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Abstract In modern industrial manufac-
turing, a great amount of data is gathered
to monitor and analyze a given production
process. Intelligent analysis of such data
helps to reveal as much information about
the production process as possible. This
information is most useful if it is available
in the form of interpretable and predictive
models. Such models can be generated
from data by means of (fuzzy logic based)
machine learning methods. In this contri-
bution we will describe industrial applica-
tions in the areas of process optimization
and quality control where we have success-
fully established machine-learning methods
as intelligent data analysis tools.

1 Introduction

In order to be competitive on the market,
the major goal of any industrial production
process is to produce — as fast as possi-

ble — a large quantity of high-quality prod-
ucts in a (cost-) efficient way. To tackle
this challenge, major requirements are an
optimized production process and constant
quality control. Obviously it is desirable
that each of these issues is supported by
suitable intelligent data analysis (IDA) tools
which operate on the process data, i.e. sig-
nals which are measured by appropriate
sensors connected to the production pro-
cess.

Fig. 1 shows a possible scenario where
IDA tools are used in an offline manner:
the knowledge gained by IDA operating on
large amounts of stored data influences
“online” analyses like quality control, trend
analysis, and fault detection, as well as the
production process itself, i.e. process op-
timization. It turns out that the knowledge
extracted by the IDA is particularly useful
if it comes in the form of mathematically
well defined models of certain dependen-
cies within the data. A potentially success-
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Figure 1: Possible scenario of itelligent data
analysis (IDA)

ful approach is to generate such models
by means of machine learning methods;
see e.g. [1]. Typically a model “learned”
from the data predicts a sensor signal s,
based on a set of different sensor signals
1,82, ..., Say 1.€. S, = M(sq1,52,...,54) (S€€
also Fig. 2A).

The use of such predictive models can be
twofold: one can exploit the predictive capa-
bilities of a model on the one hand and the
structure of the model on the other hand.
The prediction obtained from a given (and
previously learned) model can for example
be used to detect anomalous working con-
ditions of the production process [2] or to
get an idea about the quality of the product
if certain process parameters are varied. In
such applications, the accuracy of the pre-
diction is of primary interest while the struc-
ture of the model plays a minor role. How-
ever, if the structure of the model is eas-
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Figure 2: Computational models. In con-
trast to “black box models” (A) such as neu-
ral networks, descriptive models such as
decision trees (B) or rule bases (C) are easy
to interpret. The drawings in panels B and
C are obtained with mif (see Sec. Il) applied
to the well-known iris data set.

ily interpretable, like it is the case for deci-
sion trees and rule bases (see Fig. 2B), this
structure can help to understand the pro-
cess in more depth. In consequence, such
enhanced knowledge can often be used to
optimize the production process.

Even from this short introduction, one can
already specify two general requirements
of machine learning methods when applied
as intelligent data analysis tools: the re-
sulting models should have good predictive
capabilities while the structure of a model



should be easily interpretable. In Sec. 2,
we will describe a framework for machine
learning, called mlf, which tries to meet this
requirements. mlf has been successfully
used as an intelligent data analysis tool in
several applications. Two particular appli-
cations are described in Sec. 3 and Sec. 4.
Throughout the sections 2, 3, and 4, we will
draw our attention to the features of the ap-
plied machine learning tools which turned
out to be important to successfully establish
them in an intelligent data analysis tool.

2 mif: A Machine Learn-
ing Framework for Math-
ematica

The machine learning framework for Mathe-
matica! (mlf) is a collection of powerful ma-
chine learning algorithms integrated into a
framework for the main purpose of intelli-
gent data analysis [3]. mlIf?2 combines an
optimized computational kernel - the core
engine - realized in C++ with the manipu-
lation, descriptive programming, and graph-

IMathematica is a registered trademark of Wol-
fram Research Inc. (www.wolfram.com).

’mif is developed and supported by the Knowl-
edge Based Technology area of the Software
Competence Center Hagenberg GmbH (A-4232
Hagenberg, Austria, http://www.scch.at). mif
is owned and distributed by uni software plus
GmbH (Kreuzstrasse 15a, A-4040 Linz, Aus-
tria, http://www.unisoftwareplus.com/) which has ten
years of experience in distributing Mathematica and
Mathematica-based solutions and collaborates with
Wolfram Research, Inc., for worldwide distribution.

ical capabilities of Mathematica (see Fig. 3).

Descriptive models via fuzzy logic

The design of mlf was strongly influenced
by the requirements of being able to gen-
erate descriptive and highly predictive com-
putational models. To a large part, this was
achieved by integrating fuzzy logic wher-
ever possible. As a result, the models gen-
erated by mif contain easily interpretable
phrases like “the value of sensor s; is large”
while still maintaining numeric accuracy and
predictive capabilities. In addition, smooth
results very often model the underlying de-
pendencies within the data more realistic
than crisp ones.

Wide range of algorithms

As it is a matter of fact that for a given prob-
lem, itis not clear in advance which learning
algorithm will yield the best results, it is al-
ways a good advice to try different machine
learning algorithms or to combine them to
solve one single problem. Such combi-
nations of distinct algorithms may give the
user unforeseen insights into their data.
Therefore mlf covers a wide range of ma-
chine learning algorithms, which are listed
in Tab. 1 together with the corresponding
references.

Visualization and structure of data

In addition to supervised learning algo-
rithms which generate the kind of compu-
tational models depicted in Fig. 2A, the



Table 1: Algorithms implemented in mif

Supervised Analysis

Fuzzy decision tree learning (FS-ID3) [4]
Fuzzy rule base learning (FS-FOIL, FS-MINER) [5]
Numerical optimization of arbitrary rule bases (RENO) [6]

Unsupervised Analysis

Clustering algorithms (WARD, FCM) [7, 1]
Self-organizing maps (SOM) [8]

machine learning framework also contains
several unsupervised learning algorithms.
Such algorithms can help to understand
how data is structured (e.g. which groups
of customers a company has) or to visu-
alize the often very high dimensional data
(e.g. by using SOMs [8]). Apart from ma-
chine learning algorithms, mif includes a
wide range of visualization methods using
all the power from the graphics capabilities
of Mathematica.

High speed

All algorithms are highly parameterizable to
be able to adjust them to a particular prob-
lem. Given this parameterizeability and the
range of learning algorithms combined with
the efficient core engine (realized in C++)
of mlf, the user is able to “look at their data
from different points of view” in real time.

Powerful architecture and interface

The machine learning framework for Math-
ematica is used from the Mathematica front
end. By using the Mathematica front end,
one has access to all Mathematica func-
tions, including the powerful graphical ma-
nipulation tools, and, with the Mathemat-
ica programming language, one has access
to an elegant scripting language. How-
ever, computationally intensive algorithms
are implemented in an optimized compu-
tational kernel (the core engine realized in
C++) to yield fast response times. The
C++ kernel is completely independent of
the Mathematica front end and can be uti-
lized from any environment capable of call-
ing C++ functions (see Fig. 3).

3 Process optimization in
paper production

In this section, we will describe an applica-
tion of mif for process optimization in paper



production.

Paper production is a complex flow pro-
cess with several process levels and hun-
dreds of process parameters which poten-
tially influence the quality of the produced
paper, assessed by dozens of quality mea-
surements. Hence a major goal is to adjust
the process parameters for optimum paper
quality under tough economic constraints.
Knowledge about dependencies within the
data, i.e. the process parameters and the
guality measurements, is valuable informa-
tion in assisting the optimum adjustment of
parameters which needs enormous expert
knowledge and experience. Unfortunately
the process of paper production is so com-
plex that the creation of explicit models for
such dependencies is hardly possible. In
such a case, intelligent data analysis by
means of machine learning methods can
help to discover such required knowledge
from previously measured data.

This approach turned out to be very fruit-
ful and culminated in a project together with
VOITH Paper (www.voith.com) and SCA
Graphic Laakirchen AG (www.sca.at) where
a machine learning application called Pa-
perMiner was (and is still being) developed.
PaperMiner is heavily used in practice and
has led to a number of surprising insights
by the users.

A major requirement for the PaperMiner
from the onset was a graphical user inter-
face (GUI) for accessing some of the func-
tionality of mif (see Fig. 3 for a block dia-
gram of PaperMiner). The requirement for
a GUI reflects the more general require-
ment that basic machine learning function-
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Figure 3: The architecture of PaperMiner
which, is based on mlf.

ality must be accessible for users without a
special mathematical background. On the
other hand, experts should be able to dig
deeper using the same tools (e.g. with re-
spect to co-operative work). This results in
the following requirements:

GUI for standard problems

A user should be able to obtain useful re-
sults for standard problems by following a
rather short series of simple steps. The
PaperMiner GUI represents the required
steps in a hierarchical way which makes
the whole workflow visible at first sight; see
Fig. 4.

Expert interface

In many cases, however, standard pro-
cedures will not yield the desired results.
In these cases, the user should be able,
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Figure 4: Graphical user interface (GUI) of
PaperMiner (screen shot)

for instance, to optimize parameters of the
model-generating algorithms. With the cur-
rent architecture of the application, this is
possible through the Mathematica interface
of mif.

Another primary requirement for the Pa-
perMiner was that it can be used in con-
nection with Microsoft Excel, for the follow-
ing reasons: a) Excel is a program which
potential users are typically already familiar
with; b) Excel is capable of displaying and
transforming data in a convenient way; and
a) It is relatively easy to extract data from a
database into an Excel file (and respective
scripts were already available for the pilot
application). From the requirement to use
Excel as the data source, one can derive
the more general requirement that applying
the machine learning algorithms is only half
of the story about intelligent data analysis.
One also needs flexible, powerful and easy-
to-use tools to access and preprocess the
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Figure 5: PaperMiner’s interactive decision
tree. The screen shot shows a decision tree
generated for the well known iris data set.

data.

During the application of PaperMiner to
practical problems in paper production, it
turned out that whereas the resulting mod-
els often describe highly interesting de-
pendencies, sometimes the chosen at-
tributes/measurements are judged by the
domain experts not to be the “best” ones.
To examine whether the original measure-
ment suggested by the learning algorithm
can be replaced by a “better” measurement,
PaperMiner features an interactive tool for
the construction of a decision tree. This
tool allows a user to modify individual nodes
of a given (most commonly a previously
learned) decision tree; see Fig. 5.

A further requirement is that the standard
presentation of the output should be as ap-
pealing and intuitive as possible. This is
most easily achieved by graphical represen-
tations. We experienced that people could
easily interpret decision trees with color en-
coding of key information at the nodes with-



out knowing anything about the theoretical
background. Simple diagrams and similar
graphical depictions can be interpreted by
humans intuitively, at first sight, while the
information conveyed by such pictures is
still sufficient for most applications. Still, for
fine-grained process optimization, more de-
tailed output must be available as well.

4 Machine Learning in Dis-
crete Manufacturing

In this section, we will describe applications
of machine learning in the are of discrete
manufacturing. The process of assembling
discrete parts from its discrete components
(produced elsewhere) has different charac-
teristics from a flow process like paper pro-
duction (see previous section). In a typical
assembly line, the components to be as-
sembled (provided by certain feeder mod-
ules) are fixed at a workpiece holder which
goes through several processing modules
until the part is finished either as “0.k.” or
“not 0.k.” (cf. Fig. 6). The whole assembly
process is monitored by a shop floor man-
agement system which collects the process
data and provides statistical information to
operators and the management.

In a project together with AMS En-
gineering  Sticht GmbH  (www.ams-
engineering.com), we set out to apply
machine learning tools like mlf to gain
more knowledge out of the information
provided by the shop floor management
system. The high level goal is to achieve
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finished
parts

Figure 6: Schematic of a loosely coupled
assembly line.

an overall equipment efficiency (OEE) as
high as possible and to analyze the causes
if the OEE is not satisfactory. The OEE is
a product of equipment availability (£ A),
production efficiency (PE), and quality rate
(QR). Therefore each of the three factors
must be as high as possible.

If one of those factors is strongly varying
over time, it is of interest to figure out the
factors which cause low values. For exam-
ple, one may investigate whether the peo-
ple operating the assembly line and the type
of the produced parts influence the aver-
age time needed to produce one part. A
result of such analysis of a hypothetical as-
sembly line which produces different types
of footwear is shown in Fig. 7. From such
a decision tree, one can not only conclude
that the average time indeed depends on
the type and operator but one can also see
groupings of operators and types. Similar
results were obtained for real data (from a
given assembly line with more then 30 pro-
cessing modules made available by AMS
engineering Sticht GmbH) when analyzing



else

if operator € {Sue, Pam, Tim, Sam, Bob, Kim} then
if type € {casuals, sandals} then 7" = 13.7

if type € {sandals, galoshes, slippers} then "= 13.05

else T =127

else T =11.34

Figure 7: A binary decision tree (written as if-then-else statements) which shows how the
average production time 7" depends on the produced type and the operator of a hypothet-

ical footwear assembly line.

FEA, PE, and QR in this manner.

Obviously there are much more prob-
lems regarding the analysis of FA, PE, and
QR which can potentially be addressed by
means of machine learning tools. Below,
we describe for each of the three factors
a typical issue which was not yet solved
in a satisfactory way in the analysis tools
which are currently integrated in the shop
floor management system.

Equipment availability

Equipment availability (FA) measures how
much time is lost by (technical or organiza-
tional) standstills of the assembly line. Min-
imizing the number of standstills maximizes
FEA. Since a standstill of the assembly line
is caused by the standstill of one or more
processing modules, one must detect the
“guilty” modules and remedy deficiencies in
those modules. In a rigidly coupled assem-
bly line, all the processing modules work

synchronously,® and it is rather straightfor-
ward to detect which module caused the
standstill. In contrast, a loosely coupled
system consists of asynchronously work-
ing processing modules, and the individual
workpiece holders are moved forward by
separate transport modules which also act
as buffers (cf. Fig. 6). In this case, it is not
trivial to always detect the correct “guilty”
modules. Having a model which relates
standstills of the assembly line and stand-
stills of modules to each other will help to
find the reasons for low E'A. In the current
project, first promising results have been
obtained by a combination of intelligent data
visualization and machine learning tools.

Production efficiency

Production efficiency (PFE) describes how
efficient/fast the individual parts are pro-
duced. On the level of individual modules,

3To ensure that all the workpiece holders are at
the right place at the right time they are usually at-
tached to some kind of transportation belt.



PE measures how efficient/fast the pro-
cessing step of a given module is. To op-
timize the efficiency, it is, of course, inter-
esting to know what parameters influence
the processing speed (and thus PF) of a
given module in which way. In the con-
text of optimizing the PE of the whole as-
sembly line, it is of special interest to ana-
lyze whether parameters which directly con-
trol the behavior of a given module influ-
ence the speed of any successor module.
Making extensive use of machine learning
tools, one can, for example, construct a dia-
gram where it is shown how strong the pro-
cessing speed of a given module depends
on parameters associated with predeces-
sor modules. With such an overview dia-
gram, one can dig deeper to look at the in-
dividual models relating the parameters to
the processing speed. This approach was
successfully applied in analyzing real data
(made available by AMS engineering Sticht
GmbH).

Quality rate

The quality rate (QR) is the ratio between
the number of “0.k.”-parts and the total num-
ber of produced parts. The quality (“o.k.” or
“not 0.k.”) of a part is determined by means
of a great number of measurements (taken
at several modules) such as force, length,
and torque referred to as quality criteria. If
any of these quality criteria is outside its
allowed range, the part is marked as “not
0.k.”. A central issue is to analyze relation-
ships between such measurements. Such
knowledge will not only help to increase the

quality rate of the machine but also help
to determine whether a measured quan-
tity is “important” or “useless” (and may be
skipped at all), i.e. attribute selection. In-
teresting results of this kind for real data
were obtained by using so called model or
regression trees for more details).

5 Conclusions

In this paper we have described two areas
of industrial applications (paper production
and discrete manufacturing) where we have
successfully applied machine learning tools
(in particular mif) in an offline manner for
process optimization and quality control. In
fact, the knowledge gained by applying this
type of intelligent data analysis helped to
optimize the production processes.

The currently running projects are by no
means unidirectional. We are constantly
receiving feedback from our industry part-
ners which often results in improvements
of the used methods. Each particular im-
provement effects one ore more aspects of
the used methods. According to our experi-
ence gained in the running projects, several
aspects turned out to be important for ma-
chine learning methods to be a useful tool
to analyze a company’s crucial data:

e Interpretability and prediction accu-
racy of computational models gener-
ated from data (e.g. fuzzy decision
trees combine these two requirements)

¢ Integration of methods in existing anal-
ysis and preprocessing tools (e.g. Pa-



perMiner is built as an add-on to MS-
Excel)

e Possibility to compare the results of
several methods (with different param-
eters) in reasonable time.

e Appealing and easy-to-comprehend
graphical representation

e Different levels of analysis; i.e. GUI
(e.g. PaperMiner) versus programming
language level (e.g. Mathematica).

If all these requirements are met, it is very
likely that people start to “trust” in those
methods of data analysis.
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