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In this paper we describe numeric as well as symbolic algorithms for the enumeration of substitutional

isomers with an unlimited number of different achiral substituents. We consider three different scenarios:

first, the enumeration of diamutamers with a given set of ligand types and ligand multiplicity, second, the

enumeration of diamutamer libraries with a given ligand assortment pattern, and, third, the enumerations of
libraries with diamutamers exhibiting a limited number of ligands.

1. INTRODUCTION cycle indices, and a point group identification scheme for
input verification are the subject of section 2. We conclude
section 2 with the CauchyFrobenius lemma, a prerequisite
for all the enumeration algorithms that follow. Section 3
introduces an algorithm that enumerates diamutamers with
given ligand types and multiplicities. This algorithm utilizes
the Pdya theorem by efficiently calculating the coefficients

of expanded Pga polynomials. In section 4 we generalize
the previous algorithm to enumerate diamutamer libraries
with specified ligand assortment patterns. This method can
also be used to enumerate libraries of diamutamers with a

Chemical compounds that exhibit identical molecular
formulas but differ in constitution are callégbmers Isomers
with constitutions that exhibit the same central skeleton but
differ in the arrangement of ligands are calidmutamers
A set of diamutamers that one assembles given a central
skeleton and an unlimited supply nfligand types is called
a library. The algorithms introduced below efficiently
calculate the number and library size of diamutamers with
one or more types of achiral ligands of specified, unspecified,

and partlally specmed multlpI|C|ty. . ) limited number of attached ligands. However, another
Prior to any isomer, diamutamer, or library enumeration, ,-ocedure introduced in section 5 is far superior. It is

one has to determine two criteria. First, one has to define ggpecially tailored for counting diamutamers with ligands
the ensemble of chemical compounds to be considered in arbitrary composition but fixed number. Section 6
the enumeration. This is usually done by listing the common roduces the program ISOMERS, written in the computer
properties, such as the number and types of atoms Orgigepra language MATHEMATICA.An example calcula-

subgroups, constitutions, and configurations. Second, one hagjon of cyclohexane demonstrates the handling of the

to specify the conditions under which two compounds aré ,5qram. ‘Other more elaborate diamutamer enumerations
to be regarded equivalent. This is done with the help of j,,strate the scope of the software.

symmetry transformations that define an equivalence relation
between identical isomers. Obviously, many different kinds 2 PLLYA CYCLE INDICES
of isomer enumerations are possible. Here, we limit our '

considerations to configurational diamutamers with achiral  The main ingredient for all our enumeration algorithms

substituents. are Pdya cycle indices. These cycle indices encode the
The enumeration algorithms described in this paper are relevant information about a diamutamer and its symmetry
implemented in a program called ISOMERS8Ve assume  and number of binding sites. In this section we discuss the
that the reader is a potential user of this program and thusgeneration of Piga cycle indices. We start with a parent
proceed as follows. We begin with the input data. As compound and a set of substituent types. The parent
mentioned above, the input data consist of diamutamer compound, also referred to as the skeleton, should exhibit a
ensemble specifications and of applicable spatial symmetry|imited number of binding sites, to each of which at most
transformations determining the isomer equivalence. The one substituent may be attached in just one way. The supply
ensembles are defined through a diamutamer skeleton, thexf an arbitrary number of achiral substituents may consist
binding sites, and the types, number, and assortment ofof a given number of different substituent types.
achiral ligands. The symmetry transformations are provided 5 Symmetry Group. We want to count all possible

as binding site permutations. The construction and classifica- 4y to arrange and attach substituents to a parent compound.
tion of the binding site permutations, the derivation 080 s task is not trivial, because spatial symmetries of the
T Am Markuskreuz 6. E-mail. m.van.aimsick@cityweb.de parent compound re_nder some substituent patterns equivale_nt.
*Henkel KGaA. E-mail: hans.dolhaine@denotes.henkel.de. Two or more substituent patterns are indistinguishable, if
8 Technical University Graz. E-mail: hoenig@orgc.tu-graz.ac.at. there exists a symmetry transformation of the parent com-
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pound, typically a rotation, that maps the two or more
substituent patterns into one another (e.g., 1,3-dibromobenzol
and 3,5-dibromobenzol, where the latter does not obey the
rules of nomenclature). These symmetry transformations
partition the set of all possible substituent patterns into
distinct equivalence classes, each encompassing all those
compounds that can be transformed into each other. The task
is to enumerate these isomer equivalence classes. They
represent the distinguishable isomers.

To count the isomer equivalence classes, we have to
identify the symmetry transformations that define them.
Symmetry transformations are maps that take each atom and
each bond of a compound into an image that is congruent
with the original compound. Hence, each atom maps into
an atom of the same type, and each bond maps into a bond
of the same kind. Figure 1. Methane CH and its symmetries depicted by a

We distinguish three kinds of symmetry transformations. tcetrecl:heirr?; ownh three of its point group symmetry transformations,
(1) Rotations: rotations are symmetry transformations that -~ '
rotate a compound as a whole in three-dimensional Euclidean
space around one or more axes. (2) Reflections/inversions:formations can be classified according to the three categories
reflections map each part of a parent compound across aabove: rotations, reflections/inversions, and conformational
plane into a mirror image. Inversions flip every (atom) transformations.
position vector across an origin into the opposite direction. Each symmetry transformatiog induces a permutation
(3) Conformational transformations: conformational trans- Py Of substituent sites. All these site permutations have to
formations are symmetry transformations that affect the be taken into account. Fortunately, it is sufficient to identify
chemical bonds of a parent compound by twisting, or the permutations of only those symmetry transformations
rotating, them. Rotations and reflections as well as inversions with which all others can be performed via concatenation.
may be part of a conformational transformation. A set of such symmetry transformations is called a generator

Rotations do not alter chemical compounds in any way. Set. In the case of methane three generators are needed. Two
One can always perform a rotation on an actual chemical generators are rotations, one 3-fold and the other 2-fold. Their
compound. It may, however, not be possible to obtain a axes; CsandC, are shown in Figure 1. The third generator,
reflected or inverted diamutamer without altering the struc- a reflection, is depicted by a reflection plahe;. No
ture of the parent compound. Any molecule that cannot be conformational transformations are present in this example.
rotated into its mirror image is a chiral molecule, hence the The resulting permutations of methane’s four substituent sites
distinction between rotations and reflections/inversions. are
Nevertheless, rotations and reflections/inversions have one
property in common. They are spatial symmetry transforma- _
tions that leave one fix point invariant, thus the napoént Pe, =
group transformation

The symmetries of rigid structures are limited to point Pe =(
group symmetries. Chemical bonds, however, may not
always be viewed as rigid links. Some bonds can be twisted;
some dihedral angles alongbonds can be rotated. This pa=(
allows some molecules to change their conformation. In
combination with rotations and reflections, we thereby obtain
symmetry transformations that extend the set of point group
transformations. Since a molecule may have to overcome
an energy barrier to change its conformation, we treat &
conformational transformations separately, so that one can
include or exclude them in an isomer enumeration.

We apply the above symmetry considerations to a dia-
mutamer skeleton and use methane,@d an instructive
example. The central carbon atom of £ferms the skeleton.

These generators form permutation groBg with 24
elementg, representing the 24 transformatiop®f meth-

ne’s symmetry groug.

2.2. Point Group ldentification. The program ISOMERS
automatically generates the permutation grédpWith Pg

at hand, it is possible to derive the necessary group properties
to obtain the Plya cycle index and, equally important, to
identify the symmetry groupG in retrospect, thereby

Each of the four hydrogen ligands H may be substituted and verifying the permutation group generators. To achieve this,

represents a substituent site. We label these substituent site§© determine the conjugate equivalence classes and cycle

with labels 1. 2, 3. and 4. The central C atom of methane structures of permutation grotlda, as presented for methane

and its sp hybrid orbitals exhibit a simple tetrahedral in Table L. . .

symmetry as depicted in Figure 1. For larger skeletons the The conjugate equivalence relation

symmetry identification may be more difficult and may ] 1

require the help of a computer program such as SYMMOL. Pa=P, =3P € Ps With pepp. ~=py
Mathematically, symmetries are encoded as invariances

under symmetry transformatioms These symmetry trans-  partitions the set of group elements into conjugate equiva-
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Table 1. Conjugate Equivalence Classes and Point Group Cycle
Structures of the Tetrahedral Point Grotg

conjugate point group permutation sample
class size cycle structure in cyclic notation

1 E (1) (2 (3) (4)

8 Cs(4),C3(4) (1) (342)

3 C2(3) (21) (43)

6 0C4(3),0C5(3) (2341)

6 o (6) e @

@ The first column lists the number of permutations in each conjugate
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an index. The motivation and theoretical background will
be given in the next section.

To derive a Plya cycle index Z(Pg), we take the
substituent site permutatiopg and determine the length of
each permutation cycle. This only needs to be done for one
permutatiorpy per equivalence class, since the length of the
permutation cycles does not vary within a conjugate equiva-
lence class. The results for methane are displayed in the third
column of Table 1. To construct a Ba cycle indexZ(Pg),
one replaces each permutation cycl@,) of length|ci(pg)|

class. The second column displays the point group cycle structures.\yith an index Variabldm(pg)‘; in this fashion one converts

The notation is explained in the text. The third column lists permutation

examples whose partition into permutation cycles is a property of their

conjugate class.

each substituent permutatigry into a product of index
variables, one sums over all permutatigns and finally
divides the sum by the number of permutation group
elementgPg|. The result is a Hga cycle index

lence classes. The number of group elements in each of these

classes (for methane, see the first column of Table 1) is the

first criterion to identify the point group.

Furthermore, rotations around arfold axis give rise to
a group cycle{C,, Cﬁ, ..., E = CJ}, whereC, denotes a
rotation of (1h)36C, Cﬁ = Cy°C,, represents a rotation of
(2/n)36C°, and C| stands for a 360 rotation, which is
equivalent to the identity transformatida We determine

1
Z(Pg) = —

f
|PG|pg€ZG(Ii_| |Ci(Pg)|)

For methane we can determine twolyRocycle indices,
one excluding the reflection symmetsy and one including
it. The Pdya cycle index for methane excluding reflections

(2)

the group cycles in the permutation subgroup representingis

pure rotations. These group cycles allow us to identify the

rotations and to label the subgroup elements according to

CP (for variations in notation found in the literature see ref
8). For point group elements containing a reflection or
inversion, we proceed accordingly and place ia front of

Z(methane)= (1/12)(f7 + 8f,f, + 3f,%)

The Pdya cycle index for methane including reflections is

Ch to indicate a pseudorotation. We count the number of 5 (methane)= (1/24)(F* + 8f,f, + 3f2 + 6f, + 6f2f,)
group elements with a given label in each equivalence class “ ! 1s 2 4 1z

and obtain a point group cycle structure like the one in the

second column of Table 1. For each label the number of

This concludes the survey of input data. Most of the steps

corresponding group elements is appended in parenthese2P0ve are automated in the ISOMERS program. ThgePo

The point group cycle structure is the second criterion to
identify the point group.

The number and size of equivalence classes and the cycle .

structure ofPg are almost sufficient to uniquely identify the
corresponding point grougs. However, there are point
groups G that have isomorphic permutation groups

exhibiting the same equivalence classes as well as cycle

structures. These point groups are in Schoenflies notétion:

S=C,;=C,=C,
Con=0Cy,
(1)
Sz = C(2n+1)h

€ IN
D(2n+1)d = D(2n+1)h

Itis impossible to discriminate the point groups in (1) given

cycle index is the starting point for all enumeration schemes
that follow.

2.4. Cauchy-Frobenius Lemma. The Cauchy-Frobe-

nius lemma is the cornerstone of many enumeration schemes,
including methods utilizing Polya’s polynomial. To state the
lemma of Cauchy and Frobenius, we introduce a few group
theoretical terms.

(1) Ps denotes a finite group consisting of permutations
pg, Which permute the elementsof ordered setX. The
permutationgpgy are bijective mappy: X — X representing
the symmetry transformatiorgsof point groupG with pg: X
— Py, (PgPg) () = Po(Pe(¥), Po(¥) = P, (¥), andp.(x)
= x. X will denote the set of distinguishable as well as
indistinguishable diamutamers.

(2) wa(x) represents the sépy(X)|pg € Ps} for a givenx
€ X. The wg(x) with x € X form equivalence classes with
respect to the equivalence relatiwe:= X' < 3 py € Pg, with

the site permutations representing rotations and reflections/Pg(X) = X. The ws(X) will represent the isomer equivalence

inversions.
The program ISOMERS renders the identified point groups

classes representing the indistinguishable isomers.
(3) Qg(X) is the set of all classeag(x) with x € X

G in Schoenflies notation, which, in the case of methane, is generated byPs. Thus, Qg(X) is the set of disjoint

Tg. This extra feature of ISOMERS is not needed for a

equivalence classes X. Qg(X) will denote the set of all

diamutamer enumeration, but greatly helps to eliminate errorsdistinguishable isomers.

in the input data.
2.3. Pdya Cycle Index Construction. The most compact

(4) Xp, is the set of fix pointd x € X|pg(X) = x} under a
single permutatiornpg.

mathematical encoding of the skeleton symmetry data is a (5) (Pg)x is the stabilize{ py € Pg|py(X) = X} of x € X.

Pdya cycle index. Here we explain how to construct such

(Pg)x is the largest subgroup éfs that leavesx invariant.
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Figure 2. A diamutamer is represented by a mamatching the
susbtituent site iB with the ligand types irL. The circles inB

represent the cycles(y) generated by a site permutatipn The
mappingé shown is invariant under permutatifig and thus a fix
point.

In an isomer enumeration we determine the cardinality
|R2c(X)], which is the number of elements of the §&t(X)
of all isomers equivalence classes(X). Instead of counting
all wa(X) € Qs(X) the Cauchy-Frobenius lemma (3) allows
us to enumerate the fix poini,,.

1
Q-(X)| =— X 3
| G( )| |PG|pg€ZG| pgl ( )

A proof can be found in ref 10.

We apply the CauchyFrobenius lemma (3) to a diamu-
tamer enumeration as follows. Initially, we are given a
diamutamer skeleton witls substituent sites and a skt
containingn ligand types. A diamutamer is represented by
a mapé: B— L, associating every substituent siteBrwith
a ligand type inL (see Figure 2). We assume the ktof
all possible mapg to be the seX.

Point group transformationg rotate and transform a

diamutamer skeleton and thereby permute the substituent

sites inB according to a site permutatigiy(B). Each site
permutationfy induces a permutation of magse X.

Py(£)(B) = £(B(B))

We thereby have obtained all the necessary ingredients to

apply the CauchyFrobenius lemma (3): an ordered 3ét
and a permutation groups operating onX. The setsvg(&)

are the isomer equivalence classes. To enumerate the
diamutamers, we have to determine the number of classes

1Qa(X)I.

According to the CauchyFrobenius lemma (3), we only
have to count the number of fix poinfs | for all pg € Pe.
This turns out to be a simple task, since fix point m§ps
Xp, are easily constructed. To obtain an invariant ngdpr
a given site permutatiofl, one has to ensure that all the
substituent sites within a permutation cycl@,) are mapped

Hence, we are looking at an invariant mgpa fix point of
permutationpg.

The following three sections address the enumeration of

fix points [ Xp,| under three different enumeration constraints.
The section about Bga polynomial expansion focuses on
the enumeration of invariant maps frdsrinto L with given
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multiplicity for each ligand type. We ease the constraint of
ligand multiplicity in the subsequent section by specifying
ligand assortment patterns instead. The third section features
an algorithm that enumerates libraries of diamutamers with
limited numbers of attached ligands.

3. POLYA POLYNOMIAL EXPANSION

Before addressing the problem of i@ polynomial
expansion, we quickly recapitulate the concept ofyRo
polynomials and the relation to the Cauetfyrobenius
lemma.

3.1. Pdya Polynomial. To count the number of fix points
|Xpl, One can simply state the different ways on how to
construct an invariant map Taking Figure 2 as an example,
we could attach one H, one ClI, or one Britp and connect
three H, three Cl, or three Br atoms lbg, bs, andb,, and,
finally, assign two H, two ClI, or two Br atoms tm andbs.
Rewriting this in Boolean logic, we obtain

by n b
LIv]ilv] i
H Ci Br
b2 b3 by b b3 b
A IALALIVIIANLAL
H H H (o} (et} Cl
by bs ba
VIiIALAL
Br Br Br

b5 bs b5 bs b5 bS
A IALIV]IIANLIV]IIAL
H H Cl Cl Br Br

According to the distributive law of Boolean lodgicone
can expand (4) to

(4)

b] [b2 bs ba] [bs be] I
LIATLALALIATLAL (5)
(H] LH H O H] |H H]
[ by ] by by by ] Fbs  bg |
\2 IATIANLALIANTLAL
la] LH H H] [H H]
For ] [be b3 ba [bs  be |
\ VIATILANLALIATLAY
(B [H H H] [H H]
(51 ] [b2 b3 ba| [b5 b6 |
\ LIATIALALIANTLAL
(H] |a a a] [# #»]
b1 b b3 by by bg
\Y VIA]LEANLTALIA] LA
Br Br Br Br Br Br

Every line in (5) is an invariant mag, and the expansion
of (4) delivers all invariant maps undey.

The expansion of a Boolean expression corresponds to the
expansion of a polynomial if one replaces thés by
onto the same ligand type as shown in Figure 2. The multiplication and thev’s by addition. In this way one can
permutations of substituent sites within a cycle do not affect apply polynomial calculations to the enumeration of invariant
such a map. Site permutations between cycles do not occurmaps. To do so, we simply replace each rbap- X by the
corresponding ligand variable X, al's by x, and allVv’s
by +. The boolean expression (4) is represented by

(H + Cl + Br)(H* + CI® + Br¥)(H? + CI* + Br?)

and expands to

(6)
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H°® + H°CI -+ HBr + H'CI? + H'Br® + 2H°C® + Inf1jemar = = (mememaeny o
HCIPBr + ... + CIBr° + Br® (7) 8 s 3 3 3
iz (::1+xz+x3+:,) (x1 +X2" + X3 +x,) +
Every monomial in (7) stands for an invariant maprhe 3 2. _2._2._2}
variables of the monomials indicate the assortment of ligand 12 (x‘ TE2 vE A E ) !
types'? The monomial MCI?, for example, represents an Inf2j:~ Coefficient [GF, xyx,7%4]

invariant map with four hydrogen and two chlorine atoms. Ooutf2]= 1
The coefficient in front of HCI® indicates the existence of
2 invariant maps with three hydrogen and three chlorine  The built-in Coefficient routine can process any kind of

atoms. In this fashion, the polynomials can be used as polynomial, but may demand large amounts of memory and
generating functions to count the numbgXg| of invariant ~ processor time to do so. We therefore introduce a far more

maps under permutatign. The generating function ¢K| efficient algorithm that determines the coefficients ofyRo
for a given assortment of ligand types is polynomials in a fraction of the time, especially for com-
pounds with many substituent sites. The increase in process-
I‘I()ZLxlci(Pg)l) (8) ing speed for methane with four substituent sites is 40%,
i e cyclohexane with 12 substituents is calculated 4 times faster,
and kekulene with 24 sites is processed already 80 times
The Cauchy-Frobenius lemma (3) sums ovieg, | for all faster.
py € Ps. Thus, we obtain a generating function 162¢(X)| We were able to achieve this tremendous increase in speed
by substituting (8) foriXp,| in (3). by specializing on Flga polynomials. All generating func-

tions enqountered are linear combinations of the following
i Z H(;LX‘Q(DQ)') ©) polynomial type:
Palpieps’i " L2 SOX) = (X + X+ oo + X )0+ X2+ .+ X D)
(9) is called thePdlya polynomial Comparing the Figa (%" "+ )
polynomial (9) with the Plya cycle index (2), we find the

m
simple connection. = I—!(Xlk + sz o Xnk)ak (11)
k=
fICi(Pg)\ = >ZLX\Ci(pg)\ (20) o= {0y, 0y ...y O}
€
X = {Xp Xoy ooy X}

Consequently RAga cycle indices can be used to construct
the corresponding Fya polynomials. Expanding a B@ With respect to (11) we can rewrite théla polynomial
ploynomial, we find as coefficients the number of diamu- GF for methane in the MATHEMATICA input above as
tamers|Qg(X)| for a given assortment of ligand types as
indicated by the monomials.

_1 243 <
To complete this short introduction, we enumerate the GF() = 128({4’0’0’(}’)() + 128({0’2’0’0’)() +

number of diamutamers for methane, substituting three of ES({l 0,1,0:%)

the four hydrogens H with two ligands A and one ligand B. 1277
Disregarding the set of possible ligands= {A, B, H}, we

first replace the index variablig by (< + x5 + x + x5), The algorithm, introduced here, determines the expansion

because methane has four substituent sites and can accegoefficients ofS(a;x). Once the expansion coefficients of
up to four ligands, xo, X3, andx,. We then take the Fyas S;X) are calculated, one can assemble the expansion
polynomial resulting from the methane Ipa cycle index coefficients of the complete generating function GF linearly
(excluding reflections) and expand it. We extract the coef- (see (25)). _ N -

ficient of monomial x;xxsX; representing one hydrogen ~ We determine the expansion coefficients &) by
atom nyg denoting two ligands A, ang; standing for one rewriting polynomialS(@;X) in an expanded form as depicted

ligand B. The coefficient we find is 1. Hence, there is only N (12). We Ef";‘ tm*s' extract a formula for the expansion
one possible configuration and consequently only one coefficientsy s /).

stereoisomer for CH#B. o " |
Considering Plyas cycle indices and polynomials with SR = > Aenonay XXX (12)
or without reflections and with or without conformational HLH2:---fn

transformations, one can enumerate configurational or con- dth | ial K v Ko ;
formational sterecisomers as well as configurational or _First, we expand the polynomial factops'tx;".. x) % in

conformational diastereoisomers. (11) utilizing the formula for multinomials in (13) and (14).
3.2. Polynomial Expansion.Given a generating polyno- ol
mial, we need to find its expansion coefficients. For small (X, + X, + ... + x)* = X X
. . S 1772 a,lal |72
polynomials this task can be handled by a built-in MATH- adr.an Q118 ay
EMATICA command called Coefficient. Zjnzla,:a

For the previous methane example we enter (13)
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Evidently, the above equation remains valid after substitut- convert the product with respect kointo a summation of

ing X for x. the exponent ok;.
(Xli + XI; + ...+ Xﬁ)a = I" (Z[? 1k akj)) (20)

Z a! Xlial Xl;azm k-an (14) X0 = % (l_l( ))
G20 :

, a,la,l...a) no__
aln i zjzlakl .
Zj=1a‘_°‘ . . m
o _ We abbreviate the exponent of eaghwith ;== >, - k-ay.
To distinguish them polynomial factors of§a;x), we Then we collect all monomials exhibiting the same exponent
attach to exponent. and to all nonnegative integegs in pattern. We, thus, split the summation in (18) into a
(14) an additional index. Inserting (14) into (11) yields summation ovep; and a subsummation over a; with
" a! Yia = ok as well asy, L k-ag = ;.
Q ﬁ ke K-ayn
SCHY |_| X x| (15) S(@&) = (21)
akl A Al Byl
ZJ=1ak":ak
m n
For convenience we will use the following notation for > > 11 (‘f’“) . (H x_’;’)
multinomial coefficients. p U == S i=1
ay ay! Ziata= Z";::lakj:ak
= | =727 21 (16) o lk~akj=ﬂj
o) aylal..a, .
(1 u2 ,,,,, #n)
K [— X(al a2 7777 am)
8y = {aq g - 8y}
a =a,ta,t..+a, Note that giveny; = .. k-a; the sum of exponents

Yi_,uj is a constant value := ;' k-ax as can be seen in
In the next step we expand the product of multinomial (22), wheregj”:lakj = ax encountered in (16) is used.
factors by applying the generalized distribution law (17).

rl(hkz qhk) :le___hni(k: q“k) T %ﬂ j :njiik'a:
- k;k( ];akj) - k;k.ak 22)

Comparing the expanded sum in (21) with the polynomial

M. [ n
= z ( Qhk) a7

e \K=

. in (12), we can extract the terms for the coefficients
Setting ¢, = (ak) Kawkae ykaan and h, = & with X(ﬁlﬁz,...ﬁ)n)
K 1,002,...
Zjnzlakj = Ok yields m
(apt2fin) - Oy
o n ak kau kea X(alaz,...,am) z D(ak) (23)
S@;X) = l!] z 3 B
= a:lv--.akn zjzlakfak
2 =12 zrknzlk'aka
m
- 3 Xeaa_ ke (18) Hence, to find a coefficientls:42 4, for a given tupled
r ﬂ andz, we have to sum over products of multinomials for all
g \k=

N o nonnegative integera, satisfying the conditionileakj =
2 g o and Y keay = .

3.3. Algorithm. The heart of the algorithm, introduced
here, consists of a recursive strategy that generates all admis-
sible sets of nonnegative integegg To explain the strategy,
we rewrite the condition§ |_,a; = ax and 3, k-ag = 4 in
the form of a table (24).

The kth row k-ai k-a ... keakn 3 o stands fory L k-ay

m n m
oy O -8y . . =
SCHIEIEDY (l_l(ﬁk))(r'rlx‘k ak’) (19) = . Accordingly, thejth column stands fof [ k-a; =
By \K= J=1k= .
-
Zjllakj:ak Theoy's andu’'s andmandn are given. The nonnegative
integersa, must be found. The strategy consists of two
We leave the multiplication with respect fantouched and recursions, one nested within the other. The outer recursion

Each summand of (18) consists of a product with numerous
xjk'akj factors. These factors are indexed byndj so that
one can rewrite thexjk'akJ products in condensed form as a

double product.
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a1 a2 - @y o am Z e (o, ba). A lower bound forg, is 0, sincea, has to be a
2.a3 2-am - 2.4y - 24z = o nonnegative integer. Furthermore, a lower bounddaors
Do given when all other summands., assume their maximum
' = valuesh;-,. Thena, has to assume its smallest value to allow
k-agy k-agz -+ k-ag; - kragn = ag n n
. o @9 for ag + 3Ly = o Thus,a = o — 3L, The lower
Do : ; > — 3" b
amt T ama - Tamg - moamn E am pound is therefgrg g|ven.bgq_ max(0,a zjnzzbj). Ea}ch
£ 0z 5 - = integer yalue vy|th|n the interval [max(@, - zl‘.:zbj)u min-
= = - - g T (a, by)] is admissible fora;. For each admissible; value
£1 | B . B ) =_ i i
we perform a separate recursion step. Hence, the inner

reduces the equation table (24) by one row at a time, from recurs?on may split into several branches, just as the_outer
bottom to top. The inner recursion eliminates one column "€cursion. For every branch we save the corresponaing

in each recursion step, doing so from right to left. value and remove it from the suff_;a = o by subtract-
3.4. Outer Recursion. We commence with the outer ~Ng & froma. Then, we repeat the inner recursion &y
recursion. Given a tuplé and a tupléi, we first determine ~ Setting@ = {a, &, ..., a} andb = {by, bs, ..., by}, and
the maximum nonnegative integer values admissible for theta.k'ng the reducedJ[\to account. The Inner recursion halts
an; entries in rowm. Sincemray,; is part of thejth column ~ With a, = o — ;. The inner recursion never stops
that forms the surp;, and since all summands in that sum Prematurely if a range of admissible values frexists.
are nonnegative, we must observe the inequatlitgy,; < This is obvious since we have_ chosen,the lower interval
u;. Hence, the largest possible value & is given bybj(m) boundary ofy to allow for a solution of ally’s. If one cannot
= [i/mi] The expressiof;/mistands for the greatest integer 1Nd an admissible value faa, no solution exists.

value smaller than or equal tg/m. Equipped withou, and Again, as With. the outer recursion, we obtain a tree
tupleb™, the inner recursion, defined in a separate function Structure of solutions. For every leaf of this tree structure
and described below, generates all admissible tugesith we can extract a complete solutian= {ay, @, ..., an} by

am; = bj(m) and Z_n:lamj = ., For each of these admissible collecting the admissiblg values at eac_h branch going from
tuplesa,, we now perform a recursion step from rawto the root of the tree structure to the.g.lven leaf.
(m — 1). Be aware that at this point the recursion splits into ~ 3-6. Assembly of Expansion Coefficienta/Ve now return
one or more branches, one branch for each admissible tupld© (11)- Any generating function that we encounter consists
3m = {@n, Az, ..., 3mr} . First, we stord, as part of one of ~ Of summandsya.X) with different tuplesi. We obtain the
the final solutions. Second, we subtran, from z and ~ expansion coefficients® of such a generating function by
keep the result as the new tugle Third, we remove the ~ Summing up the respective multiples of all corresponding
mth row from the equation table (24) and repeat the above summand coefficientg{s) with the same exponent signa-
procedure, this time for roanf — 1). ture ().

There are two scenarios which cause the outer recursion
to halt. In the first scenario, the recursion reaches the first GFX) =cSa;X) + c'Sa';x) + c'Sa'";x) + ...
row with m = 1. We thus obtain a complete set{&;, 3,

— (U221 1) 1y n
..., am} values with which we can calculate a summand in - z yrE X X (25)
(11). In the second scenario, the inner recursion renders no HLl2e fin
solution for 3@ in a kth outer recursion step. Then the Yy = CXE/&;+C,X?&?)+C"X%§?’)+

prospective solutiofa, @, ..., a} of the affected outer
recursion branch must be discarded.

Remember that the outer recursion splits into one or more With th's result we concll_Jde the d|scu55|o_n of OUB.'B.O
branches at each recursion step. Hence, we obtain a treEpolynomlal expansion algorithm. The expansion coefficients

structure of solutiong. For every leaf of this tree structure 7" Of GF®) in (25) render the number of equivalence classes
we can extract a complete solutidid, @ a3} by in Qg(X) and thus the isomer count for diamutamers with

collecting tuples at each branch as we go from the root to  SPecified ligand multiplicity.
a given leaf. The expansion coefficienis zero, if the outer
recursion fails to produce any solution. 4. LIBRARIES WITH SPECIFIED LIGAND

3.5. Inner Recursions: Bounded DistributionsWe still ASSORTMENT PATTERNS
have to describe the inner recursion. As noted above, the |n the previous section we performed the enumeration of
inner recursion starts with an integer value torand an  jsomer ensembles. Every diamutamer consisted of the same
n-tuple of nonnegative integer upper boumdsiere we omit  central skeleton and the same set of ligands. We now turn
indexk for easier reading. The inner recursion has to render to the enumeration of diamutamer libraries. The ensembles

all tuplesa that comply with3 L, = o andg =< b for all (or libraries) to be enumerated consist of diamutamers that
j =1, ..., n. Setting it differently, we are looking for all  exhibit the same central compound but not necessarily the
distributions ofca items inton bins with upper bounds;. same set of ligands. Instead we assume an unlimited supply

We therefore refer to the inner recursion as bminded  of substituents with a specified range of ligand types. The

distribution function We start the inner recursion by substituents of the diamutamers are all taken from the same
calculating the range of admissible valuesagf we then  supply, but the ligand selection may be different. Within one

proceed to deal witla, and so forth. An upper bound for library one may therefore encounter diamutamers with

admissiblea; values is given either by, due toz]-lla,- = different molecular formulas, hence chemical compounds that
o, or by b, whichever is smaller. Consequenty, < min- are not isomeric.
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Table 2. Substituent Patterns and the Corresponding Combinatorial extracting all partitions of another size. If there &g
Isomers for the Substituent Pattern in Column One (Last Column) k: ligand types not yet in Ljse The resulting combinatorial

multiplication - no. of multiplication - no. of factor is (§ ). In the next recursion step, we extraet
pattern factor isomers  pattern factor Isomers . 2 . . . .
1 1 partitions of still another size, distribute tme— (k; + k)
CX4 (”) CX,YZ (”)(”_ 1) unused ligand types, and obtain the combinatorial factor
L L\2 (-taty We can proceed this way until all partition sizes
n\fn—1 1 n 2 ks
CXaY (1)(1 ) CXYzZW (4) are accounted for.
1 The resulting combinatorial factors for the methane
CX2Y2 (2) example are listed in the second column of Table 2. We can
infer from the fourth row of Table 2 that one can assemble

In this section we enumerate libraries consisting of (D3 ) methane diamutamers of type & given a
diamutamers with a specified ligand assortment pattern. TheSUPPly ofn'ligand types. According to the last row, there
emphasis lies on the womattern We already considered ~ are two (;) methane diamutamers of type CXYZW. Note
diamutamers with a specified ligand assortment in the that in the last case every ligand selection amounts to two
previous section. A ligand assortment pattern is the partition diamutamers. o .
of attached substituents into subsets. Each subset denotes a \We can utilize this library enumeration scheme also for
substituent group of an unspecified ligand type. Different libraries with no or partially specified ligand assortment
subsets represent different ligand types. We thereby limit Patterns. We simply have to sum over all admissible
an ensemble of diamutamers to compounds that exhibit adSsortment patterns. This approach may, however, be very
certain molecular formula pattern. All possible ligand as- tedious, if the number of admissible assortment patterns is

sortment patterns for methane are listed in the first column large. For example, to enumerate an unrestricted library for
of Table 2 as an example. methane, we must sum over all five patterns listed in Table
Given a ligand assortment pattern and a supply of ligand 2, obtaining @) + (D(1 ) + (5 + (D(3 ) + 2(}) = n*>
types, one has to be aware of the many combinations with (11 + n?)/12 diamutamers. This might be acceptable, but
which the available ligand types can be distributed into the the enumeration of the & fullerene diamutamer library
ligand assortment pattern. Determining this number of results in a summation of over 966 467 ligand assortment
combinations we can convert an enumeration of libraries with patternsi? a task that takes today’s personal computers days
ligand assortment patterns into an enumeration of isomerto complete. In such a case the algorithm introduced in the
ensembles consisting of diamutamers with a specified set ofnext section is far superior.
ligands.

We solve this task step by step considering more and more 5. LIBRARIES WITH A SPECIFIED NUMBER OF
assortment patterns. ATTACHED LIGANDS

First, we address an assortment pattern that equally e continue with the enumeration of diamutamer libraries.
partitions the set of att_a_ched substituer_lts ihtdifferent However, we no longer specify the ligand assortment pattern.
ligand types, each partition encompassmgsubstituents.  The only constraint upon the library ensemble is now the
Obviously, k needs to be smaller tham the number of  ymper of attached ligands. We achieve an enumeration of
supplied ligand types. A substituent selection such as gych an ensemble not via Ipa polynomials as in sections
AmBrCn...Kn satisfying the pattern is uniquely specified by - 3 and 4, but through a new algorithm counting the number

the k-element subset A, B, C, ..., K. The order of ligand of fix points X,, in the Cauchy-Frobenius lemma (3) under
types in the selection is irrelevant, since a ligand assortmentihe new constraint.

pattern refers to the Chemical Abstract Formula Index, which  \we start with the special case in which the number of
may have a sorted notation convention, but which does not attached ligandsis the same as the number of binding sites

imply any structural order (e.g., formulagi@BrzCl; is |B|. This scenario is equivalent to the enumeration of
equivalent to GH,Cl,Br or CeBr,Cl,H;). To find the number  ynrestricted libraries. We recall the construction of invariant
of possible substituent selections such aBAC...Km, W& diamutamer map§ as discussed in section 2.4 and Figure

have to determine the number lofelement subsets in the 2 A mapé¢ is invariant under a site permutatidi, if all

set of n ligand types. The solution to this well-known the sites within a permutation cycle are mapped onto the
problem is the binomial coefficient J. Consequently,  same ligand type. Hence, we can choose to map every
having access to a supply pfligand types, one can create permutation cycle, or rather its elements, ofitpdifferent

() different selections ok elements. Each ligand selection ligand types. We usej(p,) to denote the number of
leads to the same diamutamer enumeration, since thesgermutation cycles ifB. The number ofg-invariant maps
enumerations are independent of the particular ligand types.is then based om(py) ligand type choices, amounting to
Only the abstract partitions into different ligand types are |L|"(°) possibilties. Inserting this number of fix pointé, |

relevant. into the Cauchy Frobenius lemma (3), we derive
Second, we approach assortment patterns with partitions

of different sizes via recursion. We begin by considering 1Q4(X)| = i |L|;7(pg) (26)

partitions of a certain size only. We assume to fiadof G IPGngeZG

these partitions. We can then distribltieof the n available
ligand types into thé; partition bins. As mentioned above, (26) is the known enumeration formula for unrestricted
there are Cl) combinations. We initiate a recursion step by diamutamer libraries.
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Pdya indices (2) are very helpful when constructing (26)
for a particular skeleton. Recall that every ly?o index
variablefi, ) denotes a permutation cyatgpg). Replacing
fiomg bY ILI, we obtain|L|7®) for [Tifi, and (26) for a
Pdya index (2).
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rest will be assigned to V. Obviously there ar€,)(
possibilities to selec¥/l permutation cycles out of a total of

e cycles. For each of thesej selections there arg |¥
possibile assignments of tls# cycles to thegl| ligand types

in L. This is the same reasoning as for unrestricted libraries.

The enumeration of diamutamer libraries becomes more Hence, we obtain the following recursion anchor:
subtle if one reduces the number of substituents attached to

the central skeleton. We introduce a new ligand type with
the symbol V, representingacancies to account for this
modification. Binding sites mapped upon V are now con-
sidered unsubstituted.

As with unrestricted libraries we have to count the
invariant mapst:B — L U {V}, but with the proviso that

(&) L)Y, if smodl=0vs<el

NF(f]) = N

otherwise

To apply the function NEto permutationspy with j
different cycle lengths, we construct a recursion step that

IB| — s binding sites are mapped onto V. Hence, the set of reduces the case withdifferent cycle lengths to the case

admissible diamutamer maps is|{U {V})B := {£|&B —
(LU{V}) Vv |EYL)| = s}. The number of occupied binding
sites iss, fixed by the condition& (L) = s.

To determine the number of diamutamers, we have to find

the number of fix points/((L|s U {V})B),,| for each site
permutationpy, the same counting strategy as before. Now,

however, we have to ensure that for all diamutamers exactly P

(IB| — 9) sites are vacant, i.e., mapped upon V.

Under this constraint, we can only find invariant diamu-
tamer mapg for a site permutatiopy, if py exhibits a subset
of permutation cycles with altogether exactljB|( — 9)

with (j — 1) different cycle lengths. The permutatiopg
with j different cycle lengths will exhibit a Bya index
variable productffj...fﬁj-f?. We begin with the ligand
assignments to the permutation cycle of the lasty&o
variable f. The ligand assignments to the remaining
ermutation cycles will be handled by the following recursion
steps.

Up front, we do not know how many of théjj cylces will

be assigned to ligand types ln and how many will be
assigned to V, and, thus, stay vacant. We therefore have to

elements. The elements of these permutation cycles can themum over all possible scenarios. We can assign 0 or &p to

be invariantly mapped upon thiB( — s) ligands of type V.
After all, any permutation cycle with only part of its elements
mapped upon V would not be invariant under permutation
pg, hence the guideline “all cycle elements or none”.

Once again we use the Ka index variableds ) to
denote the permutation cyclegp,) of a site permutation
Pg- The productifip, represents the number and length
of all cycles of site permutatiop, faithfully. We rewrite
the product of index variablég,, by gathering permutation
cycles of the same length= |ci(pg)|, and denoting their
multiplicity by an exponente. We thereby obtain an
expression of the fornﬁil-ff:...ff?. We thus characterize a
permutationpg with e, cycles of lengthly, ..., andeg cy-
cles of lengthl;.

To determine the number of fix point§(L|s U {V})®)p,|
by recursive means, we introduce a new function

NFgf . £ — IN

The function NEwill render the number of fix points under
a permutation with a Rya index variable produdtﬁl...fl‘?.
As a recursion anchor we consider site permutatians
with permutation cycles of equal lengthSuch site permuta-
tions are represented by dlfaindex variable produdt;.
NF(f}) is equal to O if no invariant map can be formed.
This is the case if the occupied binding sites cannot be

but no more thans/l;Ccycles to ligand types ih. Assume

we take an integek with 0 < k < min(g, [¥/l;0, and map

k permutation cycles of length onto L. We obtain, as in
the case of the recursion anchof))(L|* possible invariant
maps. However, we still have the cycles of lengtto |;-;.

The number of invariant maps for these cycles is evaluated
by the following recursion steps, which we obtain via
NFs_i(f f‘ll...f ?_*11). Note that the number of binding sites to be

occupied has been reduced frato (s — k). The (partial)
maps of the permutation cycles of different lengths will
combine to complete invariant maps. Hence, the enumera-
tions of all the possible partial maps within a recursion have
to be multiplied. We thus multiply the NF(f Fll...f ;?:11)
possibilities onto the number of invariant maps with cycles
of lengthl;. Summing over all admissible values lkafwe
derive the recursion step

min(E'l;/IjDe,)q
NF(fP.f72FF) = k; (k)|L|kNFsk(fﬁl---f??_f)

(27)

Obviously the recursion step (27) reduces the number of
cycles with different length. Consequently, the recursion
terminates with the anchor derived above.

So far, function NEhelps us to determine the number of
fix points [((L|s U {V})®)y,| for a single site permutatiop,.

assigned to a subset of complete permutation cycles asAccording to the CauchyFrobenius lemma (3), we have
described in Figure 2. Thus, a necessary condition for anyto perform this calculation for every site permutatigyof

invariant assignment smod| = 0. The number of occupied
binding sitess has to be divisible by the cycle length
Furthermore, there should not be more binding sitédsan
the 1) elements of all permutation cycles. < el.

Once these preconditions are met, theresgyermutation
cycles,g/l of which are mapped onto ligand typeslinThe

groupPg, add the results, and divide it BPs| to complete
the diamutamer library enumeration. We can simplify this
procedure. Note that a'Ba index is a linear combination
of Pdya index variable products representing the summation
and division just mentioned above. Hence, we simply define
function NR as a linear operator and apply it to aljzo
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3 displays the cyclohexane chair conformation before and
after a ring flip. A ring flip in combination with a 60rotation
around the 3-fold vertical axis is our fourth symmetry
transformation with site permutation (3, 4, 5, 6, 7, 8, 9, 10,
11,12, 1, 2). We implement these properties of cyclohexane
with the command (note that the subscriptdentifies the
site permutation of a reflection and c the site permutation of
a conformational transformation)

Inflje=
DefineParentCompound[
Cyclohexane,
{R(8.7,6.5,4.3,2,1,12,11,10,91.,
R[5,6,7,8,9,10,11,12,1,2,3,4},
R,[1,-2,11.12,9,10,7.8,6,6.,3,4]).
R.[3.4,5.6,7,8,9,10,11,12,1,2]}

Figure 3. Cyclohexane in its chair conformation. The numbers ]

enumerate the hydrogen ligands, the possible substituent sites. The . .
two displayed conformations are related by a ring flip. The  NOw, Cyclohexane is a MATHEMATICA symbol with

conformations are invariant under rotations around a 2-fold axis, Which we can retrieve the symmetry generators from our
C,, and a 3-fold axisCs, as well as under reflectiom between the database. To check the input, we verify the symmetry of

foreground and background. cyclohexane.
index as a whole. We instantly obtain the result of the Inf2}:= PointGroupReport [Cyclohsxane]
diamutamer library enumeration. The group cycles of the point group are :
1 (a)l(xz)l(30’)7(002)'(065/062)/(02/62)
|QG(L|SU {V})| = NFs R Z (l_l f\c(p)l) (28) The corresponding point groups are : Dig. Dghe
|PG|pge G | e The group cycles including conformational
transformations are :
6. THE PROGRAM (8) + (365) . (3G;)  (30), (30}, (6], [oc?) . (062},
The program package ISOMERS.M is written in MATH- (06 &) (0Gs s ¢k} [06s- 0GE) (6. ct)
EMATICA*and readily available to MATHEMATICA users Such a group cycle structure would
on the Internet. We will try to find a sponsor for a correspond to: Dgn.

MATHEMATICA-driven Web page for those who do not

have access to the MATHEMATICA kernel needed to run ~ The automatically identified point groudSsq and Den
ISOMERS.M. The core of ISOMERS.M consists of an agree with those in ref 15. However, somélyocycle
adaptation, a refinement, and a considerable extension of dndices determined with our program contradict those in ref
progrant* given earlier in FORTRAN. ISOMERS.M auto-  15. Simple consistency cheéRéndicate that a few results
mates all the calculations and algorithms introduced in this Of ref 15 must be partially wrong.

paper. The program makes intensive use of the powerful list The Pdya cycle index for a “rigid” cyclohexane with point
and symbolic manipulating features of the computer algebra group symmetryD; and without any conformational ring flips
language MATHEMATICA. This allows us to enhance the is (different in ref 15)

capacity of the algorithms. We can render symbolic as well
as arbitrarily large, exact numeric results. ISOMERS.M
comes with detailed on-line help and explanations built into
MATHEMATICA's Help Browser.

Here, we provide some sample calculations to illustrate
the handling of the program. We take cyclohexane in its chair
conformation (Figure 3) to compare our results with those Cut[3]=
of J. Leonard?®

After loading the ISOMERS.M package, we start by  Including reflections as in the point grolzg, we obtain
providing the substituent site permutations according to the (same as in ref 15)
three categories (1) rotations, (2) reflection/inversion, and
(3) conformational transformations.

The symmetry group of cyclohexane can be generated with
four generators. Two of them are rotations, a 2-fold one with Cont ions - False
site permutation (8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9), and a
3-fold one with site permutation (5, 6, 7, 8, 9, 10, 11, 12, 1, 11
2, 3, 4). Furthermore, cyclohexane is invariant under reflec- outraj= = (Fi% + Il + arf v 23 + 22
tion with site permutation (1, 2, 11, 12, 9, 10, 7, 8, 5, 6, 3,
4). Besides these point group symmetries, cyclohexane also The Pdya cycle index for a “nonrigid” cyclohexane with
exhibits a conformational symmetry transformation. Figure a symmetry corresponding g is (same as in ref 15)

Inf3]s= CycleIndex|
Cyclobexane,
Reflections «+Palse,
Conformations -+ False

QY| s =

(f512+ 3f§+2f3,-4}

Infd4js:= CycleIndex|
Cyclchexane,
Reflections - True,
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Inf5js= CyclelIndex|
Cyclohaxane,
Reflections - Palse.,
Conformations - Tru

1

outs5)- Tli (£3% + 768 + 27 +2r2)

Including reflections as in the point grol,, we obtain
(different in ref 15)

Inf6j:= CycleIndex|
Cyclohexane,
Reflections - True.,
Conformations - True

|

out{6]= 312 (2 + ardrd + 1275 + 273 + 6£E)

Due to the discrepancy in ‘B@a cycle indices, we
obviously obtain different results in our isomer enumerations.
For example, if we count the number of isomers of
cyclohexane with 12 ligands of type A, B, D, and E, we
calculate for GAsB4D,E

Inf7}:= NumberOflsomers [
Cyclohexane, (6. 4,2,1}]
Out/7}= 6930

Here we are still in agreement, since thdyR@aycle index
of Out[5] is in agreement with ref 15. However, we find
different results for the number of enantiomeric pairs, since
Out[6] contradicts ref 15.

Inf8}:= NumberOfEnant iomericPairs |
Cyclohexane, {(6,4,2,1}1
outf )= 3432

We conclude the cyclohexane example with a symbolic
calculation related to ref 17. The number of compounds with

a cyclohexane skeleton assembled with 12 ligands of at most14)

n different types is

Inf3}¢= NumberOfIsomers |
Cyclochexane. 12, n]

Outigj=- -1—151'12 (2 +202 + 7nt +nm)

7. RESULTS AND DISCUSSION

The enumeration of diamutamers is not only of particular
interest in spectroscopy and theoretical chemistbyt also
in the expanding field of combinatorial chemistry to estimate
library sizes'®

With the program described above one can derive general
formulas for the number of isomers of multisubstituted

derivatives. This has been done for several organic molecules

in ref 17. Additional examples of larger molecules can be
found at our Web sité& There, we provide isomer enumera-
tion results for many types of fullerenes, which are of general
interest, and which were previously treated to lesser extent
due to restraints in computer memory and tithelhe
algorithm described in section 5 of this paper drastically
reduces the time needed to derive symbolic formulas for any
diamutamer. For example, initially the derivation of all
isomer enumeration formulas ofgJullerené’ took several
days. This initial approach was based on the algorithm
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described in section 3. The algorithm of section 5 handles
the task in less than 307s.

With this program we wish to provide chemists with an
easy to use tool for diamutamer enumeration. We hope the
algorithms will prove to be beneficial to a large number of
scientists.

REFERENCES AND NOTES

(1) IUPAC Commission on Nomenclature of Organic Chemistry, Section
E: Pure And Applied Chemistriergamon Press: Oxford, 1976; Vol.
45, pp 1%30.

(2) ISOMERS.M ftp site and pointers to related Web sites are located at

http://www-orgc.tu-graz.ac.at/hoegroup.

(3) Pdya, G. Kombinatorische Anzahlbestimmungén@&ruppen, Graphen

und Chemische Verbindungefigiashdath 1937 68, Stockholm 145
254. In English: Plya, G. Combinatorial Enumeration of Groups,
Graphs, and Chemical Compoundpringer: New York, 1987.

(4) Wolfram, S. The Mathematica Book4th ed.; Wolfram Media/

Cambridge University Press: Cambridge, U.K., 1999.
(5) Pilati, T.; Forni, A. SYMMOL: a program to find the maximum
symmetry group in an atom cluster, given a prefixed tolerag&onl.
.1998 31, 503-504.

(6) We regret the confusion due to standard group theoretical and chemical

notations. HereC,, stands for am-fold rotation axis, which represents

a group cycle of lengtim.

In chemistry the tetrahedral point grod usually includes ars,-

symmetry transformation that, for example, with respect to Figure 1,

consists of a 90rotation aroundC; and a reflectiorw, across a plane

that lies parallel to edge (12) and edge (34). This reflectionoy is

only a symmetry transformation in combination with the corresponding

90° rotation. It should not be confused with reflection An &

symmetry transformation can also be generated via a refleatam

a 120 rotation aroundCs. We therefore do not introduce reflection

oh or .

(8) The notations found in the literature may differ slight@? = C P
andCh=C 53 if g is a common denominator far andp.
(9) Schoenflies, ATheorie der KristallstrukturBomtraeger: Berlin, 1923.

(10) Kerber, A Applied Finite Group ActionsAlgorithms & Combinatorics
19; Springer-Verlag: New York, 1999; Chapter 2.

(11) The distributative law of Boolean logicésA (b v c) =(aA b) v (a
A c). Note the analogy to basic algebra:(b + ¢) = a:b + a-c.

(12) One can include vacant substituent sites in an isomer enumeration by

simply introducing avacantsubstituent type, typically hydrogen.

966 467 is the number of integer partitions of 60. This is the number

of different substituent patterns for adullerene.

Dolhaine, H. A Computer Program for the Enumeration of Substitu-

tional Isomers maitiinRa 1981 5, 41-48. See also the note by

Dolhaine, H.; Garavelli, J. S.; Leonard, J. E. Comments on Papers

Concerning Computer Enumeration of Permutation Ison@osaput.

Chem.1986 10, 239-240.

(15) Leonard, J. E. Isomer Numbers of Nonrigid Molecules, The Cyclo-
hexane Casqimibiiifaniia@im1977 81 (23), 2212.

(16) Consistency checks for"Ba cycle indices: Replacing all Ba

variablesf? in a Pdya cycle index by 1 (assuming no substituents)

should yield a sum equal to 1. For each prodgéf’ in a Pdya cycle
index, the sumy nip; should render the number of substituent sites.

Consistency checks for isomer enumerations: The number of diamu-

tamers should be the number of diastereoisomers plus the number of

enantiomeric pairs. The number of diastereoisomers should be the
number of enantiomeric pairs plus the number of achiral diamutamers.

Dolhaine, H.; Haig, H.; van Almsick, M. Sample Applications of an

Algorithm for the Calculation of the Number of Isomers With More

Than One Type of Achiral Substituent, MATCH communication in

mathematical and in computer chemistry, March 1999, Vol. 39, pp

21-37, http://www.mathe2.uni-bayreuth.de/match.

(18) See e.g.: Balasubramanian, K. Applications of Combinatorics and
Graph Theory to Spectroscopy and Quantum ChemigigaamRg
1985 85, 599-618.

(19) http://www.combinatorial.com/.

(20) http://www-orgc.tu-graz.ac.at/institut/softnew.htm.

(21) Fujita, S. Unit Subduced Cycle indices with and without Chirality
Fittingness for Ih Group. An Application to Systematic Enumeration
of Dodecahedrane DerivativeBull. Chem. Soc. Jpri99Q 21, 141~
157.

(22) All calculations and benchmarks were performed on a 300 MHz PC
x86 Pentium processor under Windows NT.

Cl990121M

(7

)

(13)

a7


http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ci990121m&iName=master.img-011.png&w=138&h=71
http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ci990121m&iName=master.img-012.png&w=174&h=71
http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ci990121m&iName=master.img-013.png&w=157&h=29
http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ci990121m&iName=master.img-014.png&w=163&h=29
http://dontstartme.literatumonline.com/action/showImage?doi=10.1021/ci990121m&iName=master.img-015.png&w=137&h=37

