
Introduction

Mathematical models in chemical engineering
transport phenomena (e.g., mass, heat and momentum
transfer) can often be classified as lumped parameter
models represented mathematically as system of ODEs
in the form of Eq. (1), or as balance equations repre-
sented mathematically as systems of PDEs.

(1)

A prototypical example of the latter is a reaction-diffu-
sion system in the form of Eq. (2).

(2)

Of interest in many applications are the equilibrium or
steady state solutions. For lumped parameter models the
steady state solutions are given by a system of nonlinear
equations, as shown by Eq. (3).

(3)

Contrarily, in the case of balance equations, the steady
state solutions, are given by a system of nonlinear
boundary value problems (BVPs) as shown by Eq. (4),
which are subjected to appropriate boundary conditions.

(4)

When the steady state solution space of either Eq.

(3) or (4) contains turning points (their locations are
usually unknown a priori), special continuation methods
are needed to track solutions in parameter space. The
issue at hand is made plain by considering the following
simple example of Eq. (5).

(5)

If ys represents the steady state solution that satisfies
f (y, α) � 0, then by inspection, the steady state solution
space is described by Eq. (6).

(6)

These solutions are represented by the zero level set con-
tour of f(ys, α) as illustrated in Figure 1. The two solu-
tion families intersect at a turning point (also referred to
as a limit point, or saddle-node bifurcation) located at
α = 1. If (ys*, α*) denotes the intersection point, then
mathematically the turning point is described by Eq. (7).

(7)

Plainly, the tangent to the curve dy_s / dα is not defined
at the turning point. Without knowing much about our
function f (y, α), one might attempt to find a point on the
curve (y0, α0), and then integrate along the curve by
solving the following initial value problem of Eq. (8).

(8)

Unfortunately, this naive approach of using α as the
continuation parameter will fail at the turning point
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We describe a simple method for tracking solutions of nonlinear equations f (u, α ) � 0 through turning points

(also known as limit or saddle-node bifurcation points). Our implementation makes use of symbolic software

such as Mathematica to derive an exact system of nonlinear ODE equations to follow the solution path, using a

parameterization closely related to arc length. We illustrate our method with examples taken from the engineer-

ing literature, including examples that involve nonlinear boundary value problems that have been discretized by

finite difference methods. Since the code requirement to implement the method is modest, we believe the method

is ideal for demonstrating continuation methods in the classroom.
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ys � 2.
An accepted method to handle this type of singular-

ity is to introduce a reparameterization of the problem 
in terms of arc length along the solution curve. Arc
length and pseudo-arc length continuation methods are
widely used in bifurcation theory (see Seydel (1988) 
for an overview of methods). Popular open source soft-
ware packages such as AUTO (Doedel, 1981), and 
MATCONT (Dhooge et al., 2003) are readily available
for implementing continuation methods for many engi-
neering related problems.

The goal of this paper is to introduce a variant of
the arc length continuation method for handling saddle-
node bifurcations called turning points. Although the
method we propose builds on the standard approach
used in the literature (Seydel, 1988; Nayfeh and
Balachandran, 1995), we implement a result from the
homotopy literature that does not appear to be widely
known. We show that, with the capability of symbolic
software such as Mathematica (Wolfram Research Inc.),
it is possible to devise an arc length continuation method
for handling turning points without the need to write
complicated code. The underlying mathematics is cov-
ered in a typical undergraduate calculus course, and thus
it is practical to introduce our method into the under-
graduate engineering curriculum. Further, the simplicity
of the method means that researchers who need unex-
pectedly to track steady state solutions with turning
points, but whose main area of research is not nonlinear
dynamics, have an alternative method that does not 
require learning new software tools such as AUTO
(http://indy.cs.concordia.ca/auto/). All that is needed is
access to symbolic software such as Mathematica or
Maple (Waterloo Maple Inc.), both of which are widely
available. In the next section we review the existing the-
ory of arc length continuation and the proposed new
method. We then show how the method can be used to
track steady state solutions from lumped parameter mod-

els and boundary value problems that have been dis-
cretized by finite difference methods. We conclude with
a brief discussion on the possible limitations of our
method and suggestions for future work.

1. Arc Length Continuation

Consider a set of N nonlinear algebraic equations
that depend on a parameter α. In vector notation these
equations are represented as Eq. (9)

(9)

The components of the vectors f and u are given by Eq.
(10).

(10)

Suppose we have found a solution pair (u0, α0) to Eq. (9)
by Newton’s method. We represent the solution as Eq.
(11).

(11)

Let us suppose that the solution u is an analytic function
of α, i.e. u � u(α ) is continuous and differentiable.
Then, given a solution u0 � u(α0), we can find a neigh-
boring solution u � u(α ) on the solution curve by con-
structing a Taylor series expansion about u0. If the solu-
tion curve is a multi-value function of α, it is convenient
to parameterize the solution in terms of a suitable pa-
rameter along the solution curve u � u(α ). The pre-
ferred parameter in this study is the arc length s (or as
we will see shortly, a suitable stand-in parameter for arc
length) along the solution curve given by Eq. (12).

(12)

This parameterization allows Eq. (9) to be written as 
Eq. (13).

(13)

The total derivative of f along the solution curve is then
given by Eq. (14).

(14)

Equation (14) is a set of N equations in terms of N � 1
unknowns, where the unknowns are as shown in Eq.
(15).

(15)

Recall that fu(u, α) � J(u, α) is the familiar Jacobian
used in Newton’s method. It is convenient to write Eq.
(14) in matrix notation as shown in Eq. (16).
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Fig. 1 Solution curve y versus α with a single turning point
at α � 1; see Eq. (5)



Here u� � du / ds and α� � dα / ds, while the notation
( · | · ) denotes the block partition of a given matrix. Thus
the vector given by Eq. (17) is tangent to the solution
curve u(α ).

(17)

The homogeneous system of equations given by Eq. (16)
is an under-determined system of equations, and will
have a nontrivial solution if the rank r of (J � f_α) has
full row rank, namely r � N. This assumption holds at
turning points, but breaks down if the solution curve has
branch points (such as transcritical bifurcation points).
We do not consider branch points in this analysis. The
nontrivial solution is non-unique, however. In order to
obtain a unique solution, we need to append to Eq. (16)
an additional equation. The appropriate equation is given
by the definition of arc length shown by Eq. (18).

(18)

Equations (16) and (18) represent N � 1 equations in
terms of the N � 1 unknowns. Although Eq. (16) is lin-
ear in the unknowns, Eq. (18) is not. Moreover, the coef-
ficient matrix in Eq. (16) depends on u and α, usually in
a nonlinear manner, which means that we need to solve
Eqs. (16) and (18) using an appropriate ODE solver.
However, although matters are complicated further by
the fact that J(u, α) is singular at bifurcation points 
and turning points, the augmented matrix (J � fα) has 
full rank at turning points, and it this feature that can 
be exploited to devise a numerical algorithm that can 
integrate through turning points. Generally one is not ac-
tually interested in how u and α depend on the arc
length s, and thus Eq. (18) is not needed. The homoge-
neous system of equations defined by Eq. (16) can be
solved using Cramer’s rule. Thus, if we define z �
{u1, u2, . . . , uN, α}, then the vector z is a solution to the
system of equations given by Eq. (19).

(19)

Herein, det(J � fα)�i is the matrix with the i-th column
removed (see Appendix for derivation). Though Eq. (19)
follows from Eqs. (14) and (16), it does not imply that
f (u, α) � 0. The initial condition given by Eq. (11) en-
sures that the solution from Eq. (19) satisfies f (u, α ) �
0. In the homotopy literature, Garcia and Zangwill
(1981) call Eq. (19) the basic differential equation. The
advantage of using Eq. (19) instead of the full system
Eqs. (16) and (18) is that Eq. (19) is linear in the deriva-
tives. Note that the independent variable ξ is not the arc
length along the solution curve, but is related to arc
length by Eq. (20).

(20)

Hence once the solution zi(ξ ) has been found, a
simple integration gives the dependence of s on ξ, if
needed. The determinants on the RHS of Eq. (19) can be
evaluated using symbolic software such as Mathematica
or Maple. This means that we have an exact set of equa-
tions to track the solution as α is varied. Of course, these
equations are nonlinear in terms of the dependent vari-
ables, which require that Eq. (19) be solved using a suit-
able ODE solver, but there is no need to implement sep-
arately corrector/predictor steps to ensure the integration
maintains fidelity with the solution curve. It is this fea-
ture that vastly simplifies writing code. As is well
known, the computation of determinants is an O(N 2) op-
eration, and the computational time for symbolic calcu-
lations can become prohibitive if N becomes large. Our
experience shows that, if N � 15, symbolic computations
are readily handled on desktop computers. For lager val-
ues of N, we modify the algorithm by computing the de-
terminants numerically along the solution curve. We il-
lustrate this alternative in one of the examples discussed
below.

It has been pointed out that, if numerical stability is
an issue, one could solve the following system.

(21)

This system of equations is asymptotically stable, but
the computational overhead to compute the correspon-
ding determinants is raised.

In the next section, we show through examples how
Eq. (19) can be used to implement a continuation
method in parameter space. In our calculations, we used
Mathematica. The relevant code can be obtained from
the authors on request.

2. Examples

2.1 Heat generation in a CSTR
This example is related to heat generation in a

CSTR, a topic that is discussed in most undergraduate
text books on reactor design, e.g., Schmidt (1998). A
lumped parameter model for the reactor temperature y as
a function of the residence time α is given by Eq. (22) 

(22)

Herein, the variables y, t, and α are expressed in suitable
dimensionless form. The steady state reactor tempera-
ture is given by Eq. (23). 

(23)

To determine the solution curve using our continuation
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method we substitute Eq. (23) into Eq. (19) to obtain Eq.
(24).

(24)

Here, ξ is related to arc length s as shown by Eq. (25).

(25)

Equations (24) are solved subject to the initial condi-
tions given by Eq. (26).

(26)

The solution curve as a function of the parameter α is
shown in Figure 2.

It is evident from the plot that the solution curve
exhibits two turning (limit) points where the solution
curve locally turns back on itself. Thus for α � 0.09
there are three steady-state reactor temperatures. A sta-
bility analysis (a separate topic) reveals that the middle
temperature is unstable to small perturbations. The de-
pendence of arc length on the stand-in coordinate ξ is
displayed in Figure 3. In that plot, the range that ξ varies
along the curve is limited to 0 	 ξ 	 0.05. For values of
ξ greater than 0.05, the arc length s increases rapidly
with ξ, as is evident by the magnitude of the slope of
dξ / ds near ξ � 0.05 (i.e. where dy / dα � 0). The numer-
ical range of ξ can be expanded by multiplying the RHS
of Eq. (19) by a scaling factor. Recall the solution to Eq.
(19) (see Appendix) is known up to an arbitrary multi-
plicative constant. Thus, for computational convenience,
it is useful to scale the RHS of Eq. (19) so that it is of
order unity at ξ � 0. Note that in this example, we are
dealing with a single nonlinear equation, which obvi-
ously can be solved using routine contour plotting meth-
ods available in most software packages. However, this

is not the case in most applications, as we illustrate with
the next examples. 
2.2 Heat generation in a two CSTRs in series

Next, we consider a far more complicated system
of equations. We consider a cascade of two continuous
stirred tank reactors in series with exothermic first order
chemical reactions. The steady state is described by 4
nonlinear equations for the reaction conversions {χ1, χ2}
and dimensionless temperature {T1, T2} and the parame-
ter α (Damköhler number). The dimensionless equations
describing the steady-state species and energy balances
for each tank (Kubíček et al., 1980; Kubíček and Marek,
1984) are Eqs. (27a) to (27d).

(27a)

(27b)

(27c)

(27d)

A steady solution for α � 0.01 is given by Eqs. (28a) to
(28d).

(28a)

(28b)

(28c)

(28d)

Figure 4 shows the dependence of T2 on the param-
eter α. The solution path has 6 turning points, and for
α � 0.039, there are remarkably 7 steady-state solutions.
Again, not all these steady-state solutions are stable to
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Fig. 2 Solution curve y versus α with two turning points; see
Eq. (22)

Fig. 3 Dependence of arc length s on stand-in parameter ξ
along solution curve in Figure 2



small perturbations. The stability of the steady states is
determined by the sign of the real part of the eigenvalues
of the Jacobian J. The algorithm based on Eq. (19) is
readily coded in Mathematica and takes only a fraction
of a second to compute the solution trajectory. Our re-
sults are in quantitative agreement with the results of
Kubíček and Marek (1984) calculated using Eq. (16)
coupled with the equation for arc length, Eq. (18).
Though not shown, one can easily plot the dependence
of the remaining variables χ1, χ2, and T1 on α.
2.3 Self-heating of a reactive solid

The Frank–Kamenetskii problem relates to the self-
heating of a reactive solid. When the heat generated by
reaction is balanced by conduction in a one-dimensional
slab of combustible material, the nonlinear boundary
value problem (BVP) admits at least two steady solu-
tions. The dimensionless form of the nonlinear boundary
value problem is defined by Eqs. (29a) to (29c). 

(29a)

(29b)

(29c)

Here, u is a dimensionless temperature, α is a positive
parameter related to the Frank–Kameneskii approxima-
tion of the Arrhenius reaction rate linearized about a ref-
erence temperature (Fowler, 1997), and h is a heat trans-
fer coefficient. When h → ∞, the above BVP can be
solved analytically to give Eq. (30).

(30)

The variable um � u(1/2) denotes the maximum tempera-
ture in the slab. In this example, we use a finite differ-

ence approximation to show how the steady-state solu-
tion evolves as the parameter α is varied for finite values
of h. We discretized the domain 0 	 x 	 1 into NP-1 in-
tervals of uniform width Δx, giving NP nodes, and ap-
proximate Eq. (29a) with its finite difference form, using
central differences for the spatial derivative. The value of
d2u / dx2 evaluated at the xi internal node is given by Eq.
(31). 

(31)

Let u[i] � u(xi) represent the nodal value of u at the i-th
node, then the finite difference representation of the
ODE evaluated at the i-th node is given by Eq. (32).

(32)

The boundary condition at x � 0 and x � 1 are given by
Eqs. (33a) and (33b).

(33a)

(33b)

Equation (32) is evaluated at nodes (i � 2, . . . , NP) to ob-
tain NP � 1 nonlinear algebraic equations in terms of 
NP � 1 nodal unknowns u[1], u[2], . . . , u[NP], u[NP � 1]. 
Combined with the boundary conditions Eqs. (33a) and
(33b), we have NP equations for NP nodal values for u.
For our calculation, we selected NP � 15 and deter-
mined the NP continuation equations for du[i] / dξ by
solving Eq. (19) symbolically. The system of ODEs are
then integrated numerically with the initial conditions
u[i](0) � 0, α (0) � 0. In Figure 5, we plot the solution 
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Fig. 4 Solution curve for T2 as a function of α; see Eq. (27)
Fig. 5 Solution norm �u� from finite difference grid versus

α; see Eq. (29)



two values of the heat transfer coefficient h. When h = ∞,
the turning point is near α = 3.51, which is in quantita-
tive agreement with the analytical solution. As h de-
creases, the location of the turning point moves to
smaller values of α. When α is less than its maximum
value, the BVP has two steady state solutions. These so-
lutions are displayed in Figure 6 below for α = 1.33, and
h = 1. Again, a stability analysis reveals that the upper
solution branch is unstable to small perturbations.
2.4 Flow in a tube with accelerating surface velocity

As our final example we consider a nonlinear BVP
from fluid mechanics. Brady and Acrivos (1981) showed
that the axisymmetric flow of a viscous fluid in a tube
driven by an accelerating wall can be described by a
similarity transformation that reduces the Navier–Stokes
equations to a single third order nonlinear ordinary dif-
ferential equation, as shown by Eq. (34).

(34)

The following boundary conditions are given by Eq. (35).

(35)

The parameter β is given by

(36)

where Re is the Reynolds number. The axial and radial
components of velocity are related to the function f (r) by

(37)

For low Re � 100, Brady and Acrivos (1981) showed
that the solution space exhibits a turning point at Re �
10.25 in the plane of β versus Re. For 10.25 � Re � 147,
there are no steady axisymmetric solutions that satisfy

Eq. (34). For Reynolds numbers Re � 147, steady ax-
isymmetric solutions reappear, but these solutions be-
long to a new solution family. In this study we focus on
the solution family that exists for Re � 10.25.

When Re � 0, a simple integration of Eq. (34) gives
the following analytically solution give by Eq. (38).

(38)

We use f0 to initiate the continuation problem. That is,
we seek the function f (r, Re) that satisfies Eq. (34) as Re
is varied, starting with Re � 0. Once f (r) is determined,
we examine how β depends on Re by solving Eq. (36).

As in the previous example we use a finite differ-
ence method to solve Eq. (34). This problem is quite stiff
and to ensure accuracy, we adopt the following finite dif-
ference scheme to minimize the number of nodal values
in the finite difference grid:
(1) use central difference formulas O(Δr2) for all deriv-

atives on the internal nodes i � 3, . . . , NP � 2,
(2) use forward difference formulas O(Δr2) for all de-

rivatives at the i � 1 node,
(3) use backward difference formula O(Δr2) for all de-

rivatives at the i � NP � 1 node,
(4) set f(0) � f (1) � 0 at i � 1 and i � NP nodes,
(5) use forward and backward differences formulas

O(Δr2) at i � 1 and i � NP to satisfy f �(0) � 0 and
f �(1) � 1, and

(6) use backward difference formulas O(Δr3) to relate
β to derivatives at r � 1.
The set of nonlinear equations for this example are

substantially more complicated than those in the previ-
ous examples. Consequently, the calculation time to de-
termine the determinants in Eq. (19) became excessive
and unworkable, even when NP � 11. However, there is
a simple remedy; instead of calculating the determinants
symbolically, we calculate the determinants numerically
at each step of the integration using our symbolic ex-
pression for the Jacobian. This required a minor change
in the code, so the simplicity of the code was not com-
promised. The resulting continuation curve with NP �
16 is shown in Figure 7. The turning point occurs at
Re � 10.25.

The resulting solution curve is in quantitative
agreement with the work of Brady and Acrivos (1981).
Not surprisingly, the computational time was about a
factor of 3 faster than in those cases where we computed
the determinants symbolically. Of course, additional nu-
merical error is introduced when we use numerical val-
ues for the determinants, but this error can be managed
by changing the working precision of the ODE solver
and/or adding additional nodes to the finite difference
grid.

Conclusions

We have shown through several examples a method
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for computing the solution of a system of nonlinear
equations as a function of a parameter when there are
turning points present. The essential idea is that, for
small systems of equations (N � 15), one can symboli-
cally determine the differential equations required for
solving the parameterized equations. For large N, we
have the option to compute the determinants numerically
along the integration path. Thus, the method is quite
flexible. Moreover, we believe our approach is ideal for
illustrating continuation methods in the classroom and is
easily implemented in Mathematica, or equivalent soft-
ware. Although we have not addressed the stability of
the steady state solutions, this can be carried out in the
context of infinitesimal perturbations to the steady state.
The linear stability of the steady solutions is determined
by the sign of the real part of the eigenvalues of the
Jacobian in Eq. (16). Since the Jacobian is known ana-
lytically, it and its associated eigenvalues can be evalu-
ated along the solution branch during the integration of
Eq. (19).

In the examples used to illustrate our method there
were no branch points along the solution curve. That is,
the tangent vector t given by Eq. (17) was unique. At
branch points (such as at transcritical bifurcation points)
where the rank of (J � fα) is less than N, the tangent vec-
tor t is no longer unique and continuation methods based
on arc length will fail. Techniques using branch switch-
ing algorithms are then necessary, e.g., see Nayfeh and
Balachandran (1995).

The simplicity of our method is that we do not use
arc length along the curve explicitly as our parameteriza-
tion, but instead use a stand-in variable we call ξ that is
directly related to arc length by Eq. (20). Further, there
is no need to implement explicitly a predictor–corrector
strategy to maintain fidelity with the solution curve dur-
ing the integration. At this point it is worth commenting
on the pseudo-arc length method of Keller (1987) that is

used is the software package AUTO and other software
packages. Keller’s method is a predictor–corrector
method in which the corrector method seeks a solution
in a direction that is normal to the tangent vector t, i.e. it
approximates the arc length in the tangent space of the
curve rather than solve Eq. (20). In the MATCONT
package, a predictor–corrector method is also used, but
the corrector step implements Moore-Penrose correc-
tions to advance along the solution curve. Both of these
methods require a level of linear algebra sophistication
not normally covered in an introductory undergraduate
linear algebra course. 

Finally, further study is needed to determine
whether our strategy for computing the determinants nu-
merically along the solution curve will be efficient for
BVPs that involve multiple dimensions, such as those
that arise from collocation on finite elements and other
weighted residual methods. It will be interesting to see if
a blending of Keller’s method and our method can be
implemented to solve large systems of nonlinear equa-
tions. 

Appendix
In this section we show how to derive the basic differential equa-

tion given by Eq. (19). To compute a non-unique solution vector that
lies in the null space of Fz � (J � fα) even at turning points, we need to
impose a normalization on the tangent vector z�. We will use the nor-
malization ζ · z � β, where ζ is the unit vector with all elements zero
except ζr � 1, and r � N � 1. Thus, our system of equations becomes
Eq. (A1).

(A1)

If N = 2, this system of equations in component form is Eq. (A2).

(A2)

We can solve this system using Cramer’s rule. Let S be given by Eq.
(A-3). 

(A3)

Then the solution is given by Eqs. (A4a) to (A4c).
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Fig. 7 Parameter β versus Re, with NP � 16; determinants
computed numerically; see Eq. (34)



(A4c)

Evaluating the determinants we have Eqs. (A5a) to (A5c).

(A5a)

(A5b)

(A5c)

Recall the β is a normalizing constant that can be chosen for conven-
ience. If we let β be given by Eq. (A6),

(A6)

then the solution is equivalent to Eq. (A7).

(A7)

Here, ( · )�i} means remove the i-th column of the matrix Fz. There
may be circumstances where the determinant of the matrix in Eq. (A2)
is zero for certain values of the parameter α. This occurs when u ver-
sus α has an extremum, i.e. dui / dα � 0. However, since we compute
the determinants symbolically, the extrema points are handled naturally
during the integration of the solution curve.
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