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1 Introduction

A symbolic computer program which analytically calculates second and higher order
covariant derivatives of arbitrary rank tensors may be tested by applying it to various
tensor expressions involving the derivatives where the outcome of the calculation may
be relatively easily checked �by hand� or where the outcome is already known. These
expressions include di�erential identities for the Riemann tensor and equations for a
Killing vector �eld.

Notation:
a, b, c, d, . . . = 0, 1, 2, 3 � indices of spacetime coordinates.
gab(x

c) � spacetime metric of signature (−,+,+,+).
:= � de�ntion, ≡ � identically equals to,
∇a T ≡ T;a � the covariant derivative with respect to the metric.
The conventions for the curvature tensor are as in Hawking & Ellis' book:

Ra
bcd := ∂cΓ

a
db − ∂dΓacb + ΓmdbΓ

a
cm − ΓmcbΓ

a
dm, Rbd = Ra

bad.

Terms containing second covariant derivatives:

Rcadb
;cd ≡ ∇d∇cRcadb ≡ gdegcf ∇e∇f Rcadb,

Rab;c
;c ≡ ∇c∇cRab ≡ gcd∇d∇cRab,

R;ab ≡ ∇b∇aR := ∇b(∂aR), Rc
a;bc ≡ ∇c∇bR

c
a.
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2 Identities for the curvature tensor following from the

generalized Bianchi identity valid for any dimension

≥ 3

One de�nes two tensors which vanish identically for the Riemann tensor,

Aab := Rcadb
;cd −Rab;c

;c +RacR
c
b +RcabdR

cd +
1

2
R;ab ≡ 0, (1)

Cab := Rc
a;bc +Rc

b;ac − 2RacdbR
cd − 2RacR

c
b −R;ab ≡ 0. (2)

The program should check that the tensors Aab and Cab vanish identically for some
known solutions to Einstein �eld equations inside matter (Rab 6= 0):
a) perfect �uid, then Tab = (ρ+ p)uaub + pgab where u

aua = −1,
b) the electromagnetic �eld, Tab = FacFb

c − 1
4
gabFcdF

cd, where F ab
;b = 0,

c) pure radiation �eld (null �eld or ultrarelativistic dust), Tab = φ2(xc)kakb with k
aka =

0.
None of these energy�momentum tensors will explicitly appear in the identities and their
role is solely to ensure that Ricci tensor does not vanish and identities (1) and (2) are
not exceedingly simpli�ed (if Rab = 0 then (1) is reduced to one term and in (2) all the
terms vanish separately).
The following spacetime metrics are taken from H. Stephani, D. Kramer, M. MacCallum,
C. Hoenselaers and E. Herlt, Exact solutions of Einstein's �eld equations , Cambridge
Univ. Press, Cambridge (2003).

1. Homogeneous spacetime generated by a homogeneous nonnull electromagnetic
�eld, this is Bertotti�Robinson spacetime, xa = (t, x, θ, φ),

ds2 = − sinh2 x dt2 + dx2 + dθ2 + sin2 θ dφ2. (3)

The metric is conformally �at and spherically symmetric, the �eld F ab is sourceless.
Accordingly the spacetime has 4 Kiling vector �elds: the timelike Ka

t = δa0 and the
3 rotational Killing vectors of the ordinary sphere S2, e. g. the generator of rotations
about x axis is Ka

x = (0, 0,− sinφ,−ctgθ cosφ).

2. The Gödel spacetime (xa = (t, x, y, z)):

ds2 = −dt2 − 2ex dt dz + dx2 + dy2 − 1

2
e2x dz2. (4)

The source is pressureless dust. The metric is symmetric with respect to translations
along the axes t, y and z, i. e. Ka

t = δa0 , K
a
y = δa2 , K

a
z = δa3 .
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3. Open Robertson�Walker spacetime (xa = (t, r, θ, φ)):

ds2 = −dt2 + a2(t)[dr2 + sinh2 r(dθ2 + sin2 θ dφ2)], (5)

a perfect �uid is the source. There are 6 Killing vectors including the 3 rotational Killing
�elds of S2; here again one can take the Ka

x �eld.

4. Reissner�Nordström spacetime with the cosmological constant, xa = (t, r, θ, φ),

ds2 = −
(

1− 2M

r
+
Q2

r2
− 1

3
Λr2

)
dt2+

(
1− 2M

r
+
Q2

r2
− 1

3
Λr2

)−1

dr2+r2(dθ2+sin2 θ dφ2),

(6)
the matter is the electrostatic �eld due to the electric charge Q. The metric admits 4
Killing vector �elds: the generator of translations in time, Ka

t = δa0 and the 3 generators
of rotations of S2.

5. The Bell�Szekeres solution in coordinates xa = (u, v, x, y):

ds2 = −2du dv + cos2(Au−Bv)dx2 + cos2(Au+Bv)dy2, (7)

where A and B are constant. This spacetime represents the collision of two electroma-
gnetic shock waves generating impulsive gravitational waves. The metric is invariant
under translations along the x and y axes, Ka

x = δa2 and Ka
y = δa3 .

6. The Robinson�Trautman spacetime, xa = (u, r, x, y),

ds2 = −2H(u, r, x, y) du2 − 2du dr +
r2

P 2
(dx2 + dy2), (8)

where P (u, x, y) is independent of r. The functions H and P satisfy some di�erential
equations since the spacetime is generated by a kind of electromagnetic �eld. In the test
one assumes that H(u, r, x, y) and P (u, x, y) are arbitrary. Symmetries appear only for
special solutions H and P .

7. The Kundt's class of solutions in xa = (u, v, x, y) has the metric

ds2 = −2H(u, v, x, y)du2 − 2du dv − 2U(u, v, x, y)du dv − 2V (u, v, x, y)du dy +

+
1

P 2
(dx2 + dy2), (9)

where P = P (u, x, y) does not depend on v. Sources are electromagnetic and radiation
�elds and perfect �uid for p = −ρ. In general there are no symmetries, only for special
solutions.
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8. Van Stockum spacetime generated by a rotating dust, xa = (t, r, φ, z),

ds2 = −dt2 − 2Ar2 dt dφ+ r2(1− A2r2)dφ2 + e−A
2r2(dr2 + dz2), (10)

A =const. Spacetime is stationary and has the cylindrical symmetry. It possesses 3
Killing �elds: Ka

t = δa0 , K
a
φ = δa2 and Ka

z = δa3 .

9. Kerr�Newman spacetime of a rotating charged black hole, xa = (t, r, θ, φ),

ds2 =

(
−1 +

2Mr −Q2

ρ2

)
dt2 − 2A

ρ2
(2Mr −Q2) sin2 θ dt dφ+

ρ2

∆
dr2 + ρ2 dθ2 +

+

[
r2 + A2 +

A2

ρ2
(2Mr −Q2) sin2 θ

]
sin2 θ dφ2, (11)

where
ρ2 = r2 + A2 cos2 θ and ∆ = r2 − 2Mr + A2 +Q2; (12)

A = M/J is the angular momentum per unit mass and Q is the electric charge of
the black hole. There are 2 independent Killing �elds generating the stationarity and
cylindrical symmetry, Ka

t = δa0 and Ka
φ = δa3 . For the testing purposes it is convenient

to apply their special linear combination representing the null Killing �eld generating
the event horizon,
Ka

Ω = δa0 + Ωδa3 = (1, 0, 0,Ω),
where

Ω =
A

r2
+ + A2

and r+ = M +
√
M2 − A2 −Q2.

Actually instead of Ω one may take any constant, yet is it convenient to apply the
angular velocity of the horizon as the coe�cient.

3 Identities for the curvature tensor valid only for di-

mension d = 4

In dimension d = 4 one de�nes the Bach tensor (up to a numerical factor):

Bab := R;ab +
1

2
gabR;c

;c − 3Rab;c
;c + 2RRab −

1

2
R2gab + 6RcabdR

cd +
3

2
gabR

cdRcd. (13)

I. The Bach tensor is divergence�free:

∇bBab ≡ gbc∇cBab ≡ 0. (14)

The program should check the identity (14) for the set of 9 solutions to Einstein �eld
equations in matter given in section 1.
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II. The Bach tensor is conformally invariant in d = 4:

if ḡab = Ω2(xc)gab, then Bab(ḡcd) = Ω−2Bab(gcd). (15)

a) As a special and very simple check the program should prove that for any conformally
�at spacetime, ḡab = Ω2(t, x, y, z)ηab, where η = diag(−1, 1, 1, 1) is the Minkowski metric
and Ω is arbitrary, there is

Bab(Ω
2ηcd) ≡ 0. (16)

b) The program should verify the identity (15) for the set of 9 solutions in matter
given in section 1.

c) One can also test the program by verifying the id. (15) for a class of known
vacuum solutions to Einstein �eld equations. In this case Rab(gcd) = 0 and the Bach
tensor is reduced to Bab(gcd) = 0, while Bab(ḡcd) is given by the full expression (13) and
satis�es Bab(ḡcd) = 0.
We propose the following two vacuum spacetimes to this purpose.

10. Bianchi type I cosmological spacetime, xa = (t, x, y, z),

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2, (17)

p1, p2, and p3 are constant and are expressed in terms of an arbitrary parameter u ≥ 1,

p1 =
−u

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p3 =

u(1 + u)

1 + u+ u2
. (18)

The spacetime has 3 Killing �elds corresponding to translations along the spatial axes,
Ka
x = δa1 , K

a
y = δa2 and Ka

z = δa3 .

11. Plane�fronted gravitational wave with parallel rays (pp�wave), xa = (u, v, x, y),

ds2 = −2[(x2 − y2) cos(2ku)− 2xy sin(2ku)] du2 − 2du dv + dx2 + dy2, (19)

k =const. This metric has a 6-dimensional isometry group, here we single out the null
Killing vector Ka

v = δa1 and a vector corresponding to this particular form of g00, it is
equal to Ka

p = (1, 0, ky,−kx). The length of the latter vector is inde�nite � it may be
timelike or spacelike.
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4 Identities for a Killing vector �eld

Any Killing �eld satis�es equations ∇aKb+∇bKa = 0. From these the following identity
arises:

Dabc := Ka;bc −RabcdK
d ≡ 0. (20)

The trace of (20) is Ka;c
;c + RadK

d ≡ 0 and applying the covariant derivative ∇b to it
one gets

Eab := gcdKa;cdb +Rac;bK
c −Rc

aKb;c ≡ 0. (21)

Almost all known solutions to Einstein �eld equations in vacuum or in matter possess
some symmetries, that is, they have at least one Killing vector. In fact, among 11
solutions cited above, only Robinson�Trautman and Kundt's class of spacetimes (me-
trics 6 and 7) have no symmetries (and special solutions in these two classes do have
symmetries, but these are so complicated that are impractical for our purpose). Then
the computer program may be tested on identities (20) and (21) for the remaining 9
spacetimes.

It should be noticed that for a stationary metric, (∂/∂x0)gab = 0, one has Ka = δa0
and the �rst term in (20) is

Ka
;bc = ∂cΓ

a
b0 + ΓacdΓ

d
b0 − Γad0Γdcb. (22)

Comment

All these identities have been suitably chosen to test computations of higher (second
and third) order covariant derivatives by a symbolic program. Actually these tests may
be equally well applied to any program for symbolic tensor calculations.
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