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1 PRELIMINARY NOTE 
This document is heavily based on the book “Introduction to Social Network Methods”, 
by Robert A. Hanneman and Mark Riddle (2005), which is freely available online to use 
and reproduce (with citation).  
 
Text inserted in light grey boxes refers to slightly more advanced concepts; this text can 
be ignored and the document will still preserve its logical flow. 
 
Text inserted in dark grey boxes refers to code that can be run using Mathematica (Wolfram 

Research Inc., 2005). Functions highlighted in yellow are not part of the standard distribution 

of Mathematica. Their implementation can be found in the code accompanying this document. 

Text in this format refers to the output of the code written in the dark grey box immediately above. 

2 BASIC CONCEPTS AND TERMINOLOGY 
The term network has different meanings in different disciplines. In the social sciences, a 
network is usually defined as a set of actors (or agents, or nodes, or points, or vertices) 
that may have relationships (or links, or edges, or ties) with one another (Figure 1). 
Networks can have few or many actors, and one or more kinds of relations between pairs 
of actors. 

A
B

C
 

Figure 1. Example of a directed network. 

 
Networks that represent a single type of relation among the actors are called simplex, 
whilst those that represent more than one kind of relation are called multiplex. In this 
document we only deal with simplex networks. Situations where more than one type of 
relation is present can be analysed using various networks, one for each type of relation. 
 
Each tie or relation may be directed (i.e. it originates in a source actor and reaches a 
target actor, e.g. the relation “to be a parent of”), or it may be undirected (i.e. it is a tie 
that represents co-occurrence, co-presence, or a bonded-tie between the pair of actors, 
e.g. the relation “to be a sibling of”). Directed ties are represented with arrows (see 
Figure 1), and bonded-tie relations are represented with line segments. Directed ties may 
be reciprocated (A links to B and B links to A); such ties can be represented with a 
double-headed arrow.  
 
The ties may have different strengths or weights. These strengths may be e.g. binary 
(representing presence or absence of a tie), signed (representing a negative tie, a positive 
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tie, or no tie); ordinal (representing whether the tie is the strongest, next strongest, etc.); 
or numerically valued (measured on an interval or ratio scale). 
 
Networks are formally studied in a branch of mathematics called Graph Theory. The 
formal abstraction called network in the social sciences is often named graph in Graph 
Theory, while the term “network” in Graph Theory is reserved for a specific type of 
graph.  
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To be precise, a (directed) graph G in graph theory is defined as an ordered pair 
G:=(V, A) subject to the following conditions: 

• V is a set, whose elements are variously referred to as nodes, points, or 
vertices. 

• A is a set of ordered pairs of vertices, called arcs, arrows, or directed edges. 
An edge e = (x, y) is said to be directed from x to y, where x is the tail of e and 
y is the head of e. 

 
By definition, a network in Graph Theory is a directed graph with weighted edges 
(http://en.wikipedia.org/wiki/Network_%28mathematics%29; e.g. Figure 2). 

B

 
Figure 2. Example of a directed graph with weighted edges. 

 
When a network is drawn, it is sometimes called a graph, but this may cause confusion 
because, as explained above, the term graph in Graph Theory is the abstract, non-
graphical structure. Thus, in Graph Theory, a graph drawing is a different concept from 
the graph itself, as there are several ways to structure the graph drawing. All that matters 
in a graph is which vertices are connected to which others by how many edges (and, 
potentially, with what weights), and not the exact layout (Figure 3). As a matter of fact, in 
practice it is often difficult to decide if two drawings represent the same graph. 
Depending on the problem domain some layouts may be better suited and easier to 
understand than others. 

 
Figure 3. Two different graph drawings of the same graph. 
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Example 
Needs["DiscreteMath`Combinatorica`"]; 

 

myBinaryTree=CompleteBinaryTree[50]; 

g1=ShowGraph[myBinaryTree] 

g2=ShowGraph[SpringEmbedding[myBinaryTree,200,0.05]]; 

g4=ShowGraph[CircularEmbedding[myBinaryTree]]; 

g3=ShowGraph[RadialEmbedding[myBinaryTree]]; 

Show[GraphicsArray[{{g1,g2},{g3,g4}}]]; 
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3 REPRESENTING SOCIAL NETWORK DATA 
The two most common ways of representing social network data are by drawing the 
network and by using matrices. The most common form of matrix in social network 
analysis is a square matrix with as many rows (and columns) as actors in the data set.  
The cells of the matrix record information about the ties between each pair of actors (e.g. 
their weights). These matrices are read: Row links to Column. 
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 A B C 
A 0 1 2 
B 0 0 2 
C 0 3 0 

Figure 4. Two ways of representing a directed weighted graph. 

 
The simplest and most common type of matrix is binary. That is, if a tie is present, then 
the number 1 is entered in the appropriate cell; if there is no tie, then the cell will contain 
the number 0. This kind of matrix is called the adjacency matrix.  
 
The adjacency matrix is extremely useful to conduct various formal analyses of graphs. 
In particular, note that the adjacency matrix AdjMatrix tells us how many paths of length 
1 there are from each actor to each other actor. In general, it can be shown that the 
powers of the adjacency matrix, AdjMatrixn, give the number of walks of length n from 
each actor to each other actor.   
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Figure 5. A network, and some powers of its adjacency matrix. 
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Example 
 
Needs["DiscreteMath`Combinatorica`"]; 

SeedRandom[2]; 

 

myGraph=RandomGraph[5,0.3,Type→Directed]; 

ShowGraph[myGraph, 

 VertexNumber→True,TextStyle→{FontSize→16},VertexNumberPosition→{-0.01,-0.02}]; 

 

1

2

3

5

 4
 
 
myAdjMatrix=ToAdjacencyMatrix[myGraph]; 

Table[MatrixForm[MatrixPower[myAdjMatrix,i]],{i,5}] 
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4 BASIC PROPERTIES OF NETWORKS AND ACTORS 
4.1 Size of a network 
The size of a network can be determined in terms of the number of nodes of the network 
(as stated by Hanneman and Riddle (2005)) or, alternatively, as the number of edges in 
the network (as written in http://en.wikipedia.org/wiki/Glossary_of_graph_theory). Size 
in terms of nodes can be critical for the structure of social relations because of the limited 
resources that each actor may have for building and maintaining ties. 
 
In the network shown in Figure 3: Number of nodes = 3. Number of edges = 4. 
 
Print["Number of nodes: ", V[myGraph]]; 

Print["Number of edges: ", M[myGraph]]; 

Number of nodes:  5 

Number of edges:  7 

4.2 Density of a network 
The density of a network is the number of ties in the network expressed as a proportion of 
the number of all possible ties, i.e. the number of actual ties in the network divided by the 
number of all the ties that could be present. In a directed binary network with n nodes, the 
number of possible ties is n × ( n – 1). In an undirected binary network with n nodes, the 
number of possible ties is n × ( n – 1) / 2. The density of a network may give insights into 
phenomena such as the speed at which information diffuses among the nodes, or the 
extent to which actors have high levels of social capital and/or social constraint. It is also 
sometimes used as a measure of connectivity of the network.  
 
In the network shown in Figure 3: Density = 4 / 6. 
 
If[UndirectedQ[myGraph], 

    Print["Density: ", 2 M[myGraph] / (V[myGraph] (V[myGraph]-1))], 

    Print["Density: ", M[myGraph] / (V[myGraph] (V[myGraph]-1))] 

    ]; 

Density:
7

20  

4.3 Degree of actors 
In an undirected network, the degree of a node is the number of links that such a node 
has. In directed networks, we have to distinguish between incoming links (in-degree) and 
outgoing links (out-degree). In a directed network, statistics on the rows of the adjacency 
matrix tell us about the role that each actor plays as a source of ties (e.g. the sum of the 
elements in its row is its out-degree), whereas statistics on the columns tell us about its 
role as sink of links (e.g. the sum of the elements in its column is its in-degree). The out-
degree of an actor is often a measure of how influential the actor may be.  
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In the network shown in Figure 3: 
In-degrees: A = 0; B = 2; C = 2.  Out-degrees: A = 2; B = 1; C = 1. 
 
Print["The in-degree of each node in the network is: ", InDegree[myGraph]]; 

The in-degree of each node in the network is:  {1,1,2,2,1} 

 
Print["The out-degree of each node in the network is: ", OutDegree[myGraph]]; 

The out-degree of each node in the network is:  {2,2,0,1,2} 

 
A degree sequence is a list of degrees of a graph in non-increasing order (e.g. d1 ≥ d2 ≥ 
… ≥ dn). A sequence of non-increasing integers is realisable if it is a degree sequence of 
some graph. 
 
DegreeSequence[MakeUndirected[myGraph]] 

{3,3,3,3,2} 

 
myList=DegreeSequence[CompleteBinaryTree[40]] 

{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

 
ShowGraph[SpringEmbedding[ 

RealizeDegreeSequence[myList] 

, 100, 0.05 ]] 
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5 SOCIAL DISTANCE AND RELATED CONCEPTS 
5.1 Distance between actors 
The properties of the network that we have examined so far deal primarily with 
immediate adjacency (the actor’s immediate social neighbours). However, the 
connections of an actor’s social neighbours can be very important, even if the actor is not 
directly connected to them (e.g. think of the importance of having “well-connected 
friends” in certain environments). In other words, sometimes being a “friend of a friend” 
may be quite consequential. 
 
To capture this aspect of how individuals are embedded in networks, one approach is to 
examine how far (in terms of social distance) an actor is from others. The distance 
between two actors is the minimum number of edges that takes to go from one to 
another1. This is also known as the geodesic distance. Those actors who are closer to 
more others may be able to exert more power than those who are more distant. We will 
study this in detail further on. 
 
If two actors are adjacent, the distance between them is 1 (i.e. it takes one step, or edge, 
to go from one to the other). If A links to B, and B links to C (and A does not link to C), 
then actors A and C are at a distance of 2. Sometimes we are also interested in studying 
the various ways that two actors, which are at a given distance, can be connected; 
multiple connections may indicate a stronger relation between two actors than a single 
connection. 
 
Needs["DiscreteMath`Combinatorica`"]; 

SeedRandom[2]; 

myGraph=RandomGraph[5,0.3,Type→Directed]; 

ShowGraph[myGraph, 

 VertexNumber→True,TextStyle→{FontSize→16},VertexNumberPosition→{-0.01,-0.02}]; 

Print["All pairs distances: ",MatrixForm[AllPairsShortestPath[myGraph]]]; 
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1 Formally, the distance between two vertices is the length of a shortest path between them, but the 
definition of path is still to come. 



5.2 Walks 
The most general form of connection between two actors in a graph is called a walk. A 
walk is a sequence of actors and relations that begins and ends with actors2. A closed 
walk is one where the beginning and end point of the walk are the same actor. Walks are 
unrestricted: a walk can involve the same actor or the same relation multiple times. The 
length of a walk is the number of edges that it uses. 

A B
C

D
E  

Figure 6. An undirected graph. 

 
Some examples of walks between A and C in the graph represented in Figure 6 are:  

 {A, B, C}  length = 2; 
 {A, B, D, C}  length = 3; 
 {A, B, E, D, C}  length = 4; 
 {A, B, D, B, C}  length = 4; 
 
adjMatrixFig6={{0,1,0,0,0},{1,0,1,1,1},{0,1,0,1,0},{0,1,1,0,1},{0,1,0,1,0}}; 

graphFig6=SetVertexLabels[FromAdjacencyMatrix[adjMatrixFig6],{A,B,C,D,"E"}]; 

ShowGraph[graphFig6, TextStyle→{FontSize→16}]; 

 
A

B

C

E

 
D

 
Table[ Print["Number of walks of length ", i, " between nodes: ", 

  MatrixForm[MatrixPower[myAdjMatrix, i]]], {i, 4}]; 

                                                 
2 Formally, a walk is an alternating sequence of vertices and edges, beginning and ending with a vertex, in 
which each vertex is incident to the two edges that precede and follow it in the sequence, and the vertices 
that precede and follow an edge are the end vertices of that edge. 
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Number of walks of length 1 between nodes:

i

 12
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Number of walks of length 2 between nodes:
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Number of walks of length 3 between nodes:
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Number of walks of length 4 between nodes:

i

k

jjjjjjjjjjjjj

4 4 6 6 6
4 22 10 16 10
6 10 11 10 11
6 16 10 16 10
6 10 11 10 11

y

{

zzzzzzzzzzzzz
 

 
In directed networks, in addition to walks we can also define semi-walks, which are walks 
of the underlying undirected network (i.e. ignoring the directionality of the connections). 

5.3 Cycles 
A cycle is a specially restricted walk that is often used in algorithms examining the 
neighbourhoods of actors (i.e. the points adjacent to a particular node). A cycle is a 
closed walk of 3 or more actors, all of whom are distinct, except for the origin/destination 
actor. There are no cycles beginning and ending with A in Figure 6, but there are 3 
beginning and ending with actor B ({B, D, C, B}; {B, E, D, B}; {B, C, D, E, B}). 
 
?ExtractCycles (* ExtractCycles[g] gives a maximal list of edge-disjoint cycles in graph g. *) 

ShowGraph[Highlight[graphFig6,ExtractCycles[graphFig6]],TextStyle→ {FontSize→ 16}] 
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D



5.4 Trails 
Sometimes it may be useful to study only those walks that do not re-use relations. A trail 
between two actors is any walk that includes any given relation at most once. (The same 
actors, however, can be part of a trail multiple times). The length of a trail is the number 
of relations in it. All trails are walks, but not all walks are trails. If the trail begins and 
ends with the same actor, it is called a closed trail. In Figure 6 there are a number of trails 
from A to C. Excluded are tracings like {A, B, D, B, C} (which is a walk, but is not a 
trail because the relation BD is used more than once). 
 
In directed networks, in addition to trails we can also define semi-trails, which are trails 
of the underlying undirected network (i.e. ignoring the directionality of the connections). 

5.5 Paths 
Perhaps the most useful definition of a connection between two actors (or between an 
actor and itself) is a path. A path is a walk in which each actor (and therefore each 
relation) in the graph may be used at most once3. The single exception to this is a closed 
path, which begins and ends with the same actor. All paths are trails and walks, but not 
all walks and all trails are paths. In Figure 6, there are a limited number of paths 
connecting A and C: {A, B, C}; {A, B, D, C}; {A, B, E, D, C}.  
 
The length of a path is the number of relations in it. The length of a shortest path between 
two actors is the geodesic distance between them. Thus, the geodesic distance between A 
and C in the graph of Figure 6 is 2.  
 
Print["Shortest path between A (node 1) and C (node 3): ", ShortestPath[graphFig6,1,3]]; 

ShowGraph[Highlight[graphFig6, ShortestPath[graphFig6, 1, 3]]] 

 

Shortest path between 

A (node 1) and C (node 3): 

{1,2,3} 

A

B

C

E

 
D
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3 Some authors use a slightly different terminology: they use the term “path” to refer to a walk and they 
use the term “simple path” to refer to a path. Nowadays, when stated without any qualification, a path is 
usually defined to be simple, meaning that every vertex is incident to at most two edges 
(http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Walks). 

http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Walks
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When we have measures of the strengths of ties (e.g. the dollar volume of trade between 
nations), the “distance” between two actors is usually defined as the strength of the 
weakest (e.g. least costly) path between them. In directed networks, in addition to paths 
we can also define semi-paths, which are paths of the underlying undirected network (i.e. 
ignoring the directionality of the connections). 

5.6 Eccentricity of actors 
For each actor, we could calculate the distribution of its geodesic distances to the other 
actors. An actor’s largest geodesic distance is called its eccentricity – a measure of how 
far an actor is from the furthest other. If two nodes are not reachable from each other (i.e. 
the network is disconnected), their geodesic distance is infinite. 
 
Print["The eccentricity of each node in the network is: ", Eccentricity[graphFig6]]; 

The eccentricity of each node in the network is:  {2,1,2,2,2} 

5.7 Diameter and radius of a network 
The diameter of a network is the maximum eccentricity over all the actors of the network, 
i.e. the largest geodesic distance in the (connected) network (if the network is not 
connected the largest distance is infinity). The diameter of a network gives the number of 
steps that are sufficient to go from any node to any other node (i.e. the minimum path 
length that can connect any pair of nodes in the network). The diameter is sometimes 
used as a measure of connectivity of a network.  
 
Print["The diameter of the network is: ", Diameter[graphFig6]]; 

The diameter of the network is:  2 

 
The radius of a network is the minimum eccentricity over all the actors of the network. 
Trivially, in a graph G, diam(G) ≤ 2 rad(G). When there is more than one component in a 
network, its diameter and its radius are defined to be infinity.  
 
Vertices with maximum eccentricity are called peripheral vertices. Vertices of minimum 
eccentricity form the centre. 
 
Print["The radius of the network is: ", Radius[graphFig6]]; 

The radius of the network is:  1 

 
Print["The peripheral vertices are: ", Position[Eccentricity[graphFig6], Diameter[graphFig6]]]; 

The peripheral vertices are:  {{1},{3},{4},{5}} 

 
Print["The nodes in the centre of the network are: ", GraphCenter[graphFig6]]; 

The nodes in the centre of the network are:  {2} 
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6 CONNECTION AND CONNECTIVITY 
6.1 Reachability 
Reachability between nodes is established by the existence of a path between the nodes. 
In simpler words, an actor is “reachable” by another if there exists a set of connections by 
which we can go from the source to the target actor, regardless of how many others fall 
between them. If the data are directed, it is possible that actor A can reach actor B, but 
that actor B cannot reach actor A (e.g. hyperlinks in web pages).  
 
In the network shown in Figure 3: A is not reachable from any node; B is reachable from 
A and C; and C is reachable from A and B. In the network shown in Figure 6, every node 
is reachable from every other node; when this is the case we say that the network is 
connected (see below). 
 
Print["Is the graph in fig. 6 connected? ", ConnectedQ[graphFig6]]; 

Is the graph in fig. 6 connected?  True 

6.2 Connectivity of a network in Graph Theory 
Adjacency tells us about direct connections between actors. Reachability tells us about 
whether actors are connected or not allowing for pathways of any length. Connectivity is 
a property of a network (not of its individual actors) that extends the concept of 
adjacency. If it is possible to establish a path from any actor to any other actor of a 
network (e.g. every actor is reachable by every other one), the network is said to be 
connected; otherwise the network is disconnected. The network represented in Figure 6 is 
connected. The two networks represented at the bottom of Figure 7 are disconnected. 
 
A component is a (maximal) set of nodes that are connected (i.e. all nodes in the subgraph 
are reachable from all other nodes in the subgraph). The network represented at the 
bottom-right corner of Figure 7 has 2 components. The network represented at the 
bottom-left corner of Figure 7 has 3 components. 
 
In the context of directed networks, we distinguish between strongly connected and 
weakly connected networks (and components). A directed network is strongly connected 
if every node is reachable from every other node following the directions of the edges. A 
directed network is weakly connected if its underlying undirected graph is connected. The 
network represented in Figure 3 is strongly disconnected, but weakly connected. 
 

Print["Is my graph strongly connected? ", ConnectedQ[myGraph, Strong]]; 

Is my graph strongly connected?  False 

 

Print["The strongly connected components in my graph are: ", 

 StronglyConnectedComponents[myGraph]]; 

The strongly connected components in my graph are:  {{1,2,4,5},{3}} 
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Print["Is my graph weakly connected? ", ConnectedQ[myGraph, Weak]];  

Is my graph weakly connected?  True 

 

Print["The weakly connected components in my graph are: ", 

  WeaklyConnectedComponents[myGraph]]; 

The weakly connected components in my graph are:  {{1,2,3,4,5}} 

 

If it is always possible to establish a path from any actor (i.e. vertex) to every other one 
even after removing any k – 1 vertices, then the graph is said to be k-connected in 
vertices. This concept is the base to define vertex connectivity. 
 
?VertexConnectivity 

Print["The vertex-connectivity of graph in fig. 6 is: ", VertexConnectivity[graphFig6]]; 

VertexConnectivity[g] gives the minimum number of vertices whose deletion from graph g disconnects it. 
VertexConnectivity[g, Cut] gives a set of vertices of minimum size, whose removal disconnects the graph. 

The vertex-connectivity of graph in fig. 6 is:  1 

 

A cut vertex, or articulation point, is a vertex whose removal disconnects a graph. A cut 
set, or vertex cut, or separating set, is a set of vertices whose removal disconnects the 
graph.  
 
?ArticulationVertices 

Print["The articulation vertices of graph in fig. 6 are: ", ArticulationVertices[graphFig6]]; 

ArticulationVertices[g] gives a list of all articulation vertices in graph g. These are vertices whose removal 
will disconnect the graph. 

The articulation vertices of graph in fig. 6 are:  {2} 

 

If it is always possible to establish a path from any actor (i.e. vertex) to every other one 
even after removing any k – 1 edges, then the graph is said to be k-connected in edges. 
This concept is the base to define edge connectivity. 
 

?EdgeConnectivity 

Print["The edge-connectivity of graph in fig. 6 is: ", EdgeConnectivity[graphFig6]]; 

EdgeConnectivity[g] gives the minimum number of edges whose deletion from graph g disconnects it. 
EdgeConnectivity[g, Cut] gives a set of edges of minimum size whose deletion disconnects the graph. 

The edge-connectivity of graph in fig. 6 is:  1 

 

A bridge, or cut edge or isthmus, is an edge whose removal disconnects a graph. A 
disconnecting set is a set of edges whose removal disconnects a graph (and it therefore 
increases the number of components). 
  
?Bridges 

Print["The bridges of graph in fig. 6 are: ", Bridges[graphFig6]]; 



Bridges[g] gives a list of the bridges of graph g, where each bridge is an edge whose removal disconnects 
the graph. 

The bridges of graph in fig. 6 are:  {{1,2}} 

6.3 Connectivity of a network in normal speech 
Note that connectivity (and k-connectivity) in Graph Theory is a binary concept (i.e. a 
network is either connected or not). To quantify connectivity, analysts tend to use the 
concept of edge / node connectivity, which is the minimum number of edges / nodes, 
whose removal disconnects the graph, i.e. what is the maximum value of k such that the 
network is k-connected?  
 
However, even when considering networks with the same edge connectivity and node 
connectivity, one sometimes hears (or wants to make!) statements like: “this network is 
better connected than this other one”. What does that mean? Connectivity when used in 
this sense is usually a vague concept which is not formally defined, but there are several 
metrics in Graph Theory that can be useful to pin it down.  
 

 
Figure 7. Different types of networks as a function of reachability and density. Source: Janssen et al. 

(2006). 

 
The simplest graph theoretical concept that can be used as a measure of “connectivity” is 
the density of the network. A very dense network is generally considered to be well 
connected. Another aspect of “connectivity” is “reachability” (understood, somewhat 
informally for networks, as the extent to which all the nodes in the network are accessible 
to each other). As Janssen et al. point out (2006) these two aspects of “connectivity” – i.e. 
density and “reachability” – are not completely independent, and one could say that high 
density normally implies high reachability. They are, however, not the same, and it is 
possible to have networks with both high density and low reachability if there is a high 
level of clustering, i.e. the links are distributed only within, and never between, isolated 
clusters (see Figure 7). 
 
To quantify reachability of a network (which so far we have used only informally, since 
it does not have a precise definition in Graph Theory), Janssen et al. (2006) suggest using 
the network diameter (see above), and/or the size of the largest component (see  section 
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“Connectivity of a network in Graph Theory” above). A short diameter implies that it is 
possible to move through the whole network in just a few steps. Similarly, if the largest 
component contains a large fraction of all the nodes in the network, then there is a high 
probability that any two nodes are interconnected. 
 
Other metrics that can be used to quantify the connectivity of a network (in addition to 
density and reachability) are: 

 Node connectivity: The minimum number of nodes that have to be removed to 
disconnect the network. 

 Edge connectivity: The minimum number of edges that have to be removed to 
disconnect the network. 

 Number of bridges: a bridge is an edge whose removal disconnects a graph. 
 Distribution (number and size) of connected components (see below). 

 
Needs["Graphics`Graphics`"]; 

ShowGraph[myFragmentedGrid = 

  InduceSubgraph[GridGraph[50,50],RandomSubset[2500]],VertexStyle→Disk[0]]; 

c = Map[Length,ConnectedComponents[myFragmentedGrid]]; 

Histogram[c, HistogramCategories→Range[0,Max[c]+1],  

 PlotLabel→"Distribution of the size of components"]; 
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7 LOCAL STRUCTURES IN NETWORKS 
So far we have looked mainly at tools for examining ways in which individuals are 
connected, and the distances between them. In this section we look at the same issue of 
connection but this time our focus is the social structure, rather than the individual: here 
we adopt a slightly more “macro” perspective that focuses on the local structures within 
which individual actors are embedded. 
 
The smallest social structure in which an individual can be embedded is a dyad (i.e. a pair 
of actors). For binary ties (present or absent), there are two possibilities for each pair of 



nodes in the network – either they have a tie, or they don’t. If we are considering a 
directed relation, there are three kinds of dyads (no tie, one links to the other but not vice 
versa, or they both link to each other). A potentially interesting analysis is to study the 
extent to which a population is characterized by reciprocated ties; this may tell us about 
the degree of cohesion, trust, and social capital that is present (see reciprocity below). 
 
Another form of social structure is a triad, which is formed by three actors. Triads allow 
for a much wider range of possible sets of relations (with directed data, there are 64 
possible types of relations among 3 specific actors), including relationships that exhibit 
hierarchy, equality, and the formation of exclusive groups (e.g. where two actors connect, 
and exclude the third). A potentially interesting analysis is to study the proportion of 
triads that are “transitive” (see transitivity below). 
 
Other examples of social structures embedded in networks that we will consider here are 
cliques, N-cliques, and N-clans. In this section we explain some metrics of Graph Theory 
that may be useful to analyse these local structures and the way actors are embedded in a 
network. 

7.1 Dyads and reciprocity 
Arguably, a network that has a predominance of null or reciprocated ties over asymmetric 
connections may be more “equal” or “stable” than one with a predominance of 
asymmetric connections (which may be more of a hierarchy). 
 
There are two different approaches to quantifying the degree of reciprocity in a 
population.  One approach is to focus on the dyads, and calculate the proportion of pairs 
that have a reciprocated tie between them. In the network shown in Figure 8, this 
approach would yield a reciprocity rate of 1/3. More commonly, however, analysts are 
concerned with the ratio of the number of pairs with a reciprocated tie relative to the 
number of pairs with any tie. In large populations it is often the case that most actors have 
no direct ties to most other actors, and it may be more sensible to focus on the degree of 
reciprocity among pairs that have any ties. In the network shown in Figure 8, this would 
yield a reciprocity rate of 1/2. 

C

BA

 
Figure 8. A directed graph. 

 
A second (equivalent) approach to quantify reciprocity consists in focusing on the 
relations, rather than on the actors. The question now is: what percentage of all possible 
ties are part of reciprocated structures?  In the network shown in Figure 8, two such ties 
(A to B, and B to A) form part of a reciprocated structure among the six possible ties 
(AB, BA, AC, CA, BC, CB), yielding a reciprocity rate of 1/3. This calculation is 
equivalent to the one conducted when we focus on the dyads and we consider all possible 
pairs. Again, analysts usually consider, instead, the number of ties that are involved in 
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reciprocal relations relative to the total number of actual ties (rather than possible ties). In 
that case, the reciprocity rate would be 2/3. There is a one-to-one relationship between 
this number and the one calculated when focusing on the dyads considering only the pairs 
with at least one tie. Assuming the latter is x/y, the former is 2x/(y+x).  
 
graphFig8=EmptyGraph[3,Type->Directed]; 

graphFig8=AddEdges[graphFig8,{{1,2},{2,3},{2,1}}]; 

 

Print["Reciprocated relations relative to all possible relations: ",  

 ReciprocatedEdges[graphFig8]/(V[graphFig8]*(V[graphFig8]-1))]; 

Print["Reciprocated relations relative to existing relations: ",  

 ReciprocatedEdges[graphFig8]/M[graphFig8]]; 

Reciprocated relations relative to all possible relations: 1/3 

Reciprocated relations relative to existing relations: 2/3 

7.2 Triads and transitivity 
With undirected data, there are four possible types of triadic relations (no ties, one tie, 
two ties, or all three ties). Counts of the relative prevalence of these four types of 
relations across all possible triples can give a good sense of the extent to which a 
population is characterized by “isolation,” “couples only,” “structural holes” (i.e. where 
one actor is connected to two others, who are not connected to each other), or “clusters”. 
 
With directed data, there are actually 16 possible types of relations among 3 
(unidentifiable) actors, including relationships that suggest hierarchy, equality, and the 
formation of exclusive groups. To identify the frequency of each of these relations we 
may wish to conduct a “triad census” for each actor, and for the network as a whole. In 
particular, we may be interested in the proportion of triads that are “transitive” (i.e. those 
that display a type of balance where, if A directs a tie to B, and B directs a tie to C, then 
A also directs a tie to C).  
 
?TransitiveQ 

?TransitiveClosure 

?TransitiveReduction 

TransitiveQ[g] yields True if graph g defines a transitive relation. 

TransitiveClosure[g] finds the transitive closure of graph g, the supergraph of g that contains edge {x, y} 
if and only if there is a path from x to y. 

TransitiveReduction[g] finds a smallest graph that has the same transitive closure as g. 

7.3 Cliques 
Every member of a group of people in a social clique knows everybody else. A clique is a 
subset of the vertices such that every pair of vertices in the subset is connected by an 
edge.  
 
SeedRandom[0] 

myRandomGraph=RandomGraph[10, 0.7] 



ShowGraph[Highlight[myRandomGraph,{MaximumClique[myRandomGraph]}]] 

 

 
 

Print["Any subset of the vertices of a complete graph forms a clique: ", 

 CliqueQ[CompleteGraph[10],RandomSubset[10]]]; 

Any subset of the vertices of a complete graph forms a clique:  True 

7.4 N-Cliques 
The strict definition of clique (i.e. everyone is connected to everyone else) may be too 
strong for some purposes. A more general approach is to define an actor as a member of a 
clique if it is connected to every other member of the clique at a distance no greater than 
a given number. This approach to defining sub-structures is called N-clique, where N 
stands for the length of the path allowed to make a connection to all other members.   
 
ShowGraph[Highlight[myRandomGraph,{MaximumNClique[myRandomGraph,2]}]]; 

 
 

N-cliques with N > 1 may exhibit the potentially undesirable property that some members 
of a clique may be connected to other members of the clique by actors who are not 
themselves members of the clique. The definition of N-clan (see below) overcomes this 
potential problem.  
 
ShowGraph[Highlight[Cycle[6],{1,3,5}], VertexNumber->True]; 

Print["Do nodes 1, 3, and 5 form a 2-Clique? ", NCliqueQ[Cycle[6],2,{1,3,5}]]; 

 21



Print["Do nodes 1, 2, 3, and 5 form a 2-Clique?", NCliqueQ[Cycle[6],2,{1,2,3,5}]]; 

 

Do nodes 1, 3, and 5 form a 2-Clique?  True 

Do nodes 1, 2, 3, and 5 form a 2-Clique?  False 

12

3 6

 4 5

7.5 N-Clans 
An N-clan is an N-clique where all ties among members of the N-clique occur through 
members of the N-clique. 
 
Print["Do nodes 1, 3, and 5 form a 2-Clan? ", NClanQ[Cycle[6], 2, {1,3,5}]]; 

Print["2-Clans of maximum size in a cycle with 6 nodes: ", MaximumNClans[Cycle[6], 2]]; 

Do nodes 1, 3, and 5 form a 2-Clan?  False 

2-Clans of maximum size in a cycle with 6 nodes:  {{1,2,3},{1,2,6},{1,5,6},{2,3,4},{3,4,5},{4,5,6}} 

7.6 Clustering 

7.6.1 Motivation: Small-world networks 
This subsection is copied almost literally from Hanneman and Riddle (2005).  
 
Watts (1999) and many others have noted that in large real-world networks (e.g. in the 
Internet) there is often a structural pattern that seems somewhat paradoxical. 
 
On the one hand, the average distance between any two nodes is relatively short. The “6-
degrees of distance” phenomenon is an example of this (see 
http://en.wikipedia.org/wiki/Six_degrees). Most of the nodes in even very large networks 
may be fairly close to one another. To be precise, the average geodesic distance between 
pairs of actors in large empirical networks is often much shorter than in random graphs of 
the same size. 
 
On the other hand, most actors live in local neighbourhoods where most others are also 
connected to one another. In other words, in many large networks, a very large proportion 
of the total number of ties are highly “clustered” into local neighbourhoods. To be 
precise, the density in local neighbourhoods of many large networks tends to be much 
higher than we would expect for a random graph of the same size. 
 
To summarise in an informal way, most of the people we know may also know each 
other – seeming to locate us in a very narrow social world. Yet, at the same time, we can 
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be at quite short distances to vast numbers of people that we don’t know at all (e.g. if we 
have a very well connected friend). The small world phenomena – a combination of short 
average path lengths over the entire graph coupled with a strong degree of “clique-like” 
local neighbourhoods – seems to have evolved independently in a wide range of large 
empirical networks. 
 
We already know how to calculate average path lengths. In the following subsection we 
will learn how to quantify clustering. 

7.6.2 Quantifying clustering 
Informally, the clustering coefficient is a measure of the extent to which the friends of my 
friends are my friends. More precisely, the clustering coefficient of a node is the ratio of 
existing links connecting the node’s neighbours to each other, to the maximum possible 
number of such links. For nodes with fewer than two neighbours the clustering 
coefficient is undefined. 
 
The clustering coefficient of a node A is 1 if every neighbour connected to A is also 
connected to every other node within the neighbourhood of A, and 0 if no node that is 
connected to A connects to any other node that is connected to A. 
 

    
Figure 9. Clustering coefficient of the blue node in various undirected networks  

(from left to right): 3/3, 2/3, 1/1, 0/3. 

Print["The clustering coeff. of the blue node in the second graph of fig. 9 is: ", 

  Clustering[1,DeleteEdge[CompleteGraph[4],{2,4}]]]; 

The clustering coeff. of the blue node in the second graph of fig. 9 is: 2/3 

 
The clustering coefficient for the entire network is the average of the clustering 
coefficients of all the nodes. Some analysts use a “weighted” version of the clustering 
coefficient, giving a weight to the neighbourhood densities proportional to their size (i.e. 
actors with larger neighbourhoods get more weight in computing the average density). 
 
myListOfClusteringCoefficients=Clustering[RandomGraph[100,0.6]]; 

minDegree=Min[myListOfClusteringCoefficients[[All,1]]]; 

ListPlot[myListOfClusteringCoefficients, 

 AxesOrigin->{minDegree,0}, PlotRange->{{minDegree,Automatic},{0,1}}, 

 FrameLabel->{"# of Neighbours","Avg. Clustering Coefficient"}, Frame->True]; 
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Print["The clustering coefficient list of my fragmented grid is: ", 

  Clustering[myFragmentedGrid]]; 

The clustering coefficient list of my fragmented grid is:  {{2,0},{3,0},{4,0}} 

 

8 CENTRALITY AND POWER 
The centrality of a node in a network is a measure of its structural importance (for 
example, how important a person is within a social network, how important a room is 
within a building, or how important a road is within a traffic network). Given the 
subjectivity of the term “importance”, it is not surprising that there are various measures 
of centrality in Graph Theory. All of them aim at quantifying the prominence of an 
individual actor embedded in a network, but they differ on the criteria used to achieve 
that. 
 
There are three approaches to calculate the centrality of a node: based on degree, on 
closeness, and on betweenness. Degree approaches are based on the idea that having 
more ties means being more important. Closeness approaches go slightly further and they 
assume that actors who are able to reach other actors at shorter path lengths, or who are 
more reachable by others at shorter path lengths, are in favoured positions. Finally, when 
using betweenness approaches, it is being in between many other actors what makes an 
actor central. 
 
These three approaches describe the location of nodes in terms of how close they are to 
the “centre” of the action in a network – but the definitions of what it means to be at the 
centre differ. A central actor, presumably, has a stronger influence on other network 
members (i.e. central positions tend to be powerful positions). Thus, measures of 
centrality are often interpreted as measures of power. However, because of the vague 
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meaning of the word “power”, network analysts tend to describe their approaches as 
measures of centrality rather than of power.  

8.1 Degree centrality 

8.1.1 Simple degree centrality  
Actors who have many ties with other actors may be in an advantageous position. Having 
many ties may mean having alternative ways of satisfying needs, it may mean having 
access to more resources, and it may also mean acting frequently as a third-party or deal 
maker in exchanges among others. So, a very simple, but often very effective, measure of 
an actor’s centrality is its degree. 
 
In undirected data, actors differ from one another only in how many connections they 
have. With directed data, however, it is important to distinguish between in-degree 
centrality and out-degree centrality. If an actor receives many ties, they are often said to 
be prominent, or to have high prestige. That is, many other actors seek to direct ties 
towards them, and this may be an indicator of importance. Actors with unusually high 
out-degree may be able to influence many others, or make many others aware of their 
views. Thus, actors with high out-degree centrality are often called influential actors. 

8.1.2 Bonacich’s approach to degree centrality   
Bonacich (1987) argued that an actor’s centrality is a function of how many connections 
the actor has, but also on how many connections the actor’s social neighbours have. 
 
While we have argued that more central actors tend to be more powerful actors, Bonacich 
questioned this idea. If the actors that you are connected to are, themselves, well 
connected, they are not highly dependent on you. If, on the other hand, the people to 
whom you are connected are not, themselves, well connected, then they are dependent on 
you. Bonacich argued that being connected to well-connected others makes an actor 
central, but not powerful. Somewhat ironically, being connected to others that are not 
well connected makes one powerful, because these other actors are dependent on you. 
 
Bonacich’s degree centrality index has a parameter called “attenuation factor” that 
determines the effect of an actor’s neighbour’s connections on the actor’s 
power. Calculating this index often requires an iterative approach. For more information, 
see http://faculty.ucr.edu/~hanneman/nettext/C10_Centrality.html#Bonacich , or 
Bonacich (1987).  

8.2 Closeness centrality  
Degree centrality measures might be criticised because they only take into account the 
immediate ties that an actor has (and the ties of the actor’s neighbours when using 
Bonacich’s approach), rather than indirect ties to all others. Closeness approaches aim to 
amend this by considering the distance from each actor to all others.  

http://faculty.ucr.edu/~hanneman/nettext/C10_Centrality.html#Bonacich


8.2.1 Closeness centrality using geodesic distance 
Closeness centrality using geodesic distance is the reciprocal of the sum of geodesic 
distances to all other vertices in the graph. These scores can be normalised dividing by 
the maximum value. 
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Figure 10. An undirected graph. Node 
A is the most central node, whilst node 

B is the least central. 

Closeness Centralities using geodesic distance: 
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Needs["DiscreteMath`Combinatorica`"]; 

graphFig10=AddEdges[EmptyGraph[5],{{1,2},{1,3},{1,4},{1,5},{3,4},{4,5}}]; 

N[GeodesicCloseness[graphFig10]] 

{0.25, 0.142857, 0.166667, 0.2, 0.166667} 

8.2.2 Closeness centrality using reachability 
Another way of thinking about how close an actor A is to all others is to calculate the 
proportion of other actors that A can reach in one step, two steps, three steps, etc (or, 
alternatively, the proportion of nodes that reach A in n steps). One can then calculate a 
single index for each node by summing up the proportion of other nodes reached (for the 
first time) at a given distance, appropriately weighted (e.g. 1 for nodes at distance 1, ½ 
for nodes at distance 2…). These scores can be then normalised dividing by the 
maximum value, if this is considered appropriate.  
 
 

 
Figure 11. An undirected graph. Node 
A is the most central node, whilst node 

B is the least central. 

Closeness Centralities using reachability: 
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Needs["Statistics`DataManipulation`"]; 

N[ReachabilityCloseness[graphFig10]] 

{1., 0.625, 0.75, 0.875, 0.75} 

 

8.3 Betweenness centrality  
The idea behind betweenness centrality is that being in between actors makes you 
powerful because you may be able to control the flow of e.g. information, resources, 
gossip… between them. Nodes with high betweenness are often called key-players. 
 

C K
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Figure 12. An undirected network. Nodes D and I have higher betweenness than the rest of the nodes. 

8.3.1 Betweenness centrality using only shortest paths 
Under this approach, nodes that occur on many shortest paths between other nodes have 
higher betweenness than those that do not. The betweenness of a node v is calculated by 
computing, for every pair of other nodes s, t in the network (s ≠ v ≠ t), the fraction of all 
the shortest paths between s and t that pass through v. These (n – 1)·(n – 2) fractions are 
then summed up.   
 
Formally, for a graph G: = (V, E) with n vertices (with edges), the betweenness centrality 
using shortest paths CB-SP(v) for vertex v is: 

∑= st vvC
∈≠≠

−
Vtvs st

SPB σ
σ )()(  

where σst is the number of shortest geodesic paths from s to t, and σst(v) the number of 
shortest geodesic paths from s to t that pass through vertex v. This may be normalised by 
dividing by the number of pairs of vertices not including v, which is (n − 1)·(n − 2). 
 
The betweenness centrality of each node in the network shown in Figure 12 using only 
shortest paths is: 
 
N[Inner[List, vertexLabels, Betweenness[graphFig12], List]] //MatrixForm 
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g=Path[10]; 

ShowGraph[g,VertexNumber→True]; 

Transpose[Inner[List,Range[10],N[Betweenness[g]],List]]//MatrixForm 
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8.3.2 Betweenness centrality using flow 
The use of shortest paths to analyse betweenness centrality is often very useful. However, 
there may be other cases where considering all connections among actors – not just the 
most efficient ones – may be more appropriate. Rumours, for instance, may spread in a 
network through all pathways – not just the most efficient ones. Similarly, how much 
credibility a person gives to a rumour may depend on how many times they hear it from 
different sources – not on how soon they hear it.  
 
Thus, there are many networks where paths that are not necessarily the shortest will do 
the job (e.g. transmitting information, resources…) almost as well as shortest paths, 
particularly if the latter are problematic for some reason. The flow approach to centrality 
expands the notion of betweenness centrality in this way. It assumes that actors will use 
all pathways that connect them; the importance of each path can be weighted according to 
its length.  
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Formally, for a graph G: = (V, E) with n vertices (with edges), the betweenness centrality 
using flow CB-F(v) for vertex v is: 

∑ ∑
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where wi are the weights assigned to paths of length i, σst(i) is the number of paths of 
length i from s to t, and σst(i, v) the number of paths of length i from s to t that pass 
through vertex v. This may be normalised by dividing by the number of pairs of vertices 
not including v, which is (n − 1)·(n − 2). 
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10 USING AND CITING THIS DOCUMENT 
You are invited to use and redistribute this text freely (acknowledging the source, please). 
Your comments and suggestions are very welcome. 
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11 REVISION CONTROL 
This revision (version 2) has been created to correct the figures in section 8.3.1, and to 
clarify the definition of betweenness centrality using only shortest paths (also in section 
8.3.1). 

 29

http://www.faculty.ucr.edu/%7Ehanneman/nettext/
http://www.ecologyandsociety.org/vol11/iss1/art15/
http://www.luis.izquierdo.name/

	1 PRELIMINARY NOTE
	2 BASIC CONCEPTS AND TERMINOLOGY
	Example

	3 REPRESENTING SOCIAL NETWORK DATA
	Example

	4 BASIC PROPERTIES OF NETWORKS AND ACTORS
	5 SOCIAL DISTANCE AND RELATED CONCEPTS
	6 CONNECTION AND CONNECTIVITY
	7 LOCAL STRUCTURES IN NETWORKS
	7.6.1 Motivation: Small-world networks
	7.6.2 Quantifying clustering

	8 CENTRALITY AND POWER
	8.1.1 Simple degree centrality 
	8.1.2 Bonacich’s approach to degree centrality  
	8.2.1 Closeness centrality using geodesic distance
	8.2.2 Closeness centrality using reachability
	8.3.1 Betweenness centrality using only shortest paths
	8.3.2 Betweenness centrality using flow

	9 REFERENCES
	10 USING AND CITING THIS DOCUMENT
	11 REVISION CONTROL

