
Wolfram Mathematica ® Tutorial Collection

CORE LANGUAGE

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an
infringement of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram
does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Building Up Calculations
Using Previous Results . 1

Defining Variables . 2

Values for Symbols . 4

The Four Kinds of Bracketing in Mathematica . 8

Sequences of Operations . 8

Lists
Making Lists of Objects . 10

Collecting Objects Together . 11

Making Tables of Values . 12

Manipulating Elements of Lists . 16

Vectors and Matrices . 17

Getting Pieces of Lists . 23

Testing and Searching List Elements . 25

Adding, Removing and Modifying List Elements . 26

Combining Lists . 28

Lists as Sets . 29

Rearranging Lists . 30

Grouping and Combining Elements of Lists . 31

Ordering in Lists . 32

Rearranging Nested Lists . 33

Manipulating Lists
Constructing Lists . 35

Manipulating Lists by Their Indices . 37

Nested Lists . 44

Partitioning and Padding Lists . 47

Sparse Arrays . 51

Expressions
Everything Is an Expression . 57

The Meaning of Expressions . 59

Special Ways to Input Expressions . 60

Parts of Expressions . 62

Manipulating Expressions like Lists . 65

Expressions as Trees . 66

Levels in Expressions . 68

Patterns
Introduction to Patterns . 72

Finding Expressions That Match a Pattern . 75

Naming Pieces of Patterns . 77

Specifying Types of Expression in Patterns . 79

Putting Constraints on Patterns . 80

Patterns Involving Alternatives . 86

Pattern Sequences . 87

Flat and Orderless Functions . 88

Functions with Variable Numbers of Arguments . 92

Optional and Default Arguments . 94

Setting Up Functions with Optional Arguments . 96

Repeated Patterns . 99

Verbatim Patterns . 101
Patterns for Some Common Types of Expression . 101
An Example: Defining Your Own Integration Function . 104

Transformation Rules and Definitions
Applying Transformation Rules . 107
Manipulating Sets of Transformation Rules . 111
Making Definitions . 112
Special Forms of Assignment . 114
Making Definitions for Indexed Objects . 118
Making Definitions For Functions . 120
The Ordering of Definitions . 122
Immediate and Delayed Definitions . 124
Functions That Remember Values They Have Found . 129
Associating Definitions with Different Symbols . 132
Defining Numerical Values . 136
Modifying Built-in Functions . 138
Manipulating Value Lists . 140

Functions and Programs
Defining Functions . 142
Functions as Procedures . 144
Manipulating Options . 145
Repetitive Operations . 148
Transformation Rules for Functions . 149

Functional Operations
Function Names as Expressions . 151
Applying Functions Repeatedly . 152
Applying Functions to Lists And Other Expressions . 156
Applying Functions to Parts of Expressions . 157
Pure Functions . 162
Building Lists from Functions . 165
Selecting Parts of Expressions with Functions . 166
Expressions with Heads That Are Not Symbols . 167
Working with Operators . 169
Structural Operations . 171
Sequences . 176

Modularity and the Naming of Things
Modules and Local Variables . 178
Local Constants . 181
How Modules Work . 183
Variables in Pure Functions and Rules . 187
Dummy Variables in Mathematics . 191
Blocks and Local Values . 193
Blocks Compared with Modules . 197
Contexts . 198
Contexts and Packages . 203
Mathematica Packages . 206
Setting Up Mathematica Packages . 209
Files for Packages . 213
Automatic Loading of Packages . 214
Manipulating Symbols and Contexts by Name . 215
Intercepting the Creation of New Symbols . 218

Strings and Characters
Properties of Strings . 220
Operations on Strings . 221
Characters in Strings . 228
String Patterns . 230
Regular Expressions . 238
Special Characters . 242
Newlines and Tabs in Strings . 244
Character Codes . 246
Raw Character Encodings . 250

Evaluation of Expressions
Principles of Evaluation . 254
Reducing Expressions to Their Standard Form . 256
Attributes . 259
The Standard Evaluation Procedure . 264
Non-Standard Evaluation . 269
Evaluation in Patterns, Rules and Definitions . 274
Evaluation in Iteration Functions . 277
Conditionals . 279
Loops and Control Structures . 283
Collecting Expressions During Evaluation . 294
Tracing Evaluation . 296
The Evaluation Stack . 309
Controlling Infinite Evaluation . 312
Interrupts and Aborts . 315
Compiling Mathematica Expressions . 317
Manipulating Compiled Code . 322

Appendix: Language Structure
Basic Objects . 324
Input Syntax . 328
Some General Notations and Conventions . 339
Evaluation . 346
Patterns and Transformation Rules . 350
Files and Streams . 355

Building Up Calculations

Using Previous Results

In doing calculations, you will often need to use previous results that you have got. In Mathemat -

ica, % always stands for your last result.

% the last result generated

%% the next-to-last result

%% … % Hk timesL the kth previous result

% n the result on output line Out@nD (to be used with care)

Ways to refer to your previous results.

Here is the first result.

In[1]:= 77^2

Out[1]= 5929

This adds 1 to the last result.

In[2]:= % + 1

Out[2]= 5930

This uses both the last result, and the result before that.

In[3]:= 3 % + %^2 + %%

Out[3]= 35188619

You will have noticed that all the input and output lines in Mathematica are numbered. You can

use these numbers to refer to previous results.

This adds the results on lines 2 and 3 above.

In[4]:= %2 + %3

Out[4]= 35194549

If you use a text-based interface to Mathematica, then successive input and output lines will

always appear in order. However, if you use a notebook interface to Mathematica, as discussed

in "Notebook Interfaces", then successive input and output lines need not appear in order. You

can for example "scroll back" and insert your next calculation wherever you want in the note-

book. You should realize that % is always defined to be the last result that Mathematica gener-

ated. This may or may not be the result that appears immediately above your present position

in the notebook. With a notebook interface, the only way to tell when a particular result was

generated is to look at the Out@nD label that it has. Because you can insert and delete any-

where in a notebook, the textual ordering of results in a notebook need have no relation to the

order in which the results were generated.

If you use a text-based interface to Mathematica, then successive input and output lines will

always appear in order. However, if you use a notebook interface to Mathematica, as discussed

in "Notebook Interfaces", then successive input and output lines need not appear in order. You

can for example "scroll back" and insert your next calculation wherever you want in the note-

book. You should realize that % is always defined to be the last result that Mathematica gener-

ated. This may or may not be the result that appears immediately above your present position

in the notebook. With a notebook interface, the only way to tell when a particular result was

generated is to look at the Out@nD label that it has. Because you can insert and delete any-

where in a notebook, the textual ordering of results in a notebook need have no relation to the

order in which the results were generated.

Defining Variables

When you do long calculations, it is often convenient to give names to your intermediate

results. Just as in standard mathematics, or in other computer languages, you can do this by

introducing named variables.

This sets the value of the variable x to be 5.

In[1]:= x = 5

Out[1]= 5

Whenever x appears, Mathematica now replaces it with the value 5.

In[2]:= x^2

Out[2]= 25

This assigns a new value to x.

In[3]:= x = 7 + 4

Out[3]= 11

pi is set to be the numerical value of p to 40-digit accuracy.

In[4]:= pi = N@Pi, 40D

Out[4]= 3.141592653589793238462643383279502884197

2 Core Language

Here is the value you defined for pi.

In[5]:= pi

Out[5]= 3.141592653589793238462643383279502884197

This gives the numerical value of p2, to the same accuracy as pi.

In[6]:= pi^2

Out[6]= 9.86960440108935861883449099987615113531

x=value assign a value to the variable x

x=y=value assign a value to both x and y

x=. or Clear@xD remove any value assigned to x

Assigning values to variables.

It is very important to realize that values you assign to variables are permanent. Once you

have assigned a value to a particular variable, the value will be kept until you explicitly remove

it. The value will, of course, disappear if you start a whole new Mathematica session.

Forgetting about definitions you made earlier is the single most common cause of mistakes

when using Mathematica. If you set x = 5, Mathematica assumes that you always want x to

have the value 5, until or unless you explicitly tell it otherwise. To avoid mistakes, you should

remove values you have defined as soon as you have finished using them.

† Remove values you assign to variables as soon as you finish using them.

A useful principle in using Mathematica.

The variables you define can have almost any name. There is no limit on the length of their

names. One constraint, however, is that variable names can never start with numbers. For

example, x2 could be a variable, but 2 x means 2 * x.

Mathematica uses both uppercase and lowercase letters. There is a convention that built-in

Mathematica objects always have names starting with uppercase (capital) letters. To avoid

confusion, you should always choose names for your own variables that start with lowercase

letters.

Core Language 3

aaaaa a variable name containing only lowercase letters

Aaaaa a built-in object whose name begins with a capital letter

Naming conventions.

You can type formulas involving variables in Mathematica almost exactly as you would in mathe-

matics. There are a few important points to watch, however.

† x y means x times y.

† xy with no space is the variable with name xy.

† 5 x means 5 times x.

† x^2 y means Hx^2L y, not x^H2 yL.

Some points to watch when using variables in Mathematica.

Values for Symbols

When Mathematica transforms an expression such as x + x into 2 x, it is treating the variable x

in a purely symbolic or formal fashion. In such cases, x is a symbol which can stand for any

expression.

Often, however, you need to replace a symbol like x with a definite “value”. Sometimes this

value will be a number; often it will be another expression.

To take an expression such as 1 + 2 x and replace the symbol x that appears in it with a definite

value, you can create a Mathematica transformation rule, and then apply this rule to the expres-

sion. To replace x with the value 3, you would create the transformation rule x -> 3. You must

type -> as a pair of characters, with no space in between. You can think of x -> 3 as being a

rule in which “x goes to 3”.

To apply a transformation rule to a particular Mathematica expression, you type expr ê. rule. The

“replacement operator” ê. is typed as a pair of characters, with no space in between.

This uses the transformation rule x -> 3 in the expression 1 + 2 x.

In[1]:= 1 + 2 x ê. x -> 3

Out[1]= 7

4 Core Language

You can replace x with any expression. Here every occurrence of x is replaced by 2 - y.

In[2]:= 1 + x + x^2 ê. x -> 2 - y

Out[2]= 3 + H2 - yL2 - y

Here is a transformation rule. Mathematica treats it like any other symbolic expression.

In[3]:= x -> 3 + y

Out[3]= x Ø 3 + y

This applies the transformation rule on the previous line to the expression x^2 - 9.

In[4]:= x^2 - 9 ê. %

Out[4]= -9 + H3 + yL2

exprê.x->value replace x by value in the expression expr

exprê.8x->xval,y->yval< perform several replacements

Replacing symbols by values in expressions.

You can apply rules together by putting the rules in a list.

In[5]:= Hx + yL Hx - yL^2 ê. 8x -> 3, y -> 1 - a<

Out[5]= H4 - aL H2 + aL2

The replacement operator ê. allows you to apply transformation rules to a particular expres-

sion. Sometimes, however, you will want to define transformation rules that should always be

applied. For example, you might want to replace x with 3 whenever x occurs.

As discussed in "Defining Variables", you can do this by assigning the value 3 to x using x = 3.

Once you have made the assignment x = 3, x will always be replaced by 3, whenever it

appears.

This assigns the value 3 to x.

In[6]:= x = 3

Out[6]= 3

Now x will automatically be replaced by 3 wherever it appears.

In[7]:= x^2 - 1

Out[7]= 8

This assigns the expression 1 + a to be the value of x.

Core Language 5

This assigns the expression 1 + a to be the value of x.

In[8]:= x = 1 + a

Out[8]= 1 + a

Now x is replaced by 1 + a.

In[9]:= x^2 - 1

Out[9]= -1 + H1 + aL2

You can define the value of a symbol to be any expression, not just a number. You should

realize that once you have given such a definition, the definition will continue to be used when-

ever the symbol appears, until you explicitly change or remove the definition. For most people,

forgetting to remove values you have assigned to symbols is the single most common source of

mistakes in using Mathematica.

x=value define a value for x which will always be used

x=. remove any value defined for x

Assigning values to symbols.

The symbol x still has the value you assigned to it.

In[10]:= x + 5 - 2 x

Out[10]= 6 + a - 2 H1 + aL

This removes the value you assigned to x.

In[11]:= x =.

Now x has no value defined, so it can be used as a purely symbolic variable.

In[12]:= x + 5 - 2 x

Out[12]= 5 - x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the

flexibility of Mathematica comes from being able to mix these purposes at will. However, you

need to keep some of the different uses of x straight in order to avoid making mistakes. The

most important distinction is between the use of x as a name for another expression, and as a

symbolic variable that stands only for itself.

Traditional programming languages that do not support symbolic computation allow variables to

be used only as names for objects, typically numbers, that have been assigned as values for

them. In Mathematica, however, x can also be treated as a purely formal variable, to which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable.

6 Core Language

Traditional programming languages that do not support symbolic computation allow variables to

be used only as names for objects, typically numbers, that have been assigned as values for

them. In Mathematica, however, x can also be treated as a purely formal variable, to which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable.

You should understand that explicit definitions such as x = 3 have a global effect. On the other

hand, a replacement such as expr ê. x -> 3 affects only the specific expression expr. It is usually

much easier to keep things straight if you avoid using explicit definitions except when abso-

lutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to

expressions in which you want to do replacements, or to rules that you want to use to do the

replacements.

This assigns a value to the symbol t.

In[13]:= t = 1 + x^2

Out[13]= 1 + x2

This finds the value of t, and then replaces x by 2 in it.

In[14]:= t ê. x -> 2

Out[14]= 5

This finds the value of t for a different value of x.

In[15]:= t ê. x -> 5 a

Out[15]= 1 + 25 a2

This finds the value of t when x is replaced by Pi, and then evaluates the result numerically.

In[16]:= t ê. x -> Pi êê N

Out[16]= 10.8696

Core Language 7

The Four Kinds of Bracketing in Mathematica

There are four kinds of bracketing used in Mathematica. Each kind of bracketing has a very

different meaning. It is important that you remember all of them.

HtermL parentheses for grouping

f@xD square brackets for functions

8a,b,c< curly braces for lists

v@@iDD double brackets for indexing (Part@v, iD)

The four kinds of bracketing in Mathematica.

When the expressions you type in are complicated, it is often a good idea to put extra space

inside each set of brackets. This makes it somewhat easier for you to see matching pairs of

brackets. v@@ 8a, b< DD is, for example, easier to recognize than v@@8a, b<DD.

Sequences of Operations

In doing a calculation with Mathematica, you usually go through a sequence of steps. If you

want to, you can do each step on a separate line. Often, however, you will find it convenient to

put several steps on the same line. You can do this simply by separating the pieces of input you

want to give with semicolons.

expr1;expr2;expr3 do several operations, and give the result of the last one

expr1;expr2; do the operations, but print no output

Ways to do sequences of operations in Mathematica.

This does three operations on the same line. The result is the result from the last operation.

In[1]:= x = 4; y = 6; z = y + 6

Out[1]= 12

If you end your input with a semicolon, it is as if you are giving a sequence of operations, with

an “empty” one at the end. This has the effect of making Mathematica perform the operations

you specify, but display no output.

8 Core Language

expr; do an operation, but display no output

Inhibiting output.

Putting a semicolon at the end of the line tells Mathematica to show no output.

In[2]:= x = 67 - 5;

You can still use % to get the output that would have been shown.

In[3]:= %

Out[3]= 62

Core Language 9

Lists

Making Lists of Objects

In doing calculations, it is often convenient to collect together several objects, and treat them

as a single entity. Lists give you a way to make collections of objects in Mathematica. As you

will see later, lists are very important and general structures in Mathematica.

A list such as 83, 5, 1< is a collection of three objects. But in many ways, you can treat the

whole list as a single object. You can, for example, do arithmetic on the whole list at once, or

assign the whole list to be the value of a variable.

Here is a list of three numbers.

In[1]:= 83, 5, 1<

Out[1]= 83, 5, 1<

This squares each number in the list, and adds 1 to it.

In[2]:= 83, 5, 1<^2 + 1

Out[2]= 810, 26, 2<

This takes differences between corresponding elements in the two lists. The lists must be the
same length.

In[3]:= 86, 7, 8< - 83.5, 4, 2.5<

Out[3]= 82.5, 3, 5.5<

The value of % is the whole list.

In[4]:= %

Out[4]= 82.5, 3, 5.5<

You can apply any of the mathematical functions in "Some Mathematical Functions" to whole
lists.

In[5]:= Exp@%D êê N

Out[5]= 812.1825, 20.0855, 244.692<

Just as you can set variables to be numbers, so also you can set them to be lists.

This assigns v to be a list.

10 Core Language

This assigns v to be a list.

In[6]:= v = 82, 4, 3.1<

Out[6]= 82, 4, 3.1<

Wherever v appears, it is replaced by the list.

In[7]:= v ê Hv - 1L

Out[7]= :2,
4

3
, 1.47619>

Collecting Objects Together

We first encountered lists in "Making Lists of Objects" as a way of collecting numbers together.

Here, we shall see many different ways to use lists. You will find that lists are some of the most

flexible and powerful objects in Mathematica. You will see that lists in Mathematica represent

generalizations of several standard concepts in mathematics and computer science.

At a basic level, what a Mathematica list essentially does is to provide a way for you to collect

together several expressions of any kind.

Here is a list of numbers.

In[1]:= 82, 3, 4<

Out[1]= 82, 3, 4<

This gives a list of symbolic expressions.

In[2]:= x^% - 1

Out[2]= 9-1 + x2, -1 + x3, -1 + x4=

You can differentiate these expressions.

In[3]:= D@%, xD

Out[3]= 92 x, 3 x2, 4 x3=

And then you can find values when x is replaced with 3.

In[4]:= % ê. x -> 3

Out[4]= 86, 27, 108<

The mathematical functions that are built into Mathematica are mostly set up to be "listable" so

that they act separately on each element of a list. This is, however, not true of all functions in

Mathematica. Unless you set it up specially, a new function f that you introduce will treat lists

just as single objects. "Applying Functions to Parts of Expressions" and "Structural Operations"

will describe how you can use Map and Thread to apply a function like this separately to each

element in a list.

Core Language 11

The mathematical functions that are built into Mathematica are mostly set up to be "listable" so

that they act separately on each element of a list. This is, however, not true of all functions in

Mathematica. Unless you set it up specially, a new function f that you introduce will treat lists

just as single objects. "Applying Functions to Parts of Expressions" and "Structural Operations"

will describe how you can use Map and Thread to apply a function like this separately to each

element in a list.

Making Tables of Values

You can use lists as tables of values. You can generate the tables, for example, by evaluating

an expression for a sequence of different parameter values.

This gives a table of the values of i2, with i running from 1 to 6.

In[1]:= Table@i^2, 8i, 6<D

Out[1]= 81, 4, 9, 16, 25, 36<

Here is a table of sinHn ê5L for n from 0 to 4.

In[2]:= Table@Sin@n ê 5D, 8n, 0, 4<D

Out[2]= :0, SinB
1

5
F, SinB

2

5
F, SinB

3

5
F, SinB

4

5
F>

This gives the numerical values.

In[3]:= N@%D

Out[3]= 80., 0.198669, 0.389418, 0.564642, 0.717356<

You can also make tables of formulas.

In[4]:= Table@x^i + 2 i, 8i, 5<D

Out[4]= 92 + x, 4 + x2, 6 + x3, 8 + x4, 10 + x5=

Table uses exactly the same iterator notation as the functions Sum and Product, which are
discussed in "Sums and Products".

In[5]:= Product@x^i + 2 i, 8i, 5<D

Out[5]= H2 + xL I4 + x2M I6 + x3M I8 + x4M I10 + x5M

12 Core Language

This makes a table with values of x running from 0 to 1 in steps of 0.25.

In[6]:= Table@Sqrt@xD, 8x, 0, 1, 0.25<D

Out[6]= 80, 0.5, 0.707107, 0.866025, 1.<

You can perform other operations on the lists you get from Table.

In[7]:= %^2 + 3

Out[7]= 83, 3.25, 3.5, 3.75, 4.<

TableForm displays lists in a "tabular" format. Notice that both words in the name TableForm
begin with capital letters.

In[8]:= % êê TableForm

Out[8]//TableForm=

3
3.25
3.5
3.75
4.

All the examples so far have been of tables obtained by varying a single parameter. You can

also make tables that involve several parameters. These multidimensional tables are specified

using the standard Mathematica iterator notation, discussed in "Sums and Products".

This makes a table of x i + y j with i running from 1 to 3 and j running from 1 to 2.

In[9]:= Table@x^i + y^j, 8i, 3<, 8j, 2<D

Out[9]= 99x + y, x + y2=, 9x2 + y, x2 + y2=, 9x3 + y, x3 + y2==

The table in this example is a list of lists. The elements of the outer list correspond to succes-

sive values of i. The elements of each inner list correspond to successive values of j, with i

fixed.

Sometimes you may want to generate a table by evaluating a particular expression many

times, without incrementing any variables.

This creates a list containing four copies of the symbol x.

In[10]:= Table@x, 84<D

Out[10]= 8x, x, x, x<

Core Language 13

This gives a list of four pairs of numbers sampled from 81, 2, 3, 4<. Table re-evaluates
RandomSample @81, 2, 3, 4<, 2D for each element in the list, so that you get four different
samples.

In[11]:= Table@RandomSample@81, 2, 3, 4<, 2D, 84<D

Out[11]= 883, 2<, 84, 2<, 84, 3<, 82, 1<<

This evaluates i for each of the values of i in the list 81, 4, 9, 16<.

In[12]:= TableB i , 8i, 81, 4, 9, 16<<F

Out[12]= 81, 2, 3, 4<

This creates a 3×2 table.

In[13]:= Table@i + 2 j, 8i, 3<, 8j, 2<D

Out[13]= 883, 5<, 84, 6<, 85, 7<<

In this table, the length of the rows depends on the more slowly varying iterator variable, i.

In[14]:= Table@i + 2 j, 8i, 3<, 8j, i<D

Out[14]= 883<, 84, 6<, 85, 7, 9<<

You can use Table to generate arrays with any number of dimensions.

This generates a three-dimensional 2×2×2 array. It is a list of lists of lists.

In[15]:= Table@i j^2 k^3, 8i, 2<, 8j, 2<, 8k, 2<D

Out[15]= 8881, 8<, 84, 32<<, 882, 16<, 88, 64<<<

Table@ f,8imax<D give a list of imax values of f

Table@ f,8i,imax<D give a list of the values of f as i runs from 1 to imax

Table@ f,8i,imin,imax<D give a list of values with i running from imin to imax

Table@ f,8i,imin,imax,di<D use steps of di

Table@ f,8i,imin,
imax<,8 j, jmin, jmax<,…D

generate a multidimensional table

Table@ f,8i,8i1,i2,…<E give a list of the values of f as i successively takes the
values i1, i2, …

TableForm@listD display a list in tabular form

Functions for generating tables.

You can use the operations discussed in "Manipulating Elements of Lists" to extract elements of

the table.

14 Core Language

You can use the operations discussed in "Manipulating Elements of Lists" to extract elements of

the table.

This creates a table and gives it the name sq.

In[16]:= sq = Table@j^2, 8j, 7<D

Out[16]= 81, 4, 9, 16, 25, 36, 49<

This gives the third part of the table.

In[17]:= sq@@3DD

Out[17]= 9

This gives a list of the third through fifth parts.

In[18]:= sq@@3 ;; 5DD

Out[18]= 89, 16, 25<

This creates a 2×2 table, and gives it the name m.

In[19]:= m = Table@i - j, 8i, 2<, 8j, 2<D

Out[19]= 880, -1<, 81, 0<<

This extracts the first sublist from the list of lists that makes up the table.

In[20]:= m@@1DD

Out[20]= 80, -1<

This extracts the second element of that sublist.

In[21]:= %@@2DD

Out[21]= -1

This does the two operations together.

In[22]:= m@@1, 2DD

Out[22]= -1

This displays m in a "tabular" form.

In[23]:= TableForm@mD

Out[23]//TableForm=
0 -1
1 0

Core Language 15

t@@iDD or Part@t,iD give the ith sublist in t (also input as tPiT)

t@@i;; jDD or Part@t,i;; jD give a list of the parts i through j

t@@8i1,i2,…<DD or
Part@t,8i1,i2,…<D

give a list of the i1th, i2th, … parts of t

t@@i, j,…DD or Part@t,i, j,…D

give the part of t corresponding to t@@iDD@@ jDD …

Ways to extract parts of tables.

As mentioned in "Manipulating Elements of Lists", you can think of lists in Mathematica as being

analogous to "arrays". Lists of lists are then like two-dimensional arrays. When you lay them

out in a tabular form, the two indices of each element are like its x and y coordinates.

Manipulating Elements of Lists

Many of the most powerful list manipulation operations in Mathematica treat whole lists as

single objects. Sometimes, however, you need to pick out or set individual elements in a list.

You can refer to an element of a Mathematica list by giving its "index". The elements are num-

bered in order, starting at 1.

8a,b,c< a list

Part@list,iD or list@@iDD the ith element of list (the first element is list@@1DD)

Part@list,8i, j,…<D
 or list@@8i, j,…<DD

a list of the ith, jth, … elements of list

Part@list,i;; jD a list of the ith through jth elements of list

Operations on list elements.

This extracts the second element of the list.

In[1]:= 85, 8, 6, 9<@@2DD

Out[1]= 8

This extracts a list of elements.

In[2]:= 85, 8, 6, 9<@@83, 1, 3, 2, 4<DD

Out[2]= 86, 5, 6, 8, 9<

16 Core Language

This assigns the value of v to be a list.

In[3]:= v = 82, 4, 7<

Out[3]= 82, 4, 7<

You can extract elements of v.

In[4]:= v@@2DD

Out[4]= 4

By assigning a variable to be a list, you can use Mathematica lists much like "arrays" in other

computer languages. Thus, for example, you can reset an element of a list by assigning a value

to v@@iDD.

Part@v,iD or v@@iDD extract the ith element of a list

Part@v,iD=value or v@@iDD=value reset the ith element of a list

Array-like operations on lists.

Here is a list.

In[5]:= v = 84, -1, 8, 7<

Out[5]= 84, -1, 8, 7<

This resets the third element of the list.

In[6]:= v@@3DD = 0

Out[6]= 0

Now the list assigned to v has been modified.

In[7]:= v

Out[7]= 84, -1, 0, 7<

Vectors and Matrices

Vectors and matrices in Mathematica are simply represented by lists and by lists of lists, respec-

tively.

Core Language 17

8a,b,c< vector Ha, b, cL

88a,b<,8c,d<< matrix
a b
c d

The representation of vectors and matrices by lists.

This is a 2×2 matrix.

In[1]:= m = 88a, b<, 8c, d<<

Out[1]= 88a, b<, 8c, d<<

Here is the first row.

In[2]:= m@@1DD

Out[2]= 8a, b<

Here is the element m12.

In[3]:= m@@1, 2DD

Out[3]= b

This is a two-component vector.

In[4]:= v = 8x, y<

Out[4]= 8x, y<

The objects p and q are treated as scalars.

In[5]:= p v + q

Out[5]= 8q + p x, q + p y<

Vectors are added component by component.

In[6]:= v + 8xp, yp< + 8xpp, ypp<

Out[6]= 8x + xp + xpp, y + yp + ypp<

This gives the dot (scalar) product of two vectors.

In[7]:= 8x, y<.8xp, yp<

Out[7]= x xp + y yp

18 Core Language

You can also multiply a matrix by a vector.

In[8]:= m.v

Out[8]= 8a x + b y, c x + d y<

Or a matrix by a matrix.

In[9]:= m.m

Out[9]= 99a2 + b c, a b + b d=, 9a c + c d, b c + d2==

Or a vector by a matrix.

In[10]:= v.m

Out[10]= 8a x + c y, b x + d y<

This combination makes a scalar.

In[11]:= v.m.v

Out[11]= x Ha x + c yL + y Hb x + d yL

Because of the way Mathematica uses lists to represent vectors and matrices, you never have

to distinguish between "row" and "column" vectors.

Table@ f,8i,n<D build a length-n vector by evaluating f with i = 1, 2, …, n

Array@a,nD build a length-n vector of the form 8a@1D, a@2D, …<

Range@nD create the list 81, 2, 3, …, n<

Range@n1,n2D create the list 8n1, n1 + 1, …, n2<

Range@n1,n2,dnD create the list 8n1, n1 + dn, …, n2<

list@@iDD or Part@list,iD give the ith element in the vector list

Length@listD give the number of elements in list

c v multiply a vector by a scalar

a.b dot product of two vectors

Cross@a,bD cross product of two vectors (also input as a µ b)

Norm@vD Euclidean norm of a vector

Functions for vectors.

Core Language 19

Table@ f,8i,m<,8 j,n<D build an m×n matrix by evaluating f with i ranging from 1
to m and j ranging from 1 to n

Array@a,8m,n<D build an m×n matrix with i, jth element a@i, jD

IdentityMatrix@nD generate an n×n identity matrix

DiagonalMatrix@listD generate a square matrix with the elements in list on the
main diagonal

list@@iDD or Part@list,iD give the ith row in the matrix list

listAAAll, jEE or PartAlist,All, jE

give the jth column in the matrix list

list@@i, jDD or Part@list,i, jD give the i, jth element in the matrix list

Dimensions@listD give the dimensions of a matrix represented by list

Functions for matrices.

Column@listD display the elements of list in a column

MatrixForm@listD display list in matrix form

Formatting constructs for vectors and matrices.

This builds a 3×3 matrix s with elements si j = i + j.

In[12]:= s = Table@i + j, 8i, 3<, 8j, 3<D

Out[12]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

This displays s in standard two-dimensional matrix format.

In[13]:= MatrixForm@sD

Out[13]//MatrixForm=
2 3 4
3 4 5
4 5 6

This gives a vector with symbolic elements. You can use this in deriving general formulas that
are valid with any choice of vector components.

In[14]:= Array@a, 4D

Out[14]= 8a@1D, a@2D, a@3D, a@4D<

This gives a 3×2 matrix with symbolic elements. "Building Lists from Functions" discusses how
you can produce other kinds of elements with Array.

In[15]:= Array@p, 83, 2<D

Out[15]= 88p@1, 1D, p@1, 2D<, 8p@2, 1D, p@2, 2D<, 8p@3, 1D, p@3, 2D<<

Here are the dimensions of the matrix on the previous line.

20 Core Language

Here are the dimensions of the matrix on the previous line.

In[16]:= Dimensions@%D

Out[16]= 83, 2<

This generates a 3×3 diagonal matrix.

In[17]:= DiagonalMatrix@8a, b, c<D

Out[17]= 88a, 0, 0<, 80, b, 0<, 80, 0, c<<

c m multiply a matrix by a scalar

a.b dot product of two matrices

Inverse@mD matrix inverse

MatrixPower@m,nD nth power of a matrix

Det@mD determinant

Tr@mD trace

Transpose@mD transpose

Eigenvalues@mD eigenvalues

Eigenvectors@mD eigenvectors

Some mathematical operations on matrices.

Here is the 2×2 matrix of symbolic variables that was defined.

In[18]:= m

Out[18]= 88a, b<, 8c, d<<

This gives its determinant.

In[19]:= Det@mD

Out[19]= -b c + a d

Here is the transpose of m.

In[20]:= Transpose@mD

Out[20]= 88a, c<, 8b, d<<

This gives the inverse of m in symbolic form.

In[21]:= Inverse@mD

Out[21]= ::
d

-b c + a d
, -

b

-b c + a d
>, :-

c

-b c + a d
,

a

-b c + a d
>>

Here is a 3×3 rational matrix.

Core Language 21

Here is a 3×3 rational matrix.

In[22]:= h = Table@1 ê Hi + j - 1L, 8i, 3<, 8j, 3<D

Out[22]= ::1,
1

2
,
1

3
>, :

1

2
,
1

3
,
1

4
>, :

1

3
,
1

4
,
1

5
>>

This gives its inverse.

In[23]:= Inverse@hD

Out[23]= 889, -36, 30<, 8-36, 192, -180<, 830, -180, 180<<

Taking the dot product of the inverse with the original matrix gives the identity matrix.

In[24]:= %.h

Out[24]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

Here is a 3×3 matrix.

In[25]:= r = Table@i + j + 1, 8i, 3<, 8j, 3<D

Out[25]= 883, 4, 5<, 84, 5, 6<, 85, 6, 7<<

Eigenvalues gives the eigenvalues of the matrix.

In[26]:= Eigenvalues@rD

Out[26]= :
1

2
15 + 249 ,

1

2
15 - 249 , 0>

This gives a numerical approximation to the matrix.

In[27]:= rn = N@rD

Out[27]= 883., 4., 5.<, 84., 5., 6.<, 85., 6., 7.<<

Here are numerical approximations to the eigenvalues.

In[28]:= Eigenvalues@rnD

Out[28]= 915.3899, -0.389867, -1.49955µ10-16=

"Linear Algebra in Mathematica" discusses many other matrix operations that are built into

Mathematica.

22 Core Language

Getting Pieces of Lists

First@listD the first element in list

Last@listD the last element

Part@list,nD or list@@nDD the nth element

Part@list,-nD or list@@-nDD the nth element from the end

Part@list,m;;nD elements m through n

Part@list,8n1,n2,…<D or list@@8n1,n2,…<DD

the list of elements at positions n1, n2, …

Picking out elements of lists.

We will use this list for the examples.

In[1]:= t = 8a, b, c, d, e, f, g<

Out[1]= 8a, b, c, d, e, f, g<

Here is the last element of t.

In[2]:= Last@tD

Out[2]= g

This gives the third element.

In[3]:= t@@3DD

Out[3]= c

This gives the list of elements 3 through 6.

In[4]:= t@@3 ;; 6DD

Out[4]= 8c, d, e, f<

This gives a list of the first and fourth elements.

In[5]:= t@@81, 4<DD

Out[5]= 8a, d<

Core Language 23

Take@list,nD the first n elements in list

Take@list,-nD the last n elements

Take@list,8m,n<D elements m through n (inclusive)

Rest@listD list with its first element dropped

Drop@list,nD list with its first n elements dropped

Most@listD list with its last element dropped

Drop@list,-nD list with its last n elements dropped

Drop@list,8m,n<D list with elements m through n dropped

Picking out sequences in lists.

This gives the first three elements of the list t defined above.

In[6]:= Take@t, 3D

Out[6]= 8a, b, c<

This gives the last three elements.

In[7]:= Take@t, -3D

Out[7]= 8e, f, g<

This gives elements 2 through 5 inclusive.

In[8]:= Take@t, 82, 5<D

Out[8]= 8b, c, d, e<

This gives elements 3 through 7 in steps of 2.

In[9]:= Take@t, 83, 7, 2<D

Out[9]= 8c, e, g<

This gives t with the first element dropped.

In[10]:= Rest@tD

Out[10]= 8b, c, d, e, f, g<

This gives t with its first three elements dropped.

In[11]:= Drop@t, 3D

Out[11]= 8d, e, f, g<

24 Core Language

This gives t with only its third element dropped.

In[12]:= Drop@t, 83, 3<D

Out[12]= 8a, b, d, e, f, g<

"Manipulating Expressions like Lists" shows how all the functions here can be generalized to

work not only on lists, but on any Mathematica expressions.

The functions here allow you to pick out pieces that occur at particular positions in lists.

"Finding Expressions That Match a Pattern" shows how you can use functions like Select and

Cases to pick out elements of lists based not on their positions, but instead on their properties.

Testing and Searching List Elements

Position@list, formD the positions at which form occurs in list

Count@list, formD the number of times form appears as an element of list

MemberQ@list, formD test whether form is an element of list

FreeQ@list, formD test whether form occurs nowhere in list

Testing and searching for elements of lists.

"Getting Pieces of Lists" discusses how to extract pieces of lists based on their positions or

indices. Mathematica also has functions that search and test for elements of lists, based on the

values of those elements.

This gives a list of the positions at which a appears in the list.

In[1]:= Position@8a, b, c, a, b<, aD

Out[1]= 881<, 84<<

Count counts the number of occurrences of a.

In[2]:= Count@8a, b, c, a, b<, aD

Out[2]= 2

This shows that a is an element of 8a, b, c<.

In[3]:= MemberQ@8a, b, c<, aD

Out[3]= True

Core Language 25

On the other hand, d is not.

In[4]:= MemberQ@8a, b, c<, dD

Out[4]= False

This assigns m to be the 3×3 identity matrix.

In[5]:= m = IdentityMatrix@3D

Out[5]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This shows that 0 does occur somewhere in m.

In[6]:= FreeQ@m, 0D

Out[6]= False

This gives a list of the positions at which 0 occurs in m.

In[7]:= Position@m, 0D

Out[7]= 881, 2<, 81, 3<, 82, 1<, 82, 3<, 83, 1<, 83, 2<<

As discussed in "Finding Expressions That Match a Pattern", the functions Count and Position,

as well as MemberQ and FreeQ, can be used not only to search for particular list elements, but

also to search for classes of elements which match specific “patterns”.

Adding, Removing and Modifying List Elements

Prepend@list,elementD add element at the beginning of list

Append@list,elementD add element at the end of list

Insert@list,element,iD insert element at position i in list

Insert@list,element,-iD insert at position i counting from the end of list

Riffle@list,elementD interleave element between the entries of list

Delete@list,iD delete the element at position i in list

ReplacePart@list,i->newD replace the element at position i in list with new

ReplacePart@list,8i, j<->newD replace list@@i, jDD with new

Functions for manipulating elements in explicit lists.

26 Core Language

This gives a list with x prepended.

In[1]:= Prepend@8a, b, c<, xD

Out[1]= 8x, a, b, c<

This inserts x so that it becomes element number 2.

In[2]:= Insert@8a, b, c<, x, 2D

Out[2]= 8a, x, b, c<

This interleaves x between the entries of the list.

In[3]:= Riffle@8a, b, c<, xD

Out[3]= 8a, x, b, x, c<

This replaces the third element in the list with x.

In[4]:= ReplacePart@8a, b, c, d<, 3 -> xD

Out[4]= 8a, b, x, d<

This replaces the 1, 2 element in a 2×2 matrix.

In[5]:= ReplacePart@88a, b<, 8c, d<<, 81, 2< -> xD

Out[5]= 88a, x<, 8c, d<<

Functions like ReplacePart take explicit lists and give you new lists. Sometimes, however, you

may want to modify a list “in place”, without explicitly generating a new list.

v=8e1,e2,…< assign a variable to be a list

v@@iDD=new assign a new value to the ith element

Resetting list elements.

This defines v to be a list.

In[6]:= v = 8a, b, c, d<

Out[6]= 8a, b, c, d<

This sets the third element to be x.

In[7]:= v@@3DD = x

Out[7]= x

Now v has been changed.

Core Language 27

Now v has been changed.

In[8]:= v

Out[8]= 8a, b, x, d<

m@@i, jDD=new replace the Hi, jLth element of a matrix

m@@iDD=new replace the ith row

mAAAll,iEE=new replace the ith column

Resetting pieces of matrices.

This defines m to be a matrix.

In[9]:= m = 88a, b<, 8c, d<<

Out[9]= 88a, b<, 8c, d<<

This sets the first column of the matrix.

In[10]:= m@@All, 1DD = 8x, y<; m

Out[10]= 88x, b<, 8y, d<<

This sets every element in the first column to be 0.

In[11]:= m@@All, 1DD = 0; m

Out[11]= 880, b<, 80, d<<

Combining Lists

Join@list1,list2,…D concatenate lists together

Union@list1,list2,…D combine lists, removing repeated elements and sorting the
result

Riffle@list1,list2D interleave elements of list1 and list2

Functions for combining lists.

Join concatenates any number of lists together.

In[1]:= Join@8a, b, c<, 8x, y<, 8t, u<D

Out[1]= 8a, b, c, x, y, t, u<

Union combines lists, keeping only distinct elements.

28 Core Language

Union combines lists, keeping only distinct elements.

In[2]:= Union@8a, b, c<, 8c, a, d<, 8a, d<D

Out[2]= 8a, b, c, d<

Riffle combines lists by interleaving their elements.

In[3]:= Riffle@8a, b, c<, 8x, y, z<D

Out[3]= 8a, x, b, y, c, z<

Lists as Sets

Mathematica usually keeps the elements of a list in exactly the order you originally entered

them. If you want to treat a Mathematica list like a mathematical set, however, you may want

to ignore the order of elements in the list.

Union@list1,list2,…D give a list of the distinct elements in the listi

Intersection@list1,list2,…D give a list of the elements that are common to all the listi

Complement@universal,list1,…D give a list of the elements that are in universal, but not in
any of the listi

Subsets@listD give a list of all subsets of the elements in list

DeleteDuplicates@listD delete all duplicates from list

Set theoretical functions.

Union gives the elements that occur in any of the lists.

In[1]:= Union@8c, a, b<, 8d, a, c<, 8a, e<D

Out[1]= 8a, b, c, d, e<

Intersection gives only elements that occur in all the lists.

In[2]:= Intersection@8a, c, b<, 8b, a, d, a<D

Out[2]= 8a, b<

Complement gives elements that occur in the first list, but not in any of the others.

In[3]:= Complement@8a, b, c, d<, 8a, d<D

Out[3]= 8b, c<

This gives all the subsets of the list.

Core Language 29

This gives all the subsets of the list.

In[4]:= Subsets@8a, b, c<D

Out[4]= 88<, 8a<, 8b<, 8c<, 8a, b<, 8a, c<, 8b, c<, 8a, b, c<<

DeleteDuplicates deletes all duplicate elements from the list.

In[5]:= DeleteDuplicates@8a, b, c, a<D

Out[5]= 8a, b, c<

Rearranging Lists

Sort@listD sort the elements of list into a standard order

Union@listD sort elements, removing any duplicates

Reverse@listD reverse the order of elements in list

RotateLeft@list,nD rotate the elements of list n places to the left

RotateRight@list,nD rotate n places to the right

Functions for rearranging lists.

This sorts the elements of a list into a standard order. In simple cases like this, the order is
alphabetical or numerical.

In[1]:= Sort@8b, a, c, a, b<D

Out[1]= 8a, a, b, b, c<

This sorts the elements, removing any duplicates.

In[2]:= Union@8b, a, c, a, b<D

Out[2]= 8a, b, c<

This rotates (“shifts”) the elements in the list two places to the left.

In[3]:= RotateLeft@8a, b, c, d, e<, 2D

Out[3]= 8c, d, e, a, b<

You can rotate to the right by giving a negative displacement, or by using RotateRight .

In[4]:= RotateLeft@8a, b, c, d, e<, -2D

Out[4]= 8d, e, a, b, c<

30 Core Language

PadLeft@list,len,xD pad list on the left with x to make it length len

PadRight@list,len,xD pad list on the right

Padding lists.

This pads a list with x’s to make it length 10.

In[5]:= PadLeft@8a, b, c<, 10, xD

Out[5]= 8x, x, x, x, x, x, x, a, b, c<

Grouping and Combining Elements of Lists

Partition@list,nD partition list into n-element pieces

Partition@list,n,dD use offset d for successive pieces

Split@listD split list into pieces consisting of runs of identical elements

Functions for grouping together elements of lists.

Here is a list.

In[1]:= t = 8a, b, c, d, e, f, g<

Out[1]= 8a, b, c, d, e, f, g<

This groups the elements of the list in pairs, throwing away the single element left at the end.

In[2]:= Partition@t, 2D

Out[2]= 88a, b<, 8c, d<, 8e, f<<

This groups elements in triples. There is no overlap between the triples.

In[3]:= Partition@t, 3D

Out[3]= 88a, b, c<, 8d, e, f<<

This makes triples of elements, with each successive triple offset by just one element.

In[4]:= Partition@t, 3, 1D

Out[4]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<, 8e, f, g<<

Core Language 31

This splits up the list into runs of identical elements.

In[5]:= Split@8a, a, b, b, b, a, a, a, b<D

Out[5]= 88a, a<, 8b, b, b<, 8a, a, a<, 8b<<

Tuples@list,nD generate all possible n-tuples of elements from list

Tuples@8list1,list2,…<D generate all tuples whose ith element is from listi

Finding possible tuples of elements in lists.

This gives all possible ways of picking two elements out of the list.

In[6]:= Tuples@8a, b<, 2D

Out[6]= 88a, a<, 8a, b<, 8b, a<, 8b, b<<

This gives all possible ways of picking one element from each list.

In[7]:= Tuples@88a, b<, 81, 2, 3<<D

Out[7]= 88a, 1<, 8a, 2<, 8a, 3<, 8b, 1<, 8b, 2<, 8b, 3<<

Ordering in Lists

Sort@listD sort the elements of list into order

Ordering@listD the positions in list of the elements in Sort@listD

Ordering@list,nD the first n elements of Ordering@listD

Ordering@list,-nD the last n elements of Ordering@listD

Permutations@listD all possible orderings of list

Min@listD the smallest element in list

Max@listD the largest element in list

Ordering in lists.

Here is a list of numbers.

In[1]:= t = 817, 21, 14, 9, 18<

Out[1]= 817, 21, 14, 9, 18<

32 Core Language

This gives the elements of t in sorted order.

In[2]:= Sort@tD

Out[2]= 89, 14, 17, 18, 21<

This gives the positions of the elements of t, from the position of the smallest to that of the
largest.

In[3]:= Ordering@tD

Out[3]= 84, 3, 1, 5, 2<

This is the same as Sort@tD.

In[4]:= t@@%DD

Out[4]= 89, 14, 17, 18, 21<

This gives the smallest element in the list.

In[5]:= Min@tD

Out[5]= 9

Rearranging Nested Lists

You will encounter nested lists if you use matrices or generate multidimensional arrays and

tables. Mathematica provides many functions for handling such lists.

Flatten@listD flatten out all levels in list

Flatten@list,nD flatten out the top n levels in list

Partition@list,8n1,n2,…<D partition into blocks of size n1×n2×…
Transpose@listD interchange the top two levels of lists

RotateLeft@list,8n1,n2,…<D rotate successive levels by ni places

PadLeft@list,8n1,n2,…<D pad successive levels to be length ni

A few functions for rearranging nested lists.

This “flattens out” sublists. You can think of it as effectively just removing all inner braces.

In[1]:= Flatten@88a<, 8b, 8c<<, 8d<<D

Out[1]= 8a, b, c, d<

Core Language 33

This flattens out only one level of sublists.

In[2]:= Flatten@88a<, 8b, 8c<<, 8d<<, 1D

Out[2]= 8a, b, 8c<, d<

There are many other operations you can perform on nested lists. More operations are dis-

cussed in "Manipulating Lists".

34 Core Language

Manipulating Lists

Constructing Lists

Lists are widely used in Mathematica, and there are many ways to construct them.

Range@nD the list 81, 2, 3, …, n<
Table@expr,8i,n<D the values of expr with i from 1 to n

Array@ f,nD the list 8 f @1D, f @2D, …, f @nD<
NestList@ f,x,nD 8x, f @xD, f @ f @xDD, …< with up to n nestings

NormalA
SparseArray@8i1->v1,…<,nDE

a length n list with element ik being vk

Apply@List, f@e1,e2,…DD the list 8e1, e2, …<

Some explicit ways to construct lists.

This gives a table of the first five powers of two.

In[1]:= Table@2^i, 8i, 5<D

Out[1]= 82, 4, 8, 16, 32<

Here is another way to get the same result.

In[2]:= Array@2^Ò &, 5D

Out[2]= 82, 4, 8, 16, 32<

This gives a similar list.

In[3]:= NestList@2 Ò &, 1, 5D

Out[3]= 81, 2, 4, 8, 16, 32<

SparseArray lets you specify values at particular positions.

In[4]:= Normal@SparseArray@83 -> x, 4 -> y<, 5DD

Out[4]= 80, 0, x, y, 0<

Core Language 35

You can also use patterns to specify values.

In[5]:= Normal@SparseArray@8i_ -> 2^i<, 5DD

Out[5]= 82, 4, 8, 16, 32<

Often you will know in advance how long a list is supposed to be, and how each of its elements

should be generated. And often you may get one list from another.

Table@expr,8i,list<D the values of expr with i taking on values from list

Map@ f,listD apply f to each element of list

MapIndexed@ f,listD give f @elem, 8i<D for the ith element

Cases@list, formD give elements of list that match form

Select@list,testD select elements for which test@elemD is True

Pick@list,sel, formD pick out elements of list for which the corresponding
elements of sel match form

TakeWhile@list,testD give elements ei from the beginning of list as long as test@eiD
is True

list@@8i1,i2,…<DD or Part@list,8i1,i2,…<D

give a list of the specified parts of list

Constructing lists from other lists.

This selects elements less than 5.

In[6]:= Select@81, 3, 7, 4, 10, 2<, Ò < 5 &D

Out[6]= 81, 3, 4, 2<

This takes elements up to the first element that is not less than 5.

In[7]:= TakeWhile@81, 3, 7, 4, 10, 2<, Ò < 5 &D

Out[7]= 81, 3<

This explicitly gives numbered parts.

In[8]:= 8a, b, c, d<@@82, 1, 4<DD

Out[8]= 8b, a, d<

This picks out elements indicated by a 1 in the second list.

In[9]:= Pick@8a, b, c, d<, 81, 0, 1, 1<, 1D

Out[9]= 8a, c, d<

Sometimes you may want to accumulate a list of results during the execution of a program. You

can do this using Sow and Reap.

36 Core Language

Sometimes you may want to accumulate a list of results during the execution of a program. You

can do this using Sow and Reap.

Sow@valD sow the value val for the nearest enclosing Reap

Reap@exprD evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

This program iteratively squares a number.

In[10]:= Nest@Ò^2 &, 2, 6D

Out[10]= 18446744073709551616

This does the same computation, but accumulating a list of intermediate results above 1000.

In[11]:= Reap@Nest@HIf@Ò > 1000, Sow@ÒDD; Ò^2L &, 2, 6DD

Out[11]= 818446744073709551616, 8865536, 4294967296<<<

An alternative but less efficient approach involves introducing a temporary variable, then start-

ing with t = 8<, and successively using AppendTo@t, elemD.

Manipulating Lists by Their Indices

Part@list,specD or list@@specDD part or parts of a list

Part@list,spec1,spec2,…D
 or list@@spec1,spec2,…DD

part or parts of a nested list

n the nth part from the beginning

-n the nth part from the end

8i1,i2,…< a list of parts

m;;n parts m through n

All all parts

Getting parts of lists.

This gives a list of parts 1 and 3.

In[1]:= 8a, b, c, d<@@81, 3<DD

Out[1]= 8a, c<

Core Language 37

Here is a nested list.

In[2]:= m = 88a, b, c<, 8d, e<, 8f, g, h<<;

This gives a list of its first and third parts.

In[3]:= m@@81, 3<DD

Out[3]= 88a, b, c<, 8f, g, h<<

This gives a list of the first part of each of these.

In[4]:= m@@81, 3<, 1DD

Out[4]= 8a, f<

And this gives a list of the first two parts.

In[5]:= m@@81, 3<, 81, 2<DD

Out[5]= 88a, b<, 8f, g<<

This gives the first two parts of m.

In[6]:= m@@1 ;; 2DD

Out[6]= 88a, b, c<, 8d, e<<

This gives the last part of each of these.

In[7]:= m@@1 ;; 2, -1DD

Out[7]= 8c, e<

This gives the second part of all sublists.

In[8]:= m@@All, 2DD

Out[8]= 8b, e, g<

This gives the last two parts of all sublists.

In[9]:= m@@All, -2 ;; -1DD

Out[9]= 88b, c<, 8d, e<, 8g, h<<

You can always reset one or more pieces of a list by doing an assignment like m@@…DD = value.

38 Core Language

This resets part 1,2 of m.

In[10]:= m@@1, 2DD = x

Out[10]= x

This is now the form of m.

In[11]:= m

Out[11]= 88a, x, c<, 8d, e<, 8f, g, h<<

This resets part 1 to x and part 3 to y.

In[12]:= m@@81, 3<DD = 8x, y<; m

Out[12]= 8x, 8d, e<, y<

This resets parts 1 and 3 both to p.

In[13]:= m@@81, 3<DD = p; m

Out[13]= 8p, 8d, e<, p<

This restores the original form of m.

In[14]:= m = 88a, b, c<, 8d, e<, 8f, g, h<<;

This now resets all parts specified by m@@81, 3<, 81, 2<DD.

In[15]:= m@@81, 3<, 81, 2<DD = x; m

Out[15]= 88x, x, c<, 8d, e<, 8x, x, h<<

You can use ;; to indicate all indices in a given range.

In[16]:= m@@1 ;; 3, 2DD = y; m

Out[16]= 88x, y, c<, 8d, y<, 8x, y, h<<

It is sometimes useful to think of a nested list as being laid out in space, with each element

being at a coordinate position given by its indices. There is then a direct geometrical interpreta-

tion for list@@spec1, spec2, …DD. If a given speck is a single integer, then it represents extracting a

single slice in the kth dimension, while if it is a list, it represents extracting a list of parallel

slices. The final result for list@@spec1, spec2, …DD is then the collection of elements obtained by

slicing in each successive dimension.

Core Language 39

Here is a nested list laid out as a two-dimensional array.

In[17]:= Hm = 88a, b, c<, 8d, e, f<, 8g, h, i<<L êê TableForm

Out[17]//TableForm=
a b c
d e f
g h i

This picks out rows 1 and 3, then columns 1 and 2.

In[18]:= m@@81, 3<, 81, 2<DD êê TableForm

Out[18]//TableForm=
a b
g h

Part is set up to make it easy to pick out structured slices of nested lists. Sometimes, however,

you may want to pick out arbitrary collections of individual parts. You can do this conveniently

with Extract.

Part@list,8i1,i2,…<D the list 8list@@i1DD, list@@i2DD, …<

Extract@list,8i1,i2,…<D the element list@@i1, i2, …DD

Part@list,spec1,spec2,…D parts specified by successive slicing

Extract@list,
88i1,i2,…<,8 j1, j2,…<,…<D

the list of individual parts
8list@@i1, i2, …DD, list@@ j1, j2, …DD, …<

Getting slices versus lists of individual parts.

This extracts the individual parts 1,3 and 1,2.

In[19]:= Extract@m, 881, 3<, 81, 2<<D

Out[19]= 8c, b<

An important feature of Extract is that it takes lists of part positions in the same form as they

are returned by functions like Position.

This sets up a nested list.

In[20]:= m = 88a@1D, a@2D, b@1D<, 8b@2D, c@1D<, 88b@3D<<<;

This gives a list of positions in m.

In[21]:= Position@m, b@_DD

Out[21]= 881, 3<, 82, 1<, 83, 1, 1<<

40 Core Language

This extracts the elements at those positions.

In[22]:= Extract@m, %D

Out[22]= 8b@1D, b@2D, b@3D<

Take@list,specD take the specified parts of a list

Drop@list,specD drop the specified parts of a list

Take@list,spec1,spec2,…D
, Drop@list,spec1,spec2,…D

take or drop specified parts at each level in nested lists

n the first n elements

-n the last n elements

8n< element n only

8m,n< elements m through n (inclusive)

8m,n,s< elements m through n in steps of s

All all parts

None no parts

Taking and dropping sequences of elements in lists.

This takes every second element starting at position 2.

In[23]:= Take@8a, b, c, d, e, f, g<, 82, -1, 2<D

Out[23]= 8b, d, f<

This drops every second element.

In[24]:= Drop@8a, b, c, d, e, f, g<, 82, -1, 2<D

Out[24]= 8a, c, e, g<

Much like Part, Take and Drop can be viewed as picking out sequences of slices at successive

levels in a nested list. You can use Take and Drop to work with blocks of elements in arrays.

Here is a 3×3 array.

In[25]:= Hm = 88a, b, c<, 8d, e, f<, 8g, h, i<<L êê TableForm

Out[25]//TableForm=
a b c
d e f
g h i

Core Language 41

Here is the first 2×2 subarray.

In[26]:= Take@m, 2, 2D êê TableForm

Out[26]//TableForm=
a b
d e

This takes all elements in the first two columns.

In[27]:= Take@m, All, 2D êê TableForm

Out[27]//TableForm=
a b
d e
g h

This leaves no elements from the first two columns.

In[28]:= Drop@m, None, 2D êê TableForm

Out[28]//TableForm=

Prepend@list,elemD add element at the beginning of list

Append@list,elemD add element at the end of list

Insert@list,elem,iD insert element at position i

Insert@list,elem,8i, j,…<D insert at position 8i, j, …<

Delete@list,iD delete the element at position i

Delete@list,8i, j,…<D delete at position 8i, j, …<

Adding and deleting elements in lists.

This makes the 2,1 element of the list be x.

In[29]:= Insert@88a, b, c<, 8d, e<<, x, 82, 1<D

Out[29]= 88a, b, c<, 8x, d, e<<

This deletes the element again.

In[30]:= Delete@%, 82, 1<D

Out[30]= 88a, b, c<, 8d, e<<

42 Core Language

ReplacePart@list,i->newD replace the element at position i in list with new

ReplacePart@list,8i, j,…<->newD replace list@@i, j, …DD with new

ReplacePart@list,
8i1->new1,i2->new2,…<D

replaces parts at positions in by newn

ReplacePart@list,
88i1, j1,…<->new1,…<D

replace parts at positions 8in, jn, …< by newn

ReplacePart@list,
88i1, j1,…<,…<->newD

replace all parts list@@ik, jk, …DD with new

Replacing parts of lists.

This replaces the third element in the list with x.

In[31]:= ReplacePart@8a, b, c, d<, 3 -> xD

Out[31]= 8a, b, x, d<

This replaces the first and fourth parts of the list. Notice the need for double lists in specifying
multiple parts to replace.

In[32]:= ReplacePart@8a, b, c, d<, 881<, 84<< -> xD

Out[32]= 8x, b, c, x<

Here is a 3×3 identity matrix.

In[33]:= IdentityMatrix@3D

Out[33]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This replaces the 2,2 component of the matrix by x.

In[34]:= ReplacePart@%, 82, 2< -> xD

Out[34]= 881, 0, 0<, 80, x, 0<, 80, 0, 1<<

It is important to understand that ReplacePart always creates a new list. It does not modify a

list that has already been assigned to a symbol, the way m@@…DD = val does.

This assigns a list of values to alist.

In[35]:= alist = 8a, b, c, d<

Out[35]= 8a, b, c, d<

Core Language 43

This gives a copy of the list in which the third element has been replaced with x.

In[36]:= ReplacePart@alist, 3 -> xD

Out[36]= 8a, b, x, d<

The value of alist has not changed.

In[37]:= alist

Out[37]= 8a, b, c, d<

Nested Lists

8list1,list2,…< list of lists

Table@expr,8i,m<,8 j,n<,…D m×n×… table of values of expr

Array@ f,8m,n,…<D m×n×… array of values f@i, j, …D

NormalASparseArray@88i1, j1,…<->v1,…<,8m,n,…<DE

m×n×… array with element 8is, js, …< being vs

Outer@ f,list1,list2,…D generalized outer product with elements combined using f

Tuples@list,8m,n,…<D all possible m×n×… arrays of elements from list

Ways to construct nested lists.

This generates a table corresponding to a 2×3 nested list.

In[1]:= Table@x^i + j, 8i, 2<, 8j, 3<D

Out[1]= 981 + x, 2 + x, 3 + x<, 91 + x2, 2 + x2, 3 + x2==

This generates an array corresponding to the same nested list.

In[2]:= Array@x^Ò1 + Ò2 &, 82, 3<D

Out[2]= 981 + x, 2 + x, 3 + x<, 91 + x2, 2 + x2, 3 + x2==

Elements not explicitly specified in the sparse array are taken to be 0.

In[3]:= Normal@SparseArray@881, 3< -> 3 + x<, 82, 3<DD

Out[3]= 880, 0, 3 + x<, 80, 0, 0<<

44 Core Language

Each element in the final list contains one element from each input list.

In[4]:= Outer@f, 8a, b<, 8c, d<D

Out[4]= 88f@a, cD, f@a, dD<, 8f@b, cD, f@b, dD<<

Functions like Array, SparseArray and Outer always generate full arrays, in which all sublists

at a particular level are the same length.

Dimensions@listD the dimensions of a full array

ArrayQ@listD test whether all sublists at a given level are the same
length

ArrayDepth@listD the depth to which all sublists are the same length

Functions for full arrays.

Mathematica can handle arbitrary nested lists. There is no need for the lists to form a full array.

You can easily generate ragged arrays using Table.

This generates a triangular array.

In[5]:= Table@x^i + j, 8i, 3<, 8j, i<D

Out[5]= 981 + x<, 91 + x2, 2 + x2=, 91 + x3, 2 + x3, 3 + x3==

Flatten@listD flatten out all levels of list

Flatten@list,nD flatten out the top n levels

ArrayFlatten@list,rankD create a flattened array from an array of arrays

Flattening out sublists and subarrays.

This generates a 2×3 array.

In[6]:= Array@a, 82, 3<D

Out[6]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<<

Flatten in effect puts elements in lexicographic order of their indices.

In[7]:= Flatten@%D

Out[7]= 8a@1, 1D, a@1, 2D, a@1, 3D, a@2, 1D, a@2, 2D, a@2, 3D<

This creates a matrix from a block matrix.

In[8]:= ArrayFlatten@88881<<, 882, 3<<<, 8884<, 87<<, 885, 6<, 88, 9<<<<D

Out[8]= 881, 2, 3<, 84, 5, 6<, 87, 8, 9<<

Core Language 45

Transpose@listD transpose the top two levels of list

Transpose@list,8n1,n2,…<D put the kth level in list at level nk

Transposing levels in nested lists.

This generates a 2×2×2 array.

In[9]:= Array@a, 82, 2, 2<D

Out[9]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

This permutes levels so that level 3 appears at level 1.

In[10]:= Transpose@%, 83, 1, 2<D

Out[10]= 888a@1, 1, 1D, a@2, 1, 1D<, 8a@1, 1, 2D, a@2, 1, 2D<<,
88a@1, 2, 1D, a@2, 2, 1D<, 8a@1, 2, 2D, a@2, 2, 2D<<<

This restores the original array.

In[11]:= Transpose@%, 82, 3, 1<D

Out[11]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

Map@ f,list,8n<D map f across elements at level n

Apply@ f,list,8n<D apply f to the elements at level n

MapIndexed@ f,list,8n<D map f onto parts at level n and their indices

Applying functions in nested lists.

Here is a nested list.

In[12]:= m = 888a, b<, 8c, d<<, 88e, f<, 8g, h<, 8i<<<;

This maps a function f at level 2.

In[13]:= Map@f, m, 82<D

Out[13]= 88f@8a, b<D, f@8c, d<D<, 8f@8e, f<D, f@8g, h<D, f@8i<D<<

This applies the function at level 2.

In[14]:= Apply@f, m, 82<D

Out[14]= 88f@a, bD, f@c, dD<, 8f@e, fD, f@g, hD, f@iD<<

46 Core Language

This applies f to both parts and their indices.

In[15]:= MapIndexed@f, m, 82<D

Out[15]= 88f@8a, b<, 81, 1<D, f@8c, d<, 81, 2<D<, 8f@8e, f<, 82, 1<D, f@8g, h<, 82, 2<D, f@8i<, 82, 3<D<<

Partition@list,8n1,n2,…<D partition into n1×n1×… blocks

PadLeft@list,8n1,n2,…<D pad on the left to make an n1×n1×… array

PadRight@list,8n1,n2,…<D pad on the right to make an n1×n1×… array

RotateLeft@list,8n1,n2,…<D rotate nk places to the left at level k

RotateRight@list,8n1,n2,…<D rotate nk places to the right at level k

Operations on nested lists.

Here is a nested list.

In[16]:= m = 888a, b, c<, 8d, e<<, 88f, g<, 8h<, 8i<<<;

This rotates different amounts at each level.

In[17]:= RotateLeft@m, 80, 1, -1<D

Out[17]= 888e, d<, 8c, a, b<<, 88h<, 8i<, 8g, f<<<

This pads with zeros to make a 2×3×3 array.

In[18]:= PadRight@%, 82, 3, 3<D

Out[18]= 888e, d, 0<, 8c, a, b<, 80, 0, 0<<, 88h, 0, 0<, 8i, 0, 0<, 8g, f, 0<<<

Partitioning and Padding Lists

Partition@list,nD partition list into sublists of length n

Partition@list,n,dD partition into sublists with offset d

Split@listD split list into runs of identical elements

Split@list,testD split into runs with adjacent elements satisfying test

Partitioning elements in a list.

This partitions in blocks of 3.

In[1]:= Partition@8a, b, c, d, e, f<, 3D

Out[1]= 88a, b, c<, 8d, e, f<<

This partitions in blocks of 3 with offset 1.

Core Language 47

This partitions in blocks of 3 with offset 1.

In[2]:= Partition@8a, b, c, d, e, f<, 3, 1D

Out[2]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<<

The offset can be larger than the block size.

In[3]:= Partition@8a, b, c, d, e, f<, 2, 3D

Out[3]= 88a, b<, 8d, e<<

This splits into runs of identical elements.

In[4]:= Split@81, 4, 1, 1, 1, 2, 2, 3, 3<D

Out[4]= 881<, 84<, 81, 1, 1<, 82, 2<, 83, 3<<

This splits into runs where adjacent elements are unequal.

In[5]:= Split@81, 4, 1, 1, 1, 2, 2, 3, 3<, UnequalD

Out[5]= 881, 4, 1<, 81<, 81, 2<, 82, 3<, 83<<

Partition in effect goes through a list, grouping successive elements into sublists. By default it

does not include any sublists that would "overhang" the original list.

This stops before any overhang occurs.

In[6]:= Partition@8a, b, c, d, e<, 2D

Out[6]= 88a, b<, 8c, d<<

The same is true here.

In[7]:= Partition@8a, b, c, d, e<, 3, 1D

Out[7]= 88a, b, c<, 8b, c, d<, 8c, d, e<<

You can tell Partition to include sublists that overhang the ends of the original list. By default,

it fills in additional elements by treating the original list as cyclic. It can also treat it as being

padded with elements that you specify.

This includes additional sublists, treating the original list as cyclic.

In[8]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<D

Out[8]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, a<, 8e, a, b<<

48 Core Language

Now the original list is treated as being padded with the element x.

In[9]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, xD

Out[9]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, x<, 8e, x, x<<

This pads cyclically with elements x and y.

In[10]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, 8x, y<D

Out[10]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, y<, 8e, y, x<<

This introduces no padding, yielding sublists of differing lengths.

In[11]:= Partition@8a, b, c, d, e<, 3, 1, 81, 1<, 8<D

Out[11]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e<, 8e<<

You can think of Partition as extracting sublists by sliding a template along and picking out

elements from the original list. You can tell Partition where to start and stop this process.

This gives all sublists that overlap the original list.

In[12]:= Partition@8a, b, c, d<, 3, 1, 8-1, 1<, xD

Out[12]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This allows overlaps only at the beginning.

In[13]:= Partition@8a, b, c, d<, 3, 1, 8-1, -1<, xD

Out[13]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<<

Partition@list,n,dD or
Partition@list,n,d,81,-1<D

keep only sublists with no overhangs

Partition@list,n,d,81,1<D allow an overhang at the end

Partition@list,n,d,8-1,-1<D allow an overhang at the beginning

Partition@list,n,d,8-1,1<D allow overhangs at both the beginning and end

Partition@list,n,d,8kL,kR<D specify alignments of first and last sublists

Partition@list,n,d,specD pad by cyclically repeating elements in list

Partition@list,n,d,spec,xD pad by repeating the element x

Partition@list,n,d,spec,8x1,x2,…<D

pad by cyclically repeating the xi

Partition@list,n,d,spec,8<D use no padding

Specifying alignment and padding.

An alignment specification 8kL, kR< tells Partition to give the sequence of sublists in which the

first element of the original list appears at position kL in the first sublist, and the last element of

the original list appears at position kR in the last sublist.

Core Language 49

An alignment specification 8kL, kR< tells Partition to give the sequence of sublists in which the

first element of the original list appears at position kL in the first sublist, and the last element of

the original list appears at position kR in the last sublist.

This makes a appear at position 1 in the first sublist.

In[14]:= Partition@8a, b, c, d<, 3, 1, 81, 1<, xD

Out[14]= 88a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This makes a appear at position 2 in the first sublist.

In[15]:= Partition@8a, b, c, d<, 3, 1, 82, 1<, xD

Out[15]= 88x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

Here a is in effect made to appear first at position 4.

In[16]:= Partition@8a, b, c, d<, 3, 1, 84, 1<, xD

Out[16]= 88x, x, x<, 8x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This fills in padding cyclically from the list given.

In[17]:= Partition@8a, b, c, d<, 3, 1, 84, 1<, 8x, y<D

Out[17]= 88y, x, y<, 8x, y, a<, 8y, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, y<<

Functions like ListConvolve use the same alignment and padding specifications as Partition.

In some cases it may be convenient to insert explicit padding into a list. You can do this using

PadLeft and PadRight.

PadLeft@list,nD pad to length n by inserting zeros on the left

PadLeft@list,n,xD pad by repeating the element x

PadLeft@list,n,8x1,x2,…<D pad by cyclically repeating the xi

PadLeft@list,n,listD pad by cyclically repeating list

PadLeft@list,n,padding,mD leave a margin of m elements on the right

PadRight@list,nD pad by inserting zeros on the right

Padding a list.

This pads the list to make it length 6.

In[18]:= PadLeft@8a, b, c<, 6D

Out[18]= 80, 0, 0, a, b, c<

This cyclically inserts 8x, y< as the padding.

50 Core Language

This cyclically inserts 8x, y< as the padding.

In[19]:= PadLeft@8a, b, c<, 6, 8x, y<D

Out[19]= 8x, y, x, a, b, c<

This also leaves a margin of 3 on the right.

In[20]:= PadLeft@8a, b, c<, 10, 8x, y<, 3D

Out[20]= 8y, x, y, x, a, b, c, x, y, x<

PadLeft, PadRight and Partition can all be used on nested lists.

This creates a 3x3 array.

In[21]:= PadLeft@88a, b<, 8e<, 8f<<, 83, 3<, xD

Out[21]= 88x, a, b<, 8x, x, e<, 8x, x, f<<

This partitions the array into 2x2 blocks with offset 1.

In[22]:= Partition@%, 82, 2<, 81, 1<D

Out[22]= 8888x, a<, 8x, x<<, 88a, b<, 8x, e<<<, 888x, x<, 8x, x<<, 88x, e<, 8x, f<<<<

If you give a nested list as a padding specification, its elements are picked up cyclically at each

level.

This cyclically fills in copies of the padding list.

In[23]:= PadLeft@88a, b<, 8e<, 8f<<, 84, 4<, 88x, y<, 8z, w<<D

Out[23]= 88x, y, x, y<, 8z, w, a, b<, 8x, y, x, e<, 8z, w, z, f<<

Here is a list containing only padding.

In[24]:= PadLeft@88<<, 84, 4<, 88x, y<, 8z, w<<D

Out[24]= 88x, y, x, y<, 8z, w, z, w<, 8x, y, x, y<, 8z, w, z, w<<

Sparse Arrays: Manipulating Lists

Lists are normally specified in Mathematica just by giving explicit lists of their elements. But

particularly in working with large arrays, it is often useful instead to be able to say what the

values of elements are only at certain positions, with all other elements taken to have a default

value, usually zero. You can do this in Mathematica using SparseArray objects.

Core Language 51

8e1,e2,…< , 88e11,e12,…<,…< , … ordinary lists

SparseArray@8pos1->val1,pos2->val2,…<D

sparse arrays

Ordinary lists and sparse arrays.

This specifies a sparse array.

In[1]:= SparseArray@82 -> a, 5 -> b<D

Out[1]= SparseArray@<2>, 85<D

Here it is as an ordinary list.

In[2]:= Normal@%D

Out[2]= 80, a, 0, 0, b<

This specifies a two-dimensional sparse array.

In[3]:= SparseArray@881, 2< -> a, 83, 2< -> b, 83, 3< -> c<D

Out[3]= SparseArray@<3>, 83, 3<D

Here it is an ordinary list of lists.

In[4]:= Normal@%D

Out[4]= 880, a, 0<, 80, 0, 0<, 80, b, c<<

SparseArray@listD sparse array version of list

SparseArray@8pos1->val1,pos2->val2,…<D

sparse array with values vali at positions posi

SparseArray@8pos1,pos2,…<->8val1,val2,…<D

the same sparse array

SparseArrayABand@8i, j<D->valE banded sparse array with values val

SparseArray@data,8d1,d2,…<D d1×d2×… sparse array

SparseArray@data,dims,valD sparse array with default value val

Normal@arrayD ordinary list version of array

ArrayRules@arrayD position-value rules for array

Creating and converting sparse arrays.

52 Core Language

This generates a sparse array version of a list.

In[5]:= SparseArray@8a, b, c, d<D

Out[5]= SparseArray@<4>, 84<D

This converts back to an ordinary list.

In[6]:= Normal@%D

Out[6]= 8a, b, c, d<

This makes a length 7 sparse array with default value x.

In[7]:= SparseArray@83 -> a, 5 -> b<, 7, xD

Out[7]= SparseArray@<2>, 87<, xD

Here is the corresponding ordinary list.

In[8]:= Normal@%D

Out[8]= 8x, x, a, x, b, x, x<

This shows the rules used in the sparse array.

In[9]:= ArrayRules@%%D

Out[9]= 883< Ø a, 85< Ø b, 8_< Ø x<

This creates a banded matrix.

In[10]:= SparseArray@8Band@81, 1<D Ø x, Band@82, 1<D Ø y<, 85, 5<D êê MatrixForm

Out[10]//MatrixForm=

x 0 0 0 0
y x 0 0 0
0 y x 0 0
0 0 y x 0
0 0 0 y x

An important feature of SparseArray is that the positions you specify can be patterns.

This specifies a 4×4 sparse array with 1 at every position matching 8i_, i_<.

In[11]:= SparseArray@8i_, i_< -> 1, 84, 4<D

Out[11]= SparseArray@<4>, 84, 4<D

The result is a 4×4 identity matrix.

In[12]:= Normal@%D

Out[12]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

Here is an identity matrix with an extra element.

Core Language 53

Here is an identity matrix with an extra element.

In[13]:= Normal@SparseArray@881, 3< -> a, 8i_, i_< -> 1<, 84, 4<DD

Out[13]= 881, 0, a, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

This makes the whole third column be a.

In[14]:= Normal@SparseArray@88_, 3< -> a, 8i_, i_< -> 1<, 84, 4<DD

Out[14]= 881, 0, a, 0<, 80, 1, a, 0<, 80, 0, a, 0<, 80, 0, a, 1<<

You can think of SparseArray@rulesD as taking all possible position specifications, then applying

rules to determine values in each case. As usual, rules given earlier in the list will be tried first.

This generates a random diagonal matrix.

In[15]:= Normal@SparseArray@88i_, i_< :> RandomReal@D<, 83, 3<DD

Out[15]= 880.0560708, 0, 0<, 80, 0.6303, 0<, 80, 0, 0.359894<<

You can have rules where values depend on indices.

In[16]:= Normal@SparseArray@i_ -> i^2, 10DD

Out[16]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

This fills in even-numbered positions with p.

In[17]:= Normal@SparseArray@8_?EvenQ -> p, i_ -> i^2<, 10DD

Out[17]= 81, p, 9, p, 25, p, 49, p, 81, p<

You can use patterns involving alternatives.

In[18]:= Normal@SparseArray@81 3, 2 4< -> a, 84, 4<DD

Out[18]= 880, a, 0, a<, 80, 0, 0, 0<, 80, a, 0, a<, 80, 0, 0, 0<<

You can also give conditions on patterns.

In[19]:= Normal@SparseArray@i_ ê; 3 < i < 7 -> p, 10DD

Out[19]= 80, 0, 0, p, p, p, 0, 0, 0, 0<

This makes a band-diagonal matrix.

In[20]:= Normal@SparseArray@88i_, j_< ê; Abs@i - jD < 2 -> i + j<, 85, 5<DD

Out[20]= 882, 3, 0, 0, 0<, 83, 4, 5, 0, 0<, 80, 5, 6, 7, 0<, 80, 0, 7, 8, 9<, 80, 0, 0, 9, 10<<

54 Core Language

Here is another way.

In[21]:= Normal@SparseArray@8Band@81, 1<D Ø 82, 4, 6, 8, 10<,
Band@81, 2<D Ø 83, 5, 7, 9<, Band@82, 1<D Ø 83, 5, 7, 9<<, 85, 5<DD

Out[21]= 882, 3, 0, 0, 0<, 83, 4, 5, 0, 0<, 80, 5, 6, 7, 0<, 80, 0, 7, 8, 9<, 80, 0, 0, 9, 10<<

For many purposes, Mathematica treats SparseArray objects just like the ordinary lists to

which they correspond. Thus, for example, if you ask for parts of a sparse array object, Mathe-

matica will operate as if you had asked for parts in the corresponding ordinary list.

This generates a sparse array object.

In[22]:= s = SparseArray@82 -> a, 4 -> b, 5 -> c<, 10D

Out[22]= SparseArray@<3>, 810<D

Here is the corresponding ordinary list.

In[23]:= Normal@sD

Out[23]= 80, a, 0, b, c, 0, 0, 0, 0, 0<

Parts of the sparse array are just like parts of the corresponding ordinary list.

In[24]:= s@@2DD

Out[24]= a

This part has the default value 0.

In[25]:= s@@3DD

Out[25]= 0

Many operations treat SparseArray objects just like ordinary lists. When possible, they give

sparse arrays as results.

This gives a sparse array.

In[26]:= 3 s + x

Out[26]= SparseArray@<3>, 810<, xD

Here is the corresponding ordinary list.

In[27]:= Normal@%D

Out[27]= 8x, 3 a + x, x, 3 b + x, 3 c + x, x, x, x, x, x<

Core Language 55

Dot works directly with sparse array objects.

In[28]:= s.s

Out[28]= a2 + b2 + c2

You can mix sparse arrays and ordinary lists.

In[29]:= s.Range@10D

Out[29]= 2 a + 4 b + 5 c

Mathematica represents sparse arrays as expressions with head SparseArray. Whenever a

sparse array is evaluated, it is automatically converted to an optimized standard form with

structure SparseArray@Automatic, dims, val, …D.

This structure is, however, rarely evident, since even operations like Length are set up to give

results for the corresponding ordinary list, not for the raw SparseArray expression structure.

This generates a sparse array.

In[30]:= t = SparseArray@81 -> a, 5 -> b<, 10D

Out[30]= SparseArray@<2>, 810<D

Here is the underlying optimized expression structure.

In[31]:= InputForm@%D

Out[31]//InputForm= SparseArray[Automatic, {10}, 0, {1, {{0, 2}, {{1}, {5}}}, {a, b}}]

Length gives the length of the corresponding ordinary list.

In[32]:= Length@tD

Out[32]= 10

Map also operates on individual values.

In[33]:= Normal@Map@f, tDD

Out[33]= 8f@aD, f@0D, f@0D, f@0D, f@bD, f@0D, f@0D, f@0D, f@0D, f@0D<

56 Core Language

Expressions

Everything Is an Expression

Mathematica handles many different kinds of things: mathematical formulas, lists and graphics,

to name a few. Although they often look very different, Mathematica represents all of these

things in one uniform way. They are all expressions.

A prototypical example of a Mathematica expression is f@x, yD. You might use f@x, yD to

represent a mathematical function f Hx, yL. The function is named f, and it has two arguments, x

and y.

You do not always have to write expressions in the form f@x, y, …D. For example, x + y is also

an expression. When you type in x + y, Mathematica converts it to the standard form

Plus@x, yD. Then, when it prints it out again, it gives it as x + y.

The same is true of other "operators", such as ^ (Power) and ê (Divide).

In fact, everything you type into Mathematica is treated as an expression.

x+y+z Plus@x,y,zD

x y z Times@x,y,zD

x^n Power@x,nD

8a,b,c< List@a,b,cD

a->b Rule@a,bD

a=b Set@a,bD

Some examples of Mathematica expressions.

You can see the full form of any expression by using FullForm@exprD.

Here is an expression.

In[1]:= x + y + z

Out[1]= x + y + z

Core Language 57

This is the full form of the expression.

In[2]:= FullForm@%D

Out[2]//FullForm= Plus@x, y, zD

Here is another expression.

In[3]:= 1 + x^2 + Hy + zL^2

Out[3]= 1 + x2 + Hy + zL2

Its full form has several nested pieces.

In[4]:= FullForm@%D

Out[4]//FullForm= Plus@1, Power@x, 2D, Power@Plus@y, zD, 2DD

The object f in an expression f@x, y, …D is known as the head of the expression. You can

extract it using Head@exprD. Particularly when you write programs in Mathematica, you will often

want to test the head of an expression to find out what kind of thing the expression is.

Head gives the "function name" f.

In[5]:= Head@f@x, yDD

Out[5]= f

Here Head gives the name of the "operator".

In[6]:= Head@a + b + cD

Out[6]= Plus

Everything has a head.

In[7]:= Head@8a, b, c<D

Out[7]= List

Numbers also have heads.

In[8]:= Head@23 432D

Out[8]= Integer

You can distinguish different kinds of numbers by their heads.

In[9]:= Head@345.6D

Out[9]= Real

58 Core Language

Head@exprD give the head of an expression: the f in f@x, yD

FullForm@exprD display an expression in the full form used by Mathematica

Functions for manipulating expressions.

The Meaning of Expressions

The notion of expressions is a crucial unifying principle in Mathematica. It is the fact that every

object in Mathematica has the same underlying structure that makes it possible for Mathemat-

ica to cover so many areas with a comparatively small number of basic operations.

Although all expressions have the same basic structure, there are many different ways that

expressions can be used. Here are a few of the interpretations you can give to the parts of an

expression.

meaning of f meaning of
x, y, …

examples

Function arguments or
parameters

Sin@xD , f@x,yD

Command arguments or
parameters

Expand@Hx+1L^2D

Operator operands x+y , a=b
Head elements 8a,b,c<
Object type contents RGBColor@r,g,bD

Some interpretations of parts of expressions.

Expressions in Mathematica are often used to specify operations. So, for example, typing in

2 + 3 causes 2 and 3 to be added together, while Factor@x^6 - 1D performs factorization.

Perhaps an even more important use of expressions in Mathematica, however, is to maintain a

structure, which can then be acted on by other functions. An expression like 8a, b, c< does not

specify an operation. It merely maintains a list structure, which contains a collection of three

elements. Other functions, such as Reverse or Dot, can act on this structure.

The full form of the expression 8a, b, c< is List@a, b, cD. The head List performs no opera-

tions. Instead, its purpose is to serve as a “tag” to specify the “type” of the structure.

You can use expressions in Mathematica to create your own structures. For example, you might

want to represent points in three-dimensional space, specified by three coordinates. You could

give each point as point@x, y, zD. The “function” point again performs no operation. It serves

merely to collect the three coordinates together, and to label the resulting object as a point.

Core Language 59

You can use expressions in Mathematica to create your own structures. For example, you might

want to represent points in three-dimensional space, specified by three coordinates. You could

give each point as point@x, y, zD. The “function” point again performs no operation. It serves

merely to collect the three coordinates together, and to label the resulting object as a point.

You can think of expressions like point@x, y, zD as being “packets of data”, tagged with a

particular head. Even though all expressions have the same basic structure, you can distinguish

different “types” of expressions by giving them different heads. You can then set up transforma-

tion rules and programs which treat different types of expressions in different ways.

Special Ways to Input Expressions

Mathematica allows you to use special notation for many common operators. For example,

although internally Mathematica represents a sum of two terms as Plus@x, yD, you can enter

this expression in the much more convenient form x + y.

The Mathematica language has a definite grammar which specifies how your input should be

converted to internal form. One aspect of the grammar is that it specifies how pieces of your

input should be grouped. For example, if you enter an expression such as a + b^c, the Mathemat-

ica grammar specifies that this should be considered, following standard mathematical notation,

as a + Hb^cL rather than Ha + bL^c. Mathematica chooses this grouping because it treats the

operator ^ as having a higher precedence than +. In general, the arguments of operators with

higher precedence are grouped before those of operators with lower precedence.

You should realize that absolutely every special input form in Mathematica is assigned a definite

precedence. This includes not only the traditional mathematical operators, but also forms such

as ->, := or the semicolons used to separate expressions in a Mathematica program.

The table in "Operator Input Forms" gives all the operators of Mathematica in order of decreas-

ing precedence. The precedence is arranged, where possible, to follow standard mathematical

usage, and to minimize the number of parentheses that are usually needed.

You will find, for example, that relational operators such as < have lower precedence than

arithmetic operators such as +. This means that you can write expressions such as x + y > 7

without using parentheses.

There are nevertheless many cases where you do have to use parentheses. For example, since

; has a lower precedence than =, you need to use parentheses to write x = Ha; bL. Mathematica

interprets the expression x = a; b as Hx = aL; b. In general, it can never hurt to include extra

parentheses, but it can cause a great deal of trouble if you leave parentheses out, and Mathe-

matica interprets your input in a way you do not expect.

60 Core Language

There are nevertheless many cases where you do have to use parentheses. For example, since

; has a lower precedence than =, you need to use parentheses to write x = Ha; bL. Mathematica

interprets the expression x = a; b as Hx = aL; b. In general, it can never hurt to include extra

parentheses, but it can cause a great deal of trouble if you leave parentheses out, and Mathe-

matica interprets your input in a way you do not expect.

f @x,yD standard form for f @x, yD

füx prefix form for f @xD

xêê f postfix form for f @xD

x~ f~y infix form for f @x, yD

Four ways to write expressions in Mathematica.

There are several common types of operators in Mathematica. The + in x + y is an “infix” opera-

tor. The - in - p is a “prefix” operator. Even when you enter an expression such as f@x, y, …D

Mathematica allows you to do it in ways that mimic infix, prefix and postfix forms.

This “postfix form” is exactly equivalent to f@x + yD.

In[1]:= x + y êê f

Out[1]= f@x + yD

You will often want to add functions like N as “afterthoughts”, and give them in postfix form.

In[2]:= 3^H1 ê 4L + 1 êê N

Out[2]= 2.31607

It is sometimes easier to understand what a function is doing when you write it in infix form.

In[3]:= 8a, b, c<~Join~8d, e<

Out[3]= 8a, b, c, d, e<

You should notice that êê has very low precedence. If you put êê f at the end of any expres-

sion containing arithmetic or logical operators, the f is applied to the whole expression. So, for

example, x + y êê f means f@x + yD, not x + f@yD.

The prefix form ü has a much higher precedence. füx + y is equivalent to f@xD + y, not f@x + yD.

You can write f@x + yD in prefix form as füHx + yL.

Core Language 61

Parts of Expressions

Since lists are just a particular kind of expression, it will come as no surprise that you can refer

to parts of any expression much as you refer to parts of a list.

This gets the second element in the list 8a, b, c<.

In[1]:= 8a, b, c<@@2DD

Out[1]= b

You can use the same method to get the second element in the sum x + y + z.

In[2]:= Hx + y + zL@@2DD

Out[2]= y

This gives the last element in the sum.

In[3]:= Hx + y + zL@@-1DD

Out[3]= z

Part 0 is the head.

In[4]:= Hx + y + zL@@0DD

Out[4]= Plus

You can refer to parts of an expression such as f@g@aD, g@bDD just as you refer to parts of

nested lists.

This is part 1.

In[5]:= f@g@aD, g@bDD@@1DD

Out[5]= g@aD

This is part 81, 1<.

In[6]:= f@g@aD, g@bDD@@1, 1DD

Out[6]= a

This extracts part 82, 1< of the expression 1 + x^2.

In[7]:= H1 + x^2L@@2, 1DD

Out[7]= x

To see what part is 82, 1<, you can look at the full form of the expression.

62 Core Language

To see what part is 82, 1<, you can look at the full form of the expression.

In[8]:= FullForm@1 + x^2D

Out[8]//FullForm= Plus@1, Power@x, 2DD

You should realize that the assignment of indices to parts of expressions is done on the basis of

the internal Mathematica forms of the expression, as shown by FullForm. These forms do not

always correspond directly with what you see printed out. This is particularly true for algebraic

expressions, where Mathematica uses a standard internal form, but prints the expressions in

special ways.

Here is the internal form of x ê y.

In[9]:= FullForm@x ê yD

Out[9]//FullForm= Times@x, Power@y, -1DD

It is the internal form that is used in specifying parts.

In[10]:= Hx ê yL@@2DD

Out[10]=
1

y

You can manipulate parts of expressions just as you manipulate parts of lists.

This replaces the third part of a + b + c + d by x^2. Note that the sum is automatically rear-
ranged when the replacement is done.

In[11]:= ReplacePart@a + b + c + d, 3 -> x^2D

Out[11]= a + b + d + x2

Here is an expression.

In[12]:= t = 1 + H3 + xL^2 ê y

Out[12]= 1 +
H3 + xL2

y

This is the full form of t.

In[13]:= FullForm@tD

Out[13]//FullForm= Plus@1, Times@Power@Plus@3, xD, 2D, Power@y, -1DDD

Core Language 63

This resets a part of the expression t.

In[14]:= t@@2, 1, 1DD = x

Out[14]= x

Now the form of t has been changed.

In[15]:= t

Out[15]= 1 +
x2

y

Part@expr,nD or expr@@nDD the nth part of expr

Part@expr,8n1,n2,…<D or expr@@8n1,n2,…<DD

a combination of parts of an expression

Part@expr,n1;;n2D parts n1 through n2 of an expression

ReplacePart@expr,n->elemD replace the nth part of expr by elem

Functions for manipulating parts of expressions.

"Manipulating Elements of Lists" discusses how you can use lists of indices to pick out several

elements of a list at a time. You can use the same procedure to pick out several parts in an

expression at a time.

This picks out elements 2 and 4 in the list, and gives a list of these elements.

In[16]:= 8a, b, c, d, e<@@82, 4<DD

Out[16]= 8b, d<

This picks out parts 2 and 4 of the sum, and gives a sum of these elements.

In[17]:= Ha + b + c + d + eL@@82, 4<DD

Out[17]= b + d

Any part in an expression can be viewed as being an argument of some function. When you

pick out several parts by giving a list of indices, the parts are combined using the same function

as in the expression.

This picks out parts 2 through 4 of the list.

In[18]:= 8a, b, c, d, e<@@2 ;; 4DD

Out[18]= 8b, c, d<

Manipulating Expressions like Lists

64 Core Language

Manipulating Expressions like Lists

You can use most of the list operations discussed in "Lists" on any kind of Mathematica expres-

sion. By using these operations, you can manipulate the structure of expressions in many ways.

Here is an expression that corresponds to a sum of terms.

In[1]:= t = 1 + x + x^2 + y^2

Out[1]= 1 + x + x2 + y2

Take@t, 2D takes the first two elements from t, just as if t were a list.

In[2]:= Take@t, 2D

Out[2]= 1 + x

Length gives the number of elements in t.

In[3]:= Length@tD

Out[3]= 4

You can use FreeQ@expr, formD to test whether form appears nowhere in expr.

In[4]:= FreeQ@t, xD

Out[4]= False

This gives a list of the positions at which x appears in t.

In[5]:= Position@t, xD

Out[5]= 882<, 83, 1<<

You should remember that all functions which manipulate the structure of expressions act on

the internal forms of these expressions. You can see these forms using FullForm@exprD. They

may not be what you would expect from the printed versions of the expressions.

Here is a function with four arguments.

In[6]:= f@a, b, c, dD

Out[6]= f@a, b, c, dD

Core Language 65

You can add an argument using Append.

In[7]:= Append@%, eD

Out[7]= f@a, b, c, d, eD

This reverses the arguments.

In[8]:= Reverse@%D

Out[8]= f@e, d, c, b, aD

There are a few extra functions that can be used with expressions, as discussed in "Structural

Operations".

Expressions as Trees

Here is an expression in full form.

In[1]:= FullForm@x^3 + H1 + xL^2D

Out[1]//FullForm= Plus@Power@x, 3D, Power@Plus@1, xD, 2DD

TreeForm prints out expressions to show their “tree” structure.

In[2]:= TreeForm@x^3 + H1 + xL^2D

Out[2]//TreeForm=

Plus

Power

x 3

Power

Plus

1 x

2

You can think of any Mathematica expression as a tree. In the expression above, the top node

in the tree consists of a Plus. From this node come two “branches”, x^3 and H1 + xL^2. From

the x^3 node, there are then two branches, x and 3, which can be viewed as “leaves” of the

tree.

This matrix is a simple tree with just two levels.

66 Core Language

This matrix is a simple tree with just two levels.

In[3]:= TreeForm@88a, b<, 8c, d<<D

Out[3]//TreeForm=

List

List

a b

List

c d

Here is a more complicated expression.

In[4]:= 88a b, c d^2<, 8x^3 y^4<<

Out[4]= 99a b, c d2=, 9x3 y4==

The tree for this expression has several levels. The representation of the tree here was too long
to fit on a single line, so it had to be broken onto two lines.

In[5]:= TreeForm@%D

Out[5]//TreeForm=

List

List

Times

a b

Times

c Power

d 2

List

Times

Power

x 3

Power

y 4

The indices that label each part of an expression have a simple interpretation in terms of trees.

Descending from the top node of the tree, each index specifies which branch to take in order to

reach the part you want.

Core Language 67

Levels in Expressions

The Part function allows you to access specific parts of Mathematica expressions. But particu-

larly when your expressions have fairly uniform structure, it is often convenient to be able to

refer to a whole collection of parts at the same time.

Levels provide a general way of specifying collections of parts in Mathematica expressions.

Many Mathematica functions allow you to specify the levels in an expression on which they

should act.

Here is a simple expression, displayed in tree form.

In[1]:= Ht = 8x, 8x, y<, y<L êê TreeForm

Out[1]//TreeForm=

List

x List y

x y

This searches for x in the expression t down to level 1. It finds only one occurrence.

In[2]:= Position@t, x, 1D

Out[2]= 881<<

This searches down to level 2. Now it finds both occurrences of x.

In[3]:= Position@t, x, 2D

Out[3]= 881<, 82, 1<<

68 Core Language

This searches only at level 2. It finds just one occurrence of x.

In[4]:= Position@t, x, 82<D

Out[4]= 882, 1<<

Position@expr, form,nD give the positions at which form occurs in expr down to
level n

Position@expr, form,8n<D give the positions exactly at level n

Controlling Position using levels.

You can think of levels in expressions in terms of trees. The level of a particular part in an

expression is simply the distance down the tree at which that part appears, with the top of the

tree considered as level 0.

It is equivalent to say that the parts which appear at level n are those that can be specified by a

sequence of exactly n indices.

n levels 1 through n

Infinity all levels (except 0)

8n< level n only

8n1,n2< levels n1 through n2
Heads->True include heads

Heads->False exclude heads

Level specifications.

Core Language 69

Here is an expression, displayed in tree form.

In[5]:= Hu = f@f@g@aD, aD, a, h@aD, fDL êê TreeForm

Out[5]//TreeForm=

f

f a h f

g a

a

a

This searches for a at levels from 2 downward.

In[6]:= Position@u, a, 82, Infinity<D

Out[6]= 881, 1, 1<, 81, 2<, 83, 1<<

This shows where f appears other than in the head of an expression.

In[7]:= Position@u, f, Heads -> FalseD

Out[7]= 884<<

This includes occurrences of f in heads of expressions.

In[8]:= Position@u, f, Heads -> TrueD

Out[8]= 880<, 81, 0<, 84<<

Level@expr,levD a list of the parts of expr at the levels specified by lev

Depth@exprD the total number of levels in expr

Testing and extracting levels.

This gives a list of all parts of u that occur down to level 2.

70 Core Language

This gives a list of all parts of u that occur down to level 2.

In[9]:= Level@u, 2D

Out[9]= 8g@aD, a, f@g@aD, aD, a, a, h@aD, f<

Here are the parts specifically at level 2.

In[10]:= Level@u, 82<D

Out[10]= 8g@aD, a, a<

When you have got the hang of ordinary levels, you can try thinking about negative levels.

Negative levels label parts of expressions starting at the bottom of the tree. Level -1 contains

all the leaves of the tree: objects like symbols and numbers.

This shows the parts of u at level -1.

In[11]:= Level@u, 8-1<D

Out[11]= 8a, a, a, a, f<

You can think of expressions as having a "depth", as shown by TreeForm. In general, level -n

in an expression is defined to consist of all subexpressions whose depth is n.

The depth of g@aD is 2.

In[12]:= Depth@g@aDD

Out[12]= 2

The parts of u at level -2 are those that have depth exactly 2.

In[13]:= Level@u, 8-2<D

Out[13]= 8g@aD, h@aD<

Core Language 71

Patterns

Introduction to Patterns

Patterns are used throughout Mathematica to represent classes of expressions. A simple exam-

ple of a pattern is the expression f@x_D. This pattern represents the class of expressions with

the form f@anythingD.

The main power of patterns comes from the fact that many operations in Mathematica can be

done not only with single expressions, but also with patterns that represent whole classes of

expressions.

You can use patterns in transformation rules to specify how classes of expressions should be
transformed.

In[1]:= f@aD + f@bD ê. f@x_D -> x^2

Out[1]= a2 + b2

You can use patterns to find the positions of all expressions in a particular class.

In[2]:= Position@8f@aD, g@bD, f@cD<, f@x_DD

Out[2]= 881<, 83<<

The basic object that appears in almost all Mathematica patterns is _ (traditionally called

“blank” by Mathematica programmers). The fundamental rule is simply that _ stands for any

expression. On most keyboards the _ underscore character appears as the shifted version of

the - dash character.

Thus, for example, the pattern f@_D stands for any expression of the form f@anythingD. The

pattern f@x_D also stands for any expression of the form f@anythingD, but gives the name x to

the expression anything, allowing you to refer to it on the right-hand side of a transformation

rule.

You can put blanks anywhere in an expression. What you get is a pattern which matches all

expressions that can be made by “filling in the blanks” in any way.

72 Core Language

f@n_D f with any argument, named n

f@n_,m_D f with two arguments, named n and m

x^n_ x to any power, with the power named n

x_^n_ any expression to any power

a_+b_ a sum of two expressions

8a1_,a2_< a list of two expressions

f@n_,n_D f with two identical arguments

Some examples of patterns.

You can construct patterns for expressions with any structure.

In[3]:= f@8a, b<D + f@cD ê. f@8x_, y_<D -> p@x + yD

Out[3]= f@cD + p@a + bD

One of the most common uses of patterns is for “destructuring” function arguments. If you

make a definition for f@list_D, then you need to use functions like Part explicitly in order to

pick out elements of the list. But if you know for example that the list will always have two

elements, then it is usually much more convenient instead to give a definition instead for

f@8x_, y_<D. Then you can refer to the elements of the list directly as x and y. In addition,

Mathematica will not use the definition you have given unless the argument of f really is of the

required form of a list of two expressions.

Here is one way to define a function which takes a list of two elements, and evaluates the first
element raised to the power of the second element.

In[4]:= g@list_D := Part@list, 1D^Part@list, 2D

Here is a much more elegant way to make the definition, using a pattern.

In[5]:= h@8x_, y_<D := x^y

A crucial point to understand is that Mathematica patterns represent classes of expressions with

a given structure. One pattern will match a particular expression if the structure of the pattern

is the same as the structure of the expression, in the sense that by filling in blanks in the pat-

tern you can get the expression. Even though two expressions may be mathematically equal,

they cannot be represented by the same Mathematica pattern unless they have the same

structure.

Thus, for example, the pattern H1 + x_L^2 can stand for expressions like H1 + aL^2 or

H1 + b^3L^2 that have the same structure. However, it cannot stand for the expression

1 + 2 a + a^2. Although this expression is mathematically equal to H1 + aL^2, it does not have

the same structure as the pattern H1 + x_L^2.

Core Language 73

Thus, for example, the pattern H1 + x_L^2 can stand for expressions like H1 + aL^2 or

H1 + b^3L^2 that have the same structure. However, it cannot stand for the expression

1 + 2 a + a^2. Although this expression is mathematically equal to H1 + aL^2, it does not have

the same structure as the pattern H1 + x_L^2.

The fact that patterns in Mathematica specify the structure of expressions is crucial in making it

possible to set up transformation rules which change the structure of expressions, while leaving

them mathematically equal.

It is worth realizing that in general it would be quite impossible for Mathematica to match

patterns by mathematical, rather than structural, equivalence. In the case of expressions like

H1 + aL^2 and 1 + 2 a + a^2, you can determine equivalence just by using functions like Expand

and Factor. But, as discussed in "Reducing Expressions to Their Standard Form" there is no

general way to find out whether an arbitrary pair of mathematical expressions are equal.

As another example, the pattern x^_ will match the expression x^2. It will not, however,

match the expression 1, even though this could be considered as x^0. "Optional and Default

Arguments" discusses how to construct a pattern for which this particular case will match. But

you should understand that in all cases pattern matching in Mathematica is fundamentally

structural.

The x^n_ matches only x^2 and x^3. 1 and x can mathematically be written as xn, but do not
have the same structure.

In[6]:= 81, x, x^2, x^3< ê. x^n_ -> r@nD

Out[6]= 81, x, r@2D, r@3D<

Another point to realize is that the structure Mathematica uses in pattern matching is the full

form of expressions printed by FullForm. Thus, for example, an object such as 1 ê x, whose full

form is Power@x, -1D will be matched by the pattern x_^n_, but not by the pattern x_ ê y_,

whose full form is Times@x_, Power@y_, -1DD. Again, "Optional and Default Arguments" will

discuss how you can construct patterns which can match all these cases.

The expressions in the list contain explicit powers of b, so the transformation rule can be
applied.

In[7]:= 8a ê b, 1 ê b^2, 2 ê b^2< ê. b^n_ -> d@nD

Out[7]= 8a d@-1D, d@-2D, 2 d@-2D<

74 Core Language

Here is the full form of the list.

In[8]:= FullForm@8a ê b, 1 ê b^2, 2 ê b^2<D

Out[8]//FullForm= List@Times@a, Power@b, -1DD, Power@b, -2D, Times@2, Power@b, -2DDD

Although Mathematica does not use mathematical equivalences such as x1 = x when matching

patterns, it does use certain structural equivalences. Thus, for example, Mathematica takes

account of properties such as commutativity and associativity in pattern matching.

To apply this transformation rule, Mathematica makes use of the commutativity and associativ-
ity of addition.

In[9]:= f@a + bD + f@a + cD + f@b + dD ê. f@a + x_D + f@c + y_D -> p@x, yD

Out[9]= f@b + dD + p@b, aD

The discussion considers only pattern objects such as x_ which can stand for any single expres-

sion. Other Tutorials discuss the constructs that Mathematica uses to extend and restrict the

classes of expressions represented by patterns.

Finding Expressions That Match a Pattern

Cases@list, formD give the elements of list that match form

Count@list, formD give the number of elements in list that match form

Position@list, form,81<D give the positions of elements in list that match form

Select@list,testD give the elements of list on which test gives True

Pick@list,sel, formD give the elements of list for which the corresponding
elements of sel match form

Finding elements that match a pattern.

This gives the elements of the list which match the pattern x^_.

In[1]:= Cases@83, 4, x, x^2, x^3<, x^_D

Out[1]= 9x2, x3=

Here is the total number of elements which match the pattern.

In[2]:= Count@83, 4, x, x^2, x^3<, x^_D

Out[2]= 2

You can apply functions like Cases not only to lists, but to expressions of any kind. In addition,

you can specify the level of parts at which you want to look.

Core Language 75

You can apply functions like Cases not only to lists, but to expressions of any kind. In addition,

you can specify the level of parts at which you want to look.

Cases@expr,lhs->rhsD find elements of expr that match lhs, and give a list of the
results of applying the transformation rule to them

Cases@expr,lhs->rhs,levD test parts of expr at levels specified by lev

Count@expr, form,levD give the total number of parts that match form at levels
specified by lev

Position@expr, form,levD give the positions of parts that match form at levels speci-
fied by lev

Searching for parts of expressions that match a pattern.

This returns a list of the exponents n.

In[3]:= Cases@83, 4, x, x^2, x^3<, x^n_ -> nD

Out[3]= 82, 3<

The pattern _Integer matches any integer. This gives a list of integers appearing at any level.

In[4]:= Cases@83, 4, x, x^2, x^3<, _Integer, InfinityD

Out[4]= 83, 4, 2, 3<

Cases@expr, form,lev,nD find only the first n parts that match form

Position@expr, form,lev,nD give the positions of the first n parts that match form

Limiting the number of parts to search for.

This gives the positions of the first two powers of x appearing at any level.

In[5]:= Position@84, 4 + x^a, x^b, 6 + x^5<, x^_, Infinity, 2D

Out[5]= 882, 2<, 83<<

The positions are specified in exactly the form used by functions such as Extract and
ReplacePart discussed in "Lists".

In[6]:= ReplacePart@84, 4 + x^a, x^b, 6 + x^5<, zzz, %D

Out[6]= 94, 4 + zzz, zzz, 6 + x5=

76 Core Language

DeleteCases@expr, formD delete elements of expr that match form

DeleteCases@expr, form,levD delete parts of expr that match form at levels specified by
lev

Deleting parts of expressions that match a pattern.

This deletes the elements which match x^n_.

In[7]:= DeleteCases@83, 4, x, x^2, x^3<, x^n_D

Out[7]= 83, 4, x<

This deletes all integers appearing at any level.

In[8]:= DeleteCases@83, 4, x, 2 + x, 3 + x<, _Integer, InfinityD

Out[8]= 8x, x, x<

ReplaceList@expr,lhs->rhsD find all ways that expr can match lhs

Finding arrangements of an expression that match a pattern.

This finds all ways that the sum can be written in two parts.

In[9]:= ReplaceList@a + b + c, x_ + y_ -> g@x, yDD

Out[9]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<

This finds all pairs of identical elements. The pattern ___ stands for any sequence of elements.

In[10]:= ReplaceList@8a, b, b, b, c, c, a<, 8___, x_, x_, ___< -> xD

Out[10]= 8b, b, c<

Naming Pieces of Patterns

Particularly when you use transformation rules, you often need to name pieces of patterns. An

object like x_ stands for any expression, but gives the expression the name x. You can then, for

example, use this name on the right-hand side of a transformation rule.

An important point is that when you use x_, Mathematica requires that all occurrences of blanks

with the same name x in a particular expression must stand for the same expression.

Thus f@x_, x_D can only stand for expressions in which the two arguments of f are exactly the

same. f@_, _D, on the other hand, can stand for any expression of the form f@x, yD, where x

and y need not be the same.

Core Language 77

Thus f@x_, x_D can only stand for expressions in which the two arguments of f are exactly the

same. f@_, _D, on the other hand, can stand for any expression of the form f@x, yD, where x

and y need not be the same.

The transformation rule applies only to cases where the two arguments of f are identical.

In[1]:= 8f@a, aD, f@a, bD< ê. f@x_, x_D -> p@xD

Out[1]= 8p@aD, f@a, bD<

Mathematica allows you to give names not just to single blanks, but to any piece of a pattern.

The object x : pattern in general represents a pattern which is assigned the name x. In transforma-

tion rules, you can use this mechanism to name exactly those pieces of a pattern that you need

to refer to on the right-hand side of the rule.

_ any expression

x _ any expression, to be named x

x:pattern an expression to be named x, matching pattern

Patterns with names.

This gives a name to the complete form _^_ so you can refer to it as a whole on the right-hand
side of the transformation rule.

In[2]:= f@a^bD ê. f@x : _^_D -> p@xD

Out[2]= pAabE

Here the exponent is named n, while the whole object is x.

In[3]:= f@a^bD ê. f@x : _^n_D -> p@x, nD

Out[3]= pAab, bE

When you give the same name to two pieces of a pattern, you constrain the pattern to match

only those expressions in which the corresponding pieces are identical.

Here the pattern matches both cases.

In[4]:= 8f@h@4D, h@4DD, f@h@4D, h@5DD< ê. f@h@_D, h@_DD -> q

Out[4]= 8q, q<

78 Core Language

Now both arguments of f are constrained to be the same, and only the first case matches.

In[5]:= 8f@h@4D, h@4DD, f@h@4D, h@5DD< ê. f@x : h@_D, x_D -> r@xD

Out[5]= 8r@h@4DD, f@h@4D, h@5DD<

Specifying Types of Expression in Patterns

You can tell a lot about what “type” of expression something is by looking at its head. Thus, for

example, an integer has head Integer, while a list has head List.

In a pattern, _h and x_h represent expressions that are constrained to have head h. Thus, for

example, _Integer represents any integer, while _List represents any list.

x_h an expression with head h

x_Integer an integer

x_Real an approximate real number

x_Complex a complex number

x_List a list

x_Symbol a symbol

Patterns for objects with specified heads.

This replaces just those elements that are integers.

In[1]:= 8a, 4, 5, b< ê. x_Integer -> p@xD

Out[1]= 8a, p@4D, p@5D, b<

You can think of making an assignment for f@x_IntegerD as like defining a function f that

must take an argument of “type” Integer.

This defines a value for the function gamma when its argument is an integer.

In[2]:= gamma@n_IntegerD := Hn - 1L!

The definition applies only when the argument of gamma is an integer.

In[3]:= gamma@4D + gamma@xD

Out[3]= 6 + gamma@xD

Core Language 79

The object 4. has head Real, so the definition does not apply.

In[4]:= gamma@4.D

Out[4]= gamma@4.D

This defines values for expressions with integer exponents.

In[5]:= d@x_^n_IntegerD := n x^Hn - 1L

The definition is used only when the exponent is an integer.

In[6]:= d@x^4D + d@Ha + bL^3D + d@x^H1 ê 2LD

Out[6]= 3 Ha + bL2 + 4 x3 + dB x F

Putting Constraints on Patterns

Mathematica provides a general mechanism for specifying constraints on patterns. All you need

do is to put ê; condition at the end of a pattern to signify that it applies only when the specified

condition is True. You can read the operator ê; as "slash-semi", "whenever" or "provided that".

patternê;condition a pattern that matches only when a condition is satisfied

lhs:>rhsê;condition a rule that applies only when a condition is satisfied

lhs:=rhsê;condition a definition that applies only when a condition is satisfied

Putting conditions on patterns and transformation rules.

This gives a definition for fac that applies only when its argument n is positive.

In[1]:= fac@n_ ê; n > 0D := n!

The definition for fac is used only when the argument is positive.

In[2]:= fac@6D + fac@-4D

Out[2]= 720 + fac@-4D

This gives the negative elements in the list.

In[3]:= Cases@83, -4, 5, -2<, x_ ê; x < 0D

Out[3]= 8-4, -2<

You can use ê; on whole definitions and transformation rules, as well as on individual patterns.

In general, you can put ê; condition at the end of any := definition or :> rule to tell Mathematica

that the definition or rule applies only when the specified condition holds. Note that ê; condi-

tions should not usually be put at the end of = definitions or -> rules, since they will then be

evaluated immediately, as discussed in "Immediate and Delayed Definitions".

80 Core Language

You can use ê; on whole definitions and transformation rules, as well as on individual patterns.

In general, you can put ê; condition at the end of any := definition or :> rule to tell Mathematica

that the definition or rule applies only when the specified condition holds. Note that ê; condi-

tions should not usually be put at the end of = definitions or -> rules, since they will then be

evaluated immediately, as discussed in "Immediate and Delayed Definitions".

Here is another way to give a definition which applies only when its argument n is positive.

In[4]:= fac2@n_D := n! ê; n > 0

Once again, the factorial functions evaluate only when their arguments are positive.

In[5]:= fac2@6D + fac2@-4D

Out[5]= 720 + fac2@-4D

You can use the ê; operator to implement arbitrary mathematical constraints on the applicabil-

ity of rules. In typical cases, you give patterns which structurally match a wide range of expres-

sions, but then use mathematical constraints to reduce the range of expressions to a much

smaller set.

This rule applies only to expressions that have the structure v@x_, 1 - x_D.

In[6]:= v@x_, 1 - x_D := p@xD

This expression has the appropriate structure, so the rule applies.

In[7]:= v@a^2, 1 - a^2D

Out[7]= pAa2E

This expression, while mathematically of the correct form, does not have the appropriate
structure, so the rule does not apply.

In[8]:= v@4, -3D

Out[8]= v@4, -3D

This rule applies to any expression of the form w@x_, y_D, with the added restriction that
y == 1 - x.

In[9]:= w@x_, y_D := p@xD ê; y == 1 - x

The new rule does apply to this expression.

In[10]:= w@4, -3D

Out[10]= p@4D

In setting up patterns and transformation rules, there is often a choice of where to put ê;

conditions. For example, you can put a ê; condition on the right-hand side of a rule in the form

lhs :> rhs ê; condition, or you can put it on the left-hand side in the form lhs ê; condition -> rhs. You

may also be able to insert the condition inside the expression lhs. The only constraint is that all

the names of patterns that you use in a particular condition must appear in the pattern to which

the condition is attached. If this is not the case, then some of the names needed to evaluate

the condition may not yet have been "bound" in the pattern-matching process. If this happens,

then Mathematica uses the global values for the corresponding variables, rather than the values

determined by pattern matching.

Core Language 81

In setting up patterns and transformation rules, there is often a choice of where to put ê;

conditions. For example, you can put a ê; condition on the right-hand side of a rule in the form

lhs :> rhs ê; condition, or you can put it on the left-hand side in the form lhs ê; condition -> rhs. You

may also be able to insert the condition inside the expression lhs. The only constraint is that all

the names of patterns that you use in a particular condition must appear in the pattern to which

the condition is attached. If this is not the case, then some of the names needed to evaluate

the condition may not yet have been "bound" in the pattern-matching process. If this happens,

then Mathematica uses the global values for the corresponding variables, rather than the values

determined by pattern matching.

Thus, for example, the condition in f@x_, y_D ê; Hx + y < 2L will use values for x and y that are

found by matching f@x_, y_D, but the condition in f@x_ ê; x + y < 2, y_D will use the global

value for y, rather than the one found by matching the pattern.

As long as you make sure that the appropriate names are defined, it is usually most efficient to

put ê; conditions on the smallest possible parts of patterns. The reason for this is that Mathe-

matica matches pieces of patterns sequentially, and the sooner it finds a ê; condition which

fails, the sooner it can reject a match.

Putting the ê; condition around the x_ is slightly more efficient than putting it around the
whole pattern.

In[11]:= Cases@8z@1, 1D, z@-1, 1D, z@-2, 2D<, z@x_ ê; x < 0, y_DD

Out[11]= 8z@-1, 1D, z@-2, 2D<

You need to put parentheses around the ê; piece in a case like this.

In[12]:= 81 + a, 2 + a, -3 + a< ê. Hx_ ê; x < 0L + a -> p@xD

Out[12]= 81 + a, 2 + a, p@-3D<

It is common to use ê; to set up patterns and transformation rules that apply only to expres-

sions with certain properties. There is a collection of functions built into Mathematica for testing

the properties of expressions. It is a convention that functions of this kind have names that end

with the letter Q, indicating that they "ask a question".

82 Core Language

IntegerQ@exprD integer

EvenQ@exprD even number

OddQ@exprD odd number

PrimeQ@exprD prime number

NumberQ@exprD explicit number of any kind

NumericQ@exprD numeric quantity

PolynomialQ@expr,8x1,x2,…<D

polynomial in x1, x2, ...

VectorQ@exprD a list representing a vector

MatrixQ@exprD a list of lists representing a matrix

VectorQAexpr,NumericQE , MatrixQAexpr,NumericQE

vectors and matrices where all elements are numeric

VectorQ@expr,testD , MatrixQ@expr,testD

vectors and matrices for which the function test yields
True on every element

ArrayQ@expr,dD full array with depth matching d

Some functions for testing mathematical properties of expressions.

The rule applies to all elements of the list that are numbers.

In[13]:= 82.3, 4, 7 ê 8, a, b< ê. Hx_ ê; NumberQ@xDL -> x^2

Out[13]= :5.29, 16,
49

64
, a, b>

This definition applies only to vectors of integers.

In[14]:= mi@list_D := list^2 ê; VectorQ@list, IntegerQD

The definition is now used only in the first case.

In[15]:= 8mi@82, 3<D, mi@82.1, 2.2<D, mi@8a, b<D<

Out[15]= 884, 9<, mi@82.1, 2.2<D, mi@8a, b<D<

An important feature of all the Mathematica property-testing functions whose names end in Q is

that they always return False if they cannot determine whether the expression you give has a

particular property.

Core Language 83

4561 is an integer, so this returns True.

In[16]:= IntegerQ@4561D

Out[16]= True

This returns False, since x is not known to be an integer.

In[17]:= IntegerQ@xD

Out[17]= False

Functions like IntegerQ@xD test whether x is explicitly an integer. With assertions like x œ

Integers you can use Refine, Simplify and related functions to make inferences about

symbolic variables x.

SameQAx,yE or x===y x and y are identical

UnsameQAx,yE or x=!=y x and y are not identical

OrderedQ@8a,b,…<D a, b, ... are in standard order

MemberQ@expr, formD form matches an element of expr

FreeQ@expr, formD form matches nothing in expr

MatchQ@expr, formD expr matches the pattern form

ValueQ@exprD a value has been defined for expr

AtomQ@exprD expr has no subexpressions

Some functions for testing structural properties of expressions.

With ==, the equation remains in symbolic form; === yields False unless the expressions are
manifestly equal.

In[18]:= 8x == y, x === y<

Out[18]= 8x ã y, False<

The expression n is not a member of the list 8x, x^n<.

In[19]:= MemberQ@8x, x^n<, nD

Out[19]= False

However, 8x, x^n< is not completely free of n.

In[20]:= FreeQ@8x, x^n<, nD

Out[20]= False

84 Core Language

You can use FreeQ to define a "linearity" rule for h.

In[21]:= h@a_ b_, x_D := a h@b, xD ê; FreeQ@a, xD

Terms free of x are pulled out of each h.

In[22]:= h@a b x, xD + h@2 H1 + xL x^2, xD

Out[22]= a b h@x, xD + 2 hAx2 H1 + xL, xE

pattern?test a pattern which matches an expression only if test yields
True when applied to the expression

Another way to constrain patterns.

The construction pattern ê; condition allows you to evaluate a condition involving pattern names

to determine whether there is a match. The construction pattern? test instead applies a function

test to the whole expression matched by pattern to determine whether there is a match. Using ?

instead of ê; sometimes leads to more succinct definitions.

With this definition matches for x_ are tested with the function NumberQ.

In[23]:= p@x_?NumberQD := x^2

The definition applies only when p has a numerical argument.

In[24]:= p@4.5D + p@3 ê 2D + p@uD

Out[24]= 22.5 + p@uD

Here is a more complicated definition. Do not forget the parentheses around the pure function.

In[25]:= q@8x_Integer, y_Integer<?HFunction@v, v.v > 4DLD := qp@x + yD

The definition applies only in certain cases.

In[26]:= 8q@83, 4<D, q@81, 1<D, q@8-5, -7<D<

Out[26]= 8qp@7D, q@81, 1<D, qp@-12D<

Except@cD a pattern which matches any expression except c

Except@c,pattD a pattern which matches patt but not c

Patterns with exceptions.

Core Language 85

This gives all elements except 0.

In[27]:= Cases@81, 0, 2, 0, 3<, Except@0DD

Out[27]= 81, 2, 3<

Except can take a pattern as an argument.

In[28]:= Cases@8a, b, 0, 1, 2, x, y<, Except@_IntegerDD

Out[28]= 8a, b, x, y<

This picks out integers that are not 0.

In[29]:= Cases@8a, b, 0, 1, 2, x, y<, Except@0, _IntegerDD

Out[29]= 81, 2<

Except@cD is in a sense a very general pattern: it matches anything except c. In many situa-

tions you instead need to use Except@c, pattD, which starts from expressions matching patt,

then excludes ones that match c.

Patterns Involving Alternatives

patt1 patt2 … a pattern that can have one of several forms

Specifying patterns that involve alternatives.

This defines h to give p when its argument is either a or b.

In[1]:= h@a bD := p

The first two cases give p.

In[2]:= 8h@aD, h@bD, h@cD, h@dD<

Out[2]= 8p, p, h@cD, h@dD<

You can also use alternatives in transformation rules.

In[3]:= 8a, b, c, d< ê. Ha bL -> p

Out[3]= 8p, p, c, d<

86 Core Language

Here is another example, in which one of the alternatives is itself a pattern.

In[4]:= 81, x, x^2, x^3, y^2< ê. Hx x^_L -> q

Out[4]= 91, q, q, q, y2=

When you use alternatives in patterns, you should make sure that the same set of names

appear in each alternative. When a pattern like Ha@x_D b@x_DL matches an expression, there

will always be a definite expression that corresponds to the object x. If you try to match a

pattern like Ha@x_D b@y_DL, then there still will be definite expressions corresponding to x and

y, but the unmatched one will be Sequence@ D.

Here f is used to name the head, which can be either a or b.

In[5]:= 8a@2D, b@3D, c@4D, a@5D< ê. Hf : Ha bLL@x_D -> r@f, xD

Out[5]= 8r@a, 2D, r@b, 3D, c@4D, r@a, 5D<

Pattern Sequences

In some cases you may need to specify pattern sequences that are more intricate than things

like x__ or x ..; for such situations you can use PatternSequence@p1, p2, …D.

PatternSequence@p1,p2,…D a sequence of arguments matching p1, p2, …

Pattern sequences.

This defines a function with two or more arguments, grouping the first two.

In[1]:= f@x : PatternSequence@_, _D, y___D := p@8x<, 8y<D

Evaluate the function for different numbers of arguments.

In[2]:= 8f@1D, f@1, 2D, f@1, 2, 3, 4, 5D<

Out[2]= 8f@1D, p@81, 2<, 8<D, p@81, 2<, 83, 4, 5<D<

This picks out the longest run of the sequence a, b in the list.

In[3]:= 8a, b, b, a, b, a, b, a, a, b< ê. 8___, x : Longest@PatternSequence@a, bD ..D, ___< ß 8x<

Out[3]= 8a, b, a, b<

The empty sequence, PatternSequence@D, is sometimes useful to specify an optional argument.

This picks out expressions with exactly one or two arguments.

Core Language 87

This picks out expressions with exactly one or two arguments.

In[4]:= 8g@D, g@1D, g@1, 2D, g@1, 2, 3D< ê. x : g@_, _ PatternSequence@DD ß p@xD

Out[4]= 8g@D, p@g@1DD, p@g@1, 2DD, g@1, 2, 3D<

Flat and Orderless Functions

Although Mathematica matches patterns in a purely structural fashion, its notion of structural

equivalence is quite sophisticated. In particular, it takes account of properties such as commuta-

tivity and associativity in functions like Plus and Times.

This means, for example, that Mathematica considers the expressions x + y and y + x equivalent

for the purposes of pattern matching. As a result, a pattern like g@x_ + y_, x_D can match not

only g@a + b, aD, but also g@a + b, bD.

This expression has exactly the same form as the pattern.

In[1]:= g@a + b, aD ê. g@x_ + y_, x_D -> p@x, yD

Out[1]= p@a, bD

In this case, the expression has to be put in the form g@b + a, bD in order to have the same
structure as the pattern.

In[2]:= g@a + b, bD ê. g@x_ + y_, x_D -> p@x, yD

Out[2]= p@b, aD

Whenever Mathematica encounters an orderless or commutative function such as Plus or

Times in a pattern, it effectively tests all the possible orders of arguments to try and find a

match. Sometimes, there may be several orderings that lead to matches. In such cases, Mathe-

matica just uses the first ordering it finds. For example, h@x_ + y_, x_ + z_D could match

h@a + b, a + bD with xØa, yØb, zØb or with xØb, yØa, zØa. Mathematica tries the case xØa,

yØb, zØb first, and so uses this match.

This can match either with x Ø a or with x Ø b. Mathematica tries x Ø a first, and so uses this
match.

In[3]:= h@a + b, a + bD ê. h@x_ + y_, x_ + z_D -> p@x, y, zD

Out[3]= p@a, b, bD

88 Core Language

ReplaceList shows both possible matches.

In[4]:= ReplaceList@h@a + b, a + bD, h@x_ + y_, x_ + z_D -> p@x, y, zDD

Out[4]= 8p@a, b, bD, p@b, a, aD<

As discussed in "Attributes", Mathematica allows you to assign certain attributes to functions,

which specify how those functions should be treated in evaluation and pattern matching. Func-

tions can for example be assigned the attribute Orderless, which specifies that they should be

treated as commutative or symmetric, and allows their arguments to be rearranged in trying to

match patterns.

Orderless commutative function: f@b, c, aD, etc., are equivalent to
f@a, b, cD

Flat associative function: f@ f@aD, bD, etc., are equivalent to
f@a, bD

OneIdentity f[f[a]], etc., are equivalent to a

Attributes@ fD give the attributes assigned to f

SetAttributes@ f,attrD add attr to the attributes of f

ClearAttributes@ f,attrD remove attr from the attributes of f

Some attributes that can be assigned to functions.

Plus has attributes Orderless and Flat, as well as others.

In[5]:= Attributes@PlusD

Out[5]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

This defines q to be an orderless or commutative function.

In[6]:= SetAttributes@q, OrderlessD

The arguments of q are automatically sorted into order.

In[7]:= q@b, a, cD

Out[7]= q@a, b, cD

Mathematica rearranges the arguments of q functions to find a match.

In[8]:= f@q@a, bD, q@b, cDD ê. f@q@x_, y_D, q@x_, z_DD -> p@x, y, zD

Out[8]= p@b, a, cD

In addition to being orderless, functions like Plus and Times also have the property of being

flat or associative. This means that you can effectively “parenthesize” their arguments in any

way, so that, for example, x + Hy + zL is equivalent to x + y + z, and so on.

Core Language 89

In addition to being orderless, functions like Plus and Times also have the property of being

flat or associative. This means that you can effectively “parenthesize” their arguments in any

way, so that, for example, x + Hy + zL is equivalent to x + y + z, and so on.

Mathematica takes account of flatness in matching patterns. As a result, a pattern like

g@x_ + y_D can match g@a + b + cD, with x Ø a and y Ø Hb + cL.

The argument of g is written as a + Hb + cL so as to match the pattern.

In[9]:= g@a + b + cD ê. g@x_ + y_D -> p@x, yD

Out[9]= p@a, b + cD

If there are no other constraints, Mathematica will match x_ to the first element of the sum.

In[10]:= g@a + b + c + dD ê. g@x_ + y_D -> p@x, yD

Out[10]= p@a, b + c + dD

This shows all the possible matches.

In[11]:= ReplaceList@g@a + b + cD, g@x_ + y_D -> p@x, yDD

Out[11]= 8p@a, b + cD, p@b, a + cD, p@c, a + bD, p@a + b, cD, p@a + c, bD, p@b + c, aD<

Here x_ is forced to match b + d.

In[12]:= g@a + b + c + d, b + dD ê. g@x_ + y_, x_D -> p@x, yD

Out[12]= p@b + d, a + cD

Mathematica can usually apply a transformation rule to a function only if the pattern in the rule

covers all the arguments in the function. However, if you have a flat function, it is sometimes

possible to apply transformation rules even though not all the arguments are covered.

This rule applies even though it does not cover all the terms in the sum.

In[13]:= a + b + c ê. a + c -> p

Out[13]= b + p

This combines two of the terms in the sum.

In[14]:= u@aD + u@bD + v@cD + v@dD ê. u@x_D + u@y_D -> u@x + yD

Out[14]= u@a + bD + v@cD + v@dD

Functions like Plus and Times are both flat and orderless. There are, however, some functions,

such as Dot, which are flat, but not orderless.

Both x_ and y_ can match any sequence of terms in the dot product.

90 Core Language

Both x_ and y_ can match any sequence of terms in the dot product.

In[15]:= a.b.c.d.a.b ê. x_.y_.x_ -> p@x, yD

Out[15]= p@a.b, c.dD

This assigns the attribute Flat to the function r.

In[16]:= SetAttributes@r, FlatD

Mathematica writes the expression in the form r@r@a, bD, r@a, bDD to match the pattern.

In[17]:= r@a, b, a, bD ê. r@x_, x_D -> rp@xD

Out[17]= rp@r@a, bDD

Mathematica writes this expression in the form r@a, r@r@bD, r@bDD, cD to match the pat-
tern.

In[18]:= r@a, b, b, cD ê. r@x_, x_D -> rp@xD

Out[18]= r@a, rp@r@bDD, cD

In an ordinary function that is not flat, a pattern such as x_ matches an individual argument of

the function. But in a function f@a, b, c, …D that is flat, x_ can match objects such as f@b, cD

which effectively correspond to a sequence of arguments. However, in the case where x_

matches a single argument in a flat function, the question comes up as to whether the object it

matches is really just the argument a itself, or f@aD. Mathematica chooses the first of these

cases if the function carries the attribute OneIdentity, and chooses the second case otherwise.

This adds the attribute OneIdentity to the function r.

In[19]:= SetAttributes@r, OneIdentityD

Now x_ matches individual arguments, without r wrapped around them.

In[20]:= r@a, b, b, cD ê. r@x_, x_D -> rp@xD

Out[20]= r@a, rp@bD, cD

The functions Plus, Times and Dot all have the attribute OneIdentity, reflecting the fact that

Plus@xD is equivalent to x, and so on. However, in representing mathematical objects, it is

often convenient to deal with flat functions that do not have the attribute OneIdentity.

Core Language 91

Functions with Variable Numbers of Arguments

Unless f is a flat function, a pattern like f@x_, y_D stands only for instances of the function with

exactly two arguments. Sometimes you need to set up patterns that can allow any number of

arguments.

You can do this using multiple blanks. While a single blank such as x_ stands for a single Mathe-

matica expression, a double blank such as x__ stands for a sequence of one or more expres-

sions.

Here x__ stands for the sequence of expressions Ha, b, cL.

In[1]:= f@a, b, cD ê. f@x__D -> p@x, x, xD

Out[1]= p@a, b, c, a, b, c, a, b, cD

Here is a more complicated definition, which picks out pairs of duplicated elements in h.

In[2]:= h@a___, x_, b___, x_, c___D := hh@xD h@a, b, cD

The definition is applied twice, picking out the two paired elements.

In[3]:= h@2, 3, 2, 4, 5, 3D

Out[3]= h@4, 5D hh@2D hh@3D

“Double blanks” __ stand for sequences of one or more expressions. “Triple blanks” ___ stand

for sequences of zero or more expressions. You should be very careful whenever you use triple

blank patterns. It is easy to make a mistake that can lead to an infinite loop. For example, if

you define p@x_, y___D := p@xD q@yD, then typing in p@aD will lead to an infinite loop, with y

repeatedly matching a sequence with zero elements. Unless you are sure you want to include

the case of zero elements, you should always use double blanks rather than triple blanks.

92 Core Language

_ any single expression

x _ any single expression, to be named x

__ any sequence of one or more expressions

x __ sequence named x

x __ h sequence of expressions, all of whose heads are h

___ any sequence of zero or more expressions

x ___ sequence of zero or more expressions named x

x ___ h sequence of zero or more expressions, all of whose heads
are h

More kinds of pattern objects.

Notice that with flat functions such as Plus and Times, Mathematica automatically handles

variable numbers of arguments, so you do not explicitly need to use double or triple blanks, as

discussed in "Flat and Orderless Functions".

When you use multiple blanks, there are often several matches that are possible for a particular

expression. By default, Mathematica tries first those matches that assign the shortest

sequences of arguments to the first multiple blanks that appear in the pattern. You can change

this order by wrapping Longest or Shortest around parts of the pattern.

Longest@pD match the longest sequence consistent with the pattern p

Shortest@pD match the shortest sequence consistent with the pattern p

Controlling the order in which matches are tried.

This gives a list of all the matches that Mathematica tries.

In[4]:= ReplaceList@f@a, b, c, dD, f@x__, y__D -> g@8x<, 8y<DD

Out[4]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<

This forces Mathematica to try the longest matches for x__ first.

In[5]:= ReplaceList@f@a, b, c, dD, f@Longest@x__D, y__D -> g@8x<, 8y<DD

Out[5]= 8g@8a, b, c<, 8d<D, g@8a, b<, 8c, d<D, g@8a<, 8b, c, d<D<

Many kinds of enumeration can be done by using ReplaceList with various kinds of patterns.

In[6]:= ReplaceList@f@a, b, c, dD, f@___, x__D -> g@xDD

Out[6]= 8g@a, b, c, dD, g@b, c, dD, g@c, dD, g@dD<

This effectively enumerates all sublists with at least one element.

Core Language 93

This effectively enumerates all sublists with at least one element.

In[7]:= ReplaceList@f@a, b, c, dD, f@___, x__, ___D -> g@xDD

Out[7]= 8g@aD, g@a, bD, g@a, b, cD, g@a, b, c, dD, g@bD, g@b, cD, g@b, c, dD, g@cD, g@c, dD, g@dD<

This tries the shortest matches for x__ first.

In[8]:= ReplaceList@f@a, b, c, dD, f@___, Shortest@x__D, ___D -> g@xDD

Out[8]= 8g@aD, g@bD, g@cD, g@dD, g@a, bD, g@b, cD, g@c, dD, g@a, b, cD, g@b, c, dD, g@a, b, c, dD<

Optional and Default Arguments

Sometimes you may want to set up functions where certain arguments, if omitted, are given

"default values". The pattern x_: v stands for an object that can be omitted, and if so, will be

replaced by the default value v.

This defines a function j with a required argument x, and optional arguments y and z, with
default values 1 and 2, respectively.

In[1]:= j@x_, y_: 1, z_: 2D := jp@x, y, zD

The default value of z is used here.

In[2]:= j@a, bD

Out[2]= jp@a, b, 2D

Now the default values of both y and z are used.

In[3]:= j@aD

Out[3]= jp@a, 1, 2D

x _:v an expression which, if omitted, is taken to have default
value v

x _ h:v an expression with head h and default value v

x _. an expression with a built-in default value

Pattern objects with default values.

Some common Mathematica functions have built-in default values for their arguments. In such

cases, you need not explicitly give the default value in x_: v, but instead you can use the more

convenient notation x_. in which a built-in default value is assumed.

94 Core Language

x_+y_. default for y is 0

x_ y_. default for y is 1

x_^y_. default for y is 1

Some patterns with optional pieces.

Here a matches the pattern x_ + y_. with y taken to have the default value 0.

In[4]:= 8f@aD, f@a + bD< ê. f@x_ + y_.D -> p@x, yD

Out[4]= 8p@a, 0D, p@b, aD<

Because Plus is a flat function, a pattern such as x_ + y_ can match a sum with any number of

terms. This pattern cannot, however, match a single term such as a. However, the pattern

x_ + y_. contains an optional piece, and can match either an explicit sum of terms in which both

x_ and y_ appear, or a single term x_, with y taken to be 0.

Using constructs such as x_., you can easily construct single patterns that match expressions

with several different structures. This is particularly useful when you want to match several

mathematically equal forms that do not have the same structure.

The pattern matches g@a^2D, but not g@a + bD.

In[5]:= 8g@a^2D, g@a + bD< ê. g@x_^n_D -> p@x, nD

Out[5]= 8p@a, 2D, g@a + bD<

By giving a pattern in which the exponent is optional, you can match both cases.

In[6]:= 8g@a^2D, g@a + bD< ê. g@x_^n_.D -> p@x, nD

Out[6]= 8p@a, 2D, p@a + b, 1D<

The pattern a_. + b_. x_ matches any linear function of x_.

In[7]:= lin@a_. + b_. x_, x_D := p@a, bD

In this case, b Ø 1.

In[8]:= lin@1 + x, xD

Out[8]= p@1, 1D

Core Language 95

Here b Ø 1 and a Ø 0.

In[9]:= lin@y, yD

Out[9]= p@0, 1D

Standard Mathematica functions such as Plus and Times have built-in default values for their

arguments. You can also set up defaults for your own functions, as described in "Patterns".

Sometimes it is convenient not to assign a default value to an optional argument; such argu-

ments can be specified with the help of PatternSequence@D.

p PatternSequence@D optional pattern p with no default value

Optional argument without a default value.

The pattern matches an optional second argument of 2, without a default value.

In[10]:= 8g@1D, g@1, 1D, g@1, 2D< ê. g@x_, 2 PatternSequence@DD ß p@xD

Out[10]= 8p@1D, g@1, 1D, p@1D<

Setting Up Functions with Optional Arguments

When you define a complicated function, you will often want to let some of the arguments of

the function be “optional”. If you do not give those arguments explicitly, you want them to take

on certain “default” values.

Built-in Mathematica functions use two basic methods for dealing with optional arguments. You

can choose between the same two methods when you define your own functions in Mathemat-

ica.

The first method is to have the meaning of each argument determined by its position, and then

to allow one to drop arguments, replacing them by default values. Almost all built-in Mathemat-

ica functions that use this method drop arguments from the end. For example, the built-in

function Flatten@list, nD allows you to drop the second argument, which is taken to have a

default value of Infinity.

You can implement this kind of “positional” argument using _ : patterns.

96 Core Language

f@x_,k_: kdefD:=value a typical definition for a function whose second argument
is optional, with default value kdef

Defining a function with positional arguments.

This defines a function with an optional second argument. When the second argument is omit-
ted, it is taken to have the default value Infinity.

In[1]:= f@list_, n_: InfinityD := f0@list, nD

Here is a function with two optional arguments.

In[2]:= fx@list_, n1_: 1, n2_: 2D := fx0@list, n1, n2D

Mathematica assumes that arguments are dropped from the end. As a result m here gives the
value of n1, while n2 has its default value of 2.

In[3]:= fx@k, mD

Out[3]= fx0@k, m, 2D

The second method that built-in Mathematica functions use for dealing with optional arguments

is to give explicit names to the optional arguments, and then to allow their values to be given

using transformation rules. This method is particularly convenient for functions like Plot which

have a very large number of optional parameters, only a few of which usually need to be set in

any particular instance.

The typical arrangement is that values for “named” optional arguments can be specified by

including the appropriate transformation rules at the end of the arguments to a particular

function. Thus, for example, the rule Joined -> True, which specifies the setting for the named

optional argument Joined, could appear as ListPlot@list, Joined -> TrueD.

When you set up named optional arguments for a function f , it is conventional to store the

default values of these arguments as a list of transformation rules assigned to Options@ fD.

fAx_,OptionsPattern@DE:=value a typical definition for a function with zero or more named
optional arguments

OptionValue@nameD the value of a named optional argument in the body of the
function

Named arguments.

Core Language 97

This sets up default values for two named optional arguments opt1 and opt2 in the function
fn.

In[4]:= Options@fnD = 8opt1 -> 1, opt2 -> 2<

Out[4]= 8opt1 Ø 1, opt2 Ø 2<

Here is the definition for a function fn which allows zero or more named optional arguments to
be specified.

In[5]:= fn@x_, OptionsPattern@DD := k@x, OptionValue@opt2DD

With no optional arguments specified, the default rule for opt2 is used.

In[6]:= fn@4D

Out[6]= k@4, 2D

If you explicitly give a rule for opt2, it will override the default rules stored in Options@fnD.

In[7]:= fn@4, opt2 -> 7D

Out[7]= k@4, 7D

FilterRulesAopts,Options@nameDE the rules in opts used as options by the function f

FilterRulesAopts,ExceptAOptions@nameDEE

the rules in opts not used as options by the function f

Filtering options.

Sometimes when you write a function you will want to pass on options to functions that it calls.

Here is a simple function that solves a differential equation numerically and plots its solution.

In[8]:= odeplot@de_, y_, 8x_, x0_, x1_<, opts : OptionsPattern@DD :=
Module@8sol<,
sol = NDSolve@de, y, 8x, x0, x1<, FilterRules@8opts<, Options@NDSolveDDD;
If@Head@solD === NDSolve,
$Failed,
Plot@Evaluate@y ê. solD, 8x, x0, x1<,
Evaluate@FilterRules@8opts<, Options@PlotDDDD

D
D

98 Core Language

With no options given, the default options for NDSolve and Plot are used.

In[9]:= odeplot@8y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0<, y@xD, 8x, 0, 10<D

Out[9]=

This changes the method used by NDSolve and the color in the plot.

In[10]:= odeplot@8y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0<,
y@xD, 8x, 0, 10<, Method Ø "ExplicitRungeKutta", PlotStyle Ø RedD

Out[10]=

Repeated Patterns

expr.. a pattern or other expression repeated one or more times

expr... a pattern or other expression repeated zero or more times

Repeated patterns.

Multiple blanks such as x__ allow you to give patterns in which sequences of arbitrary expres-

sions can occur. The Mathematica pattern repetition operators .. and ... allow you to con-

struct patterns in which particular forms can be repeated any number of times. Thus, for exam-

ple, f@a ..D represents any expression of the form f@aD, f@a, aD, f@a, a, aD, and so on.

The pattern f@a ..D allows the argument a to be repeated any number of times.

In[1]:= Cases@8f@aD, f@a, b, aD, f@a, a, aD<, f@a ..DD

Out[1]= 8f@aD, f@a, a, aD<

This pattern allows any number of a arguments, followed by any number of b arguments.

In[2]:= Cases@8f@aD, f@a, a, bD, f@a, b, aD, f@a, b, bD<, f@a .., b ..DD

Out[2]= 8f@a, a, bD, f@a, b, bD<

Core Language 99

Here each argument can be either a or b.

In[3]:= Cases@8f@aD, f@a, b, aD, f@a, c, aD<, f@Ha bL ..DD

Out[3]= 8f@aD, f@a, b, aD<

You can use .. and ... to represent repetitions of any pattern. If the pattern contains named

parts, then each instance of these parts must be identical.

This defines a function whose argument must consist of a list of pairs.

In[4]:= v@x : 88_, _< ..<D := Transpose@xD

The definition applies in this case.

In[5]:= v@88a1, b1<, 8a2, b2<, 8a3, b3<<D

Out[5]= 88a1, a2, a3<, 8b1, b2, b3<<

With this definition, the second elements of all the pairs must be the same.

In[6]:= vn@x : 88_, n_< ..<D := Transpose@xD

The definition applies in this case.

In[7]:= vn@88a, 2<, 8b, 2<, 8c, 2<<D

Out[7]= 88a, b, c<, 82, 2, 2<<

The pattern x .. can be extended to two arguments to control the number of repetitions more

precisely.

p .. or Repeated@pD a pattern or other expression repeated one or more times

Repeated@p,maxD a pattern repeated up to max times

Repeated@p,8min,max<D a pattern repeated between min and max times

Repeated@p,8n<D a pattern repeated exactly n times

Controlling the number of repetitions.

This finds from two to three repetitions of the argument a.

In[8]:= Cases@8f@aD, f@a, aD, f@a, a, aD, f@a, a, a, aD<, f@Repeated@a, 82, 3<DDD

Out[8]= 8f@a, aD, f@a, a, aD<

100 Core Language

Verbatim Patterns

Verbatim@exprD an expression that must be matched verbatim

Verbatim patterns.

Here the x_ in the rule matches any expression.

In[1]:= 8f@2D, f@aD, f@x_D, f@y_D< ê. f@x_D -> x^2

Out[1]= 94, a2, x_2, y_2=

The Verbatim tells Mathematica that only the exact expression x_ should be matched.

In[2]:= 8f@2D, f@aD, f@x_D, f@y_D< ê. f@Verbatim@x_DD -> x^2

Out[2]= 9f@2D, f@aD, x2, f@y_D=

Patterns for Some Common Types of Expression

Using the objects described above, you can set up patterns for many kinds of expressions. In

all cases, you must remember that the patterns must represent the structure of the expressions

in Mathematica internal form, as shown by FullForm.

Especially for some common kinds of expressions, the standard output format used by Mathe-

matica is not particularly close to the full internal form. But it is the internal form that you must

use in setting up patterns.

Core Language 101

n _Integer an integer n

x _Real an approximate real number x

z _Complex a complex number z

Complex@x _,y _D a complex number x + i y

Complex@x _Integer,y _IntegerD a complex number where both real and imaginary parts
are integers

Hr _Rational r _IntegerL rational number or integer r

Rational@n _,d _D a rational number n
d

Hx _ê;NumberQ@xD&&Im@xD==0L a real number of any kind

Hx _ê;NumberQ@xDL a number of any kind

Some typical patterns for numbers.

Here are the full forms of some numbers.

In[1]:= 82, 2.5, 2.5 + I, 2 ê 7< êê FullForm

Out[1]//FullForm= List@2, 2.5`, Complex@2.5`, 1D, Rational@2, 7DD

The rule picks out each piece of the complex numbers.

In[2]:= 82.5 - I, 3 + I< ê. Complex@x_, y_D -> p@x, yD

Out[2]= 8p@2.5, -1D, p@3, 1D<

The fact that these expressions have different full forms means that you cannot use x_ + I y_ to
match a complex number.

In[3]:= 82.5 - I, x + I y< êê FullForm

Out[3]//FullForm= List@Complex@2.5`, -1D, Plus@x, Times@Complex@0, 1D, yDDD

The pattern here matches both ordinary integers, and complex numbers where both the real
and imaginary parts are integers.

In[4]:= Cases@82.5 - I, 2, 3 + I, 2 - 0.5 I, 2 + 2 I<, _Integer Complex@_Integer, _IntegerDD

Out[4]= 82, 3 + Â, 2 + 2 Â<

As discussed in "Symbolic Computation", Mathematica puts all algebraic expressions into a

standard form, in which they are written essentially as a sum of products of powers. In addi-

tion, ratios are converted into products of powers, with denominator terms having negative

exponents, and differences are converted into sums with negated terms. To construct patterns

for algebraic expressions, you must use this standard form. This form often differs from the

way Mathematica prints out the algebraic expressions. But in all cases, you can find the full

internal form using FullForm@exprD.

102 Core Language

for algebraic expressions, you must use this standard form. This form often differs from the

way Mathematica prints out the algebraic expressions. But in all cases, you can find the full

internal form using FullForm@exprD.

Here is a typical algebraic expression.

In[5]:= -1 ê z^2 - z ê y + 2 Hx zL^2 y

Out[5]= -
1

z2
-
z

y
+ 2 x2 y z2

This is the full internal form of the expression.

In[6]:= FullForm@%D

Out[6]//FullForm= Plus@Times@-1, Power@z, -2DD,
Times@-1, Power@y, -1D, zD, Times@2, Power@x, 2D, y, Power@z, 2DDD

This is what you get by applying a transformation rule to all powers in the expression.

In[7]:= % ê. x_^n_ -> e@x, nD

Out[7]= -z e@y, -1D - e@z, -2D + 2 y e@x, 2D e@z, 2D

x _+y _ a sum of two or more terms

x _+y _. a single term or a sum of terms

n _Integer x_ an expression with an explicit integer multiplier

a _.+b _. x _ a linear expression a + b x

x _^n _ xn with n≠0, 1

x _^n _. xn with n≠0

a _.+b _. x _+c _. x _^2 a quadratic expression with nonzero linear term

Some typical patterns for algebraic expressions.

This pattern picks out linear functions of x.

In[8]:= 81, a, x, 2 x, 1 + 2 x< ê. a_. + b_. x -> p@a, bD

Out[8]= 81, a, p@0, 1D, p@0, 2D, p@1, 2D<

Core Language 103

x_List or x:8___< a list

x _Listê;VectorQ@xD a vector containing no sublists

x _Listê;VectorQAx,NumberQE a vector of numbers

x:8___List< or x:88___<...< a list of lists

x _Listê;MatrixQ@xD a matrix containing no sublists

x _Listê;MatrixQAx,NumberQE a matrix of numbers

x:88_,_<...< a list of pairs

Some typical patterns for lists.

This defines a function whose argument must be a list containing lists with either one or two
elements.

In[9]:= h@x : 8H8_< 8_, _<L ...<D := q

The definition applies in the second and third cases.

In[10]:= 8h@8a, b<D, h@88a<, 8b<<D, h@88a<, 8b, c<<D<

Out[10]= 8h@8a, b<D, q, q<

An Example: Defining Your Own Integration Function

Now that we have introduced the basic features of patterns in Mathematica, we can use them

to give a more or less complete example. We will show how you could define your own simple

integration function in Mathematica.

From a mathematical point of view, the integration function is defined by a sequence of mathe-

matical relations. By setting up transformation rules for patterns, you can implement these

mathematical relations quite directly in Mathematica.

104 Core Language

mathematical form Mathematica definition

Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x integrate@y_+z_,x_D:=integrate@y,xD+integrate@z,xD

Ÿ cy „ x = c Ÿ y „ x (c independent of x) integrate@c_y _,x_D:=c integrate@y,xDê;FreeQ@c,xD

Ÿ c „ x = cx integrate@c_,x_D:=cxê;FreeQ@c,xD

Ÿ xn „ x =
xHn+1L

n+1
, n ≠ -1 integrate@x_^n_.,x_D:=

x^Hn+1LêHn+1Lê;FreeQ@n,xD&&n!=-1

Ÿ
1

a x+b
„ x = logHa x+bL

a
integrate@1êHa_. x_+b_.L,x_D:=

Log@ax+bDëaê;FreeQ@8a,b<,xD

Ÿ ea x+b „ x =
1
a
ea x+b integrateAExp@a_. x_+b_.D,x_E:=

Exp@ax+bDëaê;FreeQ@8a,b<,xD

Definitions for an integration function.

This implements the linearity relation for integrals: Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x.

In[1]:= integrate@y_ + z_, x_D := integrate@y, xD + integrate@z, xD

The associativity of Plus makes the linearity relation work with any number of terms in the
sum.

In[2]:= integrate@a x + b x^2 + 3, xD

Out[2]= integrate@3, xD + integrate@a x, xD + integrateAb x2, xE

This makes integrate pull out factors that are independent of the integration variable x.

In[3]:= integrate@c_ y_, x_D := c integrate@y, xD ê; FreeQ@c, xD

Mathematica tests each term in each product to see whether it satisfies the FreeQ condition,
and so can be pulled out.

In[4]:= integrate@a x + b x^2 + 3, xD

Out[4]= integrate@3, xD + a integrate@x, xD + b integrateAx2, xE

This gives the integral Ÿ c „ x = c x of a constant.

In[5]:= integrate@c_, x_D := c x ê; FreeQ@c, xD

Now the constant term in the sum can be integrated.

In[6]:= integrate@a x + b x^2 + 3, xD

Out[6]= 3 x + a integrate@x, xD + b integrateAx2, xE

This gives the standard formula for the integral of xn. By using the pattern x_^n_., rather than

x_^n_, we include the case of x1 = x.

Core Language 105

This gives the standard formula for the integral of xn. By using the pattern x_^n_., rather than

x_^n_, we include the case of x1 = x.

In[7]:= integrate@x_^n_., x_D := x^Hn + 1L ê Hn + 1L ê; FreeQ@n, xD && n != -1

Now this integral can be done completely.

In[8]:= integrate@a x + b x^2 + 3, xD

Out[8]= 3 x +
a x2

2
+
b x3

3

Of course, the built-in integration function Integrate (with a capital I) could have done the
integral anyway.

In[9]:= Integrate@a x + b x^2 + 3, xD

Out[9]= 3 x +
a x2

2
+
b x3

3

Here is the rule for integrating the reciprocal of a linear function. The pattern a_. x_ + b_.
stands for any linear function of x.

In[10]:= integrate@1 ê Ha_. x_ + b_.L, x_D := Log@a x + bD ê a ê; FreeQ@8a, b<, xD

Here both a and b take on their default values.

In[11]:= integrate@1 ê x, xD

Out[11]= Log@xD

Here is a more complicated case. The symbol a now matches 2 p.

In[12]:= integrate@1 ê H2 p x - 1L, xD

Out[12]=
Log@-1 + 2 p xD

2 p

You can go on and add many more rules for integration. Here is a rule for integrating exponen-
tials.

In[13]:= integrate@Exp@a_. x_ + b_.D, x_D := Exp@a x + bD ê a ê; FreeQ@8a, b<, xD

106 Core Language

Transformation Rules and Definitions

Applying Transformation Rules

exprê.lhs->rhs apply a transformation rule to expr

exprê.8lhs1->rhs1,lhs2->rhs2,…< try a sequence of rules on each part of expr

Applying transformation rules.

The replacement operator ê. (pronounced “slash-dot”) applies rules to expressions.

In[1]:= x + y ê. x -> 3

Out[1]= 3 + y

You can give a list of rules to apply. Each rule will be tried once on each part of the expression.

In[2]:= x + y ê. 8x -> a, y -> b<

Out[2]= a + b

exprê.8rules1,rules2,…< give a list of the results from applying each of the rulesi to
expr

Applying lists of transformation rules.

If you give a list of lists of rules, you get a list of results.

In[3]:= x + y ê. 88x -> 1, y -> 2<, 8x -> 4, y -> 2<<

Out[3]= 83, 6<

Functions such as Solve and NSolve return lists whose elements are lists of rules, each
representing a solution.

In[4]:= Solve@x^3 - 5 x^2 + 2 x + 8 == 0, xD

Out[4]= 88x Ø -1<, 8x Ø 2<, 8x Ø 4<<

When you apply these rules, you get a list of results, one corresponding to each solution.

In[5]:= x^2 + 6 ê. %

Out[5]= 87, 10, 22<

When you use expr ê. rules, each rule is tried in turn on each part of expr. As soon as a rule

applies, the appropriate transformation is made, and the resulting part is returned.

Core Language 107

When you use expr ê. rules, each rule is tried in turn on each part of expr. As soon as a rule

applies, the appropriate transformation is made, and the resulting part is returned.

The rule for x^3 is tried first; if it does not apply, the rule for x^n_ is used.

In[6]:= 8x^2, x^3, x^4< ê. 8x^3 -> u, x^n_ -> p@nD<

Out[6]= 8p@2D, u, p@4D<

A result is returned as soon as the rule has been applied, so the inner instance of h is not
replaced.

In[7]:= h@x + h@yDD ê. h@u_D -> u^2

Out[7]= Hx + h@yDL2

The replacement expr ê. rules tries each rule just once on each part of expr.

Since each rule is tried just once, this serves to swap x and y.

In[8]:= 8x^2, y^3< ê. 8x -> y, y -> x<

Out[8]= 9y2, x3=

You can use this notation to apply one set of rules, followed by another.

In[9]:= x^2 ê. x -> H1 + yL ê. y -> b

Out[9]= H1 + bL2

Sometimes you may need to go on applying rules over and over again, until the expression you

are working on no longer changes. You can do this using the repeated replacement operation

expr êê. rules (or ReplaceRepeated@expr, rulesD).

exprê.rules try rules once on each part of expr

exprêê.rules try rules repeatedly until the result no longer changes

Single and repeated rule application.

With the single replacement operator ê. each rule is tried only once on each part of the expres-
sion.

In[10]:= x^2 + y^6 ê. 8x -> 2 + a, a -> 3<

Out[10]= H2 + aL2 + y6

108 Core Language

With the repeated replacement operator êê. the rules are tried repeatedly until the expression
no longer changes.

In[11]:= x^2 + y^6 êê. 8x -> 2 + a, a -> 3<

Out[11]= 25 + y6

Here the rule is applied only once.

In[12]:= log@a b c dD ê. log@x_ y_D -> log@xD + log@yD

Out[12]= log@aD + log@b c dD

With the repeated replacement operator, the rule is applied repeatedly, until the result no
longer changes.

In[13]:= log@a b c dD êê. log@x_ y_D -> log@xD + log@yD

Out[13]= log@aD + log@bD + log@cD + log@dD

When you use êê. (pronounced “slash-slash-dot”), Mathematica repeatedly passes through

your expression, trying each of the rules given. It goes on doing this until it gets the same

result on two successive passes.

If you give a set of rules that is circular, then êê. can keep on getting different results forever.

In practice, the maximum number of passes that êê. makes on a particular expression is deter-

mined by the setting for the option MaxIterations. If you want to keep going for as long as

possible, you can use ReplaceRepeated@expr, rules, MaxIterations -> InfinityD. You can

always stop by explicitly interrupting Mathematica.

By setting the option MaxIterations, you can explicitly tell ReplaceRepeated how many
times to try the rules you give.

In[14]:= ReplaceRepeated@x, x -> x + 1, MaxIterations -> 1000D

ReplaceRepeated::rrlim: Exiting after x scanned 1000 times. à

Out[14]= 1000 + x

The replacement operators ê. and êê. share the feature that they try each rule on every sub-

part of your expression. On the other hand, Replace@expr, rulesD tries the rules only on the

whole of expr, and not on any of its subparts.

You can use Replace, together with functions like Map and MapAt, to control exactly which parts

of an expression a replacement is applied to. Remember that you can use the function

ReplacePart@expr, new, posD to replace part of an expression with a specific object.

The operator ê. applies rules to all subparts of an expression.

Core Language 109

The operator ê. applies rules to all subparts of an expression.

In[15]:= x^2 ê. x -> a

Out[15]= a2

Without a level specification, Replace applies rules only to the whole expression.

In[16]:= Replace@x^2, x^2 -> bD

Out[16]= b

No replacement is done here.

In[17]:= Replace@x^2, x -> aD

Out[17]= x2

This applies rules down to level 2, and so replaces x.

In[18]:= Replace@x^2, x -> a, 2D

Out[18]= a2

exprê.rules apply rules to all subparts of expr

Replace@expr,rulesD apply rules to the whole of expr only

Replace@expr,rules,levspecD apply rules to parts of expr on levels specified by levspec

Applying rules to whole expressions.

Replace returns the result from using the first rule that applies.

In[19]:= Replace@f@uD, 8f@x_D -> x^2, f@x_D -> x^3<D

Out[19]= u2

ReplaceList gives a list of the results from every rule that applies.

In[20]:= ReplaceList@f@uD, 8f@x_D -> x^2, f@x_D -> x^3<D

Out[20]= 9u2, u3=

If a single rule can be applied in several ways, ReplaceList gives a list of all the results.

In[21]:= ReplaceList@a + b + c, x_ + y_ -> g@x, yDD

Out[21]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<

110 Core Language

This gives a list of ways of breaking the original list in two.

In[22]:= ReplaceList@8a, b, c, d<, 8x__, y__< -> g@8x<, 8y<DD

Out[22]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<

This finds all sublists that are flanked by the same element.

In[23]:= ReplaceList@8a, b, c, a, d, b, d<, 8___, x_, y__, x_, ___< -> g@x, 8y<DD

Out[23]= 8g@a, 8b, c<D, g@b, 8c, a, d<D, g@d, 8b<D<

Replace@expr,rulesD apply rules in one way only

ReplaceList@expr,rulesD apply rules in all possible ways

Applying rules in one way or all possible ways.

Manipulating Sets of Transformation Rules

You can manipulate lists of transformation rules in Mathematica just like other symbolic expres-

sions. It is common to assign a name to a rule or set of rules.

This assigns the “name” sinexp to the trigonometric expansion rule.

In[1]:= sinexp = Sin@2 x_D -> 2 Sin@xD Cos@xD

Out[1]= Sin@2 x_D Ø 2 Cos@xD Sin@xD

You can now request the rule “by name”.

In[2]:= Sin@2 H1 + xL^2D ê. sinexp

Out[2]= 2 CosAH1 + xL2E SinAH1 + xL2E

You can use lists of rules to represent mathematical and other relations. Typically you will find

it convenient to give names to the lists, so that you can easily specify the list you want in a

particular case.

In most situations, it is only one rule from any given list that actually applies to a particular

expression. Nevertheless, the ê. operator tests each of the rules in the list in turn. If the list is

very long, this process can take a long time.

Mathematica allows you to preprocess lists of rules so that ê. can operate more quickly on

them. You can take any list of rules and apply the function Dispatch to them. The result is a

representation of the original list of rules, but including dispatch tables which allow ê. to

“dispatch” to potentially applicable rules immediately, rather than testing all the rules in turn.

Core Language 111

Mathematica allows you to preprocess lists of rules so that ê. can operate more quickly on

them. You can take any list of rules and apply the function Dispatch to them. The result is a

representation of the original list of rules, but including dispatch tables which allow ê. to

“dispatch” to potentially applicable rules immediately, rather than testing all the rules in turn.

Here is a list of rules for the first five factorials.

In[3]:= facs = Table@f@iD -> i!, 8i, 5<D

Out[3]= 8f@1D Ø 1, f@2D Ø 2, f@3D Ø 6, f@4D Ø 24, f@5D Ø 120<

This sets up dispatch tables that make the rules faster to use.

In[4]:= dfacs = Dispatch@facsD

Out[4]= Dispatch@8f@1D Ø 1, f@2D Ø 2, f@3D Ø 6, f@4D Ø 24, f@5D Ø 120<, -DispatchTables -D

You can apply the rules using the ê. operator.

In[5]:= f@4D ê. dfacs

Out[5]= 24

Dispatch@rulesD create a representation of a list of rules that includes
dispatch tables

exprê.drules apply rules that include dispatch tables

Creating and using dispatch tables.

For long lists of rules, you will find that setting up dispatch tables makes replacement opera-

tions much faster. This is particularly true when your rules are for individual symbols or other

expressions that do not involve pattern objects. Once you have built dispatch tables in such

cases, you will find that the ê. operator takes a time that is more or less independent of the

number of rules you have. Without dispatch tables, however, ê. will take a time directly propor-

tional to the total number of rules.

Making Definitions

The replacement operator ê. allows you to apply transformation rules to a specific expression.

Often, however, you want to have transformation rules automatically applied whenever possi-

ble.

You can do this by assigning explicit values to Mathematica expressions and patterns. Each

assignment specifies a transformation rule to be applied whenever an expression of the appropri-

ate form occurs.

112 Core Language

You can do this by assigning explicit values to Mathematica expressions and patterns. Each

assignment specifies a transformation rule to be applied whenever an expression of the appropri-

ate form occurs.

exprê.lhs->rhs apply a transformation rule to a specific expression

lhs=rhs assign a value which defines a transformation rule to be
used whenever possible

Manual and automatic application of transformation rules.

This applies a transformation rule for x to a specific expression.

In[1]:= H1 + xL^6 ê. x -> 3 - a

Out[1]= H4 - aL6

By assigning a value to x, you tell Mathematica to apply a transformation rule for x whenever
possible.

In[2]:= x = 3 - a

Out[2]= 3 - a

Now x is transformed automatically.

In[3]:= H1 + xL^7

Out[3]= H4 - aL7

You should realize that except inside constructs like Module and Block, all assignments you

make in a Mathematica session are permanent. They continue to be used for the duration of the

session, unless you explicitly clear or overwrite them.

The fact that assignments are permanent means that they must be made with care. Probably

the single most common mistake in using Mathematica is to make an assignment for a variable

like x at one point in your session, and then later to use x having forgotten about the assign-

ment you made.

There are several ways to avoid this kind of mistake. First, you should avoid using assignments

whenever possible, and instead use more controlled constructs such as the ê. replacement

operator. Second, you should explicitly use the deassignment operator =. or the function Clear

to remove values you have assigned when you have finished with them.

Another important way to avoid mistakes is to think particularly carefully before assigning

values to variables with common or simple names. You will often want to use a variable such as

x as a symbolic parameter. But if you make an assignment such as x = 3, then x will be

replaced by 3 whenever it occurs, and you can no longer use x as a symbolic parameter.

Core Language 113

Another important way to avoid mistakes is to think particularly carefully before assigning

values to variables with common or simple names. You will often want to use a variable such as

x as a symbolic parameter. But if you make an assignment such as x = 3, then x will be

replaced by 3 whenever it occurs, and you can no longer use x as a symbolic parameter.

In general, you should be sure not to assign permanent values to any variables that you might

want to use for more than one purpose. If at one point in your session you wanted the variable

c to stand for the speed of light, you might assign it a value such as 3. * 10^8. But then you

cannot use c later in your session to stand, say, for an undetermined coefficient. One way to

avoid this kind of problem is to make assignments only for variables with more explicit names,

such as SpeedOfLight.

x=. remove the value assigned to the object x

Clear@x,y,…D clear all the values of x, y, …

Removing assignments.

This does not give what you might expect, because x still has the value you assigned it above.

In[4]:= Factor@x^2 - 1D

Out[4]= H-4 + aL H-2 + aL

This removes any value assigned to x.

In[5]:= Clear@xD

Now this gives the result you expect.

In[6]:= Factor@x^2 - 1D

Out[6]= H-1 + xL H1 + xL

Special Forms of Assignment

Particularly when you write procedural programs in Mathematica, you will often need to modify

the value of a particular variable repeatedly. You can always do this by constructing the new

value and explicitly performing an assignment such as x = value. Mathematica, however, pro-

vides special notations for incrementing the values of variables, and for some other common

cases.

114 Core Language

i++ increment the value of i by 1

i-- decrement i

++i pre-increment i

--i pre-decrement i

i+=di add di to the value of i

i-=di subtract di from i

x*=c multiply x by c

xê=c divide x by c

Modifying values of variables.

This assigns the value 7 x to the variable t.

In[1]:= t = 7 x

Out[1]= 7 x

This increments the value of t by 18 x.

In[2]:= t += 18 x

Out[2]= 25 x

The value of t has been modified.

In[3]:= t

Out[3]= 25 x

This sets t to 8, multiplies its value by 7, then gives the final value of t.

In[4]:= t = 8; t *= 7; t

Out[4]= 56

The value of i++ is the value of i before the increment is done.

In[5]:= i = 5; Print@i++D; Print@iD

5

6

Core Language 115

The value of ++i is the value of i after the increment.

In[6]:= i = 5; Print@++iD; Print@iD

6

6

x=y=value assign the same value to both x and y

8x,y<=8value1,value2< assign different values to x and y

8x,y<=8y,x< interchange the values of x and y

Assigning values to several variables at a time.

This assigns the value 5 to x and 8 to y.

In[7]:= 8x, y< = 85, 8<

Out[7]= 85, 8<

This interchanges the values of x and y.

In[8]:= 8x, y< = 8y, x<

Out[8]= 88, 5<

Now x has value 8.

In[9]:= x

Out[9]= 8

And y has value 5.

In[10]:= y

Out[10]= 5

You can use assignments to lists to permute values of variables in any way.

In[11]:= 8a, b, c< = 81, 2, 3<; 8b, a, c< = 8a, c, b<; 8a, b, c<

Out[11]= 83, 1, 2<

When you write programs in Mathematica, you will sometimes find it convenient to take a list,

and successively add elements to it. You can do this using the functions PrependTo and

AppendTo.

116 Core Language

PrependTo@v,elemD prepend elem to the value of v

AppendTo@v,elemD append elem

v=8v,elem< make a nested list containing elem

Assignments for modifying lists.

This assigns the value of v to be the list 85, 7, 9<.

In[12]:= v = 85, 7, 9<

Out[12]= 85, 7, 9<

This appends the element 11 to the value of v.

In[13]:= AppendTo@v, 11D

Out[13]= 85, 7, 9, 11<

Now the value of v has been modified.

In[14]:= v

Out[14]= 85, 7, 9, 11<

Although AppendTo@v, elemD is always equivalent to v = Append@v, elemD, it is often a convenient

notation. However, you should realize that because of the way Mathematica stores lists, it is

usually less efficient to add a sequence of elements to a particular list than to create a nested

structure that consists, for example, of lists of length 2 at each level. When you have built up

such a structure, you can always reduce it to a single list using Flatten.

This sets up a nested list structure for w.

In[15]:= w = 81<; Do@w = 8w, k^2<, 8k, 1, 4<D; w

Out[15]= 888881<, 1<, 4<, 9<, 16<

You can use Flatten to unravel the structure.

In[16]:= Flatten@wD

Out[16]= 81, 1, 4, 9, 16<

Core Language 117

Making Definitions for Indexed Objects

In many kinds of calculations, you need to set up "arrays" which contain sequences of expres-

sions, each specified by a certain index. One way to implement arrays in Mathematica is by

using lists. You can define a list, say a = 8x, y, z, …<, then access its elements using a@@iDD, or

modify them using a@@iDD = value. This approach has a drawback, however, in that it requires

you to fill in all the elements when you first create the list.

Often, it is more convenient to set up arrays in which you can fill in only those elements that

you need at a particular time. You can do this by making definitions for expressions such as

a@iD.

This defines a value for a@1D.

In[1]:= a@1D = 9

Out[1]= 9

This defines a value for a@2D.

In[2]:= a@2D = 7

Out[2]= 7

This shows all the values you have defined for expressions associated with a so far.

In[3]:= ? a

Global`a

a@1D = 9

a@2D = 7

You can define a value for a@5D, even though you have not yet given values to a@3D and a@4D.

In[4]:= a@5D = 0

Out[4]= 0

This generates a list of the values of the a@iD.

In[5]:= Table@a@iD, 8i, 5<D

Out[5]= 89, 7, a@3D, a@4D, 0<

You can think of the expression a@iD as being like an "indexed" or "subscripted" variable.

118 Core Language

You can think of the expression a@iD as being like an "indexed" or "subscripted" variable.

a@iD=value add or overwrite a value

a@iD access a value

a@iD=. remove a value

?a show all defined values

Clear@aD clear all defined values

Table@a@iD,8i,1,n<D
 or Array@a,nD

convert to an explicit List

Manipulating indexed variables.

When you have an expression of the form a@iD, there is no requirement that the "index" i be a

number. In fact, Mathematica allows the index to be any expression whatsoever. By using

indices that are symbols, you can for example build up simple databases in Mathematica.

This defines the "object" area with "index" square to have value 1.

In[6]:= area@squareD = 1

Out[6]= 1

This adds another result to the area "database".

In[7]:= area@triangleD = 1 ê 2

Out[7]=
1

2

Here are the entries in the area database so far.

In[8]:= ? area

Global`area

area@squareD = 1

area@triangleD = 1
2

You can use these definitions wherever you want. You have not yet assigned a value for
area@pentagonD.

In[9]:= 4 area@squareD + area@pentagonD

Out[9]= 4 + area@pentagonD

Making Definitions for Functions

Core Language 119

Making Definitions for Functions

"Defining Functions" discusses how you can define functions in Mathematica. In a typical case,

you would type in f@x_D = x^2 to define a function f. (Actually, the definitions in "Defining

Functions" use the := operator, rather than the = one. "Immediate and Delayed Definitions"

explains exactly when to use each of the := and = operators.)

The definition f@x_D = x^2 specifies that whenever Mathematica encounters an expression

which matches the pattern f@x_D, it should replace the expression by x^2. Since the pattern

f@x_D matches all expressions of the form f@anythingD, the definition applies to functions f with

any "argument".

Function definitions like f@x_D = x^2 can be compared with definitions like f@aD = b for indexed

variables discussed in "Making Definitions for Indexed Objects". The definition f@aD = b specifies

that whenever the particular expression f@aD occurs, it is to be replaced by b. But the definition

says nothing about expressions such as f@yD, where f appears with another "index".

To define a "function", you need to specify values for expressions of the form f@xD, where the

argument x can be anything. You can do this by giving a definition for the pattern f@x_D, where

the pattern object x_ stands for any expression.

f@xD=value definition for a specific expression x

f@x _D=value definition for any expression, referred to as x

The difference between defining an indexed variable and a function.

Making definitions for f@2D or f@aD can be thought of as being like giving values to various

elements of an "array" named f. Making a definition for f@x_D is like giving a value for a set of

"array elements" with arbitrary "indices". In fact, you can actually think of any function as

being like an array with an arbitrarily variable index.

In mathematical terms, you can think of f as a mapping. When you define values for, say, f@1D

and f@2D, you specify the image of this mapping for various discrete points in its domain.

Defining a value for f@x_D specifies the image of f on a continuum of points.

120 Core Language

This defines a transformation rule for the specific expression f@xD.

In[1]:= f@xD = u

Out[1]= u

When the specific expression f@xD appears, it is replaced by u. Other expressions of the form
f@argumentD are, however, not modified.

In[2]:= f@xD + f@yD

Out[2]= u + f@yD

This defines a value for f with any expression as an "argument".

In[3]:= f@x_D = x^2

Out[3]= x2

The old definition for the specific expression f@xD is still used, but the new general definition
for f@x_D is now used to find a value for f@yD.

In[4]:= f@xD + f@yD

Out[4]= u + y2

This removes all definitions for f.

In[5]:= Clear@fD

Mathematica allows you to define transformation rules for any expression or pattern. You can

mix definitions for specific expressions such as f@1D or f@aD with definitions for patterns such

as f@x_D.

Many kinds of mathematical functions can be set up by mixing specific and general definitions

in Mathematica. As an example, consider the factorial function. This particular function is in fact

built into Mathematica (it is written n!). But you can use Mathematica definitions to set up the

function for yourself.

The standard mathematical definition for the factorial function can be entered almost directly

into Mathematica, in the form: f@n_D := n f@n - 1D; f@1D = 1. This definition specifies that for

any n, f@nD should be replaced by n f@n - 1D, except that when n is 1, f@1D should simply be

replaced by 1.

Core Language 121

Here is the value of the factorial function with argument 1.

In[6]:= f@1D = 1

Out[6]= 1

Here is the general recursion relation for the factorial function.

In[7]:= f@n_D := n f@n - 1D

Now you can use these definitions to find values for the factorial function.

In[8]:= f@10D

Out[8]= 3628800

The results are the same as you get from the built-in version of factorial.

In[9]:= 10!

Out[9]= 3628800

The Ordering of Definitions

When you make a sequence of definitions in Mathematica, some may be more general than

others. Mathematica follows the principle of trying to put more general definitions after more

specific ones. This means that special cases of rules are typically tried before more general

cases.

This behavior is crucial to the factorial function example given in "Making Definitions for Func-

tions". Regardless of the order in which you entered them, Mathematica will always put the rule

for the special case f@1D ahead of the rule for the general case f@n_D. This means that when

Mathematica looks for the value of an expression of the form f@nD, it tries the special case f@1D

first, and only if this does not apply, it tries the general case f@n_D. As a result, when you ask

for f@5D, Mathematica will keep on using the general rule until the “end condition” rule for f@1D

applies.

† Mathematica tries to put specific definitions before more general definitions.

Treatment of definitions in Mathematica.

If Mathematica did not follow the principle of putting special rules before more general ones,

then the special rules would always be “shadowed” by more general ones. In the factorial

example, if the rule for f@n_D was ahead of the rule for f@1D, then even when Mathematica

tried to evaluate f@1D, it would use the general f@n_D rule, and it would never find the special

f@1D rule.

122 Core Language

If Mathematica did not follow the principle of putting special rules before more general ones,

then the special rules would always be “shadowed” by more general ones. In the factorial

example, if the rule for f@n_D was ahead of the rule for f@1D, then even when Mathematica

tried to evaluate f@1D, it would use the general f@n_D rule, and it would never find the special

f@1D rule.

Here is a general definition for f@n_D.

In[1]:= f@n_D := n f@n - 1D

Here is a definition for the special case f@1D.

In[2]:= f@1D = 1

Out[2]= 1

Mathematica puts the special case before the general one.

In[3]:= ? f

Global`f

f@1D = 1

f@n_D := n f@n - 1D

In the factorial function example used above, it is clear which rule is more general. Often,

however, there is no definite ordering in generality of the rules you give. In such cases, Mathe-

matica simply tries the rules in the order you give them.

These rules have no definite ordering in generality.

In[4]:= log@x_ y_D := log@xD + log@yD; log@x_^n_D := n log@xD

Mathematica stores the rules in the order you gave them.

In[5]:= ? log

Global`log

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD

Core Language 123

This rule is a special case of the rule for log@x_ y_D.

In[6]:= log@2 x_D := log@xD + log2

Mathematica puts the special rule before the more general one.

In[7]:= ? log

Global`log

log@2 x_D := log@xD + log2

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD

Although in many practical cases, Mathematica can recognize when one rule is more general

than another, you should realize that this is not always possible. For example, if two rules both

contain complicated ê; conditions, it may not be possible to work out which is more general,

and, in fact, there may not be a definite ordering. Whenever the appropriate ordering is not

clear, Mathematica stores rules in the order you give them.

Immediate and Delayed Definitions

You may have noticed that there are two different ways to make assignments in Mathematica:

lhs = rhs and lhs := rhs. The basic difference between these forms is when the expression rhs is

evaluated. lhs = rhs is an immediate assignment, in which rhs is evaluated at the time when the

assignment is made. lhs := rhs, on the other hand, is a delayed assignment, in which rhs is not

evaluated when the assignment is made, but is instead evaluated each time the value of lhs is

requested.

lhs=rhs (immediate assignment) rhs is evaluated when the assignment is made

lhs:=rhs (delayed assignment) rhs is evaluated each time the value of lhs is requested

The two types of assignments in Mathematica.

This uses the := operator to define the function ex.

In[1]:= ex@x_D := Expand@H1 + xL^2D

124 Core Language

Because := was used, the definition is maintained in an unevaluated form.

In[2]:= ? ex

Global`ex

ex@x_D := ExpandAH1 + xL2E

When you make an assignment with the = operator, the right-hand side is evaluated immedi-
ately.

In[3]:= iex@x_D = Expand@H1 + xL^2D

Out[3]= 1 + 2 x + x2

The definition now stored is the result of the Expand command.

In[4]:= ? iex

Global`iex

iex@x_D = 1 + 2 x + x2

When you execute ex, the Expand is performed.

In[5]:= ex@y + 2D

Out[5]= 9 + 6 y + y2

iex simply substitutes its argument into the already expanded form, giving a different answer.

In[6]:= iex@y + 2D

Out[6]= 1 + 2 H2 + yL + H2 + yL2

As you can see from the example above, both = and := can be useful in defining functions, but

they have different meanings, and you must be careful about which one to use in a particular

case.

One rule of thumb is the following. If you think of an assignment as giving the final “value” of

an expression, use the = operator. If instead you think of the assignment as specifying a

“command” for finding the value, use the := operator. If in doubt, it is usually better to use the

:= operator than the = one.

Core Language 125

lhs=rhs rhs is intended to be the “final value” of lhs (e.g.,
f@x_D = 1 - x^2)

lhs:=rhs rhs gives a “command” or “program” to be executed
whenever you ask for the value of lhs (e.g.,
f@x_D := Expand@1 - x^2D)

Interpretations of assignments with the = and := operators.

Although := is probably used more often than = in defining functions, there is one important

case in which you must use = to define a function. If you do a calculation, and get an answer in

terms of a symbolic parameter x, you often want to go on and find results for various specific

values of x. One way to do this is to use the ê. operator to apply appropriate rules for x in each

case. It is usually more convenient, however, to use = to define a function whose argument is x.

Here is an expression involving x.

In[7]:= D@Log@Sin@xDD^2, xD

Out[7]= 2 Cot@xD Log@Sin@xDD

This defines a function whose argument is the value to be taken for x.

In[8]:= dlog@x_D = %

Out[8]= 2 Cot@xD Log@Sin@xDD

Here is the result when x is taken to be 1 + a.

In[9]:= dlog@1 + aD

Out[9]= 2 Cot@1 + aD Log@Sin@1 + aDD

An important point to notice in the example above is that there is nothing special about the

name x that appears in the x_ pattern. It is just a symbol, indistinguishable from an x that

appears in any other expression.

f@x _D=expr define a function which gives the value expr for any particu-
lar value of x

Defining functions for evaluating expressions.

126 Core Language

You can use = and := not only to define functions, but also to assign values to variables. If you

type x = value, then value is immediately evaluated, and the result is assigned to x. On the other

hand, if you type x := value, then value is not immediately evaluated. Instead, it is maintained in

an unevaluated form, and is evaluated afresh each time x is used.

This evaluates RandomReal@D to find a pseudorandom number, then assigns this number to
r1.

In[10]:= r1 = RandomReal@D

Out[10]= 0.0560708

Here RandomReal@D is maintained in an unevaluated form, to be evaluated afresh each time
r2 is used.

In[11]:= r2 := RandomReal@D

Here are values for r1 and r2.

In[12]:= 8r1, r2<

Out[12]= 80.0560708, 0.6303<

The value of r1 never changes. Every time r2 is used, however, a new pseudorandom number
is generated.

In[13]:= 8r1, r2<

Out[13]= 80.0560708, 0.359894<

The distinction between immediate and delayed assignments is particularly important when you

set up chains of assignments.

This defines a to be 1.

In[14]:= a = 1

Out[14]= 1

Here a + 2 is evaluated to give 3, and the result is assigned to be the value of ri.

In[15]:= ri = a + 2

Out[15]= 3

Here a + 2 is maintained in an unevaluated form, to be evaluated every time the value of rd is
requested.

In[16]:= rd := a + 2

Core Language 127

In this case, ri and rd give the same values.

In[17]:= 8ri, rd<

Out[17]= 83, 3<

Now the value of a is changed.

In[18]:= a = 2

Out[18]= 2

Now rd uses the new value for a, while ri keeps its original value.

In[19]:= 8ri, rd<

Out[19]= 83, 4<

You can use delayed assignments such as t := rhs to set up variables whose values you can find

in a variety of different “environments”. Every time you ask for t, the expression rhs is evalu-

ated using the current values of the objects on which it depends.

The right-hand side of the delayed assignment is maintained in an unevaluated form.

In[20]:= t := 8a, Factor@x^a - 1D<

This sets a to 4, then finds the value of t.

In[21]:= a = 4; t

Out[21]= 94, H-1 + xL H1 + xL I1 + x2M=

Here a is 6.

In[22]:= a = 6; t

Out[22]= 96, H-1 + xL H1 + xL I1 - x + x2M I1 + x + x2M=

In the example above, the symbol a acts as a “global variable”, whose value affects the value

of t. When you have a large number of parameters, many of which change only occasionally,

you may find this kind of setup convenient. However, you should realize that implicit or hidden

dependence of one variable on others can often become quite confusing. When possible, you

should make all dependencies explicit, by defining functions which take all necessary parame-

ters as arguments.

128 Core Language

lhs->rhs rhs is evaluated when the rule is given

lhs:>rhs rhs is evaluated when the rule is used

Two types of transformation rules in Mathematica.

Just as you can make immediate and delayed assignments in Mathematica, so you can also set

up immediate and delayed transformation rules.

The right-hand side of this rule is evaluated when you give the rule.

In[23]:= f@x_D -> Expand@H1 + xL^2D

Out[23]= f@x_D Ø 1 + 2 x + x2

A rule like this is probably not particularly useful.

In[24]:= f@x_D -> Expand@xD

Out[24]= f@x_D Ø x

Here the right-hand side of the rule is maintained in an unevaluated form, to be evaluated
every time the rule is used.

In[25]:= f@x_D :> Expand@xD

Out[25]= f@x_D ß Expand@xD

Applying the rule causes the expansion to be done.

In[26]:= f@H1 + pL^2D ê. f@x_D :> Expand@xD

Out[26]= 1 + 2 p + p2

In analogy with assignments, you should typically use -> when you want to replace an expres-

sion with a definite value, and you should use :> when you want to give a command for finding

the value.

Functions That Remember Values They Have Found

When you make a function definition using :=, the value of the function is recomputed every

time you ask for it. In some kinds of calculations, you may end up asking for the same function

value many times. You can save time in these cases by having Mathematica remember all the

function values it finds. Here is an “idiom” for defining a function that does this.

Core Language 129

f@x _D:=f@xD=rhs define a function which remembers values that it finds

Defining a function that remembers values it finds.

This defines a function f which stores all values that it finds.

In[1]:= f@x_D := f@xD = f@x - 1D + f@x - 2D

Here are the end conditions for the recursive function f.

In[2]:= f@0D = f@1D = 1

Out[2]= 1

Here is the original definition of f.

In[3]:= ? f

Global`f

f@0D = 1

f@1D = 1

f@x_D := f@xD = f@x - 1D + f@x - 2D

This computes f@5D. The computation involves finding the sequence of values f@5D, f@4D, …
f@2D.

In[4]:= f@5D

Out[4]= 8

All the values of f found so far are explicitly stored.

In[5]:= ? f

130 Core Language

Global`f

f@0D = 1

f@1D = 1

f@2D = 2

f@3D = 3

f@4D = 5

f@5D = 8

f@x_D := f@xD = f@x - 1D + f@x - 2D

If you ask for f@5D again, Mathematica can just look up the value immediately; it does not
have to recompute it.

In[6]:= f@5D

Out[6]= 8

You can see how a definition like f@x_D := f@xD = f@x - 1D + f@x - 2D works. The function f@x_D

is defined to be the “program” f@xD = f@x - 1D + f@x - 2D. When you ask for a value of the

function f, the “program” is executed. The program first calculates the value of

f@x - 1D + f@x - 2D, then saves the result as f@xD.

It is often a good idea to use functions that remember values when you implement mathemati-

cal recursion relations in Mathematica. In a typical case, a recursion relation gives the value of

a function f with an integer argument x in terms of values of the same function with arguments

x - 1, x - 2, etc. The Fibonacci function definition f HxL = f Hx - 1L + f Hx - 2L used above is an example

of this kind of recursion relation. The point is that if you calculate say f H10L by just applying the

recursion relation over and over again, you end up having to recalculate quantities like f H5L

many times. In a case like this, it is therefore better just to remember the value of f H5L, and

look it up when you need it, rather than having to recalculate it.

There is of course a trade-off involved in remembering values. It is faster to find a particular

value, but it takes more memory space to store all of them. You should usually define functions

to remember values only if the total number of different values that will be produced is compara-

tively small, or the expense of recomputing them is very great.

Associating Definitions with Different Symbols

Core Language 131

Associating Definitions with Different Symbols

When you make a definition in the form f@argsD = rhs or f@argsD := rhs, Mathematica associates

your definition with the object f . This means, for example, that such definitions are displayed

when you type ? f . In general, definitions for expressions in which the symbol f appears as the

head are termed downvalues of f .

Mathematica however also supports upvalues, which allow definitions to be associated with

symbols that do not appear directly as their head.

Consider for example a definition like Exp@g@x_DD := rhs. One possibility is that this definition

could be associated with the symbol Exp, and considered as a downvalue of Exp. This is how-

ever probably not the best thing either from the point of view of organization or efficiency.

Better is to consider Exp@g@x_DD := rhs to be associated with g, and to correspond to an upv-

alue of g.

f@argsD:=rhs define a downvalue for f

f@g@argsD,…D^:=rhs define an upvalue for g

Associating definitions with different symbols.

This is taken to define a downvalue for f.

In[1]:= f@g@x_DD := fg@xD

You can see the definition when you ask about f.

In[2]:= ? f

Global`f

f@g@x_DD := fg@xD

This defines an upvalue for g.

In[3]:= Exp@g@x_DD ^:= expg@xD

The definition is associated with g.

In[4]:= ? g

132 Core Language

Global`g

‰g@x_D ^:= expg@xD

It is not associated with Exp.

In[5]:= ?? Exp

Exp@zD is the exponential function. à

Attributes@ExpD = 8Listable, NumericFunction, Protected, ReadProtected

The definition is used to evaluate this expression.

In[6]:= Exp@g@5DD

Out[6]= expg@5D

In simple cases, you will get the same answers to calculations whether you give a definition for

f@g@xDD as a downvalue for f or an upvalue for g. However, one of the two choices is usually

much more natural and efficient than the other.

A good rule of thumb is that a definition for f@g@xDD should be given as an upvalue for g in

cases where the function f is more common than g. Thus, for example, in the case of

Exp@g@xDD, Exp is a built-in Mathematica function, while g is presumably a function you have

added. In such a case, you will typically think of definitions for Exp@g@xDD as giving relations

satisfied by g. As a result, it is more natural to treat the definitions as upvalues for g than as

downvalues for Exp.

This gives the definition as an upvalue for g.

In[7]:= g ê: g@x_D + g@y_D := gplus@x, yD

Here are the definitions for g so far.

In[8]:= ? g

Global`g

‰g@x_D ^:= expg@xD

g@x_D + g@y_D ^:= gplus@x, yD

Core Language 133

The definition for a sum of g’s is used whenever possible.

In[9]:= g@5D + g@7D

Out[9]= gplus@5, 7D

Since the full form of the pattern g@x_D + g@y_D is Plus@g@x_D, g@y_DD, a definition for this

pattern could be given as a downvalue for Plus. It is almost always better, however, to give

the definition as an upvalue for g.

In general, whenever Mathematica encounters a particular function, it tries all the definitions

you have given for that function. If you had made the definition for g@x_D + g@y_D a downvalue

for Plus, then Mathematica would have tried this definition whenever Plus occurs. The defini-

tion would thus be tested every time Mathematica added expressions together, making this

very common operation slower in all cases.

However, by giving a definition for g@x_D + g@y_D as an upvalue for g, you associate the defini-

tion with g. In this case, Mathematica only tries the definition when it finds a g inside a function

such as Plus. Since g presumably occurs much less frequently than Plus, this is a much more

efficient procedure.

f@gD^=value or f@g@argsDD^=value

make assignments to be associated with g, rather than f

f@gD^:=value or f@g@argsDD^:=value

make delayed assignments associated with g

f@arg1,arg2,…D^=value make assignments associated with the heads of all the argi

Shorter ways to define upvalues.

A typical use of upvalues is in setting up a "database" of properties of a particular object. With

upvalues, you can associate each definition you make with the object that it concerns, rather

than with the property you are specifying.

This defines an upvalue for square which gives its area.

In[10]:= area@squareD ^= 1

Out[10]= 1

134 Core Language

This adds a definition for the perimeter.

In[11]:= perimeter@squareD ^= 4

Out[11]= 4

Both definitions are now associated with the object square.

In[12]:= ? square

Global`square

area@squareD ^= 1

perimeter@squareD ^= 4

In general, you can associate definitions for an expression with any symbol that occurs at a

sufficiently high level in the expression. With an expression of the form f@argsD, you can define

an upvalue for a symbol g so long as either g itself, or an object with head g, occurs in args. If g

occurs at a lower level in an expression, however, you cannot associate definitions with it.

g occurs as the head of an argument, so you can associate a definition with it.

In[13]:= g ê: h@w@x_D, g@y_DD := hwg@x, yD

Here g appears too deep in the left-hand side for you to associate a definition with it.

In[14]:= g ê: h@w@g@x_DD, y_D := hw@x, yD

TagSetDelayed::tagpos : Tag g in h@w@g@x_DD, y_D is too deep for an assigned rule to be found. à

Out[14]= $Failed

f@…D:=rhs downvalue for f

fê: f@g@…DD@…D:=rhs downvalue for f

gê: f@…,g,…D:=rhs upvalue for g

gê: f@…,g@…D,…D:=rhs upvalue for g

Possible positions for symbols in definitions.

As discussed in "The Meaning of Expressions", you can use Mathematica symbols as "tags", to

indicate the "type" of an expression. For example, complex numbers in Mathematica are repre-

sented internally in the form Complex@x, yD, where the symbol Complex serves as a tag to

indicate that the object is a complex number.

Upvalues provide a convenient mechanism for specifying how operations act on objects that are

tagged to have a certain type. For example, you might want to introduce a class of abstract

mathematical objects of type quat. You can represent each object of this type by a Mathemat-

ica expression of the form quat@dataD.

Core Language 135

Upvalues provide a convenient mechanism for specifying how operations act on objects that are

tagged to have a certain type. For example, you might want to introduce a class of abstract

mathematical objects of type quat. You can represent each object of this type by a Mathemat-

ica expression of the form quat@dataD.

In a typical case, you might want quat objects to have special properties with respect to arith-

metic operations such as addition and multiplication. You can set up such properties by defining

upvalues for quat with respect to Plus and Times.

This defines an upvalue for quat with respect to Plus.

In[15]:= quat@x_D + quat@y_D ^:= quat@x + yD

The upvalue you have defined is used to simplify this expression.

In[16]:= quat@aD + quat@bD + quat@cD

Out[16]= quat@a + b + cD

When you define an upvalue for quat with respect to an operation like Plus, what you are

effectively doing is to extend the domain of the Plus operation to include quat objects. You are

telling Mathematica to use special rules for addition in the case where the things to be added

together are quat objects.

In defining addition for quat objects, you could always have a special addition operation, say

quatPlus, to which you assign an appropriate downvalue. It is usually much more convenient,

however, to use the standard Mathematica Plus operation to represent addition, but then to

"overload" this operation by specifying special behavior when quat objects are encountered.

You can think of upvalues as a way to implement certain aspects of object-oriented program-

ming. A symbol like quat represents a particular type of object. Then the various upvalues for

quat specify "methods" that define how quat objects should behave under certain operations,

or on receipt of certain "messages".

Defining Numerical Values

If you make a definition such as f@x_D := value, Mathematica will use the value you give for any

f function it encounters. In some cases, however, you may want to define a value that is to be

used specifically when you ask for numerical values.

136 Core Language

expr=value define a value to be used whenever possible

N@exprD=value define a value to be used for numerical approximation

Defining ordinary and numerical values.

This defines a numerical value for the function f.

In[1]:= N@f@x_DD := Sum@x^-i ê i^2, 8i, 20<D

Defining the numerical value does not tell Mathematica anything about the ordinary value of f.

In[2]:= f@2D + f@5D

Out[2]= f@2D + f@5D

If you ask for a numerical approximation, however, Mathematica uses the numerical values you
have defined.

In[3]:= N@%D

Out[3]= 0.793244

You can define numerical values for both functions and symbols. The numerical values are used

by all numerical Mathematica functions, including NIntegrate, FindRoot and so on.

N@exprD=value define a numerical value to be used when default numeri-
cal precision is requested

NAexpr,9n,Infinity=E=value define a numerical value to be used when n-digit precision
and any accuracy is requested

Defining numerical values that depend on numerical precision.

This defines a numerical value for the symbol const, using 4 n + 5 terms in the product for n-
digit precision.

In[4]:= N@const, 8n_, Infinity<D := Product@1 - 2^-i, 8i, 2, 4 n + 5<D

Here is the value of const, computed to 30-digit precision using the value you specified.

In[5]:= N@const, 30D

Out[5]= 0.577576190173204842557799443858

Mathematica treats numerical values essentially like upvalues. When you define a numerical

value for f , Mathematica effectively enters your definition as an upvalue for f with respect to

the numerical evaluation operation N.

Modifying Built-in Functions

Core Language 137

Modifying Built-in Functions

Mathematica allows you to define transformation rules for any expression. You can define such

rules not only for functions that you add to Mathematica, but also for intrinsic functions that are

already built into Mathematica. As a result, you can enhance, or modify, the features of built-in

Mathematica functions.

This capability is powerful, but potentially dangerous. Mathematica will always follow the rules

you give it. This means that if the rules you give are incorrect, then Mathematica will give you

incorrect answers.

To avoid the possibility of changing built-in functions by mistake, Mathematica “protects” all

built-in functions from redefinition. If you want to give a definition for a built-in function, you

have to remove the protection first. After you give the definition, you should usually restore the

protection, to prevent future mistakes.

Unprotect@ fD remove protection

Protect@ fD add protection

Protection for functions.

Built-in functions are usually “protected”, so you cannot redefine them.

In[1]:= Log@7D = 2

Set::write : Tag Log in Log@7D is Protected. à

Out[1]= 2

This removes protection for Log.

In[2]:= Unprotect@LogD

Out[2]= 8Log<

Now you can give your own definitions for Log. This particular definition is not mathematically
correct, but Mathematica will still allow you to give it.

In[3]:= Log@7D = 2

Out[3]= 2

138 Core Language

Mathematica will use your definitions whenever it can, whether they are mathematically correct
or not.

In[4]:= Log@7D + Log@3D

Out[4]= 2 + Log@3D

This removes the incorrect definition for Log.

In[5]:= Log@7D =.

This restores the protection for Log.

In[6]:= Protect@LogD

Out[6]= 8Log<

Definitions you give can override built-in features of Mathematica. In general, Mathematica tries

to use your definitions before it uses built-in definitions.

The rules that are built into Mathematica are intended to be appropriate for the broadest range

of calculations. In specific cases, however, you may not like what the built-in rules do. In such

cases, you can give your own rules to override the ones that are built in.

There is a built-in rule for simplifying Exp@Log@exprDD.

In[7]:= Exp@Log@yDD

Out[7]= y

You can give your own rule for Exp@Log@exprDD, overriding the built-in rule.

In[8]:= HUnprotect@ExpD; Exp@Log@expr_DD := explog@exprD; Protect@ExpD;L

Now your rule is used, rather than the built-in one.

In[9]:= Exp@Log@yDD

Out[9]= explog@yD

Core Language 139

Manipulating Value Lists

DownValues@ fD give the list of downvalues of f

UpValues@ fD give the list of upvalues of f

DownValues@ fD=rules set the downvalues of f

UpValues@ fD=rules set the upvalues of f

Finding and setting values of symbols.

Mathematica effectively stores all definitions you give as lists of transformation rules. When a

particular symbol is encountered, the lists of rules associated with it are tried.

Under most circumstances, you do not need direct access to the actual transformation rules

associated with definitions you have given. Instead, you can simply use lhs = rhs and lhs =. to

add and remove rules. In some cases, however, you may find it useful to have direct access to

the actual rules.

Here is a definition for f.

In[1]:= f@x_D := x^2

This gives the explicit rule corresponding to the definition you made for f.

In[2]:= DownValues@fD

Out[2]= 9HoldPattern@f@x_DD ß x2=

Notice that the rules returned by DownValues and UpValues are set up so that neither their

left- nor right-hand sides get evaluated. The left-hand sides are wrapped in HoldPattern, and

the rules are delayed, so that the right-hand sides are not immediately evaluated.

As discussed in "Making Definitions for Functions", Mathematica tries to order definitions so that

more specific ones appear before more general ones. In general, however, there is no unique

way to make this ordering, and you may want to choose a different ordering from the one that

Mathematica chooses by default. You can do this by reordering the list of rules obtained from

DownValues or UpValues.

Here are some definitions for the object g.

In[3]:= g@x_ + y_D := gp@x, yD; g@x_ y_D := gm@x, yD

140 Core Language

This shows the default ordering used for the definitions.

In[4]:= DownValues@gD

Out[4]= 8HoldPattern@g@x_ + y_DD ß gp@x, yD, HoldPattern@g@x_ y_DD ß gm@x, yD<

This reverses the order of the definitions for g.

In[5]:= DownValues@gD = Reverse@DownValues@gDD

Out[5]= 8HoldPattern@g@x_ y_DD ß gm@x, yD, HoldPattern@g@x_ + y_DD ß gp@x, yD<

Core Language 141

Functions and Programs

Defining Functions

There are many functions that are built into Mathematica. This tutorial discusses how you can

add your own simple functions to Mathematica.

As a first example, consider adding a function called f which squares its argument. The Mathe-

matica command to define this function is f@x_D := x^2. The _ (referred to as "blank") on the

left-hand side is very important; what it means will be discussed below. For now, just remem-

ber to put a _ on the left-hand side, but not on the right-hand side, of your definition.

This defines the function f. Notice the _ on the left-hand side.

In[1]:= f@x_D := x^2

f squares its argument.

In[2]:= f@a + 1D

Out[2]= H1 + aL2

The argument can be a number.

In[3]:= f@4D

Out[3]= 16

Or it can be a more complicated expression.

In[4]:= f@3 x + x^2D

Out[4]= I3 x + x2M
2

You can use f in a calculation.

In[5]:= Expand@f@Hx + 1 + yLDD

Out[5]= 1 + 2 x + x2 + 2 y + 2 x y + y2

This shows the definition you made for f.

In[6]:= ? f

142 Core Language

Global`f

f@x_D := x2

f@x_D:=x^2 define the function f

?f show the definition of f

Clear@fD clear all definitions for f

Defining a function in Mathematica.

The names like f that you use for functions in Mathematica are just symbols. Because of this,

you should make sure to avoid using names that begin with capital letters, to prevent confusion

with built-in Mathematica functions. You should also make sure that you have not used the

names for anything else earlier in your session.

Mathematica functions can have any number of arguments.

In[7]:= hump@x_, xmax_D := Hx - xmaxL^2 ê xmax

You can use the hump function just as you would any of the built-in functions.

In[8]:= 2 + hump@x, 3.5D

Out[8]= 2 + 0.285714 H-3.5 + xL2

This gives a new definition for hump, which overwrites the previous one.

In[9]:= hump@x_, xmax_D := Hx - xmaxL^4

The new definition is displayed.

In[10]:= ? hump

Global`hump

hump@x_, xmax_D := Hx - xmaxL4

This clears all definitions for hump.

In[11]:= Clear@humpD

Core Language 143

When you have finished with a particular function, it is always a good idea to clear definitions

you have made for it. If you do not do this, then you will run into trouble if you try to use the

same function for a different purpose later in your Mathematica session. You can clear all defini-

tions you have made for a function or symbol f by using Clear@ fD.

Functions as Procedures

In many kinds of calculations, you may find yourself typing the same input to Mathematica over

and over again. You can save yourself a lot of typing by defining a function that contains your

input commands.

This constructs a product of three terms, and expands out the result.

In[1]:= Expand@Product@x + i, 8i, 3<DD

Out[1]= 6 + 11 x + 6 x2 + x3

This does the same thing, but with four terms.

In[2]:= Expand@Product@x + i, 8i, 4<DD

Out[2]= 24 + 50 x + 35 x2 + 10 x3 + x4

This defines a function exprod which constructs a product of n terms, then expands it out.

In[3]:= exprod@n_D := Expand@Product@x + i, 8i, 1, n<DD

Every time you use the function, it will execute the Product and Expand operations.

In[4]:= exprod@5D

Out[4]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

The functions you define in Mathematica are essentially procedures that execute the commands

you give. You can have several steps in your procedures, separated by semicolons.

The result you get from the whole function is simply the last expression in the procedure. Notice
that you have to put parentheses around the procedure when you define it like this.

In[5]:= cex@n_, i_D := Ht = exprod@nD; Coefficient@t, x^iDL

This “runs” the procedure.

In[6]:= cex@5, 3D

Out[6]= 85

144 Core Language

expr1;expr2;… a sequence of expressions to evaluate

Module@8a,b,…<,procD a procedure with local variables a, b, …

Constructing procedures.

When you write procedures in Mathematica, it is usually a good idea to make variables you use

inside the procedures local, so that they do not interfere with things outside the procedures.

You can do this by setting up your procedures as modules, in which you give a list of variables

to be treated as local.

The function cex defined above is not a module, so the value of t “escapes”, and exists even
after the function returns.

In[7]:= t

Out[7]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

This function is defined as a module with local variable u.

In[8]:= ncex@n_, i_D := Module@8u<, u = exprod@nD; Coefficient@u, x^iDD

The function gives the same result as before.

In[9]:= ncex@5, 3D

Out[9]= 85

Now, however, the value of u does not escape from the function.

In[10]:= u

Out[10]= u

Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options

you can set. Mathematica provides some general mechanisms for handling such options.

If you do not give a specific setting for an option to a function like Plot, then Mathematica will

automatically use a default value for the option. The function Options@ function, optionD allows

you to find out the default value for a particular option. You can reset the default using

SetOptions@ function, option -> valueD. Note that if you do this, the default value you have given

will stay until you explicitly change it.

Core Language 145

Options@ functionD give a list of the current default settings for all options

Options@ function,optionD give the default setting for a particular option

SetOptions@ function,
option->value,…D

reset defaults

Manipulating default settings for options.

Here is the default setting for the PlotRange option of Plot.

In[1]:= Options@Plot, PlotRangeD

Out[1]= 8PlotRange Ø 8Full, Automatic<<

This resets the default for the PlotRange option. The semicolon stops Mathematica from
printing out the rather long list of options for Plot.

In[2]:= SetOptions@Plot, PlotRange -> AllD;

Until you explicitly reset it, the default for the PlotRange option will now be All.

In[3]:= Options@Plot, PlotRangeD

Out[3]= 8PlotRange Ø All<

The graphics objects that you get from Plot or Show store information on the options they use.

You can get this information by applying the Options function to these graphics objects.

Options@plotD show all the options used for a particular plot

Options@plot,optionD show the setting for a specific option

AbsoluteOptions@plot,optionD show the absolute form used for a specific option, even if
the setting for the option is Automatic or All

Getting information on options used in plots.

Here is a plot, with default settings for all options.

In[4]:= g = Plot@SinIntegral@xD, 8x, 0, 20<D

Out[4]=

146 Core Language

The setting used for the PlotRange option was All.

In[5]:= Options@g, PlotRangeD

Out[5]= 8PlotRange Ø 8All, All<<

AbsoluteOptions gives the absolute automatically chosen values used for PlotRange.

In[6]:= AbsoluteOptions@g, PlotRangeD

Out[6]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

While it is often convenient to use a variable to represent a graphic as in the above examples,

the graphic itself can be evaluated directly. The typical ways to do this in the notebook interface

are to copy and paste the graphic or to simply begin typing in the graphical output cell, at

which point the output cell will be converted into a new input cell.

When a plot created with no explicit ImageSize is placed into an input cell, it will automatically

shrink to more easily accommodate input.

The following input cell was created by copying and pasting the graphical output created in the
previous example.

In[7]:= AbsoluteOptionsB

5 10 15 20

0.5

1.0

1.5

, PlotRangeF

Out[7]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

Core Language 147

Repetitive Operations

In using Mathematica, you sometimes need to repeat an operation many times. There are

many ways to do this. Often the most natural is in fact to set up a structure such as a list with

many elements, and then apply your operation to each of the elements.

Another approach is to use the Mathematica function Do, which works much like the iteration

constructs in languages such as C and Fortran. Do uses the same Mathematica iterator notation

as Sum and Product, described in "Sums and Products".

Do@expr,8i,imax<D evaluate expr with i running from 1 to imax

Do@expr,8i,imin,imax,di<D evaluate expr with i running from imin to imax in steps of di

Print@exprD print expr

Table@expr,8i,imax<D make a list of the values of expr with i running from 1 to
imax

Implementing repetitive operations.

This prints out the values of the first five factorials.

In[1]:= Do@Print@i!D, 8i, 5<D

1

2

6

24

120

It is often more useful to have a list of results, which you can then manipulate further.

In[2]:= Table@i!, 8i, 5<D

Out[2]= 81, 2, 6, 24, 120<

If you do not give an iteration variable, Mathematica simply repeats the operation you have
specified, without changing anything.

In[3]:= r = 1; Do@r = 1 ê H1 + rL, 8100<D; r

Out[3]=
573147844013817084101

927372692193078999176

Transformation Rules for Functions

148 Core Language

Transformation Rules for Functions

"Values for Symbols" discussed how you can use transformation rules of the form x -> value to

replace symbols by values. The notion of transformation rules in Mathematica is, however, quite

general. You can set up transformation rules not only for symbols, but for any Mathematica

expression.

Applying the transformation rule x -> 3 replaces x by 3.

In[1]:= 1 + f@xD + f@yD ê. x -> 3

Out[1]= 1 + f@3D + f@yD

You can also use a transformation rule for f@xD. This rule does not affect f@yD.

In[2]:= 1 + f@xD + f@yD ê. f@xD -> p

Out[2]= 1 + p + f@yD

f@t_D is a pattern that stands for f with any argument.

In[3]:= 1 + f@xD + f@yD ê. f@t_D -> t^2

Out[3]= 1 + x2 + y2

Probably the most powerful aspect of transformation rules in Mathematica is that they can

involve not only literal expressions, but also patterns. A pattern is an expression such as f@t_D

which contains a blank (underscore). The blank can stand for any expression. Thus, a transfor-

mation rule for f@t_D specifies how the function f with any argument should be transformed.

Notice that, in contrast, a transformation rule for f@xD without a blank, specifies only how the

literal expression f@xD should be transformed, and does not, for example, say anything about

the transformation of f@yD.

When you give a function definition such as f@t_D := t^2, all you are doing is telling Mathemat-

ica to automatically apply the transformation rule f@t_D -> t^2 whenever possible.

You can set up transformation rules for expressions of any form.

In[4]:= f@a bD + f@c dD ê. f@x_ y_D -> f@xD + f@yD

Out[4]= f@aD + f@bD + f@cD + f@dD

Core Language 149

This uses a transformation rule for x^p_.

In[5]:= 1 + x^2 + x^4 ê. x^p_ -> f@pD

Out[5]= 1 + f@2D + f@4D

"Patterns" and "Transformation Rules and Definitions" will explain in detail how to set up pat-

terns and transformation rules for any kind of expression. Suffice it to say here that in Mathe-

matica all expressions have a definite symbolic structure; transformation rules allow you to

transform parts of that structure.

150 Core Language

Functional Operations

Function Names as Expressions

In an expression like f@xD, the “function name” f is itself an expression, and you can treat it as

you would any other expression.

You can replace names of functions using transformation rules.

In[1]:= f@xD + f@1 - xD ê. f -> g

Out[1]= g@1 - xD + g@xD

Any assignments you have made are used on function names.

In[2]:= p1 = p2; p1@x, yD

Out[2]= p2@x, yD

This defines a function which takes a function name as an argument.

In[3]:= pf@f_, x_D := f@xD + f@1 - xD

This gives Log as the function name to use.

In[4]:= pf@Log, qD

Out[4]= Log@1 - qD + Log@qD

The ability to treat the names of functions just like other kinds of expressions is an important

consequence of the symbolic nature of the Mathematica language. It makes possible the whole

range of functional operations.

Ordinary Mathematica functions such as Log or Integrate typically operate on data such as

numbers and algebraic expressions. Mathematica functions that represent functional opera-

tions, however, can operate not only on ordinary data, but also on functions themselves. Thus,

for example, the functional operation InverseFunction takes a Mathematica function name as

an argument, and represents the inverse of that function.

Core Language 151

InverseFunction is a functional operation: it takes a Mathematica function as an argument,
and returns another function which represents its inverse.

In[5]:= InverseFunction@ArcSinD

Out[5]= Sin

The result obtained from InverseFunction is a function which you can apply to data.

In[6]:= %@xD

Out[6]= Sin@xD

You can also use InverseFunction in a purely symbolic way.

In[7]:= InverseFunction@fD@xD

Out[7]= fH-1L@xD

There are many kinds of functional operations in Mathematica. Some represent mathematical

operations; others represent various kinds of procedures and algorithms.

Unless you are familiar with advanced symbolic languages, you will probably not recognize

most of the functional operations discussed. At first, the operations may seem difficult to unders-

tand. But it is worth persisting. Functional operations provide one of the most conceptually and

practically efficient ways to use Mathematica.

Applying Functions Repeatedly

Many programs you write will involve operations that need to be iterated several times. Nest

and NestList are powerful constructs for doing this.

Nest@ f,x,nD apply the function f nested n times to x

NestList@ f,x,nD generate the list 8x, f @xD, f @ f @xDD, …<, where f is nested up
to n deep

Applying functions of one argument repeatedly.

Nest@ f, x, nD takes the “name” f of a function, and applies the function n times to x.

In[1]:= Nest@f, x, 4D

Out[1]= f@f@f@f@xDDDD

152 Core Language

This makes a list of each successive nesting.

In[2]:= NestList@f, x, 4D

Out[2]= 8x, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD<

Here is a simple function.

In[3]:= recip@x_D := 1 ê H1 + xL

You can iterate the function using Nest.

In[4]:= Nest@recip, x, 3D

Out[4]=
1

1 +
1

1+
1

1+x

Nest and NestList allow you to apply functions a fixed number of times. Often you may want

to apply functions until the result no longer changes. You can do this using FixedPoint and

FixedPointList.

FixedPoint@ f,xD apply the function f repeatedly until the result no longer
changes

FixedPointList@ f,xD generate the list 8x, f @xD, f @ f @xDD, …<, stopping when the
elements no longer change

Applying functions until the result no longer changes.

Here is a function that takes one step in Newton’s approximation to 3 .
In[5]:= newton3@x_D := N@1 ê 2 Hx + 3 ê xLD

Here are five successive iterates of the function, starting at x = 1.

In[6]:= NestList@newton3, 1.0, 5D

Out[6]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205<

Using the function FixedPoint, you can automatically continue applying newton3 until the
result no longer changes.

In[7]:= FixedPoint@newton3, 1.0D

Out[7]= 1.73205

Core Language 153

Here is the sequence of results.

In[8]:= FixedPointList@newton3, 1.0D

Out[8]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

NestWhile@ f,x,testD apply the function f repeatedly until applying test to the
result no longer yields True

NestWhileList@ f,x,testD generate the list 8x, f @xD, f @ f @xDD, …<, stopping when apply-
ing test to the result no longer yields True

NestWhile@ f,x,test,mD , NestWhileList@ f,x,test,mD

supply the m most recent results as arguments for test at
each step

NestWhileA f,x,test,AllE , NestWhileListA f,x,test,AllE

supply all results so far as arguments for test

Applying functions repeatedly until a test fails.

Here is a function which divides a number by 2.

In[9]:= divide2@n_D := n ê 2

This repeatedly applies divide2 until the result is no longer an even number.

In[10]:= NestWhileList@divide2, 123456, EvenQD

Out[10]= 8123456, 61728, 30864, 15432, 7716, 3858, 1929<

This repeatedly applies newton3, stopping when two successive results are no longer consid-
ered unequal, just as in FixedPointList.

In[11]:= NestWhileList@newton3, 1.0, Unequal, 2D

Out[11]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

This goes on until the first time a result that has been seen before reappears.

In[12]:= NestWhileList@Mod@5 Ò, 7D &, 1, Unequal, AllD

Out[12]= 81, 5, 4, 6, 2, 3, 1<

Operations such as Nest take a function f of one argument, and apply it repeatedly. At each

step, they use the result of the previous step as the new argument of f .

It is important to generalize this notion to functions of two arguments. You can again apply the

function repeatedly, but now each result you get supplies only one of the new arguments you

need. A convenient approach is to get the other argument at each step from the successive

elements of a list.

154 Core Language

It is important to generalize this notion to functions of two arguments. You can again apply the

function repeatedly, but now each result you get supplies only one of the new arguments you

need. A convenient approach is to get the other argument at each step from the successive

elements of a list.

FoldList@ f,x,8a,b,…<D create the list 8x, f @x, aD, f @ f @x, aD, bD, …<

Fold@ f,x,8a,b,…<D give the last element of the list produced by
FoldList@ f, x, 8a, b, …<D

Ways to repeatedly apply functions of two arguments.

Here is an example of what FoldList does.

In[13]:= FoldList@f, x, 8a, b, c<D

Out[13]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

Fold gives the last element of the list produced by FoldList.

In[14]:= Fold@f, x, 8a, b, c<D

Out[14]= f@f@f@x, aD, bD, cD

This gives a list of cumulative sums.

In[15]:= FoldList@Plus, 0, 8a, b, c<D

Out[15]= 80, a, a + b, a + b + c<

Using Fold and FoldList you can write many elegant and efficient programs in Mathematica.

In some cases, you may find it helpful to think of Fold and FoldList as producing a simple

nesting of a family of functions indexed by their second argument.

This defines a function nextdigit.

In[16]:= nextdigit@a_, b_D := 10 a + b

This is now like the built-in function FromDigits.

In[17]:= fromdigits@digits_D := Fold@nextdigit, 0, digitsD

Here is an example of the function in action.

In[18]:= fromdigits@81, 3, 7, 2, 9, 1<D

Out[18]= 137291

Applying Functions to Lists and Other Expressions

Core Language 155

Applying Functions to Lists and Other Expressions

In an expression like f@8a, b, c<D you are giving a list as the argument to a function. Often

you need instead to apply a function directly to the elements of a list, rather than to the list as

a whole. You can do this in Mathematica using Apply.

This makes each element of the list an argument of the function f.

In[1]:= Apply@f, 8a, b, c<D

Out[1]= f@a, b, cD

This gives Times@a, b, cD which yields the product of the elements in the list.

In[2]:= Apply@Times, 8a, b, c<D

Out[2]= a b c

Here is a definition of a function that works like the built-in function GeometricMean, written
using Apply.

In[3]:= geom@list_D := Apply@Times, listD^H1 ê Length@listDL

Apply@ f,8a,b,…<D apply f to a list, giving f @a, b, …D

Apply@ f,exprD or füüexpr apply f to the top level of an expression

Apply@ f,expr,81<D or füüüexpr apply f at the first level in an expression

Apply@ f,expr,levD apply f at the specified levels in an expression

Applying functions to lists and other expressions.

What Apply does in general is to replace the head of an expression with the function you
specify. Here it replaces Plus by List.

In[4]:= Apply@List, a + b + cD

Out[4]= 8a, b, c<

Here is a matrix.

In[5]:= m = 88a, b, c<, 8b, c, d<<

Out[5]= 88a, b, c<, 8b, c, d<<

156 Core Language

Using Apply without an explicit level specification replaces the top-level list with f.

In[6]:= Apply@f, mD

Out[6]= f@8a, b, c<, 8b, c, d<D

This applies f only to parts of m at level 1.

In[7]:= Apply@f, m, 81<D

Out[7]= 8f@a, b, cD, f@b, c, dD<

This applies f at levels 0 through 1.

In[8]:= Apply@f, m, 80, 1<D

Out[8]= f@f@a, b, cD, f@b, c, dDD

Applying Functions to Parts of Expressions

If you have a list of elements, it is often important to be able to apply a function separately to

each of the elements. You can do this in Mathematica using Map.

This applies f separately to each element in a list.

In[1]:= Map@f, 8a, b, c<D

Out[1]= 8f@aD, f@bD, f@cD<

This defines a function which takes the first two elements from a list.

In[2]:= take2@list_D := Take@list, 2D

You can use Map to apply take2 to each element of a list.

In[3]:= Map@take2, 881, 3, 4<, 85, 6, 7<, 82, 1, 6, 6<<D

Out[3]= 881, 3<, 85, 6<, 82, 1<<

Map@ f,8a,b,…<D apply f to each element in a list, giving 8 f@aD, f@bD, …<

Applying a function to each element in a list.

What Map@ f, exprD effectively does is to “wrap” the function f around each element of the

expression expr. You can use Map on any expression, not just a list.

Core Language 157

This applies f to each element in the sum.

In[4]:= Map@f, a + b + cD

Out[4]= f@aD + f@bD + f@cD

This applies Sqrt to each argument of g.

In[5]:= Map@Sqrt, g@x^2, x^3DD

Out[5]= gB x2 , x3 F

Map@ f, exprD applies f to the first level of parts in expr. You can use MapAll@ f, exprD to apply f

to all the parts of expr.

This defines a 2x2 matrix m.

In[6]:= m = 88a, b<, 8c, d<<

Out[6]= 88a, b<, 8c, d<<

Map applies f to the first level of m, in this case the rows of the matrix.

In[7]:= Map@f, mD

Out[7]= 8f@8a, b<D, f@8c, d<D<

MapAll applies f at all levels in m. If you look carefully at this expression, you will see an f
wrapped around every part.

In[8]:= MapAll@f, mD

Out[8]= f@8f@8f@aD, f@bD<D, f@8f@cD, f@dD<D<D

In general, you can use level specifications as described in "Levels in Expressions" to tell Map to

which parts of an expression to apply your function.

This applies f only to the parts of m at level 2.

In[9]:= Map@f, m, 82<D

Out[9]= 88f@aD, f@bD<, 8f@cD, f@dD<<

Setting the option Heads -> True wraps f around the head of each part, as well as its ele-
ments.

In[10]:= Map@f, m, Heads -> TrueD

Out[10]= f@ListD@f@8a, b<D, f@8c, d<DD

158 Core Language

Map@ f,exprD or fêüexpr apply f to the first-level parts of expr

MapAll@ f,exprD or fêêüexpr apply f to all parts of expr

Map@ f,expr,levD apply f to each part of expr at levels specified by lev

Ways to apply a function to different parts of expressions.

Level specifications allow you to tell Map to which levels of parts in an expression you want a

function applied. With MapAt, however, you can instead give an explicit list of parts where you

want a function applied. You specify each part by giving its indices, as discussed in "Parts of

Expressions".

Here is a 2x3 matrix.

In[11]:= mm = 88a, b, c<, 8b, c, d<<

Out[11]= 88a, b, c<, 8b, c, d<<

This applies f to parts 81, 2< and 82, 3<.

In[12]:= MapAt@f, mm, 881, 2<, 82, 3<<D

Out[12]= 88a, f@bD, c<, 8b, c, f@dD<<

This gives a list of the positions at which b occurs in mm.

In[13]:= Position@mm, bD

Out[13]= 881, 2<, 82, 1<<

You can feed the list of positions you get from Position directly into MapAt.

In[14]:= MapAt@f, mm, %D

Out[14]= 88a, f@bD, c<, 8f@bD, c, d<<

To avoid ambiguity, you must put each part specification in a list, even when it involves only
one index.

In[15]:= MapAt@f, 8a, b, c, d<, 882<, 83<<D

Out[15]= 8a, f@bD, f@cD, d<

MapAt@ f,expr,8part1,part2,…<D apply f to specified parts of expr

Applying a function to specific parts of an expression.

Core Language 159

Here is an expression.

In[16]:= t = 1 + H3 + xL^2 ê x

Out[16]= 1 +
H3 + xL2

x

This is the full form of t.

In[17]:= FullForm@tD

Out[17]//FullForm= Plus@1, Times@Power@x, -1D, Power@Plus@3, xD, 2DDD

You can use MapAt on any expression. Remember that parts are numbered on the basis of the
full forms of expressions.

In[18]:= MapAt@f, t, 882, 1, 1<, 82, 2<<D

Out[18]= 1 +
fAH3 + xL2E

f@xD

MapIndexed@ f,exprD apply f to the elements of an expression, giving the part
specification of each element as a second argument to f

MapIndexed@ f,expr,levD apply f to parts at specified levels, giving the list of indices
for each part as a second argument to f

Applying a function to parts and their indices.

This applies f to each element in a list, giving the index of the element as a second argument
to f.

In[19]:= MapIndexed@f, 8a, b, c<D

Out[19]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D<

This applies f to both levels in a matrix.

In[20]:= MapIndexed@f, 88a, b<, 8c, d<<, 2D

Out[20]= 8f@8f@a, 81, 1<D, f@b, 81, 2<D<, 81<D, f@8f@c, 82, 1<D, f@d, 82, 2<D<, 82<D<

Map allows you to apply a function of one argument to parts of an expression. Sometimes,

however, you may instead want to apply a function of several arguments to corresponding

parts of several different expressions. You can do this using MapThread.

160 Core Language

MapThread@ f,8expr1,expr2,…<D apply f to corresponding elements in each of the expri

MapThread@ f,8expr1,expr2,…<,levD apply f to parts of the expri at the specified level

Applying a function to several expressions at once.

This applies f to corresponding pairs of list elements.

In[21]:= MapThread@f, 88a, b, c<, 8ap, bp, cp<<D

Out[21]= 8f@a, apD, f@b, bpD, f@c, cpD<

MapThread works with any number of expressions, so long as they have the same structure.

In[22]:= MapThread@f, 88a, b<, 8ap, bp<, 8app, bpp<<D

Out[22]= 8f@a, ap, appD, f@b, bp, bppD<

Functions like Map allow you to create expressions with parts modified. Sometimes you simply

want to go through an expression, and apply a particular function to some parts of it, without

building a new expression. A typical case is when the function you apply has certain “side

effects”, such as making assignments, or generating output.

Scan@ f,exprD evaluate f applied to each element of expr in turn

Scan@ f,expr,levD evaluate f applied to parts of expr on levels specified by lev

Evaluating functions on parts of expressions.

Map constructs a new list in which f has been applied to each element of the list.

In[23]:= Map@f, 8a, b, c<D

Out[23]= 8f@aD, f@bD, f@cD<

Scan evaluates the result of applying a function to each element, but does not construct a new
expression.

In[24]:= Scan@Print, 8a, b, c<D

a

b

c

Core Language 161

Scan visits the parts of an expression in a depth-first walk, with the leaves visited first.

In[25]:= Scan@Print, 1 + x^2, InfinityD

1

x

2

x2

Pure Functions

Function@x,bodyD a pure function in which x is replaced by any argument you
provide

Function@8x1,x2,…<,bodyD a pure function that takes several arguments

body& a pure function in which arguments are specified as Ò or
Ò1, Ò2, Ò3, etc.

Pure functions.

When you use functional operations such as Nest and Map, you always have to specify a func-

tion to apply. In all the examples above, we have used the "name" of a function to specify the

function. Pure functions allow you to give functions which can be applied to arguments, without

having to define explicit names for the functions.

This defines a function h.

In[1]:= h@x_D := f@xD + g@xD

Having defined h, you can now use its name in Map.

In[2]:= Map@h, 8a, b, c<D

Out[2]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<

Here is a way to get the same result using a pure function.

In[3]:= Map@f@ÒD + g@ÒD &, 8a, b, c<D

Out[3]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<

There are several equivalent ways to write pure functions in Mathematica. The idea in all cases

is to construct an object which, when supplied with appropriate arguments, computes a particu-

lar function. Thus, for example, if fun is a pure function, then fun@aD evaluates the function with

argument a.

162 Core Language

There are several equivalent ways to write pure functions in Mathematica. The idea in all cases

is to construct an object which, when supplied with appropriate arguments, computes a particu-

lar function. Thus, for example, if fun is a pure function, then fun@aD evaluates the function with

argument a.

Here is a pure function which represents the operation of squaring.

In[4]:= Function@x, x^2D

Out[4]= FunctionAx, x2E

Supplying the argument n to the pure function yields the square of n.

In[5]:= %@nD

Out[5]= n2

You can use a pure function wherever you would usually give the name of a function.

You can use a pure function in Map.

In[6]:= Map@Function@x, x^2D, a + b + cD

Out[6]= a2 + b2 + c2

Or in Nest.

In[7]:= Nest@Function@q, 1 ê H1 + qLD, x, 3D

Out[7]=
1

1 +
1

1+
1

1+x

This sets up a pure function with two arguments and then applies the function to the arguments
a and b.

In[8]:= Function@8x, y<, x^2 + y^3D@a, bD

Out[8]= a2 + b3

If you are going to use a particular function repeatedly, then you can define the function using

f@x_D := body, and refer to the function by its name f . On the other hand, if you only intend to

use a function once, you will probably find it better to give the function in pure function form,

without ever naming it.

If you are familiar with formal logic or the LISP programming language, you will recognize

Mathematica pure functions as being like l expressions or anonymous functions. Pure functions

are also close to the pure mathematical notion of operators.

Core Language 163

Ò the first variable in a pure function

Ò n the nth variable in a pure function

ÒÒ the sequence of all variables in a pure function

ÒÒ n the sequence of variables starting with the nth one

Short forms for pure functions.

Just as the name of a function is irrelevant if you do not intend to refer to the function again, so

also the names of arguments in a pure function are irrelevant. Mathematica allows you to avoid

using explicit names for the arguments of pure functions, and instead to specify the arguments

by giving "slot numbers" Ò n. In a Mathematica pure function, Ò n stands for the nth argument

you supply. Ò stands for the first argument.

Ò^2 & is a short form for a pure function that squares its argument.

In[9]:= Map@Ò^2 &, a + b + cD

Out[9]= a2 + b2 + c2

This applies a function that takes the first two elements from each list. By using a pure function,
you avoid having to define the function separately.

In[10]:= Map@Take@Ò, 2D &, 882, 1, 7<, 84, 1, 5<, 83, 1, 2<<D

Out[10]= 882, 1<, 84, 1<, 83, 1<<

Using short forms for pure functions, you can simplify the definition of fromdigits given
in "Applying Functions Repeatedly".

In[11]:= fromdigits@digits_D := Fold@H10 Ò1 + Ò2L &, 0, digitsD

When you use short forms for pure functions, it is very important that you do not forget the

ampersand. If you leave the ampersand out, Mathematica will not know that the expression you

give is to be used as a pure function.

When you use the ampersand notation for pure functions, you must be careful about the group-

ing of pieces in your input. As shown in "Operator Input Forms" the ampersand notation has

fairly low precedence, which means that you can type expressions like Ò1 + Ò2 & without paren-

theses. On the other hand, if you want, for example, to set an option to be a pure function, you

need to use parentheses, as in option -> H fun &L.

Pure functions in Mathematica can take any number of arguments. You can use ÒÒ to stand for

all the arguments that are given, and ÒÒ n to stand for the nth and subsequent arguments.

ÒÒ stands for all arguments.

164 Core Language

ÒÒ stands for all arguments.

In[12]:= f@ÒÒ, ÒÒD &@x, yD

Out[12]= f@x, y, x, yD

ÒÒ2 stands for all arguments except the first one.

In[13]:= Apply@f@ÒÒ2, Ò1D &, 88a, b, c<, 8ap, bp<<, 81<D

Out[13]= 8f@b, c, aD, f@bp, apD<

Building Lists from Functions

Array@ f,nD generate a length n list of the form 8 f@1D, f@2D, …<

Array@ f,8n1,n2,…<D generate an n1×n2×… nested list, each of whose entries
consists of f applied to its indices

NestList@ f,x,nD generate a list of the form 8x, f@xD, f@ f@xDD, …<,
where f is nested up to n deep

FoldList@ f,x,8a,b,…<D generate a list of the form
8x, f@x, aD, f@ f@x, aD, bD, …<

ComposeList@8 f1, f2,…<,xD generate a list of the form 8x, f1@xD, f2@ f1@xDD, …<

Making lists from functions.

This makes a list of 5 elements, each of the form p@iD.

In[1]:= Array@p, 5D

Out[1]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

Here is another way to produce the same list.

In[2]:= Table@p@iD, 8i, 5<D

Out[2]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

This produces a list whose elements are i + i2.
In[3]:= Array@Ò + Ò^2 &, 5D

Out[3]= 82, 6, 12, 20, 30<

Core Language 165

This generates a 2×3 matrix whose entries are m@i, jD.

In[4]:= Array@m, 82, 3<D

Out[4]= 88m@1, 1D, m@1, 2D, m@1, 3D<, 8m@2, 1D, m@2, 2D, m@2, 3D<<

This generates a 3×3 matrix whose elements are the squares of the sums of their indices.

In[5]:= Array@Plus@ÒÒD^2 &, 83, 3<D

Out[5]= 884, 9, 16<, 89, 16, 25<, 816, 25, 36<<

NestList and FoldList were discussed in "Applying Functions Repeatedly". Particularly by

using them with pure functions, you can construct some very elegant and efficient Mathematica

programs.

This gives a list of results obtained by successively differentiating xn with respect to x.

In[6]:= NestList@D@Ò, xD &, x^n, 3D

Out[6]= 9xn, n x-1+n, H-1 + nL n x-2+n, H-2 + nL H-1 + nL n x-3+n=

Selecting Parts of Expressions with Functions

"Manipulating Elements of Lists" shows how you can pick out elements of lists based on their

positions. Often, however, you will need to select elements based not on where they are, but

rather on what they are.

Select@list, fD selects elements of list using the function f as a criterion. Select applies f to

each element of list in turn, and keeps only those for which the result is True.

This selects the elements of the list for which the pure function yields True, i.e., those numeri-
cally greater than 4.

In[1]:= Select@82, 15, 1, a, 16, 17<, Ò > 4 &D

Out[1]= 815, 16, 17<

You can use Select to pick out pieces of any expression, not just elements of a list.

This gives a sum of terms involving x, y and z.

In[2]:= t = Expand@Hx + y + zL^2D

Out[2]= x2 + 2 x y + y2 + 2 x z + 2 y z + z2

166 Core Language

You can use Select to pick out only those terms in the sum that do not involve the symbol x.

In[3]:= Select@t, FreeQ@Ò, xD &D

Out[3]= y2 + 2 y z + z2

Select@expr, fD select the elements in expr for which the function f gives
True

Select@expr, f,nD select the first n elements in expr for which the function f
gives True

Selecting pieces of expressions.

"Putting Constraints on Patterns" discusses some “predicates” that are often used as criteria in

Select.

This gives the first element which satisfies the criterion you specify.

In[4]:= Select@8-1, 3, 10, 12, 14<, Ò > 3 &, 1D

Out[4]= 810<

Expressions with Heads That Are Not Symbols

In most cases, you want the head f of a Mathematica expression like f@xD to be a single

symbol. There are, however, some important applications of heads that are not symbols.

This expression has f@3D as a head. You can use heads like this to represent “indexed func-
tions”.

In[1]:= f@3D@x, yD

Out[1]= f@3D@x, yD

You can use any expression as a head. Remember to put in the necessary parentheses.

In[2]:= Ha + bL@xD

Out[2]= Ha + bL@xD

One case where we have already encountered the use of complicated expressions as heads is in

working with pure functions in "Pure Functions". By giving Function@vars, bodyD as the head of

an expression, you specify a function of the arguments to be evaluated.

Core Language 167

With the head Function@x, x^2D, the value of the expression is the square of the argument.

In[3]:= Function@x, x^2D@a + bD

Out[3]= Ha + bL2

There are several constructs in Mathematica which work much like pure functions, but which

represent specific kinds of functions, typically numerical ones. In all cases, the basic mechanism

involves giving a head which contains complete information about the function you want to use.

Function@vars,bodyD@argsD pure function

InterpolatingFunction@dataD@argsD

approximate numerical function (generated by
Interpolation and NDSolve)

CompiledFunction@dataD@argsD compiled numerical function (generated by Compile)

LinearSolveFunction@dataD@vecD

matrix solution function (generated by LinearSolve)

Some expressions which have heads that are not symbols.

NDSolve returns a list of rules that give y as an InterpolatingFunction object.

In[4]:= NDSolve@8y''@xD == y@xD, y@0D == y'@0D == 1<, y, 8x, 0, 5<D

Out[4]= 88y Ø InterpolatingFunction@880., 5.<<, <>D<<

Here is the InterpolatingFunction object.

In[5]:= y ê. First@%D

Out[5]= InterpolatingFunction@880., 5.<<, <>D

You can use the InterpolatingFunction object as a head to get numerical approximations
to values of the function y.

In[6]:= %@3.8D

Out[6]= 44.7012

Another important use of more complicated expressions as heads is in implementing functionals

and functional operators in mathematics.

168 Core Language

As one example, consider the operation of differentiation. As discussed in "The Representation

of Derivatives", an expression like f' represents a derivative function, obtained from f by

applying a functional operator to it. In Mathematica, f' is represented as Derivative@1D@fD:

the “functional operator” Derivative@1D is applied to f to give another function, represented

as f'.

This expression has a head which represents the application of the “functional operator”
Derivative@1D to the “function” f.

In[7]:= f'@xD êê FullForm

Out[7]//FullForm= Derivative@1D@fD@xD

You can replace the head f' with another head, such as fp. This effectively takes fp to be a
“derivative function” obtained from f.

In[8]:= % ê. f' -> fp

Out[8]= fp@xD

Working with Operators

You can think of an expression like f @xD as being formed by applying an operator f to the expres-

sion x. You can think of an expression like f @g@xDD as the result of composing the operators f and

g, and applying the result to x.

Composition@ f,g,…D the composition of functions f , g, …

InverseFunction@ fD the inverse of a function f

Identity the identity function

Some functional operations.

This represents the composition of the functions f , g and h.

In[1]:= Composition@f, g, hD

Out[1]= Composition@f, g, hD

You can manipulate compositions of functions symbolically.

In[2]:= InverseFunction@Composition@%, qDD

Out[2]= CompositionAqH-1L, hH-1L, gH-1L, fH-1LE

Core Language 169

The composition is evaluated explicitly when you supply a specific argument.

In[3]:= %@xD

Out[3]= qH-1LAhH-1LAgH-1LAfH-1L@xDEEE

You can get the sum of two expressions in Mathematica just by typing x + y. Sometimes it is

also worthwhile to consider performing operations like addition on operators.

You can think of this as containing a sum of two operators f and g.

In[4]:= Hf + gL@xD

Out[4]= Hf + gL@xD

Using Through, you can convert the expression to a more explicit form.

In[5]:= Through@%, PlusD

Out[5]= f@xD + g@xD

This corresponds to the mathematical operator 1 + ∂

∂x
.

In[6]:= Identity + HD@Ò, xD &L

Out[6]= Identity + H∂x Ò1 &L

Mathematica does not automatically apply the separate pieces of the operator to an expression.

In[7]:= %@x^2D

Out[7]= HIdentity + H∂x Ò1 &LLAx2E

You can use Through to apply the operator.

In[8]:= Through@%, PlusD

Out[8]= 2 x + x2

Identity@exprD the identity function

Through@p@ f1, f2D@xD,qD give p@ f1@xD, f2@xDD if p is the same as q

Operate@p, f@xDD give p@ f D@xD

Operate@p, f@xD,nD apply p at level n in f

MapAllAp,expr,Heads->TrueE apply p to all parts of expr, including heads

Operations for working with operators.

170 Core Language

This has a complicated expression as a head.

In[9]:= t = HH1 + aL H1 + bLL@xD

Out[9]= HH1 + aL H1 + bLL@xD

Functions like Expand do not automatically go inside heads of expressions.

In[10]:= Expand@%D

Out[10]= HH1 + aL H1 + bLL@xD

With the Heads option set to True, MapAll goes inside heads.

In[11]:= MapAll@Expand, t, Heads -> TrueD

Out[11]= H1 + a + b + a bL@xD

The replacement operator ê. does go inside heads of expressions.

In[12]:= t ê. a -> 1

Out[12]= H2 H1 + bLL@xD

You can use Operate to apply a function specifically to the head of an expression.

In[13]:= Operate@p, tD

Out[13]= p@H1 + aL H1 + bLD@xD

Structural Operations

Mathematica contains some powerful primitives for making structural changes to expressions.

You can use these primitives both to implement mathematical properties such as associativity

and distributivity, and to provide the basis for some succinct and efficient programs.

Here we describe various operations that you can explicitly perform on expressions. "Attributes"

describes how some of these operations can be performed automatically on all expressions with

a particular head by assigning appropriate attributes to that head.

You can use the Mathematica function Sort@exprD to sort elements not only of lists, but of

expressions with any head. In this way, you can implement the mathematical properties of

commutativity or symmetry for arbitrary functions.

Core Language 171

You can use Sort to put the arguments of any function into a standard order.

In[1]:= Sort@f@c, a, bDD

Out[1]= f@a, b, cD

Sort@exprD sort the elements of a list or other expression into a
standard order

Sort@expr,predD sort using the function pred to determine whether pairs are
in order

Ordering@exprD give the ordering of elements when sorted

Ordering@expr,nD give the ordering of the first n elements when sorted

Ordering@expr,n,predD use the function pred to determine whether pairs are in
order

OrderedQ@exprD give True if the elements of expr are in standard order,
and False otherwise

Order@expr1,expr2D give 1 if expr1 comes before expr2 in standard order, and
-1 if it comes after

Sorting into order.

The second argument to Sort is a function used to determine whether pairs are in order. This
sorts numbers into descending order.

In[2]:= Sort@85, 1, 8, 2<, HÒ2 < Ò1L &D

Out[2]= 88, 5, 2, 1<

This sorting criterion puts elements that do not depend on x before those that do.

In[3]:= Sort@8x^2, y, x + y, y - 2<, FreeQ@Ò1, xD &D

Out[3]= 9y, -2 + y, x + y, x2=

Flatten@exprD flatten out all nested functions with the same head as expr

Flatten@expr,nD flatten at most n levels of nesting

Flatten@expr,n,hD flatten functions with head h

FlattenAt@expr,iD flatten only the ith element of expr

Flattening out expressions.

172 Core Language

Flatten removes nested occurrences of a function.

In[4]:= Flatten@f@a, f@b, cD, f@f@dDDDD

Out[4]= f@a, b, c, dD

You can use Flatten to “splice” sequences of elements into lists or other expressions.

In[5]:= Flatten@8a, f@b, cD, f@a, b, dD<, 1, fD

Out[5]= 8a, b, c, a, b, d<

You can use Flatten to implement the mathematical property of associativity. The function

Distribute allows you to implement properties such as distributivity and linearity.

Distribute@ f@a+b+…,…DD distribute f over sums to give f@a, …D + f@b, …D + …
Distribute@ f@argsD,gD distribute f over any arguments which have head g

Distribute@expr,g, fD distribute only when the head is f

Distribute@expr,g, f,gp, fpD distribute f over g, replacing them with fp and gp,
respectively

Applying distributive laws.

This “distributes” f over a + b.

In[6]:= Distribute@f@a + bDD

Out[6]= f@aD + f@bD

Here is a more complicated example.

In[7]:= Distribute@f@a + b, c + dDD

Out[7]= f@a, cD + f@a, dD + f@b, cD + f@b, dD

In general, if f is distributive over Plus, then an expression like f@a + bD can be “expanded” to

give f@aD + f@bD. The function Expand does this kind of expansion for standard algebraic opera-

tors such as Times. Distribute allows you to perform the same kind of expansion for arbitrary

operators.

Expand uses the distributivity of Times over Plus to perform algebraic expansions.

In[8]:= Expand@Ha + bL Hc + dLD

Out[8]= a c + b c + a d + b d

Core Language 173

This applies distributivity over lists, rather than sums. The result contains all possible pairs of
arguments.

In[9]:= Distribute@f@8a, b<, 8c, d<D, ListD

Out[9]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, but does so only if the head of the whole expression is f.

In[10]:= Distribute@f@8a, b<, 8c, d<D, List, fD

Out[10]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, making sure that the head of the whole expression is f. In the result,
it uses gp in place of List, and fp in place of f.

In[11]:= Distribute@f@8a, b<, 8c, d<D, List, f, gp, fpD

Out[11]= gp@fp@a, cD, fp@a, dD, fp@b, cD, fp@b, dDD

Related to Distribute is the function Thread. What Thread effectively does is to apply a func-

tion in parallel to all the elements of a list or other expression.

Thread@ f@8a1,a2<,8b1,b2<DD

thread f over lists to give 8 f@a1, b1D, f@a2, b2D<

Thread@ f@argsD,gD thread f over objects with head g in args

Functions for threading expressions.

Here is a function whose arguments are lists.

In[12]:= f@8a1, a2<, 8b1, b2<D

Out[12]= f@8a1, a2<, 8b1, b2<D

Thread applies the function “in parallel” to each element of the lists.

In[13]:= Thread@%D

Out[13]= 8f@a1, b1D, f@a2, b2D<

Arguments that are not lists get repeated.

In[14]:= Thread@f@8a1, a2<, 8b1, b2<, c, dDD

Out[14]= 8f@a1, b1, c, dD, f@a2, b2, c, dD<

174 Core Language

As mentioned in "Collecting Objects Together", and discussed in more detail in "Attributes",

many built-in Mathematica functions have the property of being “listable”, so that they are

automatically threaded over any lists that appear as arguments.

Built-in mathematical functions such as Log are listable, so that they are automatically
threaded over lists.

In[15]:= Log@8a, b, c<D

Out[15]= 8Log@aD, Log@bD, Log@cD<

Log is, however, not automatically threaded over equations.

In[16]:= Log@x == yD

Out[16]= Log@x ã yD

You can use Thread to get functions applied to both sides of an equation.

In[17]:= Thread@%, EqualD

Out[17]= Log@xD ã Log@yD

Outer@ f,list1,list2D generalized outer product

Inner@ f,list1,list2,gD generalized inner product

Generalized outer and inner products.

Outer@ f, list1, list2D takes all possible combinations of elements from list1 and list2, and com-

bines them with f . Outer can be viewed as a generalization of a Cartesian product for tensors,

as discussed in "Tensors".

Outer forms all possible combinations of elements, and applies f to them.

In[18]:= Outer@f, 8a, b<, 81, 2, 3<D

Out[18]= 88f@a, 1D, f@a, 2D, f@a, 3D<, 8f@b, 1D, f@b, 2D, f@b, 3D<<

Here Outer produces a lower-triangular Boolean matrix.

In[19]:= Outer@Greater, 81, 2, 3<, 81, 2, 3<D

Out[19]= 88False, False, False<, 8True, False, False<, 8True, True, False<<

Core Language 175

You can use Outer on any sequence of expressions with the same head.

In[20]:= Outer@g, f@a, bD, f@c, dDD

Out[20]= f@f@g@a, cD, g@a, dDD, f@g@b, cD, g@b, dDDD

Outer, like Distribute, constructs all possible combinations of elements. On the other hand,

Inner, like Thread, constructs only combinations of elements that have corresponding positions

in the expressions it acts on.

Here is a structure built by Inner.

In[21]:= Inner@f, 8a, b<, 8c, d<, gD

Out[21]= g@f@a, cD, f@b, dDD

Inner is a generalization of Dot.

In[22]:= Inner@Times, 8a, b<, 8c, d<, PlusD

Out[22]= a c + b d

Sequences

The function Flatten allows you to explicitly flatten out all sublists.

In[1]:= Flatten@8a, 8b, c<, 8d, e<<D

Out[1]= 8a, b, c, d, e<

FlattenAt lets you specify at what positions you want sublists flattened.

In[2]:= FlattenAt@8a, 8b, c<, 8d, e<<, 2D

Out[2]= 8a, b, c, 8d, e<<

Sequence objects automatically get spliced in, and do not require any explicit flattening.

In[3]:= 8a, Sequence@b, cD, Sequence@d, eD<

Out[3]= 8a, b, c, d, e<

176 Core Language

Sequence@e1,e2,…D a sequence of arguments that will automatically be spliced
into any function

Representing sequences of arguments in functions.

Sequence works in any function.

In[4]:= f@Sequence@a, bD, cD

Out[4]= f@a, b, cD

This includes functions with special input forms.

In[5]:= a == Sequence@b, cD

Out[5]= a ã b ã c

Here is a common way that Sequence is used.

In[6]:= 8a, b, f@x, yD, g@wD, f@z, yD< ê. f -> Sequence

Out[6]= 8a, b, x, y, g@wD, z, y<

Core Language 177

Modularity and the Naming of Things

Modules and Local Variables

Mathematica normally assumes that all your variables are global. This means that every time

you use a name like x, Mathematica normally assumes that you are referring to the same

object.

Particularly when you write programs, however, you may not want all your variables to be

global. You may, for example, want to use the name x to refer to two quite different variables

in two different programs. In this case, you need the x in each program to be treated as a local

variable.

You can set up local variables in Mathematica using modules. Within each module, you can give

a list of variables which are to be treated as local to the module.

Module@8x,y,…<,bodyD a module with local variables x, y, …

Creating modules in Mathematica.

This defines the global variable t to have value 17.

In[1]:= t = 17

Out[1]= 17

The t inside the module is local, so it can be treated independently of the global t.

In[2]:= Module@8t<, t = 8; Print@tDD

8

The global t still has value 17.

In[3]:= t

Out[3]= 17

The most common way that modules are used is to set up temporary or intermediate variables

inside functions you define. It is important to make sure that such variables are kept local. If

they are not, then you will run into trouble whenever their names happen to coincide with the

names of other variables.

The intermediate variable t is specified to be local to the module.

178 Core Language

The intermediate variable t is specified to be local to the module.

In[4]:= f@v_D := Module@8t<, t = H1 + vL^2; t = Expand@tDD

This runs the function f.

In[5]:= f@a + bD

Out[5]= 1 + 2 a + a2 + 2 b + 2 a b + b2

The global t still has value 17.

In[6]:= t

Out[6]= 17

You can treat local variables in modules just like other symbols. Thus, for example, you can use

them as names for local functions, you can assign attributes to them, and so on.

This sets up a module which defines a local function f.

In[7]:= gfac10@k_D := Module@8f, n<, f@1D = 1; f@n_D := k + n f@n - 1D; f@10DD

In this case, the local function f is just an ordinary factorial.

In[8]:= gfac10@0D

Out[8]= 3628800

In this case, f is set up as a generalized factorial.

In[9]:= gfac10@2D

Out[9]= 8841802

When you set up a local variable in a module, Mathematica initially assigns no value to the

variable. This means that you can use the variable in a purely symbolic way, even if there was

a global value defined for the variable outside the module.

This uses the global value of t defined above, and so yields a number.

In[10]:= Expand@H1 + tL^3D

Out[10]= 5832

Here Length simply receives a number as its argument.

In[11]:= Length@Expand@H1 + tL^3DD

Out[11]= 0

The local variable t has no value, so it acts as a symbol, and Expand produces the anticipated
algebraic result.

Core Language 179

The local variable t has no value, so it acts as a symbol, and Expand produces the anticipated
algebraic result.

In[12]:= Module@8t<, Length@Expand@H1 + tL^3DDD

Out[12]= 4

Module@8x=x0,y=y0,…<,bodyD

a module with initial values for local variables

Assigning initial values to local variables.

This specifies t to be a local variable, with initial value u.

In[13]:= g@u_D := Module@8t = u<, t += t ê H1 + uLD

This uses the definition of g.

In[14]:= g@aD

Out[14]= a +
a

1 + a

You can define initial values for any of the local variables in a module. The initial values are

always evaluated before the module is executed. As a result, even if a variable x is defined as

local to the module, the global x will be used if it appears in an expression for an initial value.

The initial value of u is taken to be the global value of t.

In[15]:= Module@8t = 6, u = t<, u^2D

Out[15]= 289

lhs:=Module@vars,rhsê;condD share local variables between rhs and cond

Using local variables in definitions with conditions.

When you set up ê; conditions for definitions, you often need to introduce temporary variables.

In many cases, you may want to share these temporary variables with the body of the right-

hand side of the definition. Mathematica allows you to enclose the whole right-hand side of your

definition in a module, including the condition.

This defines a function with a condition attached.

In[16]:= h@x_D := Module@8t<, t^2 - 1 ê; Ht = x - 4L > 1D

180 Core Language

Mathematica shares the value of the local variable t between the condition and the body of the
right-hand side.

In[17]:= h@10D

Out[17]= 35

Local Constants

With@8x=x0,y=y0,…<,bodyD define local constants x, y, …

Defining local constants.

Module allows you to set up local variables, to which you can assign values and then change

them. Often, however, all you really need are local constants, to which you assign a value only

once. The Mathematica With construct allows you to set up such local constants.

This defines a global value for t.

In[1]:= t = 17

Out[1]= 17

This defines a function using t as a local constant.

In[2]:= w@x_D := With@8t = x + 1<, t + t^3D

This uses the definition of w.

In[3]:= w@aD

Out[3]= 1 + a + H1 + aL3

t still has its global value.

In[4]:= t

Out[4]= 17

Just as in Module, the initial values you define in With are evaluated before With is executed.

The expression t + 1 which gives the value of the local constant t is evaluated using the global
t.

In[5]:= With@8t = t + 1<, t^2D

Out[5]= 324

The way With@8x = x0, …<, bodyD works is to take body, and replace every occurrence of x, etc.

in it by x0, etc. You can think of With as a generalization of the ê. operator, suitable for applica-

tion to Mathematica code instead of other expressions.

Core Language 181

The way With@8x = x0, …<, bodyD works is to take body, and replace every occurrence of x, etc.

in it by x0, etc. You can think of With as a generalization of the ê. operator, suitable for applica-

tion to Mathematica code instead of other expressions.

This replaces x with a.

In[6]:= With@8x = a<, x = 5D

Out[6]= 5

After the replacement, the body of With is a = 5, so a gets the global value 5.

In[7]:= a

Out[7]= 5

This clears the value of a.

In[8]:= Clear@aD

In some respects, With is like a special case of Module, in which each local variable is assigned

a value exactly once.

One of the main reasons for using With rather than Module is that it typically makes the Mathe-

matica programs you write easier to understand. In a module, if you see a local variable x at a

particular point, you potentially have to trace through all of the code in the module to work out

the value of x at that point. In a With construct, however, you can always find out the value of

a local constant simply by looking at the initial list of values, without having to trace through

specific code.

If you have several With constructs, it is always the innermost one for a particular variable that

is in effect. You can mix Module and With. The general rule is that the innermost one for a

particular variable is the one that is in effect.

With nested With constructs, the innermost one is always the one in effect.

In[9]:= With@8t = 8<, With@8t = 9<, t^2DD

Out[9]= 81

You can mix Module and With constructs.

In[10]:= Module@8t = 8<, With@8t = 9<, t^2DD

Out[10]= 81

Local variables in inner constructs do not mask ones outside unless the names conflict.

182 Core Language

Local variables in inner constructs do not mask ones outside unless the names conflict.

In[11]:= With@8t = a<, With@8u = b<, t + uDD

Out[11]= a + b

Except for the question of when x and body are evaluated, With@8x = x0, …<, bodyD works essen-

tially like body ê. x -> x0. However, With behaves in a special way when the expression body

itself contains With or Module constructs. The main issue is to prevent the local constants in

the various With constructs from conflicting with each other, or with global objects. The details

of how this is done are discussed in "How Modules Work".

The y in the inner With is renamed to prevent it from conflicting with the global y.

In[12]:= With@8x = 2 + y<, Hold@With@8y = 4<, x + yDDD

Out[12]= Hold@With@8y$ = 4<, H2 + yL + y$DD

How Modules Work

The way modules work in Mathematica is basically very simple. Every time any module is used,

a new symbol is created to represent each of its local variables. The new symbol is given a

unique name which cannot conflict with any other names. The name is formed by taking the

name you specify for the local variable, followed by $, with a unique “serial number” appended.

The serial number is found from the value of the global variable $ModuleNumber. This variable

counts the total number of times any Module of any form has been used.

Module generates symbols with names of the form x$nnn to represent each local variable.

The basic principle of modules in Mathematica.

This shows the symbol generated for t within the module.

In[1]:= Module@8t<, Print@tDD

t$1

The symbols are different every time any module is used.

In[2]:= Module@8t, u<, Print@tD; Print@uDD

t$2

u$2

For most purposes, you will never have to deal directly with the actual symbols generated

inside modules. However, if for example you start up a dialog while a module is being executed,

then you will see these symbols. The same is true whenever you use functions like Trace to

watch the evaluation of modules.

Core Language 183

For most purposes, you will never have to deal directly with the actual symbols generated

inside modules. However, if for example you start up a dialog while a module is being executed,

then you will see these symbols. The same is true whenever you use functions like Trace to

watch the evaluation of modules.

You see the symbols that are generated inside modules when you use Trace.

In[3]:= Trace@Module@8t<, t = 3DD

Out[3]= 8Module@8t<, t = 3D, 8t$3 = 3, 3<, 3<

This starts a dialog inside a module.

In[4]:= Module@8t<, t = 6; Dialog@DD

Inside the dialog, you see the symbols generated for local variables such as t.

In[5]:= Stack@_D

Out[5]= 8Module@8t<, t = 6; Dialog@DD, t$4 = 6; Dialog@D, Dialog@D<

You can work with these symbols as you would with any other symbols.

In[6]:= t$4 + 1

Out[6]= 7

This returns from the dialog.

In[7]:= Return@t$4^2D

Out[7]= 36

Under some circumstances, it is convenient explicitly to return symbols that are generated

inside modules.

You can explicitly return symbols that are generated inside modules.

In[8]:= Module@8t<, tD

Out[8]= t$6

You can treat these symbols as you would any others.

In[9]:= %^2 + 1

Out[9]= 1 + t$62

184 Core Language

Unique@xD generate a new symbol with a unique name of the form
x$nnn

Unique@8x,y,…<D generate a list of new symbols

Generating new symbols with unique names.

The function Unique allows you to generate new symbols in the same way as Module does.

Each time you call Unique, $ModuleNumber is incremented, so that the names of new symbols

are guaranteed to be unique.

This generates a unique new symbol whose name starts with x.

In[10]:= Unique@xD

Out[10]= x$7

Each time you call Unique you get a symbol with a larger serial number.

In[11]:= 8Unique@xD, Unique@xD, Unique@xD<

Out[11]= 8x$8, x$9, x$10<

If you call Unique with a list of names, you get the same serial number for each of the
symbols.

In[12]:= Unique@8x, xa, xb<D

Out[12]= 8x$11, xa$11, xb$11<

You can use the standard Mathematica ? name mechanism to get information on symbols that

were generated inside modules or by the function Unique.

Executing this module generates the symbol q$nnn.

In[13]:= Module@8q<, q^2 + 1D

Out[13]= 1 + q$122

You can see the generated symbol here.

In[14]:= ? q*

q q$12

Core Language 185

Symbols generated by Module behave in exactly the same way as other symbols for the pur-

poses of evaluation. However, these symbols carry the attribute Temporary, which specifies

that they should be removed completely from the system when they are no longer used. Thus

most symbols that are generated inside modules are removed when the execution of those

modules is finished. The symbols survive only if they are explicitly returned.

This shows a new q variable generated inside a module.

In[15]:= Module@8q<, Print@qDD

q$13

The new variable is removed when the execution of the module is finished, so it does not show
up here.

In[16]:= ? q*

q q$12

You should realize that the use of names such as x$nnn for generated symbols is purely a conven-

tion. You can in principle give any symbol a name of this form. But if you do, the symbol may

collide with one that is produced by Module.

An important point to note is that symbols generated by Module are in general unique only

within a particular Mathematica session. The variable $ModuleNumber which determines the

serial numbers for these symbols is always reset at the beginning of each session.

This means in particular that if you save expressions containing generated symbols in a file,

and then read them into another session, there is no guarantee that conflicts will not occur.

One way to avoid such conflicts is explicitly to set $ModuleNumber differently at the beginning of

each session. In particular, if you set $ModuleNumber = 10^10 $SessionID, you should avoid

any conflicts. The global variable $SessionID should give a unique number which characterizes

a particular Mathematica session on a particular computer. The value of this variable is deter-

mined from such quantities as the absolute date and time, the ID of your computer, and, if

appropriate, the ID of the particular Mathematica process.

$ModuleNumber the serial number for symbols generated by Module and
Unique

$SessionID a number that should be different for every Mathematica
session

Variables to be used in determining serial numbers for generated symbols.

Having generated appropriate symbols to represent the local variables you have specified,

Module@vars, bodyD then has to evaluate body using these symbols. The first step is to take the

actual expression body as it appears inside the module, and effectively to use With to replace all

occurrences of each local variable name with the appropriate generated symbol. After this is

done, Module actually performs the evaluation of the resulting expression.

186 Core Language

Having generated appropriate symbols to represent the local variables you have specified,

Module@vars, bodyD then has to evaluate body using these symbols. The first step is to take the

actual expression body as it appears inside the module, and effectively to use With to replace all

occurrences of each local variable name with the appropriate generated symbol. After this is

done, Module actually performs the evaluation of the resulting expression.

An important point to note is that Module@vars, bodyD inserts generated symbols only into the

actual expression body. It does not, for example, insert such symbols into code that is called

from body, but does not explicitly appear in body.

"Blocks and Local Values" discusses how you can use Block to set up “local values” which work

in a different way.

Since x does not appear explicitly in the body of the module, the local value is not used.

In[17]:= tmp = x^2 + 1; Module@8x = 4<, tmpD

Out[17]= 1 + x2

Most of the time, you will probably set up modules by giving explicit Mathematica input of the

form Module@vars, bodyD. Since the function Module has the attribute HoldAll, the form of body

will usually be kept unevaluated until the module is executed.

It is, however, possible to build modules dynamically in Mathematica. The generation of new

symbols, and their insertion into body are always done only when a module is actually executed,

not when the module is first given as Mathematica input.

This evaluates the body of the module immediately, making x appear explicitly.

In[18]:= tmp = x^2 + 1; Module@8x = 4<, Evaluate@tmpDD

Out[18]= 17

Variables in Pure Functions and Rules

Module and With allow you to give a specific list of symbols whose names you want to treat as

local. In some situations, however, you want to automatically treat certain symbol names as

local.

For example, if you use a pure function such as Function@8x<, x + aD, you want x to be treated

as a “formal parameter”, whose specific name is local. The same is true of the x that appears in

a rule like f@x_D -> x^2, or a definition like f@x_D := x^2.

Mathematica uses a uniform scheme to make sure that the names of formal parameters which

appear in constructs like pure functions and rules are kept local, and are never confused with

global names. The basic idea is to replace formal parameters when necessary by symbols with

names of the form x$. By convention, x$ is never used as a global name.

Core Language 187

Mathematica uses a uniform scheme to make sure that the names of formal parameters which

appear in constructs like pure functions and rules are kept local, and are never confused with

global names. The basic idea is to replace formal parameters when necessary by symbols with

names of the form x$. By convention, x$ is never used as a global name.

Here is a nested pure function.

In[1]:= Function@8x<, Function@8y<, x + yDD

Out[1]= Function@8x<, Function@8y<, x + yDD

Mathematica renames the formal parameter y in the inner function to avoid conflict with the
global object y.

In[2]:= %@2 yD

Out[2]= Function@8y$<, 2 y + y$D

The resulting pure function behaves as it should.

In[3]:= %@aD

Out[3]= a + 2 y

In general, Mathematica renames the formal parameters in an object like Function@vars, bodyD

whenever body is modified in any way by the action of another pure function.

The formal parameter y is renamed because the body of the inner pure function was changed.

In[4]:= Function@8x<, Function@8y<, x + yDD@aD

Out[4]= Function@8y$<, a + y$D

Since the body of the inner function does not change, the formal parameter is not renamed.

In[5]:= Function@8x<, x + Function@8y<, y^2DD@aD

Out[5]= a + FunctionA8y<, y2E

Mathematica renames formal parameters in pure functions more liberally than is strictly neces-

sary. In principle, renaming could be avoided if the names of the formal parameters in a particu-

lar function do not actually conflict with parts of expressions substituted into the body of the

pure function. For uniformity, however, Mathematica still renames formal parameters even in

such cases.

188 Core Language

In this case, the formal parameter x in the inner function shields the body of the function, so no
renaming is needed.

In[6]:= Function@8x<, Function@8x<, x + yDD@aD

Out[6]= Function@8x<, x + yD

Here are three nested functions.

In[7]:= Function@8x<, Function@8y<, Function@8z<, x + y + zDDD

Out[7]= Function@8x<, Function@8y<, Function@8z<, x + y + zDDD

Both inner functions are renamed in this case.

In[8]:= %@aD

Out[8]= Function@8y$<, Function@8z$<, a + y$ + z$DD

As mentioned in "Pure Functions", pure functions in Mathematica are like l expressions in

formal logic. The renaming of formal parameters allows Mathematica pure functions to repro-

duce all the semantics of standard l expressions faithfully.

Function@8x,…<,bodyD local parameters

lhs->rhs and lhs:>rhs local pattern names

lhs=rhs and lhs:=rhs local pattern names

With@8x=x0,…<,bodyD local constants

Module@8x,…<,bodyD local variables

Scoping constructs in Mathematica.

Mathematica has several “scoping constructs” in which certain names are treated as local.

When you mix these constructs in any way, Mathematica does appropriate renamings to avoid

conflicts.

Mathematica renames the formal parameter of the pure function to avoid a conflict.

In[9]:= With@8x = a<, Function@8a<, a + xDD

Out[9]= Function@8a$<, a$ + aD

Here the local constant in the inner With is renamed to avoid a conflict.

In[10]:= With@8x = y<, Hold@With@8y = 4<, x + yDDD

Out[10]= Hold@With@8y$ = 4<, y + y$DD

There is no conflict between names in this case, so no renaming is done.

Core Language 189

There is no conflict between names in this case, so no renaming is done.

In[11]:= With@8x = y<, Hold@With@8z = x + 2<, z + 2DDD

Out[11]= Hold@With@8z = y + 2<, z + 2DD

The local variable y in the module is renamed to avoid a conflict.

In[12]:= With@8x = y<, Hold@Module@8y<, x + yDDD

Out[12]= Hold@Module@8y$<, y + y$DD

If you execute the module, however, the local variable is renamed again to make its name
unique.

In[13]:= ReleaseHold@%D

Out[13]= y + y$1

Mathematica treats transformation rules as scoping constructs, in which the names you give to

patterns are local. You can set up named patterns either using x_, x__ and so on, or using

x : patt.

The x in the h goes with the x_, and is considered local to the rule.

In[14]:= With@8x = 5<, g@x_, xD -> h@xDD

Out[14]= g@x_, 5D Ø h@xD

In a rule like f@x_D -> x + y, the x which appears on the right-hand side goes with the name of

the x_ pattern. As a result, this x is treated as a variable local to the rule, and cannot be modi-

fied by other scoping constructs.

The y, on the other hand, is not local to the rule, and can be modified by other scoping con-

structs. When this happens, Mathematica renames the patterns in the rule to prevent the

possibility of a conflict.

Mathematica renames the x in the rule to prevent a conflict.

In[15]:= With@8w = x<, f@x_D -> w + xD

Out[15]= f@x$_D Ø x + x$

When you use With on a scoping construct, Mathematica automatically performs appropriate

renamings. In some cases, however, you may want to make substitutions inside scoping con-

structs, without any renaming. You can do this using the ê. operator.

When you substitute for y using With, the x in the pure function is renamed to prevent a
conflict.

190 Core Language

When you substitute for y using With, the x in the pure function is renamed to prevent a
conflict.

In[16]:= With@8y = x + a<, Function@8x<, x + yDD

Out[16]= Function@8x$<, x$ + Ha + xLD

If you use ê. rather than With, no such renaming is done.

In[17]:= Function@8x<, x + yD ê. y -> a + x

Out[17]= Function@8x<, x + Ha + xLD

When you apply a rule such as f@x_D -> rhs, or use a definition such as f@x_D := rhs, Mathemat-

ica implicitly has to substitute for x everywhere in the expression rhs. It effectively does this

using the ê. operator. As a result, such substitution does not respect scoping constructs. How-

ever, when the insides of a scoping construct are modified by the substitution, the other vari-

ables in the scoping construct are renamed.

This defines a function for creating pure functions.

In[18]:= mkfun@var_, body_D := Function@8var<, bodyD

The x and x^2 are explicitly inserted into the pure function, effectively by using the ê. opera-
tor.

In[19]:= mkfun@x, x^2D

Out[19]= FunctionA8x<, x2E

This defines a function that creates a pair of nested pure functions.

In[20]:= mkfun2@var_, body_D := Function@8x<, Function@8var<, body + xDD

The x in the outer pure function is renamed in this case.

In[21]:= mkfun2@x, x^2D

Out[21]= FunctionA8x$<, FunctionA8x<, x2 + x$EE

Dummy Variables in Mathematics

When you set up mathematical formulas, you often have to introduce various kinds of local

objects or "dummy variables". You can treat such dummy variables using modules and other

Mathematica scoping constructs.

Integration variables are a common example of dummy variables in mathematics. When you

write down a formal integral, conventional notation requires you to introduce an integration

variable with a definite name. This variable is essentially "local" to the integral, and its name,

while arbitrary, must not conflict with any other names in your mathematical expression.

Core Language 191

Integration variables are a common example of dummy variables in mathematics. When you

write down a formal integral, conventional notation requires you to introduce an integration

variable with a definite name. This variable is essentially "local" to the integral, and its name,

while arbitrary, must not conflict with any other names in your mathematical expression.

Here is a function for evaluating an integral.

In[1]:= p@n_D := Integrate@f@sD s^n, 8s, 0, 1<D

The s here conflicts with the integration variable.

In[2]:= p@s + 1D

Out[2]= ‡
0

1
s1+s f@sD „s

Here is a definition with the integration variable specified as local to a module.

In[3]:= pm@n_D := Module@8s<, Integrate@f@sD s^n, 8s, 0, 1<DD

Since you have used a module, Mathematica automatically renames the integration variable to
avoid a conflict.

In[4]:= pm@s + 1D

Out[4]= ‡
0

1
s$201+s f@s$20D „s$20

In many cases, the most important issue is that dummy variables should be kept local, and

should not interfere with other variables in your mathematical expression. In some cases,

however, what is instead important is that different uses of the same dummy variable should

not conflict.

Repeated dummy variables often appear in products of vectors and tensors. With the

"summation convention", any vector or tensor index that appears exactly twice is summed over

all its possible values. The actual name of the repeated index never matters, but if there are

two separate repeated indices, it is essential that their names do not conflict.

This sets up the repeated index j as a dummy variable.

In[5]:= q@i_D := Module@8j<, a@i, jD b@jDD

The module gives different instances of the dummy variable different names.

In[6]:= q@i1D q@i2D

Out[6]= a@i1, j$29D a@i2, j$30D b@j$29D b@j$30D

There are many situations in mathematics where you need to have variables with unique

names. One example is in representing solutions to equations. With an equation like cosHxL = 1,

there are an infinite number of solutions, each of the form x = 2 p n, where n is a dummy variable

that can be equal to any integer.

192 Core Language

There are many situations in mathematics where you need to have variables with unique

names. One example is in representing solutions to equations. With an equation like cosHxL = 1,

there are an infinite number of solutions, each of the form x = 2 p n, where n is a dummy variable

that can be equal to any integer.

When Mathematica solves this equation, it creates a dummy variable.

In[7]:= Reduce@Cos@xD == 1, xD

Out[7]= C@1D œ Integers && x ã 2 p C@1D

Here is a way to make the dummy variable unique.

In[8]:= Reduce@Cos@xD == 1, x, GeneratedParameters :> Unique@CDD

Out[8]= C$489@1D œ Integers && x ã 2 p C$489@1D

Another place where unique objects are needed is in representing "constants of integration".

When you do an integral, you are effectively solving an equation for a derivative. In general,

there are many possible solutions to the equation, differing by additive "constants of integra-

tion". The standard Mathematica Integrate function always returns a solution with no constant

of integration. But if you were to introduce constants of integration, you would need to use

modules to make sure that they are always unique.

Blocks and Local Values

Modules in Mathematica allow you to treat the names of variables as local. Sometimes, how-

ever, you want the names to be global, but values to be local. You can do this in Mathematica

using Block.

Block@8x,y,…<,bodyD evaluate body using local values for x, y, …
Block@8x=x0,y=y0,…<,bodyD assign initial values to x, y, …

Setting up local values.

Here is an expression involving x.

In[1]:= x^2 + 3

Out[1]= 3 + x2

Core Language 193

This evaluates the previous expression, using a local value for x.

In[2]:= Block@8x = a + 1<, %D

Out[2]= 3 + H1 + aL2

There is no global value for x.

In[3]:= x

Out[3]= x

As described in "Modules and Local Variables", the variable x in a module such as

Module@8x<, bodyD is always set up to refer to a unique symbol, different each time the module

is used, and distinct from the global symbol x. The x in a block such as Block@8x<, bodyD is,

however, taken to be the global symbol x. What the block does is to make the value of x local.

The value x had when you entered the block is always restored when you exit the block. And

during the execution of the block, x can take on any value.

This sets the symbol t to have value 17.

In[4]:= t = 17

Out[4]= 17

Variables in modules have unique local names.

In[5]:= Module@8t<, Print@tDD

t$1

In blocks, variables retain their global names, but can have local values.

In[6]:= Block@8t<, Print@tDD

t

t is given a local value inside the block.

In[7]:= Block@8t<, t = 6; t^4 + 1D

Out[7]= 1297

When the execution of the block is over, the previous value of t is restored.

In[8]:= t

Out[8]= 17

Blocks in Mathematica effectively allow you to set up "environments" in which you can temporar-

ily change the values of variables. Expressions you evaluate at any point during the execution

of a block will use the values currently defined for variables in the block. This is true whether

the expressions appear directly as part of the body of the block, or are produced at any point in

its evaluation.

194 Core Language

Blocks in Mathematica effectively allow you to set up "environments" in which you can temporar-

ily change the values of variables. Expressions you evaluate at any point during the execution

of a block will use the values currently defined for variables in the block. This is true whether

the expressions appear directly as part of the body of the block, or are produced at any point in

its evaluation.

This defines a delayed value for the symbol u.

In[9]:= u := x^2 + t^2

If you evaluate u outside a block, the global value for t is used.

In[10]:= u

Out[10]= 289 + x2

You can specify a temporary value for t to use inside the block.

In[11]:= Block@8t = 5<, u + 7D

Out[11]= 32 + x2

An important implicit use of Block in Mathematica is for iteration constructs such as Do, Sum

and Table. Mathematica effectively uses Block to set up local values for the iteration variables

in all of these constructs.

Sum automatically makes the value of the iterator t local.

In[12]:= Sum@t^2, 8t, 10<D

Out[12]= 385

The local values in iteration constructs are slightly more general than in Block. They handle
variables such as a@1D, as well as pure symbols.

In[13]:= Sum@a@1D^2, 8a@1D, 10<D

Out[13]= 385

When you set up functions in Mathematica, it is sometimes convenient to have "global vari-

ables" which can affect the functions without being given explicitly as arguments. Thus, for

example, Mathematica itself has a global variable $RecursionLimit which affects the evalua-

tion of all functions, but is never explicitly given as an argument.

Mathematica will usually keep any value you define for a global variable until you explicitly

change it. Often, however, you want to set up values which last only for the duration of a

particular computation, or part of a computation. You can do this by making the values local to

a Mathematica block.

Core Language 195

Mathematica will usually keep any value you define for a global variable until you explicitly

change it. Often, however, you want to set up values which last only for the duration of a

particular computation, or part of a computation. You can do this by making the values local to

a Mathematica block.

This defines a function which depends on the "global variable" t.

In[14]:= f@x_D := x^2 + t

In this case, the global value of t is used.

In[15]:= f@aD

Out[15]= 17 + a2

Inside a block, you can set up a local value for t.

In[16]:= Block@8t = 2<, f@bDD

Out[16]= 2 + b2

You can use global variables not only to set parameters in functions, but also to accumulate

results from functions. By setting up such variables to be local to a block, you can arrange to

accumulate results only from functions called during the execution of the block.

This function increments the global variable t, and returns its current value.

In[17]:= h@x_D := Ht += x^2L

If you do not use a block, evaluating h@aD changes the global value of t.

In[18]:= h@aD

Out[18]= 17 + a2

With a block, only the local value of t is affected.

In[19]:= Block@8t = 0<, h@cDD

Out[19]= c2

The global value of t remains unchanged.

In[20]:= t

Out[20]= 17 + a2

When you enter a block such as Block@8x<, bodyD, any value for x is removed. This means that

you can in principle treat x as a "symbolic variable" inside the block. However, if you explicitly

return x from the block, it will be replaced by its value outside the block as soon as it is evalu-

ated.

196 Core Language

When you enter a block such as Block@8x<, bodyD, any value for x is removed. This means that

you can in principle treat x as a "symbolic variable" inside the block. However, if you explicitly

return x from the block, it will be replaced by its value outside the block as soon as it is evalu-

ated.

The value of t is removed when you enter the block.

In[21]:= Block@8t<, Print@Expand@Ht + 1L^2DDD

1 + 2 t + t2

If you return an expression involving t, however, it is evaluated using the global value for t.

In[22]:= Block@8t<, t^2 - 3D

Out[22]= -3 + I17 + a2M
2

Blocks Compared with Modules

When you write a program in Mathematica, you should always try to set it up so that its parts

are as independent as possible. In this way, the program will be easier for you to understand,

maintain and add to.

One of the main ways to ensure that different parts of a program do not interfere is to give

their variables only a certain "scope". Mathematica provides two basic mechanisms for limiting

the scope of variables: modules and blocks.

In writing actual programs, modules are far more common than blocks. When scoping is

needed in interactive calculations, however, blocks are often convenient.

Module@vars,bodyD lexical scoping

Block@vars,bodyD dynamic scoping

Mathematica variable scoping mechanisms.

Most traditional computer languages use a so-called "lexical scoping" mechanism for variables,

which is analogous to the module mechanism in Mathematica. Some symbolic computer lan-

guages such as LISP also allow "dynamic scoping", analogous to Mathematica blocks.

When lexical scoping is used, variables are treated as local to a particular section of the code in

a program. In dynamic scoping, the values of variables are local to a part of the execution

history of the program.

In compiled languages like C and Java, there is a very clear distinction between "code" and

"execution history". The symbolic nature of Mathematica makes this distinction slightly less

clear, since "code" can in principle be built up dynamically during the execution of a program.

Core Language 197

In compiled languages like C and Java, there is a very clear distinction between "code" and

"execution history". The symbolic nature of Mathematica makes this distinction slightly less

clear, since "code" can in principle be built up dynamically during the execution of a program.

What Module@vars, bodyD does is to treat the form of the expression body at the time when the

module is executed as the "code" of a Mathematica program. Then when any of the vars explic-

itly appears in this "code", it is considered to be local.

Block@vars, bodyD does not look at the form of the expression body. Instead, throughout the

evaluation of body, the block uses local values for the vars.

This defines m in terms of i.

In[1]:= m = i^2

Out[1]= i2

The local value for i in the block is used throughout the evaluation of i + m.

In[2]:= Block@8i = a<, i + mD

Out[2]= a + a2

Here only the i that appears explicitly in i + m is treated as a local variable.

In[3]:= Module@8i = a<, i + mD

Out[3]= a + i2

Contexts

It is always a good idea to give variables and functions names that are as explicit as possible.

Sometimes, however, such names may get inconveniently long.

In Mathematica, you can use the notion of "contexts" to organize the names of symbols. Con-

texts are particularly important in Mathematica packages which introduce symbols whose

names must not conflict with those of any other symbols. If you write Mathematica packages,

or make sophisticated use of packages that others have written, then you will need to know

about contexts.

The basic idea is that the full name of any symbol is broken into two parts: a context and a

short name. The full name is written as context`short, where the ` is the backquote or grave

accent character (ASCII decimal code 96), called a "context mark" in Mathematica.

Here is a symbol with short name x, and context aaaa.

198 Core Language

Here is a symbol with short name x, and context aaaa.

In[1]:= aaaa`x

Out[1]= aaaa`x

You can use this symbol just like any other symbol.

In[2]:= %^2 - %

Out[2]= -aaaa`x + aaaa`x2

You can for example define a value for the symbol.

In[3]:= aaaa`x = 78

Out[3]= 78

Mathematica treats a`x and b`x as completely different symbols.

In[4]:= a`x == b`x

Out[4]= a`x ã b`x

It is typical to have all the symbols that relate a particular topic in a particular context. Thus,

for example, symbols that represent physical units might have a context PhysicalUnits`. Such

symbols might have full names like PhysicalUnits`Joule or PhysicalUnits`Mole.

Although you can always refer to a symbol by its full name, it is often convenient to use a

shorter name.

At any given point in a Mathematica session, there is always a current context $Context. You

can refer to symbols that are in this context simply by giving their short names, unless the

symbol is shadowed by the symbol with the same short name on the $ContextPath. If a

symbol with the given short name exists on the context path, it will be used instead of the

symbol in the current context.

The default context for Mathematica sessions is Global`.

In[5]:= $Context

Out[5]= Global`

Short names are sufficient for symbols that are in the current context.

In[6]:= 8x, Global`x<

Out[6]= 8x, x<

Contexts in Mathematica work somewhat like file directories in many operating systems. You

can always specify a particular file by giving its complete name, including its directory. But at

any given point, there is usually a current working directory, analogous to the current Mathemat-

ica context. Files that are in this directory can then be specified just by giving their short

names.

Core Language 199

Contexts in Mathematica work somewhat like file directories in many operating systems. You

can always specify a particular file by giving its complete name, including its directory. But at

any given point, there is usually a current working directory, analogous to the current Mathemat-

ica context. Files that are in this directory can then be specified just by giving their short

names.

Like directories in many operating systems, contexts in Mathematica can be hierarchical. Thus,

for example, the full name of a symbol can involve a sequence of context names, as in

c1 `c2 `c3 `name.

context ` name or c1 ` c2 ` … ` name a symbol in an explicitly specified context

` name a symbol in the current context

` context ` name or
` c1 ` c2 ` … ` name

a symbol in a specific context relative to the current context

name a symbol in the current context, or found on the context
search path

Specifying symbols in various contexts.

Here is a symbol in the context a`b`.

In[7]:= a`b`x

Out[7]= a`b`x

When you start a Mathematica session, the default current context is Global`. Symbols that

you introduce will usually be in this context. However, built-in symbols such as Pi are in the

context System`.

In order to let you easily access not only symbols in the context Global`, but also in contexts

such as System`, Mathematica supports the notion of a context search path. At any point in a

Mathematica session, there is both a current context $Context, and also a current context

search path $ContextPath. The idea of the search path is to allow you to type in the short

name of a symbol, then have Mathematica search in a sequence of contexts to find a symbol

with that short name.

The context search path for symbols in Mathematica is analogous to the "search path" for

program files provided in operating systems.

200 Core Language

The default context path includes the contexts for system-defined symbols.

In[8]:= $ContextPath

Out[8]= 8System`, Global`<

When you type in Pi, Mathematica interprets it as the symbol with full name System`Pi.

In[9]:= Context@PiD

Out[9]= System`

Context@sD the context of a symbol

$Context the current context in a Mathematica session

$ContextPath the current context search path

Contexts@D a list of all contexts

Finding contexts and context search paths.

When you use contexts in Mathematica, there is no reason that two symbols which are in differ-

ent contexts cannot have the same short name. Thus, for example, you can have symbols with

the short name Mole both in the context PhysicalUnits` and in the context

BiologicalOrganisms`.

There is, however, then the question of which symbol you actually get when you type in only

the short name Mole. The answer to this question is determined by which of the contexts

comes first in the sequence of contexts listed in the context search path.

This introduces two symbols, both with short name Mole.

In[10]:= 8PhysicalUnits`Mole, BiologicalOrganisms`Mole<

Out[10]= 8PhysicalUnits`Mole, BiologicalOrganisms`Mole<

This adds two additional contexts to $ContextPath. Typically, Mathematica adds new contexts
to the beginning of $ContextPath.

In[11]:= $ContextPath = Join@8"PhysicalUnits`", "BiologicalOrganisms`"<, $ContextPathD

Out[11]= 8PhysicalUnits`, BiologicalOrganisms`, System`, Global`<

Now if you type in Mole, you get the symbol in the context PhysicalUnits`.

In[12]:= Context@MoleD

Out[12]= PhysicalUnits`

In general, when you type in a short name for a symbol, Mathematica assumes that you want

the symbol with that name whose context appears earliest in the context search path. As a

result, symbols with the same short name whose contexts appear later in the context search

path are effectively "shadowed". To refer to these symbols, you need to use their full names.

Core Language 201

In general, when you type in a short name for a symbol, Mathematica assumes that you want

the symbol with that name whose context appears earliest in the context search path. As a

result, symbols with the same short name whose contexts appear later in the context search

path are effectively "shadowed". To refer to these symbols, you need to use their full names.

Mathematica issues a message when you introduce new symbols that "shadow" existing sym-

bols with your current choice for $ContextPath. In addition, in the notebook front end Mathe-

matica warns you of shadowed symbols by coloring them red.

This introduces a symbol with short name Mole in the context Global`. Mathematica warns
you that the new symbol shadows existing symbols with short name Mole.

In[13]:= Global`Mole

Global`Mole::shdw:
Symbol Mole appears in multiple contexts 8Global`, PhysicalUnits`, BiologicalOrganisms`<;

definitions in context Global` may shadow or be shadowed by other definitions. à
Out[13]= Global`Mole

Now when you type in Mole, you get the symbol that appears first in the context path,
PhysicalUnits`.

In[14]:= Context@MoleD

Out[14]= PhysicalUnits`

If you once introduce a symbol which shadows existing symbols, it will continue to do so until

you either rearrange $ContextPath, or explicitly remove the symbol. You should realize that it

is not sufficient to clear the value of the symbol; you need to actually remove the symbol

completely from Mathematica. You can do this using the function Remove@sD.

Clear@sD clear the values of a symbol

Remove@sD remove a symbol completely from the system

Clearing and removing symbols in Mathematica.

This removes the symbol PhysicalUnits`Mole.

In[15]:= Remove@MoleD

202 Core Language

Now if you type in Mole, you get the symbol BiologicalOrganisms`Mole.

In[16]:= Context@MoleD

Out[16]= BiologicalOrganisms`

When Mathematica prints out the name of a symbol, it has to choose whether to give the full

name, or just the short name. What it does is to give whatever version of the name you would

have to type in to get the particular symbol, given your current settings for $Context and

$ContextPath.

The short name is printed for the first symbol, so this would give that symbol if you typed it in.

In[17]:= 8BiologicalOrganisms`Mole, Global`Mole<

Out[17]= 8Mole, Global`Mole<

If you type in a short name for which there is no symbol either in the current context, or in any

context on the context search path, then Mathematica has to create a new symbol with this

name. It always puts new symbols of this kind in the current context, as specified by $Context.

This introduces the new symbol with short name tree.

In[18]:= tree

Out[18]= tree

Mathematica puts tree in the current context Global`.

In[19]:= Context@treeD

Out[19]= Global`

Contexts and Packages

A typical package written in Mathematica introduces several new symbols intended for use

outside the package. These symbols may correspond for example to new functions or new

objects defined in the package.

There is a general convention that all new symbols introduced in a particular package are put

into a context whose name is related to the name of the package. When you read in the pack-

age, it adds this context at the beginning of your context search path $ContextPath.

Core Language 203

This reads in a package for proving primality.

In[1]:= << PrimalityProving`

The package prepends its context to $ContextPath.

In[2]:= $ContextPath

Out[2]= 8PrimalityProving`, System`, Global`<

The symbol ProvablePrimeQ is in the context set up by the package.

In[3]:= Context@ProvablePrimeQD

Out[3]= PrimalityProving`

You can refer to the symbol using its short name.

In[4]:= ProvablePrimeQ@2143D

Out[4]= True

The full names of symbols defined in packages are often quite long. In most cases, however,

you will only need to use their short names. The reason for this is that after you have read in a

package, its context is added to $ContextPath, so the context is automatically searched when-

ever you type in a short name.

There is a complication, however, when two symbols with the same short name appear in two

different packages. In such a case, Mathematica will warn you when you read in the second

package. It will tell you which symbols will be "shadowed" by the new symbols that are being

introduced.

The symbol ProvablePrimeQ in the context PrimalityProving` is shadowed by the symbol
with the same short name in the new package.

In[5]:= << NewPrimalityProving`

ProvablePrimeQ::shdw:
Symbol ProvablePrimeQ appears in multiple contexts 8NewPrimalityProving`, PrimalityProving`<;

definitions in context NewPrimalityProving` may shadow or be shadowed by other definitions. à

You can access the shadowed symbol by giving its full name.

In[6]:= PrimalityProving`ProvablePrimeQ@2143D

Out[6]= True

204 Core Language

Conflicts can occur not only between symbols in different packages, but also between symbols

in packages and symbols that you introduce directly in your Mathematica session. If you define

a symbol in your current context, then this symbol may become shadowed by another symbol

with the same short name in packages that you read in. The reason for this is that Mathematica

searches for symbols in contexts on the context search path before looking in the current con-

text.

This defines a function in the current context.

In[7]:= Div@f_D = 1 ê f

Out[7]=
1

f

The Div function in your current context will be shadowed by the one in the package.

In[8]:= << VectorAnalysis`

Div::shdw: Symbol Div appears in multiple contexts 8VectorAnalysis`, Global`<; definitions
in context VectorAnalysis` may shadow or be shadowed by other definitions. à

This sets up the coordinate system for vector analysis.

In[9]:= SetCoordinates@Cartesian@x, y, zDD

Out[9]= Cartesian@x, y, zD

The Div from the package is used.

In[10]:= Div@8x, y^2, x<D

Out[10]= 1 + 2 y

If you get into the situation where unwanted symbols are shadowing the symbols you want, the

best thing to do is usually to get rid of the unwanted symbols using Remove@sD. An alternative

that is sometimes appropriate is to rearrange the entries in $ContextPath and to reset the

value of $Context so as to make the contexts that contain the symbols you want be the ones

that are searched first.

$Packages a list of the contexts corresponding to all packages loaded
into your Mathematica session

Getting a list of packages.

Core Language 205

Mathematica Packages

One of the most important features of Mathematica is that it is an extensible system. There is a

certain amount of mathematical and other functionality that is built into Mathematica. But by

using the Mathematica language, it is always possible to add more functionality.

For many kinds of calculations, what is built into the standard version of Mathematica will be

quite sufficient. However, if you work in a particular specialized area, you may find that you

often need to use certain functions that are not built into Mathematica.

In such cases, you may well be able to find a Mathematica package that contains the functions

you need. Mathematica packages are files written in the Mathematica language. They consist of

collections of Mathematica definitions which "teach" Mathematica about particular application

areas.

<<package read in a Mathematica package

Reading in Mathematica packages.

If you want to use functions from a particular package, you must first read the package into

Mathematica. The details of how to do this are discussed in "External Programs". There are

various conventions that govern the names you should use to refer to packages.

This command reads in a particular Mathematica package.

In[1]:= << PrimalityProving`

The ProvablePrimeQ function is defined in the package.

In[2]:= ProvablePrimeQ@1093D

Out[2]= True

There are a number of subtleties associated with such issues as conflicts between names of

functions in different packages. These are discussed in "Contexts and Packages". One point to

note, however, is that you should not refer to a function that you will read from a package

before actually reading in the package. If you do this by mistake, Mathematica will issue a

message warning about the duplicate names and use the one last defined. This means that

your version of the function will not be used; it will be the one from the package. You can

execute the command Remove@"name"D to get rid of the package function.

206 Core Language

Remove@"name"D remove a function that has been introduced in error

Making sure that Mathematica uses correct definitions from packages.

The fact that Mathematica can be extended using packages means that the boundary of exactly

what is "part of Mathematica" is quite blurred. As far as usage is concerned, there is actually no

difference between functions defined in packages and functions that are fundamentally built

into Mathematica.

In fact, a fair number of the functions built into the core Mathematica system are actually

implemented as Mathematica packages. However, on most Mathematica systems, the neces-

sary packages have been preloaded, so that the functions they define are always present.

To blur the boundary of what is part of Mathematica even further, "Automatic Loading of Pack-

ages" describes how you can tell Mathematica automatically to load a particular package if you

ever try to use a certain function. If you never use that function, then it will not be present. But

as soon as you try to use it, its definition will be read in from a Mathematica package.

As a practical matter, the functions that should be considered "part of Mathematica" are proba-

bly those that are present in all Mathematica systems. It is these functions that are primarily

discussed in this documentation.

Nevertheless, most versions of Mathematica come with a standard set of Mathematica pack-

ages, which contain definitions for many more functions. To use these functions, you must

usually read in the necessary packages explicitly.

Core Language 207

You can use the Documentation Center to get information on Mathematica 7 Standard Extra
Packages.

It is possible to set your Mathematica system up so that particular packages are preloaded, or

are automatically loaded when needed. If you do this, then there may be many functions that

appear as standard in your version of Mathematica, but which are not documented in the Mathe-

matica system reference pages.

One point that should be mentioned is the relationship between packages and notebooks. Both

are stored as files on your computer system, and both can be read into Mathematica. However,

a notebook is intended to be displayed, typically with a notebook interface, while a package is

intended only to be used as Mathematica input. Many notebooks in fact contain sections that

can be considered as packages, and which contain sequences of definitions intended for input to

Mathematica. There are also capabilities that allow packages set up to correspond to notebooks

to be maintained automatically.

208 Core Language

intended only to be used as Mathematica input. Many notebooks in fact contain sections that

can be considered as packages, and which contain sequences of definitions intended for input to

Mathematica. There are also capabilities that allow packages set up to correspond to notebooks

to be maintained automatically.

Setting Up Mathematica Packages

In a typical Mathematica package, there are generally two kinds of new symbols that are intro-

duced. The first kind are ones that you want to “export” for use outside the package. The sec-

ond kind are ones that you want to use only internally within the package. You can distinguish

these two kinds of symbols by putting them in different contexts.

The usual convention is to put symbols intended for export in a context with a name Package`

that corresponds to the name of the package. Whenever the package is read in, it adds this

context to the context search path, so that the symbols in this context can be referred to by

their short names.

Symbols that are not intended for export, but are instead intended only for internal use within

the package, are conventionally put into a context with the name Package`Private`. This con-

text is not added to the context search path. As a result, the symbols in this context cannot be

accessed except by giving their full names.

Package ` symbols for export

Package `Private` symbols for internal use only

System` built-in Mathematica symbols

Needed1 ` , Needed2 ` , … other contexts needed in the package

Contexts conventionally used in Mathematica packages.

There is a standard sequence of Mathematica commands that is typically used to set up the

contexts in a package. These commands set the values of $Context and $ContextPath so that

the new symbols which are introduced are created in the appropriate contexts.

Core Language 209

BeginPackage@"Package`"D set Package ` to be the current context, and put only
System` on the context search path

f::usage="text" , … introduce the objects intended for export (and no others)

Begin@"`Private`"D set the current context to Package `Private`

fAargsE=value , … give the main body of definitions in the package

End@D revert to the previous context (here Package `)

EndPackage@D end the package, prepending the Package ` to the context
search path

The standard sequence of context control commands in a package.

BeginPackage["Collatz`"]

Collatz::usage =
 "Collatz[n] gives a list of the iterates in the 3n+1 problem,
 starting from n. The conjecture is that this sequence always
 terminates."

Begin["`Private`"]

Collatz[1] := {1}

Collatz[n_Integer] := Prepend[Collatz[3 n + 1], n] /; OddQ[n] && n > 0

Collatz[n_Integer] := Prepend[Collatz[n/2], n] /; EvenQ[n] && n > 0

End[]

EndPackage[]

The sample package Collatz.m.

Defining usage messages at the beginning of a package is the standard way of making sure

that symbols you want to export are created in the appropriate context. The way this works is

that in defining these messages, the only symbols you mention are exactly the ones you want

to export. These symbols are then created in the context Package`, which is then current.

In the actual definitions of the functions in a package, there are typically many new symbols,

introduced as parameters, temporary variables, and so on. The convention is to put all these

symbols in the context Package`Private`, which is not put on the context search path when the

package is read in.

210 Core Language

This reads in the sample package given above.

In[1]:= << ExampleData/Collatz.m

The EndPackage command in the package adds the context associated with the package to the
context search path.

In[2]:= $ContextPath

Out[2]= 8Collatz`, Global`, System`<

The Collatz function was created in the context Collatz`.

In[3]:= Context@CollatzD

Out[3]= Collatz`

The parameter n is put in the private context Collatz`Private`.

In[4]:= ? Collatz`Private`*

Collatz`Private`n

In the Collatz package, the functions that are defined depend only on built-in Mathematica

functions. Often, however, the functions defined in one package may depend on functions

defined in another package.

Two things are needed to make this work. First, the other package must be read in, so that the

functions needed are defined. And second, the context search path must include the context

that these functions are in.

You can explicitly tell Mathematica to read in a package at any point using the command

<< context`. ("Files for Packages" discusses the tricky issue of translation from system-indepen-

dent context names to system-dependent file names.) Often, however, you want to set it up so

that a particular package is read in only if it is needed. The command Needs@"context`"D tells

Mathematica to read in a package if the context associated with that package is not already in

the list $Packages.

Core Language 211

GetA"context`"E or <<context ` read in the package corresponding to the specified context

Needs@"context`"D read in the package if the specified context is not already
in $Packages

BeginPackage@"Package`",8" Needed1 ` ", … <D

begin a package, specifying that certain contexts in addi-
tion to System` are needed

Functions for specifying interdependence of packages.

If you use BeginPackage@"Package`"D with a single argument, Mathematica puts on the context

search path only the Package` context and the contexts for built-in Mathematica symbols. If the

definitions you give in your package involve functions from other packages, you must make

sure that the contexts for these packages are also included in your context search path. You

can do this by giving a list of the additional contexts as a second argument to BeginPackage.

BeginPackage automatically calls Needs on these contexts, reading in the corresponding pack-

ages if necessary, and then making sure that the contexts are on the context search path.

Begin@"context`"D switch to a new current context

End@D revert to the previous context

Context manipulation functions.

Executing a function like Begin which manipulates contexts changes the way that Mathematica

interprets names you type in. However, you should realize that the change is effective only in

subsequent expressions that you type in. The point is that Mathematica always reads in a

complete input expression, and interprets the names in it, before it executes any part of the

expression. As a result, by the time Begin is executed in a particular expression, the names in

the expression have already been interpreted, and it is too late for Begin to have an effect.

The fact that context manipulation functions do not have an effect until the next complete

expression is read in means that you must be sure to give those functions as separate expres-

sions, typically on separate lines, when you write Mathematica packages.

The name x is interpreted before this expression is executed, so the Begin has no effect.

In[5]:= Begin@"a`"D; Print@Context@xDD; End@D

Global`
Out[5]= a`

Context manipulation functions are used primarily as part of packages intended to be read into

Mathematica. Sometimes, however, you may find it convenient to use such functions interac-

tively.

212 Core Language

Context manipulation functions are used primarily as part of packages intended to be read into

Mathematica. Sometimes, however, you may find it convenient to use such functions interac-

tively.

This can happen, for example, if you go into a dialog, say using TraceDialog, while executing a

function defined in a package. The parameters and temporary variables in the function are

typically in a private context associated with the package. Since this context is not on your

context search path, Mathematica will print out the full names of the symbols, and will require

you to type in these full names in order to refer to the symbols. You can however use

Begin@"Package`Private`"D to make the private context of the package your current context.

This will make Mathematica print out short names for the symbols, and allow you to refer to the

symbols by their short names.

Files for Packages

When you create or use Mathematica packages, you will often want to refer to files in a system-

independent way. You can use contexts to do this.

The basic idea is that on every computer system there is a convention about how files corre-

sponding to Mathematica contexts should be named. Then, when you refer to a file using a

context, the particular version of Mathematica you are using converts the context name to the

file name appropriate for the computer system you are on.

<<context` read in the file corresponding to the specified context

Using contexts to specify files.

This reads in one of the standard packages that come with Mathematica.

In[1]:= << VectorAnalysis`

name.mx file in DumpSave format

name.mxë$SystemIDëname.mx file in DumpSave format for your computer system

name.m file in Mathematica source format

nameëinit.m initialization file for a particular directory

dirê… files in other directories specified by $Path

The typical sequence of files looked for by << name`.

Mathematica is set up so that << name` will automatically try to load the appropriate version of a

file. It will first try to load a name.mx file that is optimized for your particular computer system.

If it finds no such file, then it will try to load a name.m file containing ordinary system-indepen-

dent Mathematica input.

Core Language 213

Mathematica is set up so that << name` will automatically try to load the appropriate version of a

file. It will first try to load a name.mx file that is optimized for your particular computer system.

If it finds no such file, then it will try to load a name.m file containing ordinary system-indepen-

dent Mathematica input.

If name is a directory, then Mathematica will try to load the initialization file init.m in that

directory. The purpose of the init.m file is to provide a convenient way to set up Mathematica

packages that involve many separate files. The idea is to allow you to give just the command

<< name`, but then to load init.m to initialize the whole package, reading in whatever other

files are necessary.

Automatic Loading of Packages

Other tutorials have discussed explicit loading of Mathematica packages using << package and

Needs@packageD. Sometimes, however, you may want to set Mathematica up so that it automati-

cally loads a particular package when the package is needed.

You can use DeclarePackage to give the names of symbols which are defined in a particular

package. Then, when one of these symbols is actually used, Mathematica will automatically load

the package where the symbol is defined.

DeclarePackage@"context`",8"name1","name2",…<D

declare that a package should automatically be loaded if a
symbol with any of the names namei is used

Arranging for automatic loading of packages.

This specifies that the symbols Div, Grad and Curl are defined in VectorAnalysis`.

In[1]:= DeclarePackage@"VectorAnalysis`", 8"Div", "Grad", "Curl"<D

Out[1]= VectorAnalysis`

When you first use Grad, Mathematica automatically loads the package that defines it.

In[2]:= Grad@x^2 + y^2, Cartesian@x, y, zDD

Out[2]= 82 x, 2 y, 0<

When you set up a large collection of Mathematica packages, it is often a good idea to create an

additional “names file” which contains a sequence of DeclarePackage commands, specifying

packages to load when particular names are used. Within a particular Mathematica session, you

then need to load explicitly only the names file. When you have done this, all the other pack-

ages will automatically be loaded if and when they are needed.

214 Core Language

When you set up a large collection of Mathematica packages, it is often a good idea to create an

additional “names file” which contains a sequence of DeclarePackage commands, specifying

packages to load when particular names are used. Within a particular Mathematica session, you

then need to load explicitly only the names file. When you have done this, all the other pack-

ages will automatically be loaded if and when they are needed.

DeclarePackage works by immediately creating symbols with the names you specify, but giving

each of these symbols the special attribute Stub. Whenever Mathematica finds a symbol with

the Stub attribute, it automatically loads the package corresponding to the context of the

symbol, in an attempt to find the definition of the symbol.

Manipulating Symbols and Contexts by Name

Symbol@"name"D construct a symbol with a given name

SymbolName@symbD find the name of a symbol

Converting between symbols and their names.

Here is the symbol x.

In[1]:= x êê InputForm

Out[1]//InputForm= x

Its name is a string.

In[2]:= SymbolName@xD êê InputForm

Out[2]//InputForm= "x"

This gives the symbol x again.

In[3]:= Symbol@"x"D êê InputForm

Out[3]//InputForm= x

Once you have made an assignment such as x = 2, then whenever x is evaluated, it is replaced

by 2. Sometimes, however, you may want to continue to refer to x itself, without immediately

getting the value of x.

You can do this by referring to x by name. The name of the symbol x is the string "x", and

even though x itself may be replaced by a value, the string "x" will always stay the same.

The names of the symbols x and xp are the strings "x" and "xp".

Core Language 215

The names of the symbols x and xp are the strings "x" and "xp".

In[4]:= t = 8SymbolName@xD, SymbolName@xpD< êê InputForm

Out[4]//InputForm= {"x", "xp"}

This assigns a value to x.

In[5]:= x = 2

Out[5]= 2

Whenever you enter x it is now replaced by 2.

In[6]:= 8x, xp< êê InputForm

Out[6]//InputForm= {2, xp}

The name "x" is not affected, however.

In[7]:= t êê InputForm

Out[7]//InputForm= InputForm[{"x", "xp"}]

NameQ@" form"D test whether any symbol has a name which matches form

Names@" form"D give a list of all symbol names which match form

Contexts@" form`"D give a list of all context names which match form

Referring to symbols and contexts by name.

x and xp are symbols that have been created in this Mathematica session; xpp is not.

In[8]:= 8NameQ@"x"D, NameQ@"xp"D, NameQ@"xpp"D<

Out[8]= 8True, True, False<

You can specify the form of symbol names using string patterns of the kind discussed in "String

Patterns". "x*" stands, for example, for all names that start with x.

This gives a list of all symbol names in this Mathematica session that begin with x.

In[9]:= Names@"x*"D êê InputForm

Out[9]//InputForm= {"x", "xp"}

These names correspond to built-in functions in Mathematica.

In[10]:= Names@"Qu*"D êê InputForm

Out[10]//InputForm= {"QuadraticIrrationalQ", "Quantile", "Quartics", "QuartileDeviation", "Quartiles",
 "QuartileSkewness", "Quiet", "Quit", "Quotient", "QuotientRemainder"}

This asks for names “close” to WeierstrssP.

216 Core Language

This asks for names “close” to WeierstrssP.

In[11]:= Names@"WeierstrssP", SpellingCorrection -> TrueD

Out[11]= 8WeierstrassP<

Clear@" form"D clear the values of all symbols whose names match form

Clear@"context`*"D clear the values of all symbols in the specified context

Remove@" form"D remove completely all symbols whose names match form

Remove@"context`*"D remove completely all symbols in the specified context

Getting rid of symbols by name.

This clears the values of all symbols whose names start with x.

In[12]:= Clear@"x*"D

The name "x" is still known, however.

In[13]:= Names@"x*"D

Out[13]= 8x, xp<

But the value of x has been cleared.

In[14]:= 8x, xp<

Out[14]= 8x, xp<

This removes completely all symbols whose names start with x.

In[15]:= Remove@"x*"D

Now not even the name "x" is known.

In[16]:= Names@"x*"D

Out[16]= 8<

Remove@"Global`*"D remove completely all symbols in the Global` context

Removing all symbols you have introduced.

If you do not set up any additional contexts, then all the symbols that you introduce in a Mathe-

matica session will be placed in the Global` context. You can remove these symbols completely

using Remove@"Global`*"D. Built-in Mathematica objects are in the System` context, and are

thus unaffected by this.

Intercepting the Creation of New Symbols

Core Language 217

Intercepting the Creation of New Symbols

Mathematica creates a new symbol when you first enter a particular name. Sometimes it is

useful to “intercept” the process of creating a new symbol. Mathematica provides several ways

to do this.

OnAGeneral::newsymE print a message whenever a new symbol is created

OffAGeneral::newsymE switch off the message printed when new symbols are
created

Printing a message when new symbols are created.

This tells Mathematica to print a message whenever a new symbol is created.

In[1]:= On@General::newsymD

Mathematica now prints a message about each new symbol that it creates.

In[2]:= sin@kD

General::newsym: Symbol sin is new. à

General::newsym: Symbol k is new. à

Out[2]= sin@kD

This switches off the message.

In[3]:= Off@General::newsymD

Generating a message when Mathematica creates a new symbol is often a good way to catch

typing mistakes. Mathematica itself cannot tell the difference between an intentionally new

name, and a misspelling of a name it already knows. But by reporting all new names it encoun-

ters, Mathematica allows you to see whether any of them are mistakes.

$NewSymbol a function to be applied to the name and context of new
symbols which are created

Performing operations when new symbols are created.

218 Core Language

When Mathematica creates a new symbol, you may want it not just to print a message, but

instead to perform some other action. Any function you specify as the value of the global vari-

able $NewSymbol will automatically be applied to strings giving the name and context of each

new symbol that Mathematica creates.

This defines a function to be applied to each new symbol which is created.

In[4]:= $NewSymbol = Print@"Name: ", Ò1, " Context: ", Ò2D &

Out[4]= Print@Name: , Ò1, Context: , Ò2D &

The function is applied once to v and once to w.

In[5]:= v + w

Name: v Context: Global`

Name: w Context: Global`
Out[5]= v + w

Core Language 219

Strings and Characters

Properties of Strings

Much of what Mathematica does revolves around manipulating structured expressions. But you

can also use Mathematica as a system for handling unstructured strings of text.

"text" a string containing arbitrary text

Text strings.

When you input a string of text to Mathematica you must always enclose it in quotes. However,

when Mathematica outputs the string it usually does not explicitly show the quotes.

You can see the quotes by asking for the input form of the string. In addition, in a Mathematica

notebook, quotes will typically appear automatically as soon as you start to edit a string.

When Mathematica outputs a string, it usually does not explicitly show the quotes.

In[1]:= "This is a string."

Out[1]= This is a string.

You can see the quotes, however, by asking for the input form of the string.

In[2]:= InputForm@%D

Out[2]//InputForm= "This is a string."

The fact that Mathematica does not usually show explicit quotes around strings makes it possi-

ble for you to use strings to specify quite directly the textual output you want.

The strings are printed out here without explicit quotes.

In[3]:= Print@"The value is ", 567, "."D

The value is 567.

You should understand, however, that even though the string "x" often appears as x in output,

it is still a quite different object from the symbol x.

220 Core Language

The string "x" is not the same as the symbol x.

In[4]:= "x" === x

Out[4]= False

You can test whether any particular expression is a string by looking at its head. The head of

any string is always String.

All strings have head String.

In[5]:= Head@"x"D

Out[5]= String

The pattern _String matches any string.

In[6]:= Cases@8"ab", x, "a", y<, _StringD

Out[6]= 8ab, a<

You can use strings just like other expressions as elements of patterns and transformations.

Note, however, that you cannot assign values directly to strings.

This gives a definition for an expression that involves a string.

In[7]:= z@"gold"D = 79

Out[7]= 79

This replaces each occurrence of the string "aa" by the symbol x.

In[8]:= 8"aaa", "aa", "bb", "aa"< ê. "aa" -> x

Out[8]= 8aaa, x, bb, x<

Operations on Strings

Mathematica provides a variety of functions for manipulating strings. Most of these functions

are based on viewing strings as a sequence of characters, and many of the functions are analo-

gous to ones for manipulating lists.

Core Language 221

s1<>s2<>… or
StringJoin@8s1,s2,…<D

join several strings together

StringLength@sD give the number of characters in a string

StringReverse@sD reverse the characters in a string

Operations on complete strings.

You can join together any number of strings using <>.

In[1]:= "aaaaaaa" <> "bbb" <> "cccccccccc"

Out[1]= aaaaaaabbbcccccccccc

StringLength gives the number of characters in a string.

In[2]:= StringLength@%D

Out[2]= 20

StringReverse reverses the characters in a string.

In[3]:= StringReverse@"A string."D

Out[3]= .gnirts A

StringTake@s,nD make a string by taking the first n characters from s

StringTake@s,8n<D take the nth character from s

StringTake@s,8n1,n2<D take characters n1 through n2
StringDrop@s,nD make a string by dropping the first n characters in s

StringDrop@s,8n1,n2<D drop characters n1 through n2

Taking and dropping substrings.

StringTake and StringDrop are the analogs for strings of Take and Drop for lists. Like Take

and Drop, they use standard Mathematica sequence specifications, so that, for example, nega-

tive numbers count character positions from the end of a string. Note that the first character of

a string is taken to have position 1.

Here is a sample string.

In[4]:= alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Out[4]= ABCDEFGHIJKLMNOPQRSTUVWXYZ

222 Core Language

This takes the first five characters from alpha.

In[5]:= StringTake@alpha, 5D

Out[5]= ABCDE

Here is the fifth character in alpha.

In[6]:= StringTake@alpha, 85<D

Out[6]= E

This drops the characters 10 through 2, counting from the end of the string.

In[7]:= StringDrop@alpha, 8-10, -2<D

Out[7]= ABCDEFGHIJKLMNOPZ

StringInsert@s,snew,nD insert the string snew at position n in s

StringInsert@s,snew,8n1,n2,…<D

insert several copies of snew into s

Inserting into a string.

StringInsert@s, snew, nD is set up to produce a string whose nth character is the first character

of snew.

This produces a new string whose fourth character is the first character of the string "XX".

In[8]:= StringInsert@"abcdefgh", "XX", 4D

Out[8]= abcXXdefgh

Negative positions are counted from the end of the string.

In[9]:= StringInsert@"abcdefgh", "XXX", -1D

Out[9]= abcdefghXXX

Each copy of "XXX" is inserted at the specified position in the original string.

In[10]:= StringInsert@"abcdefgh", "XXX", 82, 4, -1<D

Out[10]= aXXXbcXXXdefghXXX

This uses Riffle to add a space between the words in a list.

In[11]:= StringJoin@Riffle@8"cat", "in", "the", "hat"<, " "DD

Out[11]= cat in the hat

Core Language 223

StringReplacePart@s,snew,8m,n<D replace the characters at positions m through n in s by the
string snew

StringReplacePart@s,
snew,88m1,n1<,8m2,n2<,…<D

replace several substrings in s by snew

StringReplacePart@
s,8snew1,snew2,…<,
88m1,n1<,8m2,n2<,…<D

replace substrings in s by the corresponding snewi

Replacing parts of a string.

This replaces characters 2 through 6 by the string "XXX".

In[12]:= StringReplacePart@"abcdefgh", "XXX", 82, 6<D

Out[12]= aXXXgh

This replaces two runs of characters by the string "XXX".

In[13]:= StringReplacePart@"abcdefgh", "XXX", 882, 3<, 85, -1<<D

Out[13]= aXXXdXXX

Now the two runs of characters are replaced by different strings.

In[14]:= StringReplacePart@"abcdefgh", 8"XXX", "YYYY"<, 882, 3<, 85, -1<<D

Out[14]= aXXXdYYYY

StringPosition@s,subD give a list of the starting and ending positions at which sub
appears as a substring of s

StringPosition@s,sub,kD include only the first k occurrences of sub in s

StringPosition@s,8sub1,sub2,…<D

include occurrences of any of the subi

Finding positions of substrings.

You can use StringPosition to find where a particular substring appears within a given string.

StringPosition returns a list, each of whose elements corresponds to an occurrence of the

substring. The elements consist of lists giving the starting and ending character positions for

the substring. These lists are in the form used as sequence specifications in StringTake,

StringDrop and StringReplacePart.

224 Core Language

This gives a list of the positions of the substring "abc".

In[15]:= StringPosition@"abcdabcdaabcabcd", "abc"D

Out[15]= 881, 3<, 85, 7<, 810, 12<, 813, 15<<

This gives only the first occurrence of "abc".

In[16]:= StringPosition@"abcdabcdaabcabcd", "abc", 1D

Out[16]= 881, 3<<

This shows where both "abc" and "cd" appear. By default, overlaps are included.

In[17]:= StringPosition@"abcdabcdcd", 8"abc", "cd"<D

Out[17]= 881, 3<, 83, 4<, 85, 7<, 87, 8<, 89, 10<<

This does not include overlaps.

In[18]:= StringPosition@"abcdabcdcd", 8"abc", "cd"<, Overlaps -> FalseD

Out[18]= 881, 3<, 85, 7<, 89, 10<<

StringCount@s,subD count the occurrences of sub in s

StringCount@s,8sub1,sub2,…<D count occurrences of any of the subi

StringFreeQ@s,subD test whether s is free of sub

StringFreeQ@s,8sub1,sub2,…<D test whether s is free of all the subi

Testing for substrings.

This counts occurrences of either substring, by default not including overlaps.

In[19]:= StringCount@"abcdabcdcd", 8"abc", "cd"<D

Out[19]= 3

StringReplace@s,sb->sbnewD replace sb by sbnew wherever it appears in s

StringReplace@s,
8sb1->sbnew1,sb2->sbnew2,…<D

replace sbi by the corresponding sbnewi

StringReplace@s,rules,nD do at most n replacements

StringReplaceList@s,rulesD give a list of the strings obtained by making each possible
single replacement

StringReplaceList@s,rules,nD give at most n results

Replacing substrings according to rules.

This replaces all occurrences of the character a by the string XX.

Core Language 225

This replaces all occurrences of the character a by the string XX.

In[20]:= StringReplace@"abcdabcdaabcabcd", "a" -> "XX"D

Out[20]= XXbcdXXbcdXXXXbcXXbcd

This replaces abc by Y, and d by XXX.

In[21]:= StringReplace@"abcdabcdaabcabcd", 8"abc" -> "Y", "d" -> "XXX"<D

Out[21]= YXXXYXXXaYYXXX

The first occurrence of cde is not replaced because it overlaps with abc.

In[22]:= StringReplace@"abcde abacde", 8"abc" -> "X", "cde" -> "Y"<D

Out[22]= Xde abaY

StringReplace scans a string from left to right, doing all the replacements it can, and then

returning the resulting string. Sometimes, however, it is useful to see what all possible single

replacements would give. You can get a list of all these results using StringReplaceList.

This gives a list of the results of replacing each of the a’s.

In[23]:= StringReplaceList@"aaaaa", "a" -> "X"D

Out[23]= 8Xaaaa, aXaaa, aaXaa, aaaXa, aaaaX<

This shows the results of all possible single replacements.

In[24]:= StringReplaceList@"abcde abacde", 8"abc" -> "X", "cde" -> "Y"<D

Out[24]= 8Xde abacde, abY abacde, abcde abaY<

StringSplit@sD split s into substrings delimited by whitespace

StringSplit@s,delD split at delimiter del

StringSplit@s,8del1,del2,…<D split at any of the deli

StringSplit@s,del,nD split into at most n substrings

Splitting strings.

This splits the string at every run of spaces.

In[25]:= StringSplit@"a b::c d::e f g"D

Out[25]= 8a, b::c, d::e, f, g<

226 Core Language

This splits at each "::".

In[26]:= StringSplit@"a b::c d::e f g", "::"D

Out[26]= 8a b, c d, e f g<

This splits at each colon or space.

In[27]:= StringSplit@"a b::c d::e f g", 8":", " "<D

Out[27]= 8a, b, , c, d, , e, f, g<

StringSplit@s,del->rhsD insert rhs at the position of each delimiter

StringSplit@s,
8del1->rhs1,del2->rhs2,…<D

insert rhsi at the position of the corresponding deli

Splitting strings with replacements for delimiters.

This inserts 8x, y< at each :: delimiter.

In[28]:= StringSplit@"a b::c d::e f g", "::" -> 8x, y<D

Out[28]= 8a b, 8x, y<, c d, 8x, y<, e f g<

Sort@8s1,s2,s3,…<D sort a list of strings

Sorting strings.

Sort sorts strings into standard dictionary order.

In[29]:= Sort@8"cat", "fish", "catfish", "Cat"<D

Out[29]= 8cat, Cat, catfish, fish<

StringTrim@sD trims whitespace from the beginning and end of s

StringTrim@s,pattD trims substrings matching patt from the beginning and end

Remove whitespace from ends of string.

In[30]:= StringTrim@" abcabc "D êê FullForm

Out[30]//FullForm= "abcabc"

SequenceAlignment@s1,s2D finds an optimal alignment of s1 and s2

Core Language 227

Find an optimal alignment of two strings.

In[31]:= SequenceAlignment@"abcXabcXabc", "abcYabcYabc"D

Out[31]= 8abc, 8X, Y<, abc, 8X, Y<, abc<

Characters in Strings

Characters@"string"D convert a string to a list of characters

StringJoin@8"c1","c2",…<D convert a list of characters to a string

Converting between strings and lists of characters.

This gives a list of the characters in the string.

In[1]:= Characters@"A string."D

Out[1]= 8A, , s, t, r, i, n, g, .<

You can apply standard list manipulation operations to this list.

In[2]:= RotateLeft@%, 3D

Out[2]= 8t, r, i, n, g, ., A, , s<

StringJoin converts the list of characters back to a single string.

In[3]:= StringJoin@%D

Out[3]= tring.A s

DigitQ@stringD test whether all characters in a string are digits

LetterQ@stringD test whether all characters in a string are letters

UpperCaseQ@stringD test whether all characters in a string are uppercase letters

LowerCaseQ@stringD test whether all characters in a string are lowercase letters

Testing characters in a string.

All characters in the string given are letters.

In[4]:= LetterQ@"Mixed"D

Out[4]= True

228 Core Language

Not all the letters are uppercase, so the result is False.

In[5]:= UpperCaseQ@"Mixed"D

Out[5]= False

ToUpperCase@stringD generate a string in which all letters are uppercase

ToLowerCase@stringD generate a string in which all letters are lowercase

Converting between upper and lower case.

This converts all letters to upper case.

In[6]:= ToUpperCase@"Mixed Form"D

Out[6]= MIXED FORM

CharacterRange@"c1","c2"D generate a list of all characters from c1 and c2

Generating ranges of characters.

This generates a list of lowercase letters in alphabetical order.

In[7]:= CharacterRange@"a", "h"D

Out[7]= 8a, b, c, d, e, f, g, h<

Here is a list of uppercase letters.

In[8]:= CharacterRange@"T", "Z"D

Out[8]= 8T, U, V, W, X, Y, Z<

Here are some digits.

In[9]:= CharacterRange@"0", "7"D

Out[9]= 80, 1, 2, 3, 4, 5, 6, 7<

CharacterRange will usually give meaningful results for any range of characters that have a

natural ordering. The way CharacterRange works is by using the character codes that Mathemat -

ica internally assigns to every character.

This shows the ordering defined by the internal character codes used by Mathematica.

In[10]:= CharacterRange@"T", "e"D

Out[10]= 9T, U, V, W, X, Y, Z, @, \, D, ^, _, `, a, b, c, d, e=

String Patterns

Core Language 229

String Patterns

An important feature of string manipulation functions like StringReplace is that they handle

not only literal strings but also patterns for collections of strings.

This replaces b or c by X.

In[1]:= StringReplace@"abcd abcd", "b" "c" -> "X"D

Out[1]= aXXd aXXd

This replaces any character by u.

In[2]:= StringReplace@"abcd abcd", _ -> "u"D

Out[2]= uuuuuuuuu

You can specify patterns for strings by using string expressions that contain ordinary strings

mixed with Mathematica symbolic pattern objects.

s1~~s2~~… or StringExpression@s1,s2,…D

a sequence of strings and pattern objects

String expressions.

Here is a string expression that represents the string ab followed by any single character.

In[3]:= "ab" ~~ _

Out[3]= ab ~~ _

This makes a replacement for each occurrence of the string pattern.

In[4]:= StringReplace@"abc abcb abdc", "ab" ~~ _ -> "X"D

Out[4]= X Xb Xc

230 Core Language

StringMatchQ@"s",pattD test whether "s" matches patt

StringFreeQ@"s",pattD test whether "s" is free of substrings matching patt

StringCases@"s",pattD give a list of the substrings of "s" that match patt

StringCases@"s",lhs->rhsD replace each case of lhs by rhs

StringPosition@"s",pattD give a list of the positions of substrings that match patt

StringCount@"s",pattD count how many substrings match patt

StringReplace@"s",lhs->rhsD replace every substring that matches lhs

StringReplaceList@"s",lhs->rhsD

give a list of all ways of replacing lhs

StringSplit@"s",pattD split s at every substring that matches patt

StringSplit@"s",lhs->rhsD split at lhs, inserting rhs in its place

Functions that support string patterns.

This gives all cases of the pattern that appear in the string.

In[5]:= StringCases@"abc abcb abdc", "ab" ~~ _D

Out[5]= 8abc, abc, abd<

This gives each character that appears after an "ab" string.

In[6]:= StringCases@"abc abcb abdc", "ab" ~~ x_ -> xD

Out[6]= 8c, c, d<

This gives all pairs of identical characters in the string.

In[7]:= StringCases@"abbcbccaabbabccaa", x_ ~~ x_D

Out[7]= 8bb, cc, aa, bb, cc, aa<

You can use all the standard Mathematica pattern objects in string patterns. Single blanks (_)

always stand for single characters. Double blanks (__) stand for sequences of one or more

characters.

Single blank (_) stands for any single character.

In[8]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ _ -> "X"D

Out[8]= 8ab, aX, aXd<

Core Language 231

Double blank (__) stands for any sequence of one or more characters.

In[9]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ __ -> "X"D

Out[9]= 8ab, aX, aX<

Triple blank (___) stands for any sequence of zero or more characters.

In[10]:= StringReplace@8"ab", "abc", "abcd"<, "b" ~~ ___ -> "X"D

Out[10]= 8aX, aX, aX<

"string" a literal string of characters

_ any single character

__ any sequence of one or more characters

___ any sequence of zero or more characters

x_ , x__ , x___ substrings given the name x

x:pattern pattern given the name x

pattern.. pattern repeated one or more times

pattern... pattern repeated zero or more times

8patt1,patt2,…< or patt1 patt2 …

a pattern matching at least one of the patti

pattê;cond a pattern for which cond evaluates to True

pattern?test a pattern for which test yields True for each character

Whitespace a sequence of whitespace characters

NumberString the characters of a number

charobj an object representing a character class (see below)

RegularExpression@"regexp"D substring matching a regular expression

Objects in string patterns.

This splits at either a colon or semicolon.

In[11]:= StringSplit@"a:b;c:d", ":" ";"D

Out[11]= 8a, b, c, d<

This finds all runs containing only a or b.

In[12]:= StringCases@"aababbcccdbaa", H"a" "b"L ..D

Out[12]= 8aababb, baa<

232 Core Language

Alternatives can be given in lists in string patterns.

In[13]:= StringCases@"aababbcccdbaa", 8"a", "b"< ..D

Out[13]= 8aababb, baa<

You can use standard Mathematica constructs such as Characters@"c1c2…"D and

CharacterRange@"c1", "c2"D to generate lists of alternative characters to use in string patterns.

This gives a list of characters.

In[14]:= Characters@"aeiou"D

Out[14]= 8a, e, i, o, u<

This replaces the vowel characters.

In[15]:= StringReplace@"abcdefghijklm", Characters@"aeiou"D -> "X"D

Out[15]= XbcdXfghXjklm

This gives characters in the range "A" through "H".

In[16]:= CharacterRange@"A", "H"D

Out[16]= 8A, B, C, D, E, F, G, H<

In addition to allowing explicit lists of characters, Mathematica provides symbolic specifications

for several common classes of possible characters in string patterns.

8"c1","c2",…< any of the "ci"

Characters@"c1c2…"D any of the "ci"

CharacterRange@"c1","c2"D any character in the range "c1" to "c2"

DigitCharacter digit 0|9

LetterCharacter letter

WhitespaceCharacter space, newline, tab or other whitespace character

WordCharacter letter or digit

Except@pD any character except ones matching p

Specifications for classes of characters.

This picks out the digit characters in a string.

In[17]:= StringCases@"a6;b23c456;", DigitCharacterD

Out[17]= 86, 2, 3, 4, 5, 6<

This picks out all characters except digits.

Core Language 233

This picks out all characters except digits.

In[18]:= StringCases@"a6;b23c456;", Except@DigitCharacterDD

Out[18]= 8a, ;, b, c, ;<

This picks out all runs of one or more digits.

In[19]:= StringCases@"a6;b23c456", DigitCharacter ..D

Out[19]= 86, 23, 456<

The results are strings.

In[20]:= InputForm@%D

Out[20]//InputForm= {"6", "23", "456"}

This converts the strings to numbers.

In[21]:= ToExpression@%D + 1

Out[21]= 87, 24, 457<

String patterns are often used as a way to extract structure from strings of textual data. Typi-

cally this works by having different parts of a string pattern match substrings that correspond

to different parts of the structure.

This picks out each = followed by a number.

In[22]:= StringCases@"a1=6.7, b2=8.87", "=" ~~ NumberStringD

Out[22]= 8=6.7, =8.87<

This gives the numbers alone.

In[23]:= StringCases@"a1=6.7, b2=8.87", "=" ~~ x : NumberString -> xD

Out[23]= 86.7, 8.87<

This extracts “variables” and “values” from the string.

In[24]:= StringCases@"a1=6.7, b2=8.87",
v : WordCharacter .. ~~ "=" ~~ x : NumberString -> 8v, x<D

Out[24]= 88a1, 6.7<, 8b2, 8.87<<

ToExpression converts them to ordinary symbols and numbers.

In[25]:= ToExpression@%D^2

Out[25]= 99a12, 44.89=, 9b22, 78.6769==

In many situations, textual data may contain sequences of spaces, newlines or tabs that should

be considered “whitespace”, and perhaps ignored. In Mathematica, the symbol Whitespace

stands for any such sequence.

234 Core Language

In many situations, textual data may contain sequences of spaces, newlines or tabs that should

be considered “whitespace”, and perhaps ignored. In Mathematica, the symbol Whitespace

stands for any such sequence.

This removes all whitespace from the string.

In[26]:= StringReplace@"aa b cc d", Whitespace -> ""D

Out[26]= aabccd

This replaces each sequence of spaces by a single comma.

In[27]:= StringReplace@"aa b cc d", Whitespace -> ","D

Out[27]= aa,b,cc,d

String patterns normally apply to substrings that appear at any position in a given string. Some-

times, however, it is convenient to specify that patterns can apply only to substrings at particu-

lar positions. You can do this by including symbols such as StartOfString in your string pat-

terns.

StartOfString start of the whole string

EndOfString end of the whole string

StartOfLine start of a line

EndOfLine end of a line

WordBoundary boundary between word characters and others

ExceptAStartOfStringE , etc. anywhere except at the particular positions
StartOfString, etc.

Constructs representing special positions in a string.

This replaces "a" wherever it appears in a string.

In[28]:= StringReplace@8"abc", "baca"<, "a" -> "XX"D

Out[28]= 8XXbc, bXXcXX<

This replaces "a" only when it immediately follows the start of a string.

In[29]:= StringReplace@8"abc", "baca"<, StartOfString ~~ "a" -> "XX"D

Out[29]= 8XXbc, baca<

Core Language 235

This replaces all occurrences of the substring "the".

In[30]:= StringReplace@"the others", "the" -> "XX"D

Out[30]= XX oXXrs

This replaces only occurrences that have a word boundary on both sides.

In[31]:= StringReplace@"the others", WordBoundary ~~ "the" ~~ WordBoundary -> "XX"D

Out[31]= XX others

String patterns allow the same kind of ê; and other conditions as ordinary Mathematica pat-

terns.

This gives cases of unequal successive characters in the string.

In[32]:= StringCases@"aaabbcaaaabaaa", x_ ~~ y_ ê; x != yD

Out[32]= 8ab, bc, ab<

When you give an object such as x__ or e .. in a string pattern, Mathematica normally assumes

that you want this to match the longest possible sequence of characters. Sometimes, however,

you may instead want to match the shortest possible sequence of characters. You can specify

this using Shortest@pD.

Longest@pD the longest consistent match for p (default)

Shortest@pD the shortest consistent match for p

Objects representing longest and shortest matches.

The string pattern by default matches the longest possible sequence of characters.

In[33]:= StringCases@"-HaL--HbbL--HcL-", "H" ~~ __ ~~ "L"D

Out[33]= 8HaL--HbbL--HcL<

Shortest specifies that instead the shortest possible match should be found.

In[34]:= StringCases@"-HaL--HbbL--HcL-", Shortest@"H" ~~ __ ~~ "L"DD

Out[34]= 8HaL, HbbL, HcL<

Mathematica by default treats characters such "X" and "x" as distinct. But by setting the option

IgnoreCase -> True in string manipulation operations, you can tell Mathematica to treat all

such uppercase and lowercase letters as equivalent.

236 Core Language

IgnoreCase->True treat uppercase and lowercase letters as equivalent

Specifying case-independent string operations.

This replaces all occurrences of "the", independent of case.

In[35]:= StringReplace@"The cat in the hat.", "the" -> "a", IgnoreCase -> TrueD

Out[35]= a cat in a hat.

In some string operations, one may have to specify whether to include overlaps between sub-

strings. By default StringCases and StringCount do not include overlaps, but

StringPosition does.

This picks out pairs of successive characters, by default omitting overlaps.

In[36]:= StringCases@"abcdefg", _ ~~ _D

Out[36]= 8ab, cd, ef<

This includes the overlaps.

In[37]:= StringCases@"abcdefg", _ ~~ _, Overlaps -> TrueD

Out[37]= 8ab, bc, cd, de, ef, fg<

StringPosition includes overlaps by default.

In[38]:= StringPosition@"abcdefg", _ ~~ _D

Out[38]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<<

Overlaps->All include all overlaps

Overlaps->True include at most one overlap beginning at each position

Overlaps->False exclude all overlaps

Options for handling overlaps in strings.

This yields only a single match.

In[39]:= StringCases@"abcd", __, Overlaps -> FalseD

Out[39]= 8abcd<

This yields a succession of overlapping matches.

In[40]:= StringCases@"abcd", __, Overlaps -> TrueD

Out[40]= 8abcd, bcd, cd, d<

This includes all possible overlapping matches.

Core Language 237

This includes all possible overlapping matches.

In[41]:= StringCases@"abcd", __, Overlaps -> AllD

Out[41]= 8abcd, abc, ab, a, bcd, bc, b, cd, c, d<

Regular Expressions

General Mathematica patterns provide a powerful way to do string manipulation. But particu-

larly if you are familiar with specialized string manipulation languages, you may sometimes find

it convenient to specify string patterns using regular expression notation. You can do this in

Mathematica with RegularExpression objects.

RegularExpression@"regex"D a regular expression specified by "regex"

Using regular expression notation in Mathematica.

This replaces all occurrences of a or b.

In[1]:= StringReplace@"abcd acbd", RegularExpression@"@abD"D -> "XX"D

Out[1]= XXXXcd XXcXXd

This specifies the same operation using a general Mathematica string pattern.

In[2]:= StringReplace@"abcd acbd", "a" "b" -> "XX"D

Out[2]= XXXXcd XXcXXd

You can mix regular expressions with general patterns.

In[3]:= StringReplace@"abcd acbd", RegularExpression@"@abD"D ~~ _ -> "YY"D

Out[3]= YYcd YYYY

RegularExpression in Mathematica supports all standard regular expression constructs.

238 Core Language

c the literal character c

. any character except newline

@c1 c2 …D any of the characters ci

@c1-c2D any character in the range c1|c2
@^c1 c2 …D any character except the ci

p* p repeated zero or more times

p+ p repeated one or more times

p? zero or one occurrence of p

p 8m,n< p repeated between m and n times

p*?, p+?, p ?? the shortest consistent strings that match

Hp1 p2 …L strings matching the sequence p1 p2 …
p1 p2 strings matching p1 or p2

Basic constructs in Mathematica regular expressions.

This finds substrings that match the specified regular expression.

In[4]:= StringCases@"abcddbbbacbbaa", RegularExpression@"Ha»bbL+"DD

Out[4]= 8a, bb, a, bbaa<

This does the same operation with a general Mathematica string pattern.

In[5]:= StringCases@"abcddbbbacbbaa", H"a" "bb"L ..D

Out[5]= 8a, bb, a, bbaa<

There is a close correspondence between many regular expression constructs and basic general

Mathematica string pattern constructs.

Core Language 239

. _ (strictly Except@"în"D)

@c1 c2 …D Characters@" c1 c2 … "D

@c1-c2D CharacterRange@"c1","c2"D

@^c1 c2 …D ExceptACharacters@" c1 c2 … "DE

p* p...
p+ p..
p? p ""

p*?, p+?, p ?? Shortest@p…D,…
Hp1 p2 …L Hp1~~p2~~…L

p1 p2 p1 p2

Correspondences between regular expression and general string pattern constructs.

Just as in general Mathematica string patterns, there are special notations in regular expres-

sions for various common classes of characters. Note that you need to use double backslashes

(î î) to enter most of these notations in Mathematica regular expression strings.

\\ d digit 0|9 (DigitCharacter)

\\ D non-digit (Except@DigitCharacterD)

\\ s space, newline, tab or other whitespace character
(WhitespaceCharacter)

\\ S non-whitespace character
(Except@WhitespaceCharacterD)

\\ w word character (letter, digit or _) (WordCharacter)

\\ W non-word character (Except@WordCharacterD)

@@:class:DD characters in a named class

@^@:class:DD characters not in a named class

Regular expression notations for classes of characters.

This gives each occurrence of a followed by digit characters.

In[6]:= StringCases@"a10b6a77a3aÒ", RegularExpression@"a\\d+"DD

Out[6]= 8a10, a77, a3<

Here is the same thing done with a general Mathematica string pattern.

In[7]:= StringCases@"a10b6a77a3aÒ", "a" ~~ DigitCharacter ..D

Out[7]= 8a10, a77, a3<

Mathematica supports the standard POSIX character classes alnum, alpha, ascii, blank,

cntrl, digit, graph, lower, print, punct, space, upper, word, xdigit.

240 Core Language

Mathematica supports the standard POSIX character classes alnum, alpha, ascii, blank,

cntrl, digit, graph, lower, print, punct, space, upper, word, xdigit.

This finds runs of uppercase letters.

In[8]:= StringCases@"AaBBccDDeefG", RegularExpression@"@@:upper:DD+"DD

Out[8]= 8A, BB, DD, G<

This does the same thing.

In[9]:= StringCases@"AaBBccDDeefG", CharacterRange@"A", "Z"D ..D

Out[9]= 8A, BB, DD, G<

^ the beginning of the string (StartOfString)

$ the end of the string (EndOfString)

\\ b word boundary (WordBoundary)

\\ B anywhere except a word boundary
(Except@WordBoundaryD)

Regular expression notations for positions in strings.

In general Mathematica patterns, you can use constructs like x_ and x : patt to give arbitrary

names to objects that are matched. In regular expressions, there is a way to do something

somewhat like this using numbering: the nth parenthesized pattern object HpL in a regular

expression can be referred to as \\ n within the body of the pattern, and $n outside it.

This finds pairs of identical letters that appear together.

In[10]:= StringCases@"aaabcccabbaacba", RegularExpression@"H.L\\1"DD

Out[10]= 8aa, cc, bb, aa<

This does the same thing using a general Mathematica string pattern.

In[11]:= StringCases@"aaabcccabbaacba", x_ ~~ x_D

Out[11]= 8aa, cc, bb, aa<

The $1 refers to the letter matched by H.L.

In[12]:= StringCases@"aaabcccabbaacba", RegularExpression@"H.L\\1"D -> "$1"D

Out[12]= 8a, c, b, a<

Core Language 241

Here is the Mathematica pattern version.

In[13]:= StringCases@"aaabcccabbaacba", x_ ~~ x_ -> xD

Out[13]= 8a, c, b, a<

Special Characters

In addition to the ordinary characters that appear on a standard keyboard, you can include in

Mathematica strings any of the special characters that are supported by Mathematica.

Here is a string containing special characters.

In[1]:= "a⊕b⊕…"

Out[1]= a⊕b⊕…

You can manipulate this string just as you would any other.

In[2]:= StringReplace@%, "⊕" -> " üü "D

Out[2]= a üü b üü …

Here is the list of the characters in the string.

In[3]:= Characters@%D

Out[3]= 8a, , ü, ü, , b, , ü, ü, , …<

In a Mathematica notebook, a special character such as a can always be displayed directly. But

if you use a text-based interface, then typically the only characters that can readily be dis-

played are the ones that appear on your keyboard.

As a result, what Mathematica does in such situations is to try to approximate special charac-

ters by similar-looking sequences of ordinary characters. And when this is not practical, Mathe-

matica just gives the full name of the special character.

In a Mathematica notebook using StandardForm, special characters can be displayed directly.

In[4]:= "Lamé ö ab+"

Out[4]= Lamé ö ab+

242 Core Language

In OutputForm, however, the special characters are approximated when possible by sequences
of ordinary ones.

In[5]:= % êê OutputForm

Out[5]//OutputForm= Lamé ö ab+

Mathematica always uses full names for special characters in InputForm. This means that when

special characters are written out to files or external programs, they are by default represented

purely as sequences of ordinary characters.

This uniform representation is crucial in allowing special characters in Mathematica to be used

in a way that does not depend on the details of particular computer systems.

In InputForm the full names of all special characters are always written out explicitly.

In[6]:= "Lamé ö ab+" êê InputForm

Out[6]//InputForm= "Lamé ö ab+"

a a literal character

î@NameD a character specified using its full name

î" a " to be included in a string

îî a î to be included in a string

Ways to enter characters in a string.

You have to use î to “escape” any " or î characters in strings that you enter.

In[7]:= "Strings can contain \"quotes\" and \\ characters."

Out[7]= Strings can contain "quotes" and \ characters.

îî produces a literal î rather than forming part of the specification of a.

In[8]:= "\\@AlphaD is a."

Out[8]= \[Alpha] is a.

This breaks the string into a list of individual characters.

In[9]:= Characters@%D

Out[9]= 9\, @, A, l, p, h, a, D, , i, s, , a, .=

Core Language 243

This creates a list of the characters in the full name of a.

In[10]:= Characters@ToString@FullForm@"a"DDD

Out[10]= 9", \, @, A, l, p, h, a, D, "=

And this produces a string consisting of an actual a from its full name.

In[11]:= ToExpression@"\"\\@" <> "Alpha" <> "D\""D

Out[11]= a

Newlines and Tabs in Strings

în a newline (line feed) to be included in a string

ît a tab to be included in a string

Explicit representations of newlines and tabs in strings.

This prints on two lines.

In[1]:= "First line.\nSecond line."

Out[1]= First line.
Second line.

In InputForm there is an explicit î n to represent the newline.

In[2]:= InputForm@%D

Out[2]//InputForm= "First line.\nSecond line."

Mathematica keeps line breaks entered within a string.

In[3]:= "A string on
two lines."

Out[3]= A string on
two lines.

There is a newline in the string.

In[4]:= InputForm@%D

Out[4]//InputForm= "A string on \ntwo lines."

244 Core Language

With a single backslash at the end of a line, Mathematica ignores the line break.

In[5]:= "A string on \
one line."

Out[5]= A string on one line.

You should realize that even though it is possible to achieve some formatting of Mathematica

output by creating strings which contain raw tabs and newlines, this is rarely a good idea.

Typically a much better approach is to use the higher-level Mathematica formatting primitives

discussed in "String-Oriented Output Formats", "Output Formats for Numbers", and "Tables and

Matrices". These primitives will always yield consistent output, independent of such issues as

the positions of tab settings on a particular device.

In strings with newlines, text is always aligned on the left.

In[6]:= 8"Here is\na string\non several lines.", "Here is\nanother"<

Out[6]= 8Here is
a string
on several lines., Here is
another<

The front end formatting construct Column gives more control. Here text is aligned on the right.

In[7]:= Column@8"First line", "Second", "Third"<, RightD

Out[7]=
First line

Second
Third

And here the text is centered.

In[8]:= Column@8"First line", "Second", "Third"<, CenterD

Out[8]=
First line

Second
Third

Core Language 245

Character Codes

ToCharacterCode@"string"D give a list of the character codes for the characters in a
string

FromCharacterCode@nD construct a character from its character code

FromCharacterCode@8n1,n2,…<D

construct a string of characters from a list of character
codes

Converting to and from character codes.

Mathematica assigns every character that can appear in a string a unique character code. This

code is used internally as a way to represent the character.

This gives the character codes for the characters in the string.

In[1]:= ToCharacterCode@"ABCD abcd"D

Out[1]= 865, 66, 67, 68, 32, 97, 98, 99, 100<

FromCharacterCode reconstructs the original string.

In[2]:= FromCharacterCode@%D

Out[2]= ABCD abcd

Special characters also have character codes.

In[3]:= ToCharacterCode@"a⊕Gû«"D

Out[3]= 8945, 8853, 915, 8854, 8709<

CharacterRange@"c1","c2"D generate a list of characters with successive character
codes

Generating sequences of characters.

This gives part of the English alphabet.

In[4]:= CharacterRange@"a", "k"D

Out[4]= 8a, b, c, d, e, f, g, h, i, j, k<

246 Core Language

Here is the Greek alphabet.

In[5]:= CharacterRange@"a", "w"D

Out[5]= 8a, b, g, d, ε, z, h, q, i, k, l, m, n, x, o, p, r, V, s, t, u, j, c, y, w<

Mathematica assigns names such as î @AlphaD to a large number of special characters. This

means that you can always refer to such characters just by giving their names, without ever

having to know their character codes.

This generates a string of special characters from their character codes.

In[6]:= FromCharacterCode@88706, 8709, 8711, 8712<D

Out[6]= ∂«“œ

You can always refer to these characters by their names, without knowing their character
codes.

In[7]:= FullForm@%D

Out[7]//FullForm= "\@PartialDD\[EmptySet]\@DelD\@ElementD"

Mathematica has names for all the common characters that are used in mathematical notation

and in standard European languages. But for a language such as Japanese, there are more than

3,000 additional characters, and Mathematica does not assign an explicit name to each of

them. Instead, it refers to such characters by standardized character codes.

Here is a string containing Japanese characters.

In[8]:= "数学"

Out[8]= 数学

In FullForm, these characters are referred to by standardized character codes. The character
codes are given in hexadecimal.

In[9]:= FullForm@%D

Out[9]//FullForm= "\:6570\:5b66"

Core Language 247

The notebook front end for Mathematica is typically set up so that when you enter a character

in a particular font, Mathematica will automatically work out the character code for that charac-

ter.

Sometimes, however, you may find it convenient to be able to enter characters directly using

character codes.

î.nn a character with hexadecimal code nn

\:nnnn a character with hexadecimal code nnnn

Ways to enter characters directly in terms of character codes.

For characters with character codes below 256, you can use \.nn. For characters with character

codes above 256, you must use \:nnnn. Note that in all cases you must give a fixed number of

hexadecimal digits, padding with leading 0s if necessary.

This gives character codes in hexadecimal for a few characters.

In[10]:= BaseForm@ToCharacterCode@"Aàa¡"D, 16D

Out[10]//BaseForm= 84116, e016, 3b116, 213516<

This enters the characters using their character codes. Note the leading 0 inserted in the charac-
ter code for a.

In[11]:= "Aàa¡"

Out[11]= Aàa¡

In assigning codes to characters, Mathematica follows three compatible standards: ASCII, ISO

Latin-1, and Unicode. ASCII covers the characters on a normal American English keyboard. ISO

Latin-1 covers characters in many European languages. Unicode is a more general standard

which defines character codes for several tens of thousands of characters used in languages

and notations around the world.

248 Core Language

0 | 127 (î.00 | î.7f) ASCII characters

1 | 31 (î.01 | î.1f) ASCII control characters

32 | 126 (î.20 | î.7e) printable ASCII characters

97 | 122 (î.61 | î.7a) lower-case English letters

129 | 255 (î.81 | î.ff) ISO Latin-1 characters

192 | 255 (î.c0 | î.ff) letters in European languages

0 | 59391 (î:0000 | î:e7ff) Unicode standard public characters

913 | 1009 (î:0391 | î:03f1) Greek letters

12288 | 35839 (î:3000 | î:8bff) Chinese, Japanese and Korean characters

8450 | 8504 (î:2102 | î:2138) modified letters used in mathematical notation

8592 | 8677 (î:2190 | î:21e5) arrows

8704 | 8945 (î:2200 | î:22f1) mathematical symbols and operators

64256 | 64300 (î:fb00 | î:fb2c) Unicode private characters defined specially by
Mathematica

A few ranges of character codes used by Mathematica.

Here are all the printable ASCII characters.

In[12]:= FromCharacterCode@Range@32, 126DD

Out[12]=
!"Ò$%&'HL*+,-.ê0123456789:;<=>?üABCDEFGHIJKLMNOPQRSTUVWXYZ@\D^_`abcdefghijklmnopqrstuvwxyz8»<
~

Here are some ISO Latin-1 letters.

In[13]:= FromCharacterCode@Range@192, 255DD

Out[13]= ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖµØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö¸øùúûüýþÿ

Here are some special characters used in mathematical notation. The empty boxes correspond
to characters not available in the current font.

In[14]:= FromCharacterCode@Range@8704, 8750DD

Out[14]= "∁∂$±«∆“œ–∊úù'∎¤ˇ⁄-°∔∕î∗Î∙,∛∜∝¶¨—∡Æ˝I˛Jflfi∩∪Ÿ ∬∭ò

Here are a few Japanese characters.

In[15]:= FromCharacterCode@Range@30 000, 30030DD

Out[15]= 田由甲申甴电甶男甸甹町画甼甽甾甿畀畁畂畃畄畅畆畇畈畉畊畋界畍畎

Raw Character Encodings

Core Language 249

Raw Character Encodings

Mathematica always allows you to refer to special characters by using names such as

î @AlphaD or explicit hexadecimal codes such as î : 03 b1. And when Mathematica writes out

files, it by default uses these names or hexadecimal codes.

But sometimes you may find it convenient to use raw encodings for at least some special charac-

ters. What this means is that rather than representing special characters by names or explicit

hexadecimal codes, you instead represent them by raw bit patterns appropriate for a particular

computer system or particular font.

$CharacterEncoding=None use printable ASCII names for all special characters

$CharacterEncoding="name" use the raw character encoding specified by name

$SystemCharacterEncoding the default raw character encoding for your particular
computer system

Setting up raw character encodings.

When you press a key or combination of keys on your keyboard, the operating system of your

computer sends a certain bit pattern to Mathematica. How this bit pattern is interpreted as a

character within Mathematica will depend on the character encoding that has been set up.

The notebook front end for Mathematica typically takes care of setting up the appropriate

character encoding automatically for whatever font you are using. But if you use Mathematica

with a text-based interface or via files or pipes, then you may need to set $CharacterEncoding

explicitly.

By specifying an appropriate value for $CharacterEncoding you will typically be able to get

Mathematica to handle raw text generated by whatever language-specific text editor or operat-

ing system you use.

You should realize, however, that while the standard representation of special characters used

in Mathematica is completely portable across different computer systems, any representation

that involves raw character encodings will inevitably not be.

250 Core Language

"PrintableASCII" printable ASCII characters only (default)

"ASCII" all ASCII including control characters

"ISOLatin1" characters for common western European languages

"ISOLatin2" characters for central and eastern European languages

"ISOLatin3" characters for additional European languages (e.g. Cata-
lan, Turkish)

"ISOLatin4" characters for other additional European languages (e.g.
Estonian, Lappish)

"ISOLatinCyrillic" English and Cyrillic characters

"AdobeStandard" Adobe standard PostScript font encoding

"MacintoshRoman" Macintosh roman font encoding

"WindowsANSI" Windows standard font encoding

"Symbol" symbol font encoding

"ZapfDingbats" Zapf dingbats font encoding

"ShiftJIS" shift-JIS for Japanese (mixture of 8- and 16-bit)

"EUC" extended Unix code for Japanese (mixture of 8- and 16-bit)

"UTF8" Unicode transformation format encoding

"Unicode" raw 16-bit Unicode bit patterns

Some raw character encodings supported by Mathematica.

Mathematica knows about various raw character encodings, appropriate for different computer

systems and different languages. Copying of characters between the Mathematica notebook

interface and user interface environment on your computer generally uses the native character

encoding for that environment. Mathematica characters which are not included in the native

encoding will be written out using standard Mathematica full names or hexadecimal codes.

The Mathematica kernel can use any character encoding you specify when it writes or reads

text files. By default, Put and PutAppend produce an ASCII representation for reliable portabil-

ity of Mathematica language files from one system to another.

This writes a string to the file tmp.

In[1]:= "a b c é a p ❦" >> tmp

Special characters are written out using full names or explicit hexadecimal codes.

In[2]:= Read@"tmp", StringD

Out[2]= "a b c \[EAcute] \[Alpha] \[Pi] \:2766"

Mathematica supports both 8- and 16-bit raw character encodings. In an encoding such as

"ISOLatin1", all characters are represented by bit patterns containing 8 bits. But in an encod-

ing such as "ShiftJIS" some characters instead involve bit patterns containing 16 bits.

Core Language 251

Mathematica supports both 8- and 16-bit raw character encodings. In an encoding such as

"ISOLatin1", all characters are represented by bit patterns containing 8 bits. But in an encod-

ing such as "ShiftJIS" some characters instead involve bit patterns containing 16 bits.

Most of the raw character encodings supported by Mathematica include basic ASCII as a subset.

This means that even when you are using such encodings, you can still give ordinary Mathemat-

ica input in the usual way, and you can specify special characters using î @ and î : sequences.

Some raw character encodings, however, do not include basic ASCII as a subset. An example is

the "Symbol" encoding, in which the character codes normally used for a and b are instead

used for a and b.

This gives the usual ASCII character codes for a few English letters.

In[3]:= ToCharacterCode@"abcdefgh"D

Out[3]= 897, 98, 99, 100, 101, 102, 103, 104<

In the "Symbol" encoding, these character codes are used for Greek letters.

In[4]:= FromCharacterCode@%, "Symbol"D

Out[4]= abcdefgh

ToCharacterCode@"string"D generate codes for characters using the standard Mathemat-
ica encoding

ToCharacterCode@"string","encoding"D

generate codes for characters using the specified encoding

FromCharacterCode@8n1,n2,…<D

generate characters from codes using the standard Mathe -
matica encoding

FromCharacterCode@8n1,n2,…<,"encoding"D

generate characters from codes using the specified
encoding

Handling character codes with different encodings.

This gives the codes assigned to various characters by Mathematica.

In[5]:= ToCharacterCode@"abcép"D

Out[5]= 897, 98, 99, 233, 960<

252 Core Language

Here are the codes assigned to the same characters in the Macintosh roman encoding.

In[6]:= ToCharacterCode@"abcép", "MacintoshRoman"D

Out[6]= 897, 98, 99, 142, 185<

Here are the codes in the Windows standard encoding. There is no code for î @PiD in that
encoding.

In[7]:= ToCharacterCode@"abcép", "WindowsANSI"D

Out[7]= 897, 98, 99, 233, None<

The character codes used internally by Mathematica are based on Unicode. But externally

Mathematica by default always uses plain ASCII sequences such as î @NameD or î : nnnn to

refer to special characters. By telling it to use the raw "Unicode" character encoding, however,

you can get Mathematica to read and write characters in raw 16-bit Unicode form.

Core Language 253

Evaluation of Expressions

Principles of Evaluation

The fundamental operation that Mathematica performs is evaluation. Whenever you enter an

expression, Mathematica evaluates the expression, then returns the result.

Evaluation in Mathematica works by applying a sequence of definitions. The definitions can

either be ones you explicitly entered, or ones that are built into Mathematica.

Thus, for example, Mathematica evaluates the expression 6 + 7 using a built-in procedure for

adding integers. Similarly, Mathematica evaluates the algebraic expression x - 3 x + 1 using a

built-in simplification procedure. If you had made the definition x = 5, then Mathematica would

use this definition to reduce x - 3 x + 1 to -9.

The two most central concepts in Mathematica are probably expressions and evaluation.

"Expressions" discusses how all the different kinds of objects that Mathematica handles are

represented in a uniform way using expressions. This tutorial describes how all the operations

that Mathematica can perform can also be viewed in a uniform way as examples of evaluation.

Computation 5 + 6ö11

Simplification x - 3 x + 1ö1 - 2 x

Execution x = 5ö5

Some interpretations of evaluation.

Mathematica is an infinite evaluation system. When you enter an expression, Mathematica will

keep on using definitions it knows until it gets a result to which no definitions apply.

This defines x1 in terms of x2, and then defines x2.

In[1]:= x1 = x2 + 2; x2 = 7

Out[1]= 7

If you ask for x1, Mathematica uses all the definitions it knows to give you a result.

In[2]:= x1

Out[2]= 9

Here is a recursive definition in which the factorial function is defined in terms of itself.

254 Core Language

Here is a recursive definition in which the factorial function is defined in terms of itself.

In[3]:= fac@1D = 1; fac@n_D := n fac@n - 1D

If you ask for fac@10D, Mathematica will keep on applying the definitions you have given until
the result it gets no longer changes.

In[4]:= fac@10D

Out[4]= 3628800

When Mathematica has used all the definitions it knows, it gives whatever expression it has

obtained as the result. Sometimes the result may be an object such as a number. But usually

the result is an expression in which some objects are represented in a symbolic form.

Mathematica uses its built-in definitions for simplifying sums, but knows no definitions for f@3D,
so leaves this in symbolic form.

In[5]:= f@3D + 4 f@3D + 1

Out[5]= 1 + 5 f@3D

Mathematica follows the principle of applying definitions until the result it gets no longer

changes. This means that if you take the final result that Mathematica gives, and enter it as

Mathematica input, you will get back the same result again. (There are some subtle cases

discussed in "Controlling Infinite Evaluation" in which this does not occur.)

If you type in a result from Mathematica, you get back the same expression again.

In[6]:= 1 + 5 f@3D

Out[6]= 1 + 5 f@3D

At any given time, Mathematica can only use those definitions that it knows at that time. If you

add more definitions later, however, Mathematica will be able to use these. The results you get

from Mathematica may change in this case.

Here is a new definition for the function f.

In[7]:= f@x_D = x^2

Out[7]= x2

With the new definition, the results you get can change.

In[8]:= 1 + 5 f@3D

Out[8]= 46

The simplest examples of evaluation involve using definitions such as f@x_D = x^2 which trans-

form one expression directly into another. But evaluation is also the process used to execute

programs written in Mathematica. Thus, for example, if you have a procedure consisting of a

sequence of Mathematica expressions, some perhaps representing conditionals and loops, the

execution of this procedure corresponds to the evaluation of these expressions. Sometimes the

evaluation process may involve evaluating a particular expression several times, as in a loop.

Core Language 255

The simplest examples of evaluation involve using definitions such as f@x_D = x^2 which trans-

form one expression directly into another. But evaluation is also the process used to execute

programs written in Mathematica. Thus, for example, if you have a procedure consisting of a

sequence of Mathematica expressions, some perhaps representing conditionals and loops, the

execution of this procedure corresponds to the evaluation of these expressions. Sometimes the

evaluation process may involve evaluating a particular expression several times, as in a loop.

The expression Print@zzzzD is evaluated three times during the evaluation of the Do expres-
sion.

In[9]:= Do@Print@zzzzD, 83<D

zzzz

zzzz

zzzz

Reducing Expressions to Their Standard Form

The built-in functions in Mathematica operate in a wide variety of ways. But many of the mathe-

matical functions share an important approach: they are set up so as to reduce classes of

mathematical expressions to standard forms.

The built-in definitions for the Plus function, for example, are set up to write any sum of terms

in a standard unparenthesized form. The associativity of addition means that expressions like

Ha + bL + c, a + Hb + cL and a + b + c are all equivalent. But for many purposes it is convenient for

all these forms to be reduced to the single standard form a + b + c. The built-in definitions for

Plus are set up to do this.

Through the built-in definitions for Plus, this expression is reduced to a standard unparenthe-
sized form.

In[1]:= Ha + bL + c

Out[1]= a + b + c

Whenever Mathematica knows that a function is associative, it tries to remove parentheses (or

nested invocations of the function) to get the function into a standard “flattened” form.

A function like addition is not only associative, but also commutative, which means that expres-

sions like a + c + b and a + b + c with terms in different orders are equal. Once again, Mathemat-

ica tries to put all such expressions into a “standard” form. The standard form it chooses is the

one in which all the terms are in a definite order, corresponding roughly to alphabetical order.

256 Core Language

A function like addition is not only associative, but also commutative, which means that expres-

sions like a + c + b and a + b + c with terms in different orders are equal. Once again, Mathemat-

ica tries to put all such expressions into a “standard” form. The standard form it chooses is the

one in which all the terms are in a definite order, corresponding roughly to alphabetical order.

Mathematica sorts the terms in this sum into a standard order.

In[2]:= c + a + b

Out[2]= a + b + c

flat (associative) f[f[a,b],c] is equivalent to f[a,b,c], etc.

orderless (commutative) f[b,a] is equivalent to f[a,b], etc.

Two important properties that Mathematica uses in reducing certain functions to standard form.

There are several reasons to try to put expressions into standard forms. The most important is

that if two expressions are really in standard form, it is obvious whether or not they are equal.

When the two sums are put into standard order, they are immediately seen to be equal, so that
two f’s cancel, leaving the result 0.

In[3]:= f@a + c + bD - f@c + a + bD

Out[3]= 0

You could imagine finding out whether a + c + b was equal to c + a + b by testing all possible

orderings of each sum. It is clear that simply reducing both sums to standard form is a much

more efficient procedure.

One might think that Mathematica should somehow automatically reduce all mathematical

expressions to a single standard canonical form. With all but the simplest kinds of expressions,

however, it is quite easy to see that you do not want the same standard form for all purposes.

For polynomials, for example, there are two obvious standard forms, which are good for differ-

ent purposes. The first standard form for a polynomial is a simple sum of terms, as would be

generated in Mathematica by applying the function Expand. This standard form is most appropri-

ate if you need to add and subtract polynomials.

There is, however, another possible standard form that you can use for polynomials. By apply-

ing Factor, you can write any polynomial as a product of irreducible factors. This canonical

form is useful if you want to do operations like division.

Expanded and factored forms are in a sense both equally good standard forms for polynomials.

Which one you decide to use simply depends on what you want to use it for. As a result, Mathe-

matica does not automatically put polynomials into one of these two forms. Instead, it gives

you functions like Expand and Factor that allow you explicitly to put polynomials in whatever

form you want.

Core Language 257

Expanded and factored forms are in a sense both equally good standard forms for polynomials.

Which one you decide to use simply depends on what you want to use it for. As a result, Mathe-

matica does not automatically put polynomials into one of these two forms. Instead, it gives

you functions like Expand and Factor that allow you explicitly to put polynomials in whatever

form you want.

Here is a list of two polynomials that are mathematically equal.

In[4]:= t = 8x^2 - 1, Hx + 1L Hx - 1L<

Out[4]= 9-1 + x2, H-1 + xL H1 + xL=

You can write both of them in expanded form just by applying Expand. In this form, the equal-
ity of the polynomials is obvious.

In[5]:= Expand@tD

Out[5]= 9-1 + x2, -1 + x2=

You can also see that the polynomials are equal by writing them both in factored form.

In[6]:= Factor@tD

Out[6]= 8H-1 + xL H1 + xL, H-1 + xL H1 + xL<

Although it is clear that you do not always want expressions reduced to the same standard

form, you may wonder whether it is at least possible to reduce all expressions to some standard

form.

There is a basic result in the mathematical theory of computation which shows that this is, in

fact, not always possible. You cannot guarantee that any finite sequence of transformations will

take any two arbitrarily chosen expressions to a standard form.

In a sense, this is not particularly surprising. If you could in fact reduce all mathematical expres-

sions to a standard form, then it would be quite easy to tell whether any two expressions were

equal. The fact that so many of the difficult problems of mathematics can be stated as ques-

tions about the equality of expressions suggests that this can in fact be difficult.

258 Core Language

Attributes

Definitions such as f@x_D = x^2 specify values for functions. Sometimes, however, you need to

specify general properties of functions, without necessarily giving explicit values.

Mathematica provides a selection of attributes that you can use to specify various properties of

functions. For example, you can use the attribute Flat to specify that a particular function is

"flat", so that nested invocations are automatically flattened, and it behaves as if it were associa-

tive.

This assigns the attribute Flat to the function f.

In[1]:= SetAttributes@f, FlatD

Now f behaves as a flat, or associative, function, so that nested invocations are automatically
flattened.

In[2]:= f@f@a, bD, cD

Out[2]= f@a, b, cD

Attributes like Flat can affect not only evaluation, but also operations such as pattern match-

ing. If you give definitions or transformation rules for a function, you must be sure to have

specified the attributes of the function first.

Here is a definition for the flat function f.

In[3]:= f@x_, x_D := f@xD

Because f is flat, the definition is automatically applied to every subsequence of arguments.

In[4]:= f@a, a, a, b, b, b, c, cD

Out[4]= f@a, b, cD

Attributes@ fD give the attributes of f

Attributes@ fD=8attr1,attr2,…< set the attributes of f

Attributes@ fD=8< set f to have no attributes

SetAttributes@ f,attrD add attr to the attributes of f

ClearAttributes@ f,attrD remove attr from the attributes of f

Manipulating attributes of symbols.

Core Language 259

This shows the attributes assigned to f.

In[5]:= Attributes@fD

Out[5]= 8Flat<

This removes the attributes assigned to f.

In[6]:= Attributes@fD = 8<

Out[6]= 8<

Orderless orderless, commutative function (arguments are sorted
into standard order)

Flat flat, associative function (arguments are "flattened out")

OneIdentity f@ f@aDD, etc. are equivalent to a for pattern matching

Listable f is automatically "threaded" over lists that appear as
arguments (e.g., f@8a, b<D becomes 8 f@aD, f@bD<)

Constant all derivatives of f are zero

NumericFunction f is assumed to have a numerical value when its argu-
ments are numeric quantities

Protected values of f cannot be changed

Locked attributes of f cannot be changed

ReadProtected values of f cannot be read

HoldFirst the first argument of f is not evaluated

HoldRest all but the first argument of f is not evaluated

HoldAll none of the arguments of f are evaluated

HoldAllComplete the arguments of f are treated as completely inert

NHoldFirst the first argument of f is not affected by N

NHoldRest all but the first argument of f is not affected by N

NHoldAll none of the arguments of f are affected by N

SequenceHold Sequence objects appearing in the arguments of f are not
flattened out

Temporary f is a local variable, removed when no longer used

Stub Needs is automatically called if f is ever explicitly input

The complete list of attributes for symbols in Mathematica.

260 Core Language

Here are the attributes for the built-in function Plus.

In[7]:= Attributes@PlusD

Out[7]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

An important attribute assigned to built-in mathematical functions in Mathematica is the

attribute Listable. This attribute specifies that a function should automatically be distributed

or "threaded" over lists that appear as its arguments. This means that the function effectively

gets applied separately to each element in any lists that appear as its arguments.

The built-in Log function is Listable.

In[8]:= Log@85, 8, 11<D

Out[8]= 8Log@5D, Log@8D, Log@11D<

This defines the function p to be listable.

In[9]:= SetAttributes@p, ListableD

Now p is automatically threaded over lists that appear as its arguments.

In[10]:= p@8a, b, c<, dD

Out[10]= 8p@a, dD, p@b, dD, p@c, dD<

Many of the attributes you can assign to functions in Mathematica directly affect the evaluation

of those functions. Some attributes, however, affect only other aspects of the treatment of

functions. For example, the attribute OneIdentity affects only pattern matching, as discussed

in "Flat and Orderless Functions". Similarly, the attribute Constant is only relevant in differentia-

tion, and operations that rely on differentiation.

The Protected attribute affects assignments. Mathematica does not allow you to make any

definition associated with a symbol that carries this attribute. The functions Protect and

Unprotect discussed in "Modifying Built-in Functions" can be used as alternatives to

SetAttributes and ClearAttributes to set and clear this attribute. As discussed in "Modifying

Built-in Functions" most built-in Mathematica objects are initially protected so that you do not

make definitions for them by mistake.

Here is a definition for the function g.

In[11]:= g@x_D = x + 1

Out[11]= 1 + x

This sets the Protected attribute for g.

Core Language 261

This sets the Protected attribute for g.

In[12]:= Protect@gD

Out[12]= 8g<

Now you cannot modify the definition of g.

In[13]:= g@x_D = x

Set::write : Tag g in g@x_D is Protected. à

Out[13]= x

You can usually see the definitions you have made for a particular symbol by typing ? f , or by

using a variety of built-in Mathematica functions. However, if you set the attribute

ReadProtected, Mathematica will not allow you to look at the definition of a particular symbol.

It will nevertheless continue to use the definitions in performing evaluation.

Although you cannot modify it, you can still look at the definition of g.

In[14]:= ? g

Global`g

Attributes@gD = 8Protected<

g@x_D = 1 + x

This sets the ReadProtected attribute for g.

In[15]:= SetAttributes@g, ReadProtectedD

Now you can no longer read the definition of g.

In[16]:= ? g

Global`g

Attributes@gD = 8Protected, ReadProtected<

Functions like SetAttributes and ClearAttributes usually allow you to modify the attributes

of a symbol in any way. However, if you once set the Locked attribute on a symbol, then Mathe-

matica will not allow you to modify the attributes of that symbol for the remainder of your

Mathematica session. Using the Locked attribute in addition to Protected or ReadProtected,

you can arrange for it to be impossible for users to modify or read definitions.

262 Core Language

Clear@ fD remove values for f , but not attributes

ClearAll@ fD remove both values and attributes of f

Clearing values and attributes.

This clears values and attributes of p which was given attribute Listable above.

In[17]:= ClearAll@pD

Now p is no longer listable.

In[18]:= p@8a, b, c<, dD

Out[18]= p@8a, b, c<, dD

By defining attributes for a function you specify properties that Mathematica should assume

whenever that function appears. Often, however, you want to assume the properties only in a

particular instance. In such cases, you will be better off not to use attributes, but instead to call

a particular function to implement the transformation associated with the attributes.

By explicitly calling Thread, you can implement the transformation that would be done automati -
cally if p were listable.

In[19]:= Thread@p@8a, b, c<, dDD

Out[19]= 8p@a, dD, p@b, dD, p@c, dD<

Orderless Sort@ f@argsDD

Flat Flatten@ f@argsDD

Listable Thread@ f@argsDD

Constant DtAexpr,Constants-> fE

Functions that perform transformations associated with some attributes.

Attributes in Mathematica can only be permanently defined for single symbols. However, Mathe-

matica also allows you to set up pure functions which behave as if they carry attributes.

Function@vars,body,8attr1,…<D a pure function with attributes attr1, …

Pure functions with attributes.

This pure function applies p to the whole list.

In[20]:= Function@8x<, p@xDD@8a, b, c<D

Out[20]= p@8a, b, c<D

By adding the attribute Listable, the function gets distributed over the elements of the list
before applying p.

Core Language 263

By adding the attribute Listable, the function gets distributed over the elements of the list
before applying p.

In[21]:= Function@8x<, p@xD, 8Listable<D@8a, b, c<D

Out[21]= 8p@aD, p@bD, p@cD<

The Standard Evaluation Procedure

Here we describe the standard procedure used by Mathematica to evaluate expressions. This

procedure is the one followed for most kinds of expression. There are however some kinds of

expressions, such as those used to represent Mathematica programs and control structures,

which are evaluated in a nonstandard way.

In the standard evaluation procedure, Mathematica first evaluates the head of an expression,

and then evaluates each element of the expressions. These elements are in general themselves

expressions, to which the same evaluation procedure is recursively applied.

The three Print functions are evaluated in turn, each printing its argument, then returning the
value Null.

In[1]:= 8Print@1D, Print@2D, Print@3D<

1

2

3
Out[1]= 8Null, Null, Null<

This assigns the symbol ps to be Plus.

In[2]:= ps = Plus

Out[2]= Plus

The head ps is evaluated first, so this expression behaves just like a sum of terms.

In[3]:= ps@ps@a, bD, cD

Out[3]= a + b + c

264 Core Language

As soon as Mathematica has evaluated the head of an expression, it sees whether the head is a

symbol that has attributes. If the symbol has the attributes Orderless, Flat or Listable, then

immediately after evaluating the elements of the expression Mathematica performs the transfor-

mations associated with these attributes.

The next step in the standard evaluation procedure is to use definitions that Mathematica

knows for the expression it is evaluating. Mathematica first tries to use definitions that you

have made, and if there are none that apply, it tries built-in definitions.

If Mathematica finds a definition that applies, it performs the corresponding transformation on

the expression. The result is another expression, which must then in turn be evaluated accord-

ing to the standard evaluation procedure.

† Evaluate the head of the expression.

† Evaluate each element in turn.

† Apply transformations associated with the attributes Orderless, Listable and Flat.

† Apply any definitions that you have given.

† Apply any built-in definitions.

† Evaluate the result.

The standard evaluation procedure.

As discussed in "Principles of Evaluation", Mathematica follows the principle that each expres-

sion is evaluated until no further definitions apply. This means that Mathematica must continue

re-evaluating results until it gets an expression which remains unchanged through the evalua-

tion procedure.

Here is an example that shows how the standard evaluation procedure works on a simple expres -

sion. We assume that a = 7.

Core Language 265

2 a x+a^2+1 here is the original expression

Plus@Times@2,a,xD,Power@a,2D,1D

this is the internal form

Times@2,a,xD this is evaluated first

Times@2,7,xD a is evaluated to give 7

Times@14,xD built-in definitions for Times give this result

Power@a,2D this is evaluated next

Power@7,2D here is the result after evaluating a

49 built-in definitions for Power give this result

Plus@Times@14,xD,49,1D here is the result after the arguments of Plus have been
evaluated

Plus@50,Times@14,xDD built-in definitions for Plus give this result

50+14 x the result is printed like this

A simple example of evaluation in Mathematica.

Mathematica provides various ways to “trace” the evaluation process, as discussed in "Tracing

Evaluation". The function Trace@exprD gives a nested list showing each subexpression gener-

ated during evaluation. (Note that the standard evaluation traverses the expression tree in a

depth-first way, so that the smallest subparts of the expression appear first in the results of

Trace.)

First set a to 7.

In[4]:= a = 7

Out[4]= 7

This gives a nested list of all the subexpressions generated during the evaluation of the expres-
sion.

In[5]:= Trace@2 a x + a^2 + 1D

Out[5]= 988a, 7<, 2 µ 7 x, 14 x<, 98a, 7<, 72, 49=, 14 x + 49 + 1, 50 + 14 x=

The order in which Mathematica applies different kinds of definitions is important. The fact that

Mathematica applies definitions you have given before it applies built-in definitions means that

you can give definitions which override the built-in ones, as discussed in "Modifying Built-in

Functions".

266 Core Language

This expression is evaluated using the built-in definition for ArcSin.

In[6]:= ArcSin@1D

Out[6]=
p

2

You can give your own definitions for ArcSin. You need to remove the protection attribute first.

In[7]:= Unprotect@ArcSinD; ArcSin@1D = 5 Pi ê 2;

Your definition is used before the one that is built in.

In[8]:= ArcSin@1D

Out[8]=
5 p

2

As discussed in "Associating Definitions with Different Symbols", you can associate definitions

with symbols either as upvalues or downvalues. Mathematica always tries upvalue definitions

before downvalue ones.

If you have an expression like f@g@xDD, there are in general two sets of definitions that could

apply: downvalues associated with f , and upvalues associated with g. Mathematica tries the

definitions associated with g before those associated with f .

This ordering follows the general strategy of trying specific definitions before more general

ones. By applying upvalues associated with arguments before applying downvalues associated

with a function, Mathematica allows you to make definitions for special arguments which over-

ride the general definitions for the function with any arguments.

This defines a rule for f@g@x_DD, to be associated with f.

In[9]:= f ê: f@g@x_DD := frule@xD

This defines a rule for f@g@x_DD, to be associated with g.

In[10]:= g ê: f@g@x_DD := grule@xD

The rule associated with g is tried before the rule associated with f.

In[11]:= f@g@2DD

Out[11]= grule@2D

Core Language 267

If you remove rules associated with g, the rule associated with f is used.

In[12]:= Clear@gD; f@g@1DD

Out[12]= frule@1D

† Definitions associated with g are applied before definitions associated with f in the expression
f@g@xDD.

The order in which definitions are applied.

Most functions such as Plus that are built into Mathematica have downvalues. There are, how-

ever, some objects in Mathematica which have built-in upvalues. For example, SeriesData

objects, which represent power series, have built-in upvalues with respect to various mathemati-

cal operations.

For an expression like f@g@xDD, the complete sequence of definitions that are tried in the stan-

dard evaluation procedure is:

† Definitions you have given associated with g;

† Built-in definitions associated with g;

† Definitions you have given associated with f ;

† Built-in definitions associated with f .

The fact that upvalues are used before downvalues is important in many situations. In a typical

case, you might want to define an operation such as composition. If you give upvalues for

various objects with respect to composition, these upvalues will be used whenever such objects

appear. However, you can also give a general procedure for composition, to be used if no

special objects are present. You can give this procedure as a downvalue for composition. Since

downvalues are tried after upvalues, the general procedure will be used only if no objects with

upvalues are present.

Here is a definition associated with q for composition of “q objects”.

In[13]:= q ê: comp@q@x_D, q@y_DD := qcomp@x, yD

Here is a general rule for composition, associated with comp.

In[14]:= comp@f_@x_D, f_@y_DD := gencomp@f, x, yD

268 Core Language

If you compose two q objects, the rule associated with q is used.

In[15]:= comp@q@1D, q@2DD

Out[15]= qcomp@1, 2D

If you compose r objects, the general rule associated with comp is used.

In[16]:= comp@r@1D, r@2DD

Out[16]= gencomp@r, 1, 2D

In general, there can be several objects that have upvalues in a particular expression. Mathemat-

ica first looks at the head of the expression, and tries any upvalues associated with it. Then it

successively looks at each element of the expression, trying any upvalues that exist. Mathemat-

ica performs this procedure first for upvalues that you have explicitly defined, and then for

upvalues that are built-in. The procedure means that in a sequence of elements, upvalues

associated with earlier elements take precedence over those associated with later elements.

This defines an upvalue for p with respect to c.

In[17]:= p ê: c@l___, p@x_D, r___D := cp@x, 8l, r<D

This defines an upvalue for q.

In[18]:= q ê: c@l___, q@x_D, r___D := cq@x, 8l, r<D

Which upvalue is used depends on which occurs first in the sequence of arguments to c.

In[19]:= 8c@p@1D, q@2DD, c@q@1D, p@2DD<

Out[19]= 8cp@1, 8q@2D<D, cq@1, 8p@2D<D<

Non-Standard Evaluation

While most built-in Mathematica functions follow the standard evaluation procedure, some

important ones do not. For example, most of the Mathematica functions associated with the

construction and execution of programs use non-standard evaluation procedures. In typical

cases, the functions either never evaluate some of their arguments, or do so in a special way

under their own control.

Core Language 269

x=y do not evaluate the left-hand side

If@p,a,bD evaluate a if p is True, and b if it is False

Do@expr,8n<D evaluate expr n times

Plot@ f,8x,…<D evaluate f with a sequence of numerical values for x

Function@8x<,bodyD do not evaluate until the function is applied

Some functions that use non-standard evaluation procedures.

When you give a definition such as a = 1, Mathematica does not evaluate the a that appears on

the left-hand side. You can see that there would be trouble if the a was evaluated. The reason

is that if you had previously set a = 7, then evaluating a in the definition a = 1 would put the

definition into the nonsensical form 7 = 1.

In the standard evaluation procedure, each argument of a function is evaluated in turn. This is

prevented by setting the attributes HoldFirst, HoldRest and HoldAll. These attributes make

Mathematica “hold” particular arguments in an unevaluated form.

HoldFirst do not evaluate the first argument

HoldRest evaluate only the first argument

HoldAll evaluate none of the arguments

Attributes for holding function arguments in unevaluated form.

With the standard evaluation procedure, all arguments to a function are evaluated.

In[1]:= f@1 + 1, 2 + 4D

Out[1]= f@2, 6D

This assigns the attribute HoldFirst to h.

In[2]:= SetAttributes@h, HoldFirstD

The first argument to h is now held in an unevaluated form.

In[3]:= h@1 + 1, 2 + 4D

Out[3]= h@1 + 1, 6D

When you use the first argument to h like this, it will get evaluated.

In[4]:= h@1 + 1, 2 + 4D ê. h@x_, y_D -> x^y

Out[4]= 64

Built-in functions like Set carry attributes such as HoldFirst.

270 Core Language

Built-in functions like Set carry attributes such as HoldFirst.

In[5]:= Attributes@SetD

Out[5]= 8HoldFirst, Protected, SequenceHold<

Even though a function may have attributes which specify that it should hold certain arguments

unevaluated, you can always explicitly tell Mathematica to evaluate those arguments by giving

the arguments in the form Evaluate@argD.

Evaluate effectively overrides the HoldFirst attribute, and causes the first argument to be
evaluated.

In[6]:= h@Evaluate@1 + 1D, 2 + 4D

Out[6]= h@2, 6D

f@Evaluate@argDD evaluate arg immediately, even though attributes of f may
specify that it should be held

Forcing the evaluation of function arguments.

By holding its arguments, a function can control when those arguments are evaluated. By using

Evaluate, you can force the arguments to be evaluated immediately, rather than being evalu-

ated under the control of the function. This capability is useful in a number of circumstances.

The Mathematica Set function holds its first argument, so the symbol a is not evaluated in this
case.

In[7]:= a = b

Out[7]= b

You can make Set evaluate its first argument using Evaluate. In this case, the result is the
object which is the value of a, namely b is set to 6.

In[8]:= Evaluate@aD = 6

Out[8]= 6

b has now been set to 6.

In[9]:= b

Out[9]= 6

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,

however, you may want to prevent the evaluation of certain expressions. For example, if you

want to manipulate pieces of a Mathematica program symbolically, then you must prevent

those pieces from being evaluated while you are manipulating them.

Core Language 271

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,

however, you may want to prevent the evaluation of certain expressions. For example, if you

want to manipulate pieces of a Mathematica program symbolically, then you must prevent

those pieces from being evaluated while you are manipulating them.

You can use the functions Hold and HoldForm to keep expressions unevaluated. These func-

tions work simply by carrying the attribute HoldAll, which prevents their arguments from

being evaluated. The functions provide “wrappers” inside which expressions remain unevalu-

ated.

The difference between Hold@exprD and HoldForm@exprD is that in standard Mathematica output

format, Hold is printed explicitly, while HoldForm is not. If you look at the full internal Mathemat-

ica form, you can however see both functions.

Hold maintains expressions in an unevaluated form.

In[10]:= Hold@1 + 1D

Out[10]= Hold@1 + 1D

HoldForm also keeps expressions unevaluated, but is invisible in standard Mathematica output
format.

In[11]:= HoldForm@1 + 1D

Out[11]= 1 + 1

HoldForm is still present internally.

In[12]:= FullForm@%D

Out[12]//FullForm= HoldForm@Plus@1, 1DD

The function ReleaseHold removes Hold and HoldForm, so the expressions they contain get
evaluated.

In[13]:= ReleaseHold@%D

Out[13]= 2

272 Core Language

Hold@exprD keep expr unevaluated

HoldComplete@exprD keep expr unevaluated and prevent upvalues associated
with expr from being used

HoldForm@exprD keep expr unevaluated, and print without HoldForm

ReleaseHold@exprD remove Hold and HoldForm in expr

ExtractAexpr,index,HoldE get a part of expr, wrapping it with Hold to prevent
evaluation

Functions for handling unevaluated expressions.

Parts of expressions are usually evaluated as soon as you extract them.

In[14]:= Extract@Hold@1 + 1, 2 + 3D, 2D

Out[14]= 5

This extracts a part and immediately wraps it with Hold, so it does not get evaluated.

In[15]:= Extract@Hold@1 + 1, 2 + 3D, 2, HoldD

Out[15]= Hold@2 + 3D

f@…,Unevaluated@exprD,…D give expr unevaluated as an argument to f

Temporary prevention of argument evaluation.

1 + 1 evaluates to 2, and Length@2D gives 0.

In[16]:= Length@1 + 1D

Out[16]= 0

This gives the unevaluated form 1 + 1 as the argument of Length.

In[17]:= Length@Unevaluated@1 + 1DD

Out[17]= 2

Unevaluated@exprD effectively works by temporarily giving a function an attribute like

HoldFirst, and then supplying expr as an argument to the function.

SequenceHold do not flatten out Sequence objects that appear as
arguments

HoldAllComplete treat all arguments as completely inert

Attributes for preventing other aspects of evaluation.

By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments

of a function. But even with this attribute set, Mathematica will still do some transformations on

the arguments. By setting SequenceHold you can prevent it from flattening out Sequence

objects that appear in the arguments. And by setting HoldAllComplete you can also inhibit the

stripping of Unevaluated, and prevent Mathematica from using any upvalues it finds associated

with the arguments.

Core Language 273

By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments

of a function. But even with this attribute set, Mathematica will still do some transformations on

the arguments. By setting SequenceHold you can prevent it from flattening out Sequence

objects that appear in the arguments. And by setting HoldAllComplete you can also inhibit the

stripping of Unevaluated, and prevent Mathematica from using any upvalues it finds associated

with the arguments.

Evaluation in Patterns, Rules and Definitions

There are a number of important interactions in Mathematica between evaluation and pattern

matching. The first observation is that pattern matching is usually done on expressions that

have already been at least partly evaluated. As a result, it is usually appropriate that the pat-

terns to which these expressions are matched should themselves be evaluated.

The fact that the pattern is evaluated means that it matches the expression given.

In[1]:= f@k^2D ê. f@x_^H1 + 1LD -> p@xD

Out[1]= p@kD

The right-hand side of the ê; condition is not evaluated until it is used during pattern matching.

In[2]:= f@8a, b<D ê. f@list_ ê; Length@listD > 1D -> list^2

Out[2]= 9a2, b2=

There are some cases, however, where you may want to keep all or part of a pattern unevalu-

ated. You can do this by wrapping the parts you do not want to evaluate with HoldPattern. In

general, whenever HoldPattern@pattD appears within a pattern, this form is taken to be equiva-

lent to patt for the purpose of pattern matching, but the expression patt is maintained unevalu-

ated.

HoldPattern@pattD equivalent to patt for pattern matching, with patt kept
unevaluated

Preventing evaluation in patterns.

One application for HoldPattern is in specifying patterns which can apply to unevaluated

expressions, or expressions held in an unevaluated form.

274 Core Language

HoldPattern keeps the 1 + 1 from being evaluated, and allows it to match the 1 + 1 on the
left-hand side of the ê. operator.

In[3]:= Hold@u@1 + 1DD ê. HoldPattern@1 + 1D -> x

Out[3]= Hold@u@xDD

Notice that while functions like Hold prevent evaluation of expressions, they do not affect the

manipulation of parts of those expressions with ê. and other operators.

This defines values for r whenever its argument is not an atomic object.

In[4]:= r@x_D := x^2 ê; ! AtomQ@xD

According to the definition, expressions like r@3D are left unchanged.

In[5]:= r@3D

Out[5]= r@3D

However, the pattern r@x_D is transformed according to the definition for r.

In[6]:= r@x_D

Out[6]= x_2

You need to wrap HoldPattern around r@x_D to prevent it from being evaluated.

In[7]:= 8r@3D, r@5D< ê. HoldPattern@r@x_DD -> x

Out[7]= 83, 5<

As illustrated above, the left-hand sides of transformation rules such as lhs -> rhs are usually

evaluated immediately, since the rules are usually applied to expressions which have already

been evaluated. The right-hand side of lhs -> rhs is also evaluated immediately. With the

delayed rule lhs :> rhs, however, the expression rhs is not evaluated.

The right-hand side is evaluated immediately in -> but not :> rules.

In[8]:= 88x -> 1 + 1<, 8x :> 1 + 1<<

Out[8]= 88x Ø 2<, 8x ß 1 + 1<<

Here are the results of applying the rules. The right-hand side of the :> rule gets inserted inside
the Hold without evaluation.

In[9]:= 8x^2, Hold@xD< ê. %

Out[9]= 884, Hold@2D<, 84, Hold@1 + 1D<<

Core Language 275

lhs->rhs evaluate both lhs and rhs

lhs:>rhs evaluate lhs but not rhs

Evaluation in transformation rules.

While the left-hand sides of transformation rules are usually evaluated, the left-hand sides of

definitions are usually not. The reason for the difference is as follows. Transformation rules are

typically applied using ê. to expressions that have already been evaluated. Definitions, how-

ever, are used during the evaluation of expressions, and are applied to expressions that have

not yet been completely evaluated. To work on such expressions, the left-hand sides of defini-

tions must be maintained in a form that is at least partially unevaluated.

Definitions for symbols are the simplest case. As discussed in "Non-Standard Evaluation", a

symbol on the left-hand side of a definition such as x = value is not evaluated. If x had previously

been assigned a value y, then if the left-hand side of x = value were evaluated, it would turn into

the quite unrelated definition y = value.

Here is a definition. The symbol on the left-hand side is not evaluated.

In[10]:= k = w@3D

Out[10]= w@3D

This redefines the symbol.

In[11]:= k = w@4D

Out[11]= w@4D

If you evaluate the left-hand side, then you define not the symbol k, but the value w@4D of the
symbol k.

In[12]:= Evaluate@kD = w@5D

Out[12]= w@5D

Now w@4D has value w@5D.

In[13]:= w@4D

Out[13]= w@5D

Although individual symbols that appear on the left-hand sides of definitions are not evaluated,

more complicated expressions are partially evaluated. In an expression such as f@argsD on the

left-hand side of a definition, the args are evaluated.

The 1 + 1 is evaluated, so that a value is defined for g@2D.

276 Core Language

The 1 + 1 is evaluated, so that a value is defined for g@2D.

In[14]:= g@1 + 1D = 5

Out[14]= 5

This shows the value defined for g.

In[15]:= ? g

Global`g

g@2D = 5

You can see why the arguments of a function that appears on the left-hand side of a definition

must be evaluated by considering how the definition is used during the evaluation of an expres-

sion. As discussed in "Principles of Evaluation", when Mathematica evaluates a function, it first

evaluates each of the arguments, then tries to find definitions for the function. As a result, by

the time Mathematica applies any definition you have given for a function, the arguments of the

function must already have been evaluated. An exception to this occurs when the function in

question has attributes which specify that it should hold some of its arguments unevaluated.

symbol=value symbol is not evaluated; value is evaluated

symbol:=value neither symbol nor value is evaluated

f@argsD=value args are evaluated; left-hand side as a whole is not

f@HoldPattern@argDD=value f[arg] is assigned, without evaluating arg

Evaluate@lhsD=value left-hand side is evaluated completely

Evaluation in definitions.

While in most cases it is appropriate for the arguments of a function that appears on the left-

hand side of a definition to be evaluated, there are some situations in which you do not want

this to happen. In such cases, you can wrap HoldPattern around the parts that you do not

want to be evaluated.

Evaluation in Iteration Functions

The built-in Mathematica iteration functions such as Table and Sum evaluate their arguments in

a slightly special way.

When evaluating an expression like Table@ f, 8i, imax<D, the first step, as discussed in "Blocks

and Local Values", is to make the value of i local. Next, the limit imax in the iterator specification

is evaluated. The expression f is maintained in an unevaluated form, but is repeatedly evalu-

ated as a succession of values are assigned to i. When this is finished, the global value of i is

restored.

Core Language 277

When evaluating an expression like Table@ f, 8i, imax<D, the first step, as discussed in "Blocks

and Local Values", is to make the value of i local. Next, the limit imax in the iterator specification

is evaluated. The expression f is maintained in an unevaluated form, but is repeatedly evalu-

ated as a succession of values are assigned to i. When this is finished, the global value of i is

restored.

The function RandomReal@D is evaluated four separate times here, so four different pseudoran-
dom numbers are generated.

In[1]:= Table@RandomReal@D, 84<D

Out[1]= 80.300949, 0.450179, 0.831238, 0.161379<

This evaluates RandomReal@D before feeding it to Table. The result is a list of four identical
numbers.

In[2]:= Table@Evaluate@RandomReal@DD, 84<D

Out[2]= 80.653098, 0.653098, 0.653098, 0.653098<

In most cases, it is convenient for the function f in an expression like Table@ f, 8i, imax<D to be

maintained in an unevaluated form until specific values have been assigned to i. This is true in

particular if a complete symbolic form for f valid for any i cannot be found.

This defines fac to give the factorial when it has an integer argument, and to give NaN
(standing for “Not a Number”) otherwise.

In[3]:= fac@n_IntegerD := n!; fac@x_D := NaN

In this form, fac@iD is not evaluated until an explicit integer value has been assigned to i.

In[4]:= Table@fac@iD, 8i, 5<D

Out[4]= 81, 2, 6, 24, 120<

Using Evaluate forces fac@iD to be evaluated with i left as a symbolic object.

In[5]:= Table@Evaluate@fac@iDD, 8i, 5<D

Out[5]= 8NaN, NaN, NaN, NaN, NaN<

In cases where a complete symbolic form for f with arbitrary i in expressions such as

Table@ f, 8i, imax<D can be found, it is often more efficient to compute this form first, and then

feed it to Table. You can do this using Table@Evaluate@ fD, 8i, imax<D.

278 Core Language

The Sum in this case is evaluated separately for each value of i.

In[6]:= Table@Sum@i^k, 8k, 4<D, 8i, 8<D

Out[6]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

It is however possible to get a symbolic formula for the sum, valid for any value of i.

In[7]:= Sum@i^k, 8k, 4<D

Out[7]= i + i2 + i3 + i4

By inserting Evaluate, you tell Mathematica first to evaluate the sum symbolically, then to
iterate over i.

In[8]:= Table@Evaluate@Sum@i^k, 8k, 4<DD, 8i, 8<D

Out[8]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

Table@ f,8i,imax<D keep f unevaluated until specific values are assigned to i

TableAEvaluate@ fD,8i,imax<E evaluate f first with i left symbolic

Evaluation in iteration functions.

Conditionals

Mathematica provides various ways to set up conditionals, which specify that particular expres-

sions should be evaluated only if certain conditions hold.

lhs:=rhsê;test use the definition only if test evaluates to True

If@test,then,elseD evaluate then if test is True, and else if it is False

Which@test1,value1,test2,…D evaluate the testi in turn, giving the value associated with
the first one that is True

Switch@expr, form1,value1, form2,…D compare expr with each of the formi, giving the value

associated with the first form it matches

Switch@expr, form1,
value1, form2,…,_,defD

use def as a default value

Piecewise@88value1,test1<,…<,defD give the value corresponding to the first testi which yields
True

Conditional constructs.

Core Language 279

The test gives False, so the "else" expression y is returned.

In[1]:= If@7 > 8, x, yD

Out[1]= y

Only the "else" expression is evaluated in this case.

In[2]:= If@7 > 8, Print@xD, Print@yDD

y

When you write programs in Mathematica, you will often have a choice between making a

single definition whose right-hand side involves several branches controlled by If functions, or

making several definitions, each controlled by an appropriate ê; condition. By using several

definitions, you can often produce programs that are both clearer, and easier to modify.

This defines a step function, with value 1 for x > 0, and -1 otherwise.

In[3]:= f@x_D := If@x > 0, 1, -1D

This defines the positive part of the step function using a ê; condition.

In[4]:= g@x_D := 1 ê; x > 0

Here is the negative part of the step function.

In[5]:= g@x_D := -1 ê; x <= 0

This shows the complete definition using ê; conditions.

In[6]:= ? g

Global`g

g@x_D := 1 ê; x > 0

g@x_D := -1 ê; x § 0

The function If provides a way to choose between two alternatives. Often, however, there will

be more than two alternatives. One way to handle this is to use a nested set of If functions.

Usually, however, it is instead better to use functions like Which and Switch.

This defines a function with three regions. Using True as the third test makes this the default
case.

In[7]:= h@x_D := Which@x < 0, x^2, x > 5, x^3, True, 0D

This uses the first case in the Which.

280 Core Language

This uses the first case in the Which.

In[8]:= h@-5D

Out[8]= 25

This uses the third case.

In[9]:= h@2D

Out[9]= 0

This defines a function that depends on the values of its argument modulo 3.

In[10]:= r@x_D := Switch@Mod@x, 3D, 0, a, 1, b, 2, cD

Mod@7, 3D is 1, so this uses the second case in the Switch.

In[11]:= r@7D

Out[11]= b

17 matches neither 0 nor 1, but does match _.

In[12]:= Switch@17, 0, a, 1, b, _, qD

Out[12]= q

An important point about symbolic systems such as Mathematica is that the conditions you give

may yield neither True nor False. Thus, for example, the condition x == y does not yield True

or False unless x and y have specific values, such as numerical ones.

In this case, the test gives neither True nor False, so both branches in the If remain unevalu-
ated.

In[13]:= If@x == y, a, bD

Out[13]= If@x ã y, a, bD

You can add a special fourth argument to If, which is used if the test does not yield True or
False.

In[14]:= If@x == y, a, b, cD

Out[14]= c

Core Language 281

If@test,then,else,unknownD a form of If which includes the expression to use if test is
neither True nor False

TrueQ@exprD give True if expr is True, and False otherwise

lhs===rhs or SameQ@lhs,rhsD give True if lhs and rhs are identical, and False otherwise

lhs=!=rhs or UnsameQ@lhs,rhsD give True if lhs and rhs are not identical, and False
otherwise

MatchQ@expr, formD give True if the pattern form matches expr, and give
False otherwise

Functions for dealing with symbolic conditions.

Mathematica leaves this as a symbolic equation.

In[15]:= x == y

Out[15]= x ã y

Unless expr is manifestly True, TrueQ@exprD effectively assumes that expr is False.

In[16]:= TrueQ@x == yD

Out[16]= False

Unlike ==, === tests whether two expressions are manifestly identical. In this case, they are
not.

In[17]:= x === y

Out[17]= False

The main difference between lhs === rhs and lhs == rhs is that === always returns True or False,

whereas == can leave its input in symbolic form, representing a symbolic equation, as discussed

in "Equations". You should typically use === when you want to test the structure of an expres-

sion, and == if you want to test mathematical equality. The Mathematica pattern matcher effec-

tively uses === to determine when one literal expression matches another.

You can use === to test the structure of expressions.

In[18]:= Head@a + b + cD === Times

Out[18]= False

The == operator gives a less useful result.

In[19]:= Head@a + b + cD == Times

Out[19]= Plus ã Times

In setting up conditionals, you will often need to use combinations of tests, such as

test1 && test2 && …. An important point is that the result from this combination of tests will be

False if any of the testi yield False. Mathematica always evaluates the testi in turn, stopping if

any of the testi yield False.

282 Core Language

In setting up conditionals, you will often need to use combinations of tests, such as

test1 && test2 && …. An important point is that the result from this combination of tests will be

False if any of the testi yield False. Mathematica always evaluates the testi in turn, stopping if

any of the testi yield False.

expr1&&expr2&&expr3 evaluate until one of the expri is found to be False

expr1»»expr2»»expr3 evaluate until one of the expri is found to be True

Evaluation of logical expressions.

This function involves a combination of two tests.

In[20]:= t@x_D := Hx != 0 && 1 ê x < 3L

Here both tests are evaluated.

In[21]:= t@2D

Out[21]= True

Here the first test yields False, so the second test is not tried. The second test would involve
1 ê 0, and would generate an error.

In[22]:= t@0D

Out[22]= False

The way that Mathematica evaluates logical expressions allows you to combine sequences of

tests where later tests may make sense only if the earlier ones are satisfied. The behavior,

which is analogous to that found in languages such as C, is convenient in constructing many

kinds of Mathematica programs.

Loops and Control Structures

The execution of a Mathematica program involves the evaluation of a sequence of Mathematica

expressions. In simple programs, the expressions to be evaluated may be separated by semi-

colons, and evaluated one after another. Often, however, you need to evaluate expressions

several times, in some kind of "loop".

Core Language 283

Do@expr,8i,imax<D evaluate expr repetitively, with i varying from 1 to imax in
steps of 1

Do@expr,8i,imin,imax,di<D evaluate expr with i varying from imin to imax in steps of di

Do@expr,8i,list<D evaluate expr with i taking on values from list

Do@expr,8n<D evaluate expr n times

Simple looping constructs.

This evaluates Print@i^2D, with i running from 1 to 4.

In[1]:= Do@Print@i^2D, 8i, 4<D

1

4

9

16

This executes an assignment for t in a loop with k running from 2 to 6 in steps of 2.

In[2]:= t = x; Do@t = 1 ê H1 + k tL, 8k, 2, 6, 2<D; t

Out[2]=
1

1 +
6

1+
4

1+2 x

The way iteration is specified in Do is exactly the same as in functions like Table and Sum . Just

as in those functions, you can set up several nested loops by giving a sequence of iteration

specifications to Do.

This loops over values of i from 1 to 4, and for each value of i, loops over j from 1 to i - 1.

In[3]:= Do@Print@8i, j<D, 8i, 4<, 8j, i - 1<D

82, 1<

83, 1<

83, 2<

84, 1<

84, 2<

84, 3<

Sometimes you may want to repeat a particular operation a certain number of times, without

changing the value of an iteration variable. You can specify this kind of repetition in Do just as

you can in Table and other iteration functions.

284 Core Language

Sometimes you may want to repeat a particular operation a certain number of times, without

changing the value of an iteration variable. You can specify this kind of repetition in Do just as

you can in Table and other iteration functions.

This repeats the assignment t = 1 ê H1 + tL three times.

In[4]:= t = x; Do@t = 1 ê H1 + tL, 83<D; t

Out[4]=
1

1 +
1

1+
1

1+x

You can put a procedure inside Do.

In[5]:= t = 67; Do@Print@tD; t = Floor@t ê 2D, 83<D

67

33

16

Nest@ f,expr,nD apply f to expr n times

FixedPoint@ f,exprD start with expr, and apply f repeatedly until the result no
longer changes

NestWhile@ f,expr,testD start with expr, and apply f repeatedly until applying test to
the result no longer yields True

Applying functions repetitively.

Do allows you to repeat operations by evaluating a particular expression many times with

different values for iteration variables. Often, however, you can make more elegant and effi-

cient programs using the functional programming constructs discussed in "Applying Functions

Repeatedly". Nest@ f, x, nD, for example, allows you to apply a function repeatedly to an expres-

sion.

This nests f three times.

In[6]:= Nest@f, x, 3D

Out[6]= f@f@f@xDDD

Core Language 285

By nesting a pure function, you can get the same result as in the example with Do above.

In[7]:= Nest@Function@t, 1 ê H1 + tLD, x, 3D

Out[7]=
1

1 +
1

1+
1

1+x

Nest allows you to apply a function a specified number of times. Sometimes, however, you may

simply want to go on applying a function until the results you get no longer change. You can do

this using FixedPoint@ f, xD.

FixedPoint goes on applying a function until the result no longer changes.

In[8]:= FixedPoint@Function@t, Print@tD; Floor@t ê 2DD, 67D

67

33

16

8

4

2

1

0
Out[8]= 0

You can use FixedPoint to imitate the evaluation process in Mathematica, or the operation of

functions such as expr êê. rules. FixedPoint goes on until two successive results it gets are the

same. NestWhile allows you to go on until an arbitrary function no longer yields True.

Catch@exprD evaluate expr until Throw@valueD is encountered, then
return value

Catch@expr, formD evaluate expr until Throw@value, tagD is encountered,
where form matches tag

Catch@expr, form, fD return f@value, tagD instead of value

Non local control of evaluation.

When the Throw is encountered, evaluation stops, and the current value of i is returned as the
value of the enclosing Catch.

In[9]:= Catch@Do@Print@iD; If@i > 3, Throw@iDD, 8i, 10<DD

286 Core Language

1

2

3

4
Out[9]= 4

Throw and Catch provide a flexible way to control the process of evaluation in Mathematica.

The basic idea is that whenever a Throw is encountered, the evaluation that is then being done

is stopped, and Mathematica immediately returns to the nearest appropriate enclosing Catch.

Scan applies the function Print to each successive element in the list, and in the end just
returns Null.

In[10]:= Scan@Print, 87, 6, 5, 4<D

7

6

5

4

The evaluation of Scan stops as soon as Throw is encountered, and the enclosing Catch
returns as its value the argument of Throw.

In[11]:= Catch@Scan@HPrint@ÒD; If@Ò < 6, Throw@ÒDDL &, 87, 6, 5, 4<DD

7

6

5
Out[11]= 5

The same result is obtained with Map, even though Map would have returned a list if its evalua-
tion had not been stopped by encountering a Throw.

In[12]:= Catch@Map@HPrint@ÒD; If@Ò < 6, Throw@ÒDDL &, 87, 6, 5, 4<DD

7

6

5
Out[12]= 5

You can use Throw and Catch to divert the operation of functional programming constructs,

allowing for example the evaluation of such constructs to continue only until some condition has

been met. Note that if you stop evaluation using Throw, then the structure of the result you get

may be quite different from what you would have got if you had allowed the evaluation to

complete.

Core Language 287

You can use Throw and Catch to divert the operation of functional programming constructs,

allowing for example the evaluation of such constructs to continue only until some condition has

been met. Note that if you stop evaluation using Throw, then the structure of the result you get

may be quite different from what you would have got if you had allowed the evaluation to

complete.

Here is a list generated by repeated application of a function.

In[13]:= NestList@1 ê HÒ + 1L &, -2.5, 6D

Out[13]= 8-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Since there is no Throw encountered, the result here is just as before.

In[14]:= Catch@NestList@1 ê HÒ + 1L &, -2.5, 6DD

Out[14]= 8-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Now the evaluation of the NestList is diverted, and the single number given as the argument
of Throw is returned.

In[15]:= Catch@NestList@If@Ò > 1, Throw@ÒD, 1 ê HÒ + 1LD &, -2.5, 6DD

Out[15]= 3.

Throw and Catch operate in a completely global way: it does not matter how or where a Throw

is generated~it will always stop evaluation and return to the enclosing Catch.

The Throw stops the evaluation of f, and causes the Catch to return just a, with no trace of f
left.

In[16]:= Catch@f@Throw@aDDD

Out[16]= a

This defines a function which generates a Throw when its argument is larger than 10.

In[17]:= g@x_D := If@x > 10, Throw@overflowD, x!D

No Throw is generated here.

In[18]:= Catch@g@4DD

Out[18]= 24

But here the Throw generated inside the evaluation of g returns to the enclosing Catch.

In[19]:= Catch@g@40DD

Out[19]= overflow

In small programs, it is often adequate to use Throw@valueD and Catch@exprD in their simplest

form. But particularly if you write larger programs that contain many separate pieces, it is

usually much better to use Throw@value, tagD and Catch@expr, formD. By keeping the expressions

tag and form local to a particular piece of your program, you can then ensure that your Throw

and Catch will also operate only within that piece.

288 Core Language

In small programs, it is often adequate to use Throw@valueD and Catch@exprD in their simplest

form. But particularly if you write larger programs that contain many separate pieces, it is

usually much better to use Throw@value, tagD and Catch@expr, formD. By keeping the expressions

tag and form local to a particular piece of your program, you can then ensure that your Throw

and Catch will also operate only within that piece.

Here the Throw is caught by the inner Catch.

In[20]:= Catch@f@Catch@Throw@x, aD, aDD, bD

Out[20]= f@xD

But here it is caught only by the outer Catch.

In[21]:= Catch@f@Catch@Throw@x, bD, aDD, bD

Out[21]= x

You can use patterns in specifying the tags which a particular Catch should catch.

In[22]:= Catch@Throw@x, aD, a bD

Out[22]= x

This keeps the tag a completely local.

In[23]:= Module@8a<, Catch@Throw@x, aD, aDD

Out[23]= x

You should realize that there is no need for the tag that appears in Throw to be a constant; in

general it can be any expression.

Here the inner Catch catches all throws with tags less than 4, and continues the Do. But as
soon as the tag reaches 4, the outer Catch is needed.

In[24]:= Catch@Do@Catch@Throw@i^2, iD, n_ ê; n < 4D, 8i, 10<D, _D

Out[24]= 16

When you use Catch@expr, formD with Throw@value, tagD, the value returned by Catch is simply

the expression value given in the Throw. If you use Catch@expr, form, fD, however, then the

value returned by Catch is instead f@value, tagD.

Here f is applied to the value and tag in the Throw.

In[25]:= Catch@Throw@x, aD, a, fD

Out[25]= f@x, aD

If there is no Throw, f is never used.

Core Language 289

If there is no Throw, f is never used.

In[26]:= Catch@x, a, fD

Out[26]= x

While@test,bodyD evaluate body repetitively, so long as test is True

For@start,test,incr,bodyD evaluate start, then repetitively evaluate body and incr, until
test fails

General loop constructs.

Functions like Do, Nest and FixedPoint provide structured ways to make loops in Mathematica

programs, while Throw and Catch provide opportunities for modifying this structure. Some-

times, however, you may want to create loops that even from the outset have less structure.

And in such cases, you may find it convenient to use the functions While and For, which per-

form operations repeatedly, stopping when a specified condition fails to be true.

The While loop continues until the condition fails.

In[27]:= n = 17; While@Hn = Floor@n ê 2DL != 0, Print@nDD

8

4

2

1

The functions While and For in Mathematica are similar to the control structures while and for

in languages such as C. Notice, however, that there are a number of important differences. For

example, the roles of comma and semicolon are reversed in Mathematica For loops relative to

C language ones.

This is a very common form for a For loop. i++ increments the value of i.

In[28]:= For@i = 1, i < 4, i++, Print@iDD

1

2

3

290 Core Language

Here is a more complicated For loop. Notice that the loop terminates as soon as the test
i^2 < 10 fails.

In[29]:= For@i = 1; t = x, i^2 < 10, i++, t = t^2 + i; Print@tDD

1 + x2

2 + I1 + x2M
2

3 + J2 + I1 + x2M
2
N
2

In Mathematica, both While and For always evaluate the loop test before evaluating the body

of the loop. As soon as the loop test fails to be True, While and For terminate. The body of the

loop is thus only evaluated in situations where the loop test is True.

The loop test fails immediately, so the body of the loop is never evaluated.

In[30]:= While@False, Print@xDD

In a While or For loop, or in general in any Mathematica procedure, the Mathematica expres-

sions you give are evaluated in a definite sequence. You can think of this sequence as defining

the "flow of control" in the execution of a Mathematica program.

In most cases, you should try to keep the flow of control in your Mathematica programs as

simple as possible. The more the flow of control depends for example on specific values gener-

ated during the execution of the program, the more difficult you will typically find it to unders-

tand the structure and operation of the program.

Functional programming constructs typically involve very simple flow of control. While and For

loops are always more complicated, since they are set up to make the flow of control depend on

the values of the expressions given as tests. Nevertheless, even in such loops, the flow of

control does not usually depend on the values of expressions given in the body of the loop.

In some cases, however, you may need to construct Mathematica programs in which the flow of

control is affected by values generated during the execution of a procedure or of the body of a

loop. One way to do this, which fits in with functional programming ideas, is to use Throw and

Catch. But Mathematica also provides various functions for modifying the flow of control which

work like in languages such as C.

Core Language 291

Break@D exit the nearest enclosing loop

Continue@D go to the next step in the current loop

Return@exprD return the value expr, exiting all procedures and loops in a
function

Goto@nameD go to the element Label@nameD in the current procedure

Throw@valueD return value as the value of the nearest enclosing Catch
(non-local return)

Control flow functions.

The Break@D causes the loop to terminate as soon as t exceeds 19.

In[31]:= t = 1; Do@t *= k; Print@tD; If@t > 19, Break@DD, 8k, 10<D

1

2

6

24

When k < 3, the Continue@D causes the loop to be continued, without executing t += 2.

In[32]:= t = 1; Do@t *= k; Print@tD; If@k < 3, Continue@DD; t += 2, 8k, 10<D

1

2

6

32

170

1032

7238

57920

521298

5213000

Return@exprD allows you to exit a particular function, returning a value. You can think of Throw

as a kind of non-local return which allows you to exit a whole sequence of nested functions.

Such behavior can be convenient for handling certain error conditions.

Here is an example of the use of Return. This particular procedure could equally well have
been written without using Return.

292 Core Language

Here is an example of the use of Return. This particular procedure could equally well have
been written without using Return.

In[33]:= f@x_D := HIf@x > 5, Return@bigDD; t = x^3; Return@t - 7DL

When the argument is greater than 5, the first Return in the procedure is used.

In[34]:= f@10D

Out[34]= big

This function "throws" error if its argument is negative.

In[35]:= h@x_D := If@x < 0, Throw@errorD, Sqrt@xDD

No Throw is generated here.

In[36]:= Catch@h@6D + 2D

Out[36]= 2 + 6

But in this case a Throw is generated, and the whole Catch returns the value error.

In[37]:= Catch@h@-6D + 2D

Out[37]= error

Functions like Continue@D and Break@D allow you to "transfer control" to the beginning or end

of a loop in a Mathematica program. Sometimes you may instead need to transfer control to a

particular element in a Mathematica procedure. If you give a Label as an element in a proce-

dure, you can use Goto to transfer control to this element.

This goes on looping until q exceeds 6.

In[38]:= Hq = 2; Label@beginD; Print@qD; q += 3; If@q < 6, Goto@beginDDL

2

5

Note that you can use Goto in a particular Mathematica procedure only when the Label it

specifies occurs as an element of the same Mathematica procedure. In general, use of Goto

reduces the degree of structure that can readily be perceived in a program, and therefore

makes the operation of the program more difficult to understand.

Core Language 293

Collecting Expressions During Evaluation

In many computations one is concerned only with the final result of evaluating the expression

given as input. But sometimes one also wants to collect expressions that were generated in the

course of the evaluation. You can do this using Sow and Reap.

Sow@valD sow the value val for the nearest enclosing Reap

Reap@exprD evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

Here the output contains only the final result.

In[1]:= a = 3; a += a^2 + 1; a = Sqrt@a + a^2D

Out[1]= 182

Here two intermediate results are also given.

In[2]:= Reap@Sow@a = 3D; a += Sow@a^2 + 1D; a = Sqrt@a + a^2DD

Out[2]= : 182 , 883, 10<<>

This computes a sum, collecting all terms that are even.

In[3]:= Reap@Sum@If@EvenQ@ÒD, Sow@ÒD, ÒD &@i^2 + 1D, 8i, 10<DD

Out[3]= 8395, 882, 10, 26, 50, 82<<<

Like Throw and Catch, Sow and Reap can be used anywhere in a computation.

This defines a function that can do a Sow.

In[4]:= f@x_D := HIf@x < 1 ê 2, Sow@xDD; 3.5 x H1 - xLL

This nests the function, reaping all cases below 1/2.

In[5]:= Reap@Nest@f, 0.8, 10DD

Out[5]= 80.868312, 880.415332, 0.446472, 0.408785, 0.456285<<<

294 Core Language

Sow@val,tagD sow val with a tag to indicate when to reap

Sow@val,8tag1,tag2,…<D sow val for each of the tagi

Reap@expr, formD reap all values whose tags match form

Reap@expr,8 form1, form2,…<D make separate lists for each of the formi

Reap@expr,8 form1,…<, fD apply f to each distinct tag and list of values

Sowing and reaping with tags.

This reaps only values sown with tag x.

In[6]:= Reap@Sow@1, xD; Sow@2, yD; Sow@3, xD, xD

Out[6]= 83, 881, 3<<<

Here 1 is sown twice with tag x.

In[7]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, xD

Out[7]= 83, 881, 1, 3<<<

Values sown with different tags always appear in different sublists.

In[8]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xDD

Out[8]= 83, 881, 1, 3<, 82<<<

The makes a sublist for each form of tag being reaped.

In[9]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, 8x, x, y<D

Out[9]= 83, 8881, 1, 3<<, 881, 1, 3<<, 882<<<<

This applies f to each distinct tag and list of values.

In[10]:= Reap@Sow@1, 8x, x<D; Sow@2, yD; Sow@3, xD, _, fD

Out[10]= 83, 8f@x, 81, 1, 3<D, f@y, 82<D<<

The tags can be part of the computation.

In[11]:= Reap@Do@Sow@i ê j, GCD@i, jDD, 8i, 4<, 8j, i<DD

Out[11]= :Null, ::1, 2, 3,
3

2
, 4,

4

3
>, 81, 2<, 81<, 81<>>

Core Language 295

Tracing Evaluation

The standard way in which Mathematica works is to take any expression you give as input,

evaluate the expression completely, and then return the result. When you are trying to unders-

tand what Mathematica is doing, however, it is often worthwhile to look not just at the final

result of evaluation, but also at intermediate steps in the evaluation process.

Trace@exprD generate a list of all expressions used in the evaluation of
expr

Trace@expr, formD include only expressions which match the pattern form

Tracing the evaluation of expressions.

The expression 1 + 1 is evaluated immediately to 2.

In[1]:= Trace@1 + 1D

Out[1]= 81 + 1, 2<

The 2^3 is evaluated before the addition is done.

In[2]:= Trace@2^3 + 4D

Out[2]= 9923, 8=, 8 + 4, 12=

The evaluation of each subexpression is shown in a separate sublist.

In[3]:= Trace@2^3 + 4^2 + 1D

Out[3]= 9923, 8=, 942, 16=, 8 + 16 + 1, 25=

Trace@exprD gives a list which includes all the intermediate expressions involved in the evalua-

tion of expr. Except in rather simple cases, however, the number of intermediate expressions

generated in this way is typically very large, and the list returned by Trace is difficult to unders-

tand.

Trace@expr, formD allows you to “filter” the expressions that Trace records, keeping only those

which match the pattern form.

Here is a recursive definition of a factorial function.

In[4]:= fac@n_D := n fac@n - 1D; fac@1D = 1

Out[4]= 1

This gives all the intermediate expressions generated in the evaluation of fac@3D. The result is
quite complicated.

296 Core Language

This gives all the intermediate expressions generated in the evaluation of fac@3D. The result is
quite complicated.

In[5]:= Trace@fac@3DD

Out[5]= 8fac@3D, 3 fac@3 - 1D, 883 - 1, 2<, fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<, 3 µ 2, 6<

This shows only intermediate expressions of the form fac@n_D.

In[6]:= Trace@fac@3D, fac@n_DD

Out[6]= 8fac@3D, 8fac@2D, 8fac@1D<<<

You can specify any pattern in Trace.

In[7]:= Trace@fac@10D, fac@n_ ê; n > 5DD

Out[7]= 8fac@10D, 8fac@9D, 8fac@8D, 8fac@7D, 8fac@6D<<<<<

Trace@expr, formD effectively works by intercepting every expression that is about to be evalu-

ated during the evaluation of expr, and picking out those that match the pattern form.

If you want to trace “calls” to a function like fac, you can do so simply by telling Trace to pick

out expressions of the form fac@n_D. You can also use patterns like f@n_, 2D to pick out calls

with particular argument structure.

A typical Mathematica program, however, consists not only of “function calls” like fac@nD, but

also of other elements, such as assignments to variables, control structures, and so on. All of

these elements are represented as expressions. As a result, you can use patterns in Trace to

pick out any kind of Mathematica program element. Thus, for example, you can use a pattern

like k = _ to pick out all assignments to the symbol k.

This shows the sequence of assignments made for k.

In[8]:= Trace@Hk = 2; For@i = 1, i < 4, i++, k = i ê kD; kL, k = _D

Out[8]= :8k = 2<, ::k =
1

2
>, 8k = 4<, :k =

3

4
>>>

Trace@expr, formD can pick out expressions that occur at any time in the evaluation of expr. The

expressions need not, for example, appear directly in the form of expr that you give. They may

instead occur, say, during the evaluation of functions that are called as part of the evaluation of

expr.

Here is a function definition.

In[9]:= h@n_D := Hk = n ê 2; Do@k = i ê k, 8i, n<D; kL

You can look for expressions generated during the evaluation of h.

Core Language 297

You can look for expressions generated during the evaluation of h.

In[10]:= Trace@h@3D, k = _D

Out[10]= ::k =
3

2
>, ::k =

2

3
>, 8k = 3<, 8k = 1<>>

Trace allows you to monitor intermediate steps in the evaluation not only of functions that you

define, but also of some functions that are built into Mathematica. You should realize, however,

that the specific sequence of intermediate steps followed by built-in Mathematica functions

depends in detail on their implementation and optimization in a particular version of Mathemat-

ica.

Trace@expr, f@___DD show all calls to the function f

Trace@expr,i=_D show assignments to i

Trace@expr,_=_D show all assignments

Trace@expr,Message@___DD show messages generated

Some ways to use Trace.

The function Trace returns a list that represents the “history” of a Mathematica computation.

The expressions in the list are given in the order that they were generated during the computa-

tion. In most cases, the list returned by Trace has a nested structure, which represents the

“structure” of the computation.

The basic idea is that each sublist in the list returned by Trace represents the “evaluation

chain” for a particular Mathematica expression. The elements of this chain correspond to differ-

ent forms of the same expression. Usually, however, the evaluation of one expression requires

the evaluation of a number of other expressions, often subexpressions. Each subsidiary evalua-

tion is represented by a sublist in the structure returned by Trace.

Here is a sequence of assignments.

In[11]:= a@1D = a@2D; a@2D = a@3D; a@3D = a@4D

Out[11]= a@4D

This yields an evaluation chain reflecting the sequence of transformations for a@iD used.

In[12]:= Trace@a@1DD

Out[12]= 8a@1D, a@2D, a@3D, a@4D<

The successive forms generated in the simplification of y + x + y show up as successive ele-
ments in its evaluation chain.

298 Core Language

The successive forms generated in the simplification of y + x + y show up as successive ele-
ments in its evaluation chain.

In[13]:= Trace@y + x + yD

Out[13]= 8y + x + y, x + y + y, x + 2 y<

Each argument of the function f has a separate evaluation chain, given in a sublist.

In[14]:= Trace@f@1 + 1, 2 + 3, 4 + 5DD

Out[14]= 881 + 1, 2<, 82 + 3, 5<, 84 + 5, 9<, f@2, 5, 9D<

The evaluation chain for each subexpression is given in a separate sublist.

In[15]:= Trace@x x + y yD

Out[15]= 99x x, x2=, 9y y, y2=, x2 + y2=

Tracing the evaluation of a nested expression yields a nested list.

In[16]:= Trace@f@f@f@1 + 1DDDD

Out[16]= 88881 + 1, 2<, f@2D<, f@f@2DD<, f@f@f@2DDD<

There are two basic ways that subsidiary evaluations can be required during the evaluation of a

Mathematica expression. The first way is that the expression may contain subexpressions, each

of which has to be evaluated. The second way is that there may be rules for the evaluation of

the expression that involve other expressions which themselves must be evaluated. Both kinds

of subsidiary evaluations are represented by sublists in the structure returned by Trace.

The subsidiary evaluations here come from evaluation of the arguments of f and g.

In[17]:= Trace@f@g@1 + 1D, 2 + 3DD

Out[17]= 8881 + 1, 2<, g@2D<, 82 + 3, 5<, f@g@2D, 5D<

Here is a function with a condition attached.

In[18]:= fe@n_D := n + 1 ê; EvenQ@nD

The evaluation of fe@6D involves a subsidiary evaluation associated with the condition.

In[19]:= Trace@fe@6DD

Out[19]= 8fe@6D, 88EvenQ@6D, True<, RuleCondition@$ConditionHold@$ConditionHold@6 + 1DD, TrueD,
$ConditionHold@$ConditionHold@6 + 1DD<, 6 + 1, 7<

You often get nested lists when you trace the evaluation of functions that are defined

“recursively” in terms of other instances of themselves. The reason is typically that each new

instance of the function appears as a subexpression in the expressions obtained by evaluating

previous instances of the function.

Core Language 299

You often get nested lists when you trace the evaluation of functions that are defined

“recursively” in terms of other instances of themselves. The reason is typically that each new

instance of the function appears as a subexpression in the expressions obtained by evaluating

previous instances of the function.

Thus, for example, with the definition fac@n_D := n fac@n - 1D, the evaluation of fac@6D yields

the expression 6 fac@5D, which contains fac@5D as a subexpression.

The successive instances of fac generated appear in successively nested sublists.

In[20]:= Trace@fac@6D, fac@_DD

Out[20]= 8fac@6D, 8fac@5D, 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D<<<<<<

With this definition, fp@n - 1D is obtained directly as the value of fp@nD.

In[21]:= fp@n_D := fp@n - 1D ê; n > 1

fp@nD never appears in a subexpression, so no sublists are generated.

In[22]:= Trace@fp@6D, fp@_DD

Out[22]= 8fp@6D, fp@6 - 1D, fp@5D, fp@5 - 1D, fp@4D, fp@4 - 1D, fp@3D, fp@3 - 1D, fp@2D, fp@2 - 1D, fp@1D<

Here is the recursive definition of the Fibonacci numbers.

In[23]:= fib@n_D := fib@n - 1D + fib@n - 2D

Here are the end conditions for the recursion.

In[24]:= fib@0D = fib@1D = 1

Out[24]= 1

This shows all the steps in the recursive evaluation of fib@5D.

In[25]:= Trace@fib@5D, fib@_DD

Out[25]=

Each step in the evaluation of any Mathematica expression can be thought of as the result of

applying a particular transformation rule. As discussed in "Associating Definitions with Different

Symbols", all the rules that Mathematica knows are associated with specific symbols or “tags”.

You can use Trace@expr, fD to see all the steps in the evaluation of expr that are performed

using transformation rules associated with the symbol f . In this case, Trace gives not only the

expressions to which each rule is applied, but also the results of applying the rules.

In general, Trace@expr, formD picks out all the steps in the evaluation of expr where form

matches either the expression about to be evaluated, or the tag associated with the rule used.

300 Core Language

In general, Trace@expr, formD picks out all the steps in the evaluation of expr where form

matches either the expression about to be evaluated, or the tag associated with the rule used.

Trace@expr, fD show all evaluations which use transformation rules associ-
ated with the symbol f

Trace@expr, f gD show all evaluations associated with either f or g

Tracing evaluations associated with particular tags.

This shows only intermediate expressions that match fac@_D.

In[26]:= Trace@fac@3D, fac@_DD

Out[26]= 8fac@3D, 8fac@2D, 8fac@1D<<<

This shows all evaluations that use transformation rules associated with the symbol fac.

In[27]:= Trace@fac@3D, facD

Out[27]= 8fac@3D, 3 fac@3 - 1D, 8fac@2D, 2 fac@2 - 1D, 8fac@1D, 1<<<

Here is a rule for the log function.

In[28]:= log@x_ y_D := log@xD + log@yD

This traces the evaluation of log@a b c dD, showing all transformations associated with log.

In[29]:= Trace@log@a b c dD, logD

Out[29]= 8log@a b c dD, log@aD + log@b c dD, 8log@b c dD, log@bD + log@c dD, 8log@c dD, log@cD + log@dD<<<

TraceAexpr, form,TraceOn->oformE

switch on tracing only within forms matching oform

TraceAexpr, form,TraceOff->oformE

switch off tracing within any form matching oform

Switching off tracing inside certain forms.

Trace@expr, formD allows you to trace expressions matching form generated at any point in the

evaluation of expr. Sometimes, you may want to trace only expressions generated during certain

parts of the evaluation of expr.

By setting the option TraceOn -> oform, you can specify that tracing should be done only during

the evaluation of forms which match oform. Similarly, by setting TraceOff -> oform, you can

specify that tracing should be switched off during the evaluation of forms which match oform.

This shows all steps in the evaluation.

Core Language 301

This shows all steps in the evaluation.

In[30]:= Trace@log@fac@2D xDD

Out[30]= 888fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<, 2 x<, log@2 xD, log@2D + log@xD<

This shows only those steps that occur during the evaluation of fac.

In[31]:= Trace@log@fac@2D xD, TraceOn -> facD

Out[31]= 888fac@2D, 2 fac@2 - 1D, 882 - 1, 1<, fac@1D, 1<, 2 µ 1, 2<<<

This shows only those steps that do not occur during the evaluation of fac.

In[32]:= Trace@log@fac@2D xD, TraceOff -> facD

Out[32]= 888fac@2D, 2<, 2 x<, log@2 xD, log@2D + log@xD<

Trace@expr,lhs->rhsD find all expressions matching lhs that arise during the
evaluation of expr, and replace them with rhs

Applying rules to expressions encountered during evaluation.

This tells Trace to return only the arguments of fib used in the evaluation of fib@5D.

In[33]:= Trace@fib@5D, fib@n_D -> nD

Out[33]=

A powerful aspect of the Mathematica Trace function is that the object it returns is basically a

standard Mathematica expression which you can manipulate using other Mathematica functions.

One important point to realize, however, is that Trace wraps all expressions that appear in the

list it produces with HoldForm to prevent them from being evaluated. The HoldForm is not

displayed in standard Mathematica output format, but it is still present in the internal structure

of the expression.

This shows the expressions generated at intermediate stages in the evaluation process.

In[34]:= Trace@1 + 3^2D

Out[34]= 9932, 9=, 1 + 9, 10=

The expressions are wrapped with HoldForm to prevent them from evaluating.

In[35]:= Trace@1 + 3^2D êê InputForm

Out[35]//InputForm= {{HoldForm[3^2], HoldForm[9]}, HoldForm[1 + 9], HoldForm[10]}

In standard Mathematica output format, it is sometimes difficult to tell which lists are associ-
ated with the structure returned by Trace, and which are expressions being evaluated.

302 Core Language

In standard Mathematica output format, it is sometimes difficult to tell which lists are associ-
ated with the structure returned by Trace, and which are expressions being evaluated.

In[36]:= Trace@81 + 1, 2 + 3<D

Out[36]= 881 + 1, 2<, 82 + 3, 5<, 82, 5<<

Looking at the input form resolves any ambiguities.

In[37]:= InputForm@%D

Out[37]//InputForm= {{HoldForm[1 + 1], HoldForm[2]}, {HoldForm[2 + 3], HoldForm[5]}, HoldForm[{2, 5}]}

When you use a transformation rule in Trace, the result is evaluated before being wrapped
with HoldForm.

In[38]:= Trace@fac@4D, fac@n_D -> n + 1D

Out[38]= 85, 84, 83, 82<<<<

For sophisticated computations, the list structures returned by Trace can be quite complicated.

When you use Trace@expr, formD, Trace will include as elements in the lists only those expres-

sions which match the pattern form. But whatever pattern you give, the nesting structure of the

lists remains the same.

This shows all occurrences of fib@_D in the evaluation of fib@3D.

In[39]:= Trace@fib@3D, fib@_DD

Out[39]= 8fib@3D, 8fib@2D, 8fib@1D<, 8fib@0D<<, 8fib@1D<<

This shows only occurrences of fib@1D, but the nesting of the lists is the same as for fib@_D.

In[40]:= Trace@fib@3D, fib@1DD

Out[40]= 888fib@1D<<, 8fib@1D<<

You can set the option TraceDepth -> n to tell Trace to include only lists nested at most n

levels deep. In this way, you can often pick out the “big steps” in a computation, without seeing

the details. Note that by setting TraceDepth or TraceOff you can avoid looking at many of the

steps in a computation, and thereby significantly speed up the operation of Trace for that

computation.

This shows only steps that appear in lists nested at most two levels deep.

In[41]:= Trace@fib@3D, fib@_D, TraceDepth -> 2D

Out[41]= 8fib@3D, 8fib@1D<<

Core Language 303

TraceAexpr, form,TraceDepth->nE

trace the evaluation of expr, ignoring steps that lead to lists
nested more than n levels deep

Restricting the depth of tracing.

When you use Trace@expr, formD, you get a list of all the expressions which match form pro-

duced during the evaluation of expr. Sometimes it is useful to see not only these expressions,

but also the results that were obtained by evaluating them. You can do this by setting the

option TraceForward -> True in Trace.

This shows not only expressions which match fac@_D, but also the results of evaluating those
expressions.

In[42]:= Trace@fac@4D, fac@_D, TraceForward -> TrueD

Out[42]= 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D, 1<, 2<, 6<, 24<

Expressions picked out using Trace@expr, formD typically lie in the middle of an evaluation

chain. By setting TraceForward -> True, you tell Trace to include also the expression obtained

at the end of the evaluation chain. If you set TraceForward -> All, Trace will include all the

expressions that occur after the expression matching form on the evaluation chain.

With TraceForward -> All, all elements on the evaluation chain after the one that matches
fac@_D are included.

In[43]:= Trace@fac@4D, fac@_D, TraceForward -> AllD

Out[43]= 8fac@4D, 4 fac@4 - 1D,
8fac@3D, 3 fac@3 - 1D, 8fac@2D, 2 fac@2 - 1D, 8fac@1D, 1<, 2 µ 1, 2<, 3 µ 2, 6<, 4 µ 6, 24<

By setting the option TraceForward, you can effectively see what happens to a particular form

of expression during an evaluation. Sometimes, however, you want to find out not what hap-

pens to a particular expression, but instead how that expression was generated. You can do this

by setting the option TraceBackward. What TraceBackward does is to show you what preceded

a particular form of expression on an evaluation chain.

This shows that the number 120 came from the evaluation of fac@5D during the evaluation of
fac@10D.

In[44]:= Trace@fac@10D, 120, TraceBackward -> TrueD

Out[44]= 888888fac@5D, 120<<<<<<

304 Core Language

Here is the whole evaluation chain associated with the generation of the number 120.

In[45]:= Trace@fac@10D, 120, TraceBackward -> AllD

Out[45]= 888888fac@5D, 5 fac@5 - 1D, 5 µ 24, 120<<<<<<

TraceForward and TraceBackward allow you to look forward and backward in a particular

evaluation chain. Sometimes, you may also want to look at the evaluation chains within which

the particular evaluation chain occurs. You can do this using TraceAbove. If you set the option

TraceAbove -> True, then Trace will include the initial and final expressions in all the relevant

evaluation chains. With TraceAbove -> All, Trace includes all the expressions in all these

evaluation chains.

This includes the initial and final expressions in all evaluation chains which contain the chain
that contains 120.

In[46]:= Trace@fac@7D, 120, TraceAbove -> TrueD

Out[46]= 8fac@7D, 8fac@6D, 8fac@5D, 120<, 720<, 5040<

This shows all the ways that fib@2D is generated during the evaluation of fib@5D.

In[47]:= Trace@fib@5D, fib@2D, TraceAbove -> TrueD

Out[47]=

Trace@expr, form,optsD trace the evaluation of expr using the specified options

TraceForward->True include the final expression in the evaluation chain contain -
ing form

TraceForward->All include all expressions following form in the evaluation
chain

TraceBackward->True include the first expression in the evaluation chain contain -
ing form

TraceBackward->All include all expressions preceding form in the evaluation
chain

TraceAbove->True include the first and last expressions in all evaluation
chains which contain the chain containing form

TraceAbove->All include all expressions in all evaluation chains which
contain the chain containing form

Option settings for including extra steps in trace lists.

The basic way that Trace@expr, …D works is to intercept each expression encountered during

the evaluation of expr, and then to use various criteria to determine whether this expression

should be recorded. Normally, however, Trace intercepts expressions only after function argu-

ments have been evaluated. By setting TraceOriginal -> True, you can get Trace also to look

at expressions before function arguments have been evaluated.

Core Language 305

The basic way that Trace@expr, …D works is to intercept each expression encountered during

the evaluation of expr, and then to use various criteria to determine whether this expression

should be recorded. Normally, however, Trace intercepts expressions only after function argu-

ments have been evaluated. By setting TraceOriginal -> True, you can get Trace also to look

at expressions before function arguments have been evaluated.

This includes expressions which match fac@_D both before and after argument evaluation.

In[48]:= Trace@fac@3D, fac@_D, TraceOriginal -> TrueD

Out[48]= 8fac@3D, 8fac@3 - 1D, fac@2D, 8fac@2 - 1D, fac@1D<<<

The list structure produced by Trace normally includes only expressions that constitute steps in

non-trivial evaluation chains. Thus, for example, individual symbols that evaluate to themselves

are not normally included. Nevertheless, if you set TraceOriginal -> True, then Trace looks

at absolutely every expression involved in the evaluation process, including those that have

trivial evaluation chains.

In this case, Trace includes absolutely all expressions, even those with trivial evaluation
chains.

In[49]:= Trace@fac@1D, TraceOriginal -> TrueD

Out[49]= 8fac@1D, 8fac<, 81<, fac@1D, 1<

option name default value
TraceForward False whether to show expressions following form

in the evaluation chain
TraceBackward False whether to show expressions preceding

form in the evaluation chain
TraceAbove False whether to show evaluation chains leading

to the evaluation chain containing form
TraceOriginal False whether to look at expressions before their

heads and arguments are evaluated

Additional options for Trace.

When you use Trace to study the execution of a program, there is an issue about how local

variables in the program should be treated. As discussed in "How Modules Work", Mathematica

scoping constructs such as Module create symbols with new names to represent local variables.

Thus, even if you called a variable x in the original code for your program, the variable may

effectively be renamed x$nnn when the program is executed.

Trace@expr, formD is set up so that by default a symbol x that appears in form will match all

symbols with names of the form x$nnn that arise in the execution of expr. As a result, you can

for example use Trace@expr, x = _D to trace assignment to all variables, local and global, that

were named x in your original program.

306 Core Language

Trace@expr, formD is set up so that by default a symbol x that appears in form will match all

symbols with names of the form x$nnn that arise in the execution of expr. As a result, you can

for example use Trace@expr, x = _D to trace assignment to all variables, local and global, that

were named x in your original program.

TraceAexpr, form,MatchLocalNames->FalseE

include all steps in the execution of expr that match form,
with no replacements for local variable names allowed

Preventing the matching of local variables.

In some cases, you may want to trace only the global variable x, and not any local variables

that were originally named x. You can do this by setting the option MatchLocalNames -> False.

This traces assignments to all variables with names of the form x$nnn.

In[50]:= Trace@Module@8x<, x = 5D, x = _D

Out[50]= 88x$1 = 5<<

This traces assignments only to the specific global variable x.

In[51]:= Trace@Module@8x<, x = 5D, x = _, MatchLocalNames -> FalseD

Out[51]= 8<

The function Trace performs a complete computation, then returns a structure which repre-

sents the history of the computation. Particularly in very long computations, it is however

sometimes useful to see traces of the computation as it proceeds. The function TracePrint

works essentially like Trace, except that it prints expressions when it encounters them, rather

than saving up all of the expressions to create a list structure.

Core Language 307

This prints expressions encountered in the evaluation of fib@3D.

In[52]:= TracePrint@fib@3D, fib@_DD

fib@3D

fib@3 - 1D

fib@2D

fib@2 - 1D

fib@1D

fib@2 - 2D

fib@0D

fib@3 - 2D

fib@1D
Out[52]= 3

The sequence of expressions printed by TracePrint corresponds to the sequence of expres-

sions given in the list structure returned by Trace. Indentation in the output from TracePrint

corresponds to nesting in the list structure from Trace. You can use the Trace options

TraceOn, TraceOff and TraceForward in TracePrint. However, since TracePrint produces

output as it goes, it cannot support the option TraceBackward. In addition, TracePrint is set

up so that TraceOriginal is effectively always set to True.

Trace@expr,…D trace the evaluation of expr, returning a list structure
containing the expressions encountered

TracePrint@expr,…D trace the evaluation of expr, printing the expressions
encountered

TraceDialog@expr,…D trace the evaluation of expr, initiating a dialog when each
specified expression is encountered

TraceScan@ f,expr,…D trace the evaluation of expr, applying f to HoldForm of
each expression encountered

Functions for tracing evaluation.

This enters a dialog when fac@5D is encountered during the evaluation of fac@10D.

In[53]:= TraceDialog@fac@10D, fac@5DD

TraceDialog::dgbgn: Entering Dialog; use Return@D to exit.

Out[53]= fac@5D

Inside the dialog you can for example find out where you are by looking at the “stack”.

308 Core Language

Inside the dialog you can for example find out where you are by looking at the “stack”.

In[54]:= Stack@D

Out[54]= 8TraceDialog, Times, Times, Times, Times, Times, fac<

This returns from the dialog, and gives the final result from the evaluation of fac@10D.

In[55]:= Return@D

TraceDialog::dgend: Exiting Dialog.

Out[55]= 3628800

The function TraceDialog effectively allows you to stop in the middle of a computation, and

interact with the Mathematica environment that exists at that time. You can for example find

values of intermediate variables in the computation, and even reset those values. There are

however a number of subtleties, mostly associated with pattern and module variables.

What TraceDialog does is to call the function Dialog on a sequence of expressions. The

Dialog function is discussed in detail in "Dialogs". When you call Dialog, you are effectively

starting a subsidiary Mathematica session with its own sequence of input and output lines.

In general, you may need to apply arbitrary functions to the expressions you get while tracing

an evaluation. TraceScan@ f, expr, …D applies f to each expression that arises. The expression

is wrapped with HoldForm to prevent it from evaluating.

In TraceScan@ f, expr, …D, the function f is applied to expressions before they are evaluated.

TraceScan@ f, expr, patt, fpD applies f before evaluation, and fp after evaluation.

The Evaluation Stack

Throughout any computation, Mathematica maintains an evaluation stack containing the expres-

sions it is currently evaluating. You can use the function Stack to look at the stack. This

means, for example, that if you interrupt Mathematica in the middle of a computation, you can

use Stack to find out what Mathematica is doing.

The expression that Mathematica most recently started to evaluate always appears as the last

element of the evaluation stack. The previous elements of the stack are the other expressions

whose evaluation is currently in progress.

Thus at the point when x is being evaluated, the stack associated with the evaluation of an

expression like f @g@xDD will have the form 8 f @g@xDD, g@xD, x<.

Core Language 309

Thus at the point when x is being evaluated, the stack associated with the evaluation of an

expression like f @g@xDD will have the form 8 f @g@xDD, g@xD, x<.

Stack@_D gives the expressions that are being evaluated at the time when it is called, in this

case including the Print function.

In[1]:= f@g@Print@Stack@_DDDD;

8f@g@Print@Stack@_DDDD;, f@g@Print@Stack@_DDDD,
g@Print@Stack@_DDD, Print@Stack@_DD<

Stack@D gives the tags associated with the evaluations that are being done when it is called.

In[2]:= f@g@Print@Stack@DDDD;

8CompoundExpression, f, g, Print<

In general, you can think of the evaluation stack as showing what functions called what other

functions to get to the point Mathematica is at in your computation. The sequence of expres-

sions corresponds to the first elements in the successively nested lists returned by Trace with

the option TraceAbove set to True.

Stack@D give a list of the tags associated with evaluations that are
currently being done

Stack@_D give a list of all expressions currently being evaluated

Stack@ formD include only expressions which match form

Looking at the evaluation stack.

It is rather rare to call Stack directly in your main Mathematica session. More often, you will

want to call Stack in the middle of a computation. Typically, you can do this from within a

dialog, or subsidiary session, as discussed in "Dialogs".

Here is the standard recursive definition of the factorial function.

In[3]:= fac@1D = 1; fac@n_D := n fac@n - 1D

This evaluates fac@10D, starting a dialog when it encounters fac@4D.

In[4]:= TraceDialog@fac@10D, fac@4DD

TraceDialog::dgbgn: Entering Dialog; use Return@D to exit.

Out[4]= fac@4D

310 Core Language

This shows what objects were being evaluated when the dialog was started.

In[5]:= Stack@D

Out[5]= 8TraceDialog, Times, Times, Times, Times, Times, Times, fac<

This ends the dialog.

In[6]:= Return@D

TraceDialog::dgend: Exiting Dialog.

Out[6]= 3628800

In the simplest cases, the Mathematica evaluation stack is set up to record all expressions

currently being evaluated. Under some circumstances, however, this may be inconvenient. For

example, executing Print@Stack@DD will always show a stack with Print as the last function.

The function StackInhibit allows you to avoid this kind of problem. StackInhibit@exprD

evaluates expr without modifying the stack.

StackInhibit prevents Print from being included on the stack.

In[7]:= f@g@StackInhibit@Print@Stack@DDDDD;

Out[7]= 8CompoundExpression, f, g<

Functions like TraceDialog automatically call StackInhibit each time they start a dialog. This

means that Stack does not show functions that are called within the dialog, only those outside.

StackInhibit@exprD evaluate expr without modifying the stack

StackBegin@exprD evaluate expr with a fresh stack

StackComplete@exprD evaluate expr with intermediate expressions in evaluation
chains included on the stack

Controlling the evaluation stack.

By using StackInhibit and StackBegin, you can control which parts of the evaluation process

are recorded on the stack. StackBegin@exprD evaluates expr, starting a fresh stack. This means

that during the evaluation of expr, the stack does not include anything outside the StackBegin.

Functions like TraceDialog@expr, …D call StackBegin before they begin evaluating expr, so that

the stack shows how expr is evaluated, but not how TraceDialog was called.

Core Language 311

StackBegin@exprD uses a fresh stack in the evaluation of expr.

In[8]:= f@StackBegin@g@h@StackInhibit@Print@Stack@DDDDDDD

8g, h<
Out[8]= f@g@h@NullDDD

Stack normally shows you only those expressions that are currently being evaluated. As a

result, it includes only the latest form of each expression. Sometimes, however, you may find it

useful also to see earlier forms of the expressions. You can do this using StackComplete.

What StackComplete@exprD effectively does is to keep on the stack the complete evaluation

chain for each expression that is currently being evaluated. In this case, the stack corresponds

to the sequence of expressions obtained from Trace with the option TraceBackward -> All as

well as TraceAbove -> True.

Controlling Infinite Evaluation

The general principle that Mathematica follows in evaluating expressions is to go on applying

transformation rules until the expressions no longer change. This means, for example, that if

you make an assignment like x = x + 1, Mathematica should go into an infinite loop. In fact,

Mathematica stops after a definite number of steps, determined by the value of the global

variable $RecursionLimit. You can always stop Mathematica earlier by explicitly interrupting

it.

This assignment could cause an infinite loop. Mathematica stops after a number of steps deter-
mined by $RecursionLimit.

In[1]:= x = x + 1

$RecursionLimit::reclim: Recursion depth of 256 exceeded. à

Out[1]= 255 + Hold@1 + xD

When Mathematica stops without finishing evaluation, it returns a held result. You can continue
the evaluation by explicitly calling ReleaseHold .

In[2]:= ReleaseHold@%D

$RecursionLimit::reclim: Recursion depth of 256 exceeded. à

Out[2]= 510 + Hold@1 + xD

312 Core Language

$RecursionLimit maximum depth of the evaluation stack

$IterationLimit maximum length of an evaluation chain

Global variables that limit infinite evaluation.

Here is a circular definition, whose evaluation is stopped by $IterationLimit.

In[3]:= 8a, b< = 8b, a<

$IterationLimit::itlim: Iteration limit of 4096 exceeded. à

$IterationLimit::itlim: Iteration limit of 4096 exceeded. à

Out[3]= 8Hold@bD, Hold@aD<

The variables $RecursionLimit and $IterationLimit control the two basic ways that an

evaluation can become infinite in Mathematica. $RecursionLimit limits the maximum depth of

the evaluation stack, or equivalently, the maximum nesting depth that would occur in the list

structure produced by Trace. $IterationLimit limits the maximum length of any particular

evaluation chain, or the maximum length of any single list in the structure produced by Trace.

$RecursionLimit and $IterationLimit are by default set to values that are appropriate for

most computations, and most computer systems. You can, however, reset these variables to

any integer (above a lower limit), or to Infinity. Note that on most computer systems, you

should never set $RecursionLimit = Infinity, as discussed in "Memory Management".

This resets $RecursionLimit and $IterationLimit to 20.

In[4]:= $RecursionLimit = $IterationLimit = 20

Out[4]= 20

Now infinite definitions like this are stopped after just 20 steps.

In[5]:= t = 8t<

$RecursionLimit::reclim: Recursion depth of 20 exceeded. à

Out[5]=

Without an end condition, this recursive definition leads to infinite computations.

In[6]:= fn@n_D := 8fn@n - 1D, n<

Core Language 313

A fairly large structure is built up before the computation is stopped.

In[7]:= fn@10D

$RecursionLimit::reclim: Recursion depth of 20 exceeded. à

Out[7]=

Here is another recursive definition.

In[8]:= fm@n_D := fm@n - 1D

In this case, no complicated structure is built up, and the computation is stopped by
$IterationLimit.

In[9]:= fm@0D

$IterationLimit::itlim: Iteration limit of 20 exceeded. à

Out[9]= Hold@fm@-19 - 1DD

It is important to realize that infinite loops can take up not only time but also computer mem-

ory. Computations limited by $IterationLimit do not normally build up large intermediate

structures. But those limited by $RecursionLimit often do. In many cases, the size of the

structures produced is a linear function of the value of $RecursionLimit. But in some cases,

the size can grow exponentially, or worse, with $RecursionLimit.

An assignment like x = x + 1 is obviously circular. When you set up more complicated recursive

definitions, however, it can be much more difficult to be sure that the recursion terminates, and

that you will not end up in an infinite loop. The main thing to check is that the right-hand sides

of your transformation rules will always be different from the left-hand sides. This ensures that

evaluation will always “make progress”, and Mathematica will not simply end up applying the

same transformation rule to the same expression over and over again.

Some of the trickiest cases occur when you have rules that depend on complicated ê; condi-

tions (see "Putting Constraints on Patterns"). One particularly awkward case is when the condi-

tion involves a “global variable”. Mathematica may think that the evaluation is finished because

the expression did not change. However, a side effect of some other operation could change the

value of the global variable, and so should lead to a new result in the evaluation. The best way

to avoid this kind of difficulty is not to use global variables in ê; conditions. If all else fails, you

can type Update@sD to tell Mathematica to update all expressions involving s. Update@D tells

Mathematica to update absolutely all expressions.

Interrupts and Aborts

314 Core Language

Interrupts and Aborts

"Interrupting Calculations" describes how you can interrupt a Mathematica computation by

pressing appropriate keys on your keyboard.

In some cases, you may want to simulate such interrupts from within a Mathematica program.

In general, executing Interrupt@D has the same effect as pressing interrupt keys. On a typical

system, a menu of options is displayed, as discussed in "Interrupting Calculations".

Interrupt@D interrupt a computation

Abort@D abort a computation

CheckAbort@expr, failexprD evaluate expr and return the result, or failexpr if an abort
occurs

AbortProtect@exprD evaluate expr, masking the effect of aborts until the evalua-
tion is complete

Interrupts and aborts.

The function Abort@D has the same effect as interrupting a computation, and selecting the

abort option in the interrupt menu.

You can use Abort@D to implement an “emergency stop” in a program. In almost all cases,

however, you should try to use functions like Return and Throw, which lead to more controlled

behavior.

Abort terminates the computation, so only the first Print is executed.

In[1]:= Print@aD; Abort@D; Print@bD

a
Out[1]= $Aborted

If you abort at any point during the evaluation of a Mathematica expression, Mathematica

normally abandons the evaluation of the whole expression, and returns the value $Aborted.

You can, however, “catch” aborts using the function CheckAbort. If an abort occurs during the

evaluation of expr in CheckAbort@expr, failexprD, then CheckAbort returns failexpr, but the abort

propagates no further. Functions like Dialog use CheckAbort in this way to contain the effect

of aborts.

Core Language 315

CheckAbort catches the abort, prints c and returns the value aborted.

In[2]:= CheckAbort@Print@aD; Abort@D; Print@bD, Print@cD; abortedD

a

c
Out[2]= aborted

The effect of the Abort is contained by CheckAbort, so b is printed.

In[3]:= CheckAbort@Print@aD; Abort@D, Print@cD; abortedD; Print@bD

a

c

b

When you construct sophisticated programs in Mathematica, you may sometimes want to

guarantee that a particular section of code in a program cannot be aborted, either interactively

or by calling Abort. The function AbortProtect allows you to evaluate an expression, saving

up any aborts until after the evaluation of the expression is complete.

The Abort is saved up until AbortProtect is finished.

In[4]:= AbortProtect@Abort@D; Print@aDD; Print@bD

a
Out[4]= $Aborted

The CheckAbort sees the abort, but does not propagate it further.

In[5]:= AbortProtect@Abort@D; CheckAbort@Print@aD, xDD; Print@bD

b

Even inside AbortProtect, CheckAbort will see any aborts that occur, and will return the

appropriate failexpr. Unless this failexpr itself contains Abort@D, the aborts will be “absorbed” by

the CheckAbort.

316 Core Language

Compiling Mathematica Expressions

If you make a definition like f@x_D := x Sin@xD, Mathematica will store the expression x Sin@xD

in a form that can be evaluated for any x. Then when you give a particular value for x, Mathe-

matica substitutes this value into x Sin@xD, and evaluates the result. The internal code that

Mathematica uses to perform this evaluation is set up to work equally well whether the value

you give for x is a number, a list, an algebraic object, or any other kind of expression.

Having to take account of all these possibilities inevitably makes the evaluation process slower.

However, if Mathematica could assume that x will be a machine number, then it could avoid

many steps, and potentially evaluate an expression like x Sin@xD much more quickly.

Using Compile, you can construct compiled functions in Mathematica, which evaluate Mathemat-

ica expressions assuming that all the parameters which appear are numbers (or logical vari-

ables). Compile@8x1, x2, …<, exprD takes an expression expr and returns a "compiled function"

which evaluates this expression when given arguments x1, x2, ….

In general, Compile creates a CompiledFunction object which contains a sequence of simple

instructions for evaluating the compiled function. The instructions are chosen to be close to

those found in the machine code of a typical computer, and can thus be executed quickly.

Compile@8x1,x2,…<,exprD create a compiled function which evaluates expr for numeri-
cal values of the xi

Creating compiled functions.

This defines f to be a pure function which evaluates x Sin@xD for any x.

In[1]:= f = Function@8x<, x Sin@xDD

Out[1]= Function@8x<, x Sin@xDD

This creates a compiled function for evaluating x Sin@xD.

In[2]:= fc = Compile@8x<, x Sin@xDD

Out[2]= CompiledFunction@8x<, x Sin@xD, -CompiledCode-D

f and fc yield the same results, but fc runs faster when the argument you give is a number.

In[3]:= 8f@2.5D, fc@2.5D<

Out[3]= 81.49618, 1.49618<

Compile is useful in situations where you have to evaluate a particular numerical or logical

expression many times. By taking the time to call Compile, you can get a compiled function

which can be executed more quickly than an ordinary Mathematica function.

Core Language 317

Compile is useful in situations where you have to evaluate a particular numerical or logical

expression many times. By taking the time to call Compile, you can get a compiled function

which can be executed more quickly than an ordinary Mathematica function.

For simple expressions such as x Sin@xD, there is usually little difference between the execution

speed for ordinary and compiled functions. However, as the size of the expressions involved

increases, the advantage of compilation also increases. For large expressions, compilation can

speed up execution by a factor as large as 20.

Compilation makes the biggest difference for expressions containing a large number of simple,

say arithmetic, functions. For more complicated functions, such as BesselK or Eigenvalues,

most of the computation time is spent executing internal Mathematica algorithms, on which

compilation has no effect.

This creates a compiled function for finding values of the tenth Legendre polynomial. The
Evaluate tells Mathematica to construct the polynomial explicitly before doing compilation.

In[4]:= pc = Compile@8x<, Evaluate@LegendreP@10, xDDD

Out[4]= CompiledFunctionB8x<,
1

256
I-63 + 3465 x2 - 30030 x4 + 90090 x6 - 109395 x8 + 46189 x10M, -CompiledCode-F

This finds the value of the tenth Legendre polynomial with argument 0.4.

In[5]:= pc@0.4D

Out[5]= 0.0968391

This uses built-in numerical code.

In[6]:= LegendreP@10, 0.4D

Out[6]= 0.0968391

Even though you can use compilation to speed up numerical functions that you write, you

should still try to use built-in Mathematica functions whenever possible. Built-in functions will

usually run faster than any compiled Mathematica programs you can create. In addition, they

typically use more extensive algorithms, with more complete control over numerical precision

and so on.

318 Core Language

You should realize that built-in Mathematica functions quite often themselves use Compile.

Thus, for example, NIntegrate by default automatically uses Compile on the expression you

tell it to integrate. Similarly, functions like Plot and Plot3D use Compile on the expressions

you ask them to plot. Built-in functions that use Compile typically have the option Compiled.

Setting Compiled -> False tells the functions not to use Compile.

Compile@88x1,t1<,8x2,t2<,…<,exprD

compile expr assuming that xi is of type ti

Compile@88x1,t1,n1<,8x2,t2,n2<,…<,exprD

compile expr assuming that xi is a rank ni array of objects
each of type ti

Compile@vars,expr,88p1,pt1<,…<D

compile expr, assuming that subexpressions which match
pi are of type pti

_Integer machine-size integer

_Real machine-precision approximate real number

_Complex machine-precision approximate complex number

True False logical variable

Specifying types for compilation.

Compile works by making assumptions about the types of objects that occur in evaluating the

expression you give. The default assumption is that all variables in the expression are approxi-

mate real numbers.

Compile nevertheless also allows integers, complex numbers and logical variables (True or

False), as well as arrays of numbers. You can specify the type of a particular variable by giving

a pattern which matches only values that have that type. Thus, for example, you can use the

pattern _Integer to specify the integer type. Similarly, you can use True False to specify a

logical variable that must be either True or False.

This compiles the expression 5 i + j with the assumption that i and j are integers.

In[7]:= Compile@88i, _Integer<, 8j, _Integer<<, 5 i + jD

Out[7]= CompiledFunction@8i, j<, 5 i + j, -CompiledCode-D

Core Language 319

This yields an integer result.

In[8]:= %@8, 7D

Out[8]= 47

This compiles an expression that performs an operation on a matrix of integers.

In[9]:= Compile@88m, _Integer, 2<<, Apply@Plus, Flatten@mDDD

Out[9]= CompiledFunction@8m<, Plus üü Flatten@mD, -CompiledCode-D

The list operations are now carried out in a compiled way, and the result is an integer.

In[10]:= %@881, 2, 3<, 87, 8, 9<<D

Out[10]= 30

The types that Compile handles correspond essentially to the types that computers typically

handle at a machine-code level. Thus, for example, Compile can handle approximate real

numbers that have machine precision, but it cannot handle arbitrary-precision numbers. In

addition, if you specify that a particular variable is an integer, Compile generates code only for

the case when the integer is of "machine size", typically between ±231.

When the expression you ask to compile involves only standard arithmetic and logical opera-

tions, Compile can deduce the types of objects generated at every step simply from the types

of the input variables. However, if you call other functions, Compile will typically not know what

type of value they return. If you do not specify otherwise, Compile assumes that any other

function yields an approximate real number value. You can, however, also give an explicit list of

patterns, specifying what type to assume for an expression that matches a particular pattern.

This defines a function which yields an integer result when given an integer argument.

In[11]:= com@i_D := Binomial@2 i, iD

This compiles x^com@iD using the assumption that com@_D is always an integer.

In[12]:= Compile@8x, 8i, _Integer<<, x^com@iD, 88com@_D, _Integer<<D

Out[12]= CompiledFunctionA8x, i<, xcom@iD, -CompiledCode-E

This evaluates the compiled function.

In[13]:= %@5.6, 1D

Out[13]= 31.36

The idea of Compile is to create a function which is optimized for certain types of arguments.

Compile is nevertheless set up so that the functions it creates work with whatever types of

arguments they are given. When the optimization cannot be used, a standard Mathematica

expression is evaluated to find the value of the function.

320 Core Language

The idea of Compile is to create a function which is optimized for certain types of arguments.

Compile is nevertheless set up so that the functions it creates work with whatever types of

arguments they are given. When the optimization cannot be used, a standard Mathematica

expression is evaluated to find the value of the function.

Here is a compiled function for taking the square root of a variable.

In[14]:= sq = Compile@8x<, Sqrt@xDD

Out[14]= CompiledFunctionB8x<, x , -CompiledCode-F

If you give a real number argument, optimized code is used.

In[15]:= sq@4.5D

Out[15]= 2.12132

The compiled code cannot be used, so Mathematica prints a warning, then just evaluates the
original symbolic expression.

In[16]:= sq@1 + uD

CompiledFunction::cfsa : Argument 1+u at position 1 should be a machine-size real number. à

Out[16]= 1 + u

The compiled code generated by Compile must make assumptions not only about the types of

arguments you will supply, but also about the types of all objects that arise during the execu-

tion of the code. Sometimes these types depend on the actual values of the arguments you

specify. Thus, for example, Sqrt@xD yields a real number result for real x if x is not negative,

but yields a complex number if x is negative.

Compile always makes a definite assumption about the type returned by a particular function.

If this assumption turns out to be invalid in a particular case when the code generated by

Compile is executed, then Mathematica simply abandons the compiled code in this case, and

evaluates an ordinary Mathematica expression to get the result.

Core Language 321

The compiled code does not expect a complex number, so Mathematica has to revert to explic-
itly evaluating the original symbolic expression.

In[17]:= sq@-4.5D

CompiledFunction::cfn :
Numerical error encountered at instruction 2; proceeding with uncompiled evaluation. à

Out[17]= 0. + 2.12132 Â

An important feature of Compile is that it can handle not only mathematical expressions, but

also various simple Mathematica programs. Thus, for example, Compile can handle conditionals

and control flow structures.

In all cases, Compile@vars, exprD holds its arguments unevaluated. This means that you can

explicitly give a "program" as the expression to compile.

This creates a compiled version of a Mathematica program which implements Newton’s approxi-
mation to square roots.

In[18]:= newt = Compile@8x, 8n, _Integer<<, Module@8t<, t = x; Do@t = Ht + x ê tL ê 2, 8n<D; tDD

Out[18]= CompiledFunctionB8x, n<, ModuleB8t<, t = x; DoBt =
1

2
t +

x

t
, 8n<F; tF, -CompiledCode-F

This executes the compiled code.

In[19]:= newt@2.4, 6D

Out[19]= 1.54919

Manipulating Compiled Code

If you use compiled code created by Compile only within Mathematica itself, then you should

never need to know the details of its internal form. Nevertheless, the compiled code can be

represented by an ordinary Mathematica expression, and it is sometimes useful to manipulate

it.

For example, you can take compiled code generated by Compile, and feed it to external pro-

grams or devices. You can also create CompiledFunction objects yourself, then execute them

in Mathematica.

In all of these cases, you need to know the internal form of CompiledFunction objects. The

first element of a CompiledFunction object is always a list of patterns which specifies the types

of arguments accepted by the object. The fifth element of a CompiledFunction object is a

Mathematica pure function that is used if the compiled code instruction stream fails for any

reason to give a result.

322 Core Language

In all of these cases, you need to know the internal form of CompiledFunction objects. The

first element of a CompiledFunction object is always a list of patterns which specifies the types

of arguments accepted by the object. The fifth element of a CompiledFunction object is a

Mathematica pure function that is used if the compiled code instruction stream fails for any

reason to give a result.

CompiledFunction@
8arg1,arg2,…<,8reg1,reg2,…<,
8nl,ni,nr,nc,nt<,instr, funcD

compiled code taking arguments of type argi and executing

the instruction stream instr using nk registers of type k

The structure of a compiled code object.

This shows the explicit form of the compiled code generated by Compile.

In[1]:= Compile@8x<, x^2D êê InputForm

Out[1]//InputForm= CompiledFunction[{_Real}, {{3, 0, 0}, {3, 0, 1}}, {0, 1, 2, 0, 0},
 {{1, 5}, {7, 2, 0}, {94, 264, 3, 0, 0, 2, 0, 0, 3, 0, 1}, {2}},
 Function[{x}, x^2], Evaluate]

The instruction stream in a CompiledFunction object consists of a list of instructions for a

simple idealized computer. The computer is assumed to have numbered "registers", on which

operations can be performed. There are five basic types of registers: logical, integer, real,

complex and tensor. For each of these basic types it is then possible to have either a single

scalar register or an array of registers of any rank. A list of the total number of registers of

each type required to evaluate a particular CompiledFunction object is given as the second

element of the object.

The actual instructions in the compiled code object are given as lists. The first element is an

integer "opcode" which specifies what operation should be performed. Subsequent elements are

either the numbers of registers of particular types, or literal constants. Typically the last ele-

ment of the list is the number of a "destination register", into which the result of the operation

should be put.

Core Language 323

Appendix: Language Structure

Basic Objects

Expressions

Expressions are the main type of data in Mathematica.

Expressions can be written in the form h@e1, e2, …D. The object h is known generically as the

head of the expression. The ei are termed the elements of the expression. Both the head and

the elements may themselves be expressions.

The parts of an expression can be referred to by numerical indices. The head has index 0;

element ei has index i. Part@expr, iD or expr@@iDD gives the part of expr with index i. Negative

indices count from the end.

Part@expr, i1, i2, …D, expr@@i1, i2, …DD, or Extract@expr, 8i1, i2, …<D gives the piece of expr

found by successively extracting parts of subexpressions with indices i1, i2, …. If you think of

expressions as trees, the indices specify which branch to take at each node as you descend

from the root.

The pieces of an expression that are specified by giving a sequence of exactly n indices are

defined to be at level n in the expression. You can use levels to determine the domain of applica-

tion of functions like Map. Level 0 corresponds to the whole expression.

The depth of an expression is defined to be the maximum number of indices needed to specify

any part of the expression, plus one. A negative level number -n refers to all parts of an expres-

sion that have depth n.

Symbols

Symbols are the basic named objects in Mathematica.

The name of a symbol must be a sequence of letters, letter-like forms and digits, not starting

with a digit. Uppercase and lowercase letters are always distinguished in Mathematica.

324 Core Language

aaaaa user-defined symbol

Aaaaa system-defined symbol

$Aaaa global or internal system-defined symbol

aaaa$ symbol renamed in a scoping construct

aa$nn unique local symbol generated in a module

Conventions for symbol names.

Essentially all system-defined symbols have names that contain only ordinary English letters,

together with numbers and $. The exceptions are p, ¶, ‰, Â and ¸.

System-defined symbols conventionally have names that consist of one or more complete

English words. The first letter of each word is capitalized, and the words are run together.

Once created, an ordinary symbol in Mathematica continues to exist unless it is explicitly

removed using Remove. However, symbols created automatically in scoping constructs such as

Module carry the attribute Temporary which specifies that they should automatically be

removed as soon as they no longer appear in any expression.

When a new symbol is to be created, Mathematica first applies any value that has been

assigned to $NewSymbol to strings giving the name of the symbol, and the context in which the

symbol would be created.

If the message General::newsym is switched on, then Mathematica reports new symbols that

are created. This message is switched off by default. Symbols created automatically in scoping

constructs are not reported.

Contexts

The full name of any symbol in Mathematica consists of two parts: a context and a short name.

The full name is written in the form context`name. The context context` can contain the same

characters as the short name. It may also contain any number of context mark characters `,

and must end with a context mark.

At any point in a Mathematica session, there is a current context $Context and a context

search path $ContextPath consisting of a list of contexts. Symbols in the current context, or in

contexts on the context search path, can be specified by giving only their short names, pro-

vided they are not shadowed by another symbol with the same short name.

Core Language 325

name search $ContextPath, then $Context; create in
$Context if necessary

` name search $Context only; create there if necessary

context ` name search context only; create there if necessary

` context ` name search $Context` context only; create there if necessary

Contexts used for various specifications of symbols.

With Mathematica packages, it is conventional to associate contexts whose names correspond

to the names of the packages. Packages typically use BeginPackage and EndPackage to define

objects in the appropriate context, and to add the context to the global $ContextPath.

EndPackage prints a warning about any symbols that were created in a package but which are

"shadowed" by existing symbols on the context search path.

The context is included in the printed form of a symbol only if it would be needed to specify the

symbol at the time of printing.

Atomic Objects

All expressions in Mathematica are ultimately made up from a small number of basic or atomic

types of objects.

These objects have heads which are symbols that can be thought of as "tagging" their types.

The objects contain "raw data", which can usually be accessed only by functions specific to the

particular type of object. You can extract the head of the object using Head, but you cannot

directly extract any of its other parts.

Symbol symbol (extract name using SymbolName)

String character string "cccc" (extract characters using
Characters)

Integer integer (extract digits using IntegerDigits)

Real approximate real number (extract digits using
RealDigits)

Rational rational number (extract parts using Numerator and
Denominator)

Complex complex number (extract parts using Re and Im)

Atomic objects.

Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with

AtomQ.

326 Core Language

Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with

AtomQ.

Numbers

Integer integer nnnn

Real approximate real number nnn.nnn

Rational rational number nnn ê nnn

Complex complex number nnn + nnn I

Basic types of numbers.

All numbers in Mathematica can contain any number of digits. Mathematica does exact computa-

tions when possible with integers and rational numbers, and with complex numbers whose real

and imaginary parts are integers or rational numbers.

There are two types of approximate real numbers in Mathematica: arbitrary precision and

machine precision. In manipulating arbitrary-precision numbers, Mathematica tries to modify

the precision so as to ensure that all digits actually given are correct.

With machine-precision numbers, all computations are done to the same fixed precision, so

some digits given may not be correct.

Unless otherwise specified, Mathematica treats as machine-precision numbers all approximate

real numbers that lie between $MinMachineNumber and $MaxMachineNumber and that are input

with less than $MachinePrecision digits.

In InputForm, Mathematica prints machine-precision numbers with $MachinePrecision digits,

except when trailing digits are zero.

In any implementation of Mathematica, the magnitudes of numbers (except 0) must lie

between $MinNumber and $MaxNumber. Numbers with magnitudes outside this range are repre-

sented by Underflow@D and Overflow@D.

Character Strings

Character strings in Mathematica can contain any sequence of characters. They are input in the

form "ccccc".

The individual characters can be printable ASCII (with character codes between 32 and 126), or

in general any 8- or 16-bit characters. Mathematica uses the Unicode character encoding for 16-

bit characters.

Core Language 327

The individual characters can be printable ASCII (with character codes between 32 and 126), or

in general any 8- or 16-bit characters. Mathematica uses the Unicode character encoding for 16-

bit characters.

In input form, 16-bit characters are represented when possible in the form î @nameD, and other-

wise as î : nnnn.

Null bytes can appear at any point within Mathematica strings.

Input Syntax

Entering Characters

† Enter it directly (e.g. +)

† Enter it by full name (e.g. î @AlphaD)

† Enter it by alias (e.g. Esc aEsc) (notebook front end only)

† Enter it by choosing from a palette (notebook front end only)

† Enter it by character code (e.g. î : 03 b1)

Typical ways to enter characters.

All printable ASCII characters can be entered directly. Those that are not alphanumeric are

assigned explicit names in Mathematica, allowing them to be entered even on keyboards where

they do not explicitly appear.

î @RawSpaceD
! î @RawExclamationD
" î @RawDoubleQuoteD
Ò î @RawNumberSignD
$ î @RawDollarD
% î @RawPercentD
& î @RawAmpersandD
' î @RawQuoteD
H î @RawLeftParenthesisD
L î @RawRightParenthesisD
* î @RawStarD
+ î @RawPlusD

; î @RawSemicolonD
< î @RawLessD
= î @RawEqualD
> î @RawGreaterD
? î @RawQuestionD
ü î @RawAtD
@ î @RawLeftBracketD
î î @RawBackslashD
D î @RawRightBracketD
^ î @RawWedgeD
_ î @RawUnderscoreD
` î @RawBackquoteD

328 Core Language

, î @RawCommaD
- î @RawDashD
. î @RawDotD
ê î @RawSlashD
: î @RawColonD

8 î @RawLeftBraceD
î @RawVerticalBarD

< î @RawRightBraceD
~ î @RawTildeD

Full names for non-alphanumeric printable ASCII characters.

All characters which are entered into the Mathematica kernel are interpreted according to the

setting for the CharacterEncoding option for the stream from which they came.

î@NameD a character with the specified full name

înnn a character with octal code nnn

î.nn a character with hexadecimal code nn

î:nnnn a character with hexadecimal code nnnn

Ways to enter characters.

Codes for characters can be generated using ToCharacterCode. The Unicode standard is fol-

lowed, with various extensions.

8-bit characters have codes less than 256; 16-bit characters have codes between 256 and

65535. Approximately 900 characters are assigned explicit names in Mathematica. Other charac-

ters must be entered using their character codes.

îî single backslash (decimal code 92)

î single space (decimal code 32)

î" double-quote (decimal code 34)

îb backspace or Ctrl+H (decimal code 8)

ît tab or Ctrl+I (decimal code 9)

în newline or Ctrl+J (decimal code 10; full name
î @NewLineD)

îf form feed or Ctrl+L (decimal code 12)

îr carriage return or Ctrl+M (decimal code 13)

î000 null byte (code 0)

Some special 8-bit characters.

Core Language 329

Types of Input Syntax

The standard input syntax used by Mathematica is the one used by default in InputForm and

StandardForm. You can modify the syntax by making definitions for

MakeExpression@expr, formD.

Options can be set to specify what form of input should be accepted by a particular cell in a

notebook or from a particular stream.

The input syntax in TraditionalForm, for example, is different from that in InputForm and

StandardForm.

In general, what input syntax does is to determine how a particular string or collection of boxes

should be interpreted as an expression. When boxes are set up, say with the notebook front

end, there can be hidden InterpretationBox or TagBox objects which modify the interpreta-

tion of the boxes.

Character Strings

"characters" a character string

î " a literal " in a character string

î î a literal î in a character string

î (at end of line) ignore the following newline

î ! î H… îL a substring representing two-dimensional boxes

Entering character strings.

Character strings can contain any sequence of 8- or 16-bit characters. Characters entered by

name or character code are stored the same as if they were entered directly.

In a notebook front end, text pasted into a string by default automatically has appropriate î

characters inserted so that the string stored in Mathematica reproduces the text that was

pasted.

Within î ! î H… îL any box structures represented using backslash sequences can be used.

StringExpression objects can be used to represent strings that contain symbolic constructs,

such as pattern elements.

Symbol Names and Contexts

330 Core Language

Symbol Names and Contexts

name symbol name

`name symbol name in current context

context`name symbol name in specified context

context` context name

context1`context2` compound context name

`context` context relative to the current context

Symbol names and contexts.

Symbol names and contexts can contain any characters that are treated by Mathematica as

letters or letter-like forms. They can contain digits but cannot start with them. Contexts must

end in a backquote `.

Numbers

digits integer

digits.digits approximate number

base^^digits integer in specified base

base^^digits.digits approximate number in specified base

mantissa*^n scientific notation (mantissa×10n)

base^^mantissa*^n scientific notation in specified base (mantissa×basen)

number` machine-precision approximate number

number`s arbitrary-precision number with precision s

number``s arbitrary-precision number with accuracy s

Input forms for numbers.

Numbers can be entered with the notation base^ ^digits in any base from 2 to 36. The base itself

is given in decimal. For bases larger than 10, additional digits are chosen from the letters a|z or

A|Z. Upper- and lower-case letters are equivalent for these purposes. Floating-point numbers

can be specified by including . in the digits sequence.

In scientific notation, mantissa can contain ` marks. The exponent n must always be an integer,

specified in decimal.

The precision or accuracy s can be any real number; it does not need to be an integer.

In the form base^ ^number`s the precision s is given in decimal, but it gives the effective number

of digits of precision in the specified base, not in base 10.

Core Language 331

In the form base^ ^number`s the precision s is given in decimal, but it gives the effective number

of digits of precision in the specified base, not in base 10.

An approximate number x is taken to be machine precision if the number of digits given in it is

Ceiling@$MachinePrecisionD + 1 or less. If more digits are given, then x is taken to be an

arbitrary-precision number. The accuracy of x is taken to be the number of digits that appear to

the right of the decimal point, while its precision is taken to be Log@10, Abs@xDD + Accuracy@xD.

A number entered in the form 0`` s is taken to have precision 0 and accuracy s.

Bracketed Objects

Bracketed objects use explicit left and right delimiters to indicate their extent. They can appear

anywhere within Mathematica input, and can be nested in any way.

The delimiters in bracketed objects are matchfix operators. But since these delimiters explicitly

enclose all operands, no precedence need be assigned to such operators.

H*any text*L comment

HexprL parenthesization: grouping of input

Bracketed objects without comma-separated elements.

Comments can be nested, and can continue for any number of lines. They can contain any 8- or

16-bit characters.

Parentheses must enclose a single complete expression; neither He, eL nor HL are allowed.

8e1,e2,…< List@e1,e2,…D

Xe1,e2,…\ AngleBracket@e1,e2,…D

dexprt Floor@exprD

`exprp Ceiling@exprD

†e1,e2,…§ BracketingBar@e1,e2,…D

°e1,e2,…¥ DoubleBracketingBar@e1,e2,…D

îHinputîL input or grouping of boxes

Bracketed objects that allow comma-separated elements.

332 Core Language

The notation … is used to stand for any sequence of expressions.

8e1, e2, …< can include any number of elements, with successive elements separated by com-

mas.

8< is List@D, a list with zero elements.

Xe1, e2, …\ can be entered as î @LeftAngleBracketD e1, e2, … î @RightAngleBracketD.

The character î @InvisibleCommaD can be used interchangeably with ordinary commas; the

only difference is that î @InvisibleCommaD will not be displayed.

When the delimiters are special characters, it is a convention that they are named

î @LeftNameD and î @RightNameD.

î H… îL is used to enter boxes using one-dimensional strings. Note that within the outermost

î H… îL in a piece of input the syntax used is slightly different from outside, as described

in "Input of Boxes".

h@e1,e2,…D standard expression

e@@i1,i2,…DD Part@e,i1,i2,…D

ePi1,i2,…T Part@e,i1,i2,…D

Bracketed objects with heads.

Bracketed objects with heads explicitly delimit all their operands except the head. A precedence

must be assigned to define the extent of the head.

The precedence of h@eD is high enough that ! h@eD is interpreted as Not@h@eDD. However, h_s@eD

is interpreted as Hh_sL@eD.

Core Language 333

Two-Dimensional Input Forms

xy Power@x, yD
x
y

Divide@x, yD

x Sqrt@xD

x
n

Power@x, 1 ê nD
a11 a12 …

a21 a22 … 88a11, a12, …<, 8a21, a22, …<<

∂x y D@y, xD
∂x,… y D@y, x, …D

Ÿxmin
xmaxy „x Integrate@y, 8x, xmin, xmax<D

Ÿxmin
xmax y w

z
„x Integrate@y w ê z, 8x, xmin, xmax<D

⁄
x=xmin

xmax
y Sum@y, 8x, xmin, xmax<D

¤
x=xmin

xmax
y Product@y, 8x, xmin, xmax<D

Two-dimensional input forms with built-in evaluation rules.

Any array of expressions represented by a GridBox is interpreted as a list of lists. Even if the

GridBox has only one row, the interpretation is still 88a1, a2, …<<.

In the form Ÿxmin
xmaxy w „x

z
 the limits xmin and xmax can be omitted, as can y and w.

xy Subscript@x, yD

x+ SubPlus@xD
x- SubMinus@xD
x* SubStar@xD
x+ SuperPlus@xD
x- SuperMinus@xD
x* SuperStar@xD
x† SuperDagger@xD

x
y

Overscript@x, yD
x
y

Underscript@x, yD

x OverBar@xD
x” OverVector@xD
xè OverTilde@xD
x` OverHat@xD
x° OverDot@xD
x UnderBar@xD

Two-dimensional input forms without built-in evaluation rules.

There is no issue of precedence for forms such as x and x` in which operands are effectively

spanned by the operator. For forms such as xy and x† a left precedence does need to be speci-

fied, so such forms are included in the main table of precedences above.

334 Core Language

Input of Boxes

† Use a palette

† Use control keys

Ways to input boxes.

Control Keys

Ctrl+2 or Ctrl+@ square root

Ctrl+5 or Ctrl+% switch to alternate position (e.g. subscript to superscript)

Ctrl+6 or Ctrl+^ superscript

Ctrl+7 or Ctrl+& overscript

Ctrl+9 or Ctrl+(begin a new cell within an existing cell

Ctrl+0 or Ctrl+) end a new cell within an existing cell

Ctrl+- or Ctrl+_ subscript

Ctrl+= or Ctrl+Plus underscript

Ctrl+Enter create a new row in a table

Ctrl+, create a new column in a table

Ctrl+. expand current selection

Ctrl+/ fraction

Ctrl+Space return from current position or state

Ctrl+, Ctrl+Ø, Ctrl+Æ, Ctrl+

move an object by minimal increments on the screen

Standard control keys.

On English-language keyboards both forms will work where alternates are given. On other

keyboards the first form should work but the second may not.

Boxes Constructed from Text

When textual input that you give is used to construct boxes, as in StandardForm or

TraditionalForm cells in a notebook, the input is handled slightly differently from when it is

fed directly to the kernel.

The input is broken into tokens, and then each token is included in the box structure as a

separate character string. Thus, for example, xx + yyy is broken into the tokens "xx", "+",

"yyy".

Core Language 335

† symbol name (e.g. x123)

† number (e.g. 12.345)

† operator (e.g. +=)

† spacing (e.g. â)

† character string (e.g. "text")

Types of tokens in text used to construct boxes.

A RowBox is constructed to hold each operator and its operands. The nesting of RowBox objects

is determined by the precedence of the operators in standard Mathematica syntax.

Note that spacing characters are not automatically discarded. Instead, each sequence of consec-

utive such characters is made into a separate token.

String-Based Input

îH…îL input raw boxes

î!îH…îL input and interpret boxes

Inputting raw and interpreted boxes.

Any textual input that you give between \H and \L is taken to specify boxes to construct. The

boxes are only interpreted if you specify with \! that this should be done. Otherwise x \^ y is

left for example as SuperscriptBox@x, yD, and is not converted to Power@x, yD.

Within the outermost \H… îL, further \H… îL specify grouping and lead to the insertion of

RowBox objects.

336 Core Language

îHbox1,box2,…îL RowBox@box1,box2,…D

box1î^box2 SuperscriptBox@box1,box2D

box1ï_ box2 SubscriptBox@box1,box2D

box1ï_ box2ï% box3 SubsuperscriptBox@box1,box2,box3D

box1î& box2 OverscriptBox@box1,box2D

box1î+box2 UnderscriptBox@box1,box2D

box1î+box2î% box3 UnderoverscriptBox@box1,box2,box3D

box1îêbox2 FractionBox@box1,box2D

\übox SqrtBox@boxD

formî` box FormBox@box, formD

*input construct box by interpreting input

\â insert a space

\n insert a newline

\t indent at the beginning of a line

String-based ways of constructing raw boxes.

In string-based input between \H and \L spaces, tabs and newlines are discarded. î â can be

used to insert a single space. Special spacing characters such as \[ThinSpace],

\[ThickSpace] or \[NegativeThinSpace] are not discarded.

When you input typesetting forms into a string, the internal representation of the string uses

the above forms. The front end displays the typeset form, but uses the \H… îL notation when

saving the content to a file or when sending the string to the kernel for evaluation.

The Extent of Input Expressions

Mathematica will treat all input that you give on a single line as being part of the same expres-

sion.

Mathematica allows a single expression to continue for several lines. In general, it treats the

input that you give on successive lines as belonging to the same expression whenever no com-

plete expression would be formed without doing this.

Thus, for example, if one line ends with =, then Mathematica will assume that the expression

must continue on the next line. It will do the same if for example parentheses or other matchfix

operators remain open at the end of the line.

If at the end of a particular line the input you have given so far corresponds to a complete

expression, then Mathematica will normally begin immediately to process that expression.

Core Language 337

If at the end of a particular line the input you have given so far corresponds to a complete

expression, then Mathematica will normally begin immediately to process that expression.

You can however explicitly tell Mathematica that a particular expression is incomplete by

putting a î or a Ö (\[Continuation]) at the end of the line. Mathematica will then include the

next line in the same expression, discarding any spaces or tabs that occur at the beginning of

that line.

Special Input

?symbol get information

??symbol get more information

?s1 s2 … get information on several objects

!command execute an external command (text-based interface only)

!! file display the contents of an external file (text-based inter-
face only)

Special input lines.

In most implementations of Mathematica, you can give a line of special input anywhere in your

input. The only constraint is that the special input must start at the beginning of a line.

Some implementations of Mathematica may not allow you to execute external commands using

! command.

Front End Files

Notebook files as well as front end initialization files can contain a subset of standard Mathemat-

ica language syntax. This syntax includes:

† Any Mathematica expression in FullForm.

† Lists in 8…< form. The operators ->, :> and &. Function slots in Ò form.

† Various Mathematica operators such as +, *, ;, etc.

† Special characters in î @NameD, î : nnnn or î .xx form.

† String representation of boxes involving î H, î L and other backslash operators.

† Mathematica comments delimited by H* and *L.

Some General Notations and Conventions

338 Core Language

Some General Notations and Conventions

Function Names

The names of built-in functions follow some general guidelines.

† The name consists of complete English words, or standard mathematical abbreviations.
American spelling is used.

† The first letter of each word is capitalized.

† Functions whose names end with Q usually “ask a question”, and return either True or
False.

† Mathematical functions that are named after people usually have names in Mathematica of
the form PersonSymbol.

Function Arguments

The main expression or object on which a built-in function acts is usually given as the first

argument to the function. Subsidiary parameters appear as subsequent arguments.

The following are exceptions:

† In functions like Map and Apply, the function to apply comes before the expression it is to
be applied to.

† In scoping constructs such as Module and Function, local variables and parameter names
come before bodies.

† In functions like Write and Export, the name of the file is given before the objects to be
written to it.

For mathematical functions, arguments that are written as subscripts in standard mathematical

notation are given before those that are written as superscripts.

Core Language 339

Options

Some built-in functions can take options. Each option has a name, represented as a symbol, or

in some cases a string. Options are set by giving rules of the form name -> value or name :> value.

Such rules must appear after all the other arguments in a function. Rules for different options

can be given in any order. If you do not explicitly give a rule for a particular option, a default

setting for that option is used.

Options@ fD give the default rules for all options associated with f

Options@exprD give the options set in a particular expression

Options@expr,nameD give the setting for the option name in an expression

AbsoluteOptions@expr,nameD give the absolute setting for name, even if its actual setting
is Automatic

SetOptions@ f,name->value,…D set default rules for options associated with f

CurrentValue@nameD give the option setting for the front end option name; can
be used on the left-hand side of an assignment to set the
option

Operations on options.

Part Numbering

n element n (starting at 1)

-n element n from the end

0 head

Numbering of parts.

340 Core Language

Sequence Specifications

All all elements

None no elements

n elements 1 through n

-n last n elements

8n< element n only

8m,n< elements m through n (inclusive)

8m,n,s< elements m through n in steps of s

Specifications for sequences of parts.

The sequence specification 8m, n, s< corresponds to elements m, m + s, m + 2 s, …, up to the

largest element not greater than n.

Sequence specifications are used in the functions Drop, Ordering, StringDrop, StringTake,

Take and Thread.

Level Specifications

n levels 1 through n

Infinity levels 1 through Infinity

8n< level n only

8n1,n2< levels n1 through n2
Heads->True include heads of expressions

Heads->False do not include heads of expressions

Level specifications.

The level in an expression corresponding to a non-negative integer n is defined to consist of

parts specified by n indices. A negative level number -n represents all parts of an expression

that have depth n. The depth of an expression, Depth@exprD, is the maximum number of indices

needed to specify any part, plus one. Levels do not include heads of expressions, except with

the option setting Heads -> True. Level 0 is the whole expression. Level -1 contains all symbols

and other objects that have no subparts.

Ranges of levels specified by 8n1, n2< contain all parts that are neither above level n1, nor below

level n2 in the tree. The ni need not have the same sign. Thus, for example, 82, -2< specifies

subexpressions which occur anywhere below the top level, but above the leaves, of the expres-

sion tree.

Core Language 341

Ranges of levels specified by 8n1, n2< contain all parts that are neither above level n1, nor below

level n2 in the tree. The ni need not have the same sign. Thus, for example, 82, -2< specifies

subexpressions which occur anywhere below the top level, but above the leaves, of the expres-

sion tree.

Level specifications are used by functions such as Apply, Cases, Count, FreeQ, Level, Map,

MapIndexed, Position, Replace and Scan. Note, however, that the default level specifications

are not the same for all of these functions.

Iterators

8imax< iterate imax times

8i,imax< i goes from 1 to imax in steps of 1

8i,imin,imax< i goes from imin to imax in steps of 1

8i,imin,imax,di< i goes from imin to imax in steps of di

8i,list< i takes on the successive values in list

8i,imin,imax<,8 j, jmin, jmax<,… i goes from imin to imax, and for each value of i, j goes from
jmin to jmax, etc.

Iterator notation.

Iterators are used in such functions as Sum , Table, Do and Range.

The iteration parameters imin, imax and di do not need to be integers. The variable i is given a

sequence of values starting at imin, and increasing in steps of di, stopping when the next value of

i would be greater than imax. The iteration parameters can be arbitrary symbolic expressions, so

long as Himax - iminL ê di is a number.

When several iteration variables are used, the limits for the later ones can depend on the val-

ues of earlier ones.

The variable i can be any symbolic expression; it need not be a single symbol. The value of i is

automatically set up to be local to the iteration function. This is effectively done by wrapping a

Block construct containing i around the iteration function.

The procedure for evaluating iteration functions is described in "Evaluation".

Scoping Constructs

342 Core Language

Scoping Constructs

Function@8x,…<,bodyD local parameters

lhs->rhs and lhs:>rhs local pattern names

lhs=rhs and lhs:=rhs local pattern names

With@8x=x0,…<,bodyD local constants

Module@8x,…<,bodyD local variables

Block@8x,…<,bodyD local values of global variables

DynamicModule@8x,…<,bodyD local variables in a Dynamic interface

Scoping constructs in Mathematica. Functions in the first group scope variables lexically.

Scoping constructs allow the names or values of certain symbols to be local.

Some scoping contracts scope lexically, meaning that literal instances of the specified variables

or patterns are replaced with appropriate values. When local variable names are required,

symbols with names of the form xxx are generally renamed to xxx$. When nested scoping con-

structs are evaluated, new symbols are automatically generated in the inner scoping constructs

so as to avoid name conflicts with symbols in outer scoping constructs.

When a transformation rule or definition is used, ReplaceAll (ê.) is effectively used to replace

the pattern names that appear on the right-hand side. Nevertheless, new symbols are gener-

ated when necessary to represent other objects that appear in scoping constructs on the right-

hand side.

Each time it is evaluated, Module generates symbols with unique names of the form xxx$nnn as

replacements for all local variables that appear in its body.

Block localizes the value of global variables. Any evaluations in the body of a block which rely

on the global variable will use the locally specified value even if the variable does not explicitly

appear in the body, but is only referenced through subsequent evaluation. The body of the

Block may also make changes to the global variable, but any such changes will only persist

until the Block has finished executing.

DynamicModule localizes its variables to each instance of the DynamicModule output in a note-

book. This means each copy of a DynamicModule output created using copy and paste will use

its own localized variables.

Ordering of Expressions

Core Language 343

Ordering of Expressions

The canonical ordering of expressions used automatically with the attribute Orderless and in

functions such as Sort satisfies the following rules:

† Integers, rational and approximate real numbers are ordered by their numerical values.

† Complex numbers are ordered by their real parts, and in the event of a tie, by the absolute
values of their imaginary parts.

† Symbols are ordered according to their names, and in the event of a tie, by their contexts.

† Expressions are usually ordered by comparing their parts in a depth-first manner. Shorter
expressions come first.

† Powers and products are treated specially, and are ordered to correspond to terms in a
polynomial.

† Strings are ordered as they would be in a dictionary, with the uppercase versions of letters
coming after lowercase ones.

Ordinary letters appear first, followed in order by script, Gothic, double-struck, Greek and

Hebrew. Mathematical operators appear in order of decreasing precedence.

Mathematical Functions

The mathematical functions such as Log@xD and BesselJ@n, xD that are built into Mathematica

have a number of features in common.

† They carry the attribute Listable, so that they are automatically “threaded” over any lists
that appear as arguments.

† They carry the attribute NumericFunction, so that they are assumed to give numerical
values when their arguments are numerical.

† They give exact results in terms of integers, rational numbers and algebraic expressions in
special cases.

344 Core Language

† Except for functions whose arguments are always integers, mathematical functions in
Mathematica can be evaluated to any numerical precision, with any complex numbers as
arguments. If a function is undefined for a particular set of arguments, it is returned in
symbolic form in this case.

† Numerical evaluation leads to results of a precision no higher than can be justified on the
basis of the precision of the arguments. Thus N@Gamma@27 ê 10D, 100D yields a high-preci-
sion result, but N@Gamma@2.7D, 100D cannot.

† When possible, symbolic derivatives, integrals and series expansions of built-in mathemati-
cal functions are evaluated in terms of other built-in functions.

Mathematical Constants

Mathematical constants such as E and Pi that are built into Mathematica have the following

properties:

† They do not have values as such.

† They have numerical values that can be found to any precision.

† They are treated as numeric quantities in NumericQ and elsewhere.

† They carry the attribute Constant, and so are treated as constants in derivatives.

Protection

Mathematica allows you to make assignments that override the standard operation and mean-

ing of built-in Mathematica objects.

To make it difficult to make such assignments by mistake, most built-in Mathematica objects

have the attribute Protected. If you want to make an assignment for a built-in object, you

must first remove this attribute. You can do this by calling the function Unprotect.

There are a few fundamental Mathematica objects to which you absolutely cannot assign your

own values. These objects carry the attribute Locked, as well as Protected. The Locked

attribute prevents you from changing any of the attributes, and thus from removing the

Protected attribute.

Core Language 345

Abbreviated String Patterns

Functions such as StringMatchQ, Names and Remove allow you to give abbreviated string pat-

terns, as well as full string patterns specified by StringExpression. Abbreviated string pat-

terns can contain certain metacharacters, which can stand for sequences of ordinary characters.

* zero or more characters

ü one or more characters excluding uppercase letters

*, etc. literal *, etc.

Metacharacters used in abbreviated string patterns.

Evaluation

The Standard Evaluation Sequence

The following is the sequence of steps that Mathematica follows in evaluating an expression like

h@e1, e2 …D. Every time the expression changes, Mathematica effectively starts the evaluation

sequence over again.

† If the expression is a raw object (e.g., Integer, String, etc.), leave it unchanged.

† Evaluate the head h of the expression.

† Evaluate each element ei of the expression in turn. If h is a symbol with attributes
HoldFirst, HoldRest, HoldAll or HoldAllComplete, then skip evaluation of certain ele-
ments.

† Unless h has attribute HoldAllComplete, strip the outermost of any Unevaluated wrappers
that appear in the ei.

† Unless h has attribute SequenceHold, flatten out all Sequence objects that appear among
the ei.

† If h has attribute Flat, then flatten out all nested expressions with head h.

† If h has attribute Listable, then thread through any ei that are lists.

† If h has attribute Orderless, then sort the ei into order.

† Unless h has attribute HoldAllComplete, use any applicable transformation rules associated
with f that you have defined for objects of the form h@ f@e1, …D, …D.

† Use any built-in transformation rules associated with f for objects of the form
h@ f@e1, …D, …D.

346 Core Language

†

Use any built-in transformation rules associated with f for objects of the form
h@ f@e1, …D, …D.

† Use any applicable transformation rules that you have defined for h@ f@e1, e2, …D, …D or for
h@…D@…D.

† Use any built-in transformation rules for h@e1, e2, …D or for h@…D@…D.

Nonstandard Argument Evaluation

There are a number of built-in Mathematica functions that evaluate their arguments in special

ways. The control structure While is an example. The symbol While has the attribute HoldAll.

As a result, the arguments of While are not evaluated as part of the standard evaluation pro-

cess. Instead, the internal code for While evaluates the arguments in a special way. In the case

of While, the code evaluates the arguments repeatedly, so as to implement a loop.

Control structures arguments evaluated in a sequence determined by control
flow (e.g., CompoundExpression)

Conditionals arguments evaluated only when they correspond to
branches that are taken (e.g., If, Which)

Logical operations arguments evaluated only when they are needed in deter-
mining the logical result (e.g., And, Or)

Iteration functions first argument evaluated for each step in the iteration
(e.g., Do, Sum , Plot)

Tracing functions form never evaluated (e.g., Trace)

Assignments first argument only partially evaluated (e.g., Set, AddTo)

Pure functions function body not evaluated (e.g., Function)

Scoping constructs variable specifications not evaluated (e.g., Module, Block)

Holding functions argument maintained in unevaluated form (e.g., Hold,
HoldPattern)

Built-in functions that evaluate their arguments in special ways.

Logical Operations

In an expression of the form e1 && e2 && e3 the ei are evaluated in order. As soon as any ei is

found to be False, evaluation is stopped, and the result False is returned. This means that you

can use the ei to represent different “branches” in a program, with a particular branch being

evaluated only if certain conditions are met.

The Or function works much like And; it returns True as soon as it finds any argument that is

True. Xor, on the other hand, always evaluates all its arguments.

Core Language 347

†

The Or function works much like And; it returns True as soon as it finds any argument that is

True. Xor, on the other hand, always evaluates all its arguments.

Iteration Functions

An iteration function such as Do@ f, 8i, imin, imax<D is evaluated as follows:

† The limits imin, imax are evaluated.

† The value of the iteration variable i is made local, effectively using Block.

† imin and imax are used to determine the sequence of values to be assigned to the iteration
variable i.

† The iteration variable is successively set to each value, and f is evaluated in each case.

† The local values assigned to i are cleared.

If there are several iteration variables, the same procedure is followed for each variable in turn,

for every value of all the preceding variables.

Unless otherwise specified, f is not evaluated until a specific value has been assigned to i, and

is then evaluated for each value of i chosen. You can use Evaluate@ fD to make f be evaluated

immediately, rather than only after a specific value has been assigned to i.

Assignments

The left-hand sides of assignments are only partially evaluated.

† If the left-hand side is a symbol, no evaluation is performed.

† If the left-hand side is a function without hold attributes, the arguments of the function are
evaluated, but the function itself is not evaluated.

The right-hand side is evaluated for immediate (=), but not for delayed (:=), assignments.

Any subexpression of the form HoldPattern@exprD that appears on the left-hand side of an

assignment is not evaluated. When the subexpression is used for pattern matching, it matches

as though it were expr without the HoldPattern.

348 Core Language

Overriding Nonstandard Argument Evaluation

fA…,Evaluate@exprD,…E evaluates the argument expr, whether or not f has a
HoldFirst, HoldRest, or HoldAll attribute specifying
that it should be held

Overriding holding of arguments.

By using Evaluate, you can get any argument of a function evaluated immediately, even if the

argument would usually be evaluated later under the control of the function. An exception to

this is when the function has the HoldComplete attribute; in this case, the contents of the

function are not modified by the evaluator.

Preventing Evaluation

Mathematica provides various functions which act as “wrappers” to prevent the expressions

they contain from being evaluated.

Hold@exprD treated as Hold@exprD in all cases

HoldComplete@exprD treated as HoldComplete@exprD with upvalues disabled

HoldForm@exprD treated as expr for printing

HoldPattern@exprD treated as expr in rules, definitions and patterns

Unevaluated@exprD treated as expr when arguments are passed to a function

Wrappers that prevent expressions from being evaluated.

Global Control of Evaluation

In the evaluation procedure described so far, two basic kinds of steps are involved:

† Iteration: evaluate a particular expression until it no longer changes.

† Recursion: evaluate subsidiary expressions needed to find the value of a particular
expression.

Iteration leads to evaluation chains in which successive expressions are obtained by the applica-

tion of various transformation rules.

Trace shows evaluation chains as lists, and shows subsidiary evaluations corresponding to

recursion in sublists.

Core Language 349

Trace shows evaluation chains as lists, and shows subsidiary evaluations corresponding to

recursion in sublists.

The expressions associated with the sequence of subsidiary evaluations which lead to an expres-

sion currently being evaluated are given in the list returned by Stack@D.

$RecursionLimit maximum recursion depth

$IterationLimit maximum number of iterations

Global variables controlling the evaluation of expressions.

Aborts

You can ask Mathematica to abort at any point in a computation, either by calling the function

Abort@D, or by typing appropriate interrupt keys.

When asked to abort, Mathematica will terminate the computation as quickly as possible. If the

answer obtained would be incorrect or incomplete, then Mathematica returns $Aborted instead

of giving that answer.

Aborts can be caught using CheckAbort, and can be postponed using AbortProtect.

Patterns and Transformation Rules

Patterns

Patterns stand for classes of expressions. They contain pattern objects which represent sets of

possible expressions.

350 Core Language

_ any expression

x _ any expression, given the name x

x:pattern a pattern, given the name x

pattern?test a pattern that yields True when test is applied to its value

_ h any expression with head h

x _ h any expression with head h, given the name x

__ any sequence of one or more expressions

___ any sequence of zero or more expressions

x __ and x ___ sequences of expressions, given the name x

__ h and ___ h sequences of expressions, each with head h

x __ h and x ___ h sequences of expressions with head h, given the name x

PatternSequence@p1,p2,…D a sequence of patterns

x _:v an expression with default value v

x _ h:v an expression with head h and default value v

x _. an expression with a globally defined default value

Optional@x _ hD an expression that must have head h, and has a globally
defined default value

Except@cD any expression except one that matches c

Except@c,patternD any expression matching pattern, except one that matches c

pattern.. a pattern repeated one or more times

pattern... a pattern repeated zero or more times

Repeated@pattern, specD a pattern repeated according to spec

pattern1 pattern2 … a pattern which matches at least one of the patterni

patternê;cond a pattern for which cond evaluates to True

HoldPattern@patternD a pattern not evaluated

Verbatim@exprD an expression to be matched verbatim

OptionsPattern@D a sequence of options

Longest@patternD the longest sequence consistent with pattern

Shortest@patternD the shortest sequence consistent with pattern

Pattern objects.

When several pattern objects with the same name occur in a single pattern, all the objects

must stand for the same expression. Thus f@x_, x_D can stand for f@2, 2D but not f@2, 3D.

In a pattern object such as _h, the head h can be any expression, but cannot itself be a pattern.

A pattern object such as x__ stands for a sequence of expressions. So, for example, f@x__D can

stand for f@a, b, cD, with x being Sequence@a, b, cD. If you use x, say in the result of a trans-

formation rule, the sequence will be spliced into the function in which x appears. Thus

g@u, x, uD would become g@u, a, b, c, uD.

Core Language 351

A pattern object such as x__ stands for a sequence of expressions. So, for example, f@x__D can

stand for f@a, b, cD, with x being Sequence@a, b, cD. If you use x, say in the result of a trans-

formation rule, the sequence will be spliced into the function in which x appears. Thus

g@u, x, uD would become g@u, a, b, c, uD.

When the pattern objects x_: v and x_. appear as arguments of functions, they represent

arguments which may be omitted. When the argument corresponding to x_: v is omitted, x is

taken to have value v. When the argument corresponding to x_. is omitted, x is taken to have a

default value that is associated with the function in which it appears. You can specify this

default value by making assignments for Default@ fD and so on.

Default@ fD default value for x _. when it appears as any argument of
the function f

Default@ f,nD default value for x _. when it appears as the nth argument
(negative n count from the end)

Default@ f,n,totD default value for the nth argument when there are a total of
tot arguments

Default values.

A pattern like f@x__, y__, z__D can match an expression like f@a, b, c, d, eD with several

different choices of x, y and z. The choices with x and y of minimum length are tried first. In

general, when there are multiple __ or ___ in a single function, the case that is tried first takes

all the __ and ___ to stand for sequences of minimum length, except the last one, which stands

for "the rest" of the arguments.

When x_: v or x_. are present, the case that is tried first is the one in which none of them

correspond to omitted arguments. Cases in which later arguments are dropped are tried next.

The order in which the different cases are tried can be changed using Shortest and Longest.

Orderless f @x, yD and f @y, xD are equivalent

Flat f @ f @xD, yD and f @x, yD are equivalent

OneIdentity f @xD and x are equivalent

Attributes used in matching patterns.

Pattern objects like x_ can represent any sequence of arguments in a function f with attribute

Flat. The value of x in this case is f applied to the sequence of arguments. If f has the

attribute OneIdentity, then e is used instead of f @eD when x corresponds to a sequence of just

one argument.

352 Core Language

Pattern objects like x_ can represent any sequence of arguments in a function f with attribute

Flat. The value of x in this case is f applied to the sequence of arguments. If f has the

attribute OneIdentity, then e is used instead of f @eD when x corresponds to a sequence of just

one argument.

Assignments

lhs=rhs immediate assignment: rhs is evaluated at the time of
assignment

lhs:=rhs delayed assignment: rhs is evaluated when the value of lhs
is requested

The two basic types of assignment in Mathematica.

Assignments in Mathematica specify transformation rules for expressions. Every assignment

that you make must be associated with a particular Mathematica symbol.

f@argsD=rhs assignment is associated with f (downvalue)

tê: f@argsD=rhs assignment is associated with t (upvalue)

f@g@argsDD^=rhs assignment is associated with g (upvalue)

Assignments associated with different symbols.

In the case of an assignment like f@argsD = rhs, Mathematica looks at f , then the head of f , then

the head of that, and so on, until it finds a symbol with which to associate the assignment.

When you make an assignment like lhs ^= rhs, Mathematica will set up transformation rules

associated with each distinct symbol that occurs either as an argument of lhs, or as the head of

an argument of lhs.

The transformation rules associated with a particular symbol s are always stored in a definite

order, and are tested in that order when they are used. Each time you make an assignment,

the corresponding transformation rule is inserted at the end of the list of transformation rules

associated with s, except in the following cases:

Core Language 353

† The left-hand side of the transformation rule is identical to a transformation rule that has
already been stored, and any ê; conditions on the right-hand side are also identical. In this
case, the new transformation rule is inserted in place of the old one.

† Mathematica determines that the new transformation rule is more specific than a rule
already present, and would never be used if it were placed after this rule. In this case, the
new rule is placed before the old one. Note that in many cases it is not possible to deter-
mine whether one rule is more specific than another; in such cases, the new rule is always
inserted at the end.

Types of Values

AttributesA f E attributes of f

DefaultValuesA f E default values for arguments of f

DownValuesA f E values for f@…D, f@…D@…D, etc.

FormatValuesA f E print forms associated with f

MessagesA f E messages associated with f

NValuesA f E numerical values associated with f

OptionsA f E defaults for options associated with f

OwnValuesA f E values for f itself

UpValuesA f E values for …@…, f@…D, …D

Types of values associated with symbols.

Clearing and Removing Objects

expr=. clear a value defined for expr

fê:expr=. clear a value associated with f defined for expr

Clear@s1,s2,…D clear all values for the symbols si, except for attributes,
messages and defaults

ClearAll@s1,s2,…D clear all values for the si, including attributes, messages
and defaults

Remove@s1,s2,…D clear all values, and then remove the names of the si

Ways to clear and remove objects.

In Clear, ClearAll and Remove, each argument can be either a symbol or the name of a

symbol as a string. String arguments can contain the metacharacters * and @ to specify action

on all symbols whose names match the pattern.

354 Core Language

In Clear, ClearAll and Remove, each argument can be either a symbol or the name of a

symbol as a string. String arguments can contain the metacharacters * and @ to specify action

on all symbols whose names match the pattern.

Clear, ClearAll and Remove do nothing to symbols with the attribute Protected.

Transformation Rules

lhs->rhs immediate rule: rhs is evaluated when the rule is first given

lhs:>rhs delayed rule: rhs is evaluated when the rule is used

The two basic types of transformation rules in Mathematica.

Replacements for pattern variables that appear in transformation rules are effectively done

using ReplaceAll (the ê. operator).

Files and Streams

File Names

name.m Mathematica language source file

name.nb Mathematica notebook file

name.ma Mathematica notebook file from before Version 3

name.mx Mathematica expression dump

name.exe MathLink executable program

name.tm MathLink template file

name.ml MathLink stream file

Conventions for file names.

Most files used by Mathematica are completely system independent. .mx and .exe files are

however system dependent. For these files, there is a convention that bundles of versions for

different computer systems have names with forms such as name ê $SystemID ê name.

Core Language 355

In general, when you refer to a file, Mathematica tries to resolve its name as follows:

† If the name starts with !, Mathematica treats the remainder of the name as an external
command, and uses a pipe to this command.

† If the name contains metacharacters used by your operating system, then Mathematica
passes the name directly to the operating system for interpretation.

† Unless the file is to be used for input, no further processing on the name is done.

† Unless the name given is an absolute file name under your operating system, Mathematica
will search each of the directories specified in the list $Path.

† If what is found is a directory rather than a file, then Mathematica will look for a file
name ê $SystemID ê name.

For names of the form name` the following further translations are done in Get and related

functions:

† A file name.mx is used if it exists.

† If name.mx is a directory, then name.mx ê $SystemID ê name.mx is used if it exists.

† A file name.m is used if it exists.

† If name is a directory, then the file name ê init.m is used if it exists.

In Install, name` is taken to refer to a file or directory named name.exe.

 Core Language356

Streams

InputStream@"name",nD input from a file or pipe

OutputStream@"name",nD output to a file or pipe

Types of streams.

option name default value
CharacterEncoding Automatic encoding to use for special characters
BinaryFormat False whether to treat the file as being in binary

format
FormatType InputForm default format for expressions
PageWidth 78 number of characters per line
TotalWidth Infinity maximum number of characters in a single

expression

Options for output streams.

You can test options for streams using Options, and reset them using SetOptions.

Core Language 357

