A simple mathematical model for prediction of nitrogen dioxide molecular structure

Gianluca Argentini

gianluca.argentini@rielloburners.com gianluca.argentini@gmail.com

Where it is shown that one can numerically compute the angle between atomic bonds and length bonds in NO_2 molecule with a good agreement with experimental data.

In this paper we assume that nitrogen and oxygen atoms have valence electronic configuration $2s^22p^3$ and $2s^22p^4$ respectively. In NO₂ nitrogen dioxide molecule, N atom and each O atom share two pairs of electrons while N preserves a single unpaired electron (see ¹ChEBI). The pairs of electrons shared by N and O are bonding pairs, according to VSEPR theory terminology (see ^{1,2}Gillespie).

From VSEPR theory, in this molecule the three atoms have a planar configuration. Let be α = ONO the angle with vertex at N nucleus, that is the angle between atomic bonds. Also, we consider the circle C_N centred on N nucleus and having radius R_N equal to Van der Waals radius of N (see ¹Gillespie), and the two circles C_O centred on O nuclei and having radii R_O equal to Van der Waals radius of O, positioned along the line NO with O nucleus at a distance, from N, equal to a value *d* to be defined. Let be A the point of intersection between C_N and the vertical line traced from N nucleus, and B and C the two intersections between C_O and the lines NO respectively (see Fig.1). Finally, denote with χ_N and χ_O the nitrogen and oxygen electronegativities.

Fig. 1 The geometrical representation of nitrogen dioxide molecule.

In the most simple representation, assuming cr_N and cr_O the covalent radius of N and O respectively, the length *d* of the bonds N-O is assumed to be the sum $cr_N + cr_O$. But nitrogen and oxygen are two chemical elements having great electronegativity values, so the real length bond *d* is lower than the sum of the two covalent radii (see ²Gillespie). Also, $\chi_O > \chi_N$, so O atom attracts valence electrons and the extension of the bond electronic pair domain decreases along the NO direction. We can think that $d : (cr_N + cr_O) = \chi_N : \chi_O$, therefore the length bond is

$$d = (cr_{\rm N} + cr_{\rm O}) \frac{\chi_{\rm N}}{\chi_{\rm O}}$$

If Q is the charge concentration at point A of the nitrogen unpaired electron, then for the double bonds N-O the charge concentrations at points B and C, due to two valence electrons of oxygen, are 2Q. The Coulomb electrostatic energy among the three electronic pairs domains is

$$W = Q \ 2 Q \ \frac{1}{d_{\rm NO}} + Q \ 2 Q \ \frac{1}{d_{\rm NO}} + 2 \ Q \ 2 Q \ \frac{1}{d_{\rm OO}}$$

where is $d_{\rm NO}$ the distance between N and O atoms, and $d_{\rm OO}$ is the distance between O atoms in the molecule. If we consider a cartesian system with origin at the middle point of the segment BC, then the cartesian coordinates of A, B and C are A = {0, $R_{\rm N}$ + ($d + R_{\rm O}$) cos $\alpha/2$ }, B = {-($d + R_{\rm O}$) sin $\alpha/2$, 0} and C = {($d + R_{\rm O}$) sin $\alpha/2$, 0} respectively. The geometric configuration of the molecule in its ground state is determinated by atoms positioning so that W is minimum.

We can find numerically, using a mathematical software, the value of α for which *W* has its minimum (see ¹Trott). Note that, for this purpose, it is not restrictive to suppose Q = 1. These are the values of geometric parameters used for computation (see ¹CCCBDB and ¹Gillespie): $R_{\rm N}=150 \ pm$, $R_{\rm O}=140 \ pm$, $cr_{\rm N}=70 \ pm$, $cr_{\rm O}=60 \ pm$, $\chi_{\rm N}=3.1$, $\chi_{\rm O}=3.5$.

In Fig. 2 there is a plot of the Coulomb energy as function of the angle α the N-O bonds. Minimum is obtained for a value of 2.35 *rad*, that is $\alpha = 134.65^{\circ}$. Note that this value is in good agreement with experimental values reported in technical literature, e.i. $\alpha = 134.1^{\circ}$ in ¹CCCBDB.

Note that the *d* length bond, computed using previous formula, is 120.5 *pm*, to be compared with the value of 119.4 *pm* from experimental data (see ¹CCCBDB).

Fig. 2 Graph of the Coulomb energy vs the angle α = ONO, due to electronic pairs in nitrogen dioxide molecule.

Summary Table

	Experimental	This model
ONO angle [°]	134.1	134.65
bond length [pm]	119.4	120.5

References

¹ CCCBDB, Computational Chemistry Comparison and Benchmark DataBase, http://cccbdb.nist.gov/, 2013

¹ ChEBI, Chemical Entities of Biological Interest, https://www.ebi.ac.uk/chebi, 2014

¹ R. J. Gillespie and I. Hargittai, *The VESPR Model of Molecular Geometry*, Boston, Allyn and Bacon, 1991

² R. J. Gillespie and P. L. A. Popelier, *Chemical Bonding and Molecular Geometry*, Oxford & New York, Oxford University Press, 2001

¹ M. Trott, The Mathematica Guidebook for Numerics, New York, Springer, 2006

About the Author

Gianluca Argentini works in Research & Development Dept. at Riello SpA, Italy, where he studies fluid dynamics and chemical kinetics of flames in burners combus tion heads for NO_x and CO emissions reduction.

Riello SpA, San Pietro di Legnago (Verona), Italy

March, 2014