Wolfram Library Archive

Courseware Demos MathSource Technical Notes
All Collections Articles Books Conference Proceedings

Constructing a space from the geodesic equations

E. Fredericks
F.M. Mahomed
E. Momoniat
A. Qadir
Journal / Anthology

Computer Physics Communications
Year: 2008
Volume: 179
Issue: 6
Page range: 438-442

Given a space with a metric tensor defined on it, it is easy to write down the system of geodesic equations on it by using the formula for the Christoffel symbols in terms of the metric coefficients. In this paper the inverse problem, of reconstructing the space from the geodesic equations is addressed. A procedure is developed for obtaining the metric tensor explicitly from the Christoffel symbols. The procedure is extended for determining if a second order quadratically semi-linear system can be expressed as a system of geodesic equations, provided it has terms only quadratic in the first derivative apart from the second derivative term. A computer code has been developed for dealing with large systems of geodesic equations.


Geodesic equation, Inverse problem, MATHEMATICA