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Introduction to Advanced Numerical 
Differential Equation Solving in 
Mathematica

Overview

The  Mathematica  function  NDSolve  is  a  general  numerical  differential  equation  solver.  It  can

handle a wide range of ordinary differential equations (ODEs) as well as some partial differential

equations  (PDEs).  In  a  system  of  ordinary  differential  equations  there  can  be  any  number  of

unknown functions xi, but all of these functions must depend on a single “independent variable”

t, which is the same for each function. Partial differential equations involve two or more indepen-

dent variables. NDSolve  can also solve some differential-algebraic equations (DAEs), which are

typically a mix of differential and algebraic equations.

NDSolve@8eqn1,eqn2,…<,
u,8t,tmin,tmax<D

find a numerical solution for the function u with t in the 
range tmin to tmax

NDSolve@8eqn1,eqn2,…<,
8u1,u2,…<,8t,tmin,tmax<D

find numerical solutions for several functions ui

Finding numerical solutions to ordinary differential equations. 

NDSolve  represents  solutions  for  the  functions  xi  as  InterpolatingFunction  objects.  The

InterpolatingFunction  objects provide approximations to the xi  over the range of values tmin

to tmax for the independent variable t. 

In general, NDSolve  finds solutions iteratively. It starts at a particular value of t,  then takes a

sequence of steps, trying eventually to cover the whole range tmin to tmax. 

In order to get started, NDSolve  has to be given appropriate initial  or boundary conditions for

the  xi  and  their  derivatives.  These  conditions  specify  values  for  xi@tD,  and  perhaps  derivatives

xi ‘@tD,  at  particular  points  t.  When there is  only  one t  at  which conditions  are given,  the equa-

tions  and  initial  conditions  are  collectively  referred  to  as  an  initial  value  problem.  A  boundary

value occurs  when there are  multiple  points  t.  NDSolve  can solve nearly  all  initial  value prob-

lems  that  can  symbolically  be  put  in  normal  form (i.e.  are  solvable  for  the  highest  derivative

order), but only linear boundary value problems.



 can solve nearly  all  initial  value prob-

lems  that  can  symbolically  be  put  in  normal  form (i.e.  are  solvable  for  the  highest  derivative

order), but only linear boundary value problems.

This finds a solution for x with t in the range 0 to 2, using an initial condition for x at t ã 1. 

In[1]:= NDSolve@8x‘@tD == x@tD, x@1D == 3<, x, 8t, 0, 2<D

Out[1]= 88x Ø InterpolatingFunction@880., 2.<<, <>D<<

When you use NDSolve, the initial or boundary conditions you give must be sufficient to deter-

mine  the  solutions  for  the  xi  completely.  When  you  use  DSolve  to  find  symbolic  solutions  to

differential  equations,  you  may  specify  fewer  conditions.  The  reason  is  that  DSolve  automati-

cally inserts arbitrary symbolic constants C@iD to represent degrees of freedom associated with

initial  conditions  that  you  have  not  specified  explicitly.  Since  NDSolve  must  give  a  numerical

solution, it cannot represent these kinds of additional degrees of freedom. As a result, you must

explicitly give all the initial or boundary conditions that are needed to determine the solution. 

In a typical case, if you have differential equations with up to nth  derivatives, then you need to

either  give  initial  conditions  for  up  to  Hn - 1Lth  derivatives,  or  give  boundary  conditions  at  n

points. 

This solves an initial value problem for a second-order equation, which requires two conditions, 
and are given at t == 0.

In[2]:= NDSolve@8x‘‘@tD == x@tD^2, x@0D == 1, x‘@0D == 0<, x, 8t, 0, 2<D

Out[2]= 88x Ø InterpolatingFunction@880., 2.<<, <>D<<

This plots the solution obtained.

In[3]:= Plot@Evaluate@x@tD ê. %D, 8t, 0, 2<D

Out[3]=

0.5 1.0 1.5 2.0
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Here is a simple boundary value problem. 

In[4]:= NDSolve@8y‘‘@xD + x y@xD == 0, y@0D == 1, y@1D == -1<, y, 8x, 0, 1<D

Out[4]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

You can use NDSolve to solve systems of coupled differential equations as long as each variable

has the appropriate number of conditions. 

This finds a numerical solution to a pair of coupled equations. 

In[5]:= sol = NDSolveB:x‘‘@tD ã y@tD x@tD, y‘@tD ã -
1

x@tD2 + y@tD2
,

x@0D ã 1, x‘@0D ã 0, y@0D ã 0>, 8x, y<, 8t, 0, 100<F

Out[5]= 88x Ø InterpolatingFunction@880., 100.<<, <>D, y Ø InterpolatingFunction@880., 100.<<, <>D<<

Here is a plot of both solutions. 

In[6]:= Plot@Evaluate@8x@tD, y@tD< ê. %D, 8t, 0, 100<, PlotRange Ø All, PlotPoints Ø 200D

Out[6]=

20 40 60 80 100

-6

-4

-2

You  can  give  initial  conditions  as  equations  of  any  kind.  If  these  equations  have  multiple

solutions, NDSolve will generate multiple solutions. 

The initial conditions in this case lead to multiple solutions. 

In[7]:= NDSolve@8y‘@xD^2 - y@xD^3 == 0, y@0D^2 == 4<, y, 8x, 1<D

NDSolve::mxst :
Maximum number of 10000 steps reached at the point x == 1.1160976563722613`*^-8. à

Out[7]= 98y Ø InterpolatingFunction@880., 1.<<, <>D<, 8y Ø InterpolatingFunction@880., 1.<<, <>D<,

9y Ø InterpolatingFunctionA990., 1.1161µ10-8==, <>E=,
8y Ø InterpolatingFunction@880., 1.<<, <>D<=

NDSolve  was  not  able  to  find  the  solution  for  y‘@xD ã -Sqrt@y@xD^3D,  y@0D ã -2  because  of

problems with the branch cut in the square root function.
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This shows the real part of the solutions that NDSolve was able to find. (The upper two solu-
tions are strictly real.)

In[8]:= Plot@Evaluate@Part@Re@y@xD ê. %D, 81, 2, 4<DD, 8x, 0, 1<D

Out[8]=

0.2 0.4 0.6 0.8 1.0
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NDSolve can solve a mixed system of differential and algebraic equations, referred to as differen-

tial-algebraic  equations  (DAEs).  In  fact,  the  example  given  is  a  sort  of  DAE,  where  the  equa-

tions are not expressed explicitly in terms of the derivatives. Typically, however, in DAEs, you

are not able to solve for the derivatives at all and the problem must be solved using a different

method entirely.

Here is a simple DAE.

In[9]:= NDSolve@8x‘‘@tD + y@tD ã x@tD,
x@tD^2 + y@tD^2 ã 1, x@0D ã 0, x‘@0D ã 1<, 8x, y<, 8t, 0, 2<D

NDSolve::ndsz :
At t == 1.6656481721762058`, step size is effectively zero; singularity or stiff system suspected. à

Out[9]= 88x Ø InterpolatingFunction@880., 1.66565<<, <>D, y Ø InterpolatingFunction@880., 1.66565<<, <>D<<

Note that while both of the equations have derivative terms, the variable y appears without any

derivatives,  so  NDSolve  issues  a  warning  message.  When the  usual  substitution  to  convert  to

first-order equations is made, one of the equations does indeed become effectively algebraic.

Also, since y only appears algebraically, it is not necessary to give an initial condition to deter-

mine  its  values.  Finding  initial  conditions  that  are  consistent  with  DAEs  can,  in  fact,  be  quite

difficult.  The  tutorial  "Numerical  Solution  of  Differential-Algebraic  Equations"  has  more

information.
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This shows a plot of the solutions.

In[10]:= Plot@Evaluate@8x@tD, y@tD< ê. %D, 8t, 0, 1.66<D

Out[10]=

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

From  the  plot,  you  can  see  that  the  derivative  of  y  is  tending  to  vary  arbitrarily  fast.  Even

though it does not explicitly appear in the equations, this condition means that the solver can-

not continue further.

Unknown functions in differential equations do not necessarily have to be represented by single

symbols. If  you have a large number of unknown functions, for example, you will  often find it

more convenient to give the functions names like x@iD or xi.

This constructs a set of twenty-five coupled differential equations and initial conditions and 
solves them.

In[11]:= n = 25;
x0@t_D := 0;
xn@t_D := 1;
eqns =

TableA9xi‘@tD ã n2 H xi+1@tD - 2 xi@tD + xi-1@tDL, xi@0D ã Hi ê nL10=, 8i, n - 1<E;
vars = Table@xi@tD, 8i, n - 1<D;
NDSolve@eqns, vars, 8t, 0, .25<D

Out[16]= 88x1@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x2@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x3@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x4@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x5@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x6@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x7@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x8@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x9@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x10@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x11@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x12@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x13@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x14@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x15@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x16@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x17@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x18@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x19@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x20@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x21@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x22@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x23@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD,
x24@tD Ø InterpolatingFunction@880., 0.25<<, <>D@tD<<
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This  actually  computes  an  approximate  solution  of  the  heat  equation  for  a  rod  with  constant

temperatures at either end of the rod. (For more accurate solutions, you can increase n.)

The result is an approximate solution to the heat equation for a 1-dimensional rod of length 1 
with constant temperature maintained at either end. This shows the solutions considered as 
spatial values as a function of time.

In[17]:= ListPlot3D@Table@vars ê. First@%D, 8t, 0, .25, .025<DD

Out[17]=

An unknown function can also be specified to have a vector (or matrix) value. The dimensional-

ity  of  an  unknown  function  is  taken  from  its  initial  condition.  You  can  mix  scalar  and  vector

unknown  functions  as  long  as  the  equations  have  consistent  dimensionality  according  to  the

rules  of  Mathematica  arithmetic.  The  InterpolatingFunction  result  will  give  values  with  the

same  dimensionality  as  the  unknown  function.  Using  nonscalar  variables  is  very  convenient

when a system of differential equations is governed by a process that may be difficult or ineffi-

cient to express symbolically.

This uses a vector valued unknown function to solve the same system as earlier.

In[18]:= f@x_?VectorQD := n^2 * ListConvolve@81, -2, 1<, x, 82, 2<, 81, 0<D;
NDSolve@8X‘@tD ã f@X@tDD, X@0D ã HRange@n - 1D ê nL^10<, X, 8t, 0, .25<D

Out[19]= 88X Ø InterpolatingFunction@880., 0.25<<, <>D<<

NDSolve  is  able  to  solve  some  partial  differential  equations  directly  when  you  specify  more

independent variables.

6     Advanced Numerical Differential Equation Solving in Mathematica
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NDSolve@8eqn1,eqn2,…<,u,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for a func-
tion u@t, x …D with t in the range tmin to tmax and x in the 
range xmin to xmax, …

NDSolve@8eqn1,eqn2,…<,8u1,u2,…<,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for several 
functions ui

Finding numerical solutions to partial differential equations. 

Here is a solution of the heat equation found directly by NDSolve. 

In[20]:= NDSolveA9D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã x10,
u@0, tD ã 0, u@1, tD ã 1=, u, 8x, 0, 1<, 8t, 0, .25<E

Out[20]= 88u Ø InterpolatingFunction@880., 1.<, 80., 0.25<<, <>D<<

Here is a plot of the solution. 

In[21]:= Plot3D@Evaluate@First@u@x, tD ê. %DD, 8x, 0, 1<, 8t, 0, .25<D

Out[21]=

NDSolve  currently uses the numerical method of lines to compute solutions to partial differen-

tial equations. The method is restricted to problems that can be posed with an initial condition

in at least one independent variable. For example, the method cannot solve elliptic PDEs such

as  Laplace's  equation because these require  boundary values.  For  the problems it  does  solve,

the method of  lines is  quite general,  handling systems of  PDEs or  nonlinearity  well,  and often

quite  fast.  Details  of  the  method  are  given  in  "Numerical  Solution  of  Partial  Differential

Equations".
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This finds a numerical solution to a generalization of the nonlinear sine-Gordon equation to two 
spatial dimensions with periodic boundary conditions.

In[22]:= NDSolveA9D@u@t, x, yD, t, tD ã
D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,

u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -5, yD ã u@t, 5, yD ã 0, u@t, x, -5D ã u@t, x, 5D ã 0=,

u, 8t, 0, 3<, 8x, -5, 5<, 8y, -5, 5<E

Out[22]= 88u Ø InterpolatingFunction@880., 3.<, 8-5., 5.<, 8-5., 5.<<, <>D<<

Here is a plot of the result at t == 3.

In[23]:= Plot3D@First@u@3, x, yD ê. %D, 8x, -5, 5<, 8y, -5, 5<D

Out[23]=

As mentioned earlier, NDSolve  works by taking a sequence of steps in the independent variable

t.  NDSolve  uses an adaptive procedure to determine the size of these steps. In general, if  the

solution appears to be varying rapidly in a particular region, then NDSolve  will reduce the step

size to be able to better track the solution. 

NDSolve allows you to specify the precision or accuracy of result you want. In general, NDSolve

makes  the  steps  it  takes  smaller  and  smaller  until  the  solution  reached  satisfies  either  the

AccuracyGoal  or the PrecisionGoal  you give. The setting for AccuracyGoal  effectively deter-

mines  the  absolute  error  to  allow  in  the  solution,  while  the  setting  for  PrecisionGoal  deter-

mines the relative error. If you need to track a solution whose value comes close to zero, then

you  will  typically  need  to  increase  the  setting  for  AccuracyGoal.  By  setting

AccuracyGoal -> Infinity,  you  tell  NDSolve  to  use  PrecisionGoal  only.  Generally,

AccuracyGoal  and PrecisionGoal  are used to control the error local to a particular time step.

For some differential equations, this error can accumulate, so it is possible that the precision or

accuracy of  the result  at  the end of  the time interval  may be much less than what you might

expect from the settings of AccuracyGoal and PrecisionGoal.
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NDSolve  uses the setting you give for WorkingPrecision  to determine the precision to use in

its internal computations. If you specify large values for AccuracyGoal or PrecisionGoal, then

you  typically  need  to  give  a  somewhat  larger  value  for  WorkingPrecision.  With  the  default

setting of  Automatic,  both AccuracyGoal  and PrecisionGoal  are  equal  to  half  of  the setting

for WorkingPrecision.

NDSolve  uses  error  estimates  for  determining  whether  it  is  meeting  the  specified  tolerances.

When working with systems of equations, it uses the setting of the option NormFunction -> f  to

combine errors in different components. The norm is scaled in terms of the tolerances, given so

that NDSolve tries to take steps such that 

f
err1

tolr Abs@x1D + tola
,

err2

tolr Abs@x2D + tola
, … § 1

where erri is the ith component of the error and xi is the ithcomponent of the current solution.

This generates a high-precision solution to a differential equation. 

In[24]:= NDSolve@8x‘‘‘@tD == x@tD, x@0D == 1, x‘@0D == x‘‘@0D == 0<, x, 8t, 1<,
AccuracyGoal -> 20, PrecisionGoal -> 20, WorkingPrecision -> 25D

Out[24]= 88x Ø InterpolatingFunction@880, 1.000000000000000000000000<<, <>D<<

Here is the value of the solution at the endpoint.

In[25]:= x@1D ê. %

Out[25]= 81.168058313375918525580620<

Through its  adaptive procedure,  NDSolve  is  able  to  solve “stiff”  differential  equations in  which

there are several components varying with t at extremely different rates.

NDSolve  follows the general procedure of reducing step size until it tracks solutions accurately.

There  is  a  problem,  however,  when  the  true  solution  has  a  singularity.  In  this  case,  NDSolve

might  go  on  reducing  the  step  size  forever,  and  never  terminate.  To  avoid  this  problem,  the

option MaxSteps specifies the maximum number of steps that NDSolve will ever take in attempt-

ing  to  find  a  solution.  For  ordinary  differential  equations,  the  default  setting  is

MaxSteps -> 10000. 
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NDSolve stops after taking 10,000 steps. 

In[26]:= NDSolve@8y‘@xD == 1 ê x^2, y@-1D == 1<, y@xD, 8x, -1, 0<D

NDSolve::mxst : Maximum number of 10000 steps reached at the point x == -1.00413µ10-172. à

Out[26]= 99y@xD Ø InterpolatingFunctionA99-1., -1.00413µ10-172==, <>E@xD==

There is in fact a singularity in the solution at x = 0. 

In[27]:= Plot@Evaluate@y@xD ê. %D, 8x, -1, 0<D

Out[27]=

-1.0 -0.8 -0.6 -0.4 -0.2

4

6

8

10

12

The  default  setting  MaxSteps -> 10000  should  be  sufficient  for  most  equations  with  smooth

solutions. When solutions have a complicated structure, however, you may sometimes have to

choose larger settings for MaxSteps. With the setting MaxSteps -> Infinity  there is no upper

limit on the number of steps used. 

NDSolve  has several different methods built in for computing solutions as well as a mechanism

for  adding  additional  methods.  With  the  default  setting  Method -> Automatic,  NDSolve  will

choose a method which should be appropriate for the differential equations. For example, if the

equations have stiffness,  implicit  methods will  be used as needed,  or  if  the equations make a

DAE, a special DAE method will be used. In general, it is not possible to determine the nature of

solutions  to  differential  equations  without  actually  solving  them:  thus,  the  default  Automatic

methods are good for solving as wide variety of problems, but the one chosen may not be the

best one available for your particular problem. Also, you may want to choose methods, such as

symplectic integrators, which preserve certain properties of the solution.

Choosing an appropriate method for a particular system can be quite difficult. To complicate it

further, many methods have their own settings, which can greatly affect solution efficiency and

accuracy. Much of this documentation consists of descriptions of methods to give you an idea of

when they should be used and how to adjust them to solve particular problems. Furthermore,

NDSolve  has  a  mechanism  that  allows  you  to  define  your  own  methods  and  still  have  the

equations and results processed by NDSolve just as for the built-in methods.
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When NDSolve  computes  a  solution,  there  are  typically  three  phases.  First,  the  equations  are

processed, usually into a function that represents the right-hand side of the equations in normal

form. Next, the function is used to iterate the solution from the initial  conditions. Finally, data

saved  during  the  iteration  procedure  is  processed  into  one  or  more  InterpolatingFunction

objects. Using functions in the NDSolve` context, you can run these steps separately and, more

importantly,  have  more  control  over  the  iteration  process.  The  steps  are  tied  by  an

NDSolve`StateData  object,  which  keeps  all  of  the  data  necessary  for  solving  the  differential

equations.

The Design of the NDSolve Framework

Features

Supporting a large number of numerical integration methods for differential equations is a lot of

work.

In order to cut down on maintenance and duplication of code, common components are shared

between methods.

This approach also allows code optimization to be carried out in just a few central routines.

The principal features of the NDSolve framework are:

† Uniform design and interface

† Code reuse (common code base)

† Objection orientation (method property specification and communication)

† Data hiding

† Separation of method initialization phase and run-time computation

† Hierarchical and reentrant numerical methods

† Uniform treatment of rounding errors (see [HLW02], [SS03] and the references therein)

† Vectorized  framework  based  on  a  generalization  of  the  BLAS  model  [LAPACK99]  using
optimized in-place arithmetic
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† Tensor framework that allows families of methods to share one implementation

† Type and precision dynamic for all methods

† Plug-in capabilities that allow user extensibility and prototyping

† Specialized data structures

Common Time Stepping

A common time-stepping  mechanism is  used  for  all  one-step  methods.  The  routine  handles  a

number of different criteria including:

† Step sizes in a numerical integration do not become too small in value, which may happen
in solving stiff systems

† Step sizes do not change sign unexpectedly, which may be a consequence of user program-
ming error

† Step sizes are not increased after a step rejection

† Step sizes are not decreased drastically toward the end of an integration

† Specified (or detected) singularities are handled by restarting the integration

† Divergence of iterations in implicit methods (e.g. using fixed, large step sizes)

† Unrecoverable integration errors (e.g. numerical exceptions)

† Rounding  error  feedback  (compensated  summation)  is  particularly  advantageous  for  high-
order methods or methods that conserve specific quantities during the numerical integration

Data Encapsulation

Each method has its own data object that contains information that is needed for the invocation

of  the  method.  This  includes,  but  is  not  limited  to,  coefficients,  workspaces,  step-size  control

parameters, step-size acceptance/rejection information, and Jacobian matrices. This is a general -

ization of the ideas used in codes like LSODA ([H83], [P83]).
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Method Hierarchy

Methods  are  reentrant  and  hierarchical,  meaning  that  one  method  can  call  another.  This  is  a

generalization of the ideas used in the Generic ODE Solving System, Godess (see [O95], [O98]

and the references therein), which is implemented in C++.

Initial Design

The original method framework design allowed a number of methods to be invoked in the solver.

NDSolve  ö “ExplicitRungeKutta“

NDSolve  ö “ImplicitRungeKutta“

First Revision

This  was  later  extended  to  allow  one  method  to  call  another  in  a  sequential  fashion,  with  an

arbitrary number of levels of nesting.

NDSolve  ö “Extrapolation“  ö “ExplicitMidpoint“

The construction of compound integration methods is particularly useful in geometric numerical

integration.

NDSolve  ö “Projection“  ö “ExplicitRungeKutta“

Second Revision

A more general tree invocation process was required to implement composition methods.

NDSolve  ö “Composition“

ç “ExplicitEuler“

ª ª

ö “ImplicitEuler“

ª ª

é “ExplicitEuler“

This is an example of a method composed with its adjoint.
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Current State

The tree invocation process was extended to allow for a subfield to be solved by each method,

instead of the entire vector field.

This  example  turns  up  in  the  ABC  Flow  subsection  of  "Composition  and  Splitting  Methods  for

NDSolve".

NDSolve  ö “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö “ImplicitMidpoint“ f2
é “LocallyExact“ f1

User Extensibility

Built-in methods can be used as building blocks for the efficient construction of special-purpose

(compound) integrators. User-defined methods can also be added.

Method Classes

Methods  such  as  “ExplicitRungeKutta“  include  a  number  of  schemes  of  different  orders.

Moreover, alternative coefficient choices can be specified by the user. This is a generalization of

the ideas found in RKSUITE [BGS93].

Automatic Selection and User Controllability

The framework provides automatic step-size selection and method-order selection. Methods are

user-configurable via method options.

For example a user can select the class of “ExplicitRungeKutta“  methods, and the code will

automatically  attempt  to  ascertain  the  "optimal"  order  according  to  the  problem,  the  relative

and absolute local error tolerances, and the initial step-size estimate.
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Here is a list of options appropriate for “ExplicitRungeKutta“.

In[1]:= Options@NDSolve`ExplicitRungeKuttaD

Out[1]= :Coefficients Ø EmbeddedExplicitRungeKuttaCoefficients, DifferenceOrder Ø Automatic,
EmbeddedDifferenceOrder Ø Automatic, StepSizeControlParameters Ø Automatic,

StepSizeRatioBounds Ø :
1

8
, 4>, StepSizeSafetyFactors Ø Automatic, StiffnessTest Ø Automatic>

MethodMonitor

In  order  to  illustrate  the  low-level  behaviour  of  some methods,  such  as  stiffness  switching  or

order variation that occurs at run time , a new “MethodMonitor“ has been added.

This fits between the relatively coarse resolution of  “StepMonitor“  and the fine resolution of

“EvaluationMonitor“ .

StepMonitor

MethodMonitor

EvaluationMonitor

This feature is not officially documented and the functionality may change in future versions.

Shared Features

These features are not necessarily restricted to NDSolve  since they can also be used for other

types of numerical methods.

† Function  evaluation  is  performed  using  a  NumericalFunction  that  dynamically  changes
type as needed, such as when IEEE floating-point overflow or underflow occurs. It also calls
Mathematica's compiler Compile for efficiency when appropriate.

† Jacobian evaluation uses symbolic differentiation or finite difference approximations, includ-
ing automatic or user-specifiable sparsity detection.

† Dense  linear  algebra  is  based  on  LAPACK,  and  sparse  linear  algebra  uses  special-purpose
packages such as UMFPACK.

Advanced Numerical Differential Equation Solving in Mathematica     15



† Common subexpressions in the numerical evaluation of the function representing a differen-
tial system are detected and collected to avoid repeated work.

† Other  supporting  functionality  that  has  been  implemented  is  described  in  "Norms  in
NDSolve".

This  system dynamically  switches  type from real  to  complex during the numerical  integration,

automatically recompiling as needed.

In[2]:= y@1 ê 2D ê. NDSolve@8y‘@tD ã Sqrt@y@tDD - 1, y@0D ã 1 ê 10<,
y, 8t, 0, 1<, Method Ø “ExplicitRungeKutta“D

Out[2]= 8-0.349043 + 0.150441 Â<

Some Basic Methods

order method formula

1 Explicit Euler yn+1 = yn + hn f Htn, ynL

2 Explicit Midpoint yn+1ê2 = yn +
hn
2

f Htn, ynL

yn+1 = yn + hn f Htn+1ê2, yn+1ê2L

1 Backward or Implicit Euler 
(1-stage RadauIIA)

yn+1 = yn + hn f Htn+1, yn+1L

2 Implicit Midpoint (1-stage 
Gauss)

yn+1 = yn + hn f Jtn+1ê2,
1
2
Hyn+1 + ynLN

2 Trapezoidal (2-stage Lobatto 
IIIA)

yn+1 = yn +
hn
2
H f Htn, ynL + f Htn+1, yn+1LL

1 Linearly Implicit Euler HI - hn JL Hyn+1 - ynL = hn f Htn, ynL

2 Linearly Implicit Midpoint JI - hn
2

JN Hyn+1ê2 - ynL =
hn
2

f Htn, ynL

JI - hn
2

JN
ID yn-D yn-1ê2M

2
=

hn
2

f Htn+1ê2, yn+1ê2L - D yn-1ê2

Some of the one-step methods that have been implemented.

Here D yn = yn+1 - yn+1ê2, I denotes the identity matrix, and J denotes the Jacobian matrix ∂ f
∂y

Htn, ynL.

Although the  implicit  midpoint  method has  not  been implemented as  a  separate  method,  it  is

available through the one-stage Gauss scheme of the “ImplicitRungeKutta“ method.
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ODE Integration Methods

Methods

"ExplicitRungeKutta" Method for NDSolve

Introduction

This loads packages containing some test problems and utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Euler's Method

One of the first and simplest methods for solving initial value problems was proposed by Euler:

(1)yn+1 = yn + h f Htn, ynL.

Euler's method is not very accurate.

Local  accuracy  is  measured by  how high  terms are  matched with  the  Taylor  expansion  of  the

solution. Euler's method is first-order accurate, so that errors occur one order higher starting at

powers of h2.

Euler's method is implemented in NDSolve as “ExplicitEuler“.

In[5]:= NDSolve@8y‘@tD ã -y@tD, y@0D ã 1<, y@tD, 8t, 0, 1<,
Method Ø “ExplicitEuler“, “StartingStepSize“ Ø 1 ê 10D

Out[5]= 88y@tD Ø InterpolatingFunction@880., 1.<<, <>D@tD<<

Generalizing Euler's Method

The idea of Runge|Kutta methods is to take successive (weighted) Euler steps to approximate a

Taylor series. In this way function evaluations (and not derivatives) are used.
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For example, consider the one-step formulation of the midpoint method.

(1)

k1 = f Htn, ynL

k2 = f Jtn +
1
2

h, yn +
1
2

h k1N

yn+1 = yn + h k2

The midpoint method can be shown to have a local error of OIh3M, so it is second-order accurate.

The midpoint method is implemented in NDSolve as “ExplicitMidpoint“.

In[6]:= NDSolve@8y‘@tD ã -y@tD, y@0D ã 1<, y@tD, 8t, 0, 1<,
Method Ø “ExplicitMidpoint“, “StartingStepSize“ Ø 1 ê 10D

Out[6]= 88y@tD Ø InterpolatingFunction@880., 1.<<, <>D@tD<<

Runge|Kutta Methods

Extending the approach in (1), repeated function evaluation can be used to obtain higher order

methods.

Denote  the  Runge|Kutta  method  for  the  approximate  solution  to  an  initial  value  problem  at

tn+1 = tn + h, by:

(1)

gi = yn + h ⁄j=1
s ai, j k j,

ki = f Htn + ci h, giL, i = 1, 2, …, s,
yn+1 = yn + h ⁄i=1

s bi ki

where s is the number of stages.

It is generally assumed that the row-sum conditions hold:

(2)ci =⁄i=1
s ai, j

These conditions effectively determine the points in time at which the function is sampled and

are a particularly useful device in the derivation of high-order Runge|Kutta methods.

The  coefficients  of  the  method  are  free  parameters  that  are  chosen  to  satisfy  a  Taylor  series

expansion through some order in the time step h. In practice other conditions such as stability

can also constrain the coefficients.

Explicit Runge|Kutta methods are a special case where the matrix A is strictly lower triangular:

ai, j = 0, j ¥ i, j = 1, …, s.
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It has become customary to denote the method coefficients c = @ciDT, b = @biDT, and A = Aai, jE using a

Butcher table, which has the following form for explicit Runge|Kutta methods:

(3)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

cs as,1 as,2  as,s-1 0
b1 b2  bs-1 bs

The row-sum conditions can be visualized as summing across the rows of the table.

Notice that a consequence of explicitness is c1 = 0, so that the function is sampled at the begin-

ning of the current integration step.

Example

The Butcher table for the explicit midpoint method (1) is given by:

(1)

0 0 0
1
2

1
2

0

0 1

FSAL Schemes

A  particularly  interesting  special  class  of  explicit  Runge|Kutta  methods,  used  in  most  modern

codes, are those for which the coefficients have a special structure known as First Same As Last

(FSAL):

(1)as,i = bi, i = 1, …, s - 1 and bs = 0.

For consistent FSAL schemes the Butcher table (3) has the form:

(2)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

cs-1 as-1,1 as-1,2  0 0
1 b1 b2  bs-1 0

b1 b2  bs-1 0

The advantage of FSAL methods is that the function value ks  at the end of one integration step

is the same as the first function value k1 at the next integration step.
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The  function  values  at  the  beginning  and  end  of  each  integration  step  are  required  anyway

when constructing the InterpolatingFunction that is used for dense output in NDSolve.

Embedded Pairs and Local Error Estimation

An efficient means of obtaining local error estimates for adaptive step-size control is to consider

two  methods  of  different  orders  p  and  p`  that  share  the  same  coefficient  matrix  (and  hence

function values).

(1)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  0 ª

cs-1 as-1,1 as-1,2  0 0
cs as,1 as,2  as,s-1 0

b1 b2  bs-1 bs

b
`
1 b

`
2  b

`
s-1 b

`
s

These give two solutions:

(2)yn+1 = yn + h ⁄i=1
s bi ki

(3)y`n+1 = yn + h ⁄i=1
s b

`
i ki

A commonly used notation is pHp` L, typically with p` = p - 1 or p` = p + 1.

In  most  modern codes,  including the default  choice  in  NDSolve,  the solution is  advanced with

the more accurate formula so that p` = p - 1, which is known as local extrapolation.

The vector of coefficients e = Bb1 - b
`
1, b2 - b

`
2, …, bs - b

`
sF
T
 gives an error estimator avoiding subtrac-

tive cancellation of yn  in floating-point arithmetic when forming the difference between (2) and

(3).

errn = h ‚
i=1

s

ei ki

The quantity °errn¥ gives a scalar measure of the error that can be used for step size selection.

20     Advanced Numerical Differential Equation Solving in Mathematica



Step Control

The classical Integral (or I) step-size controller uses the formula:

(1)hn+1 = hn K
Tol

±errnµ
O
1íp~

where p
~
= minIp` , pM + 1.

The  error  estimate  is  therefore  used  to  determine  the  next  step  size  to  use  from the  current

step size.

The notation Tol ê°errn¥ is explained within "Norms in NDSolve".

Overview

Explicit Runge|Kutta pairs of orders 2(1) through 9(8) have been implemented.

Formula pairs have the following properties:

† First Same As Last strategy.

† Local  extrapolation  mode,  that  is,  the  higher-order  formula  is  used  to  propagate  the
solution.

† Stiffness detection capability (see "StiffnessTest Method Option for NDSolve").

† Proportional-Integral step-size controller for stiff and quasi-stiff systems [G91].

Optimal formula pairs of orders 2(1), 3(2), and 4(3) subject to the already stated requirements

have been derived using Mathematica, and are described in [SS04].

The 5(4) pair selected is due to Bogacki and Shampine [BS89b, S94] and the 6(5), 7(6), 8(7),

and 9(8) pairs are due to Verner.

For  the selection of  higher-order  pairs,  issues such as local  truncation error  ratio  and stability

region  compatibility  should  be  considered  (see  [S94]).  Various  tools  have  been  written  to

assess these qualitative features.

Methods are interchangeable so that, for example, it  is possible to substitute the 5(4) method

of Bogacki and Shampine with a method of Dormand and Prince.

Summation  of  the  method  stages  is  implemented  using  level  2  BLAS  which  is  often  highly

optimized for particular processors and can also take advantage of multiple cores.

Advanced Numerical Differential Equation Solving in Mathematica     21



Example

Define the Brusselator ODE problem, which models a chemical reaction.

In[7]:= system = GetNDSolveProblem@“BrusselatorODE“D

Out[7]= NDSolveProblemB:9HY1L
£@TD ã 1 - 4 Y1@TD + Y1@TD

2 Y2@TD, HY2L
£@TD ã 3 Y1@TD - Y1@TD

2 Y2@TD=,

:Y1@0D ã
3

2
, Y2@0D ã 3>, 8Y1@TD, Y2@TD<, 8T, 0, 20<, 8<, 8<, 8<>F

This solves the system using an explicit Runge|Kutta method.

In[8]:= sol = NDSolve@system, Method Ø “ExplicitRungeKutta“D

Out[8]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

Extract the interpolating functions from the solution.

In[9]:= ifuns = system@“DependentVariables“D ê. First@solD;

Plot the solution components.

In[10]:= ParametricPlot@Evaluate@ifunsD, Evaluate@system@“TimeData“DDD

Out[10]=

1.0 1.5 2.0 2.5 3.0 3.5

2

3

4

Method Comparison

Sometimes you may be interested to find out what methods are being used in NDSolve.

Here you can see the coefficients of the default 2(1) embedded pair.

In[11]:= NDSolve`EmbeddedExplicitRungeKuttaCoefficients@2, InfinityD

Out[11]= ::81<, :
1

2
,
1

2
>>, :

1

2
,
1

2
, 0>, 81, 1<, :-

1

2
,
2

3
, -

1

6
>>
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You also  may want  to  compare some of  the different  methods to  see how they perform for  a

specific problem.

Utilities

You will  make use of  a utility  function CompareMethods  for  comparing various methods.  Some

useful NDSolve features of this function for comparing methods are:

† The option EvaluationMonitor, which is used to count the number of function evaluations

† The  option  StepMonitor,  which  is  used  to  count  the  number  of  accepted  and  rejected
integration steps

This displays the results of the method comparison using a GridBox.

In[12]:= TabulateResults@labels_List, names_List, data_ListD :=
DisplayForm@

FrameBox@
GridBox@
Apply@8labels, ÒÒ< &, MapThread@Prepend, 8data, names<DD,
RowLines Ø True, ColumnLines Ø True

D
D

D ê; SameQ@Length@namesD, Length@dataDD;

Reference Solution

A number of examples for comparing numerical methods in the literature rely on the fact that a

closed-form solution is available, which is obviously quite limiting.

In NDSolve  it is possible to get very accurate approximations using arbitrary-precision adaptive

step size; these are adaptive order methods based on “Extrapolation“.

The following reference solution is computed with a method that switches between a pair of 
“Extrapolation“ methods, depending on whether the problem appears to be stiff.

In[13]:= sol = NDSolve@system, Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32D;

refsol = First@FinalSolutions@system, solDD;

Automatic Order Selection

When  you  select  “DifferenceOrder“ -> Automatic,  the  code  will  automatically  attempt  to

choose the optimal order method for the integration.

Two  algorithms  have  been  implemented  for  this  purpose  and  are  described  within

"SymplecticPartitionedRungeKutta Method for NDSolve".
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Example 1

Here is an example that compares built-in methods of various orders, together with the method

that is selected automatically.

This selects the order of the methods to choose between and makes a list of method options to 
pass to NDSolve.

In[15]:= orders = Join@Range@2, 9D, 8Automatic<D;

methods = Table@8“ExplicitRungeKutta“, “DifferenceOrder“ Ø Part@orders, iD,
“StiffnessTest“ Ø False<, 8i, Length@ordersD<D;

Compute the number of integration steps, function evaluations, and the endpoint global error.

In[17]:= data = CompareMethods@system, refsol, methodsD;

Display the results in a table.

In[18]:= labels = 8“Method“, “Steps“, “Cost“, “Error“<;

TabulateResults@labels, orders, dataD
Out[19]//DisplayForm=

Method Steps Cost Error

2 8124381, 0< 248764 1.90685µ10-8

3 84247, 2< 12749 3.45492µ10-8

4 8940, 6< 3786 8.8177µ10-9

5 8188, 16< 1430 1.01784µ10-8

6 8289, 13< 2418 1.63157µ10-10

7 8165, 19< 1842 2.23919µ10-9

8 887, 16< 1341 1.20179µ10-8

9 891, 24< 1842 1.01705µ10-8

Automatic 891, 24< 1843 1.01705µ10-8

The default method has order nine, which is close to the optimal order of eight in this example.

One function evaluation is needed during the initialization phase to determine the order.

Example 2

A  limitation  of  the  previous  example  is  that  it  did  not  take  into  account  the  accuracy  of  the

solution obtained by each method, so that it did not give a fair reflection of the cost.

Rather  than  taking  a  single  tolerance  to  compare  methods,  it  is  preferable  to  use  a  range  of

tolerances.

The  following  example  compares  various  “ExplicitRungeKutta“  methods  of  different  orders

using a variety of tolerances.
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This selects the order of the methods to choose between and makes a list of method options to 
pass to NDSolve.

In[20]:= orders = Join@Range@4, 9D, 8Automatic<D;

methods = Table@8“ExplicitRungeKutta“, “DifferenceOrder“ Ø Part@orders, iD,
“StiffnessTest“ Ø False<, 8i, Length@ordersD<D;

The data comparing accuracy and work is computed using CompareMethods for a range of 
tolerances.

In[22]:= data = Table@Map@Rest, CompareMethods@system, refsol,
methods, AccuracyGoal Ø tol, PrecisionGoal Ø tolDD, 8tol, 3, 14<D;

The work-error comparison data for the various methods is displayed in the following logarith-
mic plot, where the global error is displayed on the vertical axis and the number of function 
evaluations on the horizontal axis. The default order selected (displayed in red) can be seen to 
increase as the tolerances are increased.

In[23]:= ListLogLogPlot@Transpose@dataD, Joined Ø True, Axes Ø False, Frame Ø True,
PlotMarkers Ø Map@Style@Ò, MediumD &, Join@Drop@orders, -1D, 8“A“<DD,
PlotStyle Ø 88Black<, 8Black<, 8Black<, 8Black<, 8Black<, 8Black<, 8Red<<D

Out[23]=
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The order-selection algorithms are heuristic in that the optimal order may change through the

integration but, as the examples illustrate, a reasonable default choice is usually made.

Ideally, a selection of different problems should be used for benchmarking.

Coefficient plug-in

The implementation of “ExplicitRungeKutta“ provides a default method pair at each order.

Sometimes, however, it is convenient to use a different method, for example:

† To replicate the results of someone else.

† To use a special-purpose method that works well for a specific problem.

† To experiment with a new method.
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The Classical Runge|Kutta Method

This shows how to define the coefficients of the classical explicit Runge|Kutta method of order 
four, approximated to precision p.

In[24]:= crkamat = 881 ê 2<, 80, 1 ê 2<, 80, 0, 1<<;
crkbvec = 81 ê 6, 1 ê 3, 1 ê 3, 1 ê 6<;
crkcvec = 81 ê 2, 1 ê 2, 1<;
ClassicalRungeKuttaCoefficients@4, p_D := N@8crkamat, crkbvec, crkcvec<, pD;

The method has no embedded error estimate and hence there is no specification of the coeffi-

cient error vector. This means that the method is invoked with fixed step sizes.

Here is an example of the calling syntax.

In[27]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 4,
“Coefficients“ Ø ClassicalRungeKuttaCoefficients<, StartingStepSize Ø 1 ê 10D

Out[27]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

ode23

This defines the coefficients for a 3(2) FSAL explicit Runge|Kutta pair.

The third-order formula is  due to Ralston,  and the embedded method was derived by Bogacki

and Shampine [BS89a].

This defines a function for computing the coefficients to a desired precision.

In[28]:= BSamat = 881 ê 2<, 80, 3 ê 4<, 82 ê 9, 1 ê 3, 4 ê 9<<;
BSbvec = 82 ê 9, 1 ê 3, 4 ê 9, 0<;
BScvec = 81 ê 2, 3 ê 4, 1<;
BSevec = 8-5 ê 72, 1 ê 12, 1 ê 9, -1 ê 8<;
BSCoefficients@4, p_D :=

N@8BSamat, BSbvec, BScvec, BSevec<, pD;

The  method  is  used  in  the  Texas  Instruments  TI-85  pocket  calculator,  Matlab  and  RKSUITE

[S94]. Unfortunately it does not allow for the form of stiffness detection that has been chosen.

A Method of Fehlberg

This defines the coefficients for a 4(5) explicit Runge|Kutta pair of Fehlberg that was popular in

the 1960s [F69].

The fourth-order formula is used to propagate the solution, and the fifth-order formula is used

only for the purpose of error estimation.
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This defines the function for computing the coefficients to a desired precision.

In[33]:= Fehlbergamat = 8
81 ê 4<,
83 ê 32, 9 ê 32<,
81932 ê 2197, -7200 ê 2197, 7296 ê 2197<, 8439 ê 216, -8, 3680 ê 513, -845 ê 4104<,
8-8 ê 27, 2, -3544 ê 2565, 1859 ê 4104, -11 ê 40<<;

Fehlbergbvec = 825 ê 216, 0, 1408 ê 2565, 2197 ê 4104, -1 ê 5, 0<;
Fehlbergcvec = 81 ê 4, 3 ê 8, 12 ê 13, 1, 1 ê 2<;
Fehlbergevec = 8-1 ê 360, 0, 128 ê 4275, 2197 ê 75240, -1 ê 50, -2 ê 55<;
FehlbergCoefficients@4, p_D :=

N@8Fehlbergamat, Fehlbergbvec, Fehlbergcvec, Fehlbergevec<, pD;

In contrast to the classical Runge|Kutta method of order four, the coefficients include an addi-

tional entry that is used for error estimation.

The Fehlberg method is not a FSAL scheme since the coefficient matrix is not of the form (2); it

is a six-stage scheme, but it requires six function evaluations per step because of the function

evaluation that is required at the end of the step to construct the InterpolatingFunction.

A Dormand|Prince Method

Here is  how to define a 5(4) pair  of  Dormand and Prince coefficients [DP80].  This is  currently

the method used by ode45 in Matlab.

This defines a function for computing the coefficients to a desired precision.

In[38]:= DOPRIamat = 8
81 ê 5<,
83 ê 40, 9 ê 40<,
844 ê 45, -56 ê 15, 32 ê 9<,
819372 ê 6561, -25360 ê 2187, 64448 ê 6561, -212 ê 729<,
89017 ê 3168, -355 ê 33, 46732 ê 5247, 49 ê 176, -5103 ê 18656<,
835 ê 384, 0, 500 ê 1113, 125 ê 192, -2187 ê 6784, 11 ê 84<<;

DOPRIbvec = 835 ê 384, 0, 500 ê 1113, 125 ê 192, -2187 ê 6784, 11 ê 84, 0<;
DOPRIcvec = 81 ê 5, 3 ê 10, 4 ê 5, 8 ê 9, 1, 1<;
DOPRIevec =

871 ê 57600, 0, -71 ê 16695, 71 ê 1920, -17253 ê 339200, 22 ê 525, -1 ê 40<;
DOPRICoefficients@5, p_D :=

N@8DOPRIamat, DOPRIbvec, DOPRIcvec, DOPRIevec<, pD;

The Dormand|Prince method is a FSAL scheme since the coefficient matrix is of the form (2); it

is a seven-stage scheme, but effectively uses only six function evaluations.

Here is how the coefficients of Dormand and Prince can be used in place of the built-in choice. 
Since the structure of the coefficients includes an error vector, the implementation is able to 
ascertain that adaptive step sizes can be computed.

In[43]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 5,
“Coefficients“ Ø DOPRICoefficients, “StiffnessTest“ Ø False<D

Out[43]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<
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Method Comparison

Here you solve a system using several explicit Runge|Kutta pairs.

For the Fehlberg 4(5) pair, the option “EmbeddedDifferenceOrder“ is used to specify the 
order of the embedded method.

In[44]:= Fehlberg45 = 8“ExplicitRungeKutta“, “Coefficients“ Ø FehlbergCoefficients,
“DifferenceOrder“ Ø 4, “EmbeddedDifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

The Dormand and Prince 5(4) pair is defined as follows.

In[45]:= DOPRI54 = 8“ExplicitRungeKutta“, “Coefficients“ Ø DOPRICoefficients,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

The 5(4) pair of Bogacki and Shampine is the default order-five method.

In[46]:= BS54 = 8“ExplicitRungeKutta“,
“Coefficients“ Ø “EmbeddedExplicitRungeKuttaCoefficients“,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

Put the methods and some descriptive names together in a list.

In[47]:= names = 8“Fehlberg 4H5L“, “Dormand-Prince 5H4L“, “Bogacki-Shampine 5H4L“<;

methods = 8Fehlberg45, DOPRI54, BS54<;

Compute the number of integration steps, function evaluations, and the endpoint global error.

In[49]:= data = CompareMethods@system, refsol, methodsD;

Display the results in a table.

In[50]:= labels = 8“Method“, “Steps“, “Cost“, “Error“<;

TabulateResults@labels, names, dataD
Out[51]//DisplayForm=

Method Steps Cost Error

Fehlberg 4 H5L 8320, 11< 1977 1.52417µ10-7

Dormand - Prince 5 H4L 8292, 10< 1814 1.73878µ10-8

Bogacki - Shampine 5 H4L 8188, 16< 1430 1.01784µ10-8

The default method was the least expensive and provided the most accurate solution.

Method Plug-in

This shows how to implement the classical explicit Runge|Kutta method of order four using the

method plug-in environment.
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This definition is optional since the method in fact has no data. However, any expression can be 
stored inside the data object. For example, the coefficients could be approximated here to avoid 
coercion from rational to floating-point numbers at each integration step.

In[52]:= ClassicalRungeKutta ê:
NDSolve`InitializeMethod@ClassicalRungeKutta, __D := ClassicalRungeKutta@D;

The actual method implementation is written using a stepping procedure.

In[53]:= ClassicalRungeKutta@___D@“Step“@f_, t_, h_, y_, yp_DD :=
Block@8deltay, k1, k2, k3, k4<,
k1 = yp;
k2 = f@t + 1 ê 2 h, y + 1 ê 2 h k1D;
k3 = f@t + 1 ê 2 h, y + 1 ê 2 h k2D;
k4 = f@t + h, y + h k3D;
deltay = h H1 ê 6 k1 + 1 ê 3 k2 + 1 ê 3 k3 + 1 ê 6 k4L;
8h, deltay<

D;

Notice that the implementation closely resembles the description that you might find in a text-

book. There are no memory allocation/deallocation statements or type declarations, for exam-

ple. In fact the implementation works for machine real numbers or machine complex numbers,

and even using arbitrary-precision software arithmetic.

Here is an example of the calling syntax. For simplicity the method only uses fixed step sizes, 
so you need to specify what step sizes to take.

In[54]:= NDSolve@system, Method Ø ClassicalRungeKutta, StartingStepSize Ø 1 ê 10D

Out[54]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

Many  of  the  methods  that  have  been  built  into  NDSolve  were  first  prototyped  using  top-level

code before being implemented in the kernel for efficiency.

Stiffness

Stiffness is a combination of problem, initial data, numerical method, and error tolerances.

Stiffness can arise, for example, in the translation of diffusion terms by divided differences into

a large system of ODEs.

In  order  to  understand  more  about  the  nature  of  stiffness  it  is  useful  to  study  how  methods

behave when applied to a simple problem.
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Linear Stability

Consider  applying  a  Runge|Kutta  method  to  a  linear  scalar  equation  known  as  Dahlquist's

equation:

(1)

The result is a rational function of polynomials RHzL where z = h l (see for example [L87]).

This  utility  function  finds  the  linear  stability  function  RHzL  for  Runge|Kutta  methods.  The  form

depends on the coefficients and is a polynomial if the Runge|Kutta method is explicit.

Here is the stability function for the fifth-order scheme in the Dormand|Prince 5(4) pair.

In[55]:= DOPRIsf = RungeKuttaLinearStabilityFunction@DOPRIamat, DOPRIbvec, zD

Out[55]= 1 + z +
z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

600

This function finds the linear stability function RHzL for Runge|Kutta methods. The form depends

on the coefficients and is a polynomial if the Runge|Kutta method is explicit.

The following package is useful for visualizing linear stability regions for numerical methods for 
differential equations.

In[56]:= Needs@“FunctionApproximations`“D;

You can now visualize the absolute stability region †RHzL§ = 1.

In[57]:= OrderStarPlot@DOPRIsf, 1, zD

Out[57]=
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Depending on the magnitude of l in (1), if you choose the step size h such that †RHh lL§ < 1, then

errors in successive steps will be damped, and the method is said to be absolutely stable.

If †RHh lL§ > 1, then step-size selection will be restricted by stability and not by local accuracy.

Stiffness Detection

The  device  for  stiffness  detection  that  is  used  with  the  option  “StiffnessTest“  is  described

within "StiffnessTest Method Option for NDSolve".

Recast  in  terms  of  explicit  Runge|Kutta  methods,  the  condition  for  stiffness  detection  can  be

formulated as:

(2)l
~
=

±ks-ks-1µ

±gs-gs-1µ

with gi and ki defined in (1).

The  difference  gs - gs-1  can  be  shown  to  correspond  to  a  number  of  applications  of  the  power

method applied to h J. 

The difference is therefore a good approximation of the eigenvector corresponding to the lead-

ing eigenvalue.

The product £h l
~
ß  gives an estimate that can be compared to the stability boundary in order to

detect stiffness.

An s-stage explicit Runge|Kutta has a form suitable for (2) if cs-1 = cs = 1.

(3)

0 0 0  0 0
c2 a2,1 0  0 0
ª ª ª  ª ª

1 as-1,1 as-1,2  0 0
1 as,1 as,2  as,s-1 0

b1 b2  bs-1 bs

The default embedded pairs used in “ExplicitRungeKutta“ all have the form (3).

An important point is that (2) is very cheap and convenient; it uses already available informa-

tion from the integration and requires no additional function evaluations.

Another  advantage  of  (3)  is  that  it  is  straightforward  to  make  use  of  consistent  FSAL

methods (1).
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Another  advantage  of  (3)  is  that  it  is  straightforward  to  make  use  of  consistent  FSAL

methods (1).

Examples

Select a stiff system modeling a chemical reaction.

In[58]:= system = GetNDSolveProblem@“Robertson“D;

This applies a built-in explicit Runge|Kutta method to the stiff system.

By default stiffness detection is enabled, since it only has a small impact on the running time.

In[59]:= NDSolve@system, Method Ø “ExplicitRungeKutta“D;

NDSolve::ndstf :
At T == 0.012555829610695773`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

The coefficients of the Dormand|Prince 5(4) pair are of the form (3) so stiffness detection is 
enabled.

In[60]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 5, “Coefficients“ Ø DOPRICoefficients<D;

NDSolve::ndstf :
At T == 0.009820727841725293`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

Since no “LinearStabilityBoundary“ property has been specified, a default value is 
chosen. In this case the value corresponds to a generic method of order 5.

In[61]:= genlsb = NDSolve`LinearStabilityBoundary@5D

Out[61]= RootA240 + 120 Ò1 + 60 Ò12 + 20 Ò13 + 5 Ò14 + Ò15 &, 1E

You can set up an equation in terms of the linear stability function and solve it exactly to find 
the point where the contour crosses the negative real axis.

In[62]:= DOPRIlsb = Reduce@Abs@DOPRIsfD ã 1 && z < 0, zD

Out[62]= z ã RootA600 + 300 Ò1 + 100 Ò12 + 25 Ò13 + 5 Ò14 + Ò15 &, 1E

The default generic value is very slightly smaller in magnitude than the computed value.

In[63]:= N@8genlsb, DOPRIlsb@@2DD<D

Out[63]= 8-3.21705, -3.30657<

In  general,  there  may  be  more  than  one  point  of  intersection,  and  it  may  be  necessary  to

choose the appropriate solution.
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The following definition sets the value of the linear stability boundary.

In[64]:= DOPRICoefficients@5D@“LinearStabilityBoundary“D =
Root@600 + 300 * Ò1 + 100 * Ò1^2 + 25 * Ò1^3 + 5 * Ò1^4 + Ò1^5 &, 1, 0D;

Using the new value for this example does not affect the time at which stiffness is detected.

In[65]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 5, “Coefficients“ Ø DOPRICoefficients<D;

NDSolve::ndstf :
At T == 0.009820727841725293`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

The Fehlberg 4(5) method does not have the correct coefficient structure (3) required for stiff-

ness detection, since cs = 1 ê2 ≠ 1.

The  default  value  “StiffnessTest“ -> Automatic  checks  to  see  if  the  method  coefficients

provide a stiffness detection capability; if they do, then stiffness detection is enabled.

Step Control Revisited

There are some reasons to look at alternatives to the standard Integral step controller (1) when

considering mildly stiff problems.

This system models a chemical reaction.

In[66]:= system = GetNDSolveProblem@“Robertson“D;

This defines an explicit Runge|Kutta method based on the Dormand|Prince coefficients that does 
not use stiffness detection.

In[67]:= IERK = 8“ExplicitRungeKutta“, “Coefficients“ Ø DOPRICoefficients,
“DifferenceOrder“ Ø 5, “StiffnessTest“ Ø False<;

This solves the system and plots the step sizes that are taken using the utility function 
StepDataPlot.

In[68]:= isol = NDSolve@system, Method Ø IERKD;
StepDataPlot@isolD

Out[69]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0015

Solving a stiff or mildly stiff problem with the standard step-size controller leads to large oscilla-

tions, sometimes leading to a number of undesirable step-size rejections.

The study of this issue is known as step-control stability.
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It can be studied by matching the linear stability regions for the high- and low-order methods in

an embedded pair.

One approach to addressing the oscillation is  to derive special  methods, but this compromises

the local accuracy.

PI Step Control

An appealing alternative to Integral step control (1) is Proportional-Integral or PI step control.

In  this  case  the  step  size  is  selected  using  the  local  error  in  two  successive  integration  steps

according to the formula:

(1)hn+1 = hn K
Tol

±errnµ
O
k1íp

~

K
±errn-1µ

±errnµ
O
k2íp

~

This has the effect of damping and hence gives a smoother step-size sequence.

Note that Integral step control (1) is a special case of (1) and is used if a step is rejected:

k1 = 1, k2 = 0 .

The  option  “StepSizeControlParameters“ -> 8k1, k2<  can  be  used  to  specify  the  values  of  k1
and k2.

The scaled error estimate in (1) is taken to be °errn-1¥ = °errn¥ for the first integration step.

Examples

Stiff Problem

This  defines  a  method similar  to  IERK  that  uses  the  option  “StepSizeControlParameters“  to

specify a PI controller.

Here you use generic control parameters suggested by Gustafsson:

k1 = 3 ê10, k2 = 2 ê5

This specifies the step-control parameters.

In[70]:= PIERK = 8“ExplicitRungeKutta“,
“Coefficients“ Ø DOPRICoefficients, “DifferenceOrder“ Ø 5,
“StiffnessTest“ Ø False, “StepSizeControlParameters“ Ø 83 ê 10, 2 ê 5<<;
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Solving the system again, it can be observed that the step-size sequence is now much 
smoother.

In[71]:= pisol = NDSolve@system, Method Ø PIERKD;
StepDataPlot@pisolD

Out[72]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0015

Nonstiff Problem

In general the I step controller (1) is able to take larger steps for a nonstiff problem than the PI

step controller (1) as the following example illustrates.

Select and solve a nonstiff system using the I step controller.

In[73]:= system = GetNDSolveProblem@“BrusselatorODE“D;

In[74]:= isol = NDSolve@system, Method Ø IERKD;
StepDataPlot@isolD

Out[75]=
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Using the PI step controller the step sizes are slightly smaller.

In[76]:= pisol = NDSolve@system, Method Ø PIERKD;
StepDataPlot@pisolD

Out[77]=
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For this reason, the default setting for “StepSizeControlParameters“ is Automatic  , which is

interpreted as:

† Use the I step controller (1) if “StiffnessTest“ -> False.

† Use the PI step controller (1) if “StiffnessTest“ -> True.
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Fine-Tuning

Instead of using (1) directly, it is common practice to use safety factors to ensure that the error

is  acceptable  at  the  next  step  with  high  probability,  thereby  preventing  unwanted  step

rejections.

The option “StepSizeSafetyFactors“ -> 8s1, s2< specifies the safety factors to use in the step-

size estimate so that (1) becomes:

(1)hn+1 = hn s1 K
s2 Tol
±errnµ

O
k1íp

~

K
±errn-1µ

±errnµ
O
k2íp

~

.

Here s1 is an absolute factor and s2 typically scales with the order of the method.

The  option  “StepSizeRatioBounds“ -> 8srmin, srmax<  specifies  bounds  on  the  next  step  size  to

take such that:

(2)srmin § ¢
hn+1
hn

¶ § srmax.

Option summary

Options of the method “ExplicitRungeKutta“. 
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option name default value

"Coefficients" EmbeddedExplicÖ
itRungeKuttaÖ
Coefficients

specify the coefficients of the explicit 
Runge|Kutta method

"DifferenceOrder" Automatic specify the order of local accuracy

"EmbeddedDifferenceOrder" Automatic specify the order of the embedded method 
in a pair of explicit Runge|Kutta methods

"StepSizeControlParameters
"

Automatic specify the PI step-control parameters (see 
(1))

"StepSizeRatioBounds" :
1
8
,4> specify the bounds on a relative change in 

the new step size (see (2))

"StepSizeSafetyFactors" Automatic specify the safety factors to use in the step-
size estimate (see (1))

"StiffnessTest" Automatic specify whether to use the stiffness detec -
tion capability



The default  setting of  Automatic  for  the option “DifferenceOrder“  selects  the default  coeffi-

cient order based on the problem, initial values-and local error tolerances, balanced against the

work of the method for each coefficient set.

The default setting of Automatic  for the option “EmbeddedDifferenceOrder“ specifies that the

default  order  of  the  embedded  method  is  one  lower  than  the  method  order.  This  depends  on

the value of the “DifferenceOrder“ option.

The default setting of Automatic for the option “StepSizeControlParameters“ uses the values

81, 0< if stiffness detection is active and 83 ê 10, 2 ê 5< otherwise.

The  default  setting  of  Automatic  for  the  option  “StepSizeSafetyFactors“  uses  the  values

817 ê 20, 9 ê 10< if the I step controller (1) is used and 89 ê 10, 9 ê 10< if the PI step controller

(1)  is  used.  The  step  controller  used  depends  on  the  values  of  the  options

“StepSizeControlParameters“ and “StiffnessTest“.

The default setting of Automatic for the option “StiffnessTest“ will activate the stiffness test

if if the coefficients have the form (3).

"ImplicitRungeKutta" Method for NDSolve

Introduction

Implicit Runge|Kutta methods have a number of desirable properties.

The  Gauss|Legendre  methods,  for  example,  are  self-adjoint,  meaning  that  they  provide  the

same solution when integrating forward or backward in time.

This loads packages defining some example problems and utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Coefficients

A generic framework for implicit Runge|Kutta methods has been implemented. The focus so far

is on methods with interesting geometric properties and currently covers the following schemes:

† “ImplicitRungeKuttaGaussCoefficients“

† “ImplicitRungeKuttaLobattoIIIACoefficients“
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† “ImplicitRungeKuttaLobattoIIIBCoefficients“

† “ImplicitRungeKuttaLobattoIIICCoefficients“

† “ImplicitRungeKuttaRadauIACoefficients“

† “ImplicitRungeKuttaRadauIIACoefficients“

The  derivation  of  the  method  coefficients  can  be  carried  out  to  arbitrary  order  and  arbitrary

precision.

Coefficient Generation

† Start with the definition of the polynomial, defining the abscissas of the s stage coefficients.
For example, the abscissas for Gauss|Legendre methods are defined as ds

dxs
xsH1 - xLs.

† Univariate polynomial factorization gives the underlying irreducible polynomials defining the
roots of the polynomials.

† Root  objects  are  constructed  to  represent  the  solutions  (using  unique  root  isolation  and
Jenkins|Traub for the numerical approximation).

† Root objects are then approximated numerically for precision coefficients.

† Condition estimates for Vandermonde systems governing the coefficients yield the precision
to take in approximating the roots numerically.

† Specialized  solvers  for  nonconfluent  Vandermonde  systems  are  then  used  to  solve  equa-
tions for the coefficients (see [GVL96]).

† One step  of  iterative  refinement  is  used  to  polish  the  approximate  solutions  and  to  check
that the coefficients are obtained to the requested precision.

This generates the coefficients for the two-stage fourth-order Gauss|Legendre method to 50 
decimal digits of precision.

In[5]:= NDSolve`ImplicitRungeKuttaGaussCoefficients@4, 50D

Out[5]= 8880.25000000000000000000000000000000000000000000000000,
-0.038675134594812882254574390250978727823800875635063<,

80.53867513459481288225457439025097872782380087563506,
0.25000000000000000000000000000000000000000000000000<<,

80.50000000000000000000000000000000000000000000000000,
0.50000000000000000000000000000000000000000000000000<,

80.21132486540518711774542560974902127217619912436494,
0.78867513459481288225457439025097872782380087563506<<

The coefficients have the form 9a, bT , cT=.
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This generates the coefficients for the two-stage fourth-order Gauss|Legendre method exactly. 
For high-order methods, generating the coefficients exactly can often take a very long time.

In[6]:= NDSolve`ImplicitRungeKuttaGaussCoefficients@4, InfinityD

Out[6]= :::
1

4
,

1

12
3 - 2 3 >, :

1

12
3 + 2 3 ,

1

4
>>, :

1

2
,
1

2
>, :

1

6
3 - 3 ,

1

6
3 + 3 >>

This generates the coefficients for the six-stage tenth-order RaduaIA implicit Runge|Kutta 
method to 20 decimal digits of precision.

In[7]:= NDSolve`ImplicitRungeKuttaRadauIACoefficients@10, 20D

Out[7]= 8880.040000000000000000000, -0.087618018725274235050,
0.085317987638600293760, -0.055818078483298114837, 0.018118109569972056127<,

80.040000000000000000000, 0.12875675325490976116, -0.047477730403197434295,
0.026776985967747870688, -0.0082961444756796453993<,

80.040000000000000000000, 0.23310008036710237092, 0.16758507013524896344,
-0.032883343543501401775, 0.0086077606722332473607<,

80.040000000000000000000, 0.21925333267709602305, 0.33134489917971587453,
0.14621486784749350665, -0.013656113342429231907<,

80.040000000000000000000, 0.22493691761630663460, 0.30390571559725175840,
0.30105430635402060050, 0.072998864317903324306<<,

80.040000000000000000000, 0.22310390108357074440, 0.31182652297574125408,
0.28135601514946206019, 0.14371356079122594132<,

80, 0.13975986434378055215, 0.41640956763108317994,
0.72315698636187617232, 0.94289580388548231781<<

Examples

Load an example problem.

In[8]:= system = GetNDSolveProblem@“PerturbedKepler“D;
vars = system@“DependentVariables“D;

This problem has two invariants that should remain constant. A numerical method may not be 
able to conserve these invariants.

In[10]:= invs = system@“Invariants“D

Out[10]= :-
1

400 IY1@TD2 + Y2@TD2M
3ë2

-
1

Y1@TD2 + Y2@TD2
+
1

2
IY3@TD

2 + Y4@TD
2M, -Y2@TD Y3@TD + Y1@TD Y4@TD>

This solves the system using an implicit Runge|Kutta Gauss method. The order of the scheme is 
selected using the “DifferenceOrder“ method option.

In[11]:= sol = NDSolve@system, Method Ø
8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “DifferenceOrder“ Ø 10<<,

StartingStepSize Ø 1 ê 10D
Out[11]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica     39



A plot of the error in the invariants shows an increase as the integration proceeds.

In[12]:= InvariantErrorPlot@invs, vars, T, sol,
PlotStyle Ø 8Red, Blue<, InvariantErrorSampleRate Ø 1D

Out[12]=

0 20 40 60 80 100
0

5.µ 10-11

1.µ 10-10

1.5µ 10-10

2.µ 10-10

The  “ImplicitSolver“  method  of  “ImplicitRungeKutta“  has  options  AccuracyGoal  and

PrecisionGoal  that specify the absolute and relative error to aim for in solving the nonlinear

system of equations.

These  options  have  the  same  default  values  as  the  corresponding  options  in  NDSolve,  since

often there is little point in solving the nonlinear system to much higher accuracy than the local

error of the method.

However, for certain types of problems it can be useful to solve the nonlinear system up to the 
working precision.

In[13]:= sol = NDSolve@system,
Method Ø 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “DifferenceOrder“ Ø 10,

“ImplicitSolver“ Ø 8“Newton“, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision,
“IterationSafetyFactor“ Ø 1<<<, StartingStepSize Ø 1 ê 10D

Out[13]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

The first invariant is the Hamiltonian of the system, and the error is now bounded, as it should

be, since the Gauss implicit Runge|Kutta method is a symplectic integrator.
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The second invariant is conserved exactly (up to roundoff) since the Gauss implicit Runge|Kutta 
method conserves quadratic invariants.

In[14]:= InvariantErrorPlot@invs, vars, T, sol,
PlotStyle Ø 8Red, Blue<, InvariantErrorSampleRate Ø 1D

Out[14]=

0 20 40 60 80 100
0

1.µ 10-11

2.µ 10-11

3.µ 10-11

4.µ 10-11

5.µ 10-11

6.µ 10-11

This  defines  the  implicit  midpoint  method  as  the  one-stage  implicit  Runge|Kutta  method  of

order two.

For this problem it can be more efficient to use a fixed-point iteration instead of a Newton 
iteration to solve the nonlinear system.

In[15]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ ->
“ImplicitRungeKuttaGaussCoefficients“, “DifferenceOrder“ Ø 2,

“ImplicitSolver“ Ø 8“FixedPoint“, “AccuracyGoal“ Ø MachinePrecision,
“PrecisionGoal“ Ø MachinePrecision, “IterationSafetyFactor“ Ø 1 <<<;

In[16]:= NDSolve@system, 8T, 0, 1<, Method Ø ImplicitMidpoint, StartingStepSize Ø 1 ê 100D

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y4@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

At  present,  the  implicit  Runge|Kutta  method  framework  does  not  use  banded  Newton  tech-

niques for uncoupling the nonlinear system.
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Option Summary

"ImplicitRungeKutta" Options

Options of the method “ImplicitRungeKutta“.

The  default  setting  of  Automatic  for  the  option  “StepSizeSafetyFactors“  uses  the  values

89 ê 10, 9 ê 10<.

"ImplicitSolver" Options

option name default value

AccuracyGoal Automatic specify the absolute tolerance to use in 
solving the nonlinear system

“IterationSafetyFactor“ 1
100

specify the safety factor to use in solving 
the nonlinear system

MaxIterations Automatic specify the maximum number of iterations 
to use in solving the nonlinear system

PrecisionGoal Automatic specify the relative tolerance to use in 
solving the nonlinear system

Common options of “ImplicitSolver“.
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option name default value

"Coefficients" "ImplicitRungeÖ
KuttaGausÖ
sCoefficiÖ
ents"

specify the coefficients to use in the 
implicit Runge|Kutta method

"DifferenceOrder" Automatic specify the order of local accuracy of the 
method

"ImplicitSolver" "Newton" specify the solver to use for the nonlinear 
system; valid settings are FixedPoint or 
"Newton"

"StepSizeControlParameters
"

Automatic specify the step control parameters

"StepSizeRatioBounds" :
1
8
,4> specify the bounds on a relative change in 

the new step size

"StepSizeSafetyFactors" Automatic specify the safety factors to use in the step 
size estimate



Options specific to the “Newton“ method of “ImplicitSolver“.

"SymplecticPartitionedRungeKutta" Method for NDSolve

Introduction

When  numerically  solving  Hamiltonian  dynamical  systems  it  is  advantageous  if  the  numerical

method yields a symplectic map.

† The phase space of a Hamiltonian system is a symplectic manifold on which there exists a
natural symplectic structure in the canonically conjugate coordinates.

† The  time  evolution  of  a  Hamiltonian  system  is  such  that  the  Poincaré  integral  invariants
associated with the symplectic structure are preserved.

† A symplectic integrator computes exactly, assuming infinite precision arithmetic, the evolu-
tion  of  a  nearby  Hamiltonian,  whose  phase  space  structure  is  close  to  that  of  the  original
system.

If the Hamiltonian can be written in separable form, H Hp, qL = T HpL + V HqL, there exists an efficient

class of explicit symplectic numerical integration methods.

An important property of symplectic numerical methods when applied to Hamiltonian systems is

that a nearby Hamiltonian is approximately conserved for exponentially long times (see [BG94],

[HL97], and [R99]).

Hamiltonian Systems

Consider a differential equation

(1)
dy
dt
= FHt, yL, yHt0L = y0.
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option name default value

"JacobianEvaluationParameÖ
ter"

1
1000

specify when to recompute the Jacobian 
matrix in Newton iterations

"LinearSolveMethod" Automatic specify the linear solver to use in Newton 
iterations

"LUDecompositionEvaluatioÖ
nParameter"

6
5

specify when to compute LU decomposi- 
tions in Newton iterations



A  d-degree  of  freedom  Hamiltonian  system  is  a  particular  instance  of  (1)  with

y = Hp1, …, pd, q1 …, qdLT, where

(2)
dy
dt
= J-1 “ H.

Here “ represents the gradient operator:

“= H∂ ê∂ p1, …, ∂ ê∂ pd, ∂ ê∂q1, … ∂ ê∂qdLT

and J is the skew symmetric matrix:

J =
0 I
-I 0

where I and 0 are the identity and zero d×d matrices.

The components of  q  are often referred to as position or  coordinate variables and the compo-

nents of p as the momenta.

If  H  is  autonomous,  dH êdt = 0.  Then  H  is  a  conserved  quantity  that  remains  constant  along

solutions of the system. In applications, this usually corresponds to conservation of energy.

A numerical method applied to a Hamiltonian system (2) is said to be symplectic if it produces a

symplectic map. That is, let Hp*, q*L = yHp, qL be a C1 transformation defined in a domain W.:

" Hp, qL œ W, y£ T J y£ =
∂ Hp*, q*LT

∂ Hp, qL
J
∂ Hp*, q*L

∂ Hp, qL
= J

where the Jacobian of the transformation is:

y£ =
∂ Hp*, q*L

∂ Hp, qL
=

∂p*

∂p
∂p*

∂q

∂q*

∂p
∂q*

∂q

.

The  flow  of  a  Hamiltonian  system  is  depicted  together  with  the  projection  onto  the  planes

formed by canonically conjugate coordinate and momenta pairs. The sum of the oriented areas

remains constant as the flow evolves in time.
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p2

q2

q1

p1

Ct
A2

p dq

p dq

A1

Partitioned Runge|Kutta Methods

It is sometimes possible to integrate certain components of (1) using one Runge|Kutta method

and  other  components  using  a  different  Runge|Kutta  method.  The  overall  s-stage  scheme  is

called  a  partitioned  Runge|Kutta  method  and  the  free  parameters  are  represented  by  two

Butcher tableaux:

(1)

a11  a1 s
ª  ª

as1  ass
b1  bs

A11  A1 s
ª  ª

As1  Ass
B1  Bs

.

Symplectic Partitioned Runge|Kutta (SPRK) Methods

For general Hamiltonian systems, symplectic Runge|Kutta methods are necessarily implicit.

However,  for  separable  Hamiltonians  HHp, q, tL = THpL + VHq, tL  there  exist  explicit  schemes

corresponding to symplectic partitioned Runge|Kutta methods.
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Instead of (1) the free parameters now take either the form:

(1)

0  0 0
b1 0  ª

ª   ª

b1  bs-1 0
b1  bs-1 bs

B1  0 0
B1 B2  ª

ª ª  ª

B1 B2  Bs

B1 B2  Bs

or the form:

(2)

b1  0 0
b1 b2  ª

ª ª  ª

b1 b2  bs
b1 b2  bs

0  0 0
B1 0  ª

ª   ª

B1  Bs-1 0
B1  Bs-1 Bs

.

The  2 d  free  parameters  of  (2)  are  sometimes  represented  using  the  shorthand  notation

@b1, …, bsD HB1, …BsL.

The differential system for a separable Hamiltonian system can be written as:

dpi

dt
= f Hq, tL = -

∂VHq, tL

∂qi
,

dqi

dt
= gHpL =

∂THpL

∂ pi
, i = 1, …, d.

In general the force evaluations -∂VHq, tL ê∂q are computationally dominant and (2) is preferred

over  (1)  since  it  is  possible  to  save  one  force  evaluation  per  time  step  when  dense  output  is

required.

Standard Algorithm

The structure of (2) permits a particularly simple implementation (see for example [SC94]).

Algorithm 1 (Standard SPRK)

P0 = pn
Q1 = qn

for i = 1, …, s
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Pi = Pi-1 + hn+1 bi f HQi, tn + Ci hn+1L
Qi+1 = Qi + hn+1 Bi gHPiL

Return pn+1 = Ps  and qn+1 = Qs+1.

The time-weights are given by: C j =⁄i=1
j-1Bi, j = 1, …, s.

If Bs = 0 then Algorithm 1 effectively reduces to an s - 1 stage scheme since it has the First Same

As Last (FSAL) property.

Example

This loads some useful packages.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

The Harmonic Oscillator

The Harmonic oscillator is a simple Hamiltonian problem that models a material point attached

to a spring. For simplicity consider the unit mass and spring constant for which the Hamiltonian

is given in separable form:

HHp, qL = THpL + VHqL = p2 ë2 + q2 ë2.

The equations of motion are given by:

(1)
dp
dt

= - ∂H
∂q

= -q, dq
dt

= ∂H
∂p

= p, qH0L = 1, pH0L = 0.

Input

In[3]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
eqs = 8system@“System“D, system@“InitialConditions“D<;
vars = system@“DependentVariables“D;
H = system@“Invariants“D;
time = 8T, 0, 100<;
step = 1 ê 25;

Explicit Euler Method

Numerically integrate the equations of motion for the Harmonic oscillator using the explicit Euler 
method.

In[9]:= solee = NDSolve@eqs, vars, time, Method Ø “ExplicitEuler“,
StartingStepSize Ø step, MaxSteps Ø InfinityD;
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Since the method is dissipative, the trajectory spirals into or away from the fixed point at the 
origin.

In[10]:= ParametricPlot@Evaluate@vars ê. First@soleeDD, Evaluate@timeD, PlotPoints Ø 100D

Out[10]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

A dissipative method typically exhibits linear error growth in the value of the Hamiltonian.

In[11]:= InvariantErrorPlot@H, vars, T, solee, PlotStyle Ø GreenD

Out[11]=
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Symplectic Method

Numerically integrate the equations of motion for the Harmonic oscillator using a symplectic 
partitioned Runge|Kutta method.

In[12]:= sol = NDSolve@eqs, vars, time, Method Ø 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 2, “PositionVariables“ Ø 8Y1@TD<<,

StartingStepSize Ø step, MaxSteps Ø InfinityD;
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The solution is now a closed curve.

In[13]:= ParametricPlot@Evaluate@vars ê. First@solDD, Evaluate@timeDD

Out[13]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

In contrast to dissipative methods, symplectic integrators yield an error in the Hamiltonian that 
remains bounded.

In[14]:= InvariantErrorPlot@H, vars, T, sol, PlotStyle Ø BlueD

Out[14]=
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0.00000

0.00005

0.00010

0.00015

0.00020

Rounding Error Reduction

In certain cases, lattice symplectic methods exist and can avoid step-by-step roundoff accumula-

tion, but such an approach is not always possible [ET92].
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Consider the previous example where the combination of step size and order of the method is 
now chosen such that the error in the Hamiltonian is around the order of unit roundoff in IEEE 
double-precision arithmetic.

In[15]:= solnoca = NDSolve@eqs, vars, time, Method Ø 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 10, “PositionVariables“ Ø 8Y1@TD<<,

StartingStepSize Ø step, MaxSteps Ø Infinity, “CompensatedSummation“ Ø FalseD;

InvariantErrorPlot@H, vars, T, solnoca, PlotStyle Ø BlueD

Out[16]=
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There  is  a  curious  drift  in  the  error  in  the  Hamiltonian  that  is  actually  a  numerical  artifact  of

floating-point arithmetic.

This phenomenon can have an impact on long time integrations.

This  section describes the formulation used by “SymplecticPartitionedRungeKutta“  in  order

to reduce the effect of such errors.

There are two types of errors in integrating a flow numerically, those along the flow and those

transverse  to  the  flow.  In  contrast  to  dissipative  systems,  the  rounding  errors  in  Hamiltonian

systems that are transverse to the flow are not damped asymptotically.
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yH,h

y
`
H,h

et
ey

Many numerical methods for ordinary differential equations involve computations of the form:

yn+1 = yn + dn

where the increments dn are usually smaller in magnitude than the approximations yn.

Let eHxL  denote the exponent and mHxL,  1 > mHxL ¥ 1 ê b,  the mantissa of  a number x  in precision p

radix b arithmetic: x = mHxLä beHxL.

Then you can write:

yn = mHynLä beHynL = ynh + ynl ä beHdnL

and

dn = mHdnLä beHdnL = dn
h + dn

l ä beHynL-p.

Aligning according to exponents these quantities can be represented pictorially as:

ynl ynh

dn
l dn

h

where numbers on the left have a smaller scale than numbers on the right.

Of interest is an efficient way of computing the quantities dnl  that effectively represent the radix

b digits discarded due to the difference in the exponents of yn and dn.
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Compensated Summation

The basic motivation for compensated summation is to simulate 2 n bit addition using only n bit

arithmetic.

Example

This repeatedly adds a fixed amount to a starting value. Cumulative roundoff error has a signifi-
cant influence on the result.

In[17]:= reps = 106;
base = 0.;
inc = 0.1;
Do@base = base + inc, 8reps<D;
InputForm@baseD

Out[21]//InputForm= 100000.00000133288

In  many  applications  the  increment  may  vary  and  the  number  of  operations  is  not  known  in

advance.

Algorithm

Compensated  summation  (see  for  example  [B87]  and  [H96])  computes  the  rounding  error

along with the sum so that

yn+1 = yn + h f HynL

is replaced by:

Algorithm 2 (Compensated Summation)

yerr = 0
for i = 1, …, N

D yn = h f HynL + yerr
yn+1 = yn + D yn
yerr = Hyn - yn+1L + D yn

The algorithm is carried out component-wise for vectors.

Example

The  function  CompensatedPlus  (in  the  Developer`  context)  implements  the  algorithm  for

compensated summation.
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By repeatedly feeding back the rounding error from one sum into the next, the effect of round-
ing errors is significantly reduced.

In[22]:= err = 0.;
base = 0.;
inc = 0.1;
Do@

8base, err< =
Developer`CompensatedPlus@base , inc, errD,

8reps<D;
InputForm@baseD

Out[26]//InputForm= 100000.

An undocumented option CompensatedSummation controls whether built-in integration methods

in NDSolve use compensated summation.

An Alternative Algorithm

There are various ways that compensated summation can be used.

One way is to compute the error in every addition update in the main loop in Algorithm 1.

An  alternative  algorithm,  which  was  proposed  because  of  its  more  general  applicability,

together  with  reduced  arithmetic  cost,  is  given  next.  The  essential  ingredients  are  the  incre-

ments D Pi = Pi - pn and D Qi = Qi - qn.

Algorithm 3 (Increment SPRK)

D P0 = 0
D Q1 = 0

for i = 1, …, s
D Pi = D Pi-1 + hn+1 bi f Hqn + D Qi, tn + Ci hn+1L
D Qi+1 = D Qi + hn+1 Bi gHpn + D PiL

Return D pn+1 = D Ps  and D qn+1 = D Qs+1.

The  desired  values  pn+1 = pn + D pn+1  and  qn+1 = qn + D qn+1  are  obtained  using  compensated

summation.

Compensated summation could also be used in every addition update in the main loop of Algo-

rithm 3, but our experiments have shown that this  adds a non-negligible overhead for  a rela-

tively small gain in accuracy.
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Numerical Illustration

Rounding Error Model

The amount of expected roundoff error in the relative error of the Hamiltonian for the harmonic

oscillator (1) will now be quantified. A probabilistic average case analysis is considered in prefer-

ence to a worst case upper bound.

For a one-dimensional random walk with equal probability of a deviation, the expected absolute

distance after N steps is OI n M.

The  relative  error  for  a  floating-point  operation  +,  -,  *,  ê  using  IEEE  round  to  nearest  mode

satisfies the following bound [K93]:

eround § 1 ê2 b-p+1 º 1.11022ä10-16

where the base b = 2 is used for representing floating-point numbers on the machine and p = 53

for IEEE double-precision.

Therefore the roundoff error after n steps is expected to be approximately:

k e n

for some constant k.

In  the  examples  that  follow  a  constant  step  size  of  1/25  is  used  and  the  integration  is

performed over  the interval  [0,  80000] for  a  total  of  2µ106  integration steps.  The error  in  the

Hamiltonian is sampled every 200 integration steps.

The 8th-order 15-stage (FSAL) method D of Yoshida is used. Similar results have been obtained

for  the  6th-order  7-stage  (FSAL)  method  A  of  Yoshida  with  the  same  number  of  integration

steps and a step size of 1/160.

Without Compensated Summation

The relative error in the Hamiltonian is displayed here for the standard formulation in Algorithm

1 (green) and for the increment formulation in Algorithm 3 (red) for the Harmonic oscillator (1).
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Algorithm 1 for a 15-stage method corresponds to n = 15µ2µ106 = 3µ107.

In the incremental Algorithm 3 the internal stages are all of the order of the step size and the

only significant rounding error occurs at the end of each integration step; thus n = 2µ106, which

is in good agreement with the observed improvement.

This shows that for Algorithm 3, with sufficiently small step sizes, the rounding error growth is

independent of the number of stages of the method, which is particularly advantageous for high

order.

With Compensated Summation

The  relative  error  in  the  Hamiltonian  is  displayed  here  for  the  increment  formulation  in  Algo-

rithm 3 without compensated summation (red) and with compensated summation (blue) for the

Harmonic oscillator (1).

Using compensated summation with Algorithm 3, the error growth appears to satisfy a random

walk with deviation h e so that it has been reduced by a factor proportional to the step size.
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Arbitrary Precision

The  relative  error  in  the  Hamiltonian  is  displayed  here  for  the  increment  formulation  in  Algo-

rithm  3  with  compensated  summation  using  IEEE  double-precision  arithmetic  (blue)  and  with

32-decimal-digit software arithmetic (purple) for the Harmonic oscillator (1).

However,  the  solution  obtained  using  software  arithmetic  is  around  an  order  of  magnitude

slower  than  machine  arithmetic,  so  strategies  to  reduce  the  effect  of  roundoff  error  are

worthwhile.

Examples

Electrostatic Wave

Here is a non-autonomous Hamiltonian (it  has a time-dependent potential)  that models n  per-

turbing  electrostatic  waves,  each  with  the  same  wave  number  and  amplitude,  but  different

temporal frequencies wi (see [CR91]).

(1)HHp, qL = p2

2
+

q2

2
+ e⁄i=1

n HcosHq - wiLL.

This defines a differential system from the Hamiltonian (1) for dimension n = 3 with frequencies 
w1 = 7, w2 = 14, w3 = 21.

In[27]:= H = p@tD^2 ê 2 + q@tD^2 ê 2 + Sum@Cos@q@tD - 7 i tD, 8i, 3<D;
eqs = 8p‘@tD ã -D@H, q@tDD, q‘@tD ã D@H, p@tDD<;
ics = 8p@0D ã 0, q@0D == 4483 ê 400<;
vars = 8q@tD, p@tD<;
time = 8t, 0, 10000 µ 2 p<;
step = 2 p ê 105;
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A general  technique for  computing Poincaré sections is  described within "EventLocator  Method

for NDSolve". Specifying an empty list for the variables avoids storing all the data of the numeri-

cal integration.

The integration is carried out with a symplectic method with a relatively large number of steps

and the solutions are collected using Sow and Reap when the time is a multiple of 2 p.

The “Direction“ option of “EventLocator“ is used to control the sign in the detection of 
the event.

In[33]:= sprkmethod = 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 4, “PositionVariables“ -> 8q@tD<<;

sprkdata =
Block@8k = 1<,
Reap@
NDSolve@8eqs, ics<, 8<, time,

Method Ø 8“EventLocator“, “Direction“ Ø 1, “Event“ ß Ht - 2 k PiL,
“EventAction“ ß Hk++; Sow@8q@tD, p@tD<DL, Method Ø sprkmethod<,

StartingStepSize Ø step, MaxSteps Ø Infinity
D;

D
D;

NDSolve::noout : No functions were specified for output from NDSolve.

This displays the solution at time intervals of 2 p.

In[35]:= ListPlot@sprkdata@@-1, 1DD, Axes Ø False,
Frame Ø True, AspectRatio Ø 1, PlotRange Ø AllD

Out[35]=
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For comparison a Poincaré section is also computed using an explicit Runge|Kutta method of the 
same order.

In[36]:= rkmethod = 8“FixedStep“, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 4<<;

rkdata =
Block@8k = 1<,
Reap@
NDSolve@8eqs, ics<, 8<, time,

Method Ø 8“EventLocator“, “Direction“ Ø 1, “Event“ ß Ht - 2 k PiL,
“EventAction“ ß Hk++; Sow@8q@tD, p@tD<DL, Method Ø rkmethod<,

StartingStepSize Ø step, MaxSteps Ø Infinity
D;

D
D;

NDSolve::noout : No functions were specified for output from NDSolve.

Fine structural details are clearly resolved in a less satisfactory way with this method.

In[38]:= ListPlot@rkdata@@-1, 1DD, Axes Ø False,
Frame Ø True, AspectRatio Ø 1, PlotRange Ø AllD

Out[38]=

Toda Lattice

The  Toda  lattice  models  particles  on  a  line  interacting  with  pairwise  exponential  forces  and  is

governed by the Hamiltonian:

H Hp, qL =‚
k=1

n 1

2
pk2 + Hexp Hqk+1 - qkL - 1L .

Consider the case when periodic boundary conditions qn+1 = q1 are enforced.

The Toda lattice is an example of an isospectral flow. Using the notation

ak = -
1

2
pk, bk =

1

2
exp

1

2
Hqk+1 - qkL
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then the eigenvalues of the following matrix are conserved quantities of the flow:

L =

a1 b1 bn
b1 a2 b2 0

b2 a3 b3
  

0 bn-2 an-1 bn-1
bn bn-1 an

.

Define the input for the Toda lattice problem for n = 3.

In[39]:= n = 3;

periodicRule = 8qn+1@tD Ø q1@tD<;

H = ‚
k=1

n pk@tD2

2
+ HExp@qk+1@tD - qk@tDD - 1L ê. periodicRule;

eigenvalueRule = 9ak_@tD ß -pk@tD ê 2, bk_@tD ß 1 ê 2 Exp@1 ê 2 Hqk+1@tD - qk@tDLD=;

L =

a1@tD b1@tD b3@tD
b1@tD a2@tD b2@tD
b3@tD b2@tD a3@tD

ê. eigenvalueRule ê. periodicRule;

eqs = 8q1‘@tD == D@H, p1@tDD, q2‘@tD == D@H, p2@tDD, q3‘@tD == D@H, p3@tDD,
p1‘@tD == -D@H, q1@tDD, p2‘@tD == -D@H, q2@tDD, p3‘@tD == -D@H, q3@tDD<;

ics = 8q1@0D ã 1, q2@0D ã 2, q3@0D ã 4, p1@0D ã 0, p2@0D ã 1, p3@0D ã 1 ê 2<;
eqs = 8eqs, ics<;
vars = 8q1@tD, q2@tD, q3@tD, p1@tD, p2@tD, p3@tD<;
time = 8t, 0, 50<;

Define a function to compute the eigenvalues of a matrix of numbers, sorted in increasing 
order. This avoids computing the eigenvalues symbolically.

In[49]:= NumberMatrixQ@m_D := MatrixQ@m, NumberQD;
NumberEigenvalues@m_?NumberMatrixQD := Sort@Eigenvalues@mDD;

Integrate the equations for the Toda lattice using the “ExplicitMidpoint“ method.

In[51]:= emsol =
NDSolve@eqs, vars, time, Method Ø “ExplicitMidpoint“, StartingStepSize Ø 1 ê 10D;

The absolute error in the eigenvalues is now plotted throughout the integration interval.

Options are used to specify  the dimension of  the result  of  NumberEigenvalues  (since it  is  not

an  explicit  list)  and  that  the  absolute  error  specified  using  InvariantErrorFunction  should

include the sign of the error (the default uses Abs).
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The eigenvalues are clearly not conserved by the “ExplicitMidpoint“ method.

In[52]:= InvariantErrorPlot@NumberEigenvalues@LD,
vars, t, emsol, InvariantErrorFunction Ø HÒ1 - Ò2 &L,
InvariantDimensions Ø 8n<, PlotStyle Ø 8Red, Blue, Green<D

Out[52]=
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Integrate the equations for the Toda lattice using the 
“SymplecticPartitionedRungeKutta“ method.

In[53]:= sprksol = NDSolve@eqs, vars, time,
Method Ø 8“SymplecticPartitionedRungeKutta“, DifferenceOrder Ø 2,

“PositionVariables“ Ø 8q1@tD, q2@tD, q3@tD<<, StartingStepSize Ø 1 ê 10D;

The error in the eigenvalues now remains bounded throughout the integration.

In[54]:= InvariantErrorPlot@NumberEigenvalues@LD,
vars, t, sprksol, InvariantErrorFunction Ø HÒ1 - Ò2 &L,
InvariantDimensions Ø 8n<, PlotStyle Ø 8Red, Blue, Green<D

Out[54]=
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Some  recent  work  on  numerical  methods  for  isospectral  flows  can  be  found  in  [CIZ97],

[CIZ99], [DLP98a], and [DLP98b].
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Available Methods

Default Methods

The following table lists the current default choice of SPRK methods.

Order f evaluations Method Symmetric FSAL
1 1 Symplectic Euler No No
2 1 Symplectic pseudo Leapfrog Yes Yes
3 3 McLachlan and Atela AMA92E No No

4 5 Suzuki AS90E Yes Yes

6 11 Sofroniou and Spaletta ASS05E Yes Yes

8 19 Sofroniou and Spaletta ASS05E Yes Yes

10 35 Sofroniou and Spaletta ASS05E Yes Yes

Unlike  the  situation  for  explicit  Runge|Kutta  methods,  the  coefficients  for  high-order  SPRK

methods  are  only  given  numerically  in  the  literature.  Yoshida  [Y90]  only  gives  coefficients

accurate to 14 decimal digits of accuracy for example.

Since  NDSolve  also  works  for  arbitrary  precision,  you  need a  process  for  obtaining  the  coeffi-

cients to the same precision as that to be used in the solver.

When the closed form of the coefficients is not available, the order equations for the symmetric

composition coefficients can be refined in arbitrary precision using FindRoot, starting from the

known machine-precision solution.

Alternative Methods

Due to the modular design of the new NDSolve framework it is straightforward to add an alterna-

tive method and use that instead of one of the default methods. 

Several checks are made before any integration is carried out:

† The two vectors of coefficients should be nonempty, the same length, and numerical approxi-
mations should yield number entries of the correct precision. 

† Both  coefficient  vectors  should  sum  to  unity  so  that  they  yield  a  consistent  (order  1)
method.
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Example

Select the perturbed Kepler problem.

In[55]:= system = GetNDSolveProblem@“PerturbedKepler“D;
time = 8T, 0, 290<;
step = 1 ê 25;

Define a function for computing a numerical approximation to the coefficients for a fourth-order 
method of Forest and Ruth [FR90], Candy and Rozmus [CR91], and Yoshida [Y90].

In[58]:= YoshidaCoefficients@4, prec_D :=
N@
88Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,

Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D, Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D<,

8Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, Root@1 - 3 * Ò1 + 3 * Ò1^2 + 3 * Ò1^3 &,
1, 0D, Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, 0<<,

precD;

Here are machine-precision approximations for the coefficients.

In[59]:= YoshidaCoefficients@4, MachinePrecisionD

Out[59]= 880.675604, -0.175604, -0.175604, 0.675604<, 81.35121, -1.70241, 1.35121, 0.<<

This invokes the symplectic partitioned Runge|Kutta solver using Yoshida's coefficients.

In[60]:= Yoshida4 =
8“SymplecticPartitionedRungeKutta“, “Coefficients“ Ø YoshidaCoefficients,
“DifferenceOrder“ Ø 4, “PositionVariables“ Ø 8Y1@TD, Y2@TD<<;

Yoshida4sol = NDSolve@system, time,
Method Ø Yoshida4, StartingStepSize Ø step, MaxSteps Ø InfinityD;

This plots the solution of the position variables, or coordinates, in the Hamiltonian formulation.

In[62]:= ParametricPlot@Evaluate@8Y1@TD, Y2@TD< ê. Yoshida4solD, Evaluate@timeDD

Out[62]=
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Automatic Order Selection

Given that a variety of methods of different orders are available, it is useful to have a means of

automatically selecting an appropriate method. In order to accomplish this we need a measure

of work for each method.

A  reasonable  measure  of  work  for  an  SPRK  method  is  the  number  of  stages  s  (or  s - 1  if  the

method is FSAL).

Definition (Work per unit step)

Given a step size hk  and a work estimate k  for one integration step with a method of order k,

the work per unit step is given by k =k êhk.

Let P be a nonempty set of method orders, Pk  denote the kth  element of P, and †P§ denote the

cardinality (number of elements).

A comparison of work for the default SPRK methods gives P = 82, 3, 4, 6, 8, 10<.

A prerequisite is a procedure for estimating the starting step hk  of a numerical method of order

k (see for example [GSB87] or [HNW93]).

The first  case  to  be  considered is  when the  starting  step  estimate  h  can be  freely  chosen.  By

bootstrapping from low order, the following algorithm finds the order that locally minimizes the

work per unit step.

Algorithm 4 (h free)

Set W =¶

for k = 1, …, †P§
compute hPk

if  >Pk
ëhPk

 set  =Pk
ëhPk

else if k = †P§ return Pk

else return Pk-1.

The second case to be considered is  when the starting step estimate h  is  given. The following

algorithm  then  gives  the  order  of  the  method  that  minimizes  the  computational  cost  while

satisfying given absolute and relative local error tolerances.
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Algorithm 5 (h specified)

for k = 1, …, †P§
compute hPk

if hPk
> h  or k = †P§  return Pk.

Algorithms 4 and 5 are heuristic since the optimal step size and order may change through the

integration,  although  symplectic  integration  often  involves  fixed  choices.  Despite  this,  both

algorithms  incorporate  salient  integration  information,  such  as  local  error  tolerances,  system

dimension, and initial conditions, to avoid poor choices.

Examples

Consider  Kepler's  problem  that  describes  the  motion  in  the  configuration  plane  of  a  material

point that is attracted toward the origin with a force inversely proportional to the square of the

distance:

(1)HHp, qL = 1
2
Ip12 + p22M -

1

q12+q22
.

For initial conditions take

p1H0L = 0, p2H0L =
1 + e

1 - e
, q1H0L = 1 - e, q2H0L = 0

with eccentricity e = 3 ê5.

Algorithm 4

The  following  figure  shows  the  methods  chosen  automatically  at  various  tolerances  for  the

Kepler  problem  (1)  according  to  Algorithm  4  on  a  log-log  scale  of  maximum  absolute  phase

error versus work.
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It  can  be  observed  that  the  algorithm  does  a  reasonable  job  of  staying  near  the  optimal

method, although it switches over to the 8th-order method slightly earlier than necessary.

This can be explained by the fact that the starting step size routine is based on low-order deriva-

tive estimation and this may not be ideal for selecting high-order methods.

Algorithm 5

The following figure shows the methods chosen automatically with absolute local error tolerance

of  10-9  and step sizes  1/16,  1/32,  1/64,  1/128 for  the Kepler  problem (1)  according to  Algo-

rithm 5 on a log-log scale of maximum absolute phase error versus work.

With the local tolerance and step size fixed the code can only choose the order of the method.

For large step sizes a high-order method is selected, whereas for small  step sizes a low-order

method is selected. In each case the method chosen minimizes the work to achieve the given

tolerance.
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Option Summary

Options of the method “SymplecticPartitionedRungeKutta“. 

Controller Methods

"Composition" and "Splitting" Methods for NDSolve

Introduction

In  some  cases  it  is  useful  to  split  the  differential  system  into  subsystems  and  solve  each

subsystem  using  appropriate  integration  methods.  Recombining  the  individual  solutions  often

allows  certain  dynamical  properties,  such  as  volume,  to  be  conserved.  More  information  on

splitting  and  composition  can  be  found  in  [MQ02,  HLW02],  and  specific  aspects  related  to

NDSolve are discussed in [SS05, SS06].

Definitions

Of concern are initial value problems y ‘ HtL = f HyHtLL, where yH0L = y0 œn.

"Composition"

Composition is a useful device for raising the order of a numerical integration scheme.

In  contrast  to  the  Aitken|Neville  algorithm  used  in  extrapolation,  composition  can  conserve

geometric properties of the base integration method (e.g. symplecticity).
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"Coefficients" "SymplecticParÖ
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ungeKuttaÖ
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"DifferenceOrder" Automatic specify the order of local accuracy of the 
method

"PositionVariables" 8< specify a list of the position variables in the 
Hamiltonian formulation



Let  F f, gi h
HiL  be  a  basic  integration  method  that  takes  a  step  of  size  gi h  with  g1, …, gs  given  real

numbers.

Then the s-stage composition method Y f ,h is given by

Y f ,h = F f ,gs h
HsL È ÈF f ,g1 h

H1L .

Often  interest  is  in  composition  methods  Y f ,h  that  involve  the  same  base  method
F = FHiL, i = 1, …, s.

An interesting special case is symmetric composition: gi = gs-i+1, i = 1, …, ds ê2t.

The most common types of composition are:

† Symmetric composition of symmetric second-order methods

† Symmetric composition of first-order methods (e.g. a method F with its adjoint F*)

† Composition of first-order methods

"Splitting"

An s-stage splitting method is a generalization of a composition method in which f  is broken up

in an additive fashion:

f = f1 + + fk, k § s.

The  essential  point  is  that  there  can  often  be  computational  advantages  in  solving  problems

involving fi instead of f .

An s-stage splitting method is a composition of the form

Y f ,h = F fs,gs h
HsL È ÈF f1,g1 h

H1L ,

with f1, …, fs not necessarily distinct.

Each base integration method now only solves part of the problem, but a suitable composition

can still give rise to a numerical scheme with advantageous properties.

If the vector field fi  is integrable, then the exact solution or flow j fi,h  can be used in place of a

numerical integration method.
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A splitting method may also use a mixture of flows and numerical methods.

An example is Lie|Trotter splitting [T59]:

Split f = f1 + f2 with g1 = g2 = 1; then Y f ,h = j f2,h
H2L È j f1,h

H1L  yields a first-order integration method.

Computationally it can be advantageous to combine flows using the group property

j fi,h1+h2 = j fi,h2 È j fi,h1 .

Implementation

Several  changes  to  the  new  NDSolve  framework  were  needed  in  order  to  implement  splitting

and composition methods.

† Allow a method to call an arbitrary number of submethods.

† Add  the  ability  to  pass  around  a  function  for  numerically  evaluating  a  subfield,  instead  of
the entire vector field.

† Add  a  “LocallyExact“  method  to  compute  the  flow;  analytically  solve  a  subsystem  and
advance the (local) solution numerically.

† Add cache data  for  identical  methods  to  avoid  repeated initialization.  Data  for  numerically
evaluating identical subfields is also cached.

A  simplified  input  syntax  allows  omitted  vector  fields  and  methods  to  be  filled  in  cyclically.

These must be defined unambiguously:

8 f1, f2, f1, f2< can be input as 8 f1, f2<.

8 f1, f2, f3, f2, f1< cannot be input as 8 f1, f2, f3< since this corresponds to 8 f1, f2, f3, f1, f2<.
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Nested Methods

The following example constructs a high-order splitting method from a low-order splitting using

“Composition“.

NDSolve  ö “Composition“

ç “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

ª ª

ö “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

ª ª

é “Splitting“ f = f1 + f2

ç “LocallyExact“ f1
ö ImplicitMidpoint f2
é “LocallyExact“ f1

Simplification

A more efficient integrator can be obtained in the previous example using the group property of

flows and calling the “Splitting“ method directly.

NDSolve  ö “Splitting“ f = f1 + f2

ç
“LocallyExact“ f1
ImplicitMidpoint f2

ª ª

ö

“LocallyExact“ f1
ImplicitMidpoint f2
“LocallyExact“ f1

ª ª

é
ImplicitMidpoint f2
“LocallyExact“ f1

Examples

The following examples will  use a second-order symmetric splitting known as the Strang split-

ting [S68], [M68]. The splitting coefficients are automatically determined from the structure of

the equations.
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This defines a method known as symplectic leapfrog in terms of the method 
“SymplecticPartitionedRungeKutta“.

In[2]:= SymplecticLeapfrog = 8“SymplecticPartitionedRungeKutta“,
“DifferenceOrder“ Ø 2, “PositionVariables“ :> qvars<;

Load a package with some useful example problems.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;

Symplectic Splitting

Symplectic Leapfrog

“SymplecticPartitionedRungeKutta“ is an efficient method for solving separable Hamiltonian

systems HHp, qL = THpL + VHqL with favorable long-time dynamics.

“Splitting“  is  a  more  general-purpose  method,  but  it  can  be  used  to  construct  partitioned

symplectic  methods  (though  it  is  somewhat  less  efficient  than

“SymplecticPartitionedRungeKutta“).

Consider the harmonic oscillator that arises from a linear differential system that is governed by 
the separable Hamiltonian HHp, qL = p2 ë2 + q2 ë2.

In[5]:= system = GetNDSolveProblem@“HarmonicOscillator“D

Out[5]= NDSolveProblemB:8Y1
£@TD ã Y2@TD, Y2

£@TD ã -Y1@TD<,

8Y1@0D ã 1, Y2@0D ã 0<, 8Y1@TD, Y2@TD<, 8T, 0, 10<, 8<, :
1

2
IY1@TD

2 + Y2@TD
2M>>F

Split the Hamiltonian vector field into independent components governing momentum and 
position. This is done by setting the relevant right-hand sides of the equations to zero.

In[6]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 1, 2D = 0;
Y2 = eqs;
Part@Y2, 2, 2D = 0;

This composition of weighted (first-order) Euler integration steps corresponds to the symplectic 
(second-order) leapfrog method.

In[11]:= tfinal = 1;
time = 8T, 0, tfinal<;
qvars = 8Subscript@Y, 1D@TD<;
splittingsol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,

Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2, “Equations“ Ø 8Y1, Y2, Y1<,
“Method“ Ø 8“ExplicitEuler“, “ExplicitEuler“, “ExplicitEuler“<<D

Out[14]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

70     Advanced Numerical Differential Equation Solving in Mathematica



The method “ExplicitEuler“ could only have been specified once, since the second and third

instances would have been filled in cyclically.

This is the result at the end of the integration step.

In[15]:= InputForm@splittingsol ê. T Ø tfinalD

Out[15]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

This invokes the built-in integration method corresponding to the symplectic leapfrog integrator.

In[16]:= sprksol =
NDSolve@system, time, StartingStepSize Ø 1 ê 10, Method Ø SymplecticLeapfrogD

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The result at the end of the integration step is identical to the result of the splitting method.

In[17]:= InputForm@sprksol ê. T Ø tfinalD

Out[17]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

Composition of Symplectic Leapfrog

This takes the symplectic leapfrog scheme as the base integration method and constructs a 
fourth-order symplectic integrator using a symmetric composition of Ruth|Yoshida [Y90].

In[18]:= YoshidaCoefficients =
RootReduce@81 ê H2 - 2^H1 ê 3LL, -2^H1 ê 3L ê H2 - 2^H1 ê 3LL, 1 ê H2 - 2^H1 ê 3LL<D;

YoshidaCompositionCoefficients@4, p_D := N@YoshidaCoefficients, pD;

splittingsol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8“Composition“, “Coefficients“ Ø YoshidaCompositionCoefficients,
“DifferenceOrder“ Ø 4, “Method“ Ø 8SymplecticLeapfrog<<D

Out[20]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

This is the result at the end of the integration step.

In[21]:= InputForm@splittingsol ê. T Ø tfinalD

Out[21]//InputForm= {{Subscript[Y, 1][1] -> 0.5403078808898406, Subscript[Y, 2][1] -> -0.8414706295697821}}
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This invokes the built-in symplectic integration method using coefficients for the fourth-order 
methods of Ruth and Yoshida.

In[22]:= SPRK4@4, prec_D := N@88Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D, Root@1 - 24 * Ò1^2 + 48 * Ò1^3 &, 1, 0D,
Root@-1 + 12 * Ò1 - 48 * Ò1^2 + 48 * Ò1^3 &, 1, 0D<,

8Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, Root@1 - 3 * Ò1 + 3 * Ò1^2 + 3 * Ò1^3 &,
1, 0D, Root@-1 + 6 * Ò1 - 12 * Ò1^2 + 6 * Ò1^3 &, 1, 0D, 0<<, precD;

sprksol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8“SymplecticPartitionedRungeKutta“, “Coefficients“ Ø SPRK4,

“DifferenceOrder“ Ø 4, “PositionVariables“ Ø qvars<D
Out[23]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The result at the end of the integration step is identical to the result of the composition method.

In[24]:= InputForm@sprksol ê. T Ø tfinalD

Out[24]//InputForm= {{Subscript[Y, 1][1] -> 0.5403078808898406, Subscript[Y, 2][1] -> -0.8414706295697821}}

Hybrid Methods

While a closed-form solution often does not exist for the entire vector field, in some cases it is

possible to analytically solve a system of differential equations for part of the vector field.

When  a  solution  can  be  found  by  DSolve,  direct  numerical  evaluation  can  be  used  to  locally

advance the solution.

This idea is implemented in the method “LocallyExact“.

Harmonic Oscillator Test Example

This example checks that the solution for the exact flows of split components of the harmonic 
oscillator equations is the same as applying Euler's method to each of the split components.

In[25]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 1, 2D = 0;
Y2 = eqs;
Part@Y2, 2, 2D = 0;
tfinal = 1;
time = 8T, 0, tfinal<;

In[33]:= solexact = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y1, Y2, Y1<, “Method“ Ø 8“LocallyExact“<<D;

In[34]:= InputForm@solexact ê. T Ø 1D

Out[34]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}
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In[37]:= soleuler = NDSolve@system, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y1, Y2, Y1<, “Method“ Ø 8“ExplicitEuler“<<D;

InputForm@soleuler ê. T Ø tfinalD
Out[38]//InputForm= {{Subscript[Y, 1][1] -> 0.5399512509335085, Subscript[Y, 2][1] -> -0.8406435124348495}}

Hybrid Numeric-Symbolic Splitting Methods (ABC Flow)

Consider the Arnold, Beltrami, and Childress flow, a widely studied model for volume-preserving 
three-dimensional flows.

In[39]:= system = GetNDSolveProblem@“ArnoldBeltramiChildress“D

Out[39]= NDSolveProblemB::Y1
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD,

Y2
£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, Y3

£@TD ã Cos@Y1@TDD +
3

4
Sin@Y2@TDD>,

:Y1@0D ã
1

4
, Y2@0D ã

1

3
, Y3@0D ã

1

2
>, 8Y1@TD, Y2@TD, Y3@TD<, 8T, 0, 100<, 8<, 8<>F

When  applied  directly,  a  volume-preserving  integrator  would  not  in  general  preserve  symme-

tries. A symmetry-preserving integrator, such as the implicit midpoint rule, would not preserve

volume.

This defines a splitting of the system by setting some of the right-hand side components to zero.

In[40]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 2, 2D = 0;
Y2 = eqs;
Part@Y2, 81, 3<, 2D = 0;

In[45]:= Y1

Out[45]= :Y1
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD, Y2

£@TD ã 0, Y3
£@TD ã Cos@Y1@TDD +

3

4
Sin@Y2@TDD>

In[46]:= Y2

Out[46]= 8Y1
£@TD ã 0, Y2

£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, Y3
£@TD ã 0<

The  system  for  Y1  is  solvable  exactly  by  DSolve  so  that  you  can  use  the  “LocallyExact“

method.

Y2  is  not  solvable,  however,  so  you  need  to  use  a  suitable  numerical  integrator  in  order  to

obtain the desired properties in the splitting method.
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This defines a method for computing the implicit midpoint rule in terms of the built-in 
“ImplicitRungeKutta“ method.

In[47]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ Ø
“ImplicitRungeKuttaGaussCoefficients“, “DifferenceOrder“ Ø 2,

ImplicitSolver Ø 8FixedPoint, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

This defines a second-order, volume-preserving, reversing symmetry-group integrator [MQ02].

In[48]:= splittingsol = NDSolve@system,
StartingStepSize Ø 1 ê 10,
Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<,
“Method“ Ø 8“LocallyExact“, ImplicitMidpoint, “LocallyExact“<<D

Out[48]= 88Y1@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 100.<<, <>D@TD<<

Lotka|Volterra Equations

Various  numerical  integrators  for  this  system  are  compared  within  "Numerical  Methods  for

Solving the Lotka|Volterra Equations".

Euler's Equations

Various numerical integrators for Euler's equations are compared within "Rigid Body Solvers".

Non-Autonomous Vector Fields

Consider the Duffing oscillator, a forced planar non-autonomous differential system.

In[49]:= system = GetNDSolveProblem@“DuffingOscillator“D

Out[49]= NDSolveProblemB::Y1
£@TD ã Y2@TD, Y2

£@TD ã
3 Cos@TD

10
+ Y1@TD - Y1@TD

3 +
Y2@TD

4
>,

8Y1@0D ã 0, Y2@0D ã 1<, 8Y1@TD, Y2@TD<, 8T, 0, 10<, 8<, 8<>F

This defines a splitting of the system.

In[50]:= Y1 = :Y1£@TD ã Y2@TD, Y2£@TD ã
Y2@TD

4
>;

Y2 = :Y1£@TD ã 0, Y2£@TD ã
3 Cos@TD

10
+ Y1@TD - Y1@TD3>;

74     Advanced Numerical Differential Equation Solving in Mathematica



The splitting of the time component among the vector fields is ambiguous, so the method issues 
an error message.

In[52]:= splittingsol = NDSolve@system, StartingStepSize Ø 1 ê 10,
Method Ø 8“Splitting“, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y1<, “Method“ Ø 8“LocallyExact“<<D

NDSolve::spltdep:

The differential system :0,
3 Cos@TD

10
+Y1@TD-Y1@TD3> in the method Splitting depends on T

which is ambiguous. The differential system should be in autonomous form. à

NDSolve::initf : The initialization of the method NDSolve`Splitting failed.

Out[52]= 88Y1@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD<<

The equations can be extended by introducing a new "dummy" variable Z@TD such that 
Z@TD == T and specifying how it should be distributed in the split differential systems.

In[53]:= Y1 = :Y1£@TD ã Y2@TD, Y2£@TD ã
Y2@TD

4
, Z‘@TD ã 1>;

Y2 = :Y1£@TD ã 0, Y2£@TD ã
3 Cos@Z@TDD

10
+ Y1@TD - Y1@TD3, Z‘@TD ã 0>;

eqs = Join@system@“System“D, 8Z‘@TD ã 1<D;
ics = Join@system@“InitialConditions“D, 8Z@0D ã 1<D;
vars = Join@system@“DependentVariables“D, 8Z@TD<D;
time = system@“TimeData“D;

This defines a geometric splitting method that satisfies l1 + l2 = -d for any finite time interval, 
where l1 and l2 are the Lyapunov exponents [MQ02].

In[59]:= splittingsol = NDSolve@8eqs, ics<, vars, time, StartingStepSize Ø 1 ê 10,
Method Ø 8NDSolve`Splitting, “DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<, “Method“ Ø 8“LocallyExact“<<D

Out[59]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Z@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<

Advanced Numerical Differential Equation Solving in Mathematica     75



Here is a plot of the solution.

In[60]:= ParametricPlot@Evaluate@system@“DependentVariables“@DD ê. First@splittingsolDD,
Evaluate@timeD, AspectRatio -> 1D

Out[60]=

-3 -2 -1 1 2 3

-5

5

Option Summary

The  default  coefficient  choice  in  “Composition“  tries  to  automatically  select  between

“SymmetricCompositionCoefficients“  and  “SymmetricCompositionSymmetricMethodÖ

Coefficients “ depending on the properties of the methods specified using the Method option.

option name default value

“Coefficients“ Automatic specify the coefficients to use in the compo-
sition method 

“DifferenceOrder“ Automatic specify the order of local accuracy of the 
method

Method None specify the base methods to use in the 
numerical integration

Options of the method “Composition“. 
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option name default value

“Coefficients“ 8< specify the coefficients to use in the split-
ting method 

“DifferenceOrder“ Automatic specify the order of local accuracy of the 
method

“Equations“ 8< specify the way in which the equations 
should be split

Method None specify the base methods to use in the 
numerical integration

Options of the method “Splitting“.

Submethods

"LocallyExact" Method for NDSolve

Introduction

A differential  system can sometimes be solved by analytic  means. The function DSolve  imple-

ments many of the known algorithmic techniques.

However, differential systems that can be solved in closed form constitute only a small subset.

Despite  this  fact,  when  a  closed-form  solution  does  not  exist  for  the  entire  vector  field,  it  is

often possible to analytically solve a system of differential equations for part of the vector field.

An  example  of  this  is  the  method  “Splitting“,  which  breaks  up  a  vector  field  f  into  sub-

fields f1, …, fn such that f = f1 + + fn.

The idea underlying the method “LocallyExact“ is that rather than using a standard numerical

integration scheme, when a solution can be found by DSolve direct numerical evaluation can be

used to locally advance the solution.

Since  the  method  “LocallyExact“  makes  no  attempt  to  adaptively  adjust  step  sizes,  it  is

primarily intended for use as a submethod between integration steps.

Examples

Load a package with some predefined problems.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
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Harmonic Oscillator

Numerically solve the equations of motion for a harmonic oscillator using the method 
“LocallyExact“. The result is two interpolating functions that approximate the solution and 
the first derivative.

In[2]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
vars = system@“DependentVariables“D;
tdata = system@“TimeData“D;

sols =
vars ê. First@NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “LocallyExact“DD

Out[5]= 8InterpolatingFunction@880., 10.<<, <>D@TD, InterpolatingFunction@880., 10.<<, <>D@TD<

The solution evolves on the unit circle.

In[6]:= ParametricPlot@Evaluate@solsD, Evaluate@tdataD, AspectRatio Ø 1D

Out[6]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Global versus Local

The method “LocallyExact“ is not intended as a substitute for a closed-form (global) solution.

Despite  the  fact  that  the  method  “LocallyExact“  uses  the  analytic  solution  to  advance  the

solution,  it  only  produces  solutions  at  the  grid  points  in  the  numerical  integration  (or  even

inside  grid  points  if  called  appropriately).  Therefore,  there  can  be  errors  due  to  sampling  at

interpolation points that do not lie exactly on the numerical integration grid.
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Plot the error in the first solution component of the harmonic oscillator and compare it with the 
exact flow.

In[7]:= Plot@Evaluate@First@solsD - Cos@TDD, Evaluate@tdataDD

Out[7]=
2 4 6 8 10

-2.µ 10-7

-1.µ 10-7

1.µ 10-7

2.µ 10-7

Simplification

The  method  “LocallyExact“  has  an  option  “SimplificationFunction“  that  can  be  used  to

simplify the results of DSolve.

Here is the linearized component of the differential system that turns up in the splitting of the 
Lorenz equations using standard values for the parameters.

In[8]:= eqs = 8Y1‘@TD ã s HY2@TD - Y1@TDL, Y2‘@TD ã r Y1@TD - Y2@TD, Y3‘@TD ã -b Y3@TD< ê.
8s Ø 10, r Ø 28, b Ø 8 ê 3<;

ics = 8Y1@0D ã -8, Y2@0D ã 8, Y3@0D ã 27<;
vars = 8Y1@TD, Y2@TD, Y3@TD<;
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This subsystem is exactly solvable by DSolve. 

In[11]:= DSolve@eqs, vars, TD

Out[11]= ::Y1@TD Ø

1

2402
1201 ‰

1

2
-11- 1201 T

+ 9 1201 ‰
1

2
-11- 1201 T

+ 1201 ‰
1

2
-11+ 1201 T

- 9 1201 ‰
1

2
-11+ 1201 T

C@1D -

10 ‰
1

2
-11- 1201 T

- ‰
1

2
-11+ 1201 T

C@2D

1201
,

Y2@TD Ø -

28 ‰
1

2
-11- 1201 T

- ‰
1

2
-11+ 1201 T

C@1D

1201
+

1

2402
1201 ‰

1

2
-11- 1201 T

- 9 1201 ‰
1

2
-11- 1201 T

+

1201 ‰
1

2
-11+ 1201 T

+ 9 1201 ‰
1

2
-11+ 1201 T

C@2D, Y3@TD Ø ‰-8 Të3 C@3D>>

Often the results of DSolve can be simplified. This defines a function to simplify an expression 
and also prints out the input and the result.

In[12]:= myfun@x_D :=
Module@8simpx<,
Print@“Before simplification “, xD;
simpx = FullSimplify@ExpToTrig@xDD;
Print@“After simplification “, simpxD;
simpx

D;

The function can be passed as an option to the method “LocallyExact“.

In[13]:= NDSolve@8eqs, ics<, vars, 8T, 0, 1<, StartingStepSize Ø 1 ê 10,
Method Ø 8“LocallyExact“, “SimplificationFunction“ Ø myfun<D
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Before simplification

:
1

2402
1201 ‰

1

2
J-11- 1201 N T

+ 9 1201 ‰
1

2
J-11- 1201 N T

+

1201 ‰
1

2
J-11+ 1201 N T

- 9 1201 ‰
1

2
J-11+ 1201 N T Y1@TD -

10 ‰
1

2
J-11- 1201 N T

- ‰
1

2
J-11+ 1201 N T Y2@TD

1201
,

-

28 ‰
1

2
J-11- 1201 N T

- ‰
1

2
J-11+ 1201 N T Y1@TD

1201
+

1

2402
1201 ‰

1

2
J-11- 1201 N T

- 9 1201 ‰
1

2
J-11- 1201 N T

+

1201 ‰
1

2
J-11+ 1201 N T

+ 9 1201 ‰
1

2
J-11+ 1201 N T Y2@TD, ‰-8 Tê3 Y3@TD>

After simplification

:
1

1201
‰-11 Tê2 1201 CoshB

1201 T

2
F Y1@TD + 1201 SinhB

1201 T

2
F

H-9 Y1@TD + 20 Y2@TDL , ‰-11 Tê2 CoshB
1201 T

2
F Y2@TD +

‰-11 Tê2 SinhB 1201 T
2

F H56 Y1@TD + 9 Y2@TDL

1201
, ‰-8 Tê3 Y3@TD>

Out[13]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

The simplification is performed only once during the initialization phase that constructs the data

object for the numerical integration method.

Option Summary

option name default value

“SimplificationFunction“ None function to use in simplifying the result of 
DSolve

Option of the method “LocallyExact“. 

Advanced Numerical Differential Equation Solving in Mathematica     81



"DoubleStep" Method for NDSolve

Introduction

The  method  “DoubleStep“  performs  a  single  application  of  Richardson's  extrapolation  for  any

one-step integration method.

Although it is not always optimal, it is a general scheme for equipping a method with an error

estimate  (hence  adaptivity  in  the  step  size)  and  extrapolating  to  increase  the  order  of  local

accuracy.

“DoubleStep“  is  a  special  case  of  extrapolation  but  has  been  implemented  as  a  separate

method for efficiency.

Given a method of order p:

† Take a step of size h to get a solution y1.

† Take two steps of size h ê2 to get a solution y2.

† Find an error estimate of order p as:

(1)e = y2- y1
2p- 1

.

† The  correction  term  e  can  be  used  for  error  estimation  enabling  an  adaptive  step-size
scheme for any base method.

† Either use y2 for the new solution, or form an improved approximation using local extrapola-
tion as:

(2)y`2 = y2 + e.

† If  the  base  numerical  integration  method  is  symmetric,  then  the  improved  approximation
has order p + 2; otherwise it has order p + 1.

Examples

Load some package with example problems and utility functions.

In[5]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Select a nonstiff problem from the package.

In[7]:= nonstiffsystem = GetNDSolveProblem@“BrusselatorODE“D;
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Select a stiff problem from the package.

In[8]:= stiffsystem = GetNDSolveProblem@“Robertson“D;

Extending Built-in Methods

The method “ExplicitEuler“ carries out one integration step using Euler's method. It has no

local error control and hence uses fixed step sizes.

This integrates a differential system using one application of Richardson's extrapolation (see 
(2)) with the base method “ExplicitEuler“.

The local error estimate (1) is used to dynamically adjust the step size throughout the 
integration.

In[9]:= eesol = NDSolve@nonstiffsystem, 8T, 0, 1<,
Method Ø 8“DoubleStep“, Method Ø “ExplicitEuler“<D

Out[9]= 88Y1@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 1.<<, <>D@TD<<

This illustrates how the step size varies during the numerical integration.

In[10]:= StepDataPlot@eesolD

Out[10]=

0.0 0.2 0.4 0.6 0.8 1.0

0.00010

0.00020

0.00015

The stiffness detection device (described within "StiffnessTest Method Option for NDSolve") 
ascertains that the “ExplicitEuler“ method is restricted by stability rather than local 
accuracy.

In[11]:= NDSolve@stiffsystem, Method Ø 8“DoubleStep“, Method Ø “ExplicitEuler“<D

NDSolve::ndstf :
At T == 0.007253212186800964`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[11]= 88Y1@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 0.00725321<<, <>D@TD<<
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An alternative base method is more appropriate for this problem.

In[12]:= liesol =
NDSolve@stiffsystem, Method Ø 8“DoubleStep“, Method Ø “LinearlyImplicitEuler“<D

Out[12]= 88Y1@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD,
Y3@TD Ø InterpolatingFunction@880., 0.3<<, <>D@TD<<

User-Defined Methods and Method Properties

Integration methods can be added to the NDSolve framework.

In order for these to work like built-in methods it  can be necessary to specify various method

properties.  These  properties  can  then  be  used  by  other  methods  to  build  up  compound

integrators.

Here is how to define a top-level plug-in for the classical Runge|Kutta method (see "NDSolve 
Method Plug-in Framework: Classical Runge|Kutta" and "ExplicitRungeKutta Method for 
NDSolve" for more details).

In[13]:= ClassicalRungeKutta@___D@“Step“@f_, t_, h_, y_, yp_DD :=
Block@8deltay, k1, k2, k3, k4<,
k1 = yp;
k2 = f@t + 1 ê 2 h, y + 1 ê 2 h k1D;
k3 = f@t + 1 ê 2 h, y + 1 ê 2 h k2D;
k4 = f@t + h, y + h k3D;
deltay = h H1 ê 6 k1 + 1 ê 3 k2 + 1 ê 3 k3 + 1 ê 6 k4L;
8h, deltay<

D;

Method properties used by “DoubleStep“ are now described.

Order and Symmetry

This attempts to integrate a system using one application of Richardson's extrapolation based 
on the classical Runge|Kutta method.

In[14]:= NDSolve@nonstiffsystem, Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta<D;

NDSolve::mtdp:
ClassicalRungeKutta does not have a correctly defined property DifferenceOrder in DoubleStep. à

NDSolve::initf : The initialization of the method NDSolve`DoubleStep failed. à

Without knowing the order of  the base method, “DoubleStep“  is  unable to carry out Richard-

son's extrapolation.

This defines a method property to communicate to the framework that the classical Runge|Kutta 
method has order four.

In[15]:= ClassicalRungeKutta@___D@“DifferenceOrder“D := 4;
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The method “DoubleStep“ is now able to ascertain that ClassicalRungeKutta is of order 
four and can use this information when refining the solution and estimating the local error.

In[16]:= NDSolve@nonstiffsystem, Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta<D

Out[16]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

The  order  of  the  result  of  Richardson's  extrapolation  depends  on  whether  the  extrapolated

method has a local error expansion in powers of h or h2  (the latter occurs if the base method is

symmetric).

If no method property for symmetry is defined, the “DoubleStep“ method assumes by default

that the base integrator is not symmetric.

This explicitly specifies that the classical Runge|Kutta method is not symmetric using the 
“SymmetricMethodQ“ property.

In[17]:= ClassicalRungeKutta@___D@“SymmetricMethodQ“D := False;

Stiffness Detection

Details  of  the  scheme  used  for  stiffness  detection  can  be  found  within  "StiffnessTest  Method

Option for NDSolve".

Stiffness  detection  relies  on  knowledge  of  the  linear  stability  boundary  of  the  method,  which

has not been defined.

Computing  the  exact  linear  stability  boundary  of  a  method  under  extrapolation  can  be  quite

complicated.  Therefore  a  default  value  is  selected  which  works  for  all  methods.  This

corresponds  to  considering  the  p-th  order  power  series  approximation  to  the  exponential  at  0

and ignoring higher order terms.

† If  “LocalExtrapolation“  is  True  then  a  generic  value  is  selected  corresponding  to  a
method of order p + 2 (symmetric) or p + 1.

† If  “LocalExtrapolation“  is  False  then  the  property  “LinearStabilityBoundary“  of  the
base method is checked. If no value has been specified then a default for a method of order
p is selected.

This computes the linear stability boundary for a generic method of order 4.

In[18]:= ReduceBAbsBSumB
zi

i!
, 8i, 0, 4<FF ã 1 && z < 0, zF

Out[18]= z ã RootA24 + 12 Ò1 + 4 Ò12 + Ò13 &, 1E
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A default value for the “LinearStabilityBoundary“ property is used.

In[19]:= NDSolve@stiffsystem,
Method Ø 8“DoubleStep“, Method Ø ClassicalRungeKutta, “StiffnessTest“ Ø True<D;

NDSolve::ndstf : At T == 0.00879697198122793`, system appears to be stiff. Methods
Automatic, BDF or StiffnessSwitching may be more appropriate. à

This shows how to specify the linear stability boundary of the method for the framework. This 
value will only be used if “DoubleStep“ is invoked with  “LocalExtrapolation“ Ø True .

In[20]:= ClassicalRungeKutta@___D@“LinearStabilityBoundary“D :=
RootA24 + 12 Ò1 + 4 Ò12 + Ò13 &, 1E;

“DoubleStep“ assumes by default that a method is not appropriate for stiff problems (and 
hence uses stiffness detection) when no “StiffMethodQ“ property is specified. This shows 
how to define the property.

In[21]:= ClassicalRungeKutta@___D@“StiffMethodQ“D := False;

Higher Order

The  following  example  extrapolates  the  classical  Runge-Kutta  method  of  order  four  using  two

applications of (2).

The inner specification of “DoubleStep“ constructs a method of order five.

A  second  application  of  “DoubleStep“  is  used  to  obtain  a  method  of  order  six,  which  uses

adaptive step sizes.

Nested applications of “DoubleStep“ are used to raise the order and provide an adaptive step-
size estimate.

In[22]:= NDSolve@nonstiffsystem,
Method Ø 8“DoubleStep“, Method Ø 8“DoubleStep“, Method -> ClassicalRungeKutta<<D

Out[22]= 88Y1@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 20.<<, <>D@TD<<

In  general  the  method  “Extrapolation“  is  more  appropriate  for  constructing  high-order

integration schemes from low-order methods.
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Option Summary

option name default value

“LocalExtrapolation“ True specify whether to advance the solution 
using local extrapolation according to (2)

Method None specify the method to use as the base 
integration scheme

“StepSizeRatioBounds“ :
1
8
,4> specify the bounds on a relative change in 

the new step size hn+1 from the current 
step size hn as low § hn+1êhn § high

“StepSizeSafetyFactors“ Automatic specify the safety factors to incorporate 
into the error estimate (1) used for adap- 
tive step sizes 

“StiffnessTest“ Automatic specify whether to use the stiffness detec- 
tion capability  

Options of the method “DoubleStep“. 

The  default  setting  of  Automatic  for  the  option  “StiffnessTest“  indicates  that  the  stiffness

test is activated if a nonstiff base method is used.

The  default  setting  of  Automatic  for  the  option  “StepSizeSafetyFactors“  uses  the  values

89 ê 10, 4 ê 5< for a stiff base method and 89 ê 10, 13 ê 20< for a nonstiff base method.

"EventLocator" Method for NDSolve

Introduction

It is often useful to be able to detect and precisely locate a change in a differential system. For

example,  with  the  detection  of  a  singularity  or  state  change,  the  appropriate  action  can  be

taken, such as restarting the integration. 

An event for a differential system:

Y ‘ HtL = f Ht, YHtLL

is a point along the solution at which a real-valued event function is zero:

gHt, YHtLL = 0

It  is  also  possible  to  consider  Boolean-valued event  functions,  in  which  case  the  event  occurs

when the function changes from True to False or vice versa.
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The  “EventLocator“  method  that  is  built  into  NDSolve  works  effectively  as  a  controller

method; it handles checking for events and taking the appropriate action, but the integration of

the differential system is otherwise left completely to an underlying method. 

In  this  section,  examples  are  given  to  demonstrate  the  basic  use  of  the  “EventLocator“

method  and  options.  Subsequent  sections  show  more  involved  applications  of  event  location,

such as period detection, Poincaré sections, and discontinuity handling.

These initialization commands load some useful packages that have some differential equations 
to solve and define some utility functions.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;
Needs@“GUIKit`“D;

A simple example is locating an event, such as when a pendulum started at a non-equilibrium

position will swing through its lowest point and stopping the integration at that point.

This integrates the pendulum equation up to the first point at which the solution y@tD crosses 
the axis.

In[5]:= sol = NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 10<, Method Ø 8“EventLocator“, “Event“ Ø y@tD<D

Out[5]= 88y Ø InterpolatingFunction@880., 1.67499<<, <>D<<

From  the  solution  you  can  see  that  the  pendulum  reaches  its  lowest  point  y@tD = 0  at  about

t = 1.675. Using the InterpolatingFunctionAnatomy package, it is possible to extract the value

from the InterpolatingFunction object.

This extracts the point at which the event occurs and makes a plot of the solution (black) and 
its derivative (blue) up to that point.

In[6]:= end = InterpolatingFunctionDomain@First@y ê. solDD@@1, -1DD;
Plot@Evaluate@8y@tD, y‘@tD< ê. First@solDD,
8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<<D

Out[7]=
0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

When you use the event locator method, the events to be located and the action to take upon

finding an event are specified through method options of the “EventLocator“ method.
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The default action on detecting an event is to stop the integration as demonstrated earlier. The

event  action  can  be  any  expression.  It  is  evaluated  with  numerical  values  substituted  for  the

problem variables whenever an event is detected.

This prints the time and values each time the event y‘@tD = y@tD is detected for a damped 
pendulum.

In[8]:= NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã 0, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 10<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD - y@tD,

“EventAction“ ß Print@“y‘@“, t, “D = y@“, t, “D = “, y@tDD<D

y‘@2.49854D = y@2.49854D = -0.589753

y‘@5.7876D = y@5.7876D = 0.501228

y‘@9.03428D = y@9.03428D = -0.426645
Out[8]= 88y Ø InterpolatingFunction@880., 10.<<, <>D<<

Note  that  in  the  example,  the  “EventAction“  option  was  given  using  RuleDelayed  (ß)  to

prevent it from evaluating except when the event is located.

You can see from the printed output that when the action does not stop the integration, multi-

ple  instances  of  an  event  can  be  detected.  Events  are  detected  when  the  sign  of  the  event

expression  changes.  You  can  restrict  the  event  to  be  only  for  a  sign  change  in  a  particular

direction using the “Direction“ option.

This collects the points at which the velocity changes from negative to positive for a damped 
driven pendulum. Reap and Sow are programming constructs that are useful for collecting data 
when you do not, at first, know how much data there will be. Reap@exprD gives the value of 
expr together with all expressions to which Sow has been applied during its evaluation. Here 

Reap encloses the use of NDSolve and Sow is a part of the event action, which allows you to 
collect data for each instance of an event.

In[9]:= Reap@NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã .1 Cos@tD, y‘@0D ã 0, y@0D ã 1<,
y, 8t, 0, 50<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD,

“Direction“ Ø 1, “EventAction“ ß Sow@8t, y@tD, y‘@tD<D<DD

Out[9]= 988y Ø InterpolatingFunction@880., 50.<<, <>D<<,

9993.55407, -0.879336, 1.87524µ10-15=, 910.4762, -0.832217, -5.04805µ10-16=,

917.1857, -0.874939, -4.52416µ10-15=, 923.7723, -0.915352, 1.62717µ10-15=,

930.2805, -0.927186, -1.17094µ10-16=, 936.7217, -0.910817, -2.63678µ10-16=,

943.1012, -0.877708, 1.33227µ10-15=, 949.4282, -0.841083, -8.66494µ10-16====

You may notice from the output of the previous example that the events are detected when the

derivative is only approximately zero. When the method detects the presence of an event in a

step  of  the  underlying  integrator  (by  a  sign  change  of  the  event  expression),  then  it  uses  a

numerical  method to approximately  find the position of  the root.  Since the location process is

numerical,  you  should  expect  only  approximate  results.  Location  method  options

AccuracyGoal,  PrecisionGoal,  and  MaxIterations  can  be  given  to  those  location  methods

that use FindRoot to control tolerances for finding the root.
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You may notice from the output of the previous example that the events are detected when the

derivative is only approximately zero. When the method detects the presence of an event in a

numerical  method to approximately  find the position of  the root.  Since the location process is

numerical,  you  should  expect  only  approximate  results.  Location  method  options

AccuracyGoal,  PrecisionGoal,  and  MaxIterations  can  be  given  to  those  location  methods

that use FindRoot to control tolerances for finding the root.

For Boolean valued event functions, an event occurs when the function switches from True  to

False  or  vice  versa.  The  “Direction“  option  can  be  used  to  restrict  the  event  only  from

changes  from  True  to  False  (“Direction“ -> -1)  or  only  from  changes  from  False  to  True

(“Direction“ -> 1).

This opens up a small window with a button, which when clicked changes the value of the 
variable stop to True from its initialized value of False.

In[10]:= NDSolve`stop = False;
GUIRun@Widget@“Panel“, 8Widget@“Button“, 8

“label“ Ø “Stop“,
BindEvent@“action“,
Script@NDSolve`stop = TrueDD<D<DD;

This integrates the pendulum equation up until the button is clicked (or the system runs out of 
memory).

In[12]:= NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 1, y‘@0D ã 0<, y, 8t, 0, ¶<,
Method Ø 8“EventLocator“, “Event“ ß NDSolve`stop<, MaxSteps Ø ¶D

Out[12]= 88y Ø InterpolatingFunction@880., 620015.<<, <>D<<

Take  note  that  in  this  example,  the  “Event“  option  was  specified  with  RuleDelayed  (:>)  to

prevent the immediate value of stop from being evaluated and set up as the function. 

You can specify more than one event. If the event function evaluates numerically to a list, then

each  component  of  the  list  is  considered  to  be  a  separate  event.  You  can  specify  different

actions,  directions,  etc.  for  each  of  these  events  by  specifying  the  values  of  these  options  as

lists of the appropriate length. 

This integrates the pendulum equation up until the point at which the button is clicked. The 
number of complete swings of the pendulum is kept track of during the integration.

In[13]:= NDSolve`stop = False;
swings = 0; 8
NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 0, y‘@0D ã 1<, y,
8t, 0, 1000000<, Method Ø 8“EventLocator“, “Event“ ß 8y@tD, NDSolve`stop<,

“EventAction“ ß 8swings++, Throw@Null, “StopIntegration“D<,
“Direction“ Ø 81, All<<, MaxSteps Ø InfinityD, swings<

Out[13]= 888y Ø InterpolatingFunction@880., 24903.7<<, <>D<<, 3693<
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As you can see from the previous example, it is possible to mix real- and Boolean-valued event

functions. The expected number of components and type of each component are based on the

values at the initial condition and needs to be consistent throughout the integration.

The  “EventCondition“  option  of  “EventLocator“  allows  you  to  specify  additional  Boolean

conditions that  need to  be satisfied for  an event  to  be tested.   It  is  advantageous to  use this

instead of  a  Boolean event  when possible  because the root  finding process can be done more

efficiently.

This stops the integration of a damped pendulum at the first time that  y HtL = 0 once the decay 
has reduced the energy integral to -0.9.

In[14]:= sol = NDSolve@8y‘‘@tD + .1 y‘@tD + Sin@y@tDD ã 0, y‘@0D ã 1, y@0D ã 0<,
y, 8t, 0, 100<, Method Ø 8“EventLocator“, “Event“ Ø y@tD,

“EventCondition“ Ø Hy‘@tD^2 ê 2 - Cos@y@tDD < -0.9L,
“EventAction“ ß Throw@end = t, “StopIntegration“D<D

Out[14]= 88y Ø InterpolatingFunction@880., 19.4446<<, <>D<<

This makes a plot of the solution (black), the derivative (blue), and the energy integral (green).  
The energy theshold is shown in red.

In[15]:= Plot@Evaluate@8y@tD, y‘@tD, y‘@tD^2 ê 2 - Cos@y@tDD, -.9< ê. First@solDD,
8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<, 8Green<, 8Red<<D

Out[15]=
5 10 15

-0.5

0.5

1.0

The Method  option of “EventLocator“  allows the specification of the numerical method to use

in the integration.

Event Location Methods

The “EventLocator“ method works by taking a step of the underlying method and checking to

see if the sign (or parity) of any of the event functions is different at the step endpoints. Event

functions are expected to be real- or Boolean-valued, so if there is a change, there must be an

event in the step interval. For each event function which has an event occurrence in a step, a

refinement procedure is carried out to locate the position of the event within the interval.

There  are  several  different  methods  which  can  be  used  to  refine  the  position.  These  include

simply taking the solution at the beginning or the end of the integration interval, a linear interpo-

lation of the event value, and using bracketed root-finding methods. The appropriate method to 

use depends on a trade off between execution speed and location accuracy.
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If the event action is to stop the integration then the particular value at which the integration is

stopped  depends  on  the  value  obtained  from  the  “EventLocationMethod“  option  of

“EventLocator“.

Location of a single event is usually fast enough so that the method used will  not significantly

influence the overall computation time. However, when an event is detected multiple times, the

location refinement method can have a substantial effect.

"StepBegin" and "StepEnd" Methods

The crudest methods are appropriate for when the exact position of the event location does not

really matter or does not reflect anything with precision in the underlying calculation. The stop

button example from the previous section is  such a case: time steps are computed so quickly

that there is no way that you can time the click of a button to be within a particular time step,

much less at a particular point within a time step. Thus, based on the inherent accuracy of the

event,  there  is  no  point  in  refining  at  all.  You  can  specify  this  by  using  the  “StepBegin“  or

“StepEnd“  location  methods.  In  any  example  where  the  definition  of  the  event  is  heuristic  or

somewhat imprecise, this can be an appropriate choice.

"LinearInterpolation" Method

When event results are needed for the purpose of  points to plot  in a graph, you only need to

locate  the  event  to  the  resolution  of  the  graph.  While  just  using  the  step  end  is  usually  too

crude for this, a single linear interpolation based on the event function values suffices.

Denote the event function values at successive mesh points of the numerical integration:

wn = gHtn, ynL, wn+1 = gHtn+1, yn+1L

Linear interpolation gives:

we =
wn

wn+1 - wn

A linear approximation of the event time is then:

te = tn + we hn
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Linear interpolation could also be used to approximate the solution at the event time. However,

since  derivative  values  fn = f Htn, ynL  and  fn+1 = f Htn+1, yn+1L  are  available  at  the  mesh  points,  a

better approximation of the solution at the event can be computed cheaply using cubic Hermite

interpolation as:

ye = kn yn + kn+1 yn+1 + ln fn + ln+1 fn+1

for suitably defined interpolation weights:

kn = Hwe - 1L2 H2 we + 1L
kn+1 = H3 - 2 weL we

2

ln = hn Hwe - 1L2 we

ln+1 = hn Hwe - 1L we
2

You  can  specify  refinement  based  on  a  single  linear  interpolation  with  the  setting

“LinearInterpolation“.

This computes the solution for a single period of the pendulum equation and plots the solution 
for that period.

In[16]:= sol = First@NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0<,
y, 8t, 0, ¶<, Method Ø 8“EventLocator“,

“Event“ Ø y‘@tD,
“EventAction“ ß Throw@end = t, “StopIntegration“D, “Direction“ Ø -1,
“EventLocationMethod“ -> “LinearInterpolation“,
Method -> “ExplicitRungeKutta“<DD;

Plot@Evaluate@8y@tD, y‘@tD< ê. solD, 8t, 0, end<, PlotStyle Ø 88Black<, 8Blue<<D

Out[17]=
5 10 15

-3

-2

-1

1

2

3

At the resolution of the plot over the entire period, you cannot see that the endpoint may not

be exactly where the derivative hits the axis. However, if you zoom in enough, you can see the

error.
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This shows a plot just near the endpoint.

In[18]:= Plot@Evaluate@y‘@tD ê. solD, 8t, end * H1 - .001L, end<, PlotStyle Ø BlueD

Out[18]=

16.150 16.155

0.0005

0.0010

0.0015

0.0020

The  linear  interpolation  method  is  sufficient  for  most  viewing  purposes,  such  as  the  Poincaré

section examples shown in the following section. Note that for Boolean-valued event functions,

linear interpolation is effectively only one bisection step, so the linear interpolation method may

be inadequate for graphics. 

Brent's Method

The default  location  method is  the  event  location  method “Brent“,  finding the location  of  the

event  using  FindRoot  with  Brent's  method.  Brent's  method  starts  with  a  bracketed  root  and

combines steps based on interpolation and bisection, guaranteeing a convergence rate at least

as good as bisection. You can control the accuracy and precision to which FindRoot  tries to get

the root of the event function using method options for the “Brent“ event location method. The

default is to find the root to the same accuracy and precision as NDSolve is using for local error

control.

For methods that support continuous or dense output, the argument for the event function can

be found quite efficiently simply by using the continuous output formula. However, for methods

that do not support continuous output, the solution needs to be computed by taking a step of

the underlying method, which can be relatively expensive. An alternate way of getting a solu-

tion  approximation  that  is  not  accurate  to  the  method  order,  but  is  consistent  with  using

FindRoot  on  the  InterpolatingFunction  object  returned  from NDSolve  is  to  use  cubic  Her-

mite interpolation, obtaining approximate solution values in the middle of the step by interpola-

tion based on the solution values and solution derivative values at the step ends.
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Comparison

This example integrates the pendulum equation for a number of different event location meth-

ods and compares the time when the event is found.

This defines the event location methods to use.

In[19]:= eventmethods = 8“StepBegin“, “StepEnd“, “LinearInterpolation“, Automatic<;

This integrates the system and prints out the method used and the value of the independent 
variable when the integration is terminated.

In[20]:= Map@
NDSolve@8y‘‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0<,

y, 8t, 0, ¶<, Method Ø 8“EventLocator“,
“Event“ Ø y‘@tD,
“EventAction“ ß Throw@Print@Ò, “: t = “, t, “ y‘@tD = “, y‘@tDD,

“StopIntegration“D, “Direction“ Ø -1, Method -> “ExplicitRungeKutta“,
“EventLocationMethod“ Ø Ò<D &,

eventmethods
D;

StepBegin: t = 15.8022 y‘@tD = 0.0508999

StepEnd: t = 16.226 y‘@tD = -0.00994799

LinearInterpolation: t = 16.1567 y‘@tD = -0.000162503

Automatic: t = 16.1555 y‘@tD = -2.35922 µ 10-16

Examples

Falling Body

This  system models  a  body  falling  under  the  force  of  gravity  encountering  air  resistance  (see

[M04]).

The event action stores the time when the falling body hits the ground and stops the integration.

In[21]:= sol = y@tD ê. First@NDSolve@8y‘‘@tD ã -1 + y‘@tD^2, y@0D ã 1, y‘@0D ã 0<,
y, 8t, 0, Infinity<, Method Ø 8“EventLocator“, “Event“ ß y@tD,

“EventAction“ ß Throw@tend = t, “StopIntegration“D<DD
Out[21]= InterpolatingFunction@880., 1.65745<<, <>D@tD
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This plots the solution and highlights the initial and final points (green and red) by encircling 
them.

In[22]:= plt = Plot@sol, 8t, 0, tend<, Frame Ø True,
Axes Ø False, PlotStyle Ø Blue, DisplayFunction Ø IdentityD;

grp = Graphics@
88Green, Circle@80, 1<, 0.025D<, 8Red, Circle@8tend, sol ê. t Ø tend<, 0.025D<<D;

Show@plt, grp, DisplayFunction Ø $DisplayFunctionD

Out[24]=
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Period of the Van der Pol Oscillator

The Van der Pol oscillator is an example of an extremely stiff system of ODEs. The event locator

method can call  any method for actually doing the integration of the ODE system. The default

method,  Automatic,  automatically  switches  to  a  method  appropriate  for  stiff  systems  when

necessary, so that stiffness does not present a problem.

This integrates the Van der Pol system for a particular value of the parameter m = 1000 up to the 
point where the variable y2 reaches its initial value and direction.

In[25]:= vsol = NDSolveBK
y1‘@tD ã y2@tD y1@0D ã 2

y2‘@tD ã 1000 H1 - y1@tD^2L y2@tD - y1@tD y2@0D ã 0
O,

8y1, y2<, 8t, 3000<,
Method Ø 8“EventLocator“, “Event“ Ø y2@tD, “Direction“ Ø -1<F

Out[25]= 88y1 Ø InterpolatingFunction@880., 1614.29<<, <>D,
y2 Ø InterpolatingFunction@880., 1614.29<<, <>D<<

Note that the event at the initial condition is not considered.

By selecting the endpoint of the NDSolve  solution, it is possible to write a function that returns

the period as a function of m.
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This defines a function that returns the period as a function of m.

In[26]:= vper@m_D := ModuleB8vsol<,

vsol = FirstBy2 ê. NDSolveBK
y1‘@tD ã y2@tD y1@0D ã 2

y2‘@tD ã m H1 - y1@tD^2L y2@tD - y1@tD y2@0D ã 0
O,

8y1, y2<, 8t, Max@100, 3 mD<,
Method Ø 8“EventLocator“, “Event“ Ø y2@tD, “Direction“ Ø -1<FF;

InterpolatingFunctionDomain@vsolD@@1, -1DDF;

This uses the function to compute the period at m = 1000.

In[27]:= vper@1000D

Out[27]= 1614.29

Of course, it is easy to generalize this method to any system with periodic solutions.

Poincaré Sections

Using  Poincaré  sections  is  a  useful  technique  for  visualizing  the  solutions  of  high-dimensional

differential systems.

For an interactive graphical interface see the package EquationTrekker.

The Hénon|Heiles System

Define the Hénon|Heiles system that models stellar motion in a galaxy.

This gets the Hénon|Heiles system from the NDSolveProblems package.

In[28]:= system = GetNDSolveProblem@“HenonHeiles“D;
vars = system@“DependentVariables“D;
eqns = 8system@“System“D, system@“InitialConditions“D<

Out[29]= :9HY1L
£@TD ã Y3@TD, HY2L

£@TD ã Y4@TD, HY3L
£@TD ã -Y1@TD H1 + 2 Y2@TDL,

HY4L
£@TD ã -Y1@TD

2 + H-1 + Y2@TDL Y2@TD=, :Y1@0D ã
3

25
, Y2@0D ã

3

25
, Y3@0D ã

3

25
, Y4@0D ã

3

25
>>

The Poincaré section of interest in this case is the collection of points in the Y2 - Y4  plane when

the orbit passes through Y1 = 0. 

Since the actual result of the numerical integration is not required, it is possible to avoid storing

all  the  data  in  InterpolatingFunction  by  specifying  the  output  variables  list  (in  the  second

argument  to  NDSolve)  as  empty,  or  8<.  This  means  that  NDSolve  will  produce  no

InterpolatingFunction  as  output,  avoiding  storing  a  lot  of  unnecessary  data.  NDSolve  does

give a message NDSolve::noout warning there will be no output functions, but it can safely be

turned off in this case since the data of interest is collected from the event actions.
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The linear interpolation event location method is used because the purpose of the computation

here is to view the results in a graph with relatively low resolution. If you were doing an exam-

ple where you needed to zoom in on the graph to great  detail  or  to find a feature,  such as a

fixed  point  of  the  Poincaré  map,  it  would  be  more  appropriate  to  use  the  default  location

method.

This turns off the message warning about no output.

In[30]:= Off@NDSolve::nooutD;

This integrates the Hénon|Heiles system using a fourth-order explicit Runge|Kutta method with 
fixed step size of 0.25. The event action is to use Sow on the values of Y2 and Y4.

In[31]:= data =
Reap@
NDSolve@eqns, 8<, 8T, 10000<,

Method Ø 8“EventLocator“, “Event“ Ø Y1@TD, “EventAction“ ß
Sow@8Y2@TD, Y4@TD<D, “EventLocationMethod“ -> “LinearInterpolation“,

“Method“ Ø 8“FixedStep“, “Method“ Ø 8“ExplicitRungeKutta“,
“DifferenceOrder“ Ø 4<<<,

StartingStepSize Ø 0.25, MaxSteps Ø ¶D;
D;

This plots the Poincaré section. The collected data is found in the last part of the result of Reap 
and the list of points is the first part of that.

In[32]:= psdata = data@@-1, 1DD;
ListPlot@psdata, Axes Ø False, Frame Ø True, AspectRatio Ø 1D

Out[33]=
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Since the Hénon|Heiles system is Hamiltonian, a symplectic method gives much better qualita-

tive results for this example.
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This integrates the Hénon|Heiles system using a fourth-order symplectic partitioned Runge|
Kutta method with fixed step size of 0.25. The event action is to use Sow on the values of Y2 
and Y4.

In[34]:= sdata =
Reap@
NDSolve@eqns, 8<, 8T, 10000<,

Method Ø 8“EventLocator“, “Event“ Ø Y1@TD, “EventAction“ ß
Sow@8Y2@TD, Y4@TD<D, “EventLocationMethod“ -> “LinearInterpolation“,

“Method“ Ø 8“SymplecticPartitionedRungeKutta“, “DifferenceOrder“ Ø 4,
“PositionVariables“ Ø 8Y1@TD, Y2@TD<<<,

StartingStepSize Ø 0.25, MaxSteps Ø ¶D;
D;

This plots the Poincaré section. The collected data is found in the last part of the result of Reap 
and the list of points is the first part of that.

In[35]:= psdata = sdata@@-1, 1DD;
ListPlot@psdata, Axes Ø False, Frame Ø True, AspectRatio Ø 1D

Out[36]=
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The ABC Flow

This loads an example problem of the Arnold|Beltrami|Childress (ABC) flow that is used to 
model chaos in laminar flows of the three-dimensional Euler equations.

In[37]:= system = GetNDSolveProblem@“ArnoldBeltramiChildress“D;
eqs = system@“System“D;
vars = system@“DependentVariables“D;
icvars = vars ê. T Ø 0;

This defines a splitting Y1, Y2 of the system by setting some of the right-hand side components 
to zero.

In[41]:= Y1 = eqs; Y1@@2, 2DD = 0; Y1

Out[41]= :HY1L
£@TD ã

3

4
Cos@Y2@TDD + Sin@Y3@TDD, HY2L

£@TD ã 0, HY3L
£@TD ã Cos@Y1@TDD +

3

4
Sin@Y2@TDD>

In[42]:= Y2 = eqs; Y2@@81, 3<, 2DD = 0; Y2

Out[42]= 8HY1L
£@TD ã 0, HY2L

£@TD ã Cos@Y3@TDD + Sin@Y1@TDD, HY3L
£@TD ã 0<
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This defines the implicit midpoint method.

In[43]:= ImplicitMidpoint =
8“ImplicitRungeKutta“, “Coefficients“ Ø “ImplicitRungeKuttaGaussCoefficients“,
“DifferenceOrder“ Ø 2, “ImplicitSolver“ Ø 8“FixedPoint“,

AccuracyGoal Ø 10, PrecisionGoal Ø 10, “IterationSafetyFactor“ Ø 1<<;

This constructs a second-order splitting method that retains volume and reversing symmetries.

In[44]:= ABCSplitting = 8“Splitting“,
“DifferenceOrder“ Ø 2,
“Equations“ Ø 8Y2, Y1, Y2<,
“Method“ Ø 8“LocallyExact“, ImplicitMidpoint, “LocallyExact“<<;

This defines a function that gives the Poincaré section for a particular initial condition.

In[45]:= psect@ics_D :=
Module@8reapdata<,
reapdata =
Reap@
NDSolve@8eqs, Thread@icvars ã icsD<, 8<, 8T, 1000<,
Method Ø 8“EventLocator“,
“Event“ Ø Y2@TD, “EventAction“ ß Sow@8Y1@TD, Y3@TD<D,
“EventLocationMethod“ -> “LinearInterpolation“, Method Ø ABCSplitting<,

StartingStepSize Ø 1 ê 4, MaxSteps Ø ¶D
D;

reapdata@@-1, 1DD
D;
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This finds the Poincaré sections for several different initial conditions and flattens them together 
into a single list of points.

In[46]:= data =
Mod@Map@psect, 884.267682454609692, 0, 0.9952906114885919<,

81.6790790859443243, 0, 2.1257099470901704<,
82.9189523719753327, 0, 4.939152797323216<,
83.1528896559036776, 0, 4.926744120488727<,
80.9829282640373566, 0, 1.7074633238173198<,
80.4090394012299985, 0, 4.170087631574883<,
86.090600411133905, 0, 2.3736566160602277<,
86.261716134007686, 0, 1.4987884558838156<,
81.005126683795467, 0, 1.3745418575363608<,
81.5880780704325377, 0, 1.3039536044289253<,
83.622408133554125, 0, 2.289597511313432<,
80.030948690635763183, 0, 4.306922133429981<,
85.906038850342371, 0, 5.000045498132029<<D,

2 pD;
ListPlot@data, ImageSize Ø MediumD

Out[47]=
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Bouncing Ball

This  example is  a generalization of  an example in [SGT03].  It  models a ball  bouncing down a

ramp  with  a  given  profile.  The  example  is  good  for  demonstrating  how  you  can  use  multiple

invocations of NDSolve with event location to model some behavior.

This defines a function that computes the solution from one bounce to the next. The solution is 
computed until the next time the path intersects the ramp.

In[48]:= OneBounce@k_, ramp_D@8t0_, x0_, xp0_, y0_, yp0_<D :=
Module@8sol, t1, x1, xp1, y1, yp1, gramp, gp<,
sol = First@NDSolve@

8x‘‘@tD ã 0, x‘@t0D ã xp0, x@t0D ã x0,
y‘‘@tD ã -9.8 , y‘@t0D ã yp0, y@t0D ã y0<,

8x, y<,
8t, t0, ¶<, Method Ø 8“EventLocator“, “Event“ ß y@tD - ramp@x@tDD<,
MaxStepSize Ø 0.01DD;

t1 = InterpolatingFunctionDomain@x ê. solD@@1, -1DD;
8x1, xp1, y1, yp1< =
Reflection@k, rampD@8x@t1D, x‘@t1D, y@t1D, y‘@t1D< ê. solD;

Sow@8x@tD ê. sol, t0 § t § t1<, “X“D;
Sow@8 y@tD ê. sol, t0 § t § t1<, “Y“D;
Sow@8x1, y1<, “Bounces“D;
8t1, x1, xp1, y1, yp1<D
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This defines the function for the bounce when the ball hits the ramp. The formula is based on 
reflection about the normal to the ramp assuming only the fraction k of energy is left after a 
bounce.

In[49]:= Reflection@k_, ramp_D@8x_, xp_, y_, yp_<D := Module@8gramp, gp, xpnew, ypnew<,
gramp = -ramp‘@xD;
If@Not@NumberQ@grampDD,
Print@“Could not compute derivative “D;
Throw@$FailedDD;

gramp = 8-ramp‘@xD, 1<;
If@ gramp.8xp, yp< ã 0,
Print@“No reflection“D;
Throw@$FailedDD;

gp = 81, -1< Reverse@grampD;
8xpnew, ypnew< = Hk ê Hgramp.grampLL Hgp gp.8xp, yp< - gramp gramp.8xp, yp<L;
8x, xpnew, y, ypnew<D

This defines the function that runs the bouncing ball simulation for a given reflection ratio, 
ramp, and starting position.

In[50]:= BouncingBall@k_, ramp_, 8x0_, y0_<D :=
Module@8data, end, bounces, xmin, xmax, ymin, ymax<,
If@y0 < ramp@x0D,
Print@“Start above the ramp“D;
Return@$FailedDD;

data = Reap@
Catch@Sow@8x0, y0<, “Bounces“D;
NestWhile@OneBounce@k, rampD, 80, x0, 0, y0, 0<,
Function@1 - Ò1@@1DD ê Ò2@@1DD > 0.01D, 2, 25DD, _, RuleD;

end = data@@1, 1DD;
data = Last@dataD;
bounces = H“Bounces“ ê. dataL;
xmax = Max@bounces@@All, 1DDD;
xmin = Min@bounces@@All, 1DDD;
ymax = Max@bounces@@All, 2DDD;
ymin = Min@bounces@@All, 2DDD;
Show@8Plot@ramp@xD, 8x, xmin, xmax<, PlotRange Ø 88xmin, xmax<, 8ymin, ymax<<,

Epilog Ø 8PointSize@.025D, Map@Point, bouncesD<,
AspectRatio Ø Hymax - yminL ê Hxmax - xminLD,

ParametricPlot@Evaluate@8Piecewise@“X“ ê. dataD, Piecewise@“Y“ ê. dataD<D,
8t, 0, end<, PlotStyle Ø RGBColor@1, 0, 0DD<DD

This is the example that is done in [SGT03].

In[51]:= ramp@x_D := If@x < 1, 1 - x, 0D;
BouncingBall@.7, ramp, 80, 1.25<D

Out[52]=
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The ramp is now defined to be a quarter circle.

In[53]:= circle@x_D := If@x < 1, Sqrt@1 - x^2D, 0D;
BouncingBall@.7, circle, 8.1, 1.25<D

Out[54]=
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This adds a slight waviness to the ramp.

In[55]:= wavyramp@x_D := If@x < 1, 1 - x + .05 Cos@11 Pi xD , 0D;
BouncingBall@.75, wavyramp, 80, 1.25<D

Out[56]=
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Event Direction

Ordinary Differential Equation

This  example  illustrates  the  solution  of  the  restricted  three-body  problem,  a  standard  nonstiff

test system of four equations. The example traces the path of a spaceship traveling around the

moon and returning to the earth (see p. 246 of [SG75]). The ability to specify multiple events

and the direction of the zero crossing is important.
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The initial conditions have been chosen to make the orbit periodic. The value of m corresponds 
to a spaceship traveling around the moon and the earth.

In[57]:= m =
1

82.45
;

m* = 1 - m;

r1 = Hy1@tD + mL2 + y2@tD2 ;

r2 = Hy1@tD - m*L2 + y2@tD2 ;

eqns = :8y1£@tD ã y3@tD, y1@0D ã 1.2<, 8y2£@tD ã y4@tD, y2@0D ã 0<,

:y3£@tD ã 2 y4@tD + y1@tD -
m* Hy1@tD + mL

r1
3

-
m Hy1@tD - m*L

r2
3

, y3@0D ã 0>,

:y4£@tD ã -2 y3@tD + y2@tD -
m* y2@tD

r1
3

-
m y2@tD

r2
3

,

y4@0D ã -1.04935750983031990726`20.020923474937767>>;

The event function is the derivative of the distance from the initial conditions. A local maximum 
or minimum occurs when the value crosses zero.

In[62]:= ddist = 2 Hy3@tD Hy1@tD - 1.2L + y4@tD y2@tDL;

There are two events, which for this example are the same. The first event (with Direction 1) 
corresponds to the point where the distance from the initial point is a local minimum, so that 
the spaceship returns to its original position. The event action is to store the time of the event 
in the variable tfinal and to stop the integration. The second event corresponds to a local 
maximum. The event action is to store the time that the spaceship is farthest from the starting 
position in the variable tfar. 

In[63]:= sol = First@NDSolve@eqns, 8y1, y2, y3, y4<, 8t, ¶<,
Method Ø 8“EventLocator“,

“Event“ -> 8ddist, ddist<,
“Direction“ Ø 81, -1<,
“EventAction“ ß 8Throw@tfinal = t, “StopIntegration“D, tfar = t<,
Method Ø “ExplicitRungeKutta“<DD

Out[63]= 8y1 Ø InterpolatingFunction@880., 6.19217<<, <>D, y2 Ø InterpolatingFunction@880., 6.19217<<, <>D,
y3 Ø InterpolatingFunction@880., 6.19217<<, <>D, y4 Ø InterpolatingFunction@880., 6.19217<<, <>D<

The first two solution components are coordinates of the body of infinitesimal mass, so plotting

one against the other gives the orbit of the body.

This displays one half-orbit when the spaceship is at the furthest point from the initial position.

In[64]:= ParametricPlot@8y1@tD, y2@tD< ê. sol, 8t, 0, tfar<D

Out[64]=
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This displays one complete orbit when the spaceship returns to the initial position.

In[65]:= ParametricPlot@8y1@tD, y2@tD< ê. sol, 8t, 0, tfinal<D

Out[65]=
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Delay Differential Equation

The following system models an infectious disease (see [HNW93], [ST00] and [ST01]).

In[66]:= system = 8y1‘@tD ã -y1@tD y2@t - 1D + y2@t - 10D,
y1@t ê; t § 0D ã 5, y2‘@tD ã y1@tD y2@t - 1D - y2@tD,
y2@t ê; t § 0D ã 1 ê 10, y3‘@tD ã y2@tD - y2@t - 10D, y3@t ê; t § 0D ã 1<;

vars = 8y1@tD, y2@tD, y3@tD<;

Collect the data for a local maximum of each component as the integration proceeds. A sepa-
rate tag for Sow and Reap is used to distinguish the components.

In[68]:= data =
Reap@
sol = First@NDSolve@system, vars, 8t, 0, 40<,

Method Ø 8“EventLocator“,
“Event“ ß 8y1‘@tD, y2‘@tD, y3‘@tD<,
“EventAction“ ß
8Sow@8t, y1@tD<, 1D, Sow@8t, y2@tD<, 2D, Sow@8t, y3@tD<, 3D<,

“Direction“ Ø 8-1, -1, -1<<DD,
81, 2, 3<

D;

Display the local maxima together with the solution components.

In[69]:= colors = 88Red<, 8Blue<, 8Green<<;
plots = Plot@Evaluate@vars ê. solD, 8t, 0, 40<, PlotStyle Ø colorsD;
max = ListPlot@Part@data, -1, All, 1D, PlotStyle Ø colorsD;
Show@plots, maxD

Out[72]=
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Discontinuous Equations and Switching Functions

In  many  applications  the  function  in  a  differential  system  may  not  be  analytic  or  continuous

everywhere.

A common discontinuous problem that arises in practice involves a switching function g:

fI Ht, yL if g Ht, yL > 0
fII Ht, yL if g Ht, yL < 0

In  order  to  illustrate  the  difficulty  in  crossing  a  discontinuity,  consider  the  following  example

[GØ84] (see also [HNW93]):

t2 + 2 y2 if Jt + 1
20
N
2
+ Jy + 3

20
N
2
§ 1

2 t ^2 + 3 y@tD^2 - 2 if Jt + 1
20
N
2
+ Jy + 3

20
N
2
> 1

Here is the input for the entire system. The switching function is assigned to the symbol event, 
and the function defining the system depends on the sign of the switching function.

In[73]:= t0 = 0;

ics0 =
3

10
;

event = t +
1

20

2

+ y@tD +
3

20

2

- 1;

system = 9y‘@tD ã IfAevent <= 0, t2 + 2 y@tD2, 2 t2 + 3 y@tD2 - 2E, y@t0D ã ics0=;

The symbol odemethod is used to indicate the numerical method that should be used for the 
integration. For comparison, you might want to define a different method, such as 
“ExplicitRungeKutta“, and rerun the computations in this section to see how other meth-
ods behave.

In[77]:= odemethod = Automatic;

This solves the system on the interval [0, 1] and collects data for the mesh points of the integra-
tion using Reap and Sow.

In[78]:= data = Reap@
sol = y@tD ê. First@NDSolve@system, y, 8t, t0, 1<,

Method Ø odemethod, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD
D@@2, 1DD;

sol
Out[79]= InterpolatingFunction@880., 1.<<, <>D@tD
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Here is a plot of the solution.

In[80]:= dirsol = Plot@sol, 8t, t0, 1<D

Out[80]=
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Despite the fact that a solution has been obtained, it is not clear whether it has been obtained

efficiently.

The following example shows that the crossing of  the discontinuity presents difficulties for the

numerical solver.

This defines a function that displays the mesh points of the integration together with the num-
ber of integration steps that are taken.

In[81]:= StepPlot@data_, opts___?OptionQD :=
Module@8sdata<,
sdata = Transpose@8data, Range@Length@dataDD<D;
ListPlot@sdata, opts, Axes Ø False, Frame Ø True, PlotRange Ø AllD

D;

As the integration passes the discontinuity (near 0.6 in value), the integration method runs into 
difficulty, and a large number of small steps are taken~a number of rejected steps can also 
sometimes be observed.

In[82]:= StepPlot@dataD

Out[82]=
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One  of  the  most  efficient  methods  of  crossing  a  discontinuity  is  to  break  the  integration  by

restarting at the point of discontinuity.

The following example shows how to use the “EventLocator“ method to accomplish this.
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This numerically integrates the first part of the system up to the point of discontinuity. The 
switching function is given as the event. The direction of the event is restricted to a change 
from negative to positive. When the event is found, the solution and the time of the event are 
stored by the event action.

In[83]:= system1 = 9y‘@tD ã t2 + 2 y@tD2, y@t0D ã ics0=;

data1 = Reap@sol1 = y@tD ê. First@NDSolve@system1, y, 8t, t0, 1<,
Method Ø 8“EventLocator“, “Event“ -> event, Direction Ø 1,

EventAction ß Throw@t1 = t; ics1 = y@tD; , “StopIntegration“D,
Method Ø odemethod<, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD

D@@2, 1DD;
sol1

Out[85]= InterpolatingFunction@880., 0.623418<<, <>D@tD

Using  the  discontinuity  found  by  the  “EventLocator“  method  as  a  new  initial  condition,  the

integration can now be continued.

This defines a system and initial condition, solves the system numerically, and collects the data 
used for the mesh points.

In[86]:= system2 = 9y‘@tD ã 2 t2 + 3 y@tD2 - 2, y@t1D ã ics1=;

data2 = Reap@
sol2 = y@tD ê. First@NDSolve@system2, y, 8t, t1, 1<,

Method Ø odemethod, MaxStepFraction Ø 1, StepMonitor ß Sow@tDDD
D@@2, 1DD;

sol2
Out[88]= InterpolatingFunction@880.623418, 1.<<, <>D@tD

A plot of the two solutions is very similar to that obtained by solving the entire system at once.

In[89]:= evsol = Plot@If@t § t1, sol1, sol2D, 8t, 0, 1<D

Out[89]=
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Examining the mesh points, it is clear that far fewer steps were taken by the method and that 
the problematic behavior encountered near the discontinuity has been eliminated.

In[90]:= StepPlot@Join@data1, data2DD

Out[90]=
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The  value  of  the  discontinuity  is  given  as  0.6234 in  [HNW93],  which  coincides  with  the  value

found by the “EventLocator“ method.

In  this  example  it  is  possible  to  analytically  solve  the  system and use  a  numerical  method to

check the value.

The solution of the system up to the discontinuity can be represented in terms of Bessel and 
gamma functions.

In[91]:= dsol = FullSimplify@First@DSolve@system1, y@tD, tDDD

Out[91]= :y@tD Ø t 3 BesselJB-
3

4
,

t2

2
F GammaB

1

4
F + 10 µ 21ë4 BesselJB

3

4
,

t2

2
F GammaB

3

4
F ì

2 -3 BesselJB
1

4
,

t2

2
F GammaB

1

4
F + 10 µ 21ë4 BesselJB-

1

4
,

t2

2
F GammaB

3

4
F >

Substituting in the solution into the switching function, a local minimization confirms the value 
of the discontinuity.

In[92]:= FindRoot@event ê. dsol, 8t, 3 ê 5<D

Out[92]= 8t Ø 0.623418<

Avoiding Wraparound in PDEs

Many evolution equations model behavior on a spatial domain that is infinite or sufficiently large

to  make  it  impractical  to  discretize  the  entire  domain  without  using  specialized  discretization

methods.  In  practice,  it  is  often  the  case  that  it  is  possible  to  use  a  smaller  computational

domain for as long as the solution of interest remains localized. 
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In situations where the boundaries of the computational domain are imposed by practical consid-

erations rather  than the actual  model  being studied,  it  is  possible  to  pick boundary conditions

appropriately.  Using  a  pseudospectral  method  with  periodic  boundary  conditions  can  make  it

possible to increase the extent of the computational domain because of the superb resolution of

the  periodic  pseudospectral  approximation.  The  drawback  of  periodic  boundary  conditions  is

that signals that propagate past the boundary persist on the other side of the domain, affecting

the solution through wraparound. It is possible to use an absorbing layer near the boundary to

minimize these effects, but it is not always possible to completely eliminate them.

The  sine-Gordon  equation  turns  up  in  differential  geometry  and  relativistic  field  theory.  This

example integrates the equation, starting with a localized initial condition that spreads out. The

periodic pseudospectral  method is used for the integration. Since no absorbing layer has been

instituted near the boundaries, it  is  most appropriate to stop the integration once wraparound

becomes  significant.  This  condition  is  easily  detected  with  event  location  using  the

“EventLocator“ method.

The integration is stopped when the size of the solution at the periodic wraparound point 
crosses a threshold of 0.01, beyond which the form of the wave would be affected by periodicity.

In[93]:= TimingAsgsol = FirstANDSolveA9∂t,tu@t, xD ã ∂x,xu@t, xD - Sin@u@t, xDD,

u@0, xD ã ‰-Hx-5L2 + ‰-Hx+5L2ë2, uH1,0L@0, xD ã 0, u@t, -50D ã u@t, 50D=,
u, 8t, 0, 1000<, 8x, -50, 50<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“,
“DifferenceOrder“ -> “Pseudospectral“<,

Method Ø 8“EventLocator“, “Event“ ß Abs@u@t, -50DD - 0.01,
“EventLocationMethod“ -> “StepBegin“<<EEE

Out[93]= 80.301953, 8u Ø InterpolatingFunction@880., 45.5002<, 8-50., 50.<<, <>D<<

This extracts the ending time from the InterpolatingFunction object and makes a plot of 
the computed solution. You can see that the integration has been stopped just as the first 
waves begin to reach the boundary.

In[94]:= end = InterpolatingFunctionDomain@u ê. sgsolD@@1, -1DD;
DensityPlot@u@t, xD ê. sgsol, 8x, -50, 50<,
8t, 0, end<, Mesh Ø False, PlotPoints Ø 100D

Out[95]=
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The “DiscretizedMonitorVariables“ option affects the way the event is interpreted for 
PDEs; with the setting True, u@t, xD is replaced by a vector of discretized values. This is much 
more efficient because it avoids explicitly constructing the InterpolatingFunction to 
evaluate the event.

In[96]:= TimingAsgsol = FirstANDSolveA9∂t,tu@t, xD ã ∂x,xu@t, xD - Sin@u@t, xDD,

u@0, xD ã ‰-Hx-5L2 + ‰-Hx+5L2ë2, uH1,0L@0, xD ã 0, u@t, -50D ã u@t, 50D=,
u, 8t, 0, 1000<, 8x, -50, 50<, Method Ø 8“MethodOfLines“,

“DiscretizedMonitorVariables“ Ø True,
“SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<,

Method Ø 8“EventLocator“, “Event“ ß Abs@First@u@t, xDDD - 0.01,
“EventLocationMethod“ -> “StepBegin“<<EEE

Out[96]= 80.172973, 8u Ø InterpolatingFunction@880., 45.5002<, 8-50., 50.<<, <>D<<

Performance Comparison

The  following  example  constructs  a  table  making  a  comparison  for  two  different  integration

methods.

This defines a function that returns the time it takes to compute a solution of a mildly damped 
pendulum equation up to the point at which the bob has momentarily been at rest 1000 times.

In[97]:= EventLocatorTiming@locmethod_, odemethod_D := BlockB8Second = 1, y, t, p = 0<,

FirstB

TimingBNDSolveB:y‘‘@tD +
1

1000
y‘@tD + Sin@y@tDD ã 0, y@0D ã 3, y‘@0D ã 0>,

y, 8t, ¶<, Method Ø 8“EventLocator“, “Event“ Ø y‘@tD,
“EventAction“ ß If@p++ ¥ 1000, Throw@end = t, “StopIntegration“DD,
“EventLocationMethod“ Ø locmethod, “Method“ Ø odemethod<,

MaxSteps Ø ¶FFF

F;

This uses the function to make a table comparing the different location methods for two differ-
ent ODE integration methods.

In[98]:= elmethods = 8“StepBegin“, “StepEnd“, “LinearInterpolation“,
8“Brent“, “SolutionApproximation“ -> “CubicHermiteInterpolation“<, Automatic<;

odemethods = 8Automatic, “ExplicitRungeKutta“<;
TableForm@Outer@EventLocatorTiming, elmethods, odemethods, 1D,
TableHeadings Ø 8elmethods, odemethods<D

Out[100]//TableForm=

Automatic ExplicitRungeKutta
StepBegin 0.234964 0.204969
StepEnd 0.218967 0.205968
LinearInterpolation 0.221967 0.212967
8Brent, SolutionApproximation Ø CubicHermiteInterpolation< 0.310953 0.314952
Automatic 0.352947 0.354946
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While simple step begin/end and linear interpolation location are essentially the same low cost,

the  better  location  methods  are  more  expensive.  The  default  location  method  is  particularly

expensive  for  the  explicit  Runge|Kutta  method  because  it  does  not  yet  support  a  continuous

output  formula~it  therefore  needs  to  repeatedly  invoke  the  method  with  different  step  sizes

during the local minimization.

It  is  worth  noting  that,  often,  a  significant  part  of  the  extra  time for  computing  events  arises

from the need to evaluate the event functions at each time step to check for the possibility of a

sign change.

In[101]:= TableFormB

:MapB

BlockB8Second = 1, y, t, p = 0<,

FirstBTimingBNDSolveB:y‘‘@tD +
1

1000
y‘@tD + Sin@y@tDD ã 0,

y@0D ã 3, y‘@0D ã 0>, y, 8t, end<, Method Ø Ò, MaxSteps Ø ¶FFFF &,
odemethods

F>,

TableHeadings Ø 8None, odemethods<F

Out[101]//TableForm=
Automatic ExplicitRungeKutta
0.105984 0.141979

An optimization is performed for event functions involving only the independent variable. Such

events  are  detected  automatically  at  initialization  time.  For  example,  this  has  the  advantage

that  interpolation of  the solution of  the dependent  variables is  not  carried out  at  each step of

the local optimization search~it is deferred until the value of the independent variable has been

found.

Limitations

One limitation of the event locator method is that since the event function is only checked for

sign changes over a step interval, if the event function has multiple roots in a step interval, all

or some of the events may be missed. This typically only happens when the solution to the ODE

varies  much  more  slowly  than  the  event  function.  When  you  suspect  that  this  may  have

occurred, the simplest solution is to decrease the maximum step size the method can take by

using the MaxStepSize  option to NDSolve. More sophisticated approaches can be taken, but the

best approach depends on what is being computed. An example follows that demonstrates the

problem and shows two approaches for fixing it.
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This should compute the number of positive integers less than ‰5 (there are 148). However, 
most are missed because the method is taking large time steps because the solution x@tD is so 
simple.

In[102]:= BlockA8n = 0<, NDSolveA9y‘@tD ã y@tD, y@-1D ã ‰-1=, y, 8t, 5<,
Method Ø 8“EventLocator“, “Event“ Ø Sin@p y@tDD, “EventAction“ ß n++<E; nE

Out[102]= 18

This restricts the maximum step size so that all the events are found.

In[103]:= BlockA8n = 0<, NDSolveA9y‘@tD ã y@tD, y@-1D ã ‰-1=, y, 8t, 5<,
Method Ø 8“EventLocator“, “Event“ Ø Sin@p y@tDD, “EventAction“ ß n++<,
MaxStepSize Ø 0.001E; nE

Out[103]= 148

It is quite apparent from the nature of the example problem that if the endpoint is increased, it

is  likely  that  a  smaller  maximum  step  size  may  be  required.  Taking  very  small  steps  every-

where is quite inefficient. It is possible to introduce an adaptive time step restriction by setting

up a variable that varies on the same time scale as the event function.

This introduces an additional function to integrate that is the event function. With this 
modification and allowing the method to take as many steps as needed, it is possible to find the 
correct value up to t = 10 in a reasonable amount of time.

In[104]:= BlockA8n = 0<, NDSolveA
9y‘@tD ã y@tD, y@-1D ã ‰-1, z‘@tD ã D@Sin@p y@tDD, tD, z@-1D ã SinAp ‰-1E=,
8y, z<, 8t, 10<, Method Ø 8“EventLocator“, “Event“ Ø z@tD, “EventAction“ ß n++<,
MaxSteps Ø ¶E; nE

Out[104]= 22026
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Option Summary

"EventLocator" Options

option name default value

“Direction“ All the direction of zero crossing to allow for 
the event; 1 means from negative to 
positive, -1 means from positive to nega-
tive, and All includes both directions

“Event“ None an expression that defines the event; an 
event occurs at points where substituting 
the numerical values of the problem 
variables makes the expression equal to 
zero

“EventAction“ Throw[Null, 
“StopIntegratio
n“]

what to do when an event occurs: problem 
variables are substituted with their numeri-
cal values at the event; in general, you 
need to use RuleDelayed  (ß) to prevent 
the option from being evaluated except 
with numerical values

“EventLocationMethod“ Automatic the method to use for refining the location 
of a given event 

“Method“ Automatic the method to use for integrating the 
system of ODEs 

“EventLocator“ method options.

"EventLocationMethod" Options

“Brent“ use FindRoot with Method -> “Brent“ to locate the 
event; this is the default with the setting Automatic

“LinearInterpolation“ locate the event time using linear interpolation; cubic 
Hermite interpolation is then used to find the solution at 
the event time

“StepBegin“ the event is given by the solution at the beginning of the 
step

“StepEnd“ the event is given by the solution at the end of the step

Settings for the “EventLocationMethod“ option.
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"Brent" Options

option name default value

“MaxIterations“ 100 the maximum number of iterations to use 
for locating an event within a step of the 
method

“AccuracyGoal“ Automatic accuracy goal setting passed to FindRoot; 
if Automatic, the value passed to 
FindRoot is based on the local error 
setting for NDSolve

“PrecisionGoal“ Automatic precision goal setting passed to 
FindRoot; if Automatic, the value 
passed to FindRoot is based on the local 
error setting for NDSolve

“SolutionApproximation“ Automatic how to approximate the solution for evaluat- 
ing the event function during the refine-  
ment process; can be Automatic or 
“CubicHermiteInterpolation“

Options for event location method “Brent“.

"Extrapolation" Method for NDSolve

Introduction

Extrapolation  methods  are  a  class  of  arbitrary-order  methods  with  automatic  order  and  step-

size  control.  The  error  estimate  comes  from  computing  a  solution  over  an  interval  using  the

same method  with  a  varying  number  of  steps  and  using  extrapolation  on  the  polynomial  that

fits  through  the  computed  solutions,  giving  a  composite  higher-order  method  [BS64].  At  the

same time, the polynomials give a means of error estimation.

Typically,  for low precision, the extrapolation methods have not been competitive with Runge|

Kutta-type  methods.  For  high  precision,  however,  the  arbitrary  order  means  that  they  can  be

arbitrarily faster than fixed-order methods for very precise tolerances.

The  order  and  step-size  control  are  based  on  the  codes  odex.f  and  seulex.f  described  in

[HNW93] and [HW96].

This loads packages that contain some utility functions for plotting step sequences and some 
predefined problems.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
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"Extrapolation"

The  method  “DoubleStep“  performs  a  single  application  of  Richardson's  extrapolation  for  any

one-step integration method and is described within "DoubleStep Method for NDSolve".

“Extrapolation“  generalizes  the  idea  of  Richardson's  extrapolation  to  a  sequence  of  refine-

ments. 

Consider a differential system

(1)y£HtL = f Ht, yHtLL, yHt0L = y0.

Let H > 0 be a basic step size; choose a monotonically increasing sequence of positive integers

n1 < n2 < n3 < < nk

and define the corresponding step sizes

h1 > h2 > h3 > > hk

by

hi =
H

ni
, i = 1, 2, …, k.

Choose a numerical method of order p and compute the solution of the initial value problem by

carrying out ni steps with step size hi to obtain:

Ti,1 = yhi Hto + HL, i = 1, 2, …, k.

Extrapolation is performed using the Aitken|Neville algorithm by building up a table of values:

(2)Ti, j = Ti, j-1 +
Ti, j-1-Ti-1, j-1

ni
ni- j+1

w
-1

, i = 2, …, k, j = 2, …, i,

where  w  is  either  1  or  2  depending  on  whether  the  base  method  is  symmetric  under

extrapolation.
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A dependency graph of the values in (2) illustrates the relationship:

T11
å

T21 ô T22
å å

T31 ô T32 ô T33
å å å

T41 ô T42 ô T43 ô T44
       

Considering k = 2, n1 = 1, n2 = 2 is equivalent to Richardson's extrapolation.

For non-stiff  problems the order of  Tk,k  in (2) is   p + Hk - 1L w.  For stiff  problems the analysis  is

more  complicated  and  involves  the  investigation  of  perturbation  terms  that  arise  in  singular

perturbation problems [HNW93, HW96].

Extrapolation Sequences

Any extrapolation sequence can be specified in the implementation. Some common choices are

as follows.

This is the Romberg sequence.

In[5]:= NDSolve`RombergSequenceFunction@1, 10D

Out[5]= 81, 2, 4, 8, 16, 32, 64, 128, 256, 512<

This is the Bulirsch sequence.

In[6]:= NDSolve`BulirschSequenceFunction@1, 10D

Out[6]= 81, 2, 3, 4, 6, 8, 12, 16, 24, 32<

This is the harmonic sequence.

In[7]:= NDSolve`HarmonicSequenceFunction@1, 10D

Out[7]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

A sequence  that  satisfies  Ini ëni- j+1M
w
¥ 2  has  the  effect  of  minimizing  the  roundoff  errors  for  an

order-p base integration method.
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For a base method of order two, the first entries in the sequence are given by the following.

In[8]:= NDSolve`OptimalRoundingSequenceFunction@1, 10, 2D

Out[8]= 81, 2, 3, 5, 8, 12, 17, 25, 36, 51<

Here is an example of adding a function to define the harmonic sequence where the method 
order is an optional pattern.

In[9]:= Default@myseqfun, 3D = 1;

myseqfun@n1_, n2_, p_.D := Range@n1, n2D

The sequence with lowest cost is the Harmonic sequence, but this is not without problems since

rounding errors are not damped.

Rounding Error Accumulation

For high-order extrapolation an important consideration is the accumulation of rounding errors

in the Aitken|Neville algorithm (2).

As an example consider Exercise 5 of Section II.9 in [HNW93].

Suppose  that  the  entries  T11, T21, T31, …  are  disturbed  with  rounding  errors  e, -e, e, …  and  com-

pute the propagation of these errors into the extrapolation table.

Due to the linearity of the extrapolation process (2), suppose that the Ti, j  are equal to zero and

take e = 1.

This  shows  the  evolution  of  the  Aitken|Neville  algorithm (2)  on  the  initial  data  using  the  har-

monic sequence and a symmetric order-two base integration method, w = p = 2.

1.
-1. -1.66667
1. 2.6 3.13333
-1. -3.57143 -5.62857 -6.2127
1. 4.55556 9.12698 11.9376 12.6938
-1. -5.54545 -13.6263 -21.2107 -25.3542 -26.4413
1. 6.53846 19.1259 35.0057 47.6544 54.144 55.8229
-1. -7.53333 -25.6256 -54.3125 -84.0852 -105.643 -116.295 -119.027

Hence, for an order-sixteen method approximately two decimal digits are lost due to rounding

error accumulation.
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This  model  is  somewhat  crude  because,  as  you  will  see  later,  it  is  more  likely  that  rounding

errors are made in Ti+1,1 than in Ti,1 for i ¥ 1.

Rounding Error Reduction

It seems worthwhile to look for approaches that can reduce the effect of rounding errors in high-

order extrapolation.

Selecting  a  different  step sequence to  diminish  rounding errors  is  one approach,  although the

drawback is that the number of integration steps needed to form the Ti,1  in the first column of

the extrapolation table requires more work.

Some  codes,  such  as  STEP,  take  active  measures  to  reduce  the  effect  of  rounding  errors  for

stringent tolerances [SG75].

An alternative strategy, which does not appear to have received a great deal of attention in the

context of extrapolation, is to modify the base-integration method in order to reduce the magni-

tude  of  the  rounding  errors  in  floating-point  operations.  This  approach,  based  on  ideas  that

dated  back  to  [G51],  and  used  to  good  effect  for  the  two-body  problem in  [F96b]  (for  back-

ground see also [K65], [M65a], [M65b], [V79]), is explained next.

Base Methods

The following methods are the most common choices for base integrators in extrapolation.

† “ExplicitEuler“

† “ExplicitMidpoint“

† “ExplicitModifiedMidpoint“ (Gragg smoothing step (1))

† “LinearlyImplicitEuler“

† “LinearlyImplicitMidpoint“ (Bader|Deuflhard formulation without smoothing step (1))

† “LinearlyImplicitModifiedMidpoint“  (Bader|Deuflhard  formulation  with  smoothing  step
(1))

For efficiency,  these have been built  into NDSolve  and can be called via the Method  option as

individual methods.

The implementation of  these methods has a special  interpretation for  multiple substeps within

“DoubleStep“ and “Extrapolation“.
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The NDSolve. framework for one step methods uses a formulation that returns the increment or

update to the solution. This is advantageous for geometric numerical integration where numeri-

cal errors are not damped over long time integrations. It also allows the application of efficient

correction  strategies  such  as  compensated  summation.  This  formulation  is  also  useful  in  the

context of extrapolation.

The  methods  are  now  described  together  with  the  increment  reformulation  that  is  used  to

reduce rounding error accumulation.

Multiple Euler Steps

Given t0, y0 and H, consider a succession of n = nk integration steps with step size h = H ên carried

out using Euler's method:

(1)

y1 = y0 + h f Ht0, y0L
y2 = y1 + h f Ht1, y1L
y3 = y2 + h f Ht2, y2L
ª ª ª

yn = yn-1 + h f Htn-1, yn-1L

where ti = t0 + i h.

Correspondence with Explicit Runge|Kutta Methods

It is well-known that, for certain base integration schemes, the entries Ti, j  in the extrapolation

table  produced  from (2)  correspond  to  explicit  Runge|Kutta  methods  (see  Exercise  1,  Section

II.9 in [HNW93]).

For example, (1) is equivalent to an n-stage explicit Runge|Kutta method:

(1)
ki = f It0 + ci H, y0 + H ⁄j=1

n ai, j k jM, i = 1, …, n,

yn = y0 + H ⁄i=1
n bi ki

where the coefficients are represented by the Butcher table:

(2)

0
1 ên 1 ên
ª ª 

Hn - 1L ên 1 ên  1 ên
1 ên  1 ên 1 ên
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Reformulation

Let D yn = yn+1 - yn.  Then the integration (1) can be rewritten to reflect  the correspondence with

an explicit Runge|Kutta method (1, 2) as:

(1)

D y0 = h f Ht0, y0L
D y1 = h f Ht1, y0 + D y0L
D y2 = h f Ht2, y0 + HD y0 + D y1LL
ª ª ª

D yn-1 = h f Itn-1, y0 + ID y0 + D y1 + + Dyn-2MM

where  terms  in  the  right-hand  side  of  (1)  are  now  considered  as  departures  from  the  same

value y0.

The D yi in (1) correspond to the h ki in (1).

Let SD yn =⁄i=0
n-1D yi; then the required result can be recovered as:

(2)yn = y0 + SD yn

Mathematically the formulations (1) and (1, 2) are equivalent. For n > 1, however, the computa-

tions in (1) have the advantage of accumulating a sum of smaller OHhL quantities, or increments,

which reduces rounding error accumulation in finite-precision floating-point arithmetic.

Multiple Explicit Midpoint Steps

Expansions  in  even  powers  of  h  are  extremely  important  for  an  efficient  implementation  of

Richardson's extrapolation and an elegant proof is given in [S70].

Consider a succession of integration steps n = 2 nk  with step size h = H ên  carried out using one

Euler step followed by multiple explicit midpoint steps:

(1)

y1 = y0 + h f Ht0, y0L
y2 = y0 + 2 h f Ht1, y1L
y3 = y1 + 2 h f Ht2, y2L
ª ª ª

yn = yn-2 + 2 h f Htn-1, yn-1L
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If (1) is computed with 2 nk - 1 midpoint steps, then the method has a symmetric error expan-

sion ([G65], [S70]).

Reformulation

Reformulation of (1) can be accomplished in terms of increments as:

(1)

D y0 = h f Ht0, y0L
D y1 = 2 h f Ht1, y0 + D y0L - D y0
D y2 = 2 h f Ht2, y0 + HD y0 + D y1LL - D y1
ª ª ª

D yn-1 = 2 h f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL - D yn-2

Gragg's Smoothing Step

The smoothing step  of Gragg has its historical origins in the weak stability of the explicit mid-

point rule:

(1)S yhHnL = 1 ê4 Hyn-1 + 2 yn + yn+1L

In order to make use of (1), the formulation (1) is computed with 2 nk steps. This has the advan-

tage of increasing the stability domain and evaluating the function at the end of the basic step

[HNW93].

Notice  that  because  of  the  construction,  a  sum  of  increments  is  available  at  the  end  of  the

algorithm together with two consecutive increments. This leads to the following formulation:

(2)S D yhHnL = S yhHnL - y0 = SD yn + 1 ê4 HD yn - D yn-1L.

Moreover  (2)  has  an  advantage  over  (1)  in  finite-precision  arithmetic  because  the  values  yi,

which  typically  have  a  larger  magnitude  than  the  increments  D yi,  do  not  contribute  to  the

computation.

Gragg's  smoothing step is  not  of  great  importance if  the method is  followed by extrapolation,

and  Shampine  proposes  an  alternative  smoothing  procedure  that  is  slightly  more  efficient

[SB83].

The  method  “ExplicitMidpoint“  uses  2 nk - 1  steps  and  “ExplicitModifiedMidpoint“  uses

2 nk steps followed by the smoothing step (2).
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Stability Regions

The  following  figures  illustrate  the  effect  of  the  smoothing  step  on  the  linear  stability  domain

(carried out using the package FunctionApproximations.m).

Linear stability regions for Ti,i, i = 1, …, 5 for the explicit midpoint rule (left) and the explicit 
midpoint rule with smoothing (right).
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Since  the  precise  stability  boundary  can  be  complicated  to  compute  for  an  arbitrary  base

method, a simpler approximation is used. For an extrapolation method of order p, the intersec-

tion with the negative real axis is considered to be the point at which:

‚
i=1

p zi

i !
= 1

The stabillity region is approximated as a disk with this radius and origin (0,0) for the negative

half-plane.
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Implicit Differential Equations

A  generalization  of  the  differential  system  (1)  arises  in  many  situations  such  as  the  spatial

discretization of parabolic partial differential equations:

(1)M y£HtL = f Ht, yHtLL, yHt0L = y0.

where M is a constant matrix that is often referred to as the mass matrix.

Base  methods  in  extrapolation  that  involve  the  solution  of  linear  systems  of  equations  can

easily be modified to solve problems of the form (1).

Multiple Linearly Implicit Euler Steps

Increments arise naturally in the description of many semi-implicit  and implicit  methods. Con-

sider  a  succession  of  integration  steps  carried  out  using  the  linearly  implicit  Euler  method  for

the system (1) with n = nk and h = H ên. 

(1)

HM - h JLD y0 = h f Ht0, y0L
y1 = y0 + D y0

HM - h JLD y1 = h f Ht1, y1L
y2 = y1 + D y1

HM - h JLD y2 = h f Ht2, y2L
y3 = y2 + D y2
ª ª ª

HM - h JLD yn-1 = h f Htn-1, yn-1L

Here M denotes the mass matrix and J denotes the Jacobian of f :

J =
∂ f

∂y
Ht0, y0L.

The solution of the equations for the increments in (1) is accomplished using a single LU decom-

position of the matrix M - h J followed by the solution of triangular linear systems for each right-

hand side.

The desired result is obtained from (1) as:

yn = yn-1 + D yn-1.
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Reformulation

Reformulation in terms of increments as departures from y0 can be accomplished as follows:

(1)

HM - h JLD y0 = h f Ht0, y0L
HM - h JLD y1 = h f Ht1, y0 + D y0L
HM - h JLD y2 = h f Ht2, y0 + HD y0 + D y1LL

ª ª ª

HM - h JLD yn-1 = h f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL

The result for yn using (1) is obtained from (2).

Notice that (1) and (1) are equivalent when J = 0, M = I.

Multiple Linearly Implicit Midpoint Steps

Consider  one  step  of  the  linearly  implicit  Euler  method  followed  by  multiple  linearly  implicit

midpoint steps with n = 2 nk and h = H ên, using the formulation of Bader and Deuflhard [BD83]:

(1)

HM - h JLD y0 = h f Ht0, y0L
y1 = y0 + D y0

HM - h JL HD y1 - D y0L = 2 Hh f Ht1, y1L - D y0L
y2 = y1 + D y1

HM - h JL HD y2 - D y1L = 2 Hh f Ht2, y2L - D y1L
y3 = y2 + D y2
ª ª ª

HM - h JL HD yn-1 - D yn-2L = 2 Hh f Htn-1, yn-1L - D yn-2L

If (1) is computed for 2 nk - 1 linearly implicit midpoint steps, then the method has a symmetric

error expansion [BD83].

Reformulation

Reformulation of (1) in terms of increments can be accomplished as follows:

(1)

HM - h JLD y0 = h f Ht0, y0L
HM - h JL HD y1 - D y0L = 2 Hh f Ht1, y0 + D y0L - D y0L
HM - h JL HD y2 - D y1L = 2 Hh f Ht2, y0 + HD y0 + D y1LL - D y1L

ª ª ª

HM - h JL HD yn-1 - D yn-2L = 2 Hh f Htn-1, y0 + HD y0 + D y1 + + D yn-2LL - D yn-2L
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Smoothing Step

An appropriate smoothing step for the linearly implicit midpoint rule is [BD83]:

(1)S yh HnL =
1
2
Hyn-1 + yn+1L.

Bader's smoothing step (1) rewritten in terms of increments becomes:

(2)S D yh HnL = S yh HnL - y0 = SD yn +
1
2
HD yn - D yn-1L.

The required quantities are obtained when (1) is run with 2 nk steps.

The  smoothing  step  for  the  linearly  implicit  midpoint  rule  has  a  different  role  from  Gragg's

smoothing  for  the  explicit  midpoint  rule  (see  [BD83]  and  [SB83]).  Since  there  is  no  weakly

stable term to eliminate, the aim is to improve the asymptotic stability.

The  method  “LinearlyImplicitMidpoint“  uses  2 nk - 1  steps  and  “LinearlyImplicitÖ

ModifiedMidpoint “ uses 2 nk steps followed by the smoothing step (2).

Polynomial Extrapolation in Terms of Increments

You have seen how to modify Ti,1,  the entries in the first  column of the extrapolation table, in

terms of increments.

However, for certain base integration methods, each of the Ti, j corresponds to an explicit Runge|

Kutta method.

Therefore,  it  appears  that  the  correspondence  has  not  yet  been  fully  exploited  and  further

refinement is possible.

Since the Aitken|Neville  algorithm (2)  involves  linear  differences,  the entire  extrapolation pro-

cess can be carried out using increments.

This leads to the following modification of the Aitken|Neville algorithm:

(1)D Ti, j = D Ti, j-1 +
D Ti, j-1-D Ti-1, j-1

ni
ni- j+1

p
-1

, i = 2, …, k, j = 2, …, i.
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The quantities D Ti, j = Ti, j - y0  in (1) can be computed iteratively, starting from the initial quanti-

ties Ti,1 that are obtained from the modified base integration schemes without adding the contri-

bution from y0.

The final desired value Tk,k can be recovered as D Tk,k + y0.

The  advantage  is  that  the  extrapolation  table  is  built  up  using  smaller  quantities,  and  so  the

effect of rounding errors from subtractive cancellation is reduced.

Implementation Issues

There  are  a  number  of  important  implementation  issues  that  should  be  considered,  some  of

which are mentioned here.

Jacobian Reuse

The Jacobian is evaluated only once for all  entries Ti,1  at each time step by storing it  together

with  the  associated  time  that  it  is  evaluated.  This  also  has  the  advantage  that  the  Jacobian

does not need to be recomputed for rejected steps.

Dense Linear Algebra

For dense systems, the LAPACK routines xyyTRF can be used for the LU decomposition and the

routines xyyTRS for solving the resulting triangular systems [LAPACK99].

Adaptive Order and Work Estimation

In  order  to  adaptively  change  the  order  of  the  extrapolation  throughout  the  integration,  it  is

important to have a measure of the amount of work required by the base scheme and extrapola-

tion sequence.

A measure of the relative cost of function evaluations is advantageous.

The dimension of  the system, preferably  with  a  weighting according to  structure,  needs to  be

incorporated  for  linearly  implicit  schemes  in  order  to  take  account  of  the  expense  of  solving

each linear system.
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Stability Check

Extrapolation methods use a large basic step size that can give rise to some difficulties.

"Neither code can solve the van der Pol equation problem in a straightforward way because of

overflow..." [S87].

Two forms of stability check are used for the linearly implicit base schemes (for further discus-

sion, see [HW96]).

One check is performed during the extrapolation process. Let err j = ±T j, j-1 - T j, jµ.

If err j ¥ err j-1 for some j ¥ 3, then recompute the step with H = H ê2.

In order to interrupt computations in the computation of T1,1, Deuflhard suggests checking if the

Newton iteration applied to a fully implicit scheme would converge.

For the implicit Euler method this leads to consideration of:

(1)
HM - h JLD0 = h f Ht0, y0L
HM - h JLD1 = h f Ht0, y0 + D0L - D0

Notice that (1) differs from (1) only in the second equation. It requires finding the solution for a

different right-hand side but no extra function evaluation.

For  the  implicit  midpoint  method,  D0 = D y0  and  D1 = 1 ê2 HD y1 - D y0L,  which  simply  requires  a  few

basic arithmetic operations.

If °D1¥ ¥ °D0¥ then the implicit iteration diverges, so recompute the step with H = H ê2.

Increments  are  a  more  accurate  formulation  for  the  implementation  of  both  forms  of  stability

check.
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Examples

Work-Error Comparison

For comparing different extrapolation schemes, consider an example from [HW96].

In[12]:= t0 = p ê 6;
h0 = 1 ê 10;

y0 = :2 í 3 >;
eqs = 8y‘@tD ã H-y@tD Sin@tD + 2 Tan@tDL y@tD, y@t0D ã y0<;
exactsol = y@tD ê. First@DSolve@eqs, y@tD, tDD ê. t Ø t0 + h0;
idata = 88eqs, y@tD, t<, h0, exactsol<;

The exact solution is given by yHtL = 1 êcosHtL.

Increment Formulation

This  example  involves  an  eighth-order  extrapolation  of  “ExplicitEuler“  with  the  harmonic

sequence. Approximately two digits of accuracy are gained by using the increment-based formu-

lation throughout the extrapolation process.

† The results for the standard formulation (1) are depicted in green.

† The  results  for  the  increment  formulation  (1)  followed  by  standard  extrapolation  (2)  are
depicted in blue.

† The  results  for  the  increment  formulation  (1)  with  extrapolation  carried  out  on  the  incre-
ments using (1) are depicted in red.
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Plot of work vs error on a log-log scale

Approximately two decimal digits of accuracy are gained by using the increment-based formula-

tion throughout the extrapolation process.
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This  compares  the  relative  error  in  the  integration  data  that  forms  the  initial  column  of  the

extrapolation table for the previous example.

Reference  values  were  computed  using  software  arithmetic  with  32  decimal  digits  and  con-

verted  to  the  nearest  IEEE  double-precision  floating-point  numbers,  where  an  ULP  signifies  a

Unit in the Last Place or Unit in the Last Position.

T11 T21 T31 T41 T51 T61 T71 T81
Standard formulation 0 -1 ULP 0 1 ULP 0 1.5 ULPs 0 1 ULP

Increment formulation
applied to the base method

0 0 0 0 1 ULP 0 0 1 ULP

Notice  that  the  rounding-error  model  that  was  used  to  motivate  the  study  of  rounding-error

growth is limited because in practice, errors in Ti,1 can exceed 1 ULP.

The increment formulation used throughout the extrapolation process produces rounding errors

in Ti,1 that are smaller than 1 ULP.

Method Comparison

This  compares  the  work  required  for  extrapolation  based  on  “ExplicitEuler“  (red),  the

“ExplicitMidpoint“ (blue), and “ExplicitModifiedMidpoint“ (green).

All computations are carried out using software arithmetic with 32 decimal digits.
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Plot of work vs error on a log-log scale
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Order Selection

Select a problem to solve.

In[32]:= system = GetNDSolveProblem@“Pleiades“D;

Define a monitor function to store the order and the time of evaluation.

In[33]:= OrderMonitor@t_, method_NDSolve`ExtrapolationD :=
Sow@8t, method@“DifferenceOrder“D<D;

Use the monitor function to collect data as the integration proceeds.

In[34]:= data =
Reap@
NDSolve@system,
Method Ø 8“Extrapolation“, Method -> “ExplicitModifiedMidpoint“<,
“MethodMonitor“ :> OrderMonitor@T, NDSolve`SelfDD

D@@
-1,
1DD;

Display how the order varies during the integration.

In[35]:= ListLinePlot@dataD

Out[35]=
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Method Comparison

Select the problem to solve.

In[67]:= system = GetNDSolveProblem@“Arenstorf“D;

A reference solution is computed with a method that switches between a pair of 
“Extrapolation“ methods, depending on whether the problem appears to be stiff.

In[68]:= sol = NDSolve@system, Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32D;

refsol = First@FinalSolutions@system, solDD;
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Define a list of methods to compare.

In[70]:= methods = 88“ExplicitRungeKutta“, “StiffnessTest“ Ø False<, 8“Extrapolation“,
Method -> “ExplicitModifiedMidpoint“, “StiffnessTest“ Ø False<<;

The data comparing accuracy and work is computed using CompareMethods for a range of 
tolerances.

In[71]:= data = Table@Map@Rest, CompareMethods@system, refsol,
methods, AccuracyGoal Ø tol, PrecisionGoal Ø tolDD, 8tol, 4, 14<D;

The work-error comparison data for the methods is displayed in the following logarithmic plot, 
where the global error is displayed on the vertical axis and the number of function evaluations 
on the horizontal axis. Eventually the higher order of the extrapolation methods means that 
they are more efficient. Note also that the increment formulation continues to give good results 
even at very stringent tolerances.

In[73]:= ListLogLogPlot@Transpose@dataD, Joined Ø True,
Axes Ø False, Frame Ø True, PlotStyle Ø 88Green<, 8Red<<D

Out[72]=
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Stiff Systems

One of the simplest nonlinear equations describing a circuit is van der Pol's equation.

In[18]:= system = GetNDSolveProblem@“VanderPol“D;
vars = system@“DependentVariables“D;
time = system@“TimeData“D;

This solves the equations using “Extrapolation“ with the “ExplicitModifiedMidpoint“ 
base method with the default double-harmonic sequence 2, 4, 6, …. The stiffness detection 
device terminates the integration and an alternative method is suggested.

In[21]:= vdpsol = Flatten@vars ê. NDSolve@system,
Method Ø 8“Extrapolation“, Method Ø “ExplicitModifiedMidpoint“<DD

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[21]= 8InterpolatingFunction@880., 0.0229201<<, <>D@TD,

InterpolatingFunction@880., 0.0229201<<, <>D@TD<
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This solves the equations using “Extrapolation“ with the “LinearlyImplicitEuler“ 
base method with the default sub-harmonic sequence 2, 3, 4, ….

In[22]:= vdpsol = Flatten@vars ê.
NDSolve@system, Method Ø 8“Extrapolation“, Method Ø “LinearlyImplicitEuler“<DD

Out[22]= 8InterpolatingFunction@880., 2.5<<, <>D@TD, InterpolatingFunction@880., 2.5<<, <>D@TD<

Notice  that  the  Jacobian  matrix  is  computed  automatically  (user-specifiable  by  using  either

numerical  differences  or  symbolic  derivatives)  and  appropriate  linear  algebra  routines  are

selected and invoked at run time.

This plots the first solution component over time.

In[23]:= Plot@Evaluate@First@vdpsolDD, Evaluate@timeD, Frame Ø True, Axes Ø FalseD

Out[23]=
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This plots the step sizes taken in computing the solution.

In[24]:= StepDataPlot@vdpsolD

Out[24]=
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High-Precision Comparison

Select the Lorenz equations.

In[25]:= system = GetNDSolveProblem@“Lorenz“D;
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This invokes a bigfloat, or software floating-point number, embedded explicit Runge|Kutta 
method of order 9(8) [V78].

In[26]:= Timing@
erksol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 9<,

WorkingPrecision Ø 32D;
D

Out[26]= 83.3105, Null<

This invokes the “Adams“ method using a bigfloat version of LSODA. The maximum order of 
these methods is twelve.

In[27]:= Timing@
adamssol = NDSolve@system, Method Ø “Adams“, WorkingPrecision Ø 32D;

D

Out[27]= 81.81172, Null<

This invokes the “Extrapolation“ method with “ExplicitModifiedMidpoint“ as the 
base integration scheme.

In[28]:= Timing@
extrapsol = NDSolve@system,

Method Ø 8“Extrapolation“, Method -> “ExplicitModifiedMidpoint“<,
WorkingPrecision Ø 32D;

D

Out[28]= 80.622906, Null<

Here are the step sizes taken by the various methods. The high order used in extrapolation 
means that much larger step sizes can be taken.

In[29]:= methods = 8“ExplicitRungeKutta“, “Adams“, “Extrapolation“<;
solutions = 8erksol, adamssol, extrapsol<;
MapThread@StepDataPlot@Ò2, PlotLabel Ø Ò1D &, 8methods , solutions<D

Out[31]=

Mass Matrix - fem2ex

Consider the partial differential equation:

(1)
∂u
∂t

= expHtL ∂2u
∂x2

, uH0, xL = sinHxL , uHt, 0L = uHt, pL = 0.
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Given an integer n define h = p ê Hn + 1L and approximate at  xk = k h with  k = 0, …, n + 1 using the

Galerkin discretization:

(2)uHt, xkL º ⁄k=1
n ckHtL fkHxL

where fkHxL is a piecewise linear function that is 1 at xk and 0 at x j ≠ xk.

The  discretization  (2)  applied  to  (1)  gives  rise  to  a  system  of  ordinary  differential  equations

with  constant  mass  matrix  formulation  as  in  (1).  The  ODE  system  is  the  fem2ex  problem  in

[SR97] and is also found in the IMSL library.

The problem is set up to use sparse arrays for matrices which is not necessary for the small 
dimension being considered, but will scale well if the number of discretization points is 
increased. A vector-valued variable is used for the initial conditions. The system will be solved 
over the interval @0, pD.

In[35]:= n = 9;
h = N@p ê Hn + 1LD;
amat = SparseArray@

88i_, i_< Ø 2 h ê 3, 8i_, j_< ê; Abs@i - jD ã 1 Ø h ê 6<, 8n + 2, n + 2<, 0.D;
rmat = SparseArray@88i_, i_< Ø -2 ê h, 8i_, j_< ê; Abs@i - jD ã 1 Ø 1 ê h<,

8n + 2, n + 2<, 0.D;
vars = 8y@tD<;
eqs = 8amat.y‘@tD ã rmat.HExp@tD y@tDL<;
ics = 8y@0D ã Table@Sin@k hD, 8k, 0, n + 1<D<;
system = 8eqs, ics<;
time = 8t, 0, p<;

Solve the ODE system using using “Extrapolation“ with the “LinearlyImplicitEuler“ 
base method. The  “SolveDelayed“  option is used to specify that the system is in mass 
matrix form.

In[44]:= sollim = NDSolve@system, vars, time,
Method -> 8“Extrapolation“, Method Ø “LinearlyImplicitEuler“<,
“SolveDelayed“ Ø “MassMatrix“, MaxStepFraction Ø 1D;

This plot shows the relatively large step sizes that are taken by the method.

In[45]:= StepDataPlot@sollimD

Out[45]=
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The default method for this type of problem is  “IDA“  which is a general purpose differential 
algebraic equation solver [HT99]. Being much more general in scope, this method somewhat 
overkill for this example but serves for comparison purposes.

In[46]:= soldae = NDSolve@system, vars, time, MaxStepFraction Ø 1D;
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The following plot clearly shows that a much larger number of steps are taken by the DAE 
solver.

In[47]:= StepDataPlot@soldaeD

Out[47]=
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Define a function that can be used to plot the solutions on a grid.

In[48]:= PlotSolutionsOn3DGrid@8ndsol_<, opts___?OptionQD :=
Module@8if, m, n, sols, tvals, xvals<,
tvals = First@Head@ndsolD@“Coordinates“DD;
sols = Transpose@ndsol ê. t Ø tvalsD;
m = Length@tvalsD;
n = Length@solsD;
xvals = Range@0, n - 1D;
data =
Table@88Part@tvals, jD, Part@xvals, iD<, Part@sols, i, jD<, 8j, m<, 8i, n<D;

data = Apply@Join, dataD;
if = Interpolation@dataD;
Plot3D@Evaluate@if@t, xDD, Evaluate@8t, First@tvalsD, Last@tvalsD<D, Evaluate@

8x, First@xvalsD, Last@xvalsD<D, PlotRange Ø All, Boxed Ø False, optsD
D;

Display the solutions on a grid.

In[49]:= femsol = PlotSolutionsOn3DGrid@vars ê. First@sollimD,
Ticks Ø 8Table@i p, 8i, 0, 1, 1 ê 2<D, Range@0, n + 1D, Automatic<,
AxesLabel Ø 8“time “, “index“,

RawBoxes@RotationBox@“solution\n“, BoxRotation Ø Pi ê 2DD<,
Mesh Ø 819, 9<, MaxRecursion Ø 0, PlotStyle Ø NoneD

Out[49]=
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Fine-Tuning

"StepSizeSafetyFactors"

As with most  methods,  there is  a  balance between taking too small  a  step and trying to  take

too big a step that will be frequently rejected. The option “StepSizeSafetyFactors“ -> 8s1, s2<

constrains  the  choice  of  step  size  as  follows.  The  step  size  chosen by  the  method for  order  p

satisfies:

(1)hn+1 = hn s1 Ks2
Tol

±errnµ
O

1

p+1 .

This includes both an order-dependent factor and an order-independent factor.

"StepSizeRatioBounds"

The  option  “StepSizeRatioBounds“ -> 8srmin, srmax<  specifies  bounds  on  the  next  step  size  to

take such that:

srmin §
hn+1

hn
§ srmax.

"OrderSafetyFactors"

An important aspect in “Extrapolation“ is the choice of order. 

Each extrapolation step k has an associated work estimate k.

The  work  estimate  for  explicit  base  methods  is  based  on  the  number  of  function  evaluations

and the step sequence used.

The  work  estimate  for  linearly  implicit  base  methods  also  includes  an  estimate  of  the  cost  of

evaluating the Jacobian, the cost of an LU decomposition, and the cost of backsolving the linear

equations.

Estimates for  the work per unit  step are formed from the work estimate k  and the expected

new step size to take for a method of order k (computed from (1)): k =k ëhn+1
k .

Comparing  consecutive  estimates,  k  allows  a  decision  about  when  a  different  order  method

will be more efficient.
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The  option  “OrderSafetyFactors“ -> 8 f1, f2<  specifies  safety  factors  to  be  included  in  the

comparison of estimates k.

An order decrease is made when k-1 < f1k.

An order increase is made when k+1 < f2k.

There are some additional restrictions, such as when the maximal order increase per step is one

(two for symmetric methods), and when an increase in order is prevented immediately after a

rejected step.

For  a  nonstiff  base  method  the  default  values  are  84 ê 5, 9 ê 10<  whereas  for  a  stiff  method

they are 87 ê 10, 9 ê 10<.

Option Summary

Options of the method “Extrapolation“.

The default setting of Automatic  for the option “ExtrapolationSequence“  selects a sequence

based on the stiffness and symmetry of the base method.

The default  setting  of  Automatic  for  the  option  “MaxDifferenceOrder“  bounds the  maximum

order by two times the decimal working precision.
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option name default value

"ExtrapolationSequence" Automatic specify the sequence to use in extrapolation

"MaxDifferenceOrder" Automatic specify the maximum order to use

Method "ExplicitModifÖ
iedMidpoiÖ
nt"

specify the base integration method to use

"MinDifferenceOrder" Automatic specify the minimum order to use

"OrderSafetyFactors" Automatic specify the safety factors to use in the 
estimates for adaptive order selection

"StartingDifferenceOrder" Automatic specify the initial order to use

"StepSizeRatioBounds" Automatic specify the bounds on a relative change in 
the new step size hn+1 from the current 
step size hn as low § hn+1 êhn § high

"StepSizeSafetyFactors" Automatic specify the safety factors to incorporate 
into the error estimate used for adaptive 
step sizes

"StiffnessTest" Automatic specify whether to use the stiffness detec -
tion capability



The  default  setting  of  Automatic  for  the  option  “MinDifferenceOrder“  selects  the  minimum

number of two extrapolations starting from the order of the base method. This also depends on

whether the base method is symmetric.

The  default  setting  of  Automatic  for  the  option  “OrderSafetyFactors“  uses  the  values

87 ê 10, 9 ê 10< for a stiff base method and 84 ê 5, 9 ê 10< for a nonstiff base method.

The  default  setting  of  Automatic  for  the  option  “StartingDifferenceOrder“  depends  on  the

setting of  “MinDifferenceOrder“  pmin.  It  is  set  to pmin + 1  or  pmin + 2  depending on whether the

base method is symmetric.

The  default  setting  of  Automatic  for  the  option  “StepSizeRatioBounds“  uses  the  values

81 ê 10, 4< for a stiff base method and 81 ê 50, 4< for a nonstiff base method.

The  default  setting  of  Automatic  for  the  option  “StepSizeSafetyFactors“  uses  the  values

89 ê 10, 4 ê 5< for a stiff base method and 89 ê 10, 13 ê 20< for a nonstiff base method.

The  default  setting  of  Automatic  for  the  option  “StiffnessTest“  indicates  that  the  stiffness

test is activated if a nonstiff base method is used.

option name default value

“StabilityCheck“ True specify whether to carry out a stability 
check on consecutive implicit solutions (see 
e.g. (1))

Option of the method “LinearlyImplicitEuler“, “LinearlyImplicitMidpoint“, and 
“LinearlyImplicitModifiedMidpoint“.

"FixedStep" Method for NDSolve

Introduction

It is often useful to carry out a numerical integration using fixed step sizes.

For  example,  certain  methods  such  as  “DoubleStep“  and  “Extrapolation“  carry  out  a

sequence  of  fixed-step  integrations  before  combining  the  solutions  to  obtain  a  more  accurate

method with an error estimate that allows adaptive step sizes to be taken.

The  method  “FixedStep“  allows  any  one-step  integration  method  to  be  invoked  using  fixed

step sizes.
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This loads a package with some example problems and a package with some utility functions.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Examples

Define an example problem.

In[5]:= system = GetNDSolveProblem@“BrusselatorODE“D

Out[5]= NDSolveProblemB:9HY1L
£@TD ã 1 - 4 Y1@TD + Y1@TD

2 Y2@TD, HY2L
£@TD ã 3 Y1@TD - Y1@TD

2 Y2@TD=,

:Y1@0D ã
3

2
, Y2@0D ã 3>, 8Y1@TD, Y2@TD<, 8T, 0, 20<, 8<, 8<, 8<>F

This integrates a differential system using the method “ExplicitEuler“ with a fixed step size 
of 1 ê10.

In[6]:= NDSolve@8y‘‘@tD ã -y@tD, y@0D ã 1, y‘@0D ã 0<, y, 8t, 0, 1<,
StartingStepSize Ø 1 ê 10, Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<D

Out[6]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

Actually the “ExplicitEuler“ method has no adaptive step size control. Therefore, the 
integration is already carried out using fixed step sizes so the specification of “FixedStep“ is 
unnecessary.

In[7]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “ExplicitEuler“D;
StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[8]=

0 5 10 15 20

0.10.10.10.10.10.10.1
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Here are the step sizes taken by the method “ExplicitRungeKutta“ for this problem.

In[9]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10, Method Ø “ExplicitRungeKutta“D;
StepDataPlot@solD

Out[10]=

0 5 10 15 20

0.10

0.20

0.30

0.15

This specifies that fixed step sizes should be used for the method “ExplicitRungeKutta“.

In[11]:= sol = NDSolve@system, StartingStepSize Ø 1 ê 10,
Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;

StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[12]=

0 5 10 15 20

0.10.10.10.10.10.10.1

The option MaxStepFraction  provides an absolute bound on the step size that depends on the

integration interval.

Since the default value of MaxStepFraction is 1 ê10, the step size in this example is bounded 
by one-tenth of the integration interval, which leads to using a constant step size of 1 ê20.

In[13]:= time = 8T, 0, 1 ê 2<;
sol = NDSolve@system, time, StartingStepSize Ø 1 ê 10,

Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;
StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[15]=

0.1 0.2 0.3 0.4 0.5

0.050

0.030

0.070
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By setting the value of MaxStepFraction to a different value, the dependence of the step size 
on the integration interval can be relaxed or removed entirely.

In[16]:= sol = NDSolve@system, time, StartingStepSize Ø 1 ê 10, MaxStepFraction Ø Infinity,
Method Ø 8“FixedStep“, Method Ø “ExplicitRungeKutta“<D;

StepDataPlot@sol, PlotRange Ø 80, 0.2<D

Out[17]=

0.1 0.2 0.3 0.4 0.5

0.10

0.15

Option Summary

option name default value

Method None specify the method to use with fixed step 
sizes

Option of the method “FixedStep“. 

"OrthogonalProjection" Method for NDSolve

Introduction

Consider the matrix differential equation:

y£HtL = f Ht, yHtLL, t > 0,

where  the  initial  value  y0 = yH0L œmµp  is  given.  Assume that  y0T y0 = I,  that  the  solution  has  the

property of preserving orthonormality, yHtLT yHtL = I, and that it has full rank for all t ¥ 0.

From a numerical perspective, a key issue is how to numerically integrate an orthogonal matrix

differential  system  in  such  a  way  that  the  numerical  solution  remains  orthogonal.  There  are

several strategies that are possible. One approach, suggested in [DRV94], is to use an implicit

Runge|Kutta method (such as the Gauss scheme). Some alternative strategies are described in

[DV99] and [DL01].

The  approach  taken  here  is  to  use  any  reasonable  numerical  integration  method  and  then

postprocess using a projective procedure at the end of each integration step.
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An  important  feature  of  this  implementation  is  that  the  basic  integration  method  can  be  any

built-in  numerical  method,  or  even  a  user-defined  procedure.  In  the  following  examples  an

explicit Runge|Kutta method is used for the basic time stepping. However, if greater accuracy is

required  an  extrapolation  method  could  easily  be  used,  for  example,  by  simply  setting  the

appropriate Method option.

Projection Step

At the end of each numerical integration step you need to transform the approximate solution

matrix  of  the  differential  system  to  obtain  an  orthogonal  matrix.  This  can  be  carried  out  in

several ways (see for example [DRV94] and [H97]):

† Newton or Schulz iteration

† QR decomposition

† Singular value decomposition

The  Newton  and  Schulz  methods  are  quadratically  convergent,  and  the  number  of  iterations

may  vary  depending  on  the  error  tolerances  used  in  the  numerical  integration.  One  or  two

iterations are usually sufficient for convergence to the orthonormal polar factor (see the follow-

ing) in IEEE double-precision arithmetic.

QR  decomposition  is  cheaper  than  singular  value  decomposition  (roughly  by  a  factor  of  two),

but it does not give the closest possible projection.

Definition  (Thin  singular  value  decomposition  [GVL96]):  Given  a  matrix  A œmµp  with  m ¥ p

there exist two matrices U œmµp and V œpµp such that UT A V  is the diagonal matrix of singular

values of A, S = diagIs1, …, spM œpµp, where s1 ¥ ¥ sp ¥ 0. U  has orthonormal columns and V  is

orthogonal.

Definition (Polar decomposition): Given a matrix A and its singular value decomposition U S VT,

the polar decomposition of A is given by the product of two matrices Z and P where Z = U VT  and

P = V S VT. Z has orthonormal columns and P is symmetric positive semidefinite.

The orthonormal polar factor Z of A is the matrix that solves:

min
Zœmµp

9 »» A - Z »» : ZT Z = I=

for the 2 and Frobenius norms [H96].

Advanced Numerical Differential Equation Solving in Mathematica     143



Schulz Iteration

The  approach  chosen  is  based  on  the  Schulz  iteration,  which  works  directly  for  m ¥ p.  In

contrast, Newton iteration for m > p needs to be preceded by QR decomposition.

Comparison with direct computation based on the singular value decomposition is also given.

The Schulz iteration is given by:

(1)Yi+1 = Yi + YiII - YiT YiMë2, Y0 = A.

The  Schulz  iteration  has  an  arithmetic  operation  count  per  iteration  of  2 m2 p + 2 m p2  floating-

point operations, but is rich in matrix multiplication [H97].

In a practical implementation, GEMM-based level 3 BLAS of LAPACK [LAPACK99] can be used in

conjunction with architecture-specific  optimizations via the Automatically Tuned Linear Algebra

Software  [ATLAS00].  Such  considerations  mean  that  the  arithmetic  operation  count  of  the

Schulz iteration is not necessarily an accurate reflection of the observed computational cost. A

useful  bound  on  the  departure  from  orthonormality  of  A  is  in  [H89]:  »» AT A - I »»F.  Comparison

with the Schulz iteration gives the stopping criterion »» AT A - I »»F < t for some tolerance t.

Standard Formulation

Assume  that  an  initial  value  yn  for  the  current  solution  of  the  ODE  is  given,  together  with  a

solution yn+1 = yn + D yn  from a one-step numerical  integration method. Assume that an absolute

tolerance t for controlling the Schulz iteration is also prescribed.

The following algorithm can be used for implementation.

Step 1. Set Y0 = yn+1 and i = 0.

Step 2. Compute E = I - YiT Yi.

Step 3. Compute Yi+1 = Yi + Yi E ê2.

Step 4. If »» E »»F § t or i = imax, then return Yi+1.

Step 5. Set i = i + 1 and go to step 2.
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Increment Formulation

NDSolve  uses  compensated  summation  to  reduce  the  effect  of  rounding  errors  made  by

repeatedly adding the contribution of small quantities D yn  to yn  at each integration step [H96].

Therefore, the increment D yn is returned by the base integrator.

An  appropriate  orthogonal  correction  D Yi  for  the  projective  iteration  can  be  determined  using

the following algorithm.

Step 1. Set D Y0 = 0 and i = 0.

Step 2. Set Yi = D Yi + yn+1.

Step 3. Compute E = I - YiT Yi.

Step 4. Compute D Yi+1 = D Yi + Yi E ê2.

Step 5. If »» E »»F § t or i = imax, then return D Yi+1 + D yn.

Step 6. Set i = i + 1 and go to step 2.

This modified algorithm is used in “OrthogonalProjection“ and shows an advantage of using

an iterative process over a direct process, since it is not obvious how an orthogonal correction

can be derived for direct methods.

Examples

Orthogonal Error Measurement

A function to compute the Frobenius norm »» A »»F of a matrix A can be defined in terms of the 
Norm function as follows.

In[1]:= FrobeniusNorm@a_?MatrixQD := Norm@a, FrobeniusD;

An upper bound on the departure from orthonormality of A can then be measured using this 
function [H97].

In[2]:= OrthogonalError@a_?MatrixQD :=
FrobeniusNorm@Transpose@aD.a - IdentityMatrix@Last@Dimensions@aDDDD;
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This defines the utility function for visualizing the orthogonal error during a numerical 
integration.

In[4]:= H* Utility function for extracting a list of values of the
independent variable at which the integration method has sampled *L

TimeData@8v_?VectorQ, ___?VectorQ<D := TimeData@vD;

TimeData@8if : HInterpolatingFunction@__DL@_D, ___<D :=
Part@if, 0, 3, 1D;

In[6]:= H* Utility function for plotting the
orthogonal error in a numerical integration *L

OrthogonalErrorPlot@sol_D :=
ModuleA8errdata, samples, soldata<,
H* Form a list of times at which the method is invoked *L
samples = TimeData@solD;
H* Form a list of solutions at the integration times *L
soldata = Map@Hsol ê. t Ø ÒL &, samplesD;
H* Form a list of the orthogonal errors *L
errdata = Map@OrthogonalError, soldataD;
ListLinePlotATranspose@8samples, errdata<D,
Frame Ø True, PlotLabel Ø “Orthogonal error »»YTY - I»»F vs time“

E

E;

Square Systems

This  example  concerns  the  solution  of  a  matrix  differential  system  on  the  orthogonal  group

O3HL (see [Z98]).

The matrix differential system is given by

Y £ = FHYL Y
= IA + II - Y YT MM Y

with

A =

0 -1 1
1 0 1
-1 -1 0

and

Y0 = I3.

The solution evolves as:

YHtL = exp@t AD.
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The eigenvalues of YHtL are l1 = 1, l2 = expJt i 3 N, l3 = expJ-t i 3 N. Thus as t approaches 

pí 3 , two of the eigenvalues of YHtL approach -1. The numerical integration is carried out on 

the interval @0, 2D.
In[7]:= n = 3;

A =
0 -1 1
1 0 1
-1 -1 0

;

Y = Table@y@i, jD@tD, 8i, n<, 8j, n<D;

F = A + H IdentityMatrix@nD - Transpose@YD.YL;

In[8]:= H* Vector differential system *L

system = Thread@Flatten@D@Y, tDD ã Flatten@F.YDD;

H* Vector initial conditions *L

ics = Thread@Flatten@HY ê. t Ø 0LD ã Flatten@IdentityMatrix@Length@YDDDD;

eqs = 8system, ics<;

vars = Flatten@YD;

time = 8t, 0, 2<;

This computes the solution using an explicit Runge|Kutta method. The appropriate initial step 
size and method order are selected automatically, and the step size may vary throughout the 
integration interval, which is chosen in order to satisfy local relative and absolute error toler-
ances. Alternatively, the order of the method could be specified by using a Method option.

In[16]:= solerk = NDSolve@eqs, vars, time, Method Ø “ExplicitRungeKutta“D;

This computes the orthogonal error, or absolute deviation from the orthogonal manifold, as the 
integration progresses. The error is of the order of the local accuracy of the numerical method.

In[17]:= solerk = Y ê. First@solerkD;

OrthogonalErrorPlot@solerkD

Out[18]=

0.0 0.5 1.0 1.5 2.0
0

2.µ 10-10

4.µ 10-10

6.µ 10-10

8.µ 10-10

1.µ 10-9

Orthogonal error »»YTY - I»»F vs time
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This computes the solution using an orthogonal projection method with an explicit Runge|Kutta 
method used for the basic integration step. The initial step size and method order are the same 
as earlier, but the step size sequence in the integration may differ.

In[19]:= solop = NDSolve@eqs, vars, time, Method Ø 8“OrthogonalProjection“,
Method Ø “ExplicitRungeKutta“, Dimensions Ø Dimensions@YD<D;

Using the orthogonal projection method, the orthogonal error is reduced to approximately the 
level of roundoff in IEEE double-precision arithmetic.

In[20]:= solop = Y ê. First@solopD;

OrthogonalErrorPlot@solopD

Out[21]=

0.0 0.5 1.0 1.5 2.0
5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

2.5µ 10-16

3.µ 10-16

3.5µ 10-16

4.µ 10-16

Orthogonal error »»YTY - I»»F vs time

The Schulz iteration, using the incremental formulation, generally yields smaller errors than the 
direct singular value decomposition.

Rectangular Systems

In  the  following  example  it  is  shown  how  the  implementation  of  the  orthogonal  projection

method also works for rectangular matrix differential systems. Formally stated, the interest is in

solving ordinary differential equations on the Stiefel manifold, the set of n×p orthogonal matri-

ces with p < n.
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Definition The Stiefel manifold of n×p orthogonal matrices is the set Vn,pHL = 9Y œnµp YT Y = Ip=,

1 § p < n, where Ip is the p×p identity matrix.

Solutions  that  evolve  on  the  Stiefel  manifold  find  numerous  applications  such  as  eigenvalue

problems  in  numerical  linear  algebra,  computation  of  Lyapunov  exponents  for  dynamical  sys-

tems and signal processing.

Consider an example adapted from [DL01]:

q£HtL = A qHtL, t > 0, qH0L = q0

where q0 = 1ì n @1, …, 1D
T
, A = diag@a1, …, anD œnµn, with ai = H-1Li a, i = 1, …, n and a > 0.

The exact solution is given by:

qHtL =
1

n

expHa1 tL
ª

expHan tL
.

Normalizing qHtL as:

YHtL =
qHtL

»» qHtL »»
œnµ1

it follows that YHtL satisfies the following weak skew-symmetric system on Vn,1HL:

Y £ = FHYL Y
= IIn - Y YT M A Y
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In the following example, the system is solved on the interval @0, 5D with a = 9 ê10 and dimension 
n = 2.

In[22]:= p = 1;

n = 2;

a =
9

10
;

ics =
1

n
Table@1, 8n<D;

avec = TableAH-1Li a, 8i, n<E;

A = DiagonalMatrix@avecD;

Y = Table@y@i, 1D@tD, 8i, n<, 8j, p<D;

F = HIdentityMatrix@Length@YDD - Y.Transpose@YDL.A;

system = Thread@Flatten@D@Y, tDD ã Flatten@F.YDD;

ics = Thread@Flatten@HY ê. t Ø 0LD ã icsD;

eqs = 8system, ics<;

vars = Flatten@YD;

tfinal = 5.;

time = 8t, 0, tfinal<;

This computes the exact solution which can be evaluated throughout the integration interval.

In[36]:= solexact = TransposeB:
Ò

Norm@Ò, 2D
>F & ü

Exp@avec tD

n
;

This computes the solution using an explicit Runge|Kutta method.

In[37]:= solerk = NDSolve@eqs, vars, time, Method Ø “ExplicitRungeKutta“D;

solerk = Y ê. First@solerkD;

This computes the componentwise absolute global error at the end of the integration interval.

In[39]:= Hsolexact - solerkL ê. t Ø tfinal

Out[39]= 99-2.03407µ10-11=, 92.96319µ10-13==
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This computes the orthogonal error~a measure of the deviation from the Stiefel manifold.

In[40]:= OrthogonalErrorPlot@solerkD

Out[40]=

0 1 2 3 4 5
0

1.µ 10-10

2.µ 10-10

3.µ 10-10

4.µ 10-10

5.µ 10-10

6.µ 10-10

Orthogonal error »»YTY - I»»F vs time

This computes the solution using an orthogonal projection method with an explicit Runge|Kutta 
method as the basic numerical integration scheme.

In[41]:= solop = NDSolve@eqs, vars, time, Method Ø 8“OrthogonalProjection“,
Method Ø “ExplicitRungeKutta“, Dimensions Ø Dimensions@YD<D;

solop = Y ê. First@solopD;

The componentwise absolute global error at the end of the integration interval is roughly the 
same as before since the absolute and relative tolerances used in the numerical integration are 
the same.

In[43]:= Hsolexact - solopL ê. t Ø tfinal

Out[43]= 99-2.03407µ10-11=, 92.55351µ10-15==

Using the orthogonal projection method, however, the deviation from the Stiefel manifold is 
reduced to the level of roundoff.

In[44]:= OrthogonalErrorPlot@solopD

Out[44]=

0 1 2 3 4 5
0

5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

Orthogonal error »»YTY - I»»F vs time
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Implementation

The implementation of the method “OrthogonalProjection“ has three basic components:

† Initialization.  Set  up  the  base  method  to  use  in  the  integration,  determining  any  method
coefficients and setting up any workspaces that should be used. This is  done once, before
any  actual  integration  is  carried  out,  and  the  resulting  MethodData  object  is  validated  so
that  it  does  not  need  to  be  checked  at  each  integration  step.  At  this  stage  the  system
dimensions and initial conditions are checked for consistency.

† Invoke the base numerical integration method at each step.

† Perform  an  orthogonal  projection.  This  performs  various  tests  such  as  checking  that  the
basic integration proceeded correctly and that the Schulz iteration converges.

Options  can  be  used  to  modify  the  stopping  criteria  for  the  Schulz  iteration.  One  option  pro-

vided by the code is “IterationSafetyFactor“ which allows control over the tolerance t of the

iteration.  The  factor  is  combined  with  a  Unit  in  the  Last  Place,  determined  according  to  the

working precision used in the integration (ULP º 2.22045ä10-16 for IEEE double precision). 

The  Frobenius  norm  used  for  the  stopping  criterion  can  be  computed  efficiently  using  the

LAPACK LANGE functions [LAPACK99].

The option  MaxIterations  controls  the  maximum number  of  iterations  that  should  be  carried

out.

Option Summary

Options of the method “OrthogonalProjection“. 
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option name default value

Dimensions 8< specify the dimensions of the matrix 
differential system

"IterationSafetyFactor" 1
10

specify the safety factor to use in the 
termination criterion for the Schulz itera -
tion (1) 

MaxIterations Automatic specify the maximum number of iterations 
to use in the Schulz iteration (1)

Method "StiffnessSwitÖ
ching"

specify the method to use for the numeri -
cal integration 



"Projection" Method for NDSolve

Introduction

When a differential system has a certain structure, it is advantageous if a numerical integration

method preserves the structure. In certain situations it  is useful to solve differential equations

in which solutions are constrained. Projection methods work by taking a time step with a numeri-

cal integration method and then projecting the approximate solution onto the manifold on which

the true solution evolves.

NDSolve  includes  a  differential  algebraic  solver  which  may  be  appropriate  and  is  described  in

more detail within "Numerical Solution of Differential-Algebraic Equations".

Sometimes the form of the equations may not be reduced to the form required by a DAE solver.

Furthermore  so-called  index  reduction  techniques  can  destroy  certain  structural  properties,

such as symplecticity, that the differential system may possess (see [HW96] and [HLW02]). An

example that illustrates this can be found in the documentation for DAEs.

In such cases it is often possible to solve a differential system and then use a projective proce-

dure  to  ensure  that  the  constraints  are  conserved.  This  is  the  idea  behind  the  method

“Projection“.

If  the  differential  system is  r-reversible  then a  symmetric  projection  process  can be  advanta-

geous (see [H00]).  Symmetric projection is  generally more costly than projection and has not

yet been implemented in NDSolve.

Invariants

Consider a differential equation

(1)y° = f HyL, yHt0L = y0,

where y may be a vector or a matrix.

Definition: A nonconstant function IHyL is called an invariant of (1) if I£HyL f HyL = 0 for all y.

This implies that every solution yHtL of (1) satisfies IHyHtLL = I Hy0L = Constant.

Synonymous  with  invariant,  the  terms  first  integral,  conserved  quantity,  or  constant  of  the

motion are also common.
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Manifolds

Given an Hn - mL-dimensional submanifold of n with g : n #m :

(1) = 8y; gHyL = 0<.

Given  a  differential  equation  (1)  then  y0 œ  implies  yHtL œ  for  all  t.  This  is  a  weaker

assumption than invariance and gHyL is called a weak invariant (see [HLW02]).

Projection Algorithm

Let  y
~
n+1  denote  the  solution  from  a  one-step  numerical  integrator.  Considering  a  constrained

minimization problem leads to the following system (see [AP91], [HW96] and [HLW02]):

(1)

To  save  work  gHyn+1L  is  approximated  as  gJy
~
n+1N.  Substituting  the  first  relation  into  the  second

relation in (1) leads to the following simplified Newton scheme for l:

(2)

with l0 = 0.

The first increment Dl0 is of size OJhnp+1N so that (2) usually converges quickly.

The added expense of using a higher-order integration method can be offset by fewer Newton

iterations in the projective step.

For  the  termination  criterion  in  the  method  “Projection“,  the  option  “IterationSafetyÖ

Factor “ is combined with one Unit in the Last Place in the working precision used by NDSolve.

Examples

Load some utility packages.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
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yn+1 = y
~
n+1 + g£Hyn+1L

T l

0 = gHyn+1L.

Dli = -K g£Jy
~
n+1N g£Jy

~
n+1N

T
O
-1
gKy

~
n+1 + g£Jy

~
n+1N

T
liO ,

li+1 = li + Dli



Linear Invariants

Define a stiff system modeling a chemical reaction.

In[5]:= system = GetNDSolveProblem@“Robertson“D;
vars = system@“DependentVariables“D;

This system has a linear invariant.

In[7]:= invariant = system@“Invariants“D

Out[7]= 8Y1@TD + Y2@TD + Y3@TD<

Linear invariants are generally conserved by numerical integrators (see [S86]), including the 
default NDSolve method, as can be observed in a plot of the error in the invariant.

In[8]:= sol = NDSolve@systemD;

InvariantErrorPlot@invariant, vars, T, solD

Out[9]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

5.µ 10-17

1.µ 10-16

1.5µ 10-16

2.µ 10-16

2.5µ 10-16

3.µ 10-16

Therefore in this example there is no need to use the method “Projection“.

Certain numerical methods preserve quadratic invariants exactly (see for example [C87]). The

implicit midpoint rule, or one-stage Gauss implicit Runge|Kutta method, is one such method.

Harmonic Oscillator

Define the harmonic oscillator.

In[10]:= system = GetNDSolveProblem@“HarmonicOscillator“D;
vars = system@“DependentVariables“D;
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The harmonic oscillator has the following invariant.

In[12]:= invariant = system@“Invariants“D

Out[12]= :
1

2
IY1@TD

2 + Y2@TD
2M>

Solve the system using the method “ExplicitRungeKutta“. The error in the invariant grows 
roughly linearly, which is typical behavior for a dissipative method applied to a Hamiltonian 
system.

In[13]:= erksol = NDSolve@system, Method Ø “ExplicitRungeKutta“D;

InvariantErrorPlot@invariant, vars, T, erksolD

Out[14]=

0 2 4 6 8 10
0

5.µ 10-10

1.µ 10-9

1.5µ 10-9

2.µ 10-9

This also solves the system using the method “ExplicitRungeKutta“ but it projects the 
solution at the end of each step. A plot of the error in the invariant shows that it is conserved 
up to roundoff.

In[15]:= projerksol = NDSolve@system, Method Ø
8“Projection“, Method Ø “ExplicitRungeKutta“, “Invariants“ Ø invariant<D;

InvariantErrorPlot@invariant, vars, T, projerksolD

Out[16]=

0 2 4 6 8 10
0

2.µ 10-17

4.µ 10-17

6.µ 10-17

8.µ 10-17

1.µ 10-16
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Since the system is Hamiltonian (the invariant is the Hamiltonian), a symplectic integrator 
performs well on this problem, giving a small bounded error.

In[17]:= projerksol = NDSolve@system,
Method Ø 8“SymplecticPartitionedRungeKutta“, “DifferenceOrder“ Ø 8,

“PositionVariables“ Ø 8Y1@TD<<, StartingStepSize Ø 1 ê 5D;

InvariantErrorPlot@invariant, vars, T, projerksolD

Out[18]=

0 2 4 6 8 10
0

5.µ 10-14

1.µ 10-13

1.5µ 10-13

Perturbed Kepler Problem

This loads a Hamiltonian system known as the perturbed Kepler problem, sets the integration 
interval and the step size to take, as well as defining the position variables in the Hamiltonian 
formalism.

In[19]:= system = GetNDSolveProblem@“PerturbedKepler“D;
time = system@“TimeData“D;
step = 3 ê 100;
pvars = Take@system@“DependentVariables“D, 2D

Out[22]= 8Y1@TD, Y2@TD<

The system has two invariants, which are defined as H and L.

In[23]:= 8H, L< = system@“Invariants“D

Out[23]= :-
1

400 IY1@TD2 + Y2@TD2M
3ë2

-
1

Y1@TD2 + Y2@TD2
+
1

2
IY3@TD

2 + Y4@TD
2M, -Y2@TD Y3@TD + Y1@TD Y4@TD>

An experiment now illustrates the importance of using all the available invariants in the projec-

tive process (see [HLW02]). Consider the solutions obtained using:

† The method “ExplicitEuler“

† The method “Projection“ with “ExplicitEuler“, projecting onto the invariant L
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† The method “Projection“ with “ExplicitEuler“, projecting onto the invariant H

† The  method  “Projection“  with  “ExplicitEuler“,  projecting  onto  both  the  invariants  H
and L

In[24]:= sol = NDSolve@system, Method Ø “ExplicitEuler“, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[25]=
-30 -25 -20 -15 -10 -5

-2
-1

1
2

In[26]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8H<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[27]=
-1.0 -0.5 0.5

-1.0

-0.5

0.5

In[28]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8L<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[29]=

-6 -4 -2

-6

-5

-4

-3

-2

-1
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In[30]:= sol = NDSolve@system, Method Ø 8“Projection“, Method -> “ExplicitEuler“,
“Invariants“ Ø 8H, L<<, StartingStepSize Ø stepD;

ParametricPlot@Evaluate@pvars ê. First@solDD, Evaluate@timeDD

Out[31]=
-1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

It can be observed that only the solution with projection onto both invariants gives the correct

qualitative  behavior~for  comparison,  results  using  an  efficient  symplectic  solver  can  be  found

in "SymplecticPartitionedRungeKutta Method for NDSolve".

Lotka Volterra

An  example  of  constraint  projection  for  the  Lotka|Volterra  system  is  given  within  "Numerical

Methods for Solving the Lotka|Volterra Equations".

Euler's Equations

An example of constraint projection for Euler's equations is given within "Rigid Body Solvers".

Option Summary

Options of the method “Projection“. 
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option name default value

"Invariants" None specify the invariants of the differential 
system

"IterationSafetyFactor" 1
10

specify the safety factor to use in the 
iterative solution of the invariants

MaxIterations Automatic specify the maximum number of iterations 
to use in the iterative solution of the 
invariants

Method "StiffnessSwitÖ
ching"

specify the method to use for integrating 
the differential system numerically



"StiffnessSwitching" Method for NDSolve

Introduction

The basic idea behind the “StiffnessSwitching“ method is to provide an automatic means of

switching between a nonstiff and a stiff solver.

The  “StiffnessTest“  and  “NonstiffTest“  options  (described  within  "Stiffness  Detection  in

NDSolve") provides a useful means of detecting when a problem appears to be stiff.

The “StiffnessSwitching“ method traps any failure code generated by “StiffnessTest“ and

switches  to  an  alternative  solver.  The  “StiffnessSwitching“  method  also  uses  the  method

specified in the “NonstiffTest“ option to switch back from a stiff to a nonstiff method.

“Extrapolation“  provides a powerful  technique for computing highly accurate solutions using

dynamic order and step size selection (see "Extrapolation Method for NDSolve" for more details)

and is therefore used as the default choice in “StiffnessSwitching“.

Examples

This loads some useful packages.

In[3]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

This selects a stiff problem and specifies a longer integration time interval than the default 
specified by NDSolveProblem.

In[5]:= system = GetNDSolveProblem@“VanderPol“D;
time = 8T, 0, 10<;

The default “Extrapolation“ base method is not appropriate for stiff problems and gives up 
quite quickly.

In[7]:= NDSolve@system, time, Method Ø “Extrapolation“D

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[7]= 88Y1@TD Ø InterpolatingFunction@880., 0.0229201<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.0229201<<, <>D@TD<<

Instead of giving up, the “StiffnessSwitching“ method continues the integration with a 
stiff solver.

In[8]:= NDSolve@system, time, Method Ø “StiffnessSwitching“D

Out[8]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<
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The  “StiffnessSwitching“  method  uses  a  pair  of  extrapolation  methods  as  the  default.  The

nonstiff  solver  uses  the  “ExplicitModifiedMidpoint“  base  method,  and  the  stiff  solver  uses

the “LinearlyImplicitEuler“ base method.

For  small  values  of  the  AccuracyGoal  and  PrecisionGoal  tolerances,  it  is  sometimes  prefer-

able to use an explicit Runge|Kutta method for the nonstiff solver.

The “ExplicitRungeKutta“ method eventually gives up when the problem is considered to 
be stiff.

In[9]:= NDSolve@system, time, Method Ø “ExplicitRungeKutta“,
AccuracyGoal Ø 5, PrecisionGoal Ø 4D

NDSolve::ndstf :
At T == 0.028229404169279455`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
Out[9]= 88Y1@TD Ø InterpolatingFunction@880., 0.0282294<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.0282294<<, <>D@TD<<

This sets the “ExplicitRungeKutta“ method as a submethod of “StiffnessSwitching“.

In[10]:= sol = NDSolve@system, time,
Method Ø 8StiffnessSwitching, Method Ø 8ExplicitRungeKutta, Automatic<<,
AccuracyGoal Ø 5, PrecisionGoal Ø 4D

Out[10]= 88Y1@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 10.<<, <>D@TD<<

A switch to the stiff solver occurs at T º 0.0282294, and a plot of the step sizes used shows that 
the stiff solver takes much larger steps.

In[11]:= StepDataPlot@solD

Out[11]=

0 2 4 6 8 10
0.001

0.002

0.005

0.010

0.020
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Option Summary

option name default value

Method 9Automatic,
Automatic=

specify the methods to use for the nonstiff 
and stiff solvers respectively

“NonstiffTest“ Automatic specify the method to use for deciding 
whther to switch to a nonstiff solver

Options of the method “StiffnessSwitching“. 

Extensions

NDSolve Method Plug-in Framework

Introduction

The control  mechanisms set up for NDSolve  enable you to define your own numerical integra-

tion algorithms and use them as specifications for the Method option of NDSolve.

NDSolve accesses its numerical algorithms and the information it needs from them in an object-

oriented manner. At each step of a numerical integration, NDSolve  keeps the method in a form

so that it can keep private data as needed.

AlgorithmIdentifier @dataD an algorithm object that contains any data that a particular 
numerical ODE integration algorithm may need to use; the 
data is effectively private to the algorithm; 
AlgorithmIdentifier should be a Mathematica symbol, and 
the algorithm is accessed from NDSolve by using the 
option Method -> AlgorithmIdentifier

The structure for method data used in NDSolve.

NDSolve  does  not  access  the  data  associated  with  an algorithm directly,  so  you can keep the

information needed in any form that is convenient or efficient to use. The algorithm and informa-

tion that might be saved in its private data are accessed only through method functions of the

algorithm object.
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AlgorithmObject@
“Step“@rhs,t,h,y,ypDD

attempt to take a single time step of size h from time t to 
time t + h using the numerical algorithm, where y and yp 
are the approximate solution vector and its time deriva-
tive, respectively, at time t; the function should generally 
return a list 8newh, D y< where newh is the best size for the 
next step determined by the algorithm and D y is the 
increment such that the approximate solution at time t + h 
is given by y + D y; if the time step is too large, the func-
tion should only return the value 8hnew< where hnew 
should be small enough for an acceptable step (see later 
for complete descriptions of possible return values)

AlgorithmObject@“DifferenceOrder“D return the current asymptotic difference order of the 
algorithm

AlgorithmObject@“StepMode“D return the step mode for the algorithm object where the 
step mode should either be Automatic or Fixed; 
Automatic means that the algorithm has a means to 
estimate error and determines an appropriate size newh for 
the next time step; Fixed means that the algorithm will 
be called from a time step controller and is not expected to 
do any error estimation

Required method functions for algorithms used from NDSolve.

These method functions must  be defined for  the algorithm to work with NDSolve.  The “Step“

method function should always return a list, but the length of the list depends on whether the

step  was  successful  or  not.  Also,  some  methods  may  need  to  compute  the  function  value

rhs@t + h, y + D yD at the step end, so to avoid recomputation, you can add that to the list.
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“Step“@rhs, t, h, y, ypD method 
output

interpretation

8newh,D y< successful step with computed solution increment D y and 
recommended next step newh

8newh,D y,yph< successful step with computed solution increment D y and 
recommended next step newh and time derivatives com-
puted at the step endpoint, yph = rhs@t + h, y + D yD

8newh,D y,yph,newobj< successful step with computed solution increment D y and 
recommended next step newh and time derivatives com-
puted at the step endpoint, yph = rhs@t + h, y + D yD; any 
changes in the object data are returned in the new 
instance of the method object, newobj

9newh,D y,None,newobj= successful step with computed solution increment D y and 
recommended next step newh; any changes in the object 
data are returned in the new instance of the method 
object, newobj

8newh< rejected step with recommended next step newh such that 
†newh§ < †h§

9newh,$Failed,None,newobj= rejected step with recommended next step newh such that 
†newh§ < †h§; any changes in the object data are returned 
in the new instance of the method object, newobj

Interpretation of “Step“ method output.

Classical Runge|Kutta

Here is an example of how to set up and access a simple numerical algorithm.

This defines a method function to take a single step toward integrating an ODE using the 
classical fourth-order Runge|Kutta method. Since the method is so simple, it is not necessary to 
save any private data.

In[1]:= CRK4@D@“Step“@rhs_, t_, h_, y_, yp_DD := Module@8k0, k1, k2, k3<,
k0 = h yp;
k1 = h rhs@t + h ê 2, y + k0 ê 2D;
k2 = h rhs@t + h ê 2, y + k1 ê 2D;
k3 = h rhs@t + h, y + k2D;
8h, Hk0 + 2 k1 + 2 k2 + k3L ê 6<D

This defines a method function so that NDSolve can obtain the proper difference order to use 
for the method. The ___ template is used because the difference order for the method is always 
4.

In[2]:= CRK4@___D@“DifferenceOrder“D := 4
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This defines a method function for the step mode so that NDSolve will know how to control 
time steps. This algorithm method does not have any step control, so you define the step mode 
to be Fixed.

In[3]:= CRK4@___D@“StepMode“D := Fixed

This integrates the simple harmonic oscillator equation with fixed step size.

In[4]:= fixed =
NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x, 8t, 0, 2 p<, Method Ø CRK4D

Out[4]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<

Generally  using  a  fixed  step  size  is  less  efficient  than  allowing  the  step  size  to  vary  with  the

local  difficulty  of  the  integration.  Modern  explicit  Runge|Kutta  methods  (accessed  in  NDSolve

with Method -> “ExplicitRungeKutta“) have a so-called embedded error estimator that makes

it  possible to very efficiently determine appropriate step sizes. An alternative is to use built-in

step  controller  methods  that  use  extrapolation.  The  method “DoubleStep“  uses  an  extrapola-

tion based on integrating a time step with a single step of size h and two steps of size h ê2. The

method “Extrapolation“  does a more sophisticated extrapolation and modifies the degree of

extrapolation  automatically  as  the  integration  is  performed,  but  is  generally  used  with  base

methods of difference orders 1 and 2.

This integrates the simple harmonic oscillator using the classical fourth-order Runge|Kutta 
method with steps controlled by using the “DoubleStep“ method.

In[5]:= dstep = NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<,
x, 8t, 0, 2 p<, Method Ø 8“DoubleStep“, Method Ø CRK4<D

Out[5]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<
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This makes a plot comparing the error in the computed solutions at the step ends. The error for 
the “DoubleStep“ method is shown in blue.

In[6]:= ploterror@8sol_<, opts___D := Module@8
points = xü“Coordinates“@1D ê. sol,
values = xü“ValuesOnGrid“ ê. sol<,

ListPlot@Transpose@8points, values - Cos@pointsD<D, optsD
D;

Show@8
ploterror@fixedD,
ploterror@dstep, PlotStyle Ø RGBColor@0, 0, 1DD

<D

Out[7]=

1 2 3 4 5 6

-1.µ 10-8

-5.µ 10-9

5.µ 10-9

1.µ 10-8

1.5µ 10-8

The fixed step size ended up with smaller overall  error mostly because the steps are so much

smaller; it required more than three times as many steps. For a problem where the local solu-

tion structure changes more significantly, the difference can be even greater.

A facility for stiffness detection is described within "DoubleStep Method for NDSolve".

For more sophisticated methods, it may be necessary or more efficient to set up some data for

the  method  to  use.  When  NDSolve  uses  a  particular  numerical  algorithm for  the  first  time,  it

calls an initialization function. You can define rules for the initialization that will set up appropri-

ate data for your method. 

InitializeMethod@Algorithm Identifier,stepmode,state,Algorithm OptionsD

the expression that NDSolve evaluates for initialization 
when it first uses an algorithm for a particular integration 
where stepmode is either Automatic or Fixed depending 
on whether your method is expected to be called within the 
framework of a step controller or another method or not; 
state is the NDSolveState object used by NDSolve, and 
Algorithm Options is a list that contains any options given 
specifically with the specification to use the particular 
algorithm, for example, 8opts< in 
Method -> 8Algorithm Identifier, opts<
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Algorithm Identifierê:InitializeMethod@Algorithm Identifier,stepmode_,rhs
_NumericalFunction,state_NDSolveState,8opts___?OptionQ<D:=initialization

definition of the initialization so that the rule is associated 
with the algorithm, and initialization should return an 
algorithm object in the form Algorithm Identifier@dataD

Initializing a method from NDSolve.

As a system symbol, InitializeMethod is protected, so to attach rules to it, you would need to

unprotect it  first.  It  is better to keep the rules associated with your method. A tidy way to do

this is to make the initialization definition using TagSet as shown earlier.

As  an  example,  suppose  you  want  to  redefine  the  Runge|Kutta  method  shown  earlier  so  that

instead  of  using  the  exact  coefficients  2,  1/2,  and  1/6,  numerical  values  with  the  appropriate

precision are used instead to make the computation slightly faster.

This defines a method function to take a single step toward integrating an ODE using the 
classical fourth-order Runge|Kutta method using saved numerical values for the required 
coefficients. 

In[15]:= CRK4@8two_, half_, sixth_<D@“Step“@rhs_, t_, h_, y_, yp_DD :=
Module@8k0, k1, k2, k3<,
k0 = h yp;
k1 = h rhs@t + half h, y + half k0D;
k2 = h rhs@t + half h, y + half k1D;
k3 = h rhs@t + h, y + k2D;
8h, sixth Hk0 + two Hk1 + k2L + k3L<D

This defines a rule that initializes the algorithm object with the data to be used later.

In[16]:= CRK4 ê: NDSolve`InitializeMethod@CRK4,
stepmode_, rhs_, state_, opts___D := Module@8prec<,
prec = stateü“WorkingPrecision“;
CRK4@N@82, 1 ê 2, 1 ê 6<, precDDD

Saving  the  numerical  values  of  the  numbers  gives  between  5  and  10  percent  speedup  for  a

longer integration using “DoubleStep“. 

Adams Methods

In terms of the NDSolve  framework, it is not really any more difficult to write an algorithm that

controls  steps  automatically.  However,  the  requirements  for  estimating  error  and  determining

an appropriate step size usually make this much more difficult from both the mathematical and

programming standpoints. The following example is a partial  adaptation of the Fortran DEABM

code  of  Shampine  and  Watts  to  fit  into  the  NDSolve  framework.  The  algorithm  adaptively

chooses both step size and order based on criteria described in [SG75].
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The  first  stage  is  to  define  the  coefficients.  The  integration  method  uses  variable  step-size

coefficients. Given a sequence of step sizes 8hn-k+1, hn-k+2, …, hn<,  where hn  is the current step to

take,  the  coefficients  for  the  method  with  Adams|Bashforth  predictor  of  order  k  and  Adams|

Moulton corrector of order k + 1, g jHnL such that

yn+1 = pn+1 + hn gkHnLFkHn + 1L

pn+1 = yn + hn ‚
j=0

k-1

g jHnLFk*HnL,

where the F jHnL are the divided differences.

F jHnL ==‰
i=0

j-1

Htn - tn-iL dk f Atn, …, tn- jE

IF jM
*
HnL = b jHnLF jHnL with b jHnL =‰

i=0

j-1 tn+1 - tn-i

tn - t-i+n-1
.

This defines a function that computes the coefficients F j and b j, along with s j, that are used in 
error estimation. The formulas are from [HNW93] and use essentially the same notation.

In[17]:= AdamsBMCoefficients@hlist_ListD := ModuleB8k, h, Dh, brat, b, a, s, c<,
k = Length@hlistD;
h = Last@hlistD;
Dh = Drop@FoldList@Plus, 0, Reverse@hlistDD, 1D;

brat =
Drop@Dh, -1D

Drop@Dh, 1D - h
;

b = FoldList@Times, 1, bratD;

a =
h

Dh
;

s = FoldList@Times, 1, a Range@Length@aDDD;

c@0D = TableB
1

q
, 8q, 1, k<F;

c@1D = TableB
1

q Hq + 1L
, 8q, 1, k<F;

DoBc@jD = Drop@c@j - 1D, -1D -
Drop@c@j - 1D, 1D h

DhPjT
, 8j, 2, k<F;

8HFirst@c@Ò1DD &L êü Range@0, kD, b, s<F
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hlist  is  the  list  of  step  sizes  8hn-k, hn-k+1, …, hn<  from  past  steps.  The  constant-coefficient  Adams

coefficients can be computed once, and much more easily. Since the constant step size Adams|

Moulton coefficients are used in error prediction for changing the method order, it makes sense

to define them once with rules that save the values.

This defines a function that computes and saves the values of the constant step size Adams|
Moulton coefficients.

In[18]:= Moulton@0D = 1;
Moulton@m_D := Moulton@mD = -Sum@Moulton@kD ê H1 + m - kL, 8k, 0, m - 1<D

The next stage is to set up a data structure that will  keep the necessary information between

steps  and  define  how  that  data  should  be  initialized.  The  key  information  that  needs  to  be

saved is the list of past step sizes, hlist, and the divided differences, F. Since the method does

the  error  estimation,  it  needs  to  get  the  correct  norm  to  use  from  the  NDSolve`StateData

object. Some other data such as precision is saved for optimization and convenience. 

This defines a rule for initializing the AdamsBM method from NDSolve.

In[20]:= AdamsBM ê:
NDSolve`InitializeMethod@AdamsBM, 8Automatic, DenseQ_<,
rhs_, ndstate_, opts___D := Module@8prec, norm, hlist, F, mord<,
mord = MaxDifferenceOrder ê. Flatten@8opts, Options@AdamsBMD<D;
If@mord ≠ ¶ && ! HIntegerQ@mordD && mord > 0L, Return@$FailedDD;
prec = ndstate@“WorkingPrecision“D;
norm = ndstate@“Norm“D;
hlist = 8<;
F = 8ndstate@“SolutionDerivativeVector“@“Active“DD<;
AdamsBM@88hlist, F, N@0, precD FP1T<, 8norm, prec, mord, 0, True<<DD;

hlist is initialized to 8< since at initialization time there have been no steps. F is initialized to the

derivative  of  the  solution  vector  at  the  initial  condition  since  the  0th  divided  difference  is  just

the  function  value.  Note  that  F  is  a  matrix.  The  third  element,  which  is  initialized  to  a  zero

vector,  is  used for  determining the best  order  for  the next  step.  It  is  effectively  an additional

divided  difference.  The  use  of  the  other  parts  of  the  data  is  clarified  in  the  definition  of  the

stepping function.

The initialization is also set up to get the value of an option that can be used to limit the maxi-

mum order  of  the method to  use.  In  the code DEABM, this  is  limited to  12,  because this  is  a

practical  limit  for  machine-precision  calculations.  However,  in  Mathematica,  computations  can

be  done  in  higher  precision  where  higher-order  methods  may  be  of  significant  advantage,  so

there is no good reason for an absolute limit of this sort. Thus, you set the default of the option

to be ¶.
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This sets the default for the MaxDifferenceOrder option of the AdamsBM method.

In[21]:= Options@AdamsBMD = 8MaxDifferenceOrder Ø ¶<;

Before proceeding to the more complicated “Step“ method functions, it makes sense to define

the simple “StepMode“ and “DifferenceOrder“ method functions.

This defines the step mode for the AdamsBM method to always be Automatic. This means that 
it cannot be called from step controller methods that request fixed step sizes of possibly varying 
sizes. 

In[22]:= AdamsBM@___D@“StepMode“D = Automatic;

This defines the difference order for the AdamsBM method. This varies with the number of past 
values saved.

In[23]:= AdamsBM@data_D@“DifferenceOrder“D := Length@data@@1, 2DDD;

Finally, here is the definition of the “Step“ function. The actual process of taking a step is only

a few lines. The rest of the code handles the automatic step size and order selection following

very closely the DEABM code of Shampine and Watts.

This defines the “Step“ method function for AdamsBM that returns step data according to the 
templates described earlier. 

In[24]:= AdamsBM@data_D@“Step“@rhs_, t_, h_, y_, yp_DD :=
ModuleB8prec, norm, hlist, F, F1, ns, starting, k, zero,

g, b, s, p, f, Dy, normh, ev, err, PE, knew, hnew, temp<,
88hlist, F, F1<, 8norm, prec, mord, ns, starting<< = data;
H* Norm scaling will be based on current solution y. *L
normh = HAbs@hD temp@Ò1, yD &L ê. 8temp Ø norm<;
k = Length@FD;
zero = N@0, precD;
H* Keep track of number of steps at this stepsize h. *L
If@Length@hlistD > 0 && Last@hlistD == h, ns++, ns = 1D;
hlist = Join@hlist, 8h<D;
8g, b, s< = AdamsBMCoefficients@hlistD;
H* Convert F to F* *L
F = F Reverse@bD;
H* PE: Predict and evaluate *L
p = Reverse@Drop@g, -1DD.F;
f = rhs@h + t, h p + yD;
H* Update divided differences *L
F = FoldList@Plus, zero F1, FD;
H* Compute scaled error estimate *L
ev = f - Last@FD;
err = HgP-2T - gP-1TL normh@evD;
H* First order check: determines if order should be lowered
even in the case of a rejected step *L

knew = OrderCheck@PE, k, F, ev, normh, sD;
IfBerr > 1,
H* Rejected step: reduce h by half,
make sure starting mode flag is unset and reset F to previous values *L

,
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In[24]:=

hnew =
h

2
; Dy = $Failed; f = None; starting = False; F = dataP1, 2T,

H* Sucessful step:
CE: Correct and evaluate *L

Dy = h Hp + ev Last@gDL;
f = rhs@h + t, y + DyD; temp = f - Last@FD;
H* Update the divided differences *L
F = Htemp + Ò1 &L êü F;
H* Determine best order and stepsize for the next step *L
F1 = temp - F1;
knew = ChooseNextOrder@starting, PE, k, knew, F1, normh, s, mord, nsD;
hnew = ChooseNextStep@PE, knew, hDF;

H* Truncate hlist and F to the appropriate length for the chosen order. *L
hlist = Take@hlist, 1 - knewD;
If@Length@FD > knew, F1 = FPLength@FD - knewT; F = Take@F, -knewD;D;
H* Return step data along with updated method data *L

8hnew, Dy, f, AdamsBM@88hlist, F, F1<, 8norm, prec, mord, ns, starting<<D<F;

There  are  a  few  deviations  from DEABM in  the  code  here.  The  most  significant  is  that  coeffi-

cients are recomputed at each step, whereas DEABM computes only those that need updating.

This modification was made to keep the code simpler, but does incur a clear performance loss,

particularly  for  small  to  moderately  sized  systems.  A  second  significant  modification  is  that

much of  the code for  limiting rejected steps is  left  to  NDSolve,  so there are no checks in  this

code to see if the step size is too small or the tolerances are too large. The stiffness detection

heuristic has also been left out. The order and step-size determination code has been modular-

ized into separate functions.

This defines a function that constructs error estimates PE j for j == k - 2, k - 1, and k and deter-
mines if the order should be lowered or not.

In[25]:= OrderCheck@PE_, k_, F_, ev_, normh_, s_D := ModuleB8knew = k<,

PEk = Abs@sPk + 1T Moulton@kD normh@evDD; IfBk > 1,
PEk-1 = Abs@sPkT Moulton@k - 1D normh@ev + FP2TDD;
If@k > 2,
PEk-2 = Abs@sPk - 1T Moulton@k - 2D normh@ev + FP3TDD;
If@Max@PEk-1, PEk-2D < PEk, knew = k - 1DD,

IfBPEk-1 <
PEk

2
, knew = k - 1F;

F;
knew

F;

This defines a function that determines the best order to use after a successful step.

In[26]:= SetAttributes@ChooseNextOrder, HoldFirstD;
ChooseNextOrder@starting_, PE_, k_, knw_, F1_, normh_, s_, mord_, ns_D :=

ModuleB8knew = knw<,
starting = starting && knew ¥ k && k < mord;
IfBstarting,

,
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IfBstarting,
knew = k + 1; PEk+1 = 0,
IfBknew ¥ k && ns ¥ k + 1,

PEk+1 = Abs@Moulton@k + 1D normh@F1DD;
IfBk > 1,
If@PEk-1 § Min@PEk, PEk+1D,
knew = k - 1,
If@PEk+1 < PEk && k < mord, knew = k + 1D

D,

IfBPEk+1 <
PEk

2
, knew = k + 1F

F;

F;

F;
knew

F;

This defines a function that determines the best step size to use after a successful step of size 
h. 

In[28]:= ChooseNextStep@PE_, k_, h_D :=
IfBPEk < 2-Hk+2L,
2 h,

IfBPEk <
1

2
, h, h MaxB

1

2
, MinB

9

10
,

1

2 PEk

1

k+1

FFF

F;

Once  these  definitions  are  entered,  you  can  access  the  method  in  NDSolve  by  simply  using

Method -> AdamsBM.

This solves the harmonic oscillator equation with the Adams method defined earlier. 

In[29]:= asol = NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<,
x, 8t, 0, 2 p<, Method Ø AdamsBMD

Out[29]= 88x Ø InterpolatingFunction@880., 6.28319<<, <>D<<

This shows the error of the computed solution. It is apparent that the error is kept within 
reasonable bounds. Note that after the first few points, the step size has been increased.

In[30]:= ploterror@asolD

Out[30]=
1 2 3 4 5 6

-2.µ 10-8

-1.µ 10-8

1.µ 10-8

2.µ 10-8
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Where this method has the potential  to outperform some of the built-in methods is with high-

precision computations with strict tolerances. This is because the built-in methods are adapted

from codes with the restriction to order 12. 

In[31]:= LorenzEquations = 8
8x‘@tD == -3 Hx@tD - y@tDL, x@0D == 0<,
8y‘@tD == -x@tD z@tD + 53 ê 2 x@tD - y@tD, y@0D == 1<,
8z‘@tD == x@tD y@tD - z@tD, z@0D == 0<<;

vars = 8x@tD, y@tD, z@tD<;

A lot of time is required for coefficient computation.

In[33]:= Timing@NDSolve@LorenzEquations, vars, 8t, 0, 20<, Method Ø AdamsBMDD

Out[33]= 87.04 Second, 88x@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD,
y@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD,
z@tD Ø InterpolatingFunction@880., 20.<<, <>D@tD<<<

This is not using as high an order as might be expected.

In any case, about half the time is spent generating coefficients, so to make it better, you need

to figure out the coefficient update.

In[34]:= Timing@NDSolve@LorenzEquations, vars,
8t, 0, 20<, Method Ø AdamsBM, WorkingPrecision Ø 32DD

Out[34]= 811.109, 88x@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD,
y@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD,
z@tD Ø InterpolatingFunction@880, 20.000000000000000000000000000000<<, <>D@tD<<<
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Numerical Solution of Partial Differential 
Equations

The Numerical Method of Lines

Introduction

The numerical method of lines is a technique for solving partial differential equations by discretiz-

ing  in  all  but  one  dimension,  and  then  integrating  the  semi-discrete  problem  as  a  system  of

ODEs or DAEs. A significant advantage of the method is that it allows the solution to take advan-

tage of the sophisticated general-purpose methods and software that have been developed for

numerically integrating ODEs and DAEs. For the PDEs to which the method of lines is applicable,

the method typically proves to be quite efficient. 

It  is  necessary that the PDE problem be well-posed as an initial  value (Cauchy) problem in at

least one dimension, since the ODE and DAE integrators used are initial value problem solvers.

This  rules  out  purely  elliptic  equations  such  as  Laplace's  equation,  but  leaves  a  large  class  of

evolution equations that can be solved quite efficiently.

A  simple  example  illustrates  better  than  mere  words  the  fundamental  idea  of  the  method.

Consider the following problem (a simple model for seasonal variation of heat in soil). 

(1)ut ==
1
8

uxx, uH0, tL == sinH2 p tL, uxH1, tL == 0, uHx, 0Lã 0

This is a candidate for the method of lines since you have the initial value u Hx, 0L == 0.

Problem  (1)  will  be  discretized  with  respect  to  the  variable  x  using  second-order  finite  differ-

ences, in particular using the approximation

(2)uxxHx, tL > uHx+h,tL-2 uHx,tL-uHx-h,tL
h2

Even though finite difference discretizations are the most common, there is certainly no require-

ment that discretizations for the method of  lines be done with finite differences; finite volume

or even finite element discretizations can also be used.
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To use the discretization shown, choose a uniform grid xi, 0 § i § n with spacing h == 1 ên such that

xi == i h.  Let  ui@tD  be  the  value  of  uHxi, tL.  For  the  purposes  of  illustrating  the  problem  setup,  a

particular value of n is chosen.

This defines a particular value of n and the corresponding value of h used in the subsequent 
commands. This can be changed to make a finer or coarser spatial approximation.

In[1]:= n = 10; hn =
1

n
;

This defines the vector of ui.

In[2]:= U@t_D = Table@ui@tD, 8i, 0, n<D

Out[2]= 8u0@tD, u1@tD, u2@tD, u3@tD, u4@tD, u5@tD, u6@tD, u7@tD, u8@tD, u9@tD, u10@tD<

For 1 § i § 9, you can use the centered difference formula (2) to obtain a system of ODEs. How-

ever, before doing this, it is useful to incorporate the boundary conditions first.

The  Dirichlet  boundary  condition  at  x == 0  can  easily  be  handled  by  simply  defining  u0  as  a

function  of  t.  An  alternative  option  is  to  differentiate  the  boundary  condition  with  respect  to

time and use the corresponding differential equation. In this example, the latter method will be

used.

The  Neumann  boundary  condition  at  x == 1  is  a  little  more  difficult.  With  second-order  differ-

ences, one way to handle it is with reflection: imagine that you are solving the problem on the

interval 0 § x § 2  with the same boundary conditions at x == 0  and x == 2.  Since the initial  condi-

tion and boundary conditions are symmetric with respect to x, the solution should be symmetric

with respect to x for all time, and so symmetry is equivalent to the Neumann boundary condi-

tion at x  1. Thus, uH1 + h, tLã uH1 - h, tL, so un+1@tDã un-1@tD.
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This uses ListCorrelate to apply the difference formula. The padding 8un-1@tD< implements 
the Neumann boundary condition.

In[3]:= eqns = ThreadAD@U@tD, tD ã JoinA8D@Sin@2 p tD, tD<,
ListCorrelateA81, -2, 1< ë hn2, U@tD, 81, 2<, 8un-1@tD<E ë 8EE

Out[3]= :u0
£@tD ã 2 p Cos@2 p tD, u1

£@tD ã
1

8
H100 u0@tD - 200 u1@tD + 100 u2@tDL,

u2
£@tD ã

1

8
H100 u1@tD - 200 u2@tD + 100 u3@tDL,

u3
£@tD ã

1

8
H100 u2@tD - 200 u3@tD + 100 u4@tDL, u4

£@tD ã
1

8
H100 u3@tD - 200 u4@tD + 100 u5@tDL,

u5
£@tD ã

1

8
H100 u4@tD - 200 u5@tD + 100 u6@tDL, u6

£@tD ã
1

8
H100 u5@tD - 200 u6@tD + 100 u7@tDL,

u7
£@tD ã

1

8
H100 u6@tD - 200 u7@tD + 100 u8@tDL, u8

£@tD ã
1

8
H100 u7@tD - 200 u8@tD + 100 u9@tDL,

u9
£@tD ã

1

8
H100 u8@tD - 200 u9@tD + 100 u10@tDL, u10

£@tD ã
1

8
H200 u9@tD - 200 u10@tDL>

This sets up the zero initial condition.

In[4]:= initc = Thread@U@0D ã Table@0, 8n + 1<DD

Out[4]= 8u0@0D ã 0, u1@0D ã 0, u2@0D ã 0, u3@0D ã 0, u4@0D ã 0,
u5@0D ã 0, u6@0D ã 0, u7@0D ã 0, u8@0D ã 0, u9@0D ã 0, u10@0D ã 0<

Now the PDE has been partially discretized into an ODE initial value problem that can be solved

by the ODE integrators in NDSolve.

This solves the ODE initial value problem.

In[5]:= lines = NDSolve@8eqns, initc<, U@tD, 8t, 0, 4<D

Out[5]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<
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This shows the solutions uHxi, tL plotted as a function of x and t.

In[6]:= ParametricPlot3D@Evaluate@Table@8i hn, t, First@ui@tD ê. linesD<, 8i, 0, n<DD,
8t, 0, 4<, PlotRange Ø All, AxesLabel Ø 8“x“, “t“, “u“<D

Out[6]=

0.0
0.5

1.0x

0

1

2

3

4

t

–1.0

–0.5

0.0

0.5

1.0

u

The plot indicates why this technique is called the numerical "method of lines". 

The  solution  in  between  lines  can  be  found  by  interpolation.  When  NDSolve  computes  the

solution for the PDE, the result is a two-dimensional InterpolatingFunction.

This uses NDSolve to compute the solution of the heat equation (1) directly.

In[7]:= solution = NDSolveB:D@u@x, tD, tD ã
1

8
D@u@x, tD, x, xD, u@x, 0D ã 0,

u@0, tD ã Sin@2 p tD, HD@u@x, tD, xD ê. x Ø 1L ã 0>, u, 8x, 0, 1<, 8t, 0, 4<F

Out[7]= 88u Ø InterpolatingFunction@880., 1.<, 80., 4.<<, <>D<<

This creates a surface plot of the solution.

In[8]:= Plot3D@Evaluate@First@u@x, tD ê. solutionDD,
8x, 0, 1<, 8t, 0, 4<, PlotPoints Ø 814, 36<, PlotRange Ø AllD

Out[8]=
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The  setting  n == 10  used  did  not  give  a  very  accurate  solution.  When  NDSolve  computes  the

solution, it uses spatial error estimates on the initial condition to determine what the grid spac-

ing should be. The error in the temporal (or at least time-like) variable is handled by the adap-

tive ODE integrator. 

In the example (1),  the distinction between time and space was quite clear from the problem

context.  Even  when  the  distinction  is  not  explicit,  this  tutorial  will  refer  to  "spatial"  and

"temporal" variables. The "spatial"  variables are those to which the discretization is done. The

"temporal" variable is the one left in the ODE system to be integrated.

Options for NDSolve`MethodOfLines. 

Use of some of these options requires further knowledge of how the method of lines works and

will be explained in the sections that follow.

Currently,  the  only  method  implemented  for  spatial  discretization  is  the  TensorProductGrid

method, which uses discretization methods for one spatial dimension and uses an outer tensor

product  to  derive  methods  for  multiple  spatial  dimensions  on  rectangular  regions.

TensorProductGrid  has  its  own  set  of  options  that  you  can  use  to  control  the  grid  selection

process.  The following sections give sufficient background information so that you will  be able

to use these options if necessary.
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option name default value

TemporalVariable Automatic what variable to keep derivatives with 
respect to the derived ODE or DAE system

Method Automatic what method to use for integrating the 
ODEs or DAEs

SpatialDiscretization TensorProductGÖ
rid

what method to use for spatial discretiza -
tion  

DifferentiateBoundaryCondÖ
itions

True whether to differentiate the boundary 
conditions with respect to the temporal 
variable

ExpandFunctionSymbolically False whether to expand the effective function 
symbolically or not

DiscretizedMonitorVariablÖ
es

False whether to interpret dependent variables 
given in monitors like StepMonitor  or in 
method options for methods like 
EventLocator and Projection as 
functions of the spatial variables or vectors 
representing the spatially discretized values



Spatial Derivative Approximations
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Finite Differences

The  essence  of  the  concept  of  finite  differences  is  embodied  in  the  standard  definition  of  the

derivative

where instead of passing to the limit as h approaches zero, the finite spacing to the next adja-

cent point, xi+1 ã xi + h, is used so that you get an approximation.

The difference formula can also be derived from Taylor's formula, 

which is more useful since it provides an error estimate (assuming sufficient smoothness)

An important  aspect  of  this  formula is  that  xi  must  lie  between xi  and xi+1  so  that  the error  is

local to the interval enclosing the sampling points. It is generally true for finite difference formu-

las that the error is local to the stencil, or set of sample points. Typically, for convergence and

other analysis, the error is expressed in asymptotic form:

This formula is most commonly referred to as the first-order forward difference. The backward

difference would use xi-1.

f £HxiL == lim
hØ0

f Hh + xiL - f HxiL

h

f £HxiLapprox ==
f Hxi+1L - f HxiL

h

f Hxi+1Lã f HxiL + h f £HxiL +
h2

2
f ££HxiL; xi < xi < xi+1

f £HxiLã
f Hxi+1L - f HxiL

h
-
h

2
f ££HxiL

f £HxiLã
f Hxi+1L - f HxiL

h
+OHhL



Taylor's  formula  can  easily  be  used  to  derive  higher-order  approximations.  For  example,  sub-

tracting 
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from

and solving for f ' HxiL gives the second-order centered difference formula for the first derivative,

If the Taylor formulas shown are expanded out one order farther and added and then combined

with  the  formula  just  given,  it  is  not  difficult  to  derive  a  centered  formula  for  the  second

derivative.

Note that  the while  having a uniform step size h  between points  makes it  convenient  to  write

out  the  formulas,  it  is  certainly  not  a  requirement.  For  example,  the  approximation  to  the

second derivative is in general

where h corresponds to the maximum local grid spacing. Note that the asymptotic order of the

three-point formula has dropped to first order; that it was second order on a uniform grid is due

to fortuitous cancellations.

In general, formulas for any given derivative with asymptotic error of any chosen order can be

derived  from  the  Taylor  formulas  as  long  as  a  sufficient  number  of  sample  points  are  used.

However,  this  method  becomes  cumbersome  and  inefficient  beyond  the  simple  examples

shown. An alternate formulation is based on polynomial interpolation: since the Taylor formulas

are exact  (no error  term) for  polynomials  of  sufficiently  low order,  so  are the finite  difference

f Hxi+1Lã f HxiL + h f £HxiL +
h2

2
f ££HxiL +OIh3M

f Hxi-1Lã f HxiL - h f £HxiL +
h2

2
f ££HxiL +OIh3M

f £HxiLã
f Hxi+1L - f Hxi-1L

2 h
+OIh2M

f ££HxiLã
f Hxi+1L - 2 f HxiL + f Hxi-1L

h2
+OIh2M

f ££HxiL ==
2 H f Hxi+1L Hxi-1 - xiL + f Hxi-1L Hxi - xi+1L + f HxiL Hxi+1 - xi-1LL

Hxi-1 - xiL Hxi-1 - xi+1L Hxi - xi+1L
+OHhL




