
Jump Diffusions with Mathematica 10 
 

Jump diffusions provide practical extension of the theory of random processes in various dimensions. They bring additional source of randomness and provide 
extra control for complex data handling that do not tend to follow particular parametric pattern. Therefore, jump diffusions have gained popularity in finance to 
model future behaviour and distributions of financial data. Why? The standard option theory in finance assumes that the logarithm of asset price is normally 
distributed. However, in practice, the observed distributions are not normal – they exhibit ‘fatter tails’, i.e. the probability of very large moves in either direction 
is larger than allowed by normal distribution. Therefore, the jump-diffusion method has been brought to provide plausible mechanism for explaining why fat tails 
exists and what are their consequences. 
Jumps generally complicate the matter and the mathematics of diffusion process. We have two sources of randomness but only one tradable asset. A solution 
that still makes the model arbitrage-free is to assume that jumps are independent from the underlying and hence can be eliminated through diversification. We 
demonstrate the power of Mathematica 10 for jump diffusion analysis and show how one can easily price options on assets, which follow this process. 
 

A standard one-dimensional diffusion process in finance 
solves  𝑑𝑦 = 𝜇(𝑡) 𝑑𝑡 + 𝜎(𝑡) 𝑑𝑤. The jump-diffusion process 
solves (most time) the same differential equation, but 
solution occasionally jumps.  The jumps can be bi-directional 
(positive and negative). To formalise the jump-diffusion 
process we therefore need to define the jump statistics. 
 
Jumps are generally modelled with the Poisson process with 
rate 𝜆 which defines the jump frequency.  Jumps are 
therefore independent of each other and the mean waiting 
time for the jump to occur is 1/𝜆.  The higher the rate, the 
more likely occurrence of a jump. When jump occurs, the 
underlying process increases by the jump size. 
 
Consider the case –  GBM process with 𝑥0 = 1, 𝜇 =
0.5%, 𝜎 = 5% and the Poisson process with 𝜆 = 3. 

 

 
 

 

As the graphs indicate, jumps transform the 
original process (the middle graph) into very 
different path. 
Although the Poisson process provides tractable 
representation of jumps, it has its limitation due 
to the fixed jump size = 1. Therefore, practitioners 
use its variation – the so-called Compound Poisson 
process that enables further definition of the jump 
statistics of with a specific jump-size distribution. 

1) Exponential jumps: 

 
2) Gamma-distributed jumps: 

 
 

Both Exponential and Gamma jumps are plausible 
choices for the magnitude control, however their 
jumps are unidirectional (positive). Since some 
financial markets exhibit jumps in both directions (such 
as credit), we can define a compound Poisson process 
with normally-distributed jump sizes in both directions: 

 
 
Let’s apply the jump theory to a real=case: 
Consider the following case- iBoxx USD High Yield 
Corporate Bond Index with the following profile: 

 



We want to price an option on the index and consider 
jump-diffusion model as alternative assumption for the 
process dynamics. Given the nature of the market 
(credit), we select the CIR process for this task and 
calibrate it to the historical data: 

The sample simulation will look as follows: 

 
 
The process is well behaved and the CIR model fits the 
market data well. 
 
We now want to add jumps to this process and explore an 
alternative specification with presence of extra randomness. 
We choose low-frequency  Compound Poisson Process  with  
normally distributed jumps with 𝜆 = 5%  and jump size mean 
= 7.5% and the jump size volatility 9%. We use newly defined 
TransformedProcess function to define the jump diffusion. 
 

 

We can now visualise the simulation: 

 

 
Although the graph does not look much different from 
the standard CIR simulation, we can compare  the 
expected values for both processes to deduce the 
change: 

 

 
Means for both processes are now quite different and 
we can see that jumps produce very different 
distributional pattern.  
We can further verify the jump impact through higher  
distributional moments such as volatility: 

 

Jumps have clearly altered  the HYG index distribution 
into the format with ‘fatter tails’. We can investigate 
this further via histogram: 
We fix the stationary distribution at 6M interval – 10th 
May 2015 and examine the patterns: 

 

 
Jumps cause the distribution mass to move to the right 
and make the RHS tail fatter. 
 
Option pricing:  with generated paths, the option 
pricing is easy. 6M call option on the HYG index will 
produce very different prices under the CIR and Jump-
CIR model: 
 

 
 
The option prices are quite different under the jump-
diffusion model and the fatter tails make options more 
valuable.  This pattern is particularly well observed in 
the OTM territory with higher strikes. 

 


