
10 Front end programming

In this chapter we extend the programming concepts we have covered thus far to the
objects  that  comprise  the  user  interface,  or  front  end.  Because  the  objects  that  the
Mathematica  user  interacts  with  are  themselves  Mathematica  expressions,  all  of  the
tools that you use to do computations can also be used to create, manipulate, and alter
cells and notebooks themselves. We will first look at the underlying structure of these
objects and then discuss ways of manipulating them directly from within Mathematica.

10.1 Introduction
Up until  this  point,  we have been primarily  concerned with learning about  programming
constructs  and styles so that we can write programs to manipulate data or solve problems
from  science,  engineering, or  mathematics.  We have  taken  for  granted  that  the  space  in
which we do our experimenting, prototyping,  and documenting has been the Mathematica
notebook, an interface that has some similarities to a word processor document.

It  is  not  uncommon  now  to  add  interactive  elements  to  your  documents  to  make
them more useful for yourself or the intended reader of your documents. With programs,
documentation,  and  papers  all  being  created  and  used  in  electronic  format,  Mathematica
provides a seamless and well-integrated interface to these elements.

Another  tool  that  is  useful,  especially  for  educators,  are  buttons  that  allow  you  to
hide your program code behind a familiar and easy-to-use interface element – the button.
The  user  clicks  on  a  button  and  an  action  happens  that  is  determined by  the  underlying
code.  For example, you might want to have calculus students quickly plot Taylor polyno-
mial  approximations  to  a  function  together  with  the  original  function  but  do  not  want
them  to  spend  time  learning  the  syntax  of  such  commands  in  Mathematica.  You  could
easily program an interface that would only require them to fill in a few parameters before
clicking a button to produce the desired plot.

In this chapter we will discuss the structure of cell and notebook expressions, look at
a  few  basic  functions  for  manipulating  these  expressions,  and  then  create  several  simple
examples  that  give  a  flavor  of  the  kind  of  things  that  can  be  done  with  front  end
programming.



Before we begin we should mention that  this  chapter is  not intended as  a complete
discussion  of  front  end  programming.  An  entire  book  could  certainly  be  written  on  this
topic  alone.  This  book  is  intended  to  give  you  an  introduction  to  the  many  aspects  of
programming  with  Mathematica  and  front  end  programming  is  certainly  an  appropriate
topic for that introduction. But there are several areas that cannot be included here, either
because  of  space  limitations  or  because  they  do  not  fit  under  the  introductory  nature  of
this book. These topics include front end options and front end tokens. An understanding
of each of these topics is quite important for more advanced front end programming. The
interested reader can delve further into this subject by looking in the Front End category
of  the  Help  Browser  or  by  searching  the  Mathematica  Information  Center  online  at
library.wolfram.com/infocenter.

10.2 The structure of cells and notebooks
We have spent a lot of time in this book focusing on the structure of Mathematica  expres-
sions. In Chapter 2 we indicated that Mathematica expressions are of the form h[e1,e2,…]

where h is the head of the expression and the ei  are the elements which may themselves be
Mathematica  expressions.  We even went so far  as  to say  that  everything in Mathematica  is
an expression. In this  section we will  learn that  this  statement  extends to  elements of  the
front end, specifically to notebooks and cells. 

Notebook expressions

Notebooks are ASCII files, meaning that you can open them in a text editor and view their
contents directly. If you were to do that, you would see that the underlying expression is a
Mathematica function called a Notebook. The notebook would look like this:

Notebook[{

    Cell[string,style,options],
    Cell[string,style,options],
    …
    },

  options]

In other words, the Notebook  is a function whose first argument is a list of one or
more  Cell  objects,  followed  by  some  options.  The  Mathematica  kernel  does  not  do

312 An Introduction to Programming with Mathematica



anything  with  this  practically.  It  is  the  Mathematica  front  end  that  knows  how to  render
this expression as the familiar notebook.

For example, here is a very simple notebook that you could write in a text editor (of
course there is no reason to do that). 

Notebook[{
    Cell["Demo notebook", "Section"],
    Cell["This is a text cell.","Text"],
    Cell["1+2+3", "Input"]
    }]

The Mathematica front end renders this expression in the familiar manner, a window.

Let  us  create  the  notebook  from scratch  using  a  kernel  command,  NotebookPut.
NotebookPut[expr]  will  create  a  notebook  corresponding  to  expr  in  the front  end and
make it the currently selected notebook.

In[1]:= nb = NotebookPut@
Notebook@8
Cell@"Demo notebook", "Section"D,
Cell@"This is a text cell", "Text"D,
Cell@"1+2+3", "Input"D
<D

D
Out[1]= NotebookObject@�Untitled−1�D

10 Front end programming 313



Here is the notebook as viewed in the front end.

There is actually quite a lot going on behind the scenes here in terms of the interac-
tion between the kernel and the front end. As stated in Chapter 1, the kernel and the front
end  are  two  separate  programs  that  communicate  with  each  other  through  a  protocol
called MathLink. For purposes of efficiency, MathLink itself does not store the notebook in
memory  but  instead  refers  to  it  by  means  of  a  handle.  These  handles  are  called  notebook
objects  and are given as NotebookObject[fe,id],  where fe is  an object that refers to the
entire  front  end and  id  is  an  integer  that  is  a  unique  identifier  for  that  notebook.  In  the
example  above,  looking  at  the  InputForm  displays  this  information  stored  with  the
notebook object.

In[2]:= InputForm@nbD
Out[2]//InputForm=

NotebookObject[FrontEndObject[LinkObject["3v8_shm", 
   1, 1]], 28]

Since we have assigned a  symbol,  nb,  to  this  object,  we can  refer to  it  through this
symbol.  NotebookGet  gets  the  expression  corresponding  to  this  notebook  and  reads  it
into the kernel. You should think of it as analogous to Get for packages.

In[3]:= NotebookGet@nbD
Out[3]= Notebook@8Cell@CellGroupData@8Cell@Demo notebook, SectionD, Cell@

This is a text cell, TextD, Cell@1+2+3, InputD<, OpenDD<,
FrontEndVersion → 5.0 for Microsoft Windows,

ScreenRectangle → 880., 1024.<, 80., 681.<<D
Notice that the front end has added two options to this notebook: FrontEndVer�

sion and ScreenRectangle. It has also added some grouping information for the cells.

314 An Introduction to Programming with Mathematica



These are default behaviors of the front end and may vary from one front end to another.
They are also user-settable.

Manipulating notebooks

NotebookPut  and  NotebookGet  are  general  functions  for  dealing  with  entire  note-
books  at  once.  There  are  a  host  of  additional  functions  for  manipulating  parts  of  note-
books.  You  might  first  think  that  we  can  simply  use  functions  like  Part  to  extract  a
particular part of a notebook we are interested in. There are several reasons why this is not
generally  practical.  First,  because  a  notebook  can  contain  many,  many  cells,  it  is  often
quite difficult to determine precisely which part you want to work on. Secondly, since the
notebook resides in the front end, not the kernel, it is often not very efficient to manipu-
late the notebook directly by the kernel (although, if the notebook is small enough, this is
certainly possible).

As  it  turns  out,  there  is  a  way  around  these  issues  and  that  is  through  something
referred  to  as  the  “current  selection,”  which  is  essentially  a  reference  to  the  notebook
object.  You  could  then  think  of  the  notebook  manipulation  functions  as  operating  on
streams.

To see a list of the open notebooks, use Notebooks[].

In[4]:= Notebooks@D
Out[4]= 8NotebookObject@�Untitled−1�D,

NotebookObject@�10FEProgramming.nb�D,
NotebookObject@�Messages�D<

Again, using InputForm, you can see the actual handles to each of the notebooks.

In[5]:= Notebooks@D êê InputForm
Out[5]//InputForm=

{NotebookObject[FrontEndObject[LinkObject["3v8_shm", 
    1, 1]], 28], NotebookObject[
  FrontEndObject[LinkObject["3v8_shm", 1, 1]], 27], 
 NotebookObject[FrontEndObject[LinkObject["3v8_shm", 
    1, 1]], 7]}

Let  us  walk  through  some  of  the  most  common  notebook  operations  you  should
learn about. The first is NotebookCreate. As its name implies, this function will create a
new untitled notebook in the front end. We assign nb to be the handle to this notebook.

10 Front end programming 315



In[6]:= nb = NotebookCreate@D
Out[6]= NotebookObject@�Untitled−2�D

Now let us  write to the notebook.  NotebookWrite  takes  two arguments:  the first
argument  is  the notebook  object  that  we are  writing to;  the second argument is  what  we
are writing. We will create a few different examples below.

A Cell  is  an expression with two arguments. The first  argument is  the contents of
the cell; the second argument is the cell style, a listing of which is under the Format@Style

menu in the front end.

In[7]:= NotebookWrite@nb, Cell@"Here is some text.", "Text"DD

316 An Introduction to Programming with Mathematica



Adding options to Cell  allows us to change some of the properties of the cell. For
example, here are several of the options that you can add.

In[8]:= Take@Options@CellD, 810, 15<D
Out[8]= 8Deletable → True, PageWidth → WindowWidth, Visible → True,

CellFrame → False, CellDingbat → None, ShowCellBracket → True<
In[9]:= NotebookWrite@nb,

Cell@"Here is some more text.", "Text",

CellFrame → True, CellDingbat → ÃDD

If we simply give a string as the second argument to NotebookWrite, Mathematica
will use the default cell type, Input.

In[10]:= NotebookWrite@nb, "Here is some text."D

10 Front end programming 317



Now suppose we wanted to insert an input cell with the expression 2100 in it. 

In[11]:= 2100

Out[11]= 1267650600228229401496703205376

If you were to look at the underlying expression of the above cell (under the Format

menu, choose Show Expression), it would look like this:

Cell[BoxData[
    SuperscriptBox["2", "100"]], "Input"]

We will talk about BoxData in just a moment, but we should be able to insert a cell
like  this  directly  into  our  notebook  object.  Before  we  do  this,  notice  that  the  insertion
point has been left inside the Input cell after the last NotebookWrite. To move the cell
insertion bar after the current cell, we will use SelectionMove  which takes  three argu-
ments: the notebook we are operating on, the direction to move, and the unit by which we
should move. The direction can be any of Next, Previous, After, Before, All. The
units  are things  like Word,  Cell,  CellGroup,  Notebook  (see the Help Browser under
SelectionMove for a complete description).

So, in our example, we want to move the selection just after the present cell.

In[12]:= SelectionMove@nb, After, CellD

318 An Introduction to Programming with Mathematica



Now we can write the input cell to the notebook.

In[13]:= NotebookWrite@nb,
Cell@BoxData@SuperscriptBox@"2", "100"DD, "Input"DD

Notice  that  at  the  end of  each NotebookWrite,  the  cell  insertion  bar  was  placed
just after the cell that was written, except in the case of writing input cells. Oftentimes, you
will need to move around within the notebook or select a particular cell (or other expres-
sion) and perform some operation on it. For example, suppose we would like to select the
previous cell (the one containing the 2100)  in nb  and evaluate it.  We can do this with the
SelectionMove function.

In[14]:= SelectionMove@nb, Previous, CellD

10 Front end programming 319



To evaluate the currently selected expression, use SelectionEvaluate. 

In[15]:= SelectionEvaluate@nbD

Let us put a few of these pieces together and create a function that will evaluate the
next input cell. In Section 10.5 we will turn this code into a button. 

For  this  example  we  will  operate  in  the  current  notebook.  We  can  refer  to  the
notebook  in  which  these  commands  are  being  evaluated  by  EvaluationNotebook[].
First we select the current unit; that is, the cell in which the following code lives. 

SelectionMove[EvaluationNotebook[],All,Cell]

Then we move the selection insertion to the next cell (at the moment, this code will only
work if it is immediately followed by an input cell).

SelectionMove[EvaluationNotebook[],Next,Cell]

Finally, we evaluate the currently selected input.

SelectionEvaluate[EvaluationNotebook[]]

320 An Introduction to Programming with Mathematica



Here we bundle this code up into the function EvaluateNext.

In[16]:= EvaluateNext := H
SelectionMove@EvaluationNotebook@D, All, CellD;
SelectionMove@EvaluationNotebook@D, Next, CellD;
SelectionEvaluate@EvaluationNotebook@DD;
L

Evaluating the cell containing EvaluateNext causes the immediately following cell to be
evaluated.

In[17]:= EvaluateNext

In[18]:= 2 + 2

Out[18]= 4

Exercises

1. Using NotebookPut, create a notebook with one Title cell, one Section cell, one 
Text cell and two Input cells.

2. Use NotebookGet to read the notebook you created in Exercise 1 into the kernel. 
Then programmatically change the Section cells to Subsection cells either using 
Cases or an appropriate rule.

3. Take either of the notebooks you created in the above exercises and use Selection�
Move and SelectionEvaluate to evaluate all of the Input cells in the notebook.

10.3 Cell data types
The cells in your notebooks often contain different kinds of data. Sometimes they will only
contain text. Other times they may contain formatted mathematical expressions, or possi-
bly a graphical object. Since the Cell data object has to handle each one of these kinds of
data, there is a mechanism that enables the front end to deal with these objects in a consis-
tent manner – cell data types. We will look at a few of the most important and useful cell
data types in the next few sections.

10 Front end programming 321



TextData

Let us first look at a text cell that contains no special formatting. 

Cell["Here is some text.", "Text"]

The formatted version of this cell looks like this:

Here is some text.

Adding some formatting to this cell causes a TextData wrapper to be added.

Cell[TextData[{
  "Here is some ", StyleBox["italicized", FontSlant->"Italic"],
  " text."
}], "Text"]

The formatted version of this cell looks like this:

Here is some italicized text.

Cells  with  TextData  can  contain  a  number  of  other  data  objects  embedded  in  the  cell.
For example, here is a text cell that contains a ValueBox.  ValueBoxes provide a means
of embedding evaluations inside of your text cells.

Cell[TextData[{
  "The current version is: ", ValueBox["$Version"]
}], "Text"]

The formatted version of this cell looks like this:

The current version is: 5.1 for Microsoft Windows

A  listing  of  all  of  the  possible  ValueBox  names  that  can  be  used  can  be  found
choosing  Create  Value  Display  Object  from  the  Input  menu.  Looking  under  the  list  of
global  variables  that  can  be  used  as  the  argument  to  ValueBox,  you  will  see  Date,  for
example.

322 An Introduction to Programming with Mathematica



Cell[TextData[{
  "The current date is: ",
  ValueBox["DateLong"]
}], "Text"]

The formatted version of this cell looks like this:

The current date is: Sunday, September 5, 2004

BoxData

Many  of  your  cells  in  Mathematica  will  contain  formatted  mathematical  expressions.
Whenever  you  work  with  these  two-dimensional  typeset  objects,  a  different  editor  is
invoked, called the math editor. This is indicated in the front end by a pink background in
Text  cell  style  on  the  typeset  expression  (you  can  enter  a  math  typeset  expression  by
pressing Control-9). This is also indicated in the underlying cell structure by means of the
BoxData  wrapper.  For  example,  consider  the  following  cell  containing  a  superscript
expression.

Cell[BoxData[
    RowBox[{
      SuperscriptBox["x", "2"], "+", "y"}]], "Input"]

The formatted version of this cell looks like this:

x2 + y

There  are  several  things  to  note  here.  First,  we see  that  Mathematica  has  automati-
cally placed the elements x2, + and y all in something called a RowBox. This is how Mathe-
matica represents box objects or a series of strings.

Secondly,  the  x2  object  is  represented  internally  as  another  box  object,  specifically
SuperscriptBox[x,2].  You  can  use  DisplayForm  to  print  box  expressions  in  an
explicit two-dimensional form.

In[1]:= SuperscriptBox@x, 2D êê DisplayForm
Out[1]//DisplayForm=

x2

10 Front end programming 323



There are many different box objects in Mathematica. Below are just a few commonly
used box objects.

Cell[BoxData[
    SqrtBox["2"]], "Input"]

The formatted version of this cell looks like this:
è!!!!
2

Cell[BoxData[
    FractionBox["x", "y"]], "Input"]

The formatted version of this cell looks like this:
x
����
y

Cell[BoxData[
    RowBox[{
      SubsuperscriptBox["Ÿ", "a", "b"], 
      RowBox[{"x", " ", 
        RowBox[{"�", "x"}]
      }]
    }]
  ], "Input"]

The formatted version of this cell looks like this:

‡
a

b

x �x

GraphicsData

Another type of data wrapper that you will encounter is GraphicsData, used to indicate
a  graphical  object  in  the  cell.  For  example,  creating  a  graphics  object  in  the  front  end
displays a plot.

324 An Introduction to Programming with Mathematica



In[2]:= Plot@Sin@xD, 8x, 0, 2 π<D;

1 2 3 4 5 6

-1

-0.5

0.5

1

If you unformat the graphics cell, the first few lines would look like the following:

Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .61803 
MathPictureStart
...

Normally  you  will  not  create  graphics  objects  from  scratch  so  it  would  seem  as  if
there is  not too much you could do with GraphicsData  objects manually.  But suppose
you were interested in displaying your graphics to a notebook other than the one in which
you evaluate the graphics input. For example, we could use NotebookPut  to write out a
new notebook containing a graphics cell object as follows:

In[3]:= MyDisplayChannel@gr_D :=

NotebookPut@Notebook@8Cell@GraphicsData@
"PostScript", DisplayString@grDD, "Graphics"D<DD

This  is  now used  by  giving  MyDisplayChannel  as  the  value  of  DisplayFunc�
tion for any plot your create.

In[4]:= Plot3D@Sin@x yD, 8x, 0, 2 π<, 8y, 0, 2 π<,
DisplayFunction → MyDisplayChannelD

Out[4]= NotebookObject@�Untitled−5�D
Evaluating the above expression will cause a new notebook window to be created in

your  front  end  containing  just  the  output  of  the  Plot3D  command,  a  graphic  of  the
surface sinHx yL.

10 Front end programming 325



Exercises

1. Using NotebookPut, create a notebook with several Text cells each containing a 
ValueBox such as $Version, $OperatingSystem, and $UserName.

2. Using NotebookPut, create a notebook with an Input cell containing the integral 

Ÿ 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ1-x3  „ x. Then evaluate the integral using SelectionMove and SelectionEval�

uate.

10.4 GridBoxes

ShowTable

Whenever  you  create  a  two-dimensional  expression  consisting  of  some  number  of  rows
and columns, Mathematica represents that expression as a GridBox object. For example, if
you used the BasicInput palette to create a 2ä2 matrix, it would be represented as follows:

Cell[BoxData[GridBox[{
        {"a", "b"},
        {"c", "d"}
        }]], "Input"]

The formatted version of this cell looks like this:

a b
c d

Looking at the GridBox  object, you should see that it is identical (structurally) to a
matrix in Mathematica, which is really just a list of lists. 

In[1]:= FullFormA a b
c d

E
Out[1]//FullForm=

List@List@a, bD, List@c, dDD
In[2]:= 88a, b<, 8c, d<< êê MatrixForm

Out[2]//MatrixForm=

J a b
c d

N

326 An Introduction to Programming with Mathematica



Using GridBoxes, let us create a function for displaying arrays of data in a format-
ted table. First we create some sample data.

In[3]:= data = 98"α", "β", "γ"<,
81.234, 2.3451, 3.4567801<, 9SqrtBox@"π"D, "

x
����
y
", "ΓHnL"==;

We can put this data into a GridBox and immediately print it in a two-dimensional
grid using DisplayForm.

In[4]:= GridBox@dataD êê DisplayForm
Out[4]//DisplayForm=

α β γ

1.234 2.3451 3.4567801è!!!!
π

x
����
y

Γ HnL
GridBox can be given several options that control its appearance. 

In[5]:= Options@GridBoxD
Out[5]= 8GridBaseline → Axis, RowSpacings → 1., ColumnSpacings → 0.8,

ColumnWidths → Automatic, RowAlignments → Baseline,

ColumnAlignments → 8Center<, GridFrame → False,

GridFrameMargins → 880.4, 0.4<, 80.5, 0.5<<,
RowLines → False, ColumnLines → False, RowMinHeight → 1.,

RowsEqual → False, ColumnsEqual → False,

AutoDelete → True, AllowScriptLevelChange→ True,

MultilineFunction → None, GridDefaultElement 
 �<
Let us add a frame, make the margins around each grid element a bit larger than the

default, and add some lines between the rows and columns. Usually you will set the values
for GridFrame,  RowLines,  and ColumnLines  to either True  or False  to  enable or
disable  these  elements.  Giving  an  explicit  number  as  the  value  of  each  of  these  options
gives the thickness of the line that is drawn for that object.

In[6]:= GridBox@data,
GridFrame → 1.2, GridFrameMargins → 881, 1<, 81, 1<<,
RowLines → 1, ColumnLines → 1D êê DisplayForm

Out[6]//DisplayForm=

α β γ

1.234 2.3451 3.4567801è!!!!
π

x
����
y

Γ HnL
Now we can bundle up this code and turn all of it into a function, ShowTable. If we

wish, we can add some formatting, but to do so we have to wrap the GridBox in a Style�

10 Front end programming 327



Box.  FontSize,  FontFamily,  Background,  and  SingleLetterItalics  are  all
options to StyleBox. 

In[7]:= ShowTable@data_D := DisplayForm@StyleBox@
GridBox@data,
GridFrame → 1.2, GridFrameMargins → 881, 1<, 81, 1<<,
RowLines → 1, ColumnLines → 1D,

FontFamily → "Times",

Background → GrayLevel@.8D, SingleLetterItalics→ True

DD
In[8]:= ShowTable@dataD

Out[8]//DisplayForm=

a b g

1.234 2.3451 3.4567801
è!!!!

p xÅÅÅÅÅy G HnL

Sometimes  the  data  you  work  with  will  need  to  be  manipulated  in  some  way  to
display it. The following is another example of the use of ShowTable, but one for which
we  first  need  to  think  about  the  dimensions  of  our  data.  Consider  displaying  a  table  of
reciprocals of rep units, numbers consisting entirely of 1s. 

In[9]:= RepUnit@n_?PositiveD := Nest@10 #1 + 1 &, 1, n − 1D

In[10]:= expr = MapA 1
������������������������������
RepUnit@#D &, Range@12DE

Out[10]= 91, 1
�������
11

,
1

����������
111

,
1

�������������
1111

,
1

����������������
11111

,
1

�������������������
111111

,
1

����������������������
1111111

,
1

������������������������
11111111

,

1
���������������������������
111111111

,
1

������������������������������
1111111111

,
1

���������������������������������
11111111111

,
1

������������������������������������
111111111111

=
Since the above output  contains  12 expressions,  we need to  explicitly partition  it  to

be rectangular. First we partition the data into rows of three elements (columns) each.

In[11]:= ShowTable@Partition@expr, 3DD
Out[11]//DisplayForm=

1 1ÅÅÅÅÅÅÅ11
1ÅÅÅÅÅÅÅÅÅÅ111

1ÅÅÅÅÅÅÅÅÅÅÅÅ1111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1111111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111111

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1111111111

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111111111

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111111111

328 An Introduction to Programming with Mathematica



Here we partition the data into rows of four elements each.

In[12]:= ShowTable@Partition@expr, 4DD
Out[12]//DisplayForm=

1 1
ÅÅÅÅÅÅÅ11

1
ÅÅÅÅÅÅÅÅÅÅ111

1
ÅÅÅÅÅÅÅÅÅÅÅÅ1111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1111111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1111111111

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ11111111111
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ111111111111

In the above tables, we are manually partitioning the rows and columns into sublists
that  will be rectangular when they are put into the table. It  would be good programming
style to take that task from the user and do it automatically. We leave this as an exercise.

TriangleForm

In  this  section  we  will  use  GridBox  to  develop  a  function  for  displaying  an  array  in  a
triangular  format.  Such  a  function  is  quite  useful  for  displaying  the  elements  of  Pascal’s
triangle in the familiar triangular array. 

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

First let us create a function for generating the first n rows of Pascal’s triangle.

In[13]:= PascalTable@rows_D :=

Table@Binomial@n, mD, 8n, 0, rows<, 8m, 0, n<D
Here are the first four rows (including the 0th row).

In[14]:= expr = PascalTable@3D
Out[14]= 881<, 81, 1<, 81, 2, 1<, 81, 3, 3, 1<<

10 Front end programming 329



If  we  put  empty  strings  around  the  elements  in  the  appropriate  places  we  can  see
what the grid should look like.

In[15]:= GridBox@8
8"", "", 1, "", ""<,
8"", 1, "", 1, ""<,
81, "", 2, "", 1<
<D êê DisplayForm

Out[15]//DisplayForm=
1

1 1
1 2 1

So we need to develop a function to insert these empty strings between each element
in each row and we also need to pad out each row to the length of the longest row in the
entire table. First we write the function to pad each row.

In[16]:= pad@lis_D := PadLeft@lis, 2 Length@exprD − 1,

"", Round@H2 Length@exprD − 1 − Length@lisDLê2DD
In[17]:= pad@expr@@1DDD

Out[17]= 8, , , 1, , , <
In[18]:= pad@expr@@2DDD

Out[18]= 8, , , 1, 1, , <
Now to insert the appropriate number of empty strings between elements, let us first

manually insert space in a few rows.

In[19]:= Insert@expr@@2DD, "", 882<<D
Out[19]= 81, , 1<
In[20]:= Insert@expr@@3DD, "", 882<, 83<<D

Out[20]= 81, , 2, , 1<
In[21]:= Insert@expr@@4DD, "", 882<, 83<, 84<<D

Out[21]= 81, , 3, , 3, , 1<
Here is the function to create the third argument for Insert.

In[22]:= Map@List, Rest@Range@Length@81, 3, 3, 1<DDDD
Out[22]= 882<, 83<, 84<<

330 An Introduction to Programming with Mathematica



Here  is  the  function  to  add  the  appropriate  amount  of  space  between  elements  in
each row.

In[23]:= addspace@lis_D :=

Insert@lis, "", Map@List, Rest@Range@Length@lisDDDDD
In[24]:= addspace@expr@@3DDD

Out[24]= 81, , 2, , 1<
In[25]:= addspace@expr@@1DDD

Out[25]= 81<
This maps the addspace function across each row of the Pascal table.

In[26]:= expr = Map@addspace, PascalTable@3DD
Out[26]= 881<, 81, , 1<, 81, , 2, , 1<, 81, , 3, , 3, , 1<<
Then we pad out each row using our pad function developed above.

In[27]:= Map@pad, exprD
Out[27]= 88, , , 1, , , <, 8, , 1, , 1, , <,8, 1, , 2, , 1, <, 81, , 3, , 3, , 1<<
Finally we put this expression into a GridBox and display it.

In[28]:= GridBox@%D êê DisplayForm
Out[28]//DisplayForm=

1
1 1

1 2 1

1 3 3 1

Here is the TriangleForm function then consisting of the above pieces.

In[29]:= TriangleForm@lis_ListD :=

ModuleA8addspace, expr, len = Length@lisD<,
addspace@l_D :=

Insert@l, "", Map@List, Rest@Range@Length@lDDDDD;
expr = Map@addspace, lisD;
DisplayFormAGridBoxAMapAPadLeftA#, 2 len − 1,

"", RoundA 1����
2
H2 len − 1 − Length@#DLEE &, exprEE

E
E

10 Front end programming 331



In[30]:= PascalTable@5D êê TriangleForm
Out[30]//DisplayForm=

1
1 1

1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

Exercises

1. Modify ShowTable so that it can display a user-specified heading in the first row of 
the grid. Include formatting to set the style of the strings in the heading to be differ-
ent than the rest of the elements displayed by ShowTable.

2. Modify ShowTable so that it automatically partitions the list it is passed to be 
rectangular, with the number of rows and columns as close to each other as possible.

3. Create a function TruthTable[expr,vars] that displays the logical expression expr 
together with all the possible truth values for the variables in the list vars. For exam-
ple, here is the truth table for the expression HA fi BL fl C.

In[1]:= TruthTable@Implies@A »» B, CD, 8A, B, C<D
Out[1]//DisplayForm=

A B C HA fi BL ⇒ C

T T T T
T T F F
T F T T
T F F F
F T T T

F T F F
F F T T
F F F T

You will first need to create a list of all possible truth value assignments for the 
variables, A, B, C in this case. One approach would be to use Distribute. So, 
essentially, this is the left-hand side, or first three columns of the above table (not 
counting the first row containing the table headings).

332 An Introduction to Programming with Mathematica



In[2]:= vars = 8A, B, C<;
len = Length@varsD; ins =

Distribute@Table@8True, False<, 8len<D, List, List, ListD
Out[3]= 88True, True, True<, 8True, True, False<, 8True, False, True<,8True, False, False<, 8False, True, True<, 8False, True, False<,8False, False, True<, 8False, False, False<<

You can then create a list of rules associating each of these triples of truth values with 
a triple of variables.

In[4]:= Map@Thread@vars → #1D &, insD
Out[4]= 88A → True, B → True, C → True<,8A → True, B → True, C → False<, 8A → True, B → False, C → True<,8A → True, B → False, C → False<, 8A → False, B → True, C → True<,8A → False, B → True, C → False<, 8A → False, B → False, C → True<,8A → False, B → False, C → False<<

Substituting these rules into the logical expression produces a truth value for each of 
the above rows.

In[5]:= Implies@A »» B, CD ê. Map@Thread@vars → #1D &, insD
Out[5]= 8True, False, True, False, True, False, True, True<

Your task is to put all these pieces together in a GridBox with appropriate 
formatting.

10.5 Buttons
Buttons are very user-friendly objects whose functionality is familiar to any computer user.
From the programmer’s point of view, they allow you to hide your code behind a graphical
element, the button. Instead of writing a function and evaluating it by pressing Shift-Enter
from the keyboard, you pass the mouse cursor over the button and simply click. Whatever
code is hidden underneath the button is then evaluated. 

In  this  section  we  will  first  look  at  the  structure  of  ButtonBoxes  and  then  create
some examples to demonstrate the variety of tasks that can be accomplished with buttons.

10 Front end programming 333



Making buttons the easy way

The  simplest  way  to  create  buttons  is  to  select  an  expression  in  your  Mathematica  note-
book,  choose  Create  Button  from  the  Input  menu,  and  then  activate  your  button.  Let  us
walk through these steps to create a button that pastes an expression into your notebook.

Suppose  you  were  writing  a  paper  in  which  you  are  discussing  sequences  and  you
need  to  use  an  expression  such  as  the  following  repeatedly  in  your  notebook:
8a1, a2, …, an<. To create a button that would allow you to paste this expression into your
notebook  by simply clicking that button,  we first  write down the expression we will work
with below in a regular input cell.

8a1, a2, …, an<
Now select  the  entire expression  and choose  Create  Button  @  Paste  from the Input

menu. 

8a1, a2, …, an<
Finally, to activate the button so that you can click it to have an action occur, select

the cell in which the button occurs and then choose Cell Properties @ Cell Active from the
Cell menu.

8a1, a2, …, an<
Clicking  the  above  button  will  paste  the  following  at  the  insertion  point:

8a1, a2, …, an<.
If you wished, you could create a free-standing palette from this button by choosing

Generate Palette from Selection from the File menu.
Although the above procedure for creating buttons is quite straightforward, it is only

convenient for fairly simple buttons. For more complicated buttons you will find that you
need a good understanding of the structure of buttons and the various options that control
their actions and display. We turn to those topics in the next few sections.

The structure of buttons

Buttons are created with the ButtonBox function in Mathematica. ButtonBox takes one
argument and by default, that argument is pasted at the current selection point.

In  the examples  that  follow, we will use DisplayForm  to  display  the button as  an
interactive  element.  If  you  were  to  unformat  your  button  (Show  Expression  from  the
Format menu), you would see essentially all that precedes the DisplayForm below.

334 An Introduction to Programming with Mathematica



In[1]:= ButtonBox@"some text", Active → TrueD êê DisplayForm
Out[1]//DisplayForm=

some text

Note  that  we  have  added  the  option  Active→True.  This  makes  the  resulting
button  uneditable,  one that is  clickable. You will need to add this  option to all  your but-
tons to activate them. Clicking this button causes the following to be pasted at the current
selection point.

some text

Let us create a button that can serve as a template for a definite integral.

In[2]:= ButtonBox["Integrate[fun,{x,xmin,xmax}]", Active->True]  

//DisplayForm

Out[2]//DisplayForm=

Integrate@fun, 8x, xmin, xmax<D
Clicking the button causes the following to be pasted in.

Integrate@fun, 8x, xmin, xmax<D
We can use placeholders in our template button so that the user can move from one

placeholder  to  the  next  by  pressing  the  Tab  key.  The  placeholder  character  Ñ  can  be
entered  either  from  the  Complete  Characters  palette  (look  under  Letter-like  Forms  and
then  Keyboard  Forms),  or  directly  from the  keyboard  by  typing  Â-sp-Â  (pressing  the
Escape key, then the characters s and then p, and finally the closing Escape key).

In[3]:= ButtonBox["Integrate[�,{�,�,�}]", Active->True]  

//DisplayForm

Out[3]//DisplayForm=

Integrate@�, 8�, �, �<D
Clicking on this button causes the following expression to be pasted. You can move

from one placeholder to another by pressing the Tab key.

Integrate@�, 8�, �, �<D

10 Front end programming 335



ButtonStyle

Although having buttons  that paste their contents  at  the current selection point  is useful,
there is  much more that  buttons  can do.  For example,  they can wrap the contents  of  the
ButtonBox  around  a  selected  expression  and  then  evaluate  that  expression.  To  change
the  default  behavior  of  buttons  from  simply  pasting  their  contents  to  other  actions,  we
have  to  use  the  ButtonStyle  option.  ButtonStyle  is  used  to  control  both  the  style
and the actions associated with your buttons. In the following example, ButtonStyle  is
set to CopyEvaluateCell. 

In[4]:= ButtonBox@"Integrate@	,xD", Active → True,

ButtonStyle → "CopyEvaluateCell"D êê DisplayForm
The  É  character  is  entered  either  from  palettes  or  directly  from  the  keyboard  by

typing Â-spl-Â. Evaluating the above input produces the cell below. Selecting the input
cell  containing  Cos@x2D + x5  and  then  clicking  the  button  causes  the  template  to  be
wrapped around the selected expression and then it is evaluated.

Out[4]//DisplayForm=

Integrate@
, xD
In[5]:= Cos@x2D + x5

In[6]:= Integrate@Cos@x2D + x5, xD

Out[6]=
x6
�������
6

+ $%%%%%%%π
����
2

FresnelCA$%%%%%%%2����
π

xE
If  you  were  to  use  ButtonStyle→EvaluateCell  instead  of  CopyEvaluate�

Cell,  the  button  action  would  erase  the selection  and replace it  with the new input  and
the result.

Another  very  useful  ButtonStyle  is  Hyperlink.  Making  a  hyperlink  is  accom-
plished by creating a button out of some expression and setting the ButtonStyle option
to Hyperlink and adding the ButtonData option.

Cell[TextData[{
  "Search for button on ",
  ButtonBox["Google",
    ButtonData:>{
      URL[ "http://www.google.com"], None},
    ButtonStyle->"Hyperlink"]
}], "Text"]

336 An Introduction to Programming with Mathematica



The formatted version of this cell looks like this:

Search for button on Google

Setting  ButtonStyle  to  Hyperlink  sets  the  button  action  to  jump  to  some
location. That location is specified as the value of the option ButtonData. In this exam-
ple, that is set to URL["http://www.google.com"]. ButtonData set to a URL will
cause your web browser to be launched and opened to the location given as the argument
to URL – in this case http://www.google.com.

A list of all the possible ButtonStyle values is displayed in Table 10.1.

ButtonStyle values Action

Paste pastes the contents HdefaultL

Evaluate pastes, then evaluates in place

EvaluateCell paste, then evaluate entire cell

CopyEvaluate copy current selection into new cell,
then paste and evaluate

CopyEvaluateCell copy current selection into new cell,
then paste and evaluate cell

Hyperlink jump to different location

Table 10.1: Possible ButtonStyles and associated actions

ButtonFunction

Whenever you need to put some Mathematica code inside your button, you will need to do
so  as  the value  of  the  option  ButtonFunction.  You will  also  need to  explicitly  set  the
option  ButtonEvaluator  which  is  set  to  None  by  default.  The  ButtonEvaluator
option  tells  the front  end what  program it  should  communicate  with to  process  the con-
tents  of  the button  function.  Setting  it  to  None  tells  the front  end to  communicate  with
itself which is fine for operations like copying and pasting. But for operations that need to
communicate with a kernel, you will have to specify that explicitly. A value of Automatic
sends the code to the default kernel for the current notebook. If you had other kernels set
up, you could direct the button function at one of those.

10 Front end programming 337



In[7]:= ButtonBox@"Compute 5!",

Active → True,

ButtonFunction 
 Factorial@5D,
ButtonEvaluator → AutomaticD êê DisplayForm

Out[7]//DisplayForm=

Compute 5!

Clicking this button will not cause any output to be displayed. This is because these
buttons  are not  evaluated in the kernel in the usual  way as  part  of  the main loop.  In this
case, you can use Print to see the side effect of this computation.

In[8]:= ButtonBox@"Compute 5!",

Active → True,

ButtonFunction 
 Print@Factorial@5DD,
ButtonEvaluator → AutomaticD êê DisplayForm

Out[8]//DisplayForm=

Compute 5!

120

You  can use  any Mathematica  function  you wish  as  the  value of  the ButtonFunc�
tion  option.  But,  in  addition  to  the  above  issue  with  displaying  output,  you  should  be
aware  of  another  important  issue.  As  it  turns  out,  the  front  end  does  not  know  how  to
parse the special shorthand notation we often use for arithmetic and other operations. You
will  be  forced  to  use  the  FullForm  of  such  expressions  inside  of  your  ButtonFunc�
tion.  So  instead  of  2+2,  use  Plus[2,2];  instead  of  {<<Graphics`;LogPlot[�
Exp[x],{x,1,2}]}  use  CompoundExpression[Get["Graphics`", LogPlot[�
Exp[x],{x,1,2}]].  Fortunately, the parser for the front end can recognize the short-
hand  notation  for  List,  Rule,  and RuleDelayed,  so  you  can use  the shorthand nota-
tions {}, →, and �, respectively.

As a final example, we will create a button that loads a package and then performs a
computation  with  some  functions  from  that  package.  Here  is  the  code  that  we  want  to
encapsulate in our button.

In[9]:= Needs@"Graphics`Polyhedra`"D

338 An Introduction to Programming with Mathematica



In[10]:= Show@Graphics3D@Stellate@Icosahedron@DDDD;

Here is the button code. Note that we have also added an option to ButtonBox  to
set the background and set the entire cell to use the Times font family.

Cell[BoxData[
    ButtonBox[RowBox[{"Stellate"," ","Icosahedron"}],
      ButtonFunction->
        CompoundExpression[Needs["Graphics`Polyhedra`"],
          Show[Graphics3D[Stellate[Icosahedron[]]]]],
      ButtonEvaluator->Automatic,
      Background->GrayLevel[.5]]],
      "Input",Active->True,
      FontFamily->"Times",
      FontColor->GrayLevel[1]]

And here is the button with a result of clicking it just below.

In[11]:= Stellate Icosahedron

10 Front end programming 339



Example: an evaluate button

At  the  end  of  Section  10.2  we  created  a  function  EvaluateNext,  which  evaluated  the
immediately following input  cell. In this section we will turn the code from that function
into a button.

Here was the code we developed in that section.

EvaluateNext:=(
    SelectionMove[EvaluationNotebook[],All,Cell];
    SelectionMove[EvaluationNotebook[],Next,Cell];
    SelectionEvaluate[EvaluationNotebook[]];
    )

To put this code inside a button, we need to make a few modifications. First, remem-
ber that the front end does not know how to parse shorthand notation such as ;.  Instead
we need to use CompoundExpression. Second, instead of EvaluationNotebook, we
will  use ButtonNotebook,  which gives the notebook  in which the current button  lives.
Finally,  we  need  to  use  ButtonCell  to  refer  to  the  cell  containing  the  button  itself.
Putting all these pieces together, here is the ButtonFunction.

In[13]:= ButtonFunction 
 CompoundExpression@
8SelectionMove@ButtonNotebook@D, All, ButtonCellD,
SelectionMove@ButtonNotebook@D, Next, CellD,
SelectionEvaluate@ButtonNotebook@DD<D;

Here then is the code to generate our evaluate button.

Cell[TextData[{
  Cell[BoxData[
      ButtonBox["EVALUATE",
        ButtonFunction:>CompoundExpression[ {
            SelectionMove[ 
              ButtonNotebook[ ], All, ButtonCell], 
            SelectionMove[ 
              ButtonNotebook[ ], Next, Cell], 
            SelectionEvaluate[ 
              ButtonNotebook[ ]]}],
        Active->True]]],
  " MATHEMATICA INPUT"
}], "Text"]

340 An Introduction to Programming with Mathematica



And  here is  the  formatted  button.  Clicking  the  Evaluate  button  causes  the  cell  just
below the button cell to be evaluated.

EVALUATE  MATHEMATICA INPUT

In[14]:= 2 + 2

Out[14]= 4

Finally, let us add some formatting to make this cell a little nicer looking.

Cell[TextData[{
  Cell[BoxData[
      ButtonBox[
        StyleBox["EVALUATE",
          FontFamily->"Helvetica",
          FontSize->10,
          FontWeight->"Bold"],
        ButtonFunction:>CompoundExpression[ {
            SelectionMove[ 
              ButtonNotebook[ ], All, ButtonCell], 
            SelectionMove[ 
              ButtonNotebook[ ], Next, Cell], 
            SelectionEvaluate[ 
              ButtonNotebook[ ]]}],
        Active->True,
        Background->GrayLevel[0.500008]]]],
  StyleBox[" MATHEMATICA INPUT",
    FontFamily->"Helvetica",
    FontSize->10,
    FontWeight->"Bold",
    FontSlant->"Italic",
    FontColor->GrayLevel[1]]
}], "Text",
  Background->GrayLevel[0.500008]]

Here is the formatted version of this code with the result of clicking the button.

EVALUATE  MATHEMATICA INPUT

In[15]:= 2 + 5

Out[15]= 7

There is a little inefficiency in our code as we are calling the kernel several times (two
instances  of  SelectionMove  and  one  of  SelectionEvaluate)  for  what  are  essen-

10 Front end programming 341



tially  front  end operations,  moving and selecting. You can send  these sorts  of  commands
directly  to  the  front  end  by  wrapping  them  in  FrontEndExecute.  To  distinguish
between  the  kernel  command  and  the  front  end  command  you  also  need  to  append  the
FrontEnd`  context  to  the  function.  So  for  example,  instead  of  using  Selection�
Move[…] in the kernel, you can send it directly to the front end with the following.

FrontEndExecute[FrontEnd`SelectionMove[…]]

With this  in mind,  the EVALUATE button  can be  rewritten by only  changing the
ButtonFunction.

ButtonFunction:>FrontEndExecute[ {
FrontEnd`SelectionMove[ 

ButtonNotebook[ ], All, ButtonCell], 
FrontEnd`SelectionMove[ 

ButtonNotebook[ ], Next, Cell],
FrontEnd`SelectionEvaluate[ 

ButtonNotebook[ ]]}]

Another  method  of  directly  accessing  front  end  commands  is  via  front  end  tokens.
These tokens allow you to perform any menu command directly from the kernel. We will
not discuss them here, but for a detailed discussion of front end tokens, see the Front End
category of the Help Browser.

Exercises

1. Create a button that will serve as a template for the Plot3D function.

2. Create a button that will wrap Expand[] around any selected expression and 
evaluate that expression.

3. Using GridBox, create a palette of buttons that operate on polynomials like that in 
Exercise 2. Include in your palette a button for each of Expand, Factor, Apart, 
and Together.

342 An Introduction to Programming with Mathematica


	10 Front end programming
	10.1 Introduction
	10.2 The structure of cells and notebooks
	Notebook expressions
	Manipulating notebooks
	Exercises

	10.3 Cell data types
	TextData
	BoxData
	GraphicsData
	Exercises

	10.4 GridBoxes
	ShowTable
	TriangleForm
	Exercises

	10.5 Buttons
	Making buttons the easy way
	The structure of buttons
	ButtonStyle
	ButtonFunction
	Example: an evaluate button
	Exercises


