
Detecting patterns in the Time Series 
 

The ability to detect patterns and signals in the time series plays an important role the data analysis, data models and forecasting. Patterns help transforming 
raw data into information, which is much more valuable to explain (i) when (ii) what and (iii) how the changes occurred to some data series. Patterns also point 
out at relationships that may exist between certain observations and their causations. 
Detecting patterns in time series with Mathematica is straightforward and reasonably simple task. This is due to much improved version of Mathematica 10 that 
comes with the dedicated TimeSeries pack of routines and functions that are particularly built for the efficient time series analysis. These are complemented 
with a rich repository of resources available in related disciplines – such as probability and statistics, physics or image processing. 
 

Consider the historical time series for the JPY/USD exchange 
rate that we want to analyse and detect patterns in the data. 
We select the 5Y window for this demonstration case: 

 
The JPY spot fluctuated in the past 5  years between [75, 115] 
with two fundamental trends: (i) appreciation – till the end of 
2012 followed by (ii) depreciation  - from 2013 till present 
days. 
 
Our objective is to break the series into non-overlapping 
windows that we may want to analyse in detail. Our main toll 
will be the TimeSeriesAggrregate function. 
Let’s look at the quarter-by-quarter mean: 

 

 

The quarterly mean value evolution indicates 
where the actual trend stays relative to the noise 
around that mean. 
The residuals are showing patterns with different 
magnitude of dispersion.  

 
 
Let’s have a look at volatility: 

 

 

As the trend changed its slope and directions, the 
volatility was moving quite significantly. We can 
identify the periods of high volatility (early 2009, 
early 2012, twice in 2013 and late 2014). On the 
other hand, the yen appreciation period was 
marked by subdued volatility. This behaviour is 
quite common – stiff resistance around historical 
lows leads to the narrowing of dispersion range 
and hence lower volatility. 
 
To investigate this dispersion further, we can have 
a look at the ‘envelope bands’ formed by max-min 
set: 

 

 



The envelope shows the tightening and widening trends 
with particular peaks around the change of volatility 
curvature and inflection points. 
There is also a striking similarity between the volatility 
and envelope shapes: 

 

 
 
Max-Min envelope is a good volatility predictor and any 
time the envelope gradient changes, we may expect the 
move in the underlying volatility. This is a useful pattern 
to follow when studying dispersion in the time series. 
 
Additional useful piece of analysis can be obtained from 
the higher-order moments such as skewness and 
kurtosis: 

 

 
We can observe: 

1) Positive skewness every time vol increases 
2) Lack of symmetry between volatility and kurtosis 

– this means other factors than volatility making 
contribution into the tails of the distribution 

Alternative way to explore the data patterns is to 
analyse cumulants – the log transforms of moments. 
The second quarterly cumulant serves as a good 
variance proxy and displays the following behaviour: 

 

 
Cumulants are quite similar in shape to the volatility 
patterns and exhibit corresponding  peaks / valleys.  
 
Cumulants preserve certain distributional 
characteristics: 

 
 

 
This is distributional patterns of quadratic cumulants 
over the entire observation period. Long right-hand 
tail indicates bi-modal behaviour and most likely non-
parametric representation of the underlying data. 

We can borrow filtering technique from signal & image 
processing for data adaptation. This is the adjusted 
volatility with  the Gaussian linear quartic filter: 

 

 
The filter eliminates the ‘noise’ and turn the volatility 
into a smoother function. 
We can fit the Linear Model (cubic polynomial) to the 
filtered volatility data: 

 

 
and plot it: 

 
The cubic model provides reasonable representation of 
volatility patterns as function of time. 

 


