

If °D1¥ ¥ °D0¥ then the implicit iteration diverges, so recompute the step with H = H ê2.

Increments are a more accurate formulation for the implementation of both forms of stability

check.

128 Advanced Numerical Differential Equation Solving in Mathematica

Examples

Work-Error Comparison

For comparing different extrapolation schemes, consider an example from [HW96].

In[12]:= t0 = p ê 6;
h0 = 1 ê 10;

y0 = :2 í 3 >;
eqs = 8y‘@tD ã H-y@tD Sin@tD + 2 Tan@tDL y@tD, y@t0D ã y0<;
exactsol = y@tD ê. First@DSolve@eqs, y@tD, tDD ê. t Ø t0 + h0;
idata = 88eqs, y@tD, t<, h0, exactsol<;

The exact solution is given by yHtL = 1 êcosHtL.

Increment Formulation

This example involves an eighth-order extrapolation of “ExplicitEuler“ with the harmonic

sequence. Approximately two digits of accuracy are gained by using the increment-based formu-

lation throughout the extrapolation process.

† The results for the standard formulation (1) are depicted in green.

† The results for the increment formulation (1) followed by standard extrapolation (2) are
depicted in blue.

† The results for the increment formulation (1) with extrapolation carried out on the incre-
ments using (1) are depicted in red.

1.µ10-14 1.µ10-11 1.µ10-8 0.00001 0.01
1

1.5
2
3

5
7
10
15
20
30
1.µ10-14 1.µ10-11 1.µ10-8 0.00001 0.01

1
1.5
2
3

5
7
10
15
20
30

Plot of work vs error on a log-log scale

Approximately two decimal digits of accuracy are gained by using the increment-based formula-

tion throughout the extrapolation process.

Advanced Numerical Differential Equation Solving in Mathematica 129

This compares the relative error in the integration data that forms the initial column of the

extrapolation table for the previous example.

Reference values were computed using software arithmetic with 32 decimal digits and con-

verted to the nearest IEEE double-precision floating-point numbers, where an ULP signifies a

Unit in the Last Place or Unit in the Last Position.

T11 T21 T31 T41 T51 T61 T71 T81
Standard formulation 0 -1 ULP 0 1 ULP 0 1.5 ULPs 0 1 ULP

Increment formulation
applied to the base method

0 0 0 0 1 ULP 0 0 1 ULP

Notice that the rounding-error model that was used to motivate the study of rounding-error

growth is limited because in practice, errors in Ti,1 can exceed 1 ULP.

The increment formulation used throughout the extrapolation process produces rounding errors

in Ti,1 that are smaller than 1 ULP.

Method Comparison

This compares the work required for extrapolation based on “ExplicitEuler“ (red), the

“ExplicitMidpoint“ (blue), and “ExplicitModifiedMidpoint“ (green).

All computations are carried out using software arithmetic with 32 decimal digits.

1

2

5

10

20

50

1

2

5

10

20

50

1.× 1023 1.× 1019 1.× 1015 1.× 1011 1.× 107 0.001

1.× 1023 1.× 1019 1.× 1015 1.× 1011 1.× 107 0.001

Plot of work vs error on a log-log scale

130 Advanced Numerical Differential Equation Solving in Mathematica

Order Selection

Select a problem to solve.

In[32]:= system = GetNDSolveProblem@“Pleiades“D;

Define a monitor function to store the order and the time of evaluation.

In[33]:= OrderMonitor@t_, method_NDSolve`ExtrapolationD :=
Sow@8t, method@“DifferenceOrder“D<D;

Use the monitor function to collect data as the integration proceeds.

In[34]:= data =
Reap@
NDSolve@system,
Method Ø 8“Extrapolation“, Method -> “ExplicitModifiedMidpoint“<,
“MethodMonitor“ :> OrderMonitor@T, NDSolve`SelfDD

D@@
-1,
1DD;

Display how the order varies during the integration.

In[35]:= ListLinePlot@dataD

Out[35]=

0.5 1.0 1.5 2.0 2.5

9

10

11

12

13

14

Method Comparison

Select the problem to solve.

In[67]:= system = GetNDSolveProblem@“Arenstorf“D;

A reference solution is computed with a method that switches between a pair of
“Extrapolation“ methods, depending on whether the problem appears to be stiff.

In[68]:= sol = NDSolve@system, Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32D;

refsol = First@FinalSolutions@system, solDD;

Advanced Numerical Differential Equation Solving in Mathematica 131

Define a list of methods to compare.

In[70]:= methods = 88“ExplicitRungeKutta“, “StiffnessTest“ Ø False<, 8“Extrapolation“,
Method -> “ExplicitModifiedMidpoint“, “StiffnessTest“ Ø False<<;

The data comparing accuracy and work is computed using CompareMethods for a range of
tolerances.

In[71]:= data = Table@Map@Rest, CompareMethods@system, refsol,
methods, AccuracyGoal Ø tol, PrecisionGoal Ø tolDD, 8tol, 4, 14<D;

The work-error comparison data for the methods is displayed in the following logarithmic plot,
where the global error is displayed on the vertical axis and the number of function evaluations
on the horizontal axis. Eventually the higher order of the extrapolation methods means that
they are more efficient. Note also that the increment formulation continues to give good results
even at very stringent tolerances.

In[73]:= ListLogLogPlot@Transpose@dataD, Joined Ø True,
Axes Ø False, Frame Ø True, PlotStyle Ø 88Green<, 8Red<<D

Out[72]=

1000 50002000 30001500 7000
10-12

10-10

10-8

10-6

10-4

0.01

Stiff Systems

One of the simplest nonlinear equations describing a circuit is van der Pol's equation.

In[18]:= system = GetNDSolveProblem@“VanderPol“D;
vars = system@“DependentVariables“D;
time = system@“TimeData“D;

This solves the equations using “Extrapolation“ with the “ExplicitModifiedMidpoint“
base method with the default double-harmonic sequence 2, 4, 6, …. The stiffness detection
device terminates the integration and an alternative method is suggested.

In[21]:= vdpsol = Flatten@vars ê. NDSolve@system,
Method Ø 8“Extrapolation“, Method Ø “ExplicitModifiedMidpoint“<DD

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[21]= 8InterpolatingFunction@880., 0.0229201<<, <>D@TD,

InterpolatingFunction@880., 0.0229201<<, <>D@TD<

132 Advanced Numerical Differential Equation Solving in Mathematica

This solves the equations using “Extrapolation“ with the “LinearlyImplicitEuler“
base method with the default sub-harmonic sequence 2, 3, 4, ….

In[22]:= vdpsol = Flatten@vars ê.
NDSolve@system, Method Ø 8“Extrapolation“, Method Ø “LinearlyImplicitEuler“<DD

Out[22]= 8InterpolatingFunction@880., 2.5<<, <>D@TD, InterpolatingFunction@880., 2.5<<, <>D@TD<

Notice that the Jacobian matrix is computed automatically (user-specifiable by using either

numerical differences or symbolic derivatives) and appropriate linear algebra routines are

selected and invoked at run time.

This plots the first solution component over time.

In[23]:= Plot@Evaluate@First@vdpsolDD, Evaluate@timeD, Frame Ø True, Axes Ø FalseD

Out[23]=

0.0 0.5 1.0 1.5 2.0 2.5
-2

-1

0

1

2

This plots the step sizes taken in computing the solution.

In[24]:= StepDataPlot@vdpsolD

Out[24]=

0.0 0.5 1.0 1.5 2.0 2.5
0.002

0.005

0.010

0.020

0.050

High-Precision Comparison

Select the Lorenz equations.

In[25]:= system = GetNDSolveProblem@“Lorenz“D;

Advanced Numerical Differential Equation Solving in Mathematica 133

This invokes a bigfloat, or software floating-point number, embedded explicit Runge|Kutta
method of order 9(8) [V78].

In[26]:= Timing@
erksol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 9<,

WorkingPrecision Ø 32D;
D

Out[26]= 83.3105, Null<

This invokes the “Adams“ method using a bigfloat version of LSODA. The maximum order of
these methods is twelve.

In[27]:= Timing@
adamssol = NDSolve@system, Method Ø “Adams“, WorkingPrecision Ø 32D;

D

Out[27]= 81.81172, Null<

This invokes the “Extrapolation“ method with “ExplicitModifiedMidpoint“ as the
base integration scheme.

In[28]:= Timing@
extrapsol = NDSolve@system,

Method Ø 8“Extrapolation“, Method -> “ExplicitModifiedMidpoint“<,
WorkingPrecision Ø 32D;

D

Out[28]= 80.622906, Null<

Here are the step sizes taken by the various methods. The high order used in extrapolation
means that much larger step sizes can be taken.

In[29]:= methods = 8“ExplicitRungeKutta“, “Adams“, “Extrapolation“<;
solutions = 8erksol, adamssol, extrapsol<;
MapThread@StepDataPlot@Ò2, PlotLabel Ø Ò1D &, 8methods , solutions<D

Out[31]=

Mass Matrix - fem2ex

Consider the partial differential equation:

(1)
∂u
∂t

= expHtL ∂2u
∂x2

, uH0, xL = sinHxL , uHt, 0L = uHt, pL = 0.

134 Advanced Numerical Differential Equation Solving in Mathematica

0.006
0.005
0.004
0.003
0.002
0.001
0.000

0 5 10 15 0 5 10

ExplicitRungeKutta Adams Extrapolation

15 0 5 10 15

0.004

0.003

0.002

0.001

0.000 0.00
0.02
0.04
0.06
0.08
0.10
0.12

{ }, ,

Given an integer n define h = p ê Hn + 1L and approximate at xk = k h with k = 0, …, n + 1 using the

Galerkin discretization:

(2)uHt, xkL º ⁄k=1
n ckHtL fkHxL

where fkHxL is a piecewise linear function that is 1 at xk and 0 at x j ≠ xk.

The discretization (2) applied to (1) gives rise to a system of ordinary differential equations

with constant mass matrix formulation as in (1). The ODE system is the fem2ex problem in

[SR97] and is also found in the IMSL library.

The problem is set up to use sparse arrays for matrices which is not necessary for the small
dimension being considered, but will scale well if the number of discretization points is
increased. A vector-valued variable is used for the initial conditions. The system will be solved
over the interval @0, pD.

In[35]:= n = 9;
h = N@p ê Hn + 1LD;
amat = SparseArray@

88i_, i_< Ø 2 h ê 3, 8i_, j_< ê; Abs@i - jD ã 1 Ø h ê 6<, 8n + 2, n + 2<, 0.D;
rmat = SparseArray@88i_, i_< Ø -2 ê h, 8i_, j_< ê; Abs@i - jD ã 1 Ø 1 ê h<,

8n + 2, n + 2<, 0.D;
vars = 8y@tD<;
eqs = 8amat.y‘@tD ã rmat.HExp@tD y@tDL<;
ics = 8y@0D ã Table@Sin@k hD, 8k, 0, n + 1<D<;
system = 8eqs, ics<;
time = 8t, 0, p<;

Solve the ODE system using using “Extrapolation“ with the “LinearlyImplicitEuler“
base method. The “SolveDelayed“ option is used to specify that the system is in mass
matrix form.

In[44]:= sollim = NDSolve@system, vars, time,
Method -> 8“Extrapolation“, Method Ø “LinearlyImplicitEuler“<,
“SolveDelayed“ Ø “MassMatrix“, MaxStepFraction Ø 1D;

This plot shows the relatively large step sizes that are taken by the method.

In[45]:= StepDataPlot@sollimD

Out[45]=

0.5 1.0 1.5 2.0 2.5 3.0

0.50

0.20

0.30

The default method for this type of problem is “IDA“ which is a general purpose differential
algebraic equation solver [HT99]. Being much more general in scope, this method somewhat
overkill for this example but serves for comparison purposes.

In[46]:= soldae = NDSolve@system, vars, time, MaxStepFraction Ø 1D;

Advanced Numerical Differential Equation Solving in Mathematica 135

The following plot clearly shows that a much larger number of steps are taken by the DAE
solver.

In[47]:= StepDataPlot@soldaeD

Out[47]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1µ 10-5

5µ 10-5
1µ 10-4

5µ 10-4
0.001

0.005
0.010

Define a function that can be used to plot the solutions on a grid.

In[48]:= PlotSolutionsOn3DGrid@8ndsol_<, opts___?OptionQD :=
Module@8if, m, n, sols, tvals, xvals<,
tvals = First@Head@ndsolD@“Coordinates“DD;
sols = Transpose@ndsol ê. t Ø tvalsD;
m = Length@tvalsD;
n = Length@solsD;
xvals = Range@0, n - 1D;
data =
Table@88Part@tvals, jD, Part@xvals, iD<, Part@sols, i, jD<, 8j, m<, 8i, n<D;

data = Apply@Join, dataD;
if = Interpolation@dataD;
Plot3D@Evaluate@if@t, xDD, Evaluate@8t, First@tvalsD, Last@tvalsD<D, Evaluate@

8x, First@xvalsD, Last@xvalsD<D, PlotRange Ø All, Boxed Ø False, optsD
D;

Display the solutions on a grid.

In[49]:= femsol = PlotSolutionsOn3DGrid@vars ê. First@sollimD,
Ticks Ø 8Table@i p, 8i, 0, 1, 1 ê 2<D, Range@0, n + 1D, Automatic<,
AxesLabel Ø 8“time “, “index“,

RawBoxes@RotationBox@“solution\n“, BoxRotation Ø Pi ê 2DD<,
Mesh Ø 819, 9<, MaxRecursion Ø 0, PlotStyle Ø NoneD

Out[49]=

0

p

2

p

time

0
1
2
3
4
5
6
7
8
9
10

index

0.0

0.5

1.0

so
lu
tio
n

136 Advanced Numerical Differential Equation Solving in Mathematica

Fine-Tuning

"StepSizeSafetyFactors"

As with most methods, there is a balance between taking too small a step and trying to take

too big a step that will be frequently rejected. The option “StepSizeSafetyFactors“ -> 8s1, s2<

constrains the choice of step size as follows. The step size chosen by the method for order p

satisfies:

(1)hn+1 = hn s1 Ks2
Tol

±errnµ
O

1

p+1 .

This includes both an order-dependent factor and an order-independent factor.

"StepSizeRatioBounds"

The option “StepSizeRatioBounds“ -> 8srmin, srmax< specifies bounds on the next step size to

take such that:

srmin §
hn+1

hn
§ srmax.

"OrderSafetyFactors"

An important aspect in “Extrapolation“ is the choice of order.

Each extrapolation step k has an associated work estimate k.

The work estimate for explicit base methods is based on the number of function evaluations

and the step sequence used.

The work estimate for linearly implicit base methods also includes an estimate of the cost of

evaluating the Jacobian, the cost of an LU decomposition, and the cost of backsolving the linear

equations.

Estimates for the work per unit step are formed from the work estimate k and the expected

new step size to take for a method of order k (computed from (1)): k =k ëhn+1
k .

Comparing consecutive estimates, k allows a decision about when a different order method

will be more efficient.

Advanced Numerical Differential Equation Solving in Mathematica 137

The option “OrderSafetyFactors“ -> 8 f1, f2< specifies safety factors to be included in the

comparison of estimates k.

An order decrease is made when k-1 < f1k.

An order increase is made when k+1 < f2k.

There are some additional restrictions, such as when the maximal order increase per step is one

(two for symmetric methods), and when an increase in order is prevented immediately after a

rejected step.

For a nonstiff base method the default values are 84 ê 5, 9 ê 10< whereas for a stiff method

they are 87 ê 10, 9 ê 10<.

Option Summary

Options of the method “Extrapolation“.

The default setting of Automatic for the option “ExtrapolationSequence“ selects a sequence

based on the stiffness and symmetry of the base method.

The default setting of Automatic for the option “MaxDifferenceOrder“ bounds the maximum

order by two times the decimal working precision.

138 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

"ExtrapolationSequence" Automatic specify the sequence to use in extrapolation

"MaxDifferenceOrder" Automatic specify the maximum order to use

Method "ExplicitModifÖ
iedMidpoiÖ
nt"

specify the base integration method to use

"MinDifferenceOrder" Automatic specify the minimum order to use

"OrderSafetyFactors" Automatic specify the safety factors to use in the
estimates for adaptive order selection

"StartingDifferenceOrder" Automatic specify the initial order to use

"StepSizeRatioBounds" Automatic specify the bounds on a relative change in
the new step size hn+1 from the current
step size hn as low § hn+1 êhn § high

"StepSizeSafetyFactors" Automatic specify the safety factors to incorporate
into the error estimate used for adaptive
step sizes

"StiffnessTest" Automatic specify whether to use the stiffness detec -
tion capability

The default setting of Automatic for the option “MinDifferenceOrder“ selects the minimum

number of two extrapolations starting from the order of the base method. This also depends on

whether the base method is symmetric.

The default setting of Automatic for the option “OrderSafetyFactors“ uses the values

87 ê 10, 9 ê 10< for a stiff base method and 84 ê 5, 9 ê 10< for a nonstiff base method.

The default setting of Automatic for the option “StartingDifferenceOrder“ depends on the

setting of “MinDifferenceOrder“ pmin. It is set to pmin + 1 or pmin + 2 depending on whether the

base method is symmetric.

The default setting of Automatic for the option “StepSizeRatioBounds“ uses the values

81 ê 10, 4< for a stiff base method and 81 ê 50, 4< for a nonstiff base method.

The default setting of Automatic for the option “StepSizeSafetyFactors“ uses the values

89 ê 10, 4 ê 5< for a stiff base method and 89 ê 10, 13 ê 20< for a nonstiff base method.

The default setting of Automatic for the option “StiffnessTest“ indicates that the stiffness

test is activated if a nonstiff base method is used.

option name default value

“StabilityCheck“ True specify whether to carry out a stability
check on consecutive implicit solutions (see
e.g. (1))

Option of the method “LinearlyImplicitEuler“, “LinearlyImplicitMidpoint“, and
“LinearlyImplicitModifiedMidpoint“.

"FixedStep" Method for NDSolve

Introduction

It is often useful to carry out a numerical integration using fixed step sizes.

For example, certain methods such as “DoubleStep“ and “Extrapolation“ carry out a

sequence of fixed-step integrations before combining the solutions to obtain a more accurate

method with an error estimate that allows adaptive step sizes to be taken.

The method “FixedStep“ allows any one-step integration method to be invoked using fixed

step sizes.

Advanced Numerical Differential Equation Solving in Mathematica 139

This loads a package with some example problems and a package with some utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Examples

Define an example problem.

In[5]:= system = GetNDSolveProblem@“BrusselatorODE“D

Out[5]= NDSolveProblemB:9HY1L
£@TD ã 1 - 4 Y1@TD + Y1@TD

2 Y2@TD, HY2L
£@TD ã 3 Y1@TD - Y1@TD

2 Y2@TD=,

:Y1@0D ã
3

2
, Y2@0D ã 3>, 8Y1@TD, Y2@TD<, 8T, 0, 20<, 8<, 8<, 8<>F

This integrates a differential system using the method “ExplicitEuler“ with a fixed step size
of 1 ê10.

In[6]:= NDSolve@8y‘‘@tD ã -y@tD, y@0D ã 1, y‘@0D ã 0<, y, 8t, 0, 1<,
StartingStepSize Ø 1 ê 10, Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<D

Out[6]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

Actually the “ExplicitEuler“ method has no adaptive step size control. Therefore, the
integration is already carried out using fixed step sizes so the specification of “FixedStep“ is
unnecessary.

In[7]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “ExplicitEuler“D;
StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[8]=

0 5 10 15 20

0.10.10.10.10.10.10.1

140 Advanced Numerical Differential Equation Solving in Mathematica

Here are the step sizes taken by the method “ExplicitRungeKutta“ for this problem.

In[9]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “ExplicitRungeKutta“D;
StepDataPlot@solD

Out[10]=

0 5 10 15 20

0.10

0.20

0.30

0.15

This specifies that fixed step sizes should be used for the method “ExplicitRungeKutta“.

In[11]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10,
Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;

StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[12]=

0 5 10 15 20

0.10.10.10.10.10.10.1

The option MaxStepFraction provides an absolute bound on the step size that depends on the

integration interval.

Since the default value of MaxStepFraction is 1 ê10, the step size in this example is bounded
by one-tenth of the integration interval, which leads to using a constant step size of 1 ê20.

In[13]:= time = 8T, 0, 1 ê 2<;
sol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,

Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;
StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[15]=

0.1 0.2 0.3 0.4 0.5

0.050

0.030

0.070

Advanced Numerical Differential Equation Solving in Mathematica 141

By setting the value of MaxStepFraction to a different value, the dependence of the step size
on the integration interval can be relaxed or removed entirely.

In[16]:= sol = NDSolve@system, time, StartingStepSize Ø 1 ê 10, MaxStepFraction Ø Infinity,
Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;

StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[17]=

0.1 0.2 0.3 0.4 0.5

0.10

0.15

Option Summary

option name default value

Method None specify the method to use with fixed step
sizes

Option of the method “FixedStep“.

"OrthogonalProjection" Method for NDSolve

Introduction

Consider the matrix differential equation:

y£HtL = f Ht, yHtLL, t > 0,

where the initial value y0 = yH0L œmµp is given. Assume that y0T y0 = I, that the solution has the

property of preserving orthonormality, yHtLT yHtL = I, and that it has full rank for all t ¥ 0.

From a numerical perspective, a key issue is how to numerically integrate an orthogonal matrix

differential system in such a way that the numerical solution remains orthogonal. There are

several strategies that are possible. One approach, suggested in [DRV94], is to use an implicit

Runge|Kutta method (such as the Gauss scheme). Some alternative strategies are described in

[DV99] and [DL01].

The approach taken here is to use any reasonable numerical integration method and then

postprocess using a projective procedure at the end of each integration step.

142 Advanced Numerical Differential Equation Solving in Mathematica

An important feature of this implementation is that the basic integration method can be any

built-in numerical method, or even a user-defined procedure. In the following examples an

explicit Runge|Kutta method is used for the basic time stepping. However, if greater accuracy is

required an extrapolation method could easily be used, for example, by simply setting the

appropriate Method option.

Projection Step

At the end of each numerical integration step you need to transform the approximate solution

matrix of the differential system to obtain an orthogonal matrix. This can be carried out in

several ways (see for example [DRV94] and [H97]):

† Newton or Schulz iteration

† QR decomposition

† Singular value decomposition

The Newton and Schulz methods are quadratically convergent, and the number of iterations

may vary depending on the error tolerances used in the numerical integration. One or two

iterations are usually sufficient for convergence to the orthonormal polar factor (see the follow-

ing) in IEEE double-precision arithmetic.

QR decomposition is cheaper than singular value decomposition (roughly by a factor of two),

but it does not give the closest possible projection.

Definition (Thin singular value decomposition [GVL96]): Given a matrix A œmµp with m ¥ p

there exist two matrices U œmµp and V œpµp such that UT A V is the diagonal matrix of singular

values of A, S = diagIs1, …, spM œpµp, where s1 ¥ ¥ sp ¥ 0. U has orthonormal columns and V is

orthogonal.

Definition (Polar decomposition): Given a matrix A and its singular value decomposition U S VT,

the polar decomposition of A is given by the product of two matrices Z and P where Z = U VT and

P = V S VT. Z has orthonormal columns and P is symmetric positive semidefinite.

The orthonormal polar factor Z of A is the matrix that solves:

min
Zœmµp

9 »» A - Z »» : ZT Z = I=

for the 2 and Frobenius norms [H96].

Advanced Numerical Differential Equation Solving in Mathematica 143

Schulz Iteration

The approach chosen is based on the Schulz iteration, which works directly for m ¥ p. In

contrast, Newton iteration for m > p needs to be preceded by QR decomposition.

Comparison with direct computation based on the singular value decomposition is also given.

The Schulz iteration is given by:

(1)Yi+1 = Yi + YiII - YiT YiMë2, Y0 = A.

The Schulz iteration has an arithmetic operation count per iteration of 2 m2 p + 2 m p2 floating-

point operations, but is rich in matrix multiplication [H97].

In a practical implementation, GEMM-based level 3 BLAS of LAPACK [LAPACK99] can be used in

conjunction with architecture-specific optimizations via the Automatically Tuned Linear Algebra

Software [ATLAS00]. Such considerations mean that the arithmetic operation count of the

Schulz iteration is not necessarily an accurate reflection of the observed computational cost. A

useful bound on the departure from orthonormality of A is in [H89]: »» AT A - I »»F. Comparison

with the Schulz iteration gives the stopping criterion »» AT A - I »»F < t for some tolerance t.

Standard Formulation

Assume that an initial value yn for the current solution of the ODE is given, together with a

solution yn+1 = yn + D yn from a one-step numerical integration method. Assume that an absolute

tolerance t for controlling the Schulz iteration is also prescribed.

The following algorithm can be used for implementation.

Step 1. Set Y0 = yn+1 and i = 0.

Step 2. Compute E = I - YiT Yi.

Step 3. Compute Yi+1 = Yi + Yi E ê2.

Step 4. If »» E »»F § t or i = imax, then return Yi+1.

Step 5. Set i = i + 1 and go to step 2.

144 Advanced Numerical Differential Equation Solving in Mathematica

Increment Formulation

NDSolve uses compensated summation to reduce the effect of rounding errors made by

repeatedly adding the contribution of small quantities D yn to yn at each integration step [H96].

Therefore, the increment D yn is returned by the base integrator.

An appropriate orthogonal correction D Yi for the projective iteration can be determined using

the following algorithm.

Step 1. Set D Y0 = 0 and i = 0.

Step 2. Set Yi = D Yi + yn+1.

Step 3. Compute E = I - YiT Yi.

Step 4. Compute D Yi+1 = D Yi + Yi E ê2.

Step 5. If »» E »»F § t or i = imax, then return D Yi+1 + D yn.

Step 6. Set i = i + 1 and go to step 2.

This modified algorithm is used in “OrthogonalProjection“ and shows an advantage of using

an iterative process over a direct process, since it is not obvious how an orthogonal correction

can be derived for direct methods.

Examples

Orthogonal Error Measurement

A function to compute the Frobenius norm »» A »»F of a matrix A can be defined in terms of the
Norm function as follows.

In[1]:= FrobeniusNorm@a_?MatrixQD := Norm@a, FrobeniusD;

An upper bound on the departure from orthonormality of A can then be measured using this
function [H97].

In[2]:= OrthogonalError@a_?MatrixQD :=
FrobeniusNorm@Transpose@aD.a - IdentityMatrix@Last@Dimensions@aDDDD;

Advanced Numerical Differential Equation Solving in Mathematica 145

This defines the utility function for visualizing the orthogonal error during a numerical
integration.

In[4]:= H* Utility function for extracting a list of values of the
independent variable at which the integration method has sampled *L

TimeData@8v_?VectorQ, ___?VectorQ<D := TimeData@vD;

TimeData@8if : HInterpolatingFunction@__DL@_D, ___<D :=
Part@if, 0, 3, 1D;

In[6]:= H* Utility function for plotting the
orthogonal error in a numerical integration *L

OrthogonalErrorPlot@sol_D :=
ModuleA8errdata, samples, soldata<,
H* Form a list of times at which the method is invoked *L
samples = TimeData@solD;
H* Form a list of solutions at the integration times *L
soldata = Map@Hsol ê. t Ø ÒL &, samplesD;
H* Form a list of the orthogonal errors *L
errdata = Map@OrthogonalError, soldataD;
ListLinePlotATranspose@8samples, errdata<D,
Frame Ø True, PlotLabel Ø “Orthogonal error »»YTY - I»»F vs time“

E

E;

Square Systems

This example concerns the solution of a matrix differential system on the orthogonal group

O3HL (see [Z98]).

The matrix differential system is given by

Y £ = FHYL Y
= IA + II - Y YT MM Y

with

A =

0 -1 1
1 0 1
-1 -1 0

and

Y0 = I3.

The solution evolves as:

YHtL = exp@t AD.

146 Advanced Numerical Differential Equation Solving in Mathematica

The eigenvalues of YHtL are l1 = 1, l2 = expJt i 3 N, l3 = expJ-t i 3 N. Thus as t approaches

pí 3 , two of the eigenvalues of YHtL approach -1. The numerical integration is carried out on

the interval @0, 2D.
In[7]:= n = 3;

A =
0 -1 1
1 0 1
-1 -1 0

;

Y = Table@y@i, jD@tD, 8i, n<, 8j, n<D;

F = A + H IdentityMatrix@nD - Transpose@YD.YL;

In[8]:= H* Vector differential system *L

system = Thread@Flatten@D@Y, tDD ã Flatten@F.YDD;

H* Vector initial conditions *L

ics = Thread@Flatten@HY ê. t Ø 0LD ã Flatten@IdentityMatrix@Length@YDDDD;

eqs = 8system, ics<;

vars = Flatten@YD;

time = 8t, 0, 2<;

This computes the solution using an explicit Runge|Kutta method. The appropriate initial step
size and method order are selected automatically, and the step size may vary throughout the
integration interval, which is chosen in order to satisfy local relative and absolute error toler-
ances. Alternatively, the order of the method could be specified by using a Method option.

In[16]:= solerk = NDSolve@eqs, vars, time, Method Ø “ExplicitRungeKutta“D;

This computes the orthogonal error, or absolute deviation from the orthogonal manifold, as the
integration progresses. The error is of the order of the local accuracy of the numerical method.

In[17]:= solerk = Y ê. First@solerkD;

OrthogonalErrorPlot@solerkD

Out[18]=

0.0 0.5 1.0 1.5 2.0
0

2.µ 10-10

4.µ 10-10

6.µ 10-10

8.µ 10-10

1.µ 10-9

Orthogonal error »»YTY - I»»F vs time

Advanced Numerical Differential Equation Solving in Mathematica 147

This computes the solution using an orthogonal projection method with an explicit Runge|Kutta
method used for the basic integration step. The initial step size and method order are the same
as earlier, but the step size sequence in the integration may differ.

In[19]:= solop = NDSolve@eqs, vars, time, Method Ø 8“OrthogonalProjection“,
Method Ø “ExplicitRungeKutta“, Dimensions Ø Dimensions@YD<D;

Using the orthogonal projection method, the orthogonal error is reduced to approximately the
level of roundoff in IEEE double-precision arithmetic.

In[20]:= solop = Y ê. First@solopD;

OrthogonalErrorPlot@solopD

Out[21]=

0.0 0.5 1.0 1.5 2.0
5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

2.5µ 10-16

3.µ 10-16

3.5µ 10-16

4.µ 10-16

Orthogonal error »»YTY - I»»F vs time

The Schulz iteration, using the incremental formulation, generally yields smaller errors than the
direct singular value decomposition.

Rectangular Systems

In the following example it is shown how the implementation of the orthogonal projection

method also works for rectangular matrix differential systems. Formally stated, the interest is in

solving ordinary differential equations on the Stiefel manifold, the set of n×p orthogonal matri-

ces with p < n.

148 Advanced Numerical Differential Equation Solving in Mathematica

Definition The Stiefel manifold of n×p orthogonal matrices is the set Vn,pHL = 9Y œnµp YT Y = Ip=,

1 § p < n, where Ip is the p×p identity matrix.

Solutions that evolve on the Stiefel manifold find numerous applications such as eigenvalue

problems in numerical linear algebra, computation of Lyapunov exponents for dynamical sys-

tems and signal processing.

Consider an example adapted from [DL01]:

q£HtL = A qHtL, t > 0, qH0L = q0

where q0 = 1ì n @1, …, 1D
T
, A = diag@a1, …, anD œnµn, with ai = H-1Li a, i = 1, …, n and a > 0.

The exact solution is given by:

qHtL =
1

n

expHa1 tL
ª

expHan tL
.

Normalizing qHtL as:

YHtL =
qHtL

»» qHtL »»
œnµ1

it follows that YHtL satisfies the following weak skew-symmetric system on Vn,1HL:

Y £ = FHYL Y
= IIn - Y YT M A Y

Advanced Numerical Differential Equation Solving in Mathematica 149

In the following example, the system is solved on the interval @0, 5D with a = 9 ê10 and dimension
n = 2.

In[22]:= p = 1;

n = 2;

a =
9

10
;

ics =
1

n
Table@1, 8n<D;

avec = TableAH-1Li a, 8i, n<E;

A = DiagonalMatrix@avecD;

Y = Table@y@i, 1D@tD, 8i, n<, 8j, p<D;

F = HIdentityMatrix@Length@YDD - Y.Transpose@YDL.A;

system = Thread@Flatten@D@Y, tDD ã Flatten@F.YDD;

ics = Thread@Flatten@HY ê. t Ø 0LD ã icsD;

eqs = 8system, ics<;

vars = Flatten@YD;

tfinal = 5.;

time = 8t, 0, tfinal<;

This computes the exact solution which can be evaluated throughout the integration interval.

In[36]:= solexact = TransposeB:
Ò

Norm@Ò, 2D
>F & ü

Exp@avec tD

n
;

This computes the solution using an explicit Runge|Kutta method.

In[37]:= solerk = NDSolve@eqs, vars, time, Method Ø “ExplicitRungeKutta“D;

solerk = Y ê. First@solerkD;

This computes the componentwise absolute global error at the end of the integration interval.

In[39]:= Hsolexact - solerkL ê. t Ø tfinal

Out[39]= 99-2.03407µ10-11=, 92.96319µ10-13==

150 Advanced Numerical Differential Equation Solving in Mathematica

This computes the orthogonal error~a measure of the deviation from the Stiefel manifold.

In[40]:= OrthogonalErrorPlot@solerkD

Out[40]=

0 1 2 3 4 5
0

1.µ 10-10

2.µ 10-10

3.µ 10-10

4.µ 10-10

5.µ 10-10

6.µ 10-10

Orthogonal error »»YTY - I»»F vs time

This computes the solution using an orthogonal projection method with an explicit Runge|Kutta
method as the basic numerical integration scheme.

In[41]:= solop = NDSolve@eqs, vars, time, Method Ø 8“OrthogonalProjection“,
Method Ø “ExplicitRungeKutta“, Dimensions Ø Dimensions@YD<D;

solop = Y ê. First@solopD;

The componentwise absolute global error at the end of the integration interval is roughly the
same as before since the absolute and relative tolerances used in the numerical integration are
the same.

In[43]:= Hsolexact - solopL ê. t Ø tfinal

Out[43]= 99-2.03407µ10-11=, 92.55351µ10-15==

Using the orthogonal projection method, however, the deviation from the Stiefel manifold is
reduced to the level of roundoff.

In[44]:= OrthogonalErrorPlot@solopD

Out[44]=

0 1 2 3 4 5
0

5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

Orthogonal error »»YTY - I»»F vs time

Advanced Numerical Differential Equation Solving in Mathematica 151

Implementation

The implementation of the method “OrthogonalProjection“ has three basic components:

† Initialization. Set up the base method to use in the integration, determining any method
coefficients and setting up any workspaces that should be used. This is done once, before
any actual integration is carried out, and the resulting MethodData object is validated so
that it does not need to be checked at each integration step. At this stage the system
dimensions and initial conditions are checked for consistency.

† Invoke the base numerical integration method at each step.

† Perform an orthogonal projection. This performs various tests such as checking that the
basic integration proceeded correctly and that the Schulz iteration converges.

Options can be used to modify the stopping criteria for the Schulz iteration. One option pro-

vided by the code is “IterationSafetyFactor“ which allows control over the tolerance t of the

iteration. The factor is combined with a Unit in the Last Place, determined according to the

working precision used in the integration (ULP º 2.22045ä10-16 for IEEE double precision).

The Frobenius norm used for the stopping criterion can be computed efficiently using the

LAPACK LANGE functions [LAPACK99].

The option MaxIterations controls the maximum number of iterations that should be carried

out.

Option Summary

Options of the method “OrthogonalProjection“.

152 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

Dimensions 8< specify the dimensions of the matrix
differential system

"IterationSafetyFactor" 1
10

specify the safety factor to use in the
termination criterion for the Schulz itera -
tion (1)

MaxIterations Automatic specify the maximum number of iterations
to use in the Schulz iteration (1)

Method "StiffnessSwitÖ
ching"

specify the method to use for the numeri -
cal integration

"Projection" Method for NDSolve

Introduction

When a differential system has a certain structure, it is advantageous if a numerical integration

method preserves the structure. In certain situations it is useful to solve differential equations

in which solutions are constrained. Projection methods work by taking a time step with a numeri-

cal integration method and then projecting the approximate solution onto the manifold on which

the true solution evolves.

NDSolve includes a differential algebraic solver which may be appropriate and is described in

more detail within "Numerical Solution of Differential-Algebraic Equations".

Sometimes the form of the equations may not be reduced to the form required by a DAE solver.

Furthermore so-called index reduction techniques can destroy certain structural properties,

such as symplecticity, that the differential system may possess (see [HW96] and [HLW02]). An

example that illustrates this can be found in the documentation for DAEs.

In such cases it is often possible to solve a differential system and then use a projective proce-

dure to ensure that the constraints are conserved. This is the idea behind the method

“Projection“.

If the differential system is r-reversible then a symmetric projection process can be advanta-

geous (see [H00]). Symmetric projection is generally more costly than projection and has not

yet been implemented in NDSolve.

Invariants

Consider a differential equation

(1)y° = f HyL, yHt0L = y0,

where y may be a vector or a matrix.

Definition: A nonconstant function IHyL is called an invariant of (1) if I£HyL f HyL = 0 for all y.

This implies that every solution yHtL of (1) satisfies IHyHtLL = I Hy0L = Constant.

Synonymous with invariant, the terms first integral, conserved quantity, or constant of the

motion are also common.

Advanced Numerical Differential Equation Solving in Mathematica 153

Manifolds

Given an Hn - mL-dimensional submanifold of n with g : n #m :

(1) = 8y; gHyL = 0<.

Given a differential equation (1) then y0 œ implies yHtL œ for all t. This is a weaker

assumption than invariance and gHyL is called a weak invariant (see [HLW02]).

Projection Algorithm

Let y
~
n+1 denote the solution from a one-step numerical integrator. Considering a constrained

minimization problem leads to the following system (see [AP91], [HW96] and [HLW02]):

(1)

To save work gHyn+1L is approximated as gJy
~
n+1N. Substituting the first relation into the second

relation in (1) leads to the following simplified Newton scheme for l:

(2)

with l0 = 0.

The first increment Dl0 is of size OJhnp+1N so that (2) usually converges quickly.

The added expense of using a higher-order integration method can be offset by fewer Newton

iterations in the projective step.

For the termination criterion in the method “Projection“, the option “IterationSafetyÖ

Factor “ is combined with one Unit in the Last Place in the working precision used by NDSolve.

Examples

Load some utility packages.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

154 Advanced Numerical Differential Equation Solving in Mathematica

yn+1 = y
~
n+1 + g£Hyn+1L

T l

0 = gHyn+1L.

Dli = -K g£Jy
~
n+1N g£Jy

~
n+1N

T
O
-1
gKy

~
n+1 + g£Jy

~
n+1N

T
liO ,

li+1 = li + Dli

Linear Invariants

Define a stiff system modeling a chemical reaction.

In[5]:= system = GetNDSolveProblem@“Robertson“D;
vars = system@“DependentVariables“D;

This system has a linear invariant.

In[7]:= invariant = system@“Invariants“D

Out[7]= 8Y1@TD + Y2@TD + Y3@TD<

Linear invariants are generally conserved by numerical integrators (see [S86]), including the
default NDSolve method, as can be observed in a plot of the error in the invariant.

In[8]:= sol = NDSolve@systemD;

InvariantErrorPlot@invariant, vars, T, solD

Out[9]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

2.5µ 10-16

3.µ 10-16

Therefore in this example there is no need to use the method “Projection“.

Certain numerical methods preserve quadratic invariants exactly (see for example [C87]). The

implicit midpoint rule, or one-stage Gauss implicit Runge|Kutta method, is one such method.

Harmonic Oscillator

Define the harmonic oscillator.

In[10]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
vars = system@“DependentVariables“D;

Advanced Numerical Differential Equation Solving in Mathematica 155

The harmonic oscillator has the following invariant.

In[12]:= invariant = system@“Invariants“D

Out[12]= :
1

2
IY1@TD

2 + Y2@TD
2M>

Solve the system using the method “ExplicitRungeKutta“. The error in the invariant grows
roughly linearly, which is typical behavior for a dissipative method applied to a Hamiltonian
system.

In[13]:= erksol = NDSolve@system, Method Ø “ExplicitRungeKutta“D;

InvariantErrorPlot@invariant, vars, T, erksolD

Out[14]=

0 2 4 6 8 10
0

5.µ 10-10

1.µ 10-9

1.5µ 10-9

2.µ 10-9

This also solves the system using the method “ExplicitRungeKutta“ but it projects the
solution at the end of each step. A plot of the error in the invariant shows that it is conserved
up to roundoff.

In[15]:= projerksol = NDSolve@system, Method Ø
8“Projection“, Method Ø “ExplicitRungeKutta“, “Invariants“ Ø invariant<D;

InvariantErrorPlot@invariant, vars, T, projerksolD

Out[16]=

0 2 4 6 8 10
0

2.µ 10-17

4.µ 10-17

6.µ 10-17

8.µ 10-17

1.µ 10-16

156 Advanced Numerical Differential Equation Solving in Mathematica

Since the system is Hamiltonian (the invariant is the Hamiltonian), a symplectic integrator
performs well on this problem, giving a small bounded error.

In[17]:= projerksol = NDSolve@system,
Method Ø 8“SymplecticPartitionedRungeKutta“, “DifferenceOrder“ Ø 8,

“PositionVariables“ Ø 8Y1@TD<<, StartingStepSize Ø 1 ê 5D;

InvariantErrorPlot@invariant, vars, T, projerksolD

Out[18]=

0 2 4 6 8 10
0

5.µ 10-14

1.µ 10-13

1.5µ 10-13

Perturbed Kepler Problem

This loads a Hamiltonian system known as the perturbed Kepler problem, sets the integration
interval and the step size to take, as well as defining the position variables in the Hamiltonian
formalism.

In[19]:= system = GetNDSolveProblem@“PerturbedKepler“D;
time = system@“TimeData“D;
step = 3 ê 100;
pvars = Take@system@“DependentVariables“D, 2D

Out[22]= 8Y1@TD, Y2@TD<

The system has two invariants, which are defined as H and L.

In[23]:= 8H, L< = system@“Invariants“D

Out[23]= :-
1

400 IY1@TD2 + Y2@TD2M
3ë2

-
1

Y1@TD2 + Y2@TD2
+
1

2
IY3@TD

2 + Y4@TD
2M, -Y2@TD Y3@TD + Y1@TD Y4@TD>

An experiment now illustrates the importance of using all the available invariants in the projec-

tive process (see [HLW02]). Consider the solutions obtained using:

† The method “ExplicitEuler“

† The method “Projection“ with “ExplicitEuler“, projecting onto the invariant L

Advanced Numerical Differential Equation Solving in Mathematica 157

† The method “Projection“ with “ExplicitEuler“, projecting onto the invariant H

† The method “Projection“ with “ExplicitEuler“, projecting onto both the invariants H
and L

In[24]:= sol = NDSolve@system, Method Ø “ExplicitEuler“, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[25]=
-30 -25 -20 -15 -10 -5

-2
-1

1
2

In[26]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8H<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[27]=
-1.0 -0.5 0.5

-1.0

-0.5

0.5

In[28]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8L<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[29]=

-6 -4 -2

-6

-5

-4

-3

-2

-1

158 Advanced Numerical Differential Equation Solving in Mathematica

In[30]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8H, L<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[31]=
-1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

It can be observed that only the solution with projection onto both invariants gives the correct

qualitative behavior~for comparison, results using an efficient symplectic solver can be found

in "SymplecticPartitionedRungeKutta Method for NDSolve".

Lotka Volterra

An example of constraint projection for the Lotka|Volterra system is given within "Numerical

Methods for Solving the Lotka|Volterra Equations".

Euler's Equations

An example of constraint projection for Euler's equations is given within "Rigid Body Solvers".

Option Summary

Options of the method “Projection“.

Advanced Numerical Differential Equation Solving in Mathematica 159

option name default value

"Invariants" None specify the invariants of the differential
system

"IterationSafetyFactor" 1
10

specify the safety factor to use in the
iterative solution of the invariants

MaxIterations Automatic specify the maximum number of iterations
to use in the iterative solution of the
invariants

Method "StiffnessSwitÖ
ching"

specify the method to use for integrating
the differential system numerically

"StiffnessSwitching" Method for NDSolve

Introduction

The basic idea behind the “StiffnessSwitching“ method is to provide an automatic means of

switching between a nonstiff and a stiff solver.

The “StiffnessTest“ and “NonstiffTest“ options (described within "Stiffness Detection in

NDSolve") provides a useful means of detecting when a problem appears to be stiff.

The “StiffnessSwitching“ method traps any failure code generated by “StiffnessTest“ and

switches to an alternative solver. The “StiffnessSwitching“ method also uses the method

specified in the “NonstiffTest“ option to switch back from a stiff to a nonstiff method.

“Extrapolation“ provides a powerful technique for computing highly accurate solutions using

dynamic order and step size selection (see "Extrapolation Method for NDSolve" for more details)

and is therefore used as the default choice in “StiffnessSwitching“.

Examples

This loads some useful packages.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

This selects a stiff problem and specifies a longer integration time interval than the default
specified by NDSolveProblem.

In[5]:= system = GetNDSolveProblem@“VanderPol“D;
time = 8T, 0, 10<;

The default “Extrapolation“ base method is not appropriate for stiff problems and gives up
quite quickly.

In[7]:= NDSolve@system, time, Method Ø “Extrapolation“D

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[7]= 88Y1@TD Ø InterpolatingFunction@880., 0.0229201<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.0229201<<, <>D@TD<<

Instead of giving up, the “StiffnessSwitching“ method continues the integration with a
stiff solver.

In[8]:= NDSolve@system, time, Method Ø “StiffnessSwitching“D

Out[8]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<

160 Advanced Numerical Differential Equation Solving in Mathematica

The “StiffnessSwitching“ method uses a pair of extrapolation methods as the default. The

nonstiff solver uses the “ExplicitModifiedMidpoint“ base method, and the stiff solver uses

the “LinearlyImplicitEuler“ base method.

For small values of the AccuracyGoal and PrecisionGoal tolerances, it is sometimes prefer-

able to use an explicit Runge|Kutta method for the nonstiff solver.

The “ExplicitRungeKutta“ method eventually gives up when the problem is considered to
be stiff.

In[9]:= NDSolve@system, time, Method Ø “ExplicitRungeKutta“,
AccuracyGoal Ø 5, PrecisionGoal Ø 4D

NDSolve::ndstf :
At T == 0.028229404169279455`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[9]= 88Y1@TD Ø InterpolatingFunction@880., 0.0282294<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.0282294<<, <>D@TD<<

This sets the “ExplicitRungeKutta“ method as a submethod of “StiffnessSwitching“.

In[10]:= sol = NDSolve@system, time,
Method Ø 8StiffnessSwitching, Method Ø 8ExplicitRungeKutta, Automatic<<,
AccuracyGoal Ø 5, PrecisionGoal Ø 4D

Out[10]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<

A switch to the stiff solver occurs at T º 0.0282294, and a plot of the step sizes used shows that
the stiff solver takes much larger steps.

In[11]:= StepDataPlot@solD

Out[11]=

0 2 4 6 8 10
0.001

0.002

0.005

0.010

0.020

Advanced Numerical Differential Equation Solving in Mathematica 161

Option Summary

option name default value

Method 9Automatic,
Automatic=

specify the methods to use for the nonstiff
and stiff solvers respectively

“NonstiffTest“ Automatic specify the method to use for deciding
whther to switch to a nonstiff solver

Options of the method “StiffnessSwitching“.

Extensions

NDSolve Method Plug-in Framework

Introduction

The control mechanisms set up for NDSolve enable you to define your own numerical integra-

tion algorithms and use them as specifications for the Method option of NDSolve.

NDSolve accesses its numerical algorithms and the information it needs from them in an object-

oriented manner. At each step of a numerical integration, NDSolve keeps the method in a form

so that it can keep private data as needed.

AlgorithmIdentifier @dataD an algorithm object that contains any data that a particular
numerical ODE integration algorithm may need to use; the
data is effectively private to the algorithm;
AlgorithmIdentifier should be a Mathematica symbol, and
the algorithm is accessed from NDSolve by using the
option Method -> AlgorithmIdentifier

The structure for method data used in NDSolve.

NDSolve does not access the data associated with an algorithm directly, so you can keep the

information needed in any form that is convenient or efficient to use. The algorithm and informa-

tion that might be saved in its private data are accessed only through method functions of the

algorithm object.

162 Advanced Numerical Differential Equation Solving in Mathematica

AlgorithmObject@
“Step“@rhs,t,h,y,ypDD

attempt to take a single time step of size h from time t to
time t + h using the numerical algorithm, where y and yp
are the approximate solution vector and its time deriva-
tive, respectively, at time t; the function should generally
return a list 8newh, D y< where newh is the best size for the
next step determined by the algorithm and D y is the
increment such that the approximate solution at time t + h
is given by y + D y; if the time step is too large, the func-
tion should only return the value 8hnew< where hnew
should be small enough for an acceptable step (see later
for complete descriptions of possible return values)

AlgorithmObject@“DifferenceOrder“D return the current asymptotic difference order of the
algorithm

AlgorithmObject@“StepMode“D return the step mode for the algorithm object where the
step mode should either be Automatic or Fixed;
Automatic means that the algorithm has a means to
estimate error and determines an appropriate size newh for
the next time step; Fixed means that the algorithm will
be called from a time step controller and is not expected to
do any error estimation

Required method functions for algorithms used from NDSolve.

These method functions must be defined for the algorithm to work with NDSolve. The “Step“

method function should always return a list, but the length of the list depends on whether the

step was successful or not. Also, some methods may need to compute the function value

rhs@t + h, y + D yD at the step end, so to avoid recomputation, you can add that to the list.

Advanced Numerical Differential Equation Solving in Mathematica 163

“Step“@rhs, t, h, y, ypD method
output

interpretation

8newh,D y< successful step with computed solution increment D y and
recommended next step newh

8newh,D y,yph< successful step with computed solution increment D y and
recommended next step newh and time derivatives com-
puted at the step endpoint, yph = rhs@t + h, y + D yD

8newh,D y,yph,newobj< successful step with computed solution increment D y and
recommended next step newh and time derivatives com-
puted at the step endpoint, yph = rhs@t + h, y + D yD; any
changes in the object data are returned in the new
instance of the method object, newobj

9newh,D y,None,newobj= successful step with computed solution increment D y and
recommended next step newh; any changes in the object
data are returned in the new instance of the method
object, newobj

8newh< rejected step with recommended next step newh such that
†newh§ < †h§

9newh,$Failed,None,newobj= rejected step with recommended next step newh such that
†newh§ < †h§; any changes in the object data are returned
in the new instance of the method object, newobj

Interpretation of “Step“ method output.

Classical Runge|Kutta

Here is an example of how to set up and access a simple numerical algorithm.

This defines a method function to take a single step toward integrating an ODE using the
classical fourth-order Runge|Kutta method. Since the method is so simple, it is not necessary to
save any private data.

In[1]:= CRK4@D@“Step“@rhs_, t_, h_, y_, yp_DD := Module@8k0, k1, k2, k3<,
k0 = h yp;
k1 = h rhs@t + h ê 2, y + k0 ê 2D;
k2 = h rhs@t + h ê 2, y + k1 ê 2D;
k3 = h rhs@t + h, y + k2D;
8h, Hk0 + 2 k1 + 2 k2 + k3L ê 6<D

This defines a method function so that NDSolve can obtain the proper difference order to use
for the method. The ___ template is used because the difference order for the method is always
4.

In[2]:= CRK4@___D@“DifferenceOrder“D := 4

164 Advanced Numerical Differential Equation Solving in Mathematica

This defines a method function for the step mode so that NDSolve will know how to control
time steps. This algorithm method does not have any step control, so you define the step mode
to be Fixed.

In[3]:= CRK4@___D@“StepMode“D := Fixed

This integrates the simple harmonic oscillator equation with fixed step size.

In[4]:= fixed =
NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x, 8t, 0, 2 p<, Method Ø CRK4D

Out[4]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<

Generally using a fixed step size is less efficient than allowing the step size to vary with the

local difficulty of the integration. Modern explicit Runge|Kutta methods (accessed in NDSolve

with Method -> “ExplicitRungeKutta“) have a so-called embedded error estimator that makes

it possible to very efficiently determine appropriate step sizes. An alternative is to use built-in

step controller methods that use extrapolation. The method “DoubleStep“ uses an extrapola-

tion based on integrating a time step with a single step of size h and two steps of size h ê2. The

method “Extrapolation“ does a more sophisticated extrapolation and modifies the degree of

extrapolation automatically as the integration is performed, but is generally used with base

methods of difference orders 1 and 2.

This integrates the simple harmonic oscillator using the classical fourth-order Runge|Kutta
method with steps controlled by using the “DoubleStep“ method.

In[5]:= dstep = NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<,
x, 8t, 0, 2 p<, Method Ø 8“DoubleStep“, Method Ø CRK4<D

Out[5]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<

Advanced Numerical Differential Equation Solving in Mathematica 165

This makes a plot comparing the error in the computed solutions at the step ends. The error for
the “DoubleStep“ method is shown in blue.

In[6]:= ploterror@8sol_<, opts___D := Module@8
points = xü“Coordinates“@1D ê. sol,
values = xü“ValuesOnGrid“ ê. sol<,

ListPlot@Transpose@8points, values - Cos@pointsD<D, optsD
D;

Show@8
ploterror@fixedD,
ploterror@dstep, PlotStyle Ø RGBColor@0, 0, 1DD

<D

Out[7]=

1 2 3 4 5 6

-1.µ 10-8

-5.µ 10-9

5.µ 10-9

1.µ 10-8

1.5µ 10-8

The fixed step size ended up with smaller overall error mostly because the steps are so much

smaller; it required more than three times as many steps. For a problem where the local solu-

tion structure changes more significantly, the difference can be even greater.

A facility for stiffness detection is described within "DoubleStep Method for NDSolve".

For more sophisticated methods, it may be necessary or more efficient to set up some data for

the method to use. When NDSolve uses a particular numerical algorithm for the first time, it

calls an initialization function. You can define rules for the initialization that will set up appropri-

ate data for your method.

InitializeMethod@Algorithm Identifier,stepmode,state,Algorithm OptionsD

the expression that NDSolve evaluates for initialization
when it first uses an algorithm for a particular integration
where stepmode is either Automatic or Fixed depending
on whether your method is expected to be called within the
framework of a step controller or another method or not;
state is the NDSolveState object used by NDSolve, and
Algorithm Options is a list that contains any options given
specifically with the specification to use the particular
algorithm, for example, 8opts< in
Method -> 8Algorithm Identifier, opts<

166 Advanced Numerical Differential Equation Solving in Mathematica

Algorithm Identifierê:InitializeMethod@Algorithm Identifier,stepmode_,rhs
_NumericalFunction,state_NDSolveState,8opts___?OptionQ<D:=initialization

definition of the initialization so that the rule is associated
with the algorithm, and initialization should return an
algorithm object in the form Algorithm Identifier@dataD

Initializing a method from NDSolve.

As a system symbol, InitializeMethod is protected, so to attach rules to it, you would need to

unprotect it first. It is better to keep the rules associated with your method. A tidy way to do

this is to make the initialization definition using TagSet as shown earlier.

As an example, suppose you want to redefine the Runge|Kutta method shown earlier so that

instead of using the exact coefficients 2, 1/2, and 1/6, numerical values with the appropriate

precision are used instead to make the computation slightly faster.

This defines a method function to take a single step toward integrating an ODE using the
classical fourth-order Runge|Kutta method using saved numerical values for the required
coefficients.

In[15]:= CRK4@8two_, half_, sixth_<D@“Step“@rhs_, t_, h_, y_, yp_DD :=
Module@8k0, k1, k2, k3<,
k0 = h yp;
k1 = h rhs@t + half h, y + half k0D;
k2 = h rhs@t + half h, y + half k1D;
k3 = h rhs@t + h, y + k2D;
8h, sixth Hk0 + two Hk1 + k2L + k3L<D

This defines a rule that initializes the algorithm object with the data to be used later.

In[16]:= CRK4 ê: NDSolve`InitializeMethod@CRK4,
stepmode_, rhs_, state_, opts___D := Module@8prec<,
prec = stateü“WorkingPrecision“;
CRK4@N@82, 1 ê 2, 1 ê 6<, precDDD

Saving the numerical values of the numbers gives between 5 and 10 percent speedup for a

longer integration using “DoubleStep“.

Adams Methods

In terms of the NDSolve framework, it is not really any more difficult to write an algorithm that

controls steps automatically. However, the requirements for estimating error and determining

an appropriate step size usually make this much more difficult from both the mathematical and

programming standpoints. The following example is a partial adaptation of the Fortran DEABM

code of Shampine and Watts to fit into the NDSolve framework. The algorithm adaptively

chooses both step size and order based on criteria described in [SG75].

Advanced Numerical Differential Equation Solving in Mathematica 167

The first stage is to define the coefficients. The integration method uses variable step-size

coefficients. Given a sequence of step sizes 8hn-k+1, hn-k+2, …, hn<, where hn is the current step to

take, the coefficients for the method with Adams|Bashforth predictor of order k and Adams|

Moulton corrector of order k + 1, g jHnL such that

yn+1 = pn+1 + hn gkHnLFkHn + 1L

pn+1 = yn + hn ‚
j=0

k-1

g jHnLFk*HnL,

where the F jHnL are the divided differences.

F jHnL ==‰
i=0

j-1

Htn - tn-iL dk f Atn, …, tn- jE

IF jM
*
HnL = b jHnLF jHnL with b jHnL =‰

i=0

j-1 tn+1 - tn-i

tn - t-i+n-1
.

This defines a function that computes the coefficients F j and b j, along with s j, that are used in
error estimation. The formulas are from [HNW93] and use essentially the same notation.

In[17]:= AdamsBMCoefficients@hlist_ListD := ModuleB8k, h, Dh, brat, b, a, s, c<,
k = Length@hlistD;
h = Last@hlistD;
Dh = Drop@FoldList@Plus, 0, Reverse@hlistDD, 1D;

brat =
Drop@Dh, -1D

Drop@Dh, 1D - h
;

b = FoldList@Times, 1, bratD;

a =
h

Dh
;

s = FoldList@Times, 1, a Range@Length@aDDD;

c@0D = TableB
1

q
, 8q, 1, k<F;

c@1D = TableB
1

q Hq + 1L
, 8q, 1, k<F;

DoBc@jD = Drop@c@j - 1D, -1D -
Drop@c@j - 1D, 1D h

DhPjT
, 8j, 2, k<F;

8HFirst@c@Ò1DD &L êü Range@0, kD, b, s<F

168 Advanced Numerical Differential Equation Solving in Mathematica

hlist is the list of step sizes 8hn-k, hn-k+1, …, hn< from past steps. The constant-coefficient Adams

coefficients can be computed once, and much more easily. Since the constant step size Adams|

Moulton coefficients are used in error prediction for changing the method order, it makes sense

to define them once with rules that save the values.

This defines a function that computes and saves the values of the constant step size Adams|
Moulton coefficients.

In[18]:= Moulton@0D = 1;
Moulton@m_D := Moulton@mD = -Sum@Moulton@kD ê H1 + m - kL, 8k, 0, m - 1<D

The next stage is to set up a data structure that will keep the necessary information between

steps and define how that data should be initialized. The key information that needs to be

saved is the list of past step sizes, hlist, and the divided differences, F. Since the method does

the error estimation, it needs to get the correct norm to use from the NDSolve`StateData

object. Some other data such as precision is saved for optimization and convenience.

This defines a rule for initializing the AdamsBM method from NDSolve.

In[20]:= AdamsBM ê:
NDSolve`InitializeMethod@AdamsBM, 8Automatic, DenseQ_<,
rhs_, ndstate_, opts___D := Module@8prec, norm, hlist, F, mord<,
mord = MaxDifferenceOrder ê. Flatten@8opts, Options@AdamsBMD<D;
If@mord ≠ ¶ && ! HIntegerQ@mordD && mord > 0L, Return@$FailedDD;
prec = ndstate@“WorkingPrecision“D;
norm = ndstate@“Norm“D;
hlist = 8<;
F = 8ndstate@“SolutionDerivativeVector“@“Active“DD<;
AdamsBM@88hlist, F, N@0, precD FP1T<, 8norm, prec, mord, 0, True<<DD;

hlist is initialized to 8< since at initialization time there have been no steps. F is initialized to the

derivative of the solution vector at the initial condition since the 0th divided difference is just

the function value. Note that F is a matrix. The third element, which is initialized to a zero

vector, is used for determining the best order for the next step. It is effectively an additional

divided difference. The use of the other parts of the data is clarified in the definition of the

stepping function.

The initialization is also set up to get the value of an option that can be used to limit the maxi-

mum order of the method to use. In the code DEABM, this is limited to 12, because this is a

practical limit for machine-precision calculations. However, in Mathematica, computations can

be done in higher precision where higher-order methods may be of significant advantage, so

there is no good reason for an absolute limit of this sort. Thus, you set the default of the option

to be ¶.

Advanced Numerical Differential Equation Solving in Mathematica 169

This sets the default for the MaxDifferenceOrder option of the AdamsBM method.

In[21]:= Options@AdamsBMD = 8MaxDifferenceOrder Ø ¶<;

Before proceeding to the more complicated “Step“ method functions, it makes sense to define

the simple “StepMode“ and “DifferenceOrder“ method functions.

This defines the step mode for the AdamsBM method to always be Automatic. This means that
it cannot be called from step controller methods that request fixed step sizes of possibly varying
sizes.

In[22]:= AdamsBM@___D@“StepMode“D = Automatic;

This defines the difference order for the AdamsBM method. This varies with the number of past
values saved.

In[23]:= AdamsBM@data_D@“DifferenceOrder“D := Length@data@@1, 2DDD;

Finally, here is the definition of the “Step“ function. The actual process of taking a step is only

a few lines. The rest of the code handles the automatic step size and order selection following

very closely the DEABM code of Shampine and Watts.

This defines the “Step“ method function for AdamsBM that returns step data according to the
templates described earlier.

In[24]:= AdamsBM@data_D@“Step“@rhs_, t_, h_, y_, yp_DD :=
ModuleB8prec, norm, hlist, F, F1, ns, starting, k, zero,

g, b, s, p, f, Dy, normh, ev, err, PE, knew, hnew, temp<,
88hlist, F, F1<, 8norm, prec, mord, ns, starting<< = data;
H* Norm scaling will be based on current solution y. *L
normh = HAbs@hD temp@Ò1, yD &L ê. 8temp Ø norm<;
k = Length@FD;
zero = N@0, precD;
H* Keep track of number of steps at this stepsize h. *L
If@Length@hlistD > 0 && Last@hlistD == h, ns++, ns = 1D;
hlist = Join@hlist, 8h<D;
8g, b, s< = AdamsBMCoefficients@hlistD;
H* Convert F to F* *L
F = F Reverse@bD;
H* PE: Predict and evaluate *L
p = Reverse@Drop@g, -1DD.F;
f = rhs@h + t, h p + yD;
H* Update divided differences *L
F = FoldList@Plus, zero F1, FD;
H* Compute scaled error estimate *L
ev = f - Last@FD;
err = HgP-2T - gP-1TL normh@evD;
H* First order check: determines if order should be lowered
even in the case of a rejected step *L

knew = OrderCheck@PE, k, F, ev, normh, sD;
IfBerr > 1,
H* Rejected step: reduce h by half,
make sure starting mode flag is unset and reset F to previous values *L

,

170 Advanced Numerical Differential Equation Solving in Mathematica

In[24]:=

hnew =
h

2
; Dy = $Failed; f = None; starting = False; F = dataP1, 2T,

H* Sucessful step:
CE: Correct and evaluate *L

Dy = h Hp + ev Last@gDL;
f = rhs@h + t, y + DyD; temp = f - Last@FD;
H* Update the divided differences *L
F = Htemp + Ò1 &L êü F;
H* Determine best order and stepsize for the next step *L
F1 = temp - F1;
knew = ChooseNextOrder@starting, PE, k, knew, F1, normh, s, mord, nsD;
hnew = ChooseNextStep@PE, knew, hDF;

H* Truncate hlist and F to the appropriate length for the chosen order. *L
hlist = Take@hlist, 1 - knewD;
If@Length@FD > knew, F1 = FPLength@FD - knewT; F = Take@F, -knewD;D;
H* Return step data along with updated method data *L

8hnew, Dy, f, AdamsBM@88hlist, F, F1<, 8norm, prec, mord, ns, starting<<D<F;

There are a few deviations from DEABM in the code here. The most significant is that coeffi-

cients are recomputed at each step, whereas DEABM computes only those that need updating.

This modification was made to keep the code simpler, but does incur a clear performance loss,

particularly for small to moderately sized systems. A second significant modification is that

much of the code for limiting rejected steps is left to NDSolve, so there are no checks in this

code to see if the step size is too small or the tolerances are too large. The stiffness detection

heuristic has also been left out. The order and step-size determination code has been modular-

ized into separate functions.

This defines a function that constructs error estimates PE j for j == k - 2, k - 1, and k and deter-
mines if the order should be lowered or not.

In[25]:= OrderCheck@PE_, k_, F_, ev_, normh_, s_D := ModuleB8knew = k<,

PEk = Abs@sPk + 1T Moulton@kD normh@evDD; IfBk > 1,
PEk-1 = Abs@sPkT Moulton@k - 1D normh@ev + FP2TDD;
If@k > 2,
PEk-2 = Abs@sPk - 1T Moulton@k - 2D normh@ev + FP3TDD;
If@Max@PEk-1, PEk-2D < PEk, knew = k - 1DD,

IfBPEk-1 <
PEk

2
, knew = k - 1F;

F;
knew

F;

This defines a function that determines the best order to use after a successful step.

In[26]:= SetAttributes@ChooseNextOrder, HoldFirstD;
ChooseNextOrder@starting_, PE_, k_, knw_, F1_, normh_, s_, mord_, ns_D :=

ModuleB8knew = knw<,
starting = starting && knew ¥ k && k < mord;
IfBstarting,

,

Advanced Numerical Differential Equation Solving in Mathematica 171

IfBstarting,
knew = k + 1; PEk+1 = 0,
IfBknew ¥ k && ns ¥ k + 1,

PEk+1 = Abs@Moulton@k + 1D normh@F1DD;
IfBk > 1,
If@PEk-1 § Min@PEk, PEk+1D,
knew = k - 1,
If@PEk+1 < PEk && k < mord, knew = k + 1D

D,

IfBPEk+1 <
PEk

2
, knew = k + 1F

F;

F;

F;
knew

F;

This defines a function that determines the best step size to use after a successful step of size
h.

In[28]:= ChooseNextStep@PE_, k_, h_D :=
IfBPEk < 2-Hk+2L,
2 h,

IfBPEk <
1

2
, h, h MaxB

1

2
, MinB

9

10
,

1

2 PEk

1

k+1

FFF

F;

Once these definitions are entered, you can access the method in NDSolve by simply using

Method -> AdamsBM.

This solves the harmonic oscillator equation with the Adams method defined earlier.

In[29]:= asol = NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<,
x, 8t, 0, 2 p<, Method Ø AdamsBMD

Out[29]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<

This shows the error of the computed solution. It is apparent that the error is kept within
reasonable bounds. Note that after the first few points, the step size has been increased.

In[30]:= ploterror@asolD

Out[30]=
1 2 3 4 5 6

-2.µ 10-8

-1.µ 10-8

1.µ 10-8

2.µ 10-8

172 Advanced Numerical Differential Equation Solving in Mathematica

Where this method has the potential to outperform some of the built-in methods is with high-

precision computations with strict tolerances. This is because the built-in methods are adapted

from codes with the restriction to order 12.

In[31]:= LorenzEquations = 8
8x‘@tD == -3 Hx@tD - y@tDL, x@0D == 0<,
8y‘@tD == -x@tD z@tD + 53 ê 2 x@tD - y@tD, y@0D == 1<,
8z‘@tD == x@tD y@tD - z@tD, z@0D == 0<<;

vars = 8x@tD, y@tD, z@tD<;

A lot of time is required for coefficient computation.

In[33]:= Timing@NDSolve@LorenzEquations, vars, 8t, 0, 20<, Method Ø AdamsBMDD

Out[33]= 87.04 Second, 88x@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD,
y@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD,
z@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD<<<

This is not using as high an order as might be expected.

In any case, about half the time is spent generating coefficients, so to make it better, you need

to figure out the coefficient update.

In[34]:= Timing@NDSolve@LorenzEquations, vars,
8t, 0, 20<, Method Ø AdamsBM, WorkingPrecision Ø 32DD

Out[34]= 811.109, 88x@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD,
y@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD,
z@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD<<<

Advanced Numerical Differential Equation Solving in Mathematica 173

Numerical Solution of Partial Differential
Equations

The Numerical Method of Lines

Introduction

The numerical method of lines is a technique for solving partial differential equations by discretiz-

ing in all but one dimension, and then integrating the semi-discrete problem as a system of

ODEs or DAEs. A significant advantage of the method is that it allows the solution to take advan-

tage of the sophisticated general-purpose methods and software that have been developed for

numerically integrating ODEs and DAEs. For the PDEs to which the method of lines is applicable,

the method typically proves to be quite efficient.

It is necessary that the PDE problem be well-posed as an initial value (Cauchy) problem in at

least one dimension, since the ODE and DAE integrators used are initial value problem solvers.

This rules out purely elliptic equations such as Laplace's equation, but leaves a large class of

evolution equations that can be solved quite efficiently.

A simple example illustrates better than mere words the fundamental idea of the method.

Consider the following problem (a simple model for seasonal variation of heat in soil).

(1)ut ==
1
8

uxx, uH0, tL == sinH2 p tL, uxH1, tL == 0, uHx, 0Lã 0

This is a candidate for the method of lines since you have the initial value u Hx, 0L == 0.

Problem (1) will be discretized with respect to the variable x using second-order finite differ-

ences, in particular using the approximation

(2)uxxHx, tL > uHx+h,tL-2 uHx,tL-uHx-h,tL
h2

Even though finite difference discretizations are the most common, there is certainly no require-

ment that discretizations for the method of lines be done with finite differences; finite volume

or even finite element discretizations can also be used.

174 Advanced Numerical Differential Equation Solving in Mathematica

To use the discretization shown, choose a uniform grid xi, 0 § i § n with spacing h == 1 ên such that

xi == i h. Let ui@tD be the value of uHxi, tL. For the purposes of illustrating the problem setup, a

particular value of n is chosen.

This defines a particular value of n and the corresponding value of h used in the subsequent
commands. This can be changed to make a finer or coarser spatial approximation.

In[1]:= n = 10; hn =
1

n
;

This defines the vector of ui.

In[2]:= U@t_D = Table@ui@tD, 8i, 0, n<D

Out[2]= 8u0@tD, u1@tD, u2@tD, u3@tD, u4@tD, u5@tD, u6@tD, u7@tD, u8@tD, u9@tD, u10@tD<

For 1 § i § 9, you can use the centered difference formula (2) to obtain a system of ODEs. How-

ever, before doing this, it is useful to incorporate the boundary conditions first.

The Dirichlet boundary condition at x == 0 can easily be handled by simply defining u0 as a

function of t. An alternative option is to differentiate the boundary condition with respect to

time and use the corresponding differential equation. In this example, the latter method will be

used.

The Neumann boundary condition at x == 1 is a little more difficult. With second-order differ-

ences, one way to handle it is with reflection: imagine that you are solving the problem on the

interval 0 § x § 2 with the same boundary conditions at x == 0 and x == 2. Since the initial condi-

tion and boundary conditions are symmetric with respect to x, the solution should be symmetric

with respect to x for all time, and so symmetry is equivalent to the Neumann boundary condi-

tion at x  1. Thus, uH1 + h, tLã uH1 - h, tL, so un+1@tDã un-1@tD.

Advanced Numerical Differential Equation Solving in Mathematica 175

This uses ListCorrelate to apply the difference formula. The padding 8un-1@tD< implements
the Neumann boundary condition.

In[3]:= eqns = ThreadAD@U@tD, tD ã JoinA8D@Sin@2 p tD, tD<,
ListCorrelateA81, -2, 1< ë hn2, U@tD, 81, 2<, 8un-1@tD<E ë 8EE

Out[3]= :u0
£@tD ã 2 p Cos@2 p tD, u1

£@tD ã
1

8
H100 u0@tD - 200 u1@tD + 100 u2@tDL,

u2
£@tD ã

1

8
H100 u1@tD - 200 u2@tD + 100 u3@tDL,

u3
£@tD ã

1

8
H100 u2@tD - 200 u3@tD + 100 u4@tDL, u4

£@tD ã
1

8
H100 u3@tD - 200 u4@tD + 100 u5@tDL,

u5
£@tD ã

1

8
H100 u4@tD - 200 u5@tD + 100 u6@tDL, u6

£@tD ã
1

8
H100 u5@tD - 200 u6@tD + 100 u7@tDL,

u7
£@tD ã

1

8
H100 u6@tD - 200 u7@tD + 100 u8@tDL, u8

£@tD ã
1

8
H100 u7@tD - 200 u8@tD + 100 u9@tDL,

u9
£@tD ã

1

8
H100 u8@tD - 200 u9@tD + 100 u10@tDL, u10

£@tD ã
1

8
H200 u9@tD - 200 u10@tDL>

This sets up the zero initial condition.

In[4]:= initc = Thread@U@0D ã Table@0, 8n + 1<DD

Out[4]= 8u0@0D ã 0, u1@0D ã 0, u2@0D ã 0, u3@0D ã 0, u4@0D ã 0,
u5@0D ã 0, u6@0D ã 0, u7@0D ã 0, u8@0D ã 0, u9@0D ã 0, u10@0D ã 0<

Now the PDE has been partially discretized into an ODE initial value problem that can be solved

by the ODE integrators in NDSolve.

This solves the ODE initial value problem.

In[5]:= lines = NDSolve@8eqns, initc<, U@tD, 8t, 0, 4<D

Out[5]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<

176 Advanced Numerical Differential Equation Solving in Mathematica

This shows the solutions uHxi, tL plotted as a function of x and t.

In[6]:= ParametricPlot3D@Evaluate@Table@8i hn, t, First@ui@tD ê. linesD<, 8i, 0, n<DD,
8t, 0, 4<, PlotRange Ø All, AxesLabel Ø 8“x“, “t“, “u“<D

Out[6]=

0.0
0.5

1.0x

0

1

2

3

4

t

–1.0

–0.5

0.0

0.5

1.0

u

The plot indicates why this technique is called the numerical "method of lines".

The solution in between lines can be found by interpolation. When NDSolve computes the

solution for the PDE, the result is a two-dimensional InterpolatingFunction.

This uses NDSolve to compute the solution of the heat equation (1) directly.

In[7]:= solution = NDSolveB:D@u@x, tD, tD ã
1

8
D@u@x, tD, x, xD, u@x, 0D ã 0,

u@0, tD ã Sin@2 p tD, HD@u@x, tD, xD ê. x Ø 1L ã 0>, u, 8x, 0, 1<, 8t, 0, 4<F

Out[7]= 88u Ø InterpolatingFunction@880., 1.<, 80., 4.<<, <>D<<

This creates a surface plot of the solution.

In[8]:= Plot3D@Evaluate@First@u@x, tD ê. solutionDD,
8x, 0, 1<, 8t, 0, 4<, PlotPoints Ø 814, 36<, PlotRange Ø AllD

Out[8]=

Advanced Numerical Differential Equation Solving in Mathematica 177

0.0

0.5

0

1

2

3

4

–1.0

–0.5

0.0

0.5

1.0

The setting n == 10 used did not give a very accurate solution. When NDSolve computes the

solution, it uses spatial error estimates on the initial condition to determine what the grid spac-

ing should be. The error in the temporal (or at least time-like) variable is handled by the adap-

tive ODE integrator.

In the example (1), the distinction between time and space was quite clear from the problem

context. Even when the distinction is not explicit, this tutorial will refer to "spatial" and

"temporal" variables. The "spatial" variables are those to which the discretization is done. The

"temporal" variable is the one left in the ODE system to be integrated.

Options for NDSolve`MethodOfLines.

Use of some of these options requires further knowledge of how the method of lines works and

will be explained in the sections that follow.

Currently, the only method implemented for spatial discretization is the TensorProductGrid

method, which uses discretization methods for one spatial dimension and uses an outer tensor

product to derive methods for multiple spatial dimensions on rectangular regions.

TensorProductGrid has its own set of options that you can use to control the grid selection

process. The following sections give sufficient background information so that you will be able

to use these options if necessary.

178 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

TemporalVariable Automatic what variable to keep derivatives with
respect to the derived ODE or DAE system

Method Automatic what method to use for integrating the
ODEs or DAEs

SpatialDiscretization TensorProductGÖ
rid

what method to use for spatial discretiza -
tion

DifferentiateBoundaryCondÖ
itions

True whether to differentiate the boundary
conditions with respect to the temporal
variable

ExpandFunctionSymbolically False whether to expand the effective function
symbolically or not

DiscretizedMonitorVariablÖ
es

False whether to interpret dependent variables
given in monitors like StepMonitor or in
method options for methods like
EventLocator and Projection as
functions of the spatial variables or vectors
representing the spatially discretized values

Spatial Derivative Approximations

Advanced Numerical Differential Equation Solving in Mathematica 179

Finite Differences

The essence of the concept of finite differences is embodied in the standard definition of the

derivative

where instead of passing to the limit as h approaches zero, the finite spacing to the next adja-

cent point, xi+1 ã xi + h, is used so that you get an approximation.

The difference formula can also be derived from Taylor's formula,

which is more useful since it provides an error estimate (assuming sufficient smoothness)

An important aspect of this formula is that xi must lie between xi and xi+1 so that the error is

local to the interval enclosing the sampling points. It is generally true for finite difference formu-

las that the error is local to the stencil, or set of sample points. Typically, for convergence and

other analysis, the error is expressed in asymptotic form:

This formula is most commonly referred to as the first-order forward difference. The backward

difference would use xi-1.

f £HxiL == lim
hØ0

f Hh + xiL - f HxiL

h

f £HxiLapprox ==
f Hxi+1L - f HxiL

h

f Hxi+1Lã f HxiL + h f £HxiL +
h2

2
f ££HxiL; xi < xi < xi+1

f £HxiLã
f Hxi+1L - f HxiL

h
-
h

2
f ££HxiL

f £HxiLã
f Hxi+1L - f HxiL

h
+OHhL

Taylor's formula can easily be used to derive higher-order approximations. For example, sub-

tracting

180 Advanced Numerical Differential Equation Solving in Mathematica

-

from

and solving for f ' HxiL gives the second-order centered difference formula for the first derivative,

If the Taylor formulas shown are expanded out one order farther and added and then combined

with the formula just given, it is not difficult to derive a centered formula for the second

derivative.

Note that the while having a uniform step size h between points makes it convenient to write

out the formulas, it is certainly not a requirement. For example, the approximation to the

second derivative is in general

where h corresponds to the maximum local grid spacing. Note that the asymptotic order of the

three-point formula has dropped to first order; that it was second order on a uniform grid is due

to fortuitous cancellations.

In general, formulas for any given derivative with asymptotic error of any chosen order can be

derived from the Taylor formulas as long as a sufficient number of sample points are used.

However, this method becomes cumbersome and inefficient beyond the simple examples

shown. An alternate formulation is based on polynomial interpolation: since the Taylor formulas

are exact (no error term) for polynomials of sufficiently low order, so are the finite difference

f Hxi+1Lã f HxiL + h f £HxiL +
h2

2
f ££HxiL +OIh3M

f Hxi-1Lã f HxiL - h f £HxiL +
h2

2
f ££HxiL +OIh3M

f £HxiLã
f Hxi+1L - f Hxi-1L

2 h
+OIh2M

f ££HxiLã
f Hxi+1L - 2 f HxiL + f Hxi-1L

h2
+OIh2M

f ££HxiL ==
2 H f Hxi+1L Hxi-1 - xiL + f Hxi-1L Hxi - xi+1L + f HxiL Hxi+1 - xi-1LL

Hxi-1 - xiL Hxi-1 - xi+1L Hxi - xi+1L
+OHhL

