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Abstract
These lecture notes sketch a set of techniques that are useful in solving microeconomic dynamic stochastic
optimization problems. I make no attempt at a systematic overview of the many possible technical choices;
instead, the notes present a very specific set of methods and techniques that I have found useful in the past.
Associated with these notes is a set of Mathematica programs that solve the problems described in the text.
Both text and programs are available on my home page, http://www.econ.jhu.edu/People/Carroll. These
notes were originally written for my Advanced Topics in Macroeconomic Theory class at Johns Hopkins
University.
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1 Introduction

These notes describe the solution of several sample dynamic stochastic optimization problems using Math-
ematica. The first problem solved is a consumption/saving problem similar to the problem considered in
Carroll (1997), while the second problem solved is a two-state-variable consumption/saving problem similar
to that in Carroll, Overland, and Weil (1998), where the second state variable is the stock of ‘habits’ that
the consumer is used to satisfying. The third problem adds portfolio choice between a safe and a risky asset
to the first problem, and shows how to solve this multiple-control problem. The tricks and techniques used
in solving these problems have broad applicability to many dynamic stochastic optimization problems.

2 The Problem

Consider the following standard dynamic programming problem faced by a finite-lifetime consumer. The
consumer’s goal is to

max Et

T∑
s=t

βs−tu(Cs) (1)

s.t. Ss = Xs − Cs (2)
Xs+1 = Rs+1Ss + Ys+1 (3)
Ys+1 = Ps+1εs+1 (4)

where the variables are

β − time discount factor
Xs − resources available for consumption (‘cash-on-hand’)
Ss − savings in period s (portion of resources Xt not consumed)
Cs − consumption in period s
Rs − gross interest rate from period s− 1 to s

u(C) − utility derived from consumption
Ys − noncapital income in period s
Ps − ‘permanent income’ in period s

The exogenous variables in the program evolve as follows:

Rs = R (a constant interest rate)
Ps+1 = Gs+1Ps

log ε ∼ N(−σ2/2, σ2)

This last assumption guarantees that logE[ε] = 0 which means that E[ε] = 1, and we are assuming
that the average profile of income growth over the lifetime Gt is nonstochastic. Finally, assume that the
utility function is of the CRRA form, u(C) = C1−ρ/(1− ρ).



3 Renormalization

The first, and probably the single most important, method for simplifying problems of this type is to see
if you can redefine the problem in order to reduce the number of state variables. In this case the obvious
idea is to see whether the problem can be rewritten in terms of the ratio of various variables to permanent
income.

Consider the problem in the last period of life. The optimal plan in the last period of life is to consume
everything. Designate the value function which yields total expected discounted utility from behaving
optimally now and forevermore as Vt(Xt, Pt). Then we know that

VT (XT , PT ) =
X1−ρ

T

1− ρ
. (5)

Now define small-case variables as the upper-case variable divided by the level of permanent income in the
same period, so that, for example, xT = XT /PT . Then equation (5) can be rewritten as

VT (XT , PT ) = P 1−ρ
T

x1−ρ
T

1− ρ
. (6)

and define VT (xT ) = x1−ρ
T

1−ρ = VT (XT , PT )/P 1−ρ
T . Now note that it is possible to rewrite the accumulation

equation for XT as:

XT /PT = R[XT−1 − CT−1]/PT + YT/PT (7)

xT = R[
XT−1

PT−1
− CT−1

PT−1
]
PT−1

PT
+
YT

PT
(8)

xT =
R

GT
[xT−1 − cT−1] + εT (9)

Now consider the problem in period T − 1:

VT−1(XT−1, PT−1) = max
{CT−1}

u(CT−1) + βET−1[VT (XT , PT )] (10)

s.t. ST−1 = XT−1 − CT−1 (11)
XT = RST−1 + YT (12)

Substituting in the constraints and equation (6) and designating the optimal level of period T-1 con-
sumption as C∗

T−1 and the optimal consumption/permanent income ratio as c∗T−1

VT−1(XT−1, PT−1) =
(C∗

T−1)
1−ρ

1− ρ
+ βET−1[P

1−ρ
T

x1−ρ
T

1− ρ
] (13)

= P 1−ρ
T−1

(c∗T−1)
1−ρ

1− ρ
+ (PT−1GT )1−ρβET−1

[
x1−ρ

T

1− ρ

]
(14)

= P 1−ρ
T−1

[
(c∗T−1)

1−ρ

1− ρ
+G1−ρ

T βET−1

[
x1−ρ

T

1− ρ

]]
(15)

= P 1−ρ
T−1

[
(c∗T−1)

1−ρ

1− ρ
+G1−ρ

T βET−1[VT (xT )]

]
(16)

or, if we define VT−1(xT−1) = VT−1(XT−1, PT−1)/P
1−ρ
T−1 this is

VT−1(xT−1) =

[
(c∗T−1)

1−ρ

1− ρ
+G1−ρ

T βET−1[VT (xT )]

]
(17)



Analogously,

VT−2(XT−2, PT−2) =
(C∗

T−2)
1−ρ

1− ρ
+ βET−2[VT−1(XT−1, PT−1)] (18)

= P 1−ρ
T−2

(c∗T−2)
1−ρ

1− ρ
+ βET−2P

1−ρ
T−1[VT−1(xT−1)] (19)

= P 1−ρ
T−2

(c∗T−2)
1−ρ

1− ρ
+ (GT−1PT−2)1−ρβET−2[VT−1(xT−1)] (20)

= P 1−ρ
T−2

[
(c∗T−2)

1−ρ

1− ρ
+G1−ρ

T−1βET−2[VT−1(xT−1)]

]
(21)

or

VT−2(xT−2) =

[
(c∗T−2)

1−ρ

1− ρ
+G1−ρ

T−1βET−2[VT−1(xT−1)]

]
(22)

The exact same logic can be repeated back an arbitrary number of periods. Hence if one solves the
maximization problem

Vt(xt) = max
{ct}

u(ct) +G1−ρ
t+1 βEt[Vt+1(xt+1)] (23)

such that

xt+1 =
(

R

Gt+1

)
st + εt+1

st = xt − ct

which has only a single state variable, one can obtain the levels of the value function, consumption, and
all other variables of interest simply by multiplying the results from this optimization problem by the
appropriate factor of Pt. Hence we have reduced a problem in two state variables to a single-state-variable
problem.

Henceforth we will take the single-state-variable problem defined in (23) as the problem under consider-
ation, and to simplify matters further we will assume that permanent income remains constant Gt = 1 ∀ t.1

4 The Usual Theory, and Some Notation

The usual theoretical analysis of this problem proceeds as follows.
Because the optimal plan in period T is to consume everything, and there is no utility beyond the last

period of life, we have

VT (xT ) = u(cT (xT )) (24)
= u(xT ) (25)

Then in the second-to-last period of life the problem can be rewritten

VT−1(xT−1) = (26)
max
{cT−1}

u(cT−1) +βET−1[VT (xT )] (27)

1Allowing for growth in permanent income adds no substantive difficulty to the problem, and allowing permanent income
to be subject to stochastic shocks also is relatively straightforward.



and more generally for any period t earlier than T the problem is

Vt(xt) = (28)
max
{ct}

u(ct)+ βEt[Vt+1(xt+1)] (29)

such that
xt+1 = R[xt − ct] + ε̃t+1 (30)

the first order condition for which is

u′(ct) = βEt[RV ′
t+1(xt+1)] (31)

and because the Envelope theorem tells us that

V ′
t (xt) = βEt[RV ′

t+1(xt+1)] (32)

we can substitute this expression for the RHS of equation (31) to get

u′(ct) = V ′
t (xt) (33)

and rolling this equation forward one period

u′(ct+1) = V ′
t+1(xt+1) (34)

and substituting in equation (31) gives us the Euler equation for consumption

u′(ct) = βEt[Ru′(ct+1)]. (35)

Now substitute the budget constraint into the maximization problem:

Vt(xt) = (36)
max
{ct}

u(ct)+ βEt[Vt+1(R[xt − ct] + ε̃t+1)] (37)

and note that neither xt nor ct has any direct effect on Et[Vt+1] - it is only the difference between them
(i.e. unconsumed wealth or ‘savings’) that matters. It will be convenient to define a function

Ωt(st) = Et[Vt+1(Rst + ε̃t+1)] (38)

which returns the expected value associated with any given amount of savings. Note also that this definition
implies that

Ω
′
t(st) = Et[RV

′
t+1(Rst + ε̃t+1)]. (39)

or, substituting from equation (34),

Ω
′
t(st) = Et[Ru′(ct+1[Rst + ε̃t+1])]. (40)

Finally, note that the first order condition (31) can be rewritten as

u′(ct) = βΩ
′
t(xt − ct). (41)



5 Solving the Next-To-Last Period

Consider again the second-to-last period of life. We have

VT−1(xT−1) = max
{cT−1}

u(cT−1) + βET−1[VT (x̃T )] (42)

s.t. sT−1 = xT−1 − cT−1 (43)
xT = RsT−1 + εT (44)

Substituting from the budget constraint and the definition of u(c) this becomes:

VT−1(xT−1) = max
{cT−1}

c1−ρ
T−1

1− ρ
+ βET−1

[
(R[xT−1 − cT−1] + ε̃T )

1−ρ

1− ρ

]
(45)

and substituting the definition of the expectations operator:

VT−1(xT−1) = max
{cT−1}

c1−ρ
T−1

1− ρ
+ β

∫ ∞

0

(R[xT−1 − cT−1] + ε)1−ρ

1− ρ
dF (ε) (46)

In principle, this function implicitly defines a function cT−1(xT−1) which yields the optimal value of
consumption in period T − 1 for any given level of resources xT−1. Unfortunately, however, there is no
analytical solution to this maximization problem, and so for any given value of xT−1 we must use numerical
routines to find the cT−1 that maximizes the expression. But this is excruciatingly slow because for every
potential cT−1 to be considered, the integral must be calculated numerically, and numerical integration is
very slow.

5.1 Discretizing the Distribution

The first time-saving step is therefore to construct a discrete approximation to the lognormal distribution
that can be used rather than full-fledged numerical integration. An n-point approximation is calculated as
follows.

Define n points on the [0, 1] interval as θ = [0, 1/(n − 1), 2/(n − 1), . . . , 1]. Call the inverse of the
lognormal distribution F−1

ε (p), and define the points θ−1
i = F−1(θi). Then define

εi =
∫ θ−1

i

θ−1
i−1

ε dF (ε) (47)

The εi represent the mean values of ε in each of the regions bounded by the θ−1
i endpoints. The method

is illustrated in figure 1. The curve represents the CDF of Fε(ε), a lognormal distribution such that Eε = 1
and σ = .1, and the dots represent the n equiprobable values of εi which are used to approximate this
distribution.

There are more sophisticated methods available (most notably Gauss-Hermite Quadrature), but my
experience is that this method is easy to understand, quick to calculate, and performs almost as well.

The maximization problem can now be rewritten

VT−1(xT−1) = max
{cT−1}

c1−ρ
T−1

1− ρ
+ β

1
n

n∑
i=1

(R[xT−1 − cT−1] + εi)
1−ρ

1− ρ
(48)

or, recalling our definition of Ωt(st) as the expected value of saving amount st in period t,

VT−1(xT−1) = max
{cT−1}

c1−ρ
T−1

1− ρ
+ βΩT−1(xT−1 − cT−1). (49)
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Figure 1:

5.2 The Approximate Consumption Function and the Approximate Value Function

Given a particular value of xT−1, a numerical maximization routine can now be expected to find the cT−1

that maximizes this expression in a reasonable amount of time. This is done in the program 2period.m.
The structure of the program is as follows. setup workspace.m reads into memory a variety of useful

functions and procedures that will be useful in solving all of the problems we will see. setup params.m
reads in values for parameters like the coefficient of relative risk aversion and the time preference rate.
setup shocks.m calculates the values for the εi defined above (and puts those values, and the probabil-
ity associated with each of them, in the variables ShockVals and ShockProb.) Finally, setup grids.m
constructs a list of potential values of cash-on-hand and puts them in the variable xGrid = {0, 1, 2, 3, 4, 5}.

Next, the program defines a function OmegaTm1Raw[s ] which is the exact implementation of (38): this
function returns the expectation of the value of next period’s value function for any given amount of saving
in period t − 1, i.e. how much that amount of saving is ‘worth’ in terms of units of present discounted
value.

The heart of the program is the next expression. This expression loops over the values of the variable
xGrid, solving the maximization problem2

max
{c}

u[c] + beta OmegaTm1Raw[xGrid[[i]]-c] (50)

for each of the i values of xGrid (henceforth let’s call these points xi,T−1). The maximization routine
returns two values: the maximized value, and the value of c which yields that maximized value. When the
loop (the Table command) is finished, the variable MaxResultsTm1 contains two lists, one with the values
Vi,T−1 and the other with the consumption levels ci,T−1 associated with the xi,T−1.

Now we use the first of the really convenient built-in features of Mathematica. Given data of the form
{{x1, y1}, {x2, y2} . . . , {x3, y3} . . . } Mathematica can create an object called an InterpolatingFunction
which, when applied to an input x will yield the value of y which corresponds to a linear interpolation of

2Actually, Mathematica has a built-in minimization function, so we find the minimum of the negative of this expression.
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the value of y from the points in the InterpolatingFunction object. We can therefore define a function
ĉT−1(xT−1) which, when called with an xT−1 that is equal to one of the points in xGridi returns the
associated value of ci,T−1, and when called with a value of xT−1 that is not exactly equal to one of the
xGridi, returns the value of C that represents a linear interpolation between the ci,T−1 associated with
the two xGridi points nearest to xT−1. Thus if the function is called with xT−1 = 1.75 and the nearest
gridpoints are xj,T−1 = 1 and xk,T−1 = 2 then the value of cT−1 to be returned by the function would be
(.25cj,T−1 + .75ck,T−1). We can define a numerical approximation to the value function V̂T−1(xT−1) in an
exactly analogous way.

The figures 2 and 3 show plots of the cTm1 and VTm1 InterpolatingFunctions that are generated
by the program. While the cTm1 function looks very smooth, the fact that the VTm1 function is a set of
line segments is very obvious.

5.3 Interpolating Expectations

The program 2period.m works fine in the sense that it generates a very good approximation to the true
optimal consumption function. However, there is one obvious inefficiency in the program: For every value
of xT−1, the program must calculate the utility consequences of various possible choices of cT−1. But for
any given value of sT−1, there is a good chance that the program may end up calculating the corresponding
value many times coming from different xT−1. For example, it is quite likely that the program will calculate
the value of saving exactly zero dozens of times. It would be much more efficient if the program could
make that calculation once and then merely recall the value when called upon.

This can be achieved using the same interpolation technique used above to construct a numeri-
cal value function: construct a grid of possible values for saving at time T − 1, sGrid, designating
the specific points si,T−1; and for each of these values of si,T−1, calculate Ωi,T−1 = ΩT−1(si,T−1) us-
ing equation (38); and construct an InterpolatingFunction object Ω̂T−1(sT−1) from the list of values
{{s1,T−1,Ω1,T−1}, {s2,T−1,Ω2,T−1} . . . }.
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Thus, we are now interpolating for the expected value of saving; the program 2period intexp.m
presents the results of such an experiment. Figure 4 compares the true value function to the
InterpolatingFunction approximation; the two are of course identical at the gridpoints chosen for sT−1

and they appear reasonably close except in the region below xT−1 = 1.
Nevertheless, the results for the consumption function shown in figure 5 are surprisingly bad. For

example, when xT−1 goes from 2 to 3, cT−1 goes from about 1 to about 2, yet when xT−1 goes from 3
to 4, cT−1 goes from about 2 to about 2.05. Thus the function fails even to be strictly concave, which is
problematic because Carroll and Kimball (1996) prove that the consumption function is strictly concave
in problems like this one.

5.4 Value Function Versus First Order Condition

Loosely speaking, the problem is that behavior is determined by the marginal value function, not by the
level of the value function. To see this, recall that a quadratic utility function exhibits risk aversion because

E[−(c̃− c∗)2] < −(E[c̃]− c∗)2. (51)

for c less than the ‘bliss point’ of c∗ even though the consumption/saving behavior of consumers with
quadratic utility is unaffected by risk. The reason behavior is unaffected by risk is that behavior is
determined by the first order condition, which depends onmarginal utility, and marginal utility is unaffected
by risk:

E[−2(c̃ − c∗)] = −2(E[c̃]− c∗) (52)

Intuitively speaking, if one’s goal is to accurately capture behavior that is governed by marginal utility
or the marginal value function, numerical techniques that approximate the marginal value function are
likely to lead to a more accurate approximation to optimal behavior than techniques that operate on the
level of the value function.
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The first order condition of the maximization problem in period T − 1 is that:

u′(cT−1) = βET−1[Ru′(cT )] (53)

c−ρ
T−1 = βR

(
1
n

) n∑
i=1

[R(xT−1 − cT−1) + εi]
−ρ (54)

The downward-sloping curve in figure 6 shows the value of c−ρ
T−1 for our baseline parameter values for

0 ≤ cT−1 ≤ 4 (the horizontal axis). The solid upward-sloping curve shows the value of the RHS of (54) as a
function of cT−1 under the assumption that xT−1 = 3. Constructing this figure is rather time-consuming,
because for every value of cT−1 plotted we must calculate the RHS of (54). The value of cT−1 for which the
RHS and LHS of (54) are equal is the optimal level of consumption given that xT−1 = 3, so the intersection
of the downward- sloping and the upward-sloping curves gives the optimal value of cT−1. As we can see, the
two curves intersect just below cT−1 = 2. Similarly, the upward-sloping dashing curve shows the expected
value of the RHS of (54) under the assumption that xT−1 = 4, and the intersection of this curve with
u′[cT−1] yields the optimal level of consumption if xT−1 = 4. These two curves intersect slightly below
cT−1 = 2.5. Thus, increasing xT−1 from 3 to 4 increases optimal consumption by about 0.5.

Now consider the derivative of our function Ω̂T−1(sT−1). Because we have constructed Ω̂T−1 as a linear
interpolation, the slope of Ω̂T−1(sT−1) between any two adjacent points {si,T−1, si+1,T−1} is constant. The
level of the slope immediately below any particular gridpoint is different, of course, from the slope above
that gridpoint, a fact which implies that the derivative of Ω̂T−1(sT−1) follows a step function.

The solid-line step function in figure 6 depicts the actual value of Ω̂
′
T−1(3−cT−1). When we attempt to

find optimal values of cT−1 given xT−1 using Ω̂T−1(sT−1), the numerical optimization routine will return
the cT−1 for which u′[cT−1] = Ω̂T−1(xT−1 − cT−1). Thus, for xT−1 = 3 the program will return the value
of cT−1 for which the downward-sloping u′[cT−1] curve intersects with the Ω̂

′
T−1(3− cT−1); as the diagram

shows, this value is very close to 2. Similarly, if we ask the routine to find the optimal cT−1 for xT−1 = 4, it
finds the point of intersection of u′[cT−1] with Ω̂

′
T−1(4− cT−1); and as the diagram shows, this intersection
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is only slightly above 2. Hence, this figure shows why the numerical consumption function plotted earlier
returned values very close to cT−1 = 2 for both xT−1 = 3 and xT−1 = 4.

Obviously, we would obtain much better estimates of the point of intersection between u′(cT−1) and
Ω

′
T−1(xT−1 − cT−1) if our estimate of Ω̂

′
T−1 were not a step function. In particular, we already know how

to construct linear interpolations to functions, so the obvious idea to pursue now is to construct a linear
interpolating approximation to the marginal value of saving function Ω

′
(sT−1). That is, we calculate the

value of

Ω
′
T−1(sT−1) = R

(
1
n

) n∑
i=1

[RsT−1 + εi]
−ρ (55)

at the points in sGrid yielding {{s1,T−1,Ω1,T−1}, {s2,T−1,Ω2,T−1} . . . } and construct Ω̂
′
T−1(sT−1) as the

linear interpolating function that fits this set of points.
The program file 2period intexp foc.m therefore defines a function OmegaPrimeTm1Raw[s] as the

embodiment of equation (55), constructs the InterpolatingFunction as described above. The results
are shown in figure 7. The linear interpolating approximation looks roughly as good (or bad) for the
marginal value function as it was for the level of the value function. However, figure 8 shows that the
new consumption function (long dashes) is a much better approximation of the true consumption function
(solid) than was the consumption function obtained by approximating the level of the value function (short
dashes).

5.5 Transformation

However, for levels of x below 2, even the new function diverges noticeably from the optimum. That
is because the linear interpolation does an increasingly poor job of capturing the nonlinearity of the
Ω

′
T−1(sT−1) function at lower and lower levels of s.
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This is where we bring our last trick into play. If R = β = 1 and there is no uncertainty (that is, we
know for sure that income next period will be E[ε] = 1) the Euler equation linking the marginal utility of
consumption in period T − 1 to the marginal utility in period T is:

c−ρ
T−1 = c−ρ

T (56)

Now recall that in the case of the problem with no uncertainty and with β = R = 1, the optimal solution
is to spend half of total lifetime resources in period T − 1 and the remainder in period T . Since total
resources are known with certainty to be xT−1 + 1, and since we know that V

′
T−1(xT−1) = u′(cT−1) this

implies that

V ′
T−1(xT−1) = (

xT−1 + 1
2

)−ρ

Note that for ρ much above 1 this becomes a highly nonlinear function. However, if we raise both sides of
the equation to the power (−1/ρ) it becomes a linear function:

[V ′
T−1(xT−1)]−1/ρ =

xT−1 + 1
2

(57)

This is a specific example of a general phenomenon: Theoretical results cited in Carroll and Kimball (1996)
establish that under perfect certainty, if the period-by-period marginal utility function is of the form c−ρ

t ,
the marginal value function will be of the form (αxt)−ρ. This means that if we were solving the perfect
certainty problem numerically, we could always calculate a numerically exact interpolation. Hence we
define

Λ
′
t(xt) ≡ [V

′
t (xt)]−1/ρ (58)

(because Λ looks like an upside-down V and what we are doing is almost like taking the inverse) we can
recover the value of Vt(xt) by calculating [Λ

′
t(xt)]−ρ. Similarly, define

✵
′
t(st) ≡ [Ω

′
t(st)]−1/ρ. (59)
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To put this in intuitive terms, the problem we are facing is that the marginal utility function is highly
nonlinear. But we have a great solution to that problem, because we know that much of that nonlinearity
springs from the fact that we are raising something to the power −ρ. In effect, we can ‘unwind’ all
of the nonlinearity owing to that parameter and the remaining nonlinearity will not be nearly so great.
As illustration, look at figure 9 generated by the program which solves the optimization problem using
these transformations, 2period intexp foc inv.m. (We use the text OmegaInv to stand for ✵ in the
programs). The solid line calculates the exact numerical value of ✵

′
T−1(xT−1) while the dashing line is the

linear interpolating approximation ✵̂
′
T−1(xT−1). This figure illustrates the value of the transformation: the

true figure is very close to linear, and so the linear approximation is almost indistinguishable from the true
value except at the very lowest values of xT−1. Figure 10 shows that when we calculate Ω̂

′
T−1(sT−1) as

[✵̂
′
T−1(sT−1)]−1/ρ (dashing line) we obtain a much closer approximation to the true function Ω

′
T−1(sT−1)

(solid line) than we did in the previous program which did not do the transformation. Since this is the
precise function that will be used in finding the optimum via the FOC, this figure makes it clear why the
transformation is so valuable.

Figure 11 shows that the consumption function that emerges from this program is now very close to the
‘true’ consumption function all the way down to xT−1 = 0. Although it is still true that you can see small
deviations, the function is now being constructed using literally thousands of times fewer computations
than would have been required without all these tricks. We could increase the density of the gridpoints
for sT−1 by a factor of ten and still be able to solve the problem vastly more quickly than it can be solved
without these techniques.

Note that the appropriate transformation for VT−1 is different from that for V
′
T−1. The idea is to

transform the object in such a way that, in a perfect-certainty world, the resultsing function would be
linear. It turns out that in the perfect certainty world, the value function corresponding to a maximization
problem with CRRA period utility functions is itself a CRRA function with the same parameter; that is,
Vt(xt) = (αxt)1−ρ

1−ρ for some α. The appropriate transformation is therefore Λt(xt) = ((1 − ρ)Vt(xt))1/(1−ρ)

and similarly ✵t(xt) = ((1− ρ)Ωt(xt))1/(1−ρ).
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5.6 Constraints

Problems of this type often come with additional constraints that must be satisfied. The most common
type of constraint is a liquidity constraint that prevents the consumer’s net worth from falling below some
value, often zero.

With the additional constraint, the problem can be rewritten

VT−1(xT−1) = max
{cT−1}

u(cT−1) + βET−1VT (xT ) (60)

s.t. sT−1 = xT−1 − cT−1 (61)
xT = RsT−1 + YT (62)
sT−1 ≥ 0 (63)

By definition, the constraint will bind in those circumstances where the unconstrained consumer would
behave in such a way as to violate the constraint. In this case, that means that the constraint binds if the
level of consumption that satisfies the FOC:

c−ρ
T−1 = βΩ

′
T−1(xT−1 − cT−1) (64)

is greater than xT−1. Call the value of cT−1 that satisfies this equation čT−1. Then the constrained optimal
level of consumption will be

cT−1(xT−1) = min[xT−1, čT−1(xT−1)] (65)

The introduction of the constraint also introduces a sharp nonlinearity in all of the functions at the point
where the constraint begins to bind. As a result, to get solutions that are anywhere close to numerically
accurate it is useful to augment the grid of values of the state variable to include the exact value at which
the constraint becomes binding. Fortunately, the value of this point is relatively easy to calculate. We
know that when the constraint is binding the consumer is saving nothing. We know the marginal value
of saving at the point of zero saving is given by Ω

′
T−1(0). Finally, we know that when the constraint is

binding, cT−1 = xT−1. Thus, the largest value of consumption for which the constraint is binding will
be the point for which the marginal utility of consumption is exactly equal to the (expected, discounted)
marginal value of saving. We know this because the marginal utility of consumption is a downward-sloping
function and so if the consumer were to consume ε more, the marginal utility of that extra consumption
would be below the (discounted, expected) marginal utility of saving, and thus the consumer would engage
in positive saving and the constraint would no longer be binding. Thus the level of xT−1 at which the
constraint begins to bind is:

u′(xT−1) = βΩ
′
T−1(0)

xT−1 = (βΩ
′
T−1(0))

(−1/ρ) .

xT−1 = β−1/ρ✵
′
T−1(0). (66)

Note that once we have constructing the interpolating function ✵̂T−1 this expression is fast and easy
to calculate. Once the value that solves this equation is calculated, we simply add that value of X to the
vector xGrid and treat the new point just like any other point in xGrid.

The program that solves the constrained problem is 2period intexp foc inv constr.m.; the resulting
consumption rule is shown in figure 12 For comparison purposes, the approximate consumption rule from
figure 11 is reproduced here as the dashing line. As expected, the liquidity constraint only causes a
divergence between the two functions at the point where the optimal unconstrained consumption rule runs
into the 45 degree line.
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6 Recursion

6.1 Theory

We have now learned how to construct an approximation to the value function VT−1(xT−1) and optimal
consumption function cT−1(xT−1). How do we proceed back to earlier periods of life?

Recall equations (40) and (41):

Ω
′
t(st) = Et[Ru′(ct+1[Rst + ε̃t+1])] (67)
u′(ct) = βΩ

′
t(xt − ct). (68)

Assuming the problem has been solved up to period t + 1 (and thus assuming that we have a numerical
function ĉt+1(xt+1)), the first of these tells us how to calculate Ωt(st), and the second tells us how to cal-
culate ĉt(xt) given Ωt(st). Our solution method essentially involves using these two equations in succession
to work back progressively from period T − 1 to the beginning of life. Stated generally, the method is as
follows.

1. For the grid of values si,t in sGrid, numerically calculate the value of ✵
′
t(si,t),

✵
′
t(si,t) =

(
Ω

′
t(si,t)

)−1/ρ
, (69)

=
(
Et

[
R(ĉt+1(Rsi,t + ε̃t+1))−ρ

])−1/ρ
, (70)

generating a list of values ✵
′
i,t.

2. Construct an interpolating function ✵̂
′
t(st) that ‘connects the dots’ of {{s1,t,✵

′
1,t}, {s2,t,✵

′
2,t}, . . . }.



3. Calculate the value of xt at which the liquidity constraint begins to bind from the analogue to
equation (66):

xt = β−1/ρ✵
′
t(0). (71)

and augment xGrid by adding this point to it.

4. Use a numerical rootfinding routine to solve the equation

ct = β−1/ρ✵̂
′
t(xt − ct) (72)

at each of the values of xGrid, generating a list of values {{x1,t, c1,t}, {x2,t, c2,t}, . . . }.

5. Interpolate between these solved points to obtain ĉt(xt).

Once we have ĉt(xt) we can continue the backwards recursion to period t − 1 and so on back to the
beginning of life.

Note that this loop does not contain steps for constructing Ω̂
′
t(st), V̂

′
t (xt), or Λ̂t(xt). This is because with

✵̂t(st) and ĉt(xt) in hand, we simply define Ω̂
′
t(st) = [✵̂

′
t(st)]−ρ, V̂

′
t (xt) = u

′
(ĉt[xt]), and Λ̂

′
t = [V̂

′
(xt)]−1/ρ =

[u
′
(ĉt(xt))]−1/ρ = ĉt(xt) so there is no need to construct interpolating functions for these functions - they

arise ‘free’ (or nearly so) from our calculations for ✵̂
′
t(st) and ĉt(xt).

The program multiperiod.m presents a fairly general and flexible approach to solving problems of
this kind. The essential structure of the program is a loop which simply performs the recursion de-
scribed above from the last period of ‘life’ back to period 1, where the variable “LifeLength” is defined in
multiperiod vars.m determines how many periods there are.

6.2 Mathematica Background

Mathematica has several features that are useful in solving the multiperiod problem.

• It can treat a user-created function as an object just like a number or a letter

• Mathematica uses the ‘list’ as its basic data structure. A Mathematica ‘list’ is a very powerful and
flexible data construct. A list of length N in Mathematica can hold essentially anything in each of
its N positions - a function, a number, another list, a symbolic expression, or any other object that
Mathematica can recognize. The items at position i in a list named ExampleList are retrieved or
addressed using the syntax ExampleList[[i]].

• The function Apply[FuncName , DataListName ] takes the function whose name is FuncName (for
example, Vt) and the data in DataList (for example, {1, 19}) and returns the result that would have
been returned by calling the function Vt[1,19].

• The function Map[FuncToApply ,DataToApplyItTo ] takes a list of possible arguments to the func-
tion FuncToApply and applies that function to each of the elements of that list sequentially. For
example, Map[Sin,{1,2,3}] would return a list {Sin[1],Sin[2],Sin[3]}.

6.3 Program Structure

After the usual initializations, the heart of the program works like this.



6.3.1 Setup

First, in multiperiod functions.m, the various “Raw” functions are defined. As above, a “Raw” function
is the exact representation of one of the theoretical constructs defined in the theory above. For example,
OmegaInvPrimetRaw[x ,LifePosn ] (recall that ‘Inv’ is shorthand for the inverted version of the function)
is defined as

✵
′
t(st) =

(
Et

[
R(ĉt+1(Rst + ε̃t+1))−ρ

])−1/ρ (73)

=

(
1
n

n∑
i=1

R
[
(ĉt+1(Rst + εi))−ρ

])−1/ρ

. (74)

Second, in multiperiod vars.m, a variety of data structures that will be used in the iteration are set
up. For example, for OmegaInvPrimet, the following variables are defined.

• The function MakeArgArrays creates OmegaInvPrimetArgArray, a list that contains all the possi-
ble combinations and permutations of the arguments to OmegaInvPrimet. Since OmegaInvPrimet
has only one argument, the level of cash-on-hand xt (ignoring the ‘LifePosn’ argument), in
this case OmegaInvPrimetArgArray boils down to the list of possible values of xGrid. But
if there were two state variables, x and h, say, then OmegaInvPrimetArgArray would contain
{{x1, h1}, {x1, h2} . . . , {x2, h1}, {x2, h2} . . . } and so on. Similar data constructs are created for all
the other functions (VInvPrimet, OmegaInvt, OmegaInvPrimet, ct) the program will be creating.

• The functions MakeNewVar . . . create a set of ‘lists’ of length LifeLength. The most important of
these are the InterpData and InterpFunc objects. Again using OmegaInvPrimet as an example, the
program creates

– OmegaInvPrimetInterpData[[LifePosn]]will hold a list containing the value of OmegaInvPrimet
at each point defined in OmegaInvPrimetArgArray

– OmegaInvPrimetInterpFunc[[LifePosn]]will hold the InterpolatingFunction object which
is created from the data in OmegaInvPrimetInterpData

6.3.2 Iteration

After setting up an indicator variable LifePosn which will always represent the period of life that the
program is currently attempting to solve, and preserving a baseline set of values for xGrid (for reasons
that will become apparent momentarily), the program sets up a “While” loop that counts down from the
last period of life. The structure of the “While” loop is as follows

1. Construct the InterpolatingFunction for OmegaInvt for period LifePosn

• In OmegaInvtArgumentList create a list with the structure
{{x1,LifePosn}, . . . , {xn,LifePosn}}

• In OmegaInvtResultsRaw collect the results of applying the function OmegaInvtRaw to the
arguments in OmegaInvtArgumentList,
OmegaInvtResultsRaw = {OmegaInvtRaw[x1,LifePosn], OmegaInvtRaw[x2,LifePosn], . . . }

• Construct and put into the waiting LifePosn’th slot of the variable OmegaInvtInterpData a list
of the form {{x1, OmegaInvtRawResults1}, {x2, OmegaInvtRawResults2}, . . . }

• From the data in OmegatInterpData[[LifePosn]] construct an InterpolatingFunction ob-
ject and put it in OmegatInterpFunc[[LifePosn]]
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2. Construct the InterpolatingFunction for OmegaInvPrimet for period LifePosn

• Follow all of the same steps as for OmegaInvt

3. Calculate the point at which the liquidity constraint begins to bind using equation (71) and add this
point to the list of values in xGrid.

4. Recreate the ArgArray arrays for functions that take x as an argument to reflect the inclusion of the
new point

5. Construct ctArgumentList as above, then map the ctArgumentList into the function ctRaw to
find the values of ci,t which satisfy equation (72). From the list of {xi,t, ci,t} pairs construct the
InterpolatingFunction object that represents ĉt(xt).

6. Decrement LifePosn and repeat loop if LifePosn > 0.

6.4 Results

As written, the program creates three InterpolatingFunctions, for ✵̂t(st), ✵̂
′
t(st), and ĉt(xt), and all

other functions are defined in terms of these functions (although ✵̂t(st) is not actually used in the solution
of the problem, since it is solved using the first order conditions. These functions can be evaluated in any
period for any value of x. For values of x outside of the grid encompassed in xGrid and sGrid, the program
extrapolates from the relationship between the nearest two points in the grids.

As an illustration, figure 13 shows ĉt(xt) for t = {20, 15, 10, 5, 1}. At least one feature of this figure
is encouraging: the consumption functions converge as one recedes from the end of life, something that
Carroll (1996) shows must be true under certain parametric conditions that are satisfied by this problem.



7 Multiple State Variables

We now wish to consider how the problem changes if there are multiple state variables rather than just a
single state variable. The example we will use will be the case where the utility from consumption depends
on the size of a ‘habit stock’ which represents an average of past levels of consumption. Formally, the goal
is to

max
{ct}

T∑
s=t

βs−tu(cs, hs−1) (75)

Now there are two state variables in the problem at time t, the level of assets xt and the level of the habit
stock ht−1, where the accumulation equation for xt is the same as before and the transition equation for
habits is

ht = ht−1 + λ(ct − ht−1). (76)

That is, the habit stock at the end of this period is equal to the habit stock at the end of last period plus a
proportion of the gap between the level of consumption chosen this period and the level of the habit stock
from last period. In other words, habits ‘catch up’ to consumption at rate λ.

Assume that the utility function is given by

u(ct, ht−1) =
(ct/h

γ
t−1)

1−ρ

1− ρ
(77)

Now that ut has two arguments we need to be able to distinguish between the derivatives with respect to
each argument. Our notation will be that the derivative of ut with respect to ct is uc

t(ct, ht−1) or uc
t for

short, and analogously for uh
t . Thus we have

uc
t = (cth

−γ
t−1)

−ρh−γ
t−1 (78)

= c−ρ
t hργ−γ

t−1 (79)

uh
t = −γ(cth−γ

t−1)
−ρcth

−γ−1
t−1 (80)

= −γc1−ρ
t hγρ−γ−1

t−1 (81)

Bellman’s equation for this problem (imposing liquidity constraints again) is

Vt(xt, ht−1) =
max
{ct}

u(ct, ht−1) +βEt[Vt+1(xt+1, ht)] (82)

such that
xt+1 = R[xt − ct] + εt+1 (83)
ht = ht−1 + λ(ct − ht−1) (84)
ct ≤ xt (85)

As was done for utility above, define the derivatives of Vt with respect to each argument as V x
t (xt, ht−1)

or V x
t for short, and analogously for V h

t . Also as above, we want to define a function which corresponds to
the expectation of the value of doing ending period t in a given position, but now the ‘position’ involves
both the level of savings st and the level of the habit stock ht:

Ωt(st, ht) = Et[Vt+1(Rst + ε̃t+1, ht))] (86)



For future reference note that the derivatives are

Ωs
t = Et[RV x

t+1] (87)

Ωh
t = Et[V h

t+1] (88)

and the maximization problem can be rewritten

Vt(xt, ht−1) =
max
{ct}

u(ct, ht−1) +βΩt(xt − ct, ht−1 + λ(ct − ht−1))

such that
ct ≤ xt

7.1 Optimality Conditions

7.1.1 The First Order Condition for ct

The FOC for this problem with respect to ct is:

0 = uc
t + βEt

[
V x

t+1(−R) + V h
t+1λ

]
(89)

uc
t = βEt[RV x

t+1 − λV h
t+1] (90)

= β
[
Ωs

t − λΩh
t

]
(91)

Substituting the definition of uc
t :

c−ρ
t hργ−γ

t−1 = β
[
Ωs

t − λΩh
t

]
(92)

ct =
[
hγ−ργ

t−1 β
(
Ωs

t − λΩh
t

)]−1/ρ
(93)

and the liquidity constraint implies that if the čt which satisfies this equation is larger than xt the consumer
spends xt rather than čt. The point at which the liquidity constraint becomes binding is implicitly defined
by the equation

xt =
[
hγ−ργ

t−1 β
(
Ωs

t (0, ht−1 − λ(xt − ht−1))− λΩh
t (0, ht−1 − λ(xt − ht−1)

)]−1/ρ
, (94)

which must be solved numerically (in contrast to the situation in the problem without habits). Note that
this equation implies that the liquidity constraint becomes binding at a different value of xt for every
possible different value of ht−1.

7.1.2 Applying the Envelope Theorem

The Envelope theorem on xt says:

V x
t =

∂Vt

∂xt
+

=0︷︸︸︷
∂Vt

∂ct

∂ct
∂xt

(95)

V x
t = βEt[RV x

t+1] (96)

Substituting this into the FOC equation (90) gives

uc
t = V x

t − βEt[λV h
t+1] (97)

V x
t = uc

t + βEt[λV h
t+1] (98)

= uc
t + βλΩh

t (99)



What if the consumer is liquidity constrained? It is useful here to rewrite Bellman’s equation:

Vt(xt, ht−1) = u(ct, ht−1) + βEt [Vt+1(R[xt − ct] + ε̃t+1, ht−1 + λ(ct − ht−1))]

Substituting in the fact that ct = xt (because the consumer is constrained)

Vt(xt, ht−1) = u(ct, ht−1) + βEt [Vt+1(ε̃t+1, ht−1 + λ(ct − ht−1))]

Thus ∂Vt/∂xt = 0, and because the liquidity constraint implies that ∂ct/∂xt = 1, equation (95) becomes

V x
t =

∂Vt

∂ct
(100)

= uc
t + βEt[λV h

t+1] (101)

which is identical to the expression (98) for V x
t for the unconstrained consumer.

The Envelope theorem for ht−1 says:

V h
t =

∂Vt

∂ht−1
+

=0︷︸︸︷
∂Vt

∂ct

∂ct
∂ht−1

= uh
t + βEt

[
V h

t+1

∂ht

∂ht−1

]
= uh

t + βEt[(1− λ)V h
t+1]

= uh
t + βΩh

t (102)

What if the consumer is constrained? In that case while ∂Vt/∂ct �= 0, ∂ct/∂ht−1 = 0, so as with V x
t the

constraint has no effect on the expression for V h
t .

7.2 Transformations

Note one inconvenient feature of these equations: there is no longer a uniquely appropriate ‘transformation’
for the problem, as there was in the first problem. To see this, consider the last period of life and suppose
there is no uncertainty. Then V x

T = uc
T will be of the form c−ρ

T hργ−γ
T−1 , while V h

T = uh will be something of
the form −γc1−ρ

T hγρ−γ−1
T−1 . It is possible to exponentiate either of these equations to make it linear in one

or the other of c or h, but not both. In practice, it is best to transform both equations so that they are
linear in c, because the habit stock h will ‘catch up’ to c and thus is not likely to stray very far from c
anyhow. Thus the transformations I use are3

✵s
t (st, ht) = [Ωs

t(st, ht)]−1/ρ (103)
Λx

t (xt, ht−1) = [V x
t (xt, ht−1)]−1/ρ (104)

✵h
t (st, ht) = [−Ωh

t (st, ht)/γ]1/(1−ρ) (105)
Λh

t (xt, ht−1) = [−V h
t (xt, ht−1)/γ]1/(1−ρ) (106)

Λt(xt, ht−1) = [(1− ρ)Vt(xt, ht−1)]1/(1−ρ) (107)

7.3 The Program

The consumption problem with habit formation is solved in habits.m, whose structure closely follows that
of multiperiod.m.

3If it were necessary, it would be possible to do more sophisticated transformations, but in practice these work reasonably
well.



7.3.1 Setup

Assuming the problem has been solved up to period t + 1 (and thus we have numerical functions
V̂ x

t+1(xt+1, ht) and V̂ h
t+1(xt+1, ht),

1. Form a list called ArgArray of all possible combinations of the values in sGrid and hGrid, and index
the components of that list by i. Thus if there are m points in both grids we have ArgArray=

{{s1, h1}, {s1, h2}, . . . , {s1, hm}, {s2, h1}, {s2, h2}, . . . , {s2, hm}, {sm, h1}, {sm, h2}, . . . , {sm, hm}}.
At each of the {s, h} combinations in ArgArray calculate the value of ✵s

t and ✵h
t (from equations

(87) and (88)),

✵s
t (si,t, hi,t) =

(
Et

[
R(V̂ x

t+1(Rsi,t + ε̃t+1, hi,t))
])−1/ρ

, (108)

✵h
t (si,t, hi,t) =

(
−Et

[
V̂ h

t+1(Rsi,t + ε̃t+1, hi,t)
]
/γ
)1/(1−ρ)

, (109)

generating lists of values ✵s
i,t,✵

h
i,t.

2. Construct interpolating functions ✵̂s
t(st, ht) and ✵̂s

t (st, ht) by connecting the dots, from which we can
obtain Ω̂s and Ω̂h via the inverse of the transformations (103) and (105).

3. Use equation (94) to find the point at which the liquidity constraint becomes binding for the largest
and smallest values of h in hGrid, and augment xGrid with those values of x.

4. Use a numerical rootfinding routine to find the ct that solves equation (93):

ct =
[
hγ−ργ

t−1 β
(
Ω̂s

t(xt − ct, ht−1 + λ(ct − ht−1))− λΩ̂h
t (xt − ct, ht−1 + λ(ct − ht−1))

)]−1/ρ

at each of the values of xGrid, generating a list of values {{x1,t, c1,t}, {x2,t, c2,t}, . . . }.

5. Interpolate between these solved points to obtain ĉt(xt).

6. Use equations (99) and (102) and the transformations (104) and (106) to construct interpolating
approximations to the inverse marginal value functions:

Λx
t =

[
uc

t + βλΩ̂h
t

]−1/ρ
(110)

Λh
t =

(
−
[
uh

t + βΩ̂h
t

]
/γ
)1/(1−ρ)

(111)

from which we can construct Λ̂x
t and Λ̂h

t via the usual Map-then-interpolate strategy. V̂ x
t and V̂ h

t are
then defined via the inverse of V̂ x

t and V̂ h
t via the transformations (104) and (106).

Thus we have generated V̂ s
t and V̂ h

t from V̂ s
t+1 and V̂ h

t+1, and we can continue the iteration until we
reach the first period of life.

Note that the first five of these steps are simply the generalization of the five steps used in solving the
single-state variable problem outlined earlier. Recall that in solving the single-state-variable problem we
argued that it was not necessary to construct an interpolating function for Λ̂

′
t because we could obtain the

value of V̂
′
t directly from the ĉt function via the relation V̂

′
t (xt) = u′[ĉt(xt)]. The analogous equation here

is V̂ x
t (xt, ht−1) = uc(ĉt(xt, ht−1), ht−1)+βλΩ̂h(xt−ct, ht−1 +λ(ct−ht−1)). The problem with obtaining V̂ x

t

from this equation is that Ωh
t is a negative number. As a result, if the extrapolation error for Ωh

t happens
to exceed that for u′[ĉt] it is possible that when u′[ĉt] + Ω̂h

t is evaluated at a point outside of the grid, the
sum could be negative - which is economic nonsense: giving an agent more wealth can never actually reduce
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utility, because the agent could just give it away. Furthermore, a negative value of V̂ x
t can wreak havoc on

the program - for example, when its inverse is taken. This problem does not arise if Λ̂s
t is constructed for

the gridpoints and the value of V̂ s
t obtained from inverting the extrapolated value of Λ̂s

t .
The problem is solved in the program habits.m. Details of the Mathematica implementation follow

those described above for multiperiod.m very closely, and so need not be detailed here. The program
generates a three-D figure showing the consumption rule ct(xt, ht−1) for the first period of ‘life.’ The figure
behaves as one would expect: consumption is increasing in the level of resources and in the level of the
habit stock.

8 Multiple Control Variables

We now consider how to solve problems with multiple control variables. To keep matters as simple as
possible, we will revert to the case where there is a single state variable; the combination of multiple states
and multiple controls is a straightforward combination of the techniques of this section and the previous
one.

8.1 Theory

The new control variable that we will assume the consumer can choose is the portion of the portfolio to
invest in risky versus safe assets. Designating the gross return on the risky asset between period t and
t + 1 as Re,t+1 (where the ‘e’ is meant as a mnemonic for ‘equities,’ the risky asset usually considered
in models of this type), and using we,t to represent the proportion of the portfolio (w is mnemonic for
‘weight’) invested in equities between t and t + 1, and continuing to use R for the rate of return on the
riskless asset, the overall return on the consumer’s portfolio between t and t+ 1 will be

Rt+1 = R(1− we,t) +Re,t+1we,t (112)
= R+ (Re,t+1 −R)we,t (113)



and the maximization problem is

Vt(xt) =
max

{ct,we,t}
u(ct)+ βEt[Vt+1(xt+1)] (114)

such that
xt+1 = Rt+1[xt − ct] + εt+1 (115)
Rt+1 = R+ (Re,t+1 −R)we,t (116)
0 ≤ we,t ≤ 1 (117)

or

Vt(xt) =
max

{ct,we,t}
u(ct)+ βEt[Vt+1(R̃t+1[xt − ct] + ε̃t+1)] (118)

such that (119)
0 ≤ we,t ≤ 1 (120)

The first order condition with respect to ct is almost identical to that in the single-control problem, equation
(31), with the only difference being that the nonstochastic interest rate R is now replaced by R̃t+1:

u′(ct) = βEt[R̃t+1V
′
t+1(xt+1)] (121)

and the Envelope theorem derivation remains the same so that we still have

u′(ct) = V
′
t (xt) (122)

implying the Euler equation for consumption

u′(ct) = βEt[R̃t+1u
′(ct+1)]. (123)

The first order condition with respect to the risky portfolio share is

0 = Et[V
′
t+1(xt+1)(R̃e,t+1 −R)] (124)

= Et[u
′
(ct+1[xt+1])(R̃e,t+1 −R)] (125)

As before, it will be useful to define Ωt as a function which yields the expected value as of ending period
t in a given state. However, now that there are two control variables, the expectation must be defined as a
function of the choices of both of those variables, because the expectation as of time t of value as of time
t+ 1 will depend now not just on how much the agent saves, but also on how those savings are allocated
between the risky and riskless assets. Thus we define

Ωt(st, we,t) = Et[Vt+1(xt+1)]

which has derivatives

Ωs
t = Et[R̃e,t+1V

x
t+1(xt+1)]

Ωw
t = Et[(R̃e,t+1 −R)V x

t+1(xt+1)]

implying that the first order conditions (123) and (125) and can be rewritten

u′(ct) = βΩs
t (xt − ct), (126)

0 = Ωw
t (st). (127)



8.2 Application

Our first step is to specify the stochastic process for Re,t+1. We follow the common practice of assuming
that returns are lognormally distributed, logRe ∼ N (µ − r, σ2

e) where µ is the equity premium over the
returns r available on the riskless asset.

As with labor income uncertainty, it is necessary to discretize the rate-of-return risk in order to have
a problem that is soluble in a reasonable amount of time. We follow the same procedure as for labor
uncertainty, generating a set of m equiprobable values of Re which we will index by j, Re,j,t+1.

Now let’s rewrite the expressions for the derivatives of Ωt explicitly:

Ωs
t (st, we,t) =

(
1
mn

) n∑
i=1

m∑
j=1

[
Re,j,t+1 (ct+1(Re,j,t+1st + εi))

−ρ] (128)

Ωw
t (st, we,t) =

(
1
mn

) n∑
i=1

m∑
j=1

[
(Re,j,t+1 −R) (ct+1(Re,j,t+1st + εi))

−ρ] . (129)

Writing these equations out explicitly makes a problem very apparent: for every different combination
of {st, we,t} that the routine wishes to consider, it must perform two double-summations of m× n terms.
Once again, there is an inefficiency if it must perform these same calculations many times for the same or
nearby values of {st, we,t}, and again the solution is to construct an approximation to the derivatives of
the Ω function.

Details on the construction of the interpolating approximation are given below; assume for the moment
that we have the approximations Ω̂s

t and Ω̂w
t in hand and want to proceed. As noted above, nonlinear

equation solvers (including those built into Mathematica) can find the solution to a set of simultaneous
equations. Thus we could ask Mathematica to solve

c−ρ
t = βΩ̂s

t (xt − ct, we,t) (130)
0 = Ω̂w

t (xt − ct, we,t) (131)

simultaneously for the set of potential xt defined in xGrid. However, multidimensional constrained maxi-
mization problems are difficult and sometimes quite slow to solve. There is a potentially better way. Define
the problem

Ω∗,t(st) = max
{we,t}

Ωt(st, we,t) (132)

such that
0 ≤ we,t ≤ 1 (133)

where the * subscript indicates that Ω has been optimized with respect to all of the arguments other than
the one still present (st). We solve this problem for the set of gridpoints in sGrid and use the results
to construct the interpolating function Ω̂∗,t(st). With this function in hand, we can use the first order
condition from the single-control problem

c−ρ
t = βΩ̂s

∗,t(xt − ct).

to solve for the optimal level of consumption as a function of xt. Thus we have transformed the multidi-
mensional optimization problem into a sequence of two simple optimization problems for which solutions
are much easier and more reliable.

Note the parallel between this trick and the fundamental insight of dynamic programming: dynamic
programming techniques transform a multi-period (or infinite-period) optimization problem into a sequence
of two-period optimization problems which are individually much easier to solve; we have done the same
thing here, but with multiple dimensions of controls rather than multiple periods.



8.3 Implementation

The program which solves the problem with multiple control variables is multicontrol.m.
The first functions defined in multicontrol functions.m correspond to Ωt(st, we,t) and its derivatives

with respect to its arguments. Structurally these functions are very similar to the Ωt(st, ht) functions
defined in habits.m; indeed, from the standpoint of the end of period t after the portfolio share has been
chosen, the portfolio share is essentially a state variable, so the resemblance to the multistate problem is
more than skin deep.

The first function definition that does not resemble anything in either habits.m or multiperiod.m
is OmegaInvOpttRaw[st ,LifePosn ]. This function, for its input value of st, calculates the value of the
portfolio share we,t which satisfies the first order condition (131); tests whether the optimal portfolio share
would violate the constraints, and if so resets the portfolio share to the constrained optimum. The function
returns three results: the (inverse) value associated with the optimal choice of we,t (designated ✵∗,i,t), the
(inverse) marginal value of saving at the optimal we,t (✵s

∗,i,t), and the optimal value of the portfolio share
itself, wi,t, from which the functions ✵̂∗,t(st), ✵̂s

∗,t(st) and ŵt(st) will be constructed.
The subsequent function definitions in the file assume that these functions have been constructed and

stored, respectively, in OmegaInvOptt,OmegasInvOptt, and wt, where the naming convention is obviously
that ‘Opt’ stands for *. With Ω̂s

∗,t(st) in hand the analysis is essentially identical to that for the standard
multiperiod problem with a single control.

The structure of the program in detail is as follows. First, perform the usual initializations. Then
initialize wGrid and the other variables specific to the multiple control problem.4 In particular, there are
now three kinds of functions: those with both st and we,t as arguments, those with just st, and those with
xt.

Once the setup is complete, the heart of the program is the following loop.

1. Construct ✵̂t(st, we,t), ✵̂s
t (st, we,t), and ✵̂w

t (st, we,t) using the usual calculation and interpolation over
the tensor defined by the combinations of the elements of sGrid and wGrid.

2. Call the function OmegaInvOptt[st ,LifePosn ] with the list of points in sGrid to generate
✵∗,i,t,✵s

∗,i,t, and wi,t, and generate the functions ✵̂∗,t, ✵̂s
∗,t, and ŵt via interpolation.

3. Find the value of xt where the liquidity constraint begins to bind, and augment xGrid with this point,
then recreate the ArgArrays as usual.

4. Using Ω̂∗,t(st) in place of Ω̂t(st), follow the same procedures as in multiperiod.m to generate
ĉt(xt), Λ̂t(xt), and Λ̂x

t (xt), from which V̂t(xt) and V̂ x
t (xt) are derived, as usual, by inversion.

5. Decrement LifePosn; if LifePosn > 0, repeat the loop.

8.4 Results

Figure 15 plots the first-period consumption function generated by the program; qualitatively it does not
look much different from the consumption functions generated by the program without portfolio choice.
Figure 16 plots the optimal portfolio share as a function of the level of savings. This figure exhibits several
interesting features. First, even with a coefficient of relative risk aversion of 10, an equity premium of only
4 percent, and an annual standard deviation in returns of 15 percent, the average level of the portfolio

4Note the choice of a coefficient of relative risk aversion of 10, in contrast with the choice of 2 made for the previous
problems. This choice reflects the well-known ‘stockholding puzzle,’ which is the microeconomic equivalent of the equity
premium puzzle: for plausible descriptions of income uncertainty, rate of return risk, and the equity premium, the typical
consumer should hold all or nearly all of their portfolio in equities. Thus we choose an implausibly high value for the coefficient
of relative risk aversion in order to generate portfolio structure behavior more interesting than a choice of 100 percent equities
in every period for every level of wealth.
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share kept in stocks is almost 50 percent for most values of st. Second, the proportion of the portfolio kept
in stocks is declining in the level of wealth - i.e., the poor should hold all of their meager resources in stocks,
while the rich should be more cautious. This bizarre prediction is a consequence of the assumption about
labor income risk. Those consumers who are poor in measured wealth are likely to derive a high proportion
of future consumption from their labor income. Since by assumption labor income risk is uncorrelated with
rate-of-return risk, the covariance between their future consumption and future stock returns is relatively
low. By contrast, those with large amounts of current physical wealth will be financing a large proportion
of future consumption out of that wealth, and hence their consumption will have a high covariance with
stock returns. Consequently, they reduce that correlation by holding some of their wealth in the riskless
form.
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