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Summary. We discuss the concept of distributional alchemy. This is defined by transmutation maps
that are the functional composition of the cumulative distribution function of one distribution with the
inverse cumulative distribution (quantile) function of another. We show that such maps can lead on
the one hand to tractable mechanisms for the introduction of skewness into a symmetric distribution,
without the pathology of Gram-Charlier expansions, and on the other hand to practical methods for
converting samples from one distribution into those from another, without the limitations of Cornish-
Fisher expansions. These maps have many applications in mathematical finance and statistics generally,
including the assessment of distributional risk in pricing and risk calculations. We give examples of skew-
uniform, skew-normal and skew-exponential distributions based on these techniques, suggest kurtotic
variations, and also describe accurate methods for converting samples from the normal distribution into
samples from the Student distributions or for converting one Student distribution into another.

Keywords: Distributional Alchemy, Gram Charlier, Cornish Fisher, Skew Uniform, Skew Nor-
mal, Skew T, Skew Student, Student Distribution, T Distribution, Kurtotic Uniform, Kurtotic
Normal, Skew Exponential, Skew Kurtotic Normal

1. Introduction

Undergraduate students of probability usually learn the following two important facts about the
cumulative distribution function of a continuous probability distribution. First, given a distribution
function FX(x), a simple means of simulation is to set

X = F−1
X (U) (1)

where U is a sample from the uniform distribution on [0,1]. Second, if one makes a change of
variables Y = h(X), then the simplest and most reliable way of obtaining the density function for
Y is to make the change of variables via the distribution function rather than the density.

This paper is about turning the second observation on its head and then using the resulting
constructions to get more flexibility and power in the use of the first observation in simulation.
That is, given a pair of distribution functions we shall attempt to infer the corresponding change of
variables that links them. We shall in fact go further than this and also invent prosaic changes of
variable, to be applied not to the random variable but to its ranks, in order to produce a modulation

E-mail: william.shaw@kcl.ac.uk



2 W.T. Shaw and I.R.C. Buckley

of a known distribution into another one of interest, such as a modulation to introduce skewness or
indeed kurtosis.

The inverse cumulative distribution function (CDF): F−1
X = QFX

is the quantile function asso-
ciated with the distribution. We do not have to use quantile functions for simulation, witness the
use of Box-Muller, Polar-Marsaglia methods for the normal case (see, e.g. (25), and its extension to
Student by Bailey (9)). A beautiful survey of a number of methods for sampling non-uniform devi-
ates is given by Devroye (13). But it is very useful if we can employ quantile techniques, particularly
if we are working with algorithms based on hypercube-filling quasi-Monte-Carlo (QMC) methods,
or in particular copula methods. The issues that arise when using Box-Muller, such as the Neave
effect, and bad interactions with low-discrepancy sequences, are eloquently discussed in Chapter 9
of the book by Jäckel (20).

This paper is not to be regarded as an advocate either way for the use or non-use of copula
techniques, but a consideration of copula-based simulation gives us one clue as to why we might
take the route described in this paper.

1.1. Quantile Functions and Copulas
Consider the case of two dimensions. If one wishes to engage in copula-based simulation with a
copula that is based on an underlying bivariate distribution, then one first makes a sample (X1, X2)
from the given bivariate (in general multivariate) distribution. Then one forms a sample from the
associated copula:

{U1, U2} = {FX1(X1), FX2(X2)} (2)

Then to get samples with marginals with any CDFs Gi:

{Y1, Y2} = {G−1
1 [U1], G−1

2 [U2]} = {QG1 [U1], QG2 [U2]} (3)

This makes it clear that this is a context in which it is always helpful to know quantile functions.

1.2. The emergence of a transmutation mapping
In the analysis above note that we do not actually need the Ui, because when the copula comes
from a “real” bivariate distribution, it would suffice to understand the composite mappings in the
following:

{Y1, Y2} = {G−1
1 [FX1(X1)], G−1

2 [FX2(X2)]} (4)

In fact, this is one of several motivations for considering composite maps of the form y = G−1[F (x)],
where F,G are CDFs. Such a composite map essentially turns samples from one distribution, that
of F , into samples from another one, that of G. We shall call this mapping a (sample) transmutation
mapping, This is not a wholly new concept, but so far as the authors of this paper are aware an
analysis of such transmutations, and of corresponding rank transmutations, e.g., u → G[F−1(u)]
have not been fully considered previously outside the asymptotic domain, and with one of the
distributions being explicitly the normal distribution. There are good reasons why not! Sheer
analytical tractability is, for some calculations, a major issue. However, we shall in some cases be
able to use the brute force of symbolic computer algebra to overcome this. In other cases more
elegant analysis will be possible. Before getting to this we need to first review the asymptotic case
and mention some other motivations.
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1.3. Cornish-Fisher and Gram-Charlier expansions
The idea of approximating one distribution in terms of another is a very old one and takes several
forms, depending on whether one wishes to make the approximation explicit in terms of (a) samples;
(b) the density function; (c) the distribution function, or perhaps something else. Case (a) give
us the Cornish-Fisher (CF) expansions while case (b) gives us Gram-Charlier (GC) expansions.
These are very well documented elsewhere. For example, the basic ideas are given in the widely
available text by Abramowitz and Stegun (1), available on-line at (2). They pop up in a multitude
of contexts, notably in the implementation of the addition of skewness and kurtosis to a normal or
log-normal distribution. The basic idea of the GC methodology is to represent the density as a base
(e.g. normal) density multiplied by an asymptotic series made up of special functions based on the
base distribution multiplied by skewness, kurtosis and possibly other higher order coefficients based
on moments. The CF methodology makes a parallel expansion on samples. However, there are a
number of objections of either principle or practicality to the use of such methods. A non-exhaustive
list as follows:

• There are many cases of interest where the moments needed to justify the CF or GC expansion
do not exist, but the distribution of interest can still be expanded in terms of the target
distribution. An elementary example would be the “Student” T distribution where the degrees
of freedom n satisfies n ≤ 4. The first moment needed to activate the GC/CF methodology is
infinite but the expansion still exists.

• Increasing the accuracy of the series requires more high order moments than are less likely to
exist (see the T again) or be non-robust functions of the data.

• In the case of the GC method for the density functions, the truncated series can give negative
probability density functions, leading to:

• An arbitrary truncation decision needs to be made in order to cure the density negativity
issues.

• Although perhaps less of a problem with modern computer algebra methods, the management
of the series requires a detailed fluency with an associated series of special polynomials. The
formulae in (1) give some indication of the thickness of the “Hermite function soup” associated
with just the normal case.

• As one varies the base distribution the relevant special functions (and the identities that they
obey) have to be re-established.

These considerations do not in themselves imply that considerations based on the GC or CF method-
ologies are wrong, but they do suggest that it may be worthwhile to seek other options. In the case of
the introduction of skewness there are already other approaches that work in a closed-form and non-
asymptotic representation. The elegant work of Azzalini and co-workers (5) is notable in this respect
and will be discussed later in this paper. Readers should also see the extensive online bibliography
helpfully provided by Azzalini (7).

1.4. Other motivations
Simulation based on copulas, the perception that there may be a more straightforward methodology
than the asymptotic route, and the need for simple methods for introducing skewness, are not the
only reasons for the work in this paper. There are other motivations, some of which are already well
appreciated or indeed used by academics, practitioners, or both:
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• Transmutation might help us generate new (hard) quantile functions from old (easy) ones for
easy, QMC or copula applications;

• There is nothing special about the unit interval. We do not have to use the unit interval as a
standard domain - we can change variables e.g. to Gaussian real line and use transmutation
mappings for sampling.

• We can transmute a given sample to assess distributional risk in pricing/risk calculations, and
avoid Monte Carlo noise in much as the same way as is employed in the construction of the
“Greeks”. The idea here is that having done a base case risk, VaR, pricing etc. calculation
in, e.g. a normal framework, one could transmute the existing pre-calculated normal samples
directly into something suitably fat-tailed to assess distribution or model risk.

It is also worth pointing out that the idea of using samples from one distribution to generate another
is already well-established through another mechanism - the idea of rejection. This is a powerful
method and is discussed, e.g. in (25). Our philosophy is based, rather, on using all the samples from
one distribution in the construction of samples from another.

1.5. Plan of this paper
The plan of this work is as follows. In Section two we will give a proper definition of the transmutation
maps and explain two ways in which they might be used. Section three gives examples of sample
transmutation mappings computed from a pair of given distributions. Section four suggests some
simple rank transmutation mappings that might be used to introduce skewness into a given base
distribution, without some of the difficulties that arise with the GC method. Section five gives a
detailed presentation of a structured set of mappings for the introduction of skewness and kurtosis
and provides a Monte Carlo sampling method and a detailed analysis of the moment structure of a
form of skew-kurtotic-normal distribution. Section six gives our conclusions and suggestions. Some
of the transmutation examples will make use of the fact that the quantile function for the Student T
distribution with even integer degrees of freedom is easily obtained by solving a simple polynomial
equation of degree n− 1. This was established in (28).

Acknowledgements
We are deeply grateful to Professors Adelchi Azzalini, Marc Genton and Samuel Kotz for a combi-
nation of useful comments on earlier versions of this paper and for elucidation of the history and
current debate surrounding the skew-normal and related distributions.

2. Definition of transmutation mappings

In this section we write down definitions for the two cases of interest.

2.1. Sample Transmutation
Given one “base” distribution function, say Φ(x), possibly normal, and another distribution F (x),
we define a sample transmutation mapping TS by the identity

F−1[U ] = TS(Φ−1(U)), i.e., TS(z) = F−1(Φ(z)) = QF (Φ(z)) (5)

where 0 ≤ U ≤ 1 and z is in its appropriate range (the real line in the normal case). So if we have the
Φ quantile function we can get the QF quantile by post-applying TS . This function “transmutes”
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samples from one distribution into samples from another. We might have a decent expression for Φ
but QF may well be hard to determine. But we will utilize computer algebra methods for getting a
series for the quantile, and we can take the functional composition of this with a series for Φ to get a
good series for TS . The creation of a transmutation map is not a new idea. It has previously found
expression in the asymptotic setting via the use of Cornish-Fisher expansions, but we will now see
how to use it in an essentially “exact” setting via the use of computer symbolic algebra.

2.2. Rank Transmutation
There is no particularly good reason why a transmutation mapping should be applied after applying a
standard quantile rather than before. So we can define a corresponding rank transmutation mapping
TR by the following relationship

F−1[U ] = Φ−1(TR(U)), i.e., TR(u) = Φ(F−1(z)) = Φ(QF (u)) (6)

This will allow us to introduce modulations into a distribution in an exact way, and potentially
avoid the use of asymptotic (Edgeworth/Gram-Charlier, or “EGC”) methods and their problems.
Note that equation (6) only makes sense if the two distributions have the same sample space.

2.3. Existing Examples of Exact Transmutation
We wish to emphasize that our approach has its roots in many existing constructions. Indeed, our
method relies on turning around some methods of elementary probability. If one postulates a change
of variable one ends up with a mapping on the CDFs which can in principle be reversed to extract
the changes of variable. Here are a subset of known possibilities:

2.3.1. Normal to χ2
1

Here we just make the mapping
Z → W = Z2 (7)

to convert the normal distribution to a χ2
1 or elementary gamma distribution. The mapping can be

reconstructed from the two CDFs. This mapping is of course 2− 1.

2.3.2. Exponential-Rayleigh
If we take, for x > 0, θ > 0, σ > 0.

F1(x) = 1− e−x/θ, F2(x) = 1− e−x2/(2σ2) (8)

we have exponential and Rayleigh distributions. The corresponding quantile functions are well
known and are

Q1(u) = −θ log(1− u), Q2(u) = σ
√
−2 log(1− u) (9)

so that all four maps, comprising sample transmutation and inversion, and rank transmutation and
inversion, are all available in closed-form. The sample transmutations relating X (exponential) and
Y (Rayleigh) are just:

Y = σ

√
2X

θ
, X =

θ

2
Y 2

σ2
(10)

There is nothing new in these comments other than the observation that the changes of variable
may be inferred from the CDFs and their inverses.
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2.3.3. Beta-Student
The CDF for the Student distribution may be written as (see e.g. (28))

Fn(x) =
1
2

(
1 + sgn(x)(1− In/(x2+n)

(
n

2
,
1
2

))
(11)

where I is the regularized β-functions. As usual sgn(x) is +1 if x > 0 and −1 if x < 0. The
regularized beta function Ix(a, b) is given by

Ix(a, b) =
Bx(a, b)
B(a, b)

(12)

where B(a, b) is the ordinary β-function and Bx(a, b) is the incomplete form

Bx(a, b) =
∫ x

0

t(a−1)(1− t)(b−1)dt (13)

The quantile function for the Student distribution may be written as

F−1
n (u) = sgn

(
u− 1

2

)√
n (1/J − 1), where J = I−1

If[u< 1
2 ,2u,2(1−u)]

(
n

2
,
1
2

)
(14)

To see the transmutation to the beta distribution, we consider the CDF for x < 0, when it reduces
to

Fn(x) =
1
2
In/(x2+n)

(
n

2
,
1
2

)
(15)

The CDF G(x) for the beta distribution with parameters α, β is just

G(y) = Iy(α, β) (16)

So for example, if Y is a sample from a beta distribution with parameters α = n/2, β = 1/2, then
the transmutation map, which again is 2-1, tells us that

X = −

√
n

(
1
Y
− 1
)

(17)

is a sample from the negative portion of the Student distribution, and indeed its absolute value gives
us a sample from the positive portion. Similarly if X is Student with n degrees of freedom, then

Y =
n

X2 + n
(18)

is distributed as Beta(n/2, 1/2). This allows numerical schemes for the Student distribution to also
be based on sampling from a Beta distribution. However, the transmutation from the normal we
shall present shortly is also a simple candidate for managing this.

2.3.4. Skew-normal by sample transmutation
The survey by Kotz and Vicari (22) on methods of skewing continuous distributions makes it clear
that changes of variable, but usually expressed in terms of the random variable rather than its
ranks, forms a key part of the research on skew distributions. Some key examples include Johnson’s
transformations (23), which take the form:

z = ν + δf(y; γ, σ) (19)

where f is monotone. Several candidates for f emerge and are summarized in (22).
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3. Further Examples of sample transmutations

In this section we develop the methods needed to extract sample transmutation maps. In each case
the idea will be to consider a base distribution for which the quantile function is available, or for
which samples may be obtained easily by other methods. The examples we shall consider here are

• Base: normal; transmute to Student Tn for all real n;

• Base: T4; transmute to Student Tn for small n.

We have several reasons for these choices. First the Student T is of general statistical interest but
is highly pathological with regard to its moments. The k’th moment only exists if n > k and is
unstable when computed from a sample with n close to but above k. Second, particular choices of
n in the neighbourhood of four are of considerable interest for financial applications. Next there is
already a short expansion of Cornish-Fisher type available for the Student T with a normal base
distribution, and we shall be able to (a) massively extend such expansions; (b) demonstrate that
the existence of a high order expansion is independent of the existence of moments; (c) work out
the coefficients of the relevant power series exactly rather than asymptotically in powers of n−1.
Second, given that we have an elementary exact quantile function for n = 4, then for other small n
we might expect to get a more efficient representation of the samples by using a distribution that is
closer than the n = ∞ or normal case. The idea of generating normal samples from those from a T
is also an attractive one, and we shall pursue it given that the extraction of samples from a T when
n is an even integer is straightforward, even for a moderately high (and hence close to normal) value
of n.

The consideration of the Student is interesting from a financial risk management perspective,
given that both the Student and normal distributions are of relevance to the calculation of VaR and
its relations, such as coherent risk measures. The concept of transmutation from a normal is highly
relevant, as the distributional risk may be estimated without recomputation of the samples, and
hence one can avoid the Monte Carlo noise. This is much the same issue as arises in the calculation
of elementary “Greeks”† in Monte Carlo sampling, where one should use the same sample paths,
but shifted in a discrete way based on e.g. a variation of a starting value of S in order to get delta
or gamma. If correlations are built based on a Gaussian copula, which is commonplace, then the
resulting correlated samples may be squeezed by the transmutation maps to give, for example, a
multivariate Student with any collection of marginal degrees of freedom‡. The underlying copula
remains resolutely Gaussian - transmutation merely makes the calculations easier.

3.1. Transmuting the normal to the Student T
The following expansion of Cornish-Fisher type may be found in Abramowitz and Stegun (1; 2):

t = z +
z3 + z

4n
+

5z5 + 16z3 + 3z

96n2
+

3z7 + 19z5 + 17z3 − 15z

384n3

+
79z9 + 776z7 + 1482z5 − 1920z3 − 945z

92160n4
+ . . . (20)

†These are the sensitivities of the value of a financial option with respect to parameter changes.
‡This gives us a pragmatic form of the multivariate T distribution that is a viable alternative to the

“grouped T” of Demarta (12) and Daul et al (11). But note that this multivariate T constructed by
transmutation of the marginals should not be seriously considered as a candidate for a canonical multivariate
T. See Shaw and Lee (30) for a discussion of some new contenders for this title, in addition to the many
already surveyed by Kotz and Nadarajah in their book (21).
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This fourth order result may be used for simulation, but is not much use for small n. The limitations
in the tails are discussed in detail in (28). The expansion eventually deteriorates in the tails whatever
the value of n, though for larger n the issues are so far in the tails as to be of no practical consequence.
The use of expansions of this type for approximation purposes is very old. For example, Goldberg
and Levine (16) made use of the expansion as far as O(n−2) for tabulation purposes in 1946. For
our purposes we regard this expansion as an asymptotic form of a sample transmutation map, and
we wish to see an efficient way of rebuilding it. We also want to try to reorganize this series. For
example, we note that z appears in every order in n — can this sub-series and the corresponding
series for z3, z5 etc. be added up? We shall see that the answer is “yes”.

We consider the Student T distribution in the notation of Shaw (2006). Given 0 < u < 1, we set

v = (u− 1
2
)
√

nπΓ
(

n
2

)
Γ
(

n+1
2

) = bn(u− 1
2
) (21)

which also serves to define bn. The quantile function is then, given a rank u and hence a value of v,
obtained by solving for x the equation

v = x 2F1

(
1
2
,
n + 1

2
;
3
2
;−x2

n

)
=
∫ x

0

ds

(
1 +

s2

n

)− 1
2 (n+1)

(22)

where 2F1 is Gauss’ hypergeometric function. The inversion of a series for such a CDF can be carried
out step by step in any computer algebra system, following the methods described in on-line (29).
In the specific computer algebra system Mathematica you can sometimes just ask for the inverse as
a series. To give an idea of how this works, we set

F[x_, n_] := x*Hypergeometric2F1[1/2, (n + 1)/2, 3/2, -(x^2/n)];

and just ask for the inverse as a series as follows:

Map[Factor, InverseSeries[Series[F[x, n], {x, 0, 9}], v]]

which yields the output:

v +
(n + 1)v3

6n
+

(n + 1)(7n + 1)v5

120n2
+

(n + 1)
(
127n2 + 8n + 1

)
v7

5040n3

+
(n + 1)

(
4369n3 − 537n2 + 135n + 1

)
v9

362880n4
+ O

(
v10
)

With a bit more work a corresponding tail series can be developed. See (28) for details. So we have
the quantile function for general real n. This is one of several ways of direct sampling of the T.
What we want to discuss here is the sample transmutation mapping, based on an expansion about
the origin. Note that we could consider expansions in the tails but will focus here on the mid point
of the distribution as it is a composite power series around u = 1/2 that reproduces, extends and
re-sums the known expansions. Compare the following computer algebra program with the usual
rash of high-order moments and Hermite functions that are traditionally employed. First we define
some relevant functions for the normal distribution:

PhiMinusHalf[z_] := Erf[z/Sqrt[2]]/2;
v[pmh_,n_]:=(pmh*Sqrt[n*Pi]*Gamma[n/2])/Gamma[(n+1)/2]

Now we can define the transmutation as follows
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QuantileF[v_, n_, truncation_] := InverseSeries[Series[F[x, n], {x, 0, truncation}], v];

Transmutation[z_, n_, tra_, trb_] := Module[{QF, toexp}, QF = QuantileF[v, n, tra];
toexp = Normal[QF /. {v -> v[PhiMinusHalf[z], n], m -> n}]; Series[toexp, {z, 0, trb}]]

To check it is all working, we see if we can recover the known published expansion:

rawform = Transmutation[z, n, 10, 10];
CornishFisherExpansion = Map[Together, Normal[Series[rawform, {n, Infinity, 4}]]]

This produces the output

t = z +
z3 + z

4n
+

5z5 + 16z3 + 3z

96n2
+

3z7 + 19z5 + 17z3 − 15z

384n3

+
79z9 + 776z7 + 1482z5 − 1920z3 − 945z

92160n4
+ . . .

(23)

So we are on the right track. But in contrast with dealing with a human, we can also ask the
computer to work out the following more detailed expansion:

rawform = Transmutation[z, n, 20, 20];
CornishFisherExpansion = Map[Together, Normal[Series[rawform, {n, Infinity, 9}]]]

with the result (adjusted here for spacing)

z +
z3 + z

4n
+

5z5 + 16z3 + 3z

96n2
+

3z7 + 19z5 + 17z3 − 15z

384n3

+
79z9 + 776z7 + 1482z5 − 1920z3 − 945z

92160n4

+
9z11 + 113z9 + 310z7 − 594z5 − 255z3 + 5985z

122880n5

+
1065z13 + 15448z11 + 48821z9 − 82440z7 + 616707z5 + 6667920z3 + 2463615z

185794560n6

+
339z15 + 6891z13 + 41107z11 + 113891z9 + 1086849z7 + 5639193z5 − 18226215z3 − 111486375z

743178240n7

+
P8(z)

356725555200n8
+

P9(z)
1426902220800n9

(24)

where

P8(z) = 9159z17 + 296624z15 + 3393364z13 + 16657824z11

+ 27817290z9 − 591760080z7 − 9178970220z5 − 42618441600z3 − 14223634425z
(25)

and

P9(z) = 63z19 − 7857z17 − 131468z15 − 5104636z13 − 115962198z11

− 1311524070z9 − 8066259180z7 − 5512748220z5 + 294835704975z3 + 1221207562575z

(26)

We get a Cornish-Fisher expansion to a high order with little effort. For many applications even
this many terms may be overkill. But note also we did not in fact have to expand in powers of n at
all: we have a “raw form” as (just the first few terms are shown in this much detail):
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rawseries = Series[rawform, {z, 0, 6}]

√
nΓ
(

n
2

)
z

√
2Γ
(

n+1
2

) +

(√
n(n + 1)Γ

(
n
2

)3
12
√

2Γ
(

n+1
2

)3 −
√

nΓ
(

n
2

)
6
√

2Γ
(

n+1
2

)) z3

+

(√
n
(
7n2 + 8n + 1

)
Γ
(

n
2

)5
480

√
2Γ
(

n+1
2

)5 −
√

n(n + 1)Γ
(

n
2

)3
24
√

2Γ
(

n+1
2

)3 +
√

nΓ
(

n
2

)
40
√

2Γ
(

n+1
2

)) z5 + O
(
z7
) (27)

Some of the complications and lack of precision in the Cornish-Fisher expansion arise from it having
an unnecessary expansion of the gamma functions in inverse powers of n. We have literally added
up this part of the expansion. So with some more computer algebra§ we can in fact write down a
very detailed series without having to assume that n is large. To sort this out we recall the value of
bn, and define the quantity dn as follows:

bn =
√

nπΓ
(

n
2

)
Γ
(

n+1
2

) , dn =
√

nΓ
(

n
2

)
√

2Γ
(

n+1
2

) (28)

and note that the results may be expressed most succinctly by using the series representation of the
inverse of the function defined in Eqn. (22).

x = v +
∞∑

k=1

ckv2k+1 (29)

where the coefficients ck were obtained in (28). They are given in a more simplified and useful form
here as

ck =
(n + 1)ak

nk(2k + 1)!
(30)

a1 = 1, a2 = 7n + 1, a3 = 127n2 + 8n + 1, a4 = 4369n3 − 537n2 + 135n + 1

a5 = 243649n4 − 90488n3 + 26238n2 − 2504n + 1

a6 = 20036983n5 − 13250647n4 + 5417578n3 − 1115690n2 + 95903n + 1

a7 = 2280356863n6 − 2236509264n5 + 1239471171n4 − 395850592n3 + 69621693n2 − 5211216n + 1

a8 = 343141433761n7 − 453764087825n6 + 324622304493n5 − 141775470493n4

+ 38151577859n3 − 5831289939n2 + 388203631n + 1

a9 = 65967241200001n8 − 110906186539024n7 + 98461432859068n6 − 54955481849680n5

+ 20054378275846n4 − 4671822975280n3 + 632882991292n2 − 38001405808n + 1

a10 = 15773461423793767n9 − 32396923801365327n8 + 34621962504766452n7

− 23655522692379732n6 + 10950848950783482n5 − 3445786392543594n4

+ 709418470017684n3 − 86442804846324n2 + 4733368335639n + 1
(31)

We now let
fk = ckd2k+1

n (32)

§Further Mathematica details are suppressed in order not to alienate some readers. The above is meant
to give a flavour of how straightforward it is to generate such a basic series. The effort required to produce
the more structured discussion given next is more substantial.
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and suppose that the sample transmutation map is given in the form (it must be odd by symmetry
since both distributions are even)

t =
∞∑

k=1

gkz2k+1 (33)

Then some work with computer algebra reveals that we have the following sequence of values

g0 = dn

g1 = f1 −
dn

6

g2 =
dn

40
− f1

2
+ f2

g3 = − dn

336
+

19f1

120
− 5f2

6
+ f3

g4 =
dn

3456
− 583f1

15120
+

29f2

72
− 7f3

6
+ f4

g5 = − dn

42240
+

1573f1

201600
− 437f2

3024
+

91f3

120
− 3f4

2
+ f5

g6 =
dn

599040
− 2599f1

1900800
+

15353f2

362880
− 773f3

2160
+

49f4

40
− 11f5

6
+ f6

g7 = − dn

9676800
+

15459659f1

72648576000
− 254339f2

23950080
+

35227f3

259200
− 3607f4

5040
+

649f5

360
− 13f6

6
+ f7

g8 =
dn

175472640
− 6439f1

215255040
+

34214503f2

14529715200
− 49997f3

1140480
+

67141f4

201600
− 1265f5

1008
+

299f6

120
− 5f7

2
+ f8

g9 = − dn

3530096640
+

91145183f1

23712495206400
− 123078503f2

261534873600
+

231879881f3

18681062400
− 1738547f4

13305600
+

27841f5

40320

− 30433f6

15120
+

79f7

24
− 17f8

6
+ f9

(34)

This may seem like quite a complicated set of results and even invoke horror in the reader. But
computationally it is all trivial¶. Given any n this set of coefficients may be evaluated just once, or
precomputed and stored for a range of n, and then applied to a large set of sample values of z. Note
that the series as given above is essentially correct to O(z19) and when expanded in inverse powers
of n is correct down to O(n−9), which is five inverse powers of n more than the previously published
results, so far as we are aware. However, there is however no need to make this last expansion as
the coefficients of each power of z given are exact. If we compare the published result of Eqn. (20)
with, for example the explicit form in Eqn. (27), which is the first three terms of the detailed result
given by Eqns. (28-34), we can discover that the terms involving z in Eqn. (20) are given by the
re-expansion

dn =
√

nΓ
(

n
2

)
√

2Γ
(

n+1
2

) = 1 +
1
4n

+
1
32

(
1
n

)2

− 5
128

(
1
n

)3

−
21
(

1
n

)4
2048

+ O

((
1
n

)5
)

(35)

Readers may wish to experiment with this series. It is highly accurate and some experiments of our
own have confirmed, for example, that one can simulate even a T3 distribution very well with such

¶Perhaps not quite trivial; depending on the language being used it may be necessary to explicitly use long
integer representations to treat some of these coefficients precisely – our own analysis is in Mathematica,
which is immune to such difficulties because arbitrary precision arithmetic is employed.
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a detailed series. Finally we note that if a unit variance expansion is needed then one must apply
the further scaling

s = t

√
n− 2

n
(36)

to produce samples from the Student distribution with unit variance.

3.2. Transmuting the T4 to the Tn for n small
The normal samples employed in the discussion above can come from any sampling algorithm and
do not have to be obtained by a quantile function for the normal distribution. If we want to make
samples for n in the range 2 < n ≤ 4 there is a question as to how we might be most efficient if
we do not care about starting from normal samples. As discussed in (28), there are closed-form
expressions for the quantile functions for n = 1, 2, 4. As an example, we can consider using as a
base distribution, not the normal, but the T4! The analysis goes through exactly as above, and in
Eqn. (33) if z is now a sample from a T4, the corresponding coefficients are now given by:

g0 =
3dn

8

g1 =
27f1

512
− 5dn

64

g2 =
21dn

1024
− 135f1

4096
+

243f2

32768

g3 = −45dn

8192
+

1017f1

65536
− 2025f2

262144
+

2187f3

2097152

g4 =
385dn

262144
− 3355f1

524288
+

22005f2

4194304
− 25515f3

16777216
+

19683f4

134217728

g5 = − 819dn

2097152
+

40833f1

16777216
− 97425f2

33554432
+

362313f3

268435456
− 295245f4

1073741824
+

177147f5

8589934592

g6 =
3465dn

33554432
− 117513f1

134217728
+

1522065f2

1073741824
− 2010015f3

2147483648
+

5176629f4

17179869184
− 3247695f5

68719476736

+
1594323f6

549755813888

g7 = − 7293dn

268435456
+

649077f1

2147483648
− 5452495f2

8589934592
+

38236401f3

68719476736
− 34499925f4

137438953472
+

67768569f5

1099511627776

− 34543665f6

4398046511104
+

14348907f7

35184372088832

g8 =
122265dn

17179869184
− 1736163f1

17179869184
+

36643305f2

137438953472
− 163309797f3

549755813888
+

772769889f4

4398046511104

− 527209155f5

8796093022208
+

835956693f6

70368744177664
− 358722675f7

281474976710656
+

129140163f8

2251799813685248

g9 = − 255255dn

137438953472
+

36209745f1

1099511627776
− 117161025f2

1099511627776
+

1287460965f3

8796093022208
− 3827030571f4

35184372088832

+
13582221345f5

281474976710656
− 7434564345f6

562949953421312
+

9876830985f7

4503599627370496
− 3658971285f8

18014398509481984

+
1162261467f9

144115188075855872
(37)
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It is easily verified that when n = 4 then g0 = 1 and gi = 0 for i ≥ 1. An explicit representation of
the first few terms is given by

tn =
3
√

n
√

πΓ
(

n
2

)
t4

8Γ
(

n+1
2

) +

(
9
√

n(n + 1)π3/2Γ
(

n
2

)3
1024Γ

(
n+1

2

)3 −
5
√

n
√

πΓ
(

n
2

)
64Γ

(
n+1

2

) )
t34

+

(
81
√

n
(
7n2 + 8n + 1

)
π5/2Γ

(
n
2

)5
1310720Γ

(
n+1

2

)5 −
45
√

n(n + 1)π3/2Γ
(

n
2

)3
8192Γ

(
n+1

2

)3 +
21
√

n
√

πΓ
(

n
2

)
1024Γ

(
n+1

2

) ) t54 + O
(
t74
)

(38)

The samples from the T4 are of course best made by direct use of the quantile function as given in
(28). If u is such that 0 < u < 1 then we set, in order

α = 4u(1− u), p =
4√
α

cos
(

1
3

arccos(
√

α)
)

, t4 = sign(u− 1/2)
√

p− 4 (39)

We also remind the reader of the known quantile functions for n = 2, 1, which are given by

t2 =
2u− 1√
2u(1− u)

, t1 = tan(π(u− 1/2)) (40)

and one could treat sampling of the Student T for very low n as a problem in transmutation of the t1
or t2 samples. From a numerical point of view it should be noted that the convergence of a one-stop
polynomial truncation of the power series based on, for example, a T4 base is, perhaps surprisingly,
less well behaved than that based on a normal base! This is not really a big problem. Rather, it
motivates us to point out that a transmutation mapping can in principle be made about any base
point. Our use of the origin is purely to illustrate the link with what has traditionally been done,
in the case of the Student distribution, in terms of a series expansion based on a normal base.

3.2.1. Transmutation series about a different point
The fact that we are using series representations allows the consideration of the series being taken
about a different base point. The points z = ±∞ come to mind as it is for these values that the
polynomial truncations considered thus far break down. Such cases require a little more work to
expand the base and target distributions around infinity, but the outcome is useful. For example,
the T4 to T3 transmutation map may be written for large t4 > 0 as

t3 =
3
√

2t
4/3
4

6
√

3 3
√

π
+

20 3

√
2
π

9 6
√

3t
2/3
4

− 322/3 6
√

3 3
√

π

5t
4/3
4

−
145 3

√
2
π

81 6
√

3t
8/3
4

+
422/3 3

√
π

35/6t
10/3
4

+
7672 3

√
2
π

2187 6
√

3t
14/3
4

+ . . . (41)

and can be used in the tail region to supplement the polynomial description. We have not yet
found a corresponding tractable representation for the normal to Tn transmutation, though given
the accuracy of the polynomial representation this is less of a problem.

4. Rank transmutation, skewness and kurtosis

To define a rank transmutation mapping in complete generality, suppose that we have two distribu-
tions with a common sample space, with CDFs F1 and F2. We can form

GR12(u) = F2

(
F−1

1 (u)
)
, GR21(u) = F1

(
F−1

2 (u)
)

(42)
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and this pair of maps takes the unit interval I = [0, 1] into itself and under suitable assumptions
are mutual inverses and satisfy Gij(0) = 0, Gij(1) = 1. We shall optionally assume in addition
that these rank transmutation maps are continuously differentiable. If not, a transmuted density
may be discontinuous. We could consider all kinds of such maps arising from a particular choice
of the Fi, but here, rather, we shall postulate some interesting forms. In general we require that
rank transmutations are monotone. Our approach will be to first experiment fairly freely with some
obvious transmutations, then to make a more detailed study of a composite skewness and kurtosis
adjusting mapping and to explore its moment structure in some detail.

4.1. Existing representations of a skew-normal distribution
As we shall be touching on the notion of modulating a given distribution by the introduction of
skewness, it is appropriate to comment on extensive work on this topic already existing, and in
particular the elegant work carried out by Azzalini and co-workers. A survey of the history of
continuous skewed distributions in general has been made recently by Kotz and Vicari (22). Another
good entry point to the literature is the article (5), and an extensive bibliography has been made
available at (7). Azzalini’s own recent survey is available at (6), and forms part of a trio of articles
with Genton (14; 15) that well demonstrates that this is a vigorous area of research. See also the
2006 paper by Arellano-Valle et al (3).

The essential idea of the framework developed by Azzalini in the univariate case is, using the
normal as an example for the base case, to consider a distribution with density

f(x, α) = 2φ(x)Φ(αx) (43)

where α is a perturbation parameter that may attain all real values. This produces an elegant
representation for many cases of interest. It should be noted that it is generally assumed that the
base density φ, whether normal or not, is symmetric about x = 0. This approach to skewing a
distribution has been widely considered, but it is nevertheless interesting to consider whether there
may be other natural options. We might, for example, wonder whether a formalism can be set up
in which one can provide an easier description of the cumulative distribution function, or simpler
Monte Carlo sampling, or removing the need to have the base distribution centred. We shall see
that this can all be achieved using a different prescription. But we are emphatically not claiming
that the rank transmutation approach developed below is superior, rather, it provides other options
that may be more (or less) suitable in various circumstances. We also note that when α = 1, then

f(x, 1) = 2φ(x)Φ(x) =
d

dx
(Φ(x)2) (44)

and the Azzalini distribution has a closed-form CDF that is the distribution function of the maximum
of two independent copies of the base distribution. Similarly when α = −1 we obtain the distribution
of the minimum. Despite our qualifications, we will note now some positive features of our own
approach to be exhibited below:

• Our mappings will apply to any base distribution, whether symmetric, centred or even defined
for negative arguments;

• Our mappings will be easily generalized to treat the introduction of some kurtosis;

• Our mappings are well-adapted to direct Monte Carlo simulation by the use of the quantile
function of the base distribution;
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• We will obtain the raw moments of the skewed/kurtotic distributions as simple linear functions
of the transmutation parameters;

• We have explicit constructions for the CDFs in simple, univariate representation.

It is also important to realize that the ideas presented in our paper can be related to the pioneering
work of F. de Helguero (18) in 1908. The work of De Helguero has been publicised by Azzalini (15),
and as discussed in (15) consists of the multiplication of the normal distribution by a function
based on a form of the skew-uniform distribution (the meaning of “skew-uniform” will be considered
presently). The original Italian version of the paper has been made available on Azzalini’s web
site at (19). In modern notation, our understanding of de Helguero’s work is that his form of the
skew-normal density is, for α > 0 (the case of negative α being obtained by reflection)

cφ(x) ∗ (1 +
x

α
) , for x > −α (45)

where φ is the normal density and c a normalizing constant given by

c−1 = Φ(α) +
1
α

φ(α) (46)

It is perhaps not a great leap from this idea to consider the case where we replace φ by the uniform
distribution itself and consider a form of Eqn. (48) as defining modulations of the density of the
ranks (i.e. of the CDF) of the normal, or indeed any other distribution. However, our representation
is different from that given by either of Eqns. (46) or (48), but will contain the order statistic
distribution of the maximum as given by Eqn. (47), as a special case.

4.2. Quadratic Transmutation
Possibly the simplest example of a rank transmutation is obtained by considering, for |λ| ≤ 1,

GR12(u) = u + λu(1− u) (47)

This has the consequence that the CDFs are related by

F2(x) = (1 + λ)F1(x)− λF1(x)2 (48)

and the sampling algorithm remains tractable as the quantile functions are related by

F−1
2 (u) = F−1

1 (GR21(u)) , GR21(u) =
1 + λ−

√
(λ + 1)2 − 4λu

2λ
(49)

There are two important extremal cases. First, if λ = −1, then GR12(u) = u2 and F2(x) = F1(x)2

and we recognize that the distribution of F2 corresponds to that of the maximum of two independent
copies of the F1 distribution. Correspondingly λ = +1 generates the distribution of the minimum.
So this map has the same property as the Azzalini representation that the distributions of the
max or min are recovered for certain values of the parameters. However, we note that the rank
transmutation approach would also allow for a continuum of distributions containing as special
cases the maximum or minimum of k independent copies and indeed other order statistics – it is
just a matter of writing down an appropriate polynomial. So far as we can see, this is not possible
within the Azzalini framework. However, the quadratic case does have a further nice property that
we shall now discuss.
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Note that no assumptions as to the symmetry of the underlying distribution are required. Indeed
in the transmutation approach the underlying distribution need not be centred or even defined for
x < 0, as exemplified below. However, if the F1 distribution is symmetric about the origin, in the
sense that

F1(−x) = 1− F1(x) (50)

we have the result that the distribution of the square of the transmuted random variable is identical
to that of the distribution of the square of the original random variable. This follows from the
following elementary algebra. Suppose that Zλ has distribution function F2(x) with parameter λ.
Let Wλ = Z2

λ, then

P (W ≤ y) = P (−√y ≤ Zλ ≤
√

y) = F2(
√

y)− F2(−
√

y) (51)

Now we substitute the formula for F2 and simplify the result using the symmetry. We see that

P (W ≤ y) = F2(
√

y)− F2(−
√

y)

= (1 + λ)F1(
√

y)− λF1(
√

y)2 − (1 + λ)F1(−
√

y) + λF1(−
√

y)2

= (1 + λ)F1(
√

y)− λF1(
√

y)2 − (1 + λ)(1− F1(
√

y)) + λ(1− F1(
√

y))2

= (1 + λ)F1(
√

y)− λF1(
√

y)2 − (1 + λ)(1− F1(
√

y)) + λ(1− 2F1(
√

y) + F1(
√

y)2)
= 2F1(

√
y)− 1

(52)

independently of λ. In particular, we note that, if the original distribution is symmetric, then
quadratic rank transmutation preserves all even moments. This will not be true if we apply higher or-
der powers, so while we might consider cubic, quartic and higher order transmutations, the quadratic
case has this elegant property. While these considerations focus on the polynomial case and the
quadratic in particular, we should also point out that frameworks for the preservation of the distri-
bution of the square within a skewing methodology already exist. See for example, the papers by
Roberts and Gesser (26), Gupta and Cheng (17), section two of the survey by Kotz and Vicari (22)
and in particular the 2004 discussion by Wang et al (31), where the set of χ2-preserving skewing
maps is characterized; the quadratic map is one example of this. But we will also be interested later
in modifying kurtosis with our framework so this is from our point of view a rather special situation.

4.3. The Skew-Uniform case
If we consider the uniform distribution on [0, 1]. Note that in our approach there is no requirement
that the distribution be centred about a point of symmetry, and indeed no requirement that the
distribution be symmetric. Then F1(x) = x and for |λ| ≤ 1

F2(x) =


0 if x < 0,
(1 + λ)x− λx2 if 0 ≤ x ≤ 1,
1 if x > 1.

(53)

and the corresponding density is given by

f2(x) =


0 if x < 0,
(1 + λ)− 2λx if 0 ≤ x ≤ 1,
0 if x > 1.

(54)
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We obtain a “trapezoidal distribution” provided |λ| ≤ 1. The details of a skew-uniform distribution
have only been given relatively recently (24) using the Azzalini framework, in a detailed article by
Nadarajah and Aryal. It should be noted that the representation here is identical, for the case
|λ| ≤ 1, to that given in (24). The work in (24) also cites the ease of Monte Carlo simulation
obtained by simply solving the quadratic equation. This of course can be applied to an arbitrary
base distribution in our representation.

4.3.1. Larger values of λ
The skew-uniform case and the comparison with the work by Azzalini, and Nadarajah and Aryal
raises an amusing question as to what we might do with quadratic transmutation for values of λ
greater than unity in magnitude. We need the transmutation map to take the unit interval into
itself, so we can easily arrange this with a projection mechanism:

GR12(u) = min[max[u + λu(1− u), 0], 1] (55)

It is interesting to note that this gives a different, but equally valid, trapezoidal distribution when
|λ| > 1. Figure 1 should be compared with that given in (24). In Figure 1 we show the family of
distributions obtained by taking −5/2 ≤ λ ≤ 5/2 in steps of 1/2. The boldest curve is the base case
and increasing skewness indicated by thinner curves.
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Fig. 1. Plots of the skew-uniform distribution via quadratic rank transmutation

4.4. The Skew-Exponential case
This might seem an odd case to consider but it helps to illustrate the fact that in the rank transmu-
tation approach it is not necessary that the base distribution be centred, symmetric or even defined
for negative values. Let us consider a base distribution with density, defined for β > 0,

f1(x, β) =

{
0 if x < 0,
βe−βx if x ≥ 0.

(56)

The corresponding CDF is clearly

F1(x, β) =

{
0 if x < 0,
1− e−βx if x ≥ 0.

(57)
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After some trivial algebra we obtain the transmuted density in the form

f2(x, β, λ) =

{
0 if x < 0,
βe−βx(1− λ) + 2λβe−2βx if x ≥ 0.

(58)

With β = 1 and λ varying from −1 to +1 in steps of 1/3 we obtain the pleasing set of curves shown
in Figure 2.
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Fig. 2. Plots of the skew-exponential distribution via quadratic rank transmutation

4.5. The Skew-Normal case – a first look
In our scheme, a skew-normal distribution generated by quadratic transmutation is given by setting

F1(z) = Φ(z) = 1/2(1 + erf[z/
√

2]) (59)

and the density is then

f2(x, λ) =
1√
2π

e−x2/2(1 + λ− 2λΦ(x)) (60)

The first four moments of the transmuted distribution are then

E[X] = − λ√
π

, E[X2] = 1, E[X3] = − 5λ

2
√

π
, E[X4] = 3 (61)

The variance is (
1− λ2

π

)
(62)

The centred third and fourth moments are

E[(X − E[X])3] =
λ(π − 4λ2)

2π3/2
, E[(X − E[X])4] = −3λ4

π2
− 4λ2

π
+ 3 (63)

and the skewness and excess kurtosis are given by

γ1 =
λ
(
1− 4λ2

π

)
2
√

π
(
1− λ2

π

)3/2
, γ2 =

2λ2
(
π − 3λ2

)
(π − λ2)2

(64)



Distributional Alchemy 19

If we want to standardize this distribution to have zero mean and unit variance we form the
following from an obvious linear transformation:

f3(x, λ) =
√

1− λ2/πf2(x
√

1− λ2/π − λ

π
, λ) (65)

We could, if we wanted to, do an series expansion of this around the standard normal distribution,
in powers of both x and λ, in order to see the relation to an Gram-Charlier-type expansion, but, as
with the Cornish-Fisher expansion on the quantile, this is now unnecessary!

We could also just as easily do skew-Student, skew-Cauchy or skew anything else, and the Monte
Carlo sampling is precisely as tractable as it is for the base distribution via the quantile mechanism.
These ideas should of course be compared with the work of many others, in particular A. Azzalini
and co-workers, who use a different mechanism. See his web site (8) for details of those approaches.
Our approach coincides with his in certain special cases (e.g. distributions of max/min are also
contained) but is different in general.

4.6. Other types of rank transmutation maps
While our emphasis so far has been on perturbations of the symmetry, in order to introduce skewness,
we can also consider other perturbations. If we stay within the polynomial structure we can consider
maps of the form

GR12(u) = u + u(1− u)P (u) (66)

where P is a polynomial with various parameters. It is of particular interest to place natural
constraints on the structure of P (u). In particular we might consider maps preserving particular
values of u. So, for example, we have the following definition: a rank transmutation is said to be
median-preserving if

GR12(1/2) = 1/2 (67)

and for a polynomial map this would require that P has a zero at u = 1/2. We can also define a
rank transmutation mapping to be symmetric if and only if

GR12(1− u) = 1−GR12(u) (68)

If the mapping is of the form given by P above this requires that

P (1− u) = −P (u) (69)

The simplest possible type of such a mapping is obtained by choosing P (u) = γ(u − 1/2) for
some constant γ. This leads us to define a natural entity we shall term the symmetric cubic rank
transmutation mapping. We could restrict the range of γ appropriately but will project to the unit
interval to obtain a map valid for all γ as follows:

GR12(u) = min[max[u + γu(1− u)(u− 1/2), 0], 1] (70)

It is a straightforward matter to work out the consequences of this transmutation on the standard
distributions discussed above. In Figure 3 we show its effect on the uniform distribution or −3 ≤
γ ≤ 3 in steps of 1/2. This is clearly a natural candidate for a kurtotic-uniform distribution.

If the underlying distribution is symmetric this mapping preserves this property. So a distribution
with zero skew remains one with zero skew. But the kurtosis may be adjusted by this transmutation.
So for the normal case we would obtain a kurtotic-normal distribution by the use of a symmetric
cubic transformation. This is shown in Figure 4. It should be appreciated that this distribution
eventually becomes bi-modal!
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Fig. 3. Plots of the modulated uniform distribution via symmetric cubic rank transmutation
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Fig. 4. Plots of the kurtotic normal distribution via symmetric cubic rank transmutation
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5. A Structured Set of Skew-Kurtotic Transmutations

Following our initial experiments we shall now proceed more formally and attempt to standardize
a family of polynomial rank transmutation maps. We shall also give a detailed discussion of the
moment structure with a view to making it straightforward to calibrate the maps. For parameters
α1, α2 we shall consider the polynomial family

P (z, α1, α2) = z − z(1− z)
[
α1 + α2(z −

1
2
)
]

(71)

The simplest expressions for the transmuted distribution are obtained when we restrict P to be a
monotone increasing 1 − 1 mapping of the unit interval into itself, i.e. no capping or flooring is
needed. Non-negativity of P ′ at the end-points requires that

−1− α2

2
≤ α1 ≤ 1 +

α2

2
(72)

If α2 = 0 these conditions are sufficient given that P ′ is then linear and we then only need to check
the end-points. If α2 6= 0 we first note that non-negativity of P ′ at z = 1/2 requires that

α2 ≤ 4 (73)

We need to establish under what conditions

min
0≤z≤1

P ′(z) ≥ 0 (74)

Given that the above inequalities are assumed then this last relation is satisfied if α2 < 0 or |α1| ≥
3|α2|/2. If both α2 > 0 and |α1| < 3|α2|/2 we need to impose the further condition that

α2
1 ≤ 3α2 −

3
4
α2

2 (75)

These conditions follow from observing that when α2 6= 0, we may write

P ′(z) = 3α2

(
z − 1

2
+

α1

3α2

)2

+ 1− α2

4
− α2

1

3α2
(76)

These conditions may seem a trifle awkward but they are the guarantee of a globally valid density
function, and the payback is the simplicity of the moment structure as we shall see shortly. As we
have seen previously, this region, shown in Figure 5 in (α1, α2) space, can be extended by applying a
floor and a cap, but within this region we have a simple polynomial mapping. The important thing
is that the region contains a large open set around the origin, which is all that is needed for many
practical purposes where the introduction of a modest amount of skewness and kurtosis is all that
is required. The points on Figure 5 show some special cases, as follows:

• When α2 = 0, as previously discussed:

– The distribution of the square is preserved if the original distribution is symmetric;

– P (z, 1, 0) = z2, which is the distribution of the maximum of two;

– P (z,−1, 0) = 1− (1− z)2, which is the distribution of the minimum of two;

• P (z, 3/2, 1) = z3, which is the distribution of the maximum of three;
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Fig. 5. Valid parameter set for unconstrained mapping in (α1, α2) space; special cases highlighted.

• P (z,−3/2, 1) = 1− (1− z)3, which is the distribution of the minimum of three.

• P (z, 0, 4) = 4z3 − 6z2 + 3z, with P ′(z) = 3(1− 2z)2, which gives an extreme bimodal density
vanishing at the median.

• P (z, 0,−2) = 3z2 − 2z3, with P ′(z) = 6z(1 − z), which gives a mapping concentrating the
density at the median, and is in fact the distribution of the middle of three independent
samples.

So we can recover key members of the family of basic order statistics by making particular choices of
the parameters, which also saturate the bounding inequalities if we do not wish to cap or floor the
mappings onto the unit interval. All of these special cases, and the general formula can be directly
interpreted as skew- and kurtotic- adjusted CDFs for the Uniform Distribution on 0 ≤ z ≤ 1.

5.1. Monte Carlo Sampling Algorithm
In principle, this is a matter of solving a cubic equation, unless α2 = 0 when we have a quadratic.
The solution of this was given by Tartaglia, as discussed in (27). In practice, for robust numerical
use, it is a good idea to trap the special cases and treat them separately, in order that the procedure
used for the general case does not become unstable. So the inverse of the rank transmutation
mapping, given by solving

P (z, α1, α2) = u (77)

for z, is taken to be based on the following ordered cases. By ordered we mean that e.g. the second
case is only considered if the first one is not true - this means that the logic below may be used as
pseudo-code.

z =



u if α1 = α2 = 0,
(α1 − 1 +

√
1 + α1 ∗ (α1 + 4u− 2))/(2α1) if α2 = 0,

3
√

u if α1 = 3/2 and α2 = 1,
1− 3

√
1− u if α1 = −3/2 and α2 = 1,

C(u, α1, α2) otherwise.

(78)
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where the C function denotes the general cubic solver for the other cases. This function is given
by the following algorithm, using the notation and detailed implementations in Section 5.6 of (25).
First we compute

Q =
4α2

1 + 3 (α2 − 4) α2

36α2
2

, R =
4α3

1 − 9α2 (α2 + 2) α1 + 27(1− 2u)α2
2

108α3
2

(79)

Then if R2 > Q3, the equation has one real and two complex roots. In this case we work out GC
according to:

A = −sign(R)
(
|R|+ |

√
R2 −Q3|

)1/3

B = If (A = 0 then A, else Q/A)

C = A + B − 1
3

(
a

b
− 3

2

) (80)

Otherwise the cubic has three real roots, and one has to pick the right one (this applies when α2 < 0),
and this is done by setting

θ = arccos(R/
√

Q3)

C = −2
√

Q cos(
θ − 2π

3
)− 1

3

(
a

b
− 3

2

) (81)

An implementation of this is given in Mathematica in the Appendix. The final step is of course to
apply the quantile function for the base case to the samples of z.

5.2. The Normal case
Now we consider the other important case where z is the CDF of the normal distribution. In this
case we have that the transmuted density function takes the form

F2(x) =
1√
2π

e−x2/2P ′[Φ[x], α1, α2] (82)

Provided the inequalities are satisfied, it is a straightforward but lengthy‖ exercise to compute the
first few moments when the base distribution is the standard normal distribution. The first five
moments are:

E[Xk] =



1√
π
α1 if k = 1

1 +
√

3
2π α2 if k = 2

5
2
√

π
α1 if k = 3

3 + 13
2π
√

3
α2 if k = 4

43
4
√

π
α1 if k = 5

(83)

The key central moments are

E[(X − X̄)k] =


1 +

√
3

2π α2 − 1
π α2

1 if k = 2
2

π3/2 α3
1 − 1

2
√

π
α1 − 3

√
3

2π3/2 α1α2 if k = 3

3− 10
π α2

1 − 3
π2 α4

1 + 13
2
√

3π
α2 + 6

π α2
1

(
1 +

√
3

2π α2

)
if k = 4

(84)

‖Investigations with Mathematica and integration by parts are all that is needed.
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5.2.1. Location of the median
Given that our methodology works transparently on the CDF we are also in a position to make a
characterization of other measures of location. Consider, for example, the median, again with the
normal background CDF. The location of the median cannot be given in an explicit form but it can
be characterized very easily, and furthermore given explicitly for small perturbations. In the normal
case the median x̂ is given by the solution of the pair of equations

ẑ − ẑ(1− ẑ)[α1 + α2(ẑ − 1/2)] =
1
2

Φ(x̂) = ẑ
(85)

As already noted, when α1 = 0 the median is preserved and we have ẑ = 1
2 and x̂ = 0. In general

the value of ẑ can be found using the same cubic solver we use for Monte Carlo simulation and x̂
found by standard methods. When α2 = 0 we can be more explicit and write

ẑ =
1
2

+

√
1 + α2

1 − 1
2α1

(86)

and of course x̂ = Φ−1(ẑ). If we have a situation where α2 = 0 and α1 is small, we can go further
with some manipulations of this formula composed with the normal quantile function (inverse CDF),
and establish that for small α1 the median is given by

x̂ ∼ 1
2

√
π

2
α1 + O(α3

1) (87)

More generally, when α2 6= 0 but is also small, some further analysis shows that the shift in the
median is given by

x̂ ∼ 1
2

√
π

2
α1

1− α2
4

+ O(α3
1) (88)

By comparing this with the expression for the mean we can see that, at least for small values,
α1 modulates the separation of the median and the mean, which is another manifestation of the
skewness.

5.3. Parameter estimation from data or calibration to a model
The question of how to estimate this extended set of parameters now arises, and is critical for
practical applications. We shall distinguish between two cases:

(a) We have some data to which we wish to fit a distribution;
(b) We have analytical expressions for properties of another more complicated distribution that

we wish to model by a skew-kurtotic transmuted form of a standard distribution.

It is important to realize that in practice, and particularly from a numerical standpoint, these may
require different approaches. The first application is the classical statistical one and we shall discuss
it in detail presently. The second application arises commonly in mathematical finance applications.
It is often the case here that one has a distribution that is difficult to characterize in detail, but
whose moment structure is nevertheless known very well. Examples include the distribution of
the time average of some asset prices, or the average of several correlated assets, or a mixture of
the two. Here, for example if the assets are log-normally distributed, it is difficult to give exact
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distributions for the various sums involved in the averages and hence the pricing of related options
is awkward. However, a log-normal approximation may give reasonable answers, but we want to
improve it by matching the skewness and kurtosis of the more complicated distribution. This is a
good application for moment-matching as the third and fourth order moments are available exactly
within the assumptions of the underlying price model. From these the skewness and kurtosis may
be computed and then matched to the formulae we have given.

However, when one has real data, there are complications. While many moments of a sample
may be calculated, these may be very unstable representations of the moments of the underlying
distribution, even in the absence of small sample effects. A good illustration of this in general is a
synthetic situation where a sample is created from a background distribution that is a Student T
with n degrees of freedom. The theoretical kurtosis is

γ2 =
6

n− 4
(89)

and diverges as n → 4 from above. Yet one could always calculate a sample kurtosis. Or one only
needs to observe that the higher the order of the moment, the greater its instability with respect to
the introduction of outliers. While “genuine” outliers may cause one to revise one’s distributional
model, mathematical finance in particular is littered with plain bad data of no conceptual signifi-
cance∗∗ and one really needs to consider a robust approach in dealing with estimation that involves
not just location and scale but skewness and kurtosis.

The common traditional approach is of course to use maximum likelihood estimation. Of course,
this does not necessarily give unbiased estimates but may be considered for the models proposed
here. In the case of our particular form of the adjustments for skewness and kurtosis, it perhaps also
makes sense to exploit the elegant form of the cumulative distribution function, which is a simple
polynomial in the CDF of the base distribution, and is furthermore linear in the extra parameters
α1, α2. On this basis we propose a parameter estimation procedure based on the CDF-fitting method,
as proposed by Bandler et al in their 1994 paper (10). With a base distribution F given in standard
form, e.g. F (x) = Φ(x) we wish to estimate location and scale parameters m,Σ and transmutation
parameters α1, α2 so that the CDF

P (F (
x−m

Σ
), α1, α2) (90)

is the best fit to the observed CDF. To this end we identify a sequence of (percentile) levels ui, i =
1, . . . , N and calculate the corresponding data quantiles qi. Working with a p-norm, we then seek
to minimize an objective function

Op(m,Σ, α1, α2) =
N∑

i=1

|P (F (
qi −m

Σ
), α1, α2)− ui|p (91)

Bandler et al took p = 1. This and the “least squares” choice p = 2 represent preliminary proposals
for parameter estimation routines, in that they are well adapted to our form of the CDF. In particular
the minimization can be split into nested searches, where the minimization over αi exploits the
linearity of the CDF in these parameters. These details will be discussed elsewhere, along with
likelihood- and moment-based estimation.

∗∗Quoting a price temporarily in cents/pence rather than dollars/pounds comes readily to mind.



26 W.T. Shaw and I.R.C. Buckley

6. Discussion

Our conclusions are pretty self-evident so we shall not labour the matter. Transmutation maps are
a powerful technique for:

• turning samples from one distribution into another;

• turning the ranks of one distribution into the ranks of another, e.g. to introduce skewness in
a universal way.

These techniques are well adapted for quasi-Monte-Carlo and copula simulation methods, and may
be extended to include a degree of kurtosis, in contrast to the traditional approach to distributional
modulation. We have given explicit formulae to allow a skew-kurtotic-normal distribution to be
simulated, and made preliminary proposals for parameter estimation. Clearly further work is needed
to

• extend the scope of the sample transmutation maps;

• look at the rank transmutation analogues of the cases we have considered from the point of
view of sample transmutation;

• look at the sample transmutation analogues of the cases we have considered from the point of
view of rank transmutation;

• make more detailed comparisons with the Azzalini framework;

• look carefully at the details of the relationship with series of Gram-Charlier type;

• identify optimal parameter estimation methods.

However, initial results from our “alchemy” studies are very encouraging. The proposals for skewness
adjustments are very simple and may be applied to any base distribution irrespective of whether
it is symmetric or even defined for x < 0. The skewness adjustments may be extended to manage
kurtosis adjustments as well. Our proposals also contain the basic order statistics (mix, min, middle)
as special cases, and give elegant expressions for the CDFs of the relevant distributions within a
univariate framework. We are also able to work out moments for the skew-kurtotic-normal developed
within this framework, and these moments are all simple linear functions of the transmutation
parameters. Our techniques are also very well adapted to Monte Carlo simulation as they make use
of the quantile function of the base distribution composed with an elementary mapping.
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Appendix

This appendix contains some sample computer code in Mathematica. The program to generate the
inverse of the cubic rank transmutation is given, with α1 → a, α2 → b, by

Qfunc[a_, b_] := ((a/b - 3/2)^2 - 3(1/2 + 1/b - a/b))/9;

Rfunc[a_, b_, u_] := (2(a/b - 3/2)^3 - 9(a/b - 3/2)(1/2 + 1/b - a/b) - 27u/b)/54;

Sample[u_, a_, b_] := Which[
b == 0 && a == 0, u,
b == 0, ((a - 1) + Sqrt[1 + a*(a + 4u - 2)])/(2a),
b == 1 && a == 3/2, u^(1/3),
b == 1 && a == -3/2, 1 - (1 - u)^(1/3),
True,
Module[{R = Rfunc[a, b, u], Q = Qfunc[a, b], A, B, theta, rez},
rez = Which[R^2 - Q^3 > 0, (

A = -Sign[R](Abs[Sqrt[R^2 - Q^3]] + Abs[R])^(1/3);
B = If[A == 0, 0, Q/A];
A + B - (a/b - 3/2)/3), True,

(theta = ArcCos[R/Sqrt[Q^3]];
-2Sqrt[Q]Cos[(theta - 2Pi)/3] - (a/b - 3/2)/3)];

rez]]

This can be used as is for exploring the transmuted quantile function, which is the composition of
the above cubic inverse mapping followed by the quantile function of the base distribution.


