We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially nonlocal fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in antiphase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications.