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The vibrations of a circular drumhead and the behavior of an electromagnetic wave or
a quantum-mechanical particle confined to a circular region can be understood by solving
the wave equation in polar coordinates on a disk. Let ¥(r,6,t) be the wave function
(displacement of the drumhead, electric or magnetic field of the electromagnetic wave,
Schrodinger wave function of the particle), which is a function of the polar coordinates
r and 6 and of the time t. The wave is confined to a disk of radius R and has boundary
condition ¥(R,0,t) = 0 for all 6 and ¢. Another condition is that ¥ must be regular
(not infinite) at the origin; and finally there is a continuity condition that ¥(r,6,t) =
Y(r,0+2m,t) forallr, 8, and t.

Let v be the speed of waves on the disk; then the wave equation is
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The two-dimensional Laplacian in polar coordinates looks like the 3-D Laplacian in
cylindrical coordinates without a z term, so the wave equation becomes
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We will use the technique of separation of varaiables to look for solutions of the form
¥(r,0,t) = f(r)g(0)h(t). 3)
Substituting this ansatz into the wave equation, we have
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where all derivatives are now total derivatives. Multiplying through by ©?/ f (r)g(8)h(t),

we have
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Notice that the right-hand side of this equation is a function only of £, and not or r or 6,
and that the left-hand side does not depend on t at all. The only way for this to happen is

if both sides are actually constant. Let us call this unknown constant —w?; then
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and, multiplying through by h(t),
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This is the differential equation that describes a sinusoid, so that generally
h(t) = Acos(wt) + Bsin(wt) (8)

or, equivalently,
h(t) = Csin(wt + ¢) )

where A and B or C and ¢ are determined by the initial conditions. A common configu-
rationis A=0and B=1(or C =1and ¢ = 0) so that ¥ = 0 at t = 0. Another common
configuration is A = 1 and B = 0, which means that the wave function has its maximum
magnitude at ¢ = 0; this corresponds to starting the clock when a drum is hit.
We how have s ) s o
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Multiplying through by 2 /92, and defining k = w/v, we have
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where k, which has units of 1/distance, is called the wave number. Gathering all the r
terms on the left and the 6 terms on the right, we have
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Again, each side must be equal to a constant, which we will call n2. Now we have
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which is, again, the equation for a sinusoid of the form
g(0) = D cos(nb) + Esin(nf) (15)
or
¢(0) = sin(nb + 6y) (16)

where we are disregarding an overall multiplicative constant. We impose the continuity
condition, which is that g(0) = g(0 + 27), and from it deduce that n must be an integer.
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Turning to the radial component of the wave function, we now have
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If we change to the dimensionless variable x = kr, we have
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which is a Bessel differential equation, whose solutions are the Bessel functions J,(x) and
Y, (x). The Y,,(x) are not regular at the origin, and must be disregarded here, so we are
left with

f(x) = Ju(x) 1)
or, switching back to using r,

f(r) = Ju(kr) (22)

where we are again disregarding an overall multiplicative constant.
The boundary condition, f(R) = 0, imposes a restriction on k. If we denote by jy m
the mth positive zero of J,(x), then we must have
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for some positive integer m, so that
k=l (24)
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Putting it all together, we have
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where C, ¢, and 6, are determined by the initial conditions.
Any linear combination of ¥, ;s is also a solution to the original wave equation, so
we can write a general solution as a Fourier-Bessel series
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and, because the Bessel functions are orthogonal, we can solve for the coefficients c;

using Fourier analysis.
Physically, w is related to the frequency of oscillation f by w = 27f, so that the
frequency of a mode is
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and the period T is
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The frequencies are not integer multiples of the lowest frequency, so drums are not
harmonic in the musical sense.
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