
LevelScheme user’s guide
M. A. Caprio, Department of Physics, University of Notre Dame

Version 3.53 (January 10, 2013)

I. Introduction

ü LevelScheme: A scientific figure preparation system

LevelScheme is a scientific figure preparation system for Mathematica. LevelScheme provides a general
infrastructure for the preparation of publication-quality figures, combining technical drawings or diagrams,
mathematical plots, data plots, and annotations. It features extensive support for multipanel and inset plotting,
customizable tick mark generation, diagram construction, and labeling.

LevelScheme originated as a tool for drawing level schemes, or level energy diagrams, as used in nuclear,
atomic, molecular, and hadronic physics. LevelScheme includes a full suite of drawing tools for the construction
of such diagrams. LevelScheme automates many of the tedious aspects of preparing a level scheme, such as
positioning transition arrows between levels or placing text labels alongside the objects they label. LevelScheme
allows extensive manual fine tuning of the drawing appearance, text formatting, and object positioning. It also
includes specialized features for creating several common types of level schemes encountered in nuclear physics.
The full power of Mathematica's programming language may be used in constructing the figure contents, so, for
instance, level energies and transition properties shown in the diagram can be directly computed from models or
input from data files.

ü Preliminary comments

A few basic principles have guided the design of the LevelScheme package. One is to have a system
whereby even major formatting changes to a figure can be made relatively quickly. Objects in a level scheme are
attached to each other (transitions attached to levels, labels attached to levels and to transitions, etc.), so that if one
object is moved the rest follow automatically. Another principle is for objects to have reasonable default
properties, so that an unsophisticated level scheme can be drawn with minimal attention to formatting features.
But the user must then have near-complete flexibility in fine tuning formatting details to accomodate whatever
special cases might arise. This is accomplished by making the more sophisticated formatting features accessible
through various optional arguments ("options") for which the user can specify values. The user can specify the
values of options for individual objects, or the user can set new default values of options for the whole figure to
control the formatting of many objects at once. Finally, attention has been paid to providing a uniform user
interface for all drawing objects, based upon a consistent notation for the specification of properties for the
outline, fill, and text labels of objects.

It is assumed that the reader of this guide has some basic experience starting Mathematica, evaluating
cells, and opening and saving notebook files. The reader would also benefit from having used the Mathematica
Plot command to generate some basic graphics. For instance, you should read about plotting and graphics in
The Mathematica Book (which you can find under the "Help" menu listed as "Virtual Book").

ü Notation and conventions

Many dimensions (such as line thicknesses or text position adjustments) will be specified in "printer's
points", where 1 pt = 1/72 inch º 0.35 mm. These are convenient and customary units to use for controlling text
and graphics. A thin line is about 1 pt thick, and characters of normal text are ~10 pt high.

The Mathematica option symbol ("") which appears throughout this guide is entered from the keyboard
as a hyphen followed by a greater-than sign ("->").

ü Further information

Updates to LevelScheme, and further documentation, may be obtained through the LevelScheme home
page:

http://scidraw.nd.edu/levelscheme

The LevelScheme package has been published in Computer Physics Communications [M. A. Caprio,
Comput. Phys. Commun. 171, 107 (2005)]. This article is also available as the arXiv electronic preprint arXiv:-
physics/0505065.

ü Acknowledgement of use

If you use LevelScheme to prepare the figures for your publication, an acknowledgement is always
welcome. For example, you might include a statement such as the following in the “Acknowledgements” section:

The figures for this article have been created using the LevelScheme scientific figure
preparation system [M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005),
http://scidraw.nd.edu/levelscheme].

Feel free to modify this statement as appropriate, e.g., changing “the figures for this article” to “Figure 5”. (Note:
Acknowledging LevelScheme in individual figure captions is not recommended, since a full acknowledgement is
cumbersome there, and simply referencing the Computer Physics Communications paper in a caption could be
mistaken to mean that the figure data is taken from that paper.)

II. Installation

This version of LevelScheme is for use with Mathemaica 6 and higher (and has been tested under Mathematica 8
and 9). If you are still using Mathematica 5 or below, please visit the LevelScheme home page to download the
appropriate legacy version of LevelScheme.

ü Installing the files

The package is distributed as a ZIP file. First, you need to decompress this ZIP file. This will produce a
directory named LevelScheme, which will contains several subdirectories (LevelScheme/doc, Lev-
elScheme/CustomTicks, LevelScheme/LevelScheme, etc.).

Then, you need to decide upon a suitable place in your directory structure where you would like to keep
these files. For example, on a Windows machine, you might have already created a directory named

C:\Research\MathematicaStuff

to contain all your Mathematica packages, documentation, etc. In this case, you would move the LevelScheme
directory (containing all those subdirectories) here, and it would be called

C:\Research\MathematicaStuff\LevelScheme

(This directory will then contain contain subdirectories C:\Research\MathematicaStuff\Lev-
elScheme\doc, C:\Research\MathematicaStuff\LevelScheme\CustomTicks, C:\Re-
search\MathematicaStuff\LevelScheme\LevelScheme, etc.)

However, Mathematica must still be told that this directory is a place where it should look in order to find
package files. Mathematica only searches for package files in the directories listed in Mathematica's variable
$Path. Therefore, you need to add the LevelScheme directory to this list, by using the AppendTo command.
For instance, using the example directory names from above, you would need to evaluate the command

LevelScheme | 2

AppendTo$Path, "C:\\Research\\MathematicaStuff\\LevelScheme";
Please note that the LevelScheme directory needs to be added to $Path before you try to load Lev-

elScheme with Get[“LevelScheme`”] (see below for more on loading the package). Moreover, each time
Mathematica is restarted, the $Path variable goes back to its “factory default” value. Therefore, the Lev-
elScheme directory needs to be added to $Path each time you restart Mathematica. There are two simple
solutions, and you may choose either one:

1) You can include this AppendTo command in each notebook just before Get[“LevelScheme`”].

2)You can include the AppendTo command in your personal init.m startup file. You can edit your startup file
by going to the directory given by $UserBaseDirectory, looking in the subdirectory named Kernel, and
opening the file named init.m. See the Mathematica help on “init.m” for more explanation.

Caution: On Windows systems, beware of the treatment of the backslash character “\”. Directory names are
separated by “\” under Windows. However, “\” has a special meaning in Mathematica input (this will be familiar
to C language programmers as well) and so must be entered as a double backslash “\\”. Alternatively, you may
use a forward slash in the input, as “/”, and this will be perfectly acceptable to Windows. Under Unix/Linux
operating systems, a forward slash should always be used.

Note: You can learn more about file names and file organization in Mathematica by searching for
“tutorial/MathematicaFileOrganization” and “tutorial/NamingAndFindingFiles” in the help browser. If you would
like to learn more about the package search path, search for “$Path”.

ü Loading the package

Each time you restart Mathematica, if you want to use the LevelScheme package's plotting commands,
you must tell Mathematica to load the LevelScheme package, by entering the following command:

Get"LevelScheme`"
You should see something like the following as output:

LevelScheme scientific figure preparation system
M. A. Caprio, Department of Physics, University of Notre Dame
Comput. Phys. Commun. 171, 107 2005
Version 3. xx

View color palette Visit home page

LevelScheme

Caution: You must be sure to always load the package before you first try to use any of the LevelScheme
commands. If you ever accidentally try to use any of the LevelScheme commands before loading the package, the
package will not be able to run properly for the rest of your Mathematica session. Instead, you will see error
messages such as

Figure::shdw: Symbol Figure appears in multiple contexts LevelScheme`,

Global`; definitions in context LevelScheme` may shadow or be shadowed by other definitions. à

This is an inconvenience common to all Mathematica packages. If you encounter this situation, just exit and
restart Mathematica (or quit the kernel), and try again.

Note: If you would like to learn more about packages, see the Mathematica help. You will want to search for
"tutorial/MathematicaPackages".

Note: If you prefer, you can equivalently enter <<"LevelScheme`". This is equivalent to Get["Lev-
elScheme`"].

LevelScheme | 3

ü Documentation and examples

The directory LevelScheme/doc contains several documentation and example files:

1. This user’s guide (LevelSchemeGuide.pdf).
2. A separate, smaller guide with details on customizing tick marks and tick labels for your axes
(CustomTicksGuide.pdf).
3. Several notebooks containing example figures, with the code used to generate them (Examples-
Schemes.nb, Examples-Diagrams.nb, Examples-FunctionPlots.nb, and Examples-Data-
Plots.nb).
4. A preprint of the Computer Physics Communications paper describing LevelScheme
(physics_0505065v2.pdf).

III. Basics

ü Creating a figure

A figure is drawn by giving a list of "objects" (such as energy levels, arrows, shapes, text labels, or data
plots), as the argument to the command Figure. The actual syntax for specifying these objects is the subject of
most of the rest of this guide.

Figure
object1, object2, … 

Constructs and displays a figure

The basic figure display command.

The positions of objects in the figure are specified in terms of an x-y coordinate system. For a level
scheme, the meaning of the x coordinate is usually somewhat arbitrary (it is just used to control left-right
positioning), while the y coordinate usually represents energy. The Figure command must be told the horizontal
and vertical range of coordinate space to be displayed, using an option PlotRange
{{xmin,xmax},{ymin,ymax}}. The desired size of the drawing on the page, in printer's points, can be specfied
with the ImageSize option.

An example of a simple figure follows.

Figure[
 {
 SetOptions[Lev,Thickness3,ColorRed],
 SetOptions[Trans,ArrowTypeShapeArrow,FillColorLightGray],
 Lev[lev1,0,2,0],
 Lev[lev2,1,2,100],
 Lev[lev3,0,2,200],
 Trans[lev2,0.5,lev1,0.9,Width10],
 Trans[lev3,0.5,lev1,0.5,Width20]
 },
 PlotRange{{0,2},{-10,210}}, ImageSize72*{3,3}
]

LevelScheme | 4

Caution: You might be tempted to try to cut and paste this example (or any of the following examples) from the PDF file version of the user
guide directly into a Mathematica notebook. However, this will probably not work. Since some of the special characters (the arrows) do not
copy properly. Instead, you can retype the example from scratch. Or, you can find this and other examples in the example notebooks provided
with the package.

The Figure command accepts many additional options controlling the appearance of the drawing. Most
of these are identical to options accepted by the usual Mathematica plotting and display functions such as Plot
and Show. A complete summary will be given in a later section. Here we just illustrate how a "frame" can be
drawn about the figure using some of these options.

FrameTrue,FrameTicks{None,Automatic},LabL"Energy",FontSize15

0

50

100

150

200

E
ne

rg
y

The same figure as above but with a frame.

ü General drawing principles

Each "object" in the figure is built from up to three distinct parts: an outline, a filled area, and attached text
labels, as illustrated in the following color-coded diagram. Not all objects have all these parts; for instance, a level
has no filled area.

LevelScheme | 5

ABC
ABC

0+ ABC
Outline

Fill
Text

Decomposition of each object into outline, fill, and text.

The appearance of an object is controlled by setting options for these parts. A couple of options affect the
entire object, while the others affect only the outline, fill, or text. Following is a summary of all the drawing
options.

option name default value

Color Black Default color used for all parts of object,
unless overridden by LineColor,
FillColor, or FontColor

Show True Whether or not to draw the object

Options affecting appearance of all parts of an object.

option name default value

ShowLine True Whether or not to draw the outline

LineColor Automatic Color for outline; if Automatic,
value specified by Color is used instead

Thickness 1 Thickness of line in printer ' s points

Dashing None Line dashing style; may be None for no dashing,
Automatic for default dash lengths,
a numerical length length in printer ' s points,
a series of dash lengths length1, length2, …,
or a Mathematica AbsoluteDashing directive

Options affecting appearance of just the outline.

option name default value

ShowFill True Whether or not to draw the fill

FillColor Automatic Color for fill; if Automatic,
value specified by Color is used instead

Options affecting appearance of just the fill.

LevelScheme | 6

option name default value

FontFamily “Times New Roman” Font family,
which may be any font installed on the system

FontSize 12 Character height in printer ' s points

FontColor Automatic Color for text; if Automatic,
value specified by Color is used instead

FontWeight “Plain” Font weight; “Bold” gives boldface

FontSlant “Plain” Font slant; “Italic” gives italic

FontTracking “Plain” Horizontal spacing between letters

BackgroundFontSi-
zeFactor

1.0 Controls extent of optional whited-
out background region when
Background X option is set see below

Options affecting font characteristics for text.

option name default value

Layer Automatic Controls whether object is drawn in front of or
behind others see discussion in later section

ClipToRectangle True Controls clipping of graphics to the current
plotting region see discussion in later section

Advanced drawing control options.

The color of the entire object (outline, fill, and text) can be set all at once with the option Color. Or the

color can be controlled independently for the individual components by setting the LineColor, FillColor, or
FontColor options. Colors are specified using either the color names from the Mathematica Colors package or
any of the Mathematica color directives (see the Mathematica documentation for GrayLevel or RGBColor).

When LevelScheme is loaded, it displays a button labeled "View color palette" in the notebook. You can view a
chart of the named colors at any time by clicking on this button.

The line thickness and dashing are controlled by the options Thickness and Dashing. To turn on

dashing with default dash lengths, simply set DashingAutomatic. Otherwise, specify dash lengths as
described in the table above. For instance, Dashing{6,2} produces a dash-dot pattern. For more advanced
comments on fine-tuning the appearance of dashing, see Appendix B.

It is possible to specify that the outline or fill of the object not actually be drawn. For instance, hiding the
fill with ShowFillFalse makes the object transparent so objects behind can show through. This is not the
same as simply making the fill the same color as the background, since then it would still block any objects behind
it from view.

The font style options are the standard options for text formatting in Mathematica, discussed in more detail
in the Mathematica documentation. The default font used by the LevelScheme package is Times, but usually any
font installed on the system can be used.

The advanced options Layer and ClipToRectangle are discussed in later sections.

LevelScheme | 7

option name default value

Lab X None Contents of label X

ShowLab X True Whether or not to draw label X

Orientation X Automatic Orientation of label X ; may be set to Horizontal ,
Vertical, Automatic to align text along

object which is the same as Horizontal
except for labels on arrows or axes,

Inverted to obtain text 180 ° rotated from
Automatic, or an arbitrary angle see discussion

Offset X Automatic Position of label X
with respect to its anchor point see discussion;
specified as  xoffset, yoffset ; Automatic
yields a reasonable default position

Nudge X 0 Horizontal and vertical fine-
tuning adjustment of label position;
specified in printer ' s points as ynudge for just a

vertical adjustment or as  xnudge, ynudge
Background X None Specifies existence and color of whited-

out area behind label; Automatic
uses the background color of the drawing

Options for individual labels. Substitute the appropriate label position letter for X.

A single object can have one or more labels attached, depending upon the type of object. Each of these
has a "name" indicating its position: "L" on the left, "R" on the right, "T" at the top (or tail, in the case of an
arrow), "B" at the bottom, or "C" in the center. The contents of these label are set using the options LabL, LabR,
etc., according to this naming scheme. The label names are illustrated for a few types of object in the following
diagram. There are several options which control the contents and positioning for each label individually.

LabL LabRLabC

LabT

LabB

LabL
LabC

LabR

L
ab

L

L
ab

R
L

ab
C

L
ab

T

Names of labels, indicating their positions.

The most important of these options is OffsetX, which controls where the label actually lies relative to
its nominal position. For instance, the "right-hand" label for a level, which is nominally positioned at the right-
most point of the level line, actually is typically drawn either above the right end of the level, outside the right end
of the level, or below the right end of the level. The right endpoint of the level serves as an "anchor" point (the red
dot in the following diagram) for the label. Then the option OffsetR{xoff, yoff } specifies where this
"anchor" point lies within an imaginary box circumscribing the text, with {-1,-1} as the lower left corner of the
text and {+1,+1} as the upper right corner. This is based upon the "offset" notation used in the basic Mathematica

LevelScheme | 8

Text command. The following illustrates where the text lies for some example offsets.

+1,+1
-1,0

+1,-1

The anchor point offset relative to a text label.

The position of the text can further be fine-tuned with the NudgeX option, which nudges the label horizontally
and vertically by the specified number of printer's points.

The orientation can be set to any arbitrary angle with the OrientationX option. The angle is measured
counterclockwise from horizontal in radians; to specify it in degrees, as is usually more convenient, multiply by
the conversion factor Degree, e.g., 45*Degree. Preset orientations, including Horizontal and Vertical
(see option description above), are also available.

The option BackgroundX is used to create a whited-out area behind the label, hiding anything else in the
drawing behind the label.

ü Setting default values for options

Sometimes an option's value only needs to be set for a single object. But very often it is desirable to to
change the default value of an option for all objects of a given type in the entire figure. This is accomplished
using the Mathematica SetOptions command, which takes the form SetOptions[objecttype,option
value,…], where objecttype is one of the types of drawing object used in the figure. Some examples would be

SetOptions[Lev,Thickness3,ColorRed,FontSize20]
SetOptions[Trans,Thickness2,DashingAutomatic]

For several options which control the basic drawing style, described at the beginning of preceding section, you can
also specify a global default value. This allows you to make a uniform style change to your whole drawing. To
set the global defaults, specify the options for SchemeObject. For example,

SetOptions[SchemeObject,Thickness2,FontFamily->"Helvetica",FontSize15]

These global default values are used by all types of objects, unless overridden by a SetOptions for that particu-
lar type of object.

If you use the SetOptions command outside a Figure definition, the new values for the options will
apply to all figures for the rest of the Mathematica session; whereas, if you use the SetOptions command
inside a Figure definition, the new values apply only to that one figure. It is usually preferable to adopt a
practice of setting option values inside each individual figure, to avoid unwanted collateral effects on other figures.

SetOptions affects only those objects defined following it in the figure, so you can change style
midway through a figure. The default value of an option set with SetOptions can always be overridden if
needed for individual objects. The following provides an example of the use of SetOptions several times
within one figure, in this case to choose a different color for the labels on each band of levels, and an example of
overriding the default options for a single object, here the level with the black label.

SetOptions[Lev,LabR"ABC",FontSize20],

LevelScheme | 9

SetOptions[Lev,FontColorRed],
Lev[Dummy,0,1,0],Lev[Dummy,0,1,50],Lev[Dummy,0,1,100],Lev[Dummy,0,1,150],

SetOptions[Lev,FontColorGreen],
Lev[Dummy,1,2,0],Lev[Dummy,1,2,50,FontColorBlack],Lev[Dummy,1,2,100],Lev[Dummy,1,2,150],

SetOptions[Lev,FontColorBlue],
Lev[Dummy,2,3,0],Lev[Dummy,2,3,50],Lev[Dummy,2,3,100],Lev[Dummy,2,3,150]

ABC
ABC
ABC
ABC

ABC
ABC
ABC
ABC

ABC
ABC
ABC
ABC

Illustration of the use of SetOptions several times within one figure.

IV. Drawing objects

ü Levels, extensions, and connectors

Levels are drawn with the command Lev. There are also auxiliary commands for drawing extension lines
and connectors, discussed later in this section.

Lev name, x1, x2, energy Energy level

Level drawing command.

option name default value

Margin 0.1 Horizontal inset of each end of the level
from the left and right coordinates specified,

in abscissa coordinate units

WingHeight 0 Elevation of gull wings relative to
central segment of level, in printer ' s points

WingRiseWidth 10 Width of sloped segment of gull wings,
in printer ' s points; can be specified as
lwidth, rwidth for asymmetric left and right wings

WingTipWidth 30 Width of flat segment of gull wings,
in printer ' s points; can be specified as
lwidth, rwidth for asymmetric left and right wings

MakeWingL True Whether or not to make gull wing on left side

MakeWingR True Whether or not to make gull wing on right side

Options for level drawing command.

Each specification of a level with Lev includes a name (or ID), left and right coordinate, and energy
coordinate. The name can be any symbol of the user's choosing. The name does not affect the drawing of the
level itself. Rather, it is used later to refer back to the level, when drawing extension lines, transitions, etc., which

LevelScheme | 10

connect to the level. The actual left and right end points of the level are indented from the nominal left and right
end coordinates specified, by an amount controlled by the option Margin. This allows end points to be specified
in round numbers, e.g., levels can be specified as extending from 1 to 2 and from 2 to 3, while the margin ensures
that the ends of the levels do not actually bump into each other.

0 1 2

M
ar

gi
n

M
ar

gi
n

M
ar

gi
n

M
ar

gi
n

The left and right end points of a level are indented by an adjustable margin.

Levels can have left, center, and right labels. Specifying the special option value LabXAutomatic
causes the level energy to be used as the text of that label. Thus, energy labels can be created on all levels simply
by invoking SetOptions[Lev,LabXAutomatic] and can later be removed as easily. When Mathematica
displays real numbers, it removes all trailing zeros after the decimal point, regardless of how the number was
originally entered. Thus, for instance, a level energy entered as 0.00 would be truncated to 0. in the energy
label, which is undesirable. To circumvent this, give the energy argument to Lev as a string, surrounded by

quotation marks. Lev will extract the numerical value for use as the vertical coordinate of the level but will use
the string verbatim in automatic energy labels.

In level schemes with closely-spaced levels, it is sometimes necessary to raise or lower the end segments
of levels to make room for text labels, giving levels which appear to have "gull wings". These can be created by
specifying a nonzero value for the option WingHeight, postive for elevated wings and negative for lowered

wings. Automatic energy labels and gull wings are both illustrated in the following example. The dimensions of
the gull wings can be customized using the options WingRiseWidth, WingTipWidth, MakeWingL, and
MakeWingR.

SetOptions[Lev,Thickness3,LabRAutomatic],
Lev[lev0,0,1,"0.0"],
Lev[lev100,0,1,"100.1",WingHeight-5],
Lev[lev105,0,1,"105.3",WingHeight+5]

0.0

100.1
105.3

Illustration of automatic energy labels and gull wings.

LevelScheme | 11

ExtensionLine
level, side, length

Extension line to left or right of level; side may be Left or Right

ExtensionLine
level, posn1, posn2

Extension line with arbitrary starting and
ending positions relative to left end coordinate of level

Connector level1, level2 Connector line from right end of level1 to left end of level2

Level extension line and connector drawing commands.

option name default value

ToWing True Controls whether an extension line appears at
the same vertical coordinate as the gull wing
if present or as the main part of the level

Option for extension line command.

Extension lines are attached to an existing level using the command ExtensionLine. They extend the
level by a specified horizontal length to the left or right.

SetOptions[Lev,Thickness3,LabRAutomatic,FontSize15],
SetOptions[ExtensionLine,Thickness1,Dashing->Automatic],
Lev[lev0,0,1,"0.0"],
ExtensionLine[lev0,Right,0.5,DashingAutomatic]

0.0

Creation of an extension line.

Connector lines between levels are drawn with the command Connector. A simple example follows.

SetOptions[Connector,DashTrue,Color->Red],
Connector[lev0,lev100]

0

100

Creation of a connector line.

ü Arrows and transition arrows

Arrows are drawn either with the command SchemeArrow or Trans. SchemeArrow is meant for
general-purpose use, e.g., to draw arrows in technical diagrams or to annotate a figure. Trans is meant for
drawing transition arrows in level schemes.

LevelScheme | 12

SchemeArrow point1, point2 Arrow from point1 to point2

SchemeArrow
point1, …, pointn 

Polygonal arrow with several segments, connecting the points indicated

Basic arrow drawing command.

option name default value

ArrowType LineArrow Arrow shape type; value can be LineArrow,
MultilineArrow,
ShapeArrow, or SquiggleArrow

HeadLength 9 Length of arrowhead, in printer ' s points

HeadLip 3 Half-width or extension of arrowhead
outward from arrow shaft, in printer ' s points

Width 5 Width of arrow shaft,
in printer ' s points for MultilineArrow,

ShapeArrow, or SquiggleArrow only
ShaftLines 2 Number of parallel lines in

shaft for MultilineArrow only
ShowTail False Controls whether or not an

arrowhead appears at the tail of the arrow
for LineArrow or SquiggleArrow only

ShowHead True Controls whether or not an arrowhead
appears at the head of the arrow
for LineArrow or SquiggleArrow only

TailBevel False For a non-vertical arrow, controls whether or not the tail
of the arrow is sliced off to make it horizontal
for MultilineArrow or ShapeArrow only

Options controlling the arrow shape.

Arrows can be drawn in four different styles, selected by the option ArrowType. An arrow of type
LineArrow has an arrowhead constructed from two line segments, the lengths and angles of which are
customizable. An arrow of type MultilineArrow is similar but has two or more lines in its shaft. The area
between the lines can be shaded as well. Note that the default color for the fill is the same as for the line, which
would leave the lines indistinguishable from the fill, defeating the point of having multiple lines. Thus, in
practice, MultilineArrow is almost always used with either a separate FillColor option or with
ShowFillFalse. An arrow of type ShapeArrow is drawn as a polygon with both an outline and fill. An
arrow of type SquiggleArrow has a sinusoidal squiggle for its shaft. These styles and the options controlling
the arrow dimension parameters for each are illustrated in the following.

LevelScheme | 13

LineArrow MultilineArrow ShapeArrow SquiggleArrow

H
ea

dL
en

gt
h

H
ea

dL
ip

H
ea

dL
en

gt
h

W
id

th

H
ea

dL
ip

H
ea

dL
en

gt
h

W
id

th

H
ea

dL
ip

H
ea

dL
en

gt
h

W
id

th

H
ea

dL
ip

The three available arrow styles and their dimension parameters.

Some of the possible variations are shown below. A LineArrow can have multiple segments, specified
by giving a list of points SchemeArrow[{point1,…,pointn}]. A LineArrow or SquiggleArrow can be
"double headed" or even have an arrowhead only on its tail, as controlled by the ShowHead and ShowTail
options. The number of tail shafts for a MultilineArrow can be controlled with the ShaftLines option.
The tail of a MultilineArrow or ShapeArrow can be "beveled" so that it is horizontal, by setting
TailBevelTrue (this is more commonly used with transition arrows, described below). These possibilities
are illustrated in the following.

Bent arrow Double-headed
arrow

Multiple
shafts

Beveled... or not

Variant arrow shapes.

LevelScheme | 14

option name default value

Posn X Automatic Position of label X along arrow shaft;
value is specified as fraction

of distance from tail to head,
or as distance FromTail dist,

FromHead dist,
FromTailVertical dist,

FromHeadVertical dist,
FromTailHorizontal dist ,

or FromHeadHorizontal
dist in

printer '
s
points
for left,

center,
and right labels only

Buffer X Automatic Buffer spacing between label X
and arrow shaft, as multiple of current

font height for left and right labels only
Segment X Automatic For an arrow with multiple segments,

specifies which segment label X
is attached to for left, center, and right labels only;

may be positive integer 1 through n
where n is the number of segments,
to specify segment counting from tail,
or negative integer to count back from head

Options controlling label placement for transition arrows. These complement the usual LevelScheme label positioning options.

Arrows can have left, center, right, and tail labels. (The nominal "left" and "right" labels are only actually
properly named if the arrow is pointing downward, as usual in level schemes.) If the OrientationX option for
a label is specified as Automatic (the default), the label will be aligned flush along the arrow shaft, giving a
very neat appearance. If a label "upside down" relative to this angling is prefered, as occasionally might be for
near-vertical arrows, the option can be overriden with the value Inverted. Ordinary horizontal or vertical
labels can be specified, as usual, with the Horizontal and Vertical option values.

Horizontal

V
er

ti
ca

l

Comparison of angles for arrow labels.

LevelScheme | 15

The position of each label along the arrow shaft is controlled with the option PosnX . If a simple
numerical value is given for the option, this specifies the position as a fraction of the distance from the tail to the
head. The tail label is by default at a position of 0, and the other labels are by default at 0.5, the midpoint of the
arrow. More sophisticated positioning specifications, in terms of distances in printer's points from the tail or head,
are available as well. These are summarized in the option table above. For instance, when several different
transition arrows originate from the same level, it may be desirable to have their labels all aligned at the same
height as each other. If these transition arrows are of different lengths and have different orientations, it would not
be easy to specify this alignment simply in terms of the fractional position along the arrow shaft. Instead, the
option value PosnXØFromTailVertical[dist] can be used. The labels are then positioned the specified
distance vertically down from the tail, regardless of how far horizontally and thus how for along the shaft this
means they must go.

Developing a consistent system for setting the exact label positions, and for providing reasonable default
positions, proved to be challenging, since the arrows can have arbitrary orientation and the labels themselves can
have various orientations. For vertical arrows with purely horizontal or vertical labels, the usual OffsetX
system works well, since, e.g., the arrow shaft should in this case always be at the far left end of the right-hand
label or at the center bottom of the tail label. But the offset system fails miserably for angled arrows with angled
text. Instead, it is much easier to note that, for text aligned along the arrow, the center of the text should always
be a distance of about half a character height perpendicularly outward from the nearest side of the arrow shaft.
The OffsetX option for the left and labels has consequently been supplemented with a BufferX option which
controls the perpendicular distance out to the label's anchor point as a multiple of half the current font height, as
determined by FontSize. If OffsetX and BufferX are set to Automatic, the actual values are chosen
"intelligently" based upon the label orientation. This hybrid system of positioning is in practice not very
complicated to use, since the default values usually produce decent results, and adjustments can be carried out
with a little experimentation.

For arrows with more than one segment, the left, center, and right labels may appear on any of the
segments, as specified by the option SegmentX. Segments are numbered 1, 2, … starting from the tail of the
arrow (or, alternatively, -1, -2, … backwards from the head of the arrow), as illustrated below.

2
-2

Trans level1,
posn1, level2, posn2

Transition arrow from level1 to level2 ,
with horizontal starting and ending positions explicitly specified

Trans level1, level2 Transition arrow from level1 to level2 , abbreviated form

Transition arrow drawing command. Points may also be specified explicitly, as for SchemeArrow.

Transition arrows in level schemes are drawn using Trans. Rather than starting and ending points,
starting and ending levels must be specified.

The arrow drawn by Trans is identical to the arrow drawn by SchemeArrow, except that it uses the
option values defined for Trans. This is useful if some arrows in a level scheme represent transitions while
others are annotations, since it allows the stylistic options for one type to be set without interfering with those for
the other type. The default options for Trans are initially the same as for SchemeArrow, except that
TailBevel is by default turned on.

LevelScheme | 16

option name default value

EndPositions 0.5, 0.5 Arrow endpoint horizontal positions used by
abbreviated formTrans level1, level2

FromWing False Controls whether tail of arrow is at height
of gull wing or main part of initial level

ToWing False Controls whether head of arrow is at
height of gull wing or main part of final level

Options controlling the positions of transition arrow endpoints.

The command Trans[level1,posn1,level2,posn2] draws a transition arrow starting a horizontal
distance posn1 from the left end of level1 and ending a horizontal distance posn2 from the left end of level2. The
distance is calculated from the nominal left end of the level, ignoring the margins, rather than from the visible end
point. This simplifies the mental arithmetic required for positioning. For instance, an arrow starting from the
middle of a level which nominally extends from 0 to 1 can be obtained simply by specifying a position 0.5. If
either posn1 or posn2 is specified as Automatic, the arrow is made vertical, its horizontal position determined

by whichever coordinate is not specified as Automatic. (This is especially useful when it is desired that the
arrow should remain vertical even though one or both of the levels might need to be moved horizontally as the
level scheme is edited. Without the Automatic value, a new value for posn1 or posn2 would have to be entered
manually each time the left end of either level moved.)

The abbreviated form Trans[level1,level2] takes its starting and ending positions from the option
EndPositions. This is useful if many transition arrows are to be drawn with the same horizontal start and end
positions, as is often the case for the transitions within a band or between two bands. Then EndPositions can

simply be specified once using SetOptions, and it will apply to all the transitions.

The alternate forms Trans[point1,point2] or Trans[{point1,…,pointn}] allow an arrow to be
drawn freehand between the specified points, where no levels exist, exactly as for SchemeArrow. Note,
however, that to draw an arrow with one end on a level and the other end "dangling", it is often more convenient
to define an invisible "phantom" level, by calling Lev with the option setting ShowFalse, and then to use the
command Trans to draw an arrow between the visible level and the phantom level.

option name default value

Kink None Coordinates of kink points for bent arrow
for LineArrow only; value may be a
single point or a list point1, …, pointn;

value None indicates no kink

Option for specification of intermadiate points in transition arrow.

Often it is necessary to introduce one or more "kinks" into a transition arrow, i.e., make a multi-segment
arrow. The first and last points of the arrow are specified as usual by giving the level IDs, while the intermediate
points are specified with the option Kink. The value given for Kink my be either a single point or a list of
several points. Each point may be specified simply as a coordinate pair {x,y} in ordinary user coordinates.
Alternatively, each may be specified as a position relative to the head or tail of the arrow, in user coordinates or
printer's points, as FromHead[{x,y}], FromTail[{x,y}], FromHead[Point[{x,y}]], or FromTail[-
Point[{x,y}]]. Note that the FromHead or FromTail notations may also be used for the intermediate
points in SchemeArrow[{point1,…,pointn}] or Trans[{point1,…,pointn}]. Some examples of kinked

LevelScheme | 17

transition arrows follow.

Trans[
 lev1,lev2,
 Kink{FromTail[Point[{20,20}]],FromHead[Point[{-20,20}]]},SegmentL2,
 LabL100
],

100

SetOptions[Lev,Margin0.2],
SetOptions[Trans,
 EndPositions{0.2,0.8},Kink{FromTail[{-0.10,0}],FromHead[{+0.30,0}]},
 HeadLength5,HeadLip2,
 BackgroundCAutomatic,OffsetC{+1,0},PosnC0.2,
 ColorRed
],
...
Trans[p90,d0,LabC100],
Trans[p90,d40,LabC80],

1+ 0

1+ 40

0+ 90

100

80

option name default value

ConversionColor White Color for conversion electron part of arrow.

ConversionSide Right Side on which conversion shading appear;
value can be Left or Right

ConversionCoeff None Conversion coefficient,
which is the ratio of the width of the conversion electron

shaded part of the arrow to the width of the non–
shaded part; value may be None,
or a nonnegative real number,
or Infinity for a fully–converted transition

Options controlling split shading for combined gamma ray and conversion electron transition arrows. These are used for ShapeArrow only.

Gamma-ray transitions with a conversion electron component are traditionally indicated by an arrow
shaded with two different colors. Such an arrow may be drawn as a ShapeArrow with the option Conversion-
Coeff. The appearance of the conversion electron shading can be controlled with the options Conversion-
Color and ConversionSide. It is strongly recommended to set HeadLip0 for these arrows, since other-

LevelScheme | 18

wise even a transition with zero or small conversion coefficient will have a big shaded "corner" in its arrowhead.

Figure

SetOptionsTrans, ArrowType  ShapeArrow, HeadLip  0,

Width  20, FillColor  LightGray, ConversionColor  LightBeige,
Levlev1, 0, 1.3, 0,
Levlev2, 0, 1.3, 1,
Translev2, 0.2, lev1, 0.3, ConversionCoeff  0, HeadLip  0,
Translev2, 0.4, lev1, 0.5, ConversionCoeff  0.5, HeadLip  0, LabR  "c.e.",
Translev2, 0.6, lev1, 0.7, ConversionCoeff  Infinity,

HeadLip  0, LabC  RowBoxtextit"E", "0",
Translev2, 0.9, lev1, 0.9, ConversionCoeff  0, HeadLip  7, ConversionColor  Red,
SchemeArrow1.05, 0.3, 0.9, 0  LevelScheme`Coord`DPCOfPA10  5, 9, Color  Red,

OrientationT  Horizontal, OffsetT  0.5, 1,
LabT 

StackTextCenter, 0, RowBox"BAD", hspace0.5, ":", "Should set", "lip to 0"

,
PlotRange  0, 1.3, 0, 1, ImageSize  72  4, 1.5, ExtendRange  0.01


Trans::conversionlip :

For conversion-electron arrows, it is recommended that HeadLip be set to 0, yielding a cornerless arrowhead. Otherwise, a
misleading plot is obtained, since the corner of the arrowhead is still shaded even for vanishing conversion coefficient.

BAD :
Should set

lip to 0

option name default value

SquiggleWaveleng-
th

10 Wavelength of sinusoid in printer ' s points

SquiggleBuffer 2 Minimum length of straight arrow shaft at either end
of sinusoid, before arrowhead or end of arrow

SquiggleSide Right Side on which sinusoid starts

PlotPoints 32 Number of plotting points along curve per wavelength

Options controlling squiggle properties.

The wavelength of a SquiggleArrow is controlled with the option SquiggleWavelength. The
sinusoidal part of a squiggle arrow always contains an integer number of "humps" or half wavelengths. A short
length of straight arrow shaft appears at either end of the sinusoid, making up the extra length needed for the
arrow, before any arrowhead. The minimum length of these segments is controlled by the option
SquiggleBuffer.

ü General drawing shapes

The remaining drawing commands produce general-purpose shapes, not special to level schemes. They
are essentially enhanced versions of the Mathematica shape drawing primatives, but with outline, fill, and labels

LevelScheme | 19

combined in one object. Their ease of use, with the machinery set up for controling their appearance through
options, makes them useful for many diagramming, drawing, and plotting tasks.

SchemeLine
point1, point2, … 

Line

SchemePolygon
point1, point2, … 

Polygon, with outline and fill

SchemeBox x1,
x2 ,  y1, y2 ,
SchemeBox x1,
y1 ,  x2, y2 ,
SchemeSquare x,
y , radii

Rectangular box with outline and fill

SchemeCircle
x, y , radii

Circle or ellipse, as specified by radii , with outline and fill

SchemeCircle x, y ,
radii ,  theta1, theta2 

Circular or elliptical arc, as specified by radii , with outline and fill

Shape drawing commands.

SchemeLine produces an arbitrary open curve. It is thus simply an alternative to the Mathematica Line
primative, but one which respects LevelScheme outline style options. Arrow heads may be drawn on either end of
the line, by specifying ShowTailTrue or ShowHeadTrue, and the properties of these arrowheads can be
specified exactly as described above for line arrows.

PointList=Table[{x,x^3},{x,-1,1,0.1}],
SchemeLine[PointList,Thickness->2,ShowHeadTrue]

SchemePolygon produces an arbitrary closed curve, with both an outline and fill. It is thus an enhanced
version of the Mathematica Polygon primative.

SchemeBox produces a rectangle with outline, fill, and top, bottom, left, right, and center labels. It is thus
an enhanced version of a Mathematica Rectangle graphics primative. Note that there are several different
ways of specifying the rectangle's coordinates. It is usually most convenient to specify the x and y coordinates as
a pair of ranges x1, x2, y1, y2. Alternately, you can specify the corner points x1, y1 and x2, y2. The first

syntax is provided for consistenty with PlotRange, the second for consistency with Rectangle. If you wish
instead to specify the center point of the rectangle and x and y half-widths, this is accomplished using the
otherwise-identical SchemeSquare drawing object. The syntax for specifying the half-widths is the same as for
the "radii" given to SchemeCircle, discussed below.

SchemeBox can be used for various purposes within a level scheme, such as to highlight a level, provide a
boxed title for the scheme, or create a gray band representing a resonance. However, SchemeBox is also a
general-purpose drawing element ideal for the construction of many kinds of block diagrams, tables, grids, and bar
charts, since its ready-made outline, fill, and sundry labels cover most common features needed in table cells. It is

LevelScheme | 20

especially useful in conjunction with the Mathematica Table list-construction function, which can be used to
automate the construction of large arrays of boxes. For instance, a table of nuclides can be created with the help
of data provided by the Mathematica Miscellaneous`ChemicalElements` package, which provides the
chemical symbol for each element and a list of stable isotopes. Thus, the labeling of each square and shading of
the stable isotopes can be automated, as in the following example. The full code for this example may be found in
Examples-Plots.nb.

Table[
 SchemeBox[
 {{NValue - 1, NValue + 1}, {ZValue - 1, ZValue + 1}},
 LabC -> ChemicalSymbol[NValue, ZValue],
 FillColor  If[IsStable[NValue, ZValue], Gray, LightBeige],
 BackgroundC  If[IsStable[NValue, ZValue], Gray, LightBeige]
],
 {ZValue, ZMin, ZMax, 2}, {NValue, NMin, NMax, 2}
]

142Ce 144Ce 146Ce 148Ce 150Ce 152Ce 154Ce

144Nd 146Nd 148Nd 150Nd 152Nd 154Nd 156Nd

146Sm 148Sm 150Sm 152Sm 154Sm 156Sm 158Sm

148Gd 150Gd 152Gd 154Gd 156Gd 158Gd 160Gd

150Dy 152Dy 154Dy 156Dy 158Dy 160Dy 162Dy

152Er 154Er 156Er 158Er 160Er 162Er 164Er

154Yb 156Yb 158Yb 160Yb 162Yb 164Yb 166Yb

156Hf 158Hf 160Hf 162Hf 164Hf 166Hf 168Hf

84 86 88 90 92 94 96

58

60

62

64

66

68

70

72

N

Z

SchemeCircle produces a circle or ellipse with outline, fill, and top, bottom, left, right, and center
labels. Beginning and ending angles can be specified for drawing an arc. SchemeCircle is thus an enhanced
version of the Mathematica Circle and Disk primatives. Arrow heads may be drawn on either end of the arc,
by specifying ShowTailTrue or ShowHeadTrue, as described above for line arrows. Note that an extra

label LabX is also defined, drawn a fraction PosnX of the way along the arc.

Circles in Mathematica generally suffer from being distorted into ellipses. A "circle" of radius 1 in
Mathematica is drawn as an ellipse 1 horizontal plotting unit wide and 1 vertical plotting unit high — But this is
not a circle at all unless the horizontal and vertical plotting scales happen to be identical! SchemeCircle
allows the units in which the horizontal and vertical radii are given to be specified explicitly: both radii in
horizontal plotting units, both radii in vertical plotting units, or both radii in printer's points. This facilitates the
drawing of true circles and can be convenient for specifying ellipses as well. The possible forms of the radii
argument are r, {r1,r2}, Horizontal[r], Horizontal[{r1,r2}], Vertical[r],
Vertical[{r1,r2}], Point[r], and Point[{r1,r2}].

SchemeCircle[{.5,10},0.4,LabB"Squashed!"],
SchemeCircle[{2.0,10},Horizontal[0.4],LabB"Circle"],
SchemeCircle[{2.5,10},Vertical[0.4],FillColorRed],

LevelScheme | 21

SchemeCircle[{3.5,10},Horizontal[{0.4,0.2}],LabB"Ellipse"],
SchemeCircle[{4.8,10},Horizontal[0.4],{3*Pi/4,Pi/4+2*Pi},LabB"Pie"],

Squashed!

Circle
Ellipse

Pie

0 1 2 3 4 5
0

5

10

15

20

The following simple diagram makes use of several of the drawing objects just described.

Figure[
 {

 (* target *)
 SchemeSquare[{0,0},{0.03,0.3},FillColorGold],

 (* beam *)
 SetOptions[SchemeArrow,ArrowTypeMultilineArrow,
 ShaftLines3,FillColorLightGray],
 SchemeArrow[{-2,0},{0,0},ShowHeadFalse,HeadLength0],
 SchemeArrow[{0,0},{2,0},DashingAutomatic,ShowFillFalse],

 (* gamma rays *)
 SetOptions[SchemeArrow,ArrowTypeSquiggleArrow],
 SchemeArrow[{0,0},{1,1},ColorBlue,SquiggleWavelength8],
 SchemeArrow[{0,0},{-1,-1},ColorRed,SquiggleWavelength12],
 SchemeCircle[

{0,0},0.3,{0,Pi/4},
ShowFillFalse,
LabX"",PosnX0.5,BufferX1,OrientationXHorizontal

]

 },
 PlotRange{{-2,2},{-1,1}},
 ImageSize72*{4,2}
]

q

ü Labels

Several commands are provided for drawing stand-alone labels which are not part of any other object.
Some of these labels are positioned manually, and others are positioned automatically with respect to a named
level. The label positioning options are similar to those discussed above, but with no letter appended to their
names: ShowText (not ShowLab), Orientation, Offset, Nudge, and Background.

LevelScheme | 22

ManualLabel
point, contents

Writes a label at coordinates point

ScaledLabel
scaledpoint, contents

Writes a label at scaled coordinates scaledpoint , where 0, 0 is the lower left
corner of the current plot region and 1, 1 is the upper right corner

General label drawing commands.

ManualLabel is used to place a label at a specific position according to coordinates.

ScaledLabel is used to place a label at a specific fraction of the way across and up the display region,
without reference to the coordinate system. (See the section on coordinate systems below for a description of
"scaled" coordinates.) This is useful for plot titles, which should not have their position affected by the choice of
coordinate range.

SchemeBracket
Top Bottom,  x1,

x2 , y,
SchemeBracket
Left Right,

x ,  y1, y2 

Bracket with label

Bracket drawing commands.

SchemeBracket is used to produce bracket-like labels. The bracket consists of a main line segment
with an angled line segment at each end. It is therefore very similar in construction to a line arrow with an
arrowhead at each end. In fact, SchemeBracket respects the same arrowhead control options (ShowHead,

HeadLength, HeadLip). The bracket label is specified with LabB, LabL, LabT, or LabR, as appropriate,
and its positioning along the length of the bracket is controlled with the option PosnB, PosnL, PosnT, or
PosnR, much like for an arrow label. The following provides a simple example.

SchemeBracket[Bottom,{-1,1},-1.2,LabB->"Domain"],
SchemeBracket[Right,+1.2,{-1,1},LabR->"Range"]

Domain

R
an

ge

When SchemeBracket is used to annotate levels in level schemes, the x range or y range may be
replaced by a pair of level IDs, as in the following example.

SetOptions[SchemeBracket,HeadLength6,HeadLip6,ColorRed,FontSize15,FontWeight-
>"Bold"],
SchemeBracket[Bottom,{lev1,lev2},-0.5,LabB->"=2"]

LevelScheme | 23

4+ 2+

t=2

LevelLabel
level, side, contents

Writes a label adjacent to the left or right endpoint of the level
level with an optional call–out line or above or below the level,

depending whether side is Left, Right, Top, or Bottom

BandLabel level,
contents,

BandLabel level,
posn, contents

Writes a label centered below the level level
or at horizontal position posn relative to its left end

Special label drawing commands for level schemes.

option name default value

CallOutVector None Specification xdist, ydist of call-
out line between level and label;
value None indicates no call–out line

Gap 0 Horizontal gap between level end point and label,
in printer ' s points; if a call–out line is present,
can be specified as inner, outer

to separately control the distance between the level and
the line and the distance between the line and the label

Special label positioning options for LevelLabel.

LevelLabel essentially provides an extra left, right, top, or bottom label for a level. For left or right

labels, the annotation can be connected to the end point of the level with a "call-out" line, and the horizontal gap
between the annotation and the level can also be controlled, as specified by the options CallOutVector and
Gap.

BandLabel positions its label by default immediately below the center of the specified level, or the
horizontal position can be specified with an optional extra parameter. This is useful for putting a label beneath a
band of levels. BandLabel produces essentially the same result as a LevelLabel attached to the Bottom of

a level, but the separate command BandLabel is provided both for backward compatibility and so that label font
options can be set separately for band and level labels.

The following figure illustrates the use of several label types.

SetOptions[SchemeObject,FontSize15,FontColorRed],
ScaledLabel[{0.05,0.95},"Expt",Offset{-1,+1}],
ManualLabel[{0.5,50},"ª",FontWeight->"Bold"],
LevelLabel[lev0,Right,"100 y",CallOutVector{15,-5},DashingAutomatic],
LevelLabel[lev100,Right,"50 ps"],
BandLabel[lev0,"g.s. band"]

LevelScheme | 24

0

100
Expt

ª

100 y

50 ps

g.s. band

Illustration of the use of labels.

V. Including Mathematica plots and other graphics

ü Two-dimensional graphics

RawGraphics
graphics , ...

Includes one or more Mathematica graphics objects in the drawing

Commands for including graphics.

Command for including Mathematica graphics in a LevelScheme drawing.

Any two-dimensional graphics drawn in Mathematica, such as function plots, data plots, and geometric
figures, can be included in a LevelScheme drawing using the RawGraphics command. The usual LevelScheme
drawing style options can be applied to the graphics (in this case, they are Show, Color, Thickness, and
Dashing). However, these only control the default drawing style. Some Mathematica graphics functions (e.g.,
Plot when the PlotStyle option is specified) might override these. The drawing Layer (discussed in a later
section) can be specified as well.

A very simple example combining Mathematica function plots with LevelScheme's convenient labeling
and annotation features follows.

ScaledLabel[{0.5,0.9},"Sine waves",FontSize15],
SchemeArrow[{Pi+0.3,0.5},{Pi,0},LabT->"Node",
 OrientationTHorizontal,FontSize15,ColorBlue],
RawGraphics[Plot[Sin[x],{x,0,2*Pi}],Thickness2],
RawGraphics[Plot[Cos[x],{x,0,2*Pi}],Thickness2,DashingAutomatic]

Sine waves

Node

Users who have previously used Show or GraphicsArray to manipulate and combine Mathematica
plots should note that there is no need to set DisplayFunctionIdentity while generating plots (see the
Mathematica documentation for an explanation if this is unfamiliar). This is since the normal Mathematica plot

LevelScheme | 25

display function is temporarily disabled inside Figure. Also, RawGraphics is capable of processing graph-
ics involving any combination of conventional coordinates and coordinates specified in Mathematica Offset or
Scaled notation.

ü Three-dimensional graphics

ViewPort3D
graphics, … ,  x1,
x2 ,  y1, y2 

Displays three–dimensional graphics within a LevelScheme figure,
inset within the coordinate rectangle  x1, x2 ,  y1, y2 

ScaledViewPort3D
graphics, … ,  x1s,
x2s ,  y1s, y2s 

Displays three–dimensional graphics within a LevelScheme figure,
inset within the scaled coordinate rectangle  x1s, x2s ,  y1s, y2s 

Command for including 3D graphics.

Any three-dimensional Mathematica graphics may be included in a two-dimensional figure using the
commands ViewPort or ScaledViewPort. The commands ViewPort or ScaledViewPort accept all
the usual options for Graphics3D, such as options controlling the display range and perspective (PlotRange,
BoxRatios, ViewPoint, etc.) and options controlling the coloring and lighting effects (Lighting, etc.). All
these options are described in detail in the Mathematica help.

SchemeLine3D
point1, point2, … 

Line

ManualLabel3D
point, contents

Label at coordinates point

SchemeArrow3D P1,
P2,

SchemeArrow3D P1,
P2, headangle

Arrow from point1 to arbitrary point2,
with optional headangle controlling head orientation

3D graphics objects.

At present, LevelScheme includes only a very limited set of tools for drawing and annotating three-
dimensional diagrams. Three-dimensional analogues of SchemeLine, ManualLabel, and SchemeArrow
are provided. See the Mathematica documentation for information on displaying three-dimensional graphics.
Some of these were used to draw the diagram in panel (b) of the example figure above.

The three-dimensional analogue of SchemeLine is SchemeLine3D. The usual LevelScheme line
style options can all be specified: Color, LineColor, Dashing, and ShowLine.

The three-dimensional analogue of ManualLabel is ManualLabel3D. Most, but not all, of the usual
LevelScheme label control options can be specified: Color, FontFamily, FontSize, FontWeight,
FontSlant, FontTracking, FontColor, BackgroundFontSizeFactor, Offset, Orientation,
ShowText, Background.

The three-dimensional version of the LevelScheme-style arrow is SchemeArrow3D. It is a simple line
arrow, with optional head and tail, and one label (LabC) attached. The arrowhead will only appear with the
proper proportions if the 3D display option BoxRatios is set in proportion to the x, y, and z plot ranges.

LevelScheme | 26

VI. Figure construction

ü Coordinate systems

Preparing a figure with multiple parts becomes much easier if it is possible to draw each part in a separate
"coordinate system" and then, separately, decide how these parts should be arranged with respect to each other. In
this section, we first consider a simple tool for shifting parts of a diagram with respect to each other and for
rescaling axes, then we address the full machinery needed to make inset plots or to make multipanel plots.

SetOrigin x0,
SetOrigin x0,
y0 , SetOrigin

Sets the user origin to  x0 , 0 or to 
x0, y0 , or with no argument resets offset to zero

SetScale yscale,
SetScale xscale,
yscale , SetScale

Sets the user coordinate scale factors to 1, yscale  or to 
xscale, yscale , or with no argument resets scale to unity

SetRegion x3c,
x4c ,  y3c,
y4c ,  x3r,
x4r ,  y3r, y4r ,
SetRegion

Sets the current plotting region coordinate system as specified,
or with no arguments resets it to the full canvas

Commands for coordinate system control.

Frequently it is necessary to draw side-by-side level schemes or diagrams with multiple parts. Side-by-
side level schemes can easily be drawn by preceding the code for each scheme with SetOrigin[x0] to control
its horizontal position. All the coordinates for the objects in each scheme are specified relative to the "zero" for
that scheme, so the user does not need to manually add an offset to the horizontal coordinates of each level. This
allows easy adjustment of the inter-scheme spacing simply by redefining the x0 values.

SetOrigin[0],
ManualLabel[{0.1,1.0},"Nucleus A"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.632"],

SetOrigin[1.1],
ManualLabel[{0.1,1.0},"Nucleus B"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.542"],

SetOrigin[2.2],
ManualLabel[{0.1,1.0},"Nucleus C"],
Lev[lev0,0,1,"0.000"],
Lev[lev1,0,1,"0.704"]

LevelScheme | 27

Nucleus A

0.000

0.632

Nucleus B

0.000

0.542

Nucleus C

0.000

0.704

Side-by-side level schemes created with SetOrigin.

Even within a single level scheme, if there are multiple families of levels (e.g., bands or group representations) it
can be convenient to enter the horizontal coordinates within each family of levels as if they started from zero and
then use SetOrigin to move the families around to their final positions. This practice makes later adjustments
to the layout (spreading out the spacing, inserting new families of levels) much simpler. SetOrigin can be used
to produce a vertical offset as well, and SetScale allows multiplicative factors to be applied to all horizontal or

vertical coordinates. Thus, for instance, SetScale is useful for ad hoc adjustments to the energy scale of a level
scheme. In the following section, tools will be described allowing each part of a diagram to be accompanied by
axes which respect the current scale factors.

To construct more sophisticated multipart figures, it is very useful to be able to define a smaller rectangu-
lar plotting "region" within the full figure (or "canvas", to use artistic imagery) and to arbitrarily choose a new
range for the horizontal and vertical plotting scales within this region. Two sets of information are needed to
define the plotting region: (1) where the region lies on the canvas and (2) the coordinate range used within the
region. These are specified using SetRegion. The arguments are the "canvas" coordinates and "region"

coordinates for the lower and upper limits of the rectangle, which are, equivalently, the coordinates of the corner
points denoted 3 and 4 in the diagram below.

LevelScheme | 28

Canvas

x1, y1

x2, y2

Region

x3, y3

x4, y4

User

LevelScheme canvas, region, and user coordinates.

The effects of SetOrigin or SetScale can be combined with those of SetRegion: for instance, after
SetRegion is used to define a plotting region, SetOrigin can be used to move around parts of a diagram
within this region. In practice, most users will rarely if ever use SetRegion directly. Instead, the Panel
command of the following section will be used to set the plotting region and draw axes, labels, etc., all in one step.

The following is a brief summary of the different coordinate systems used by LevelScheme. The Mathe-
matica graphics system recognizes only one set of coordinates, the Mathematica plotting coordinates, which span
the range defined by the option PlotRange given to Figure. However, the LevelScheme package defines four
other coordinate systems, superposed upon these basic coordinates. The five, in total, coordinate systems are
Canvas coordinates: The usual Mathematica plotting coordinates.
Absolute coordinates: The physical distance in printer's points from the lower left corner of the plot.
Region coordinates: The redefined coordinates on an inset rectangle within the canvas.
Scaled coordinates: The fractional distance, from 0 to 1, across the inset rectangle.
User coordinates: Coordinates which may differ from the region coordinates by having an additional user-
defined offset and scale. These are the coordinates in which the user specifies all object positions.

Normally all graphics are clipped to the current plotting region. This is true both for LevelScheme draw-
ing objects and for Mathematica graphics included via RawGraphics. (Clipping may be disabled by specifying
ClipToRectangleFalse.) Lines, polygons, and rectangles are truncated exactly to the edge of the region.
Circles and points are simply included or excluded depending upon whether or not their center point lies within
the region. Text is similary included or excluded depending upon the coordinates of the reference point.

ü Panels and multipanel plots

A major capability needed for generating publication-quality figures is the ability to create plotting panels
in arbitrary positions, in order to make inset plots, multipanel plots, or other arrangements of plots. This capability
is not built in to Mathematica, but the LevelScheme package provides a flexible system for producing plots with
subpanels, based on the coordinate arithmetic infrastructure of the preceding section.

LevelScheme | 29

FigurePanel x3c,
x4c ,  y3c, y4c 

Draws a panel, optionally including a frame, frame ticks, frame labels,
a background color, and a panel letter label; sets the plotting region to this panel

ScaledFigurePanel
 x3s, x4s , 

y3s, y4s 

Draws a panel, as above,
but covering the specified range of scaled coordinates,
i.e. , fraction of the current plotting region

Panel generation commands.

option name default value

XPlotRange Automatic Horizontal coordinate range
covered by plotting region coordinates;

if Automatic , same as canvas coordinates

YPlotRange Automatic Vertical coordinate range covered
by plotting region coordinates;

if Automatic , same as canvas coordinates

PlotRange Automatic Alternative means of specifying coordinate
range covered by plotting region coordinates;

if Automatic, plot range is controlled by
XPlotRange and YPlotRange options instead

ExtendRange 0 Fractional amount by which plot
range should be extended on each side,

to allow extra visual space or room for labels;
separate values horizontal, vertical or  left,
right ,  bottom, top may be specified

Panel plot range options.

LevelScheme | 30

option name default value

Background None Background color for panel

Frame True Whether or not to draw frame line

ShowEdge True, True,
True, True

If frame line is drawn, which individual edges to draw

Color Black Color for frame, ticks, and labels but not background
LineColor,
Thickness,
Dashing,
DashingGap,
DashingCorrection,
ShowLine

same defaults as usual Line style options for frame

FontColor,
FontSize,
FontFamily,
FontWeight,
FontSlant,
FontTracking,
BackgroundFontSi-
zeFactor

same defaults as usual Font style options for frame labels,
also serving as default for ticks and panel

letter if not overriden by other options below

Basic panel style options.

option name default value

LabB, LabL,
LabT, LabR

None Bottom, left, top, and right frame labels

... and the usual
label positioning
options, plus ...

Posn X Automatic Position of label along frame edge X ;
value is specified as fraction

of distance between ends of axis;
see similar option for transition arrow labels

Buffer X Automatic Buffer spacing between label X and arrow shaft,
as multiple of half current font height;

see similar option for transition arrow labels

FrameLabel Automatic Alternative specification of frame labels,
provided for consistency with Plot,
etc.; value of Automatic specifies

that the usual LevelScheme labels LabB,
LabL, LabT, and LabR should be used

Panel frame label options.

LevelScheme | 31

option name default value

FrameTicks None Tick mark definition list for frame edges;
value may be None, Automatic ,

or a list of up to four individual axis specifications

TickNudge 0, 0, 0, 0 Horizontal and vertical fine-
tuning adjustment to be applied to all the

tick labels on each of the four panel edges

ShowTicks True, True,
True, True

Whether or not to allow display
of tick marks if any specified by

FrameTicks  on each of the four panel edges

ShowTickLabels True, True,
True, True

Whether or not to allow display of
labels on tick marks if any specified by

FrameTicks  on each of the four panel edges

TickLineColor,
TickThickness,
TickShowLine

Automatic Line style options for ticks;
if Automatic , same as for frame line;

can be overridden for individual ticks
by Mathematica tick style directives
see CustomTicks documentation

TickFontColor,
TickFontSize,
TickFontFamily,
TickFontWeight,
TickFontSlant,
TickFontTracking

Automatic Font specifications for tick mark labels;
if Automatic,
values are obtained from options FontColor , …

Panel tick mark options.

LevelScheme | 32

option name default value

PanelLetter None Contents of panel letter label

PanelLetterCorner 1, 1 Corner in which panel
letter should appear;

1, 1 for left–top,
1, 1 for right–top, etc.

PanelLetterInset 15, 15 Horizontal and vertical inset of
panel letter label from specified
corner, in printer ' s points

PanelLetterFontColor,
PanelLetterFontSize,
PanelLetterFontFamily,
PanelLetterFontWeight,
PanelLetterFontSlant,
PanelLetterFontTracking

Automatic Font specifications for panel
letter label; if Automatic,

values are obtained from
options FontColor , …

ShowPanelLetter,
PanelLetterOffset,
PanelLetterNudge,
PanelLetterOrientation,
PanelLetterBackground

same defaults as for usual
label positioning options

Positioning options
for panel letter label

Panel letter formatting options.

The command FigurePanel sets the specified rectangle as the current plotting region and draws the
various ancillary items, such as a frame, tick marks, and labels, around it. The PlotRange option determines
the coordinate ranges plotted within this box ("region coordinates"). After the contents of the panel have been
drawn, the plotting region can be restored to the whole canvas by calling SetRegion[] with no arguments.

There are many formatting options, listed above, which can be used to control the details of a panel. These
control five main parts of the panel: (1) a solid colored background rectangle, (2) a frame line, (3) ticks on each
frame edge, (4) an axis label on each frame edge, and (5) a panel letter label. Several options require a list of four
values, one for each edge. These are specified in the same ordering convention used by Mathematica plotting
functions: bottom, left, top, right.

As already noted, the PlotRange option determines the coordinate ranges plotted within the panel. But,

if PlotRange is left as Automatic, the horizontal and vertical plot ranges can instead be set separately, with
the options XPlotRange and YPlotRange. This is often convenient in more complicated multipanel plots, as
described below. If XPlotRange and YPlotRange in turn are left as Automatic, the canvas coordinates

covered by the panel are simply used.

The tick mark intervals and properties can be chosen manually using the function LinTicks (see the
separate user guide for the LevelScheme CustomTicks package). Or, they can be specified as Automatic, in
which case they are constructed automatically by the CustomTicks package, using whatever current style options
are in effect for LinTicks.

Following is an illustration making use of many of these options. It is worth noting some details of the
example. The canvas plot range ({{-0.2,1.1},{-0.2,1.1}}) is chosen to allow a margin around the
outermost panel ({{0,1},{0,1}}) so that the tick and axis labels around it can still fit within the plot. A panel
axis label is by default positioned flush against the panel frame. So in this example the bottom label (LabB) must
be manually moved down (BufferB2.5) to allow room for the tick marks. (LevelScheme does not do this

LevelScheme | 33

automatically, since Mathematica does not provide any mechanism whereby a Mathematica program can calculate
how much room to allow for text.) For aesthetic reasons, the tick mark labels for the main panel in this example
are drawn in a smaller font size (TickFontSize) than the main frame labels, and the tick marks for the inset
panel are smaller yet.

Figure[
 {

 (* main panel *)
 FigurePanel[
 {{0, 1}, {0, 1}},
 PlotRange -> {{0, 20}, {-0.6, 1.1}},
 FrameTicks -> {LinTicks[0, 20], LinTicks[-1, 1, 0.5, 5]},
 FontSize -> 15, LabB -> textit["x"], BufferB -> 2.5,
 TickFontSize -> 12,
 Background -> Wheat
],
 SchemeLine[{{0, 0}, {20, 0}}],
 ScaledLabel[{0.2, 0.9}, SubscriptBox[textit["J"], ""], FontSize -> 15],
 RawGraphics[Plot[BesselJ[0, x], {x, 0, 20}]],
 RawGraphics[Plot[BesselJ[1, x], {x, 0, 20}], Dashing -> Automatic],

 (* inset panel *)
 ScaledFigurePanel[
 {{0.55, 0.95}, {0.55, 0.95}},
 PlotRange -> {{0, 20}, {-0.6, 1.1}},
 FrameTicks -> {LinTicks[0, 20], LinTicks[-1, 1, 0.5, 5]},
 TickFontSize -> 10,
 Background -> Eggshell
],
 SchemeLine[{{0, 0}, {20, 0}}],
 ScaledLabel[{0.2, 0.9}, SubscriptBox[textit["Y"], ""], FontSize -> 12],
 RawGraphics[Plot[BesselY[0, x], {x, 0, 20}]],
 RawGraphics[Plot[BesselY[1, x], {x, 0, 20}], Dashing -> Automatic]

 },
 PlotRange -> {{-0.2, 1.1}, {-0.2, 1.1}}, ImageSize -> 72*{6, 4}
]

0 5 10 15 20
x

-0.5

0.0

0.5

1.0
J n

0 5 10 15 20

-0.5

0.0

0.5

1.0 Y n

LevelScheme | 34

Multipanel x3c,
x4c ,  y3c, y4c ,
 rows, columns 

Defines settings for a multipanel array

Panel row, column  Draws a panel as part of a multipanel array

Multipanel array generation commands.

option name default value

XPanelSizes 1 List of column widths on relative scale,
or single width shared by all columns;
Automatic adjusts the widths to provide

equal horizontal coordinate scales on all panels

YPanelSizes 1 List of row heights on relative scale,
or single height shared by all rows;
Automatic adjusts the heights to provide

equal vertical coordinate scales on all panels

XGapSizes 0 List of intercolumn gap widths on relative scale,
or single width shared by all intercolumn gaps

YGapSizes 0 List of interrow gap heights on relative scale,
or single height shared by all interrow gaps

Margin 0 Margin in printer ' s points by which
the multipanel plot as a whole should be
indented relative to the given coordinates,

typically to allow room for frame labels;
separate values horizontal, vertical or  left,
right ,  bottom, top may be specified

Multipanel layout options.

LevelScheme | 35

option name default value

XPlotRanges Automatic List of horizontal plot ranges to be used
for the columns of a multipanel array,

or single range to be repeated for all columns,
or array giving values for all panels individually

YPlotRanges Automatic List of vertical plot ranges to be
used for the rows of a multipanel array,

or single range to be repeated for all rows,
or array giving values for all panels individually

XFrameLabels None List of horizontal axis labels to be used
for the columns of a multipanel array,

or single value to be repeated for all columns,
or array giving values for all panels individually

YFrameLabels None List of vertical axis labels to be
used for the rows of a multipanel array,

or single value to be repeated for all rows,
or array giving values for all panels individually

XFrameTicks Automatic List of horizontal axis tick specifications to be
used for the columns of a multipanel array,

or single specification to be repeated for all columns,
or array giving values for all panels individually

YFrameTicks Automatic List of vertical axis tick specifications to
be used for the rows of a multipanel array,

or single specification to be repeated for all rows,
or array giving values for all panels individually

Multipanel axis specification options.

option name default value

ShowFrameLabelsE-
xterior

True, True,
False, False

Whether or not to allow display of frame labels
on exterior panel edges in a multipanel array

ShowFrameLabelsI-
nterior

False, False,
False, False

Whether or not to allow display of frame labels
on interior panel edges in a multipanel array

ShowTickLabelsEx-
terior

True, True,
False, False

Whether or not to allow display of tick labels
on exterior panel edges in a multipanel array

ShowTickLabelsIn-
terior

False, False,
False, False

Whether or not to allow display of tick labels
on interior panel edges in a multipanel array

Multipanel setup options controlling internal and external axis labeling.

option name default value

First “a” Character from which panel letter sequence starts

Format “”, “” Strings prepended and appended to panel letter

Order Horizontal Controls whether panel lettering proceeds across or down

Automatic panel letter generation options, for use in a multipanel plot.

LevelScheme | 36

 LevelScheme provides tools to automate the layout of the most common form of multipanel plot, consist-
ing of a rectangular array of panels with shared axes. The command Multipanel is used to define the settings
for a rectangular array of panels. At minimum, Multipanel must be told the total rectangular region of the

canvas to be used and the number of rows and columns of panels in the plot. Then FigurePanel[{row,col-
umn}] is used to create each individual panel. (Rows are numbered from top to bottom and columns from left to
right, starting from 1, following the usual mathematical convention for indexing matrix entries.)

Multipanel can be given several options, which either affect the formatting of individual panels or

control the layout of the array as a whole. Almost any of the formatting options for FigurePanel listed at the
beginning of this section can be given to Multipanel, and the values will be saved to be used as the defaults for

the panels in the multipanel plot. (When Multipanel it invoked, it stores a complete set of formatting option
values for the panels, so that their style is "frozen" at this point. After this point, changes can safely be made to
the default options for SchemeObject or even FigurePanel, and this will have no effect on the panels in the
multipanel plot.) The options which cannot be specified for Multipanel are XPlotRange, YPlotRange,
PlotRange, LabB, LabL, LabT, LabR, FrameLabel, FrameTicks, and PanelLetter, since these must

be determined separately for each panel in the plot.

The plot ranges used within each panel are determined from the options XPlotRanges and
YPlotRanges. The frame labels for each panel are determined from XFrameLabels and YFrameLabels.

Frame labels only appear on the bottom and left outside edges of the array of panels. The frame ticks for each
panel are determined from XFrameTicks and YFrameTicks. Usually it is desirable to suppress the major tick
labels everywhere except the extreme outside edges of the array of panels. Major tick labels on exterior edges are
controlled with the option ShowTickLabelsExterior, and those on interior edges are controlled with the
option ShowTickLabelsInterior. So, for instance, the default values

ShowTickLabelsExterior{True,True,False,False},
ShowTickLabelsInterior{False,False,False,False}

produce tick labels only on the far bottom and left edges of the figure, while the values

ShowTickLabelsExterior{True,True,False,False},
ShowTickLabelsInterior{True,True,False,False}

produce tick labels on the bottom and left edges of each panel individually.

Any of the formatting options specified for Multipanel can be explicitly overriden for a single panel, if
desired, by giving them as options to FigurePanel as usual. For instance, it is often convenient to override
XPlotRange or YPlotRange for an individual panel, to set the plot range independently from those of the
other panels in the same row or column.

Panel letters are calculated automatically from the row and column indices. A starting letter other than
"a" can be specified with the option First, for instance, "A" for capital letters or some other letter if the earlier
panels of the figure are to be drawn separately. Panel letters can be turned off with ShowPanelLetter
False.

By default, all columns of panels are of equal width, all rows are of equal height, and there are no gaps
between. However, arbitrary proportions for the columns, rows, and gaps between them can be specified using
XPanelSizes, YPanelSizes, XGapSizes, and YGapSizes. The columns and intercolumn gaps fill the
available horizontal space, keeping the proportions given in these options; only the proportions matter, so multiply-
ing both XPanelSizes and XGapSizes by the same factor has no effect. The rows and interrow gaps fill the

vertical space in their specified proportions similarly. If XPanelSizes is set to Automatic, all the panel
widths are made proportional to the x plot ranges, so all panels share the same x axis scale, and similary for the

LevelScheme | 37

panel heights if YPanelSizes is set to Automatic.

The following is an example of a multipanel plot definition with gaps and unequal column sizes. The full
code may be found in Examples-Plots.nb.

 Multipanel[
 {{0, 1}, {0, 1}},
 {2, 2},
 XPlotRanges -> {{-1.5, 1.5}, {-Pi/2, 8*Pi + Pi/2}},
 YPlotRanges -> {-1.5, 1.5},
 XFrameLabels -> {textit["x"], textit["t"]}, BufferB -> 2.5,
 YFrameLabels -> textit["y"], BufferL -> 3,
 TickFontSize -> 10,
 XFrameTicks -> {LinTicks[-2, 2, 1, 5], LinTicks[-Pi, 9*Pi, Pi, 4, TickLabelFunction ->
(Rationalize[#/Pi]*Pi &)]},
 YFrameTicks -> LinTicks[-2, 2, 1, 5],
 XPanelSizes -> {1, 2.5}, XGapSizes -> {0.1},
 YPanelSizes -> {1, 1}, YGapSizes -> {0.1},
 Background -> Wheat,
 PanelLetterBackground -> Wheat
],

 FigurePanel[{1, 1}],
 RawGraphics[ParametricPlot[{Cos[1*t], Cos[1*t - Pi/2]}, {t, 0, 2*Pi}]],

 ...

Lissajous curves

-1

0

1

y

a b

-1 0 1
x

-1

0

1

y

c

0 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p
t

d

option name default value

PanelAdjustments None Adjustments to positions of panel edges  left,
right ,  bottom, top  outward from

their default positions in a multipanel plot,
or negative for inward adjustments,
in the relative units defined by XPanelSizes

and YPanelSizes; None gives no adjustment

PanelShift None Adjustment of panel position Dx, Dy
relative to its regular grid position in a multipanel plot,

in the relative units defined by XPanelSizes
and YPanelSizes; None gives no adjustment

LevelScheme | 38

Geometry adjustment options for Panel, applicable when Panel is used as part of a multipanel plot.

Less conventional panel layouts can be achieved by overriding the dimensions of individual panels. In this
case, the automatic left-to-right then top-to-bottom lettering scheme may also need to be overridden. An example
follows, in which the top right panel is extended vertically to span two rows.

Figure[
 {

 SetOptions[Multipanel, ShowTickLabels -> {False, False, False, False},
 PanelLetterFontSize -> 10,
 Margin -> {{40, 40}, {40, 0}}, Background -> Moccasin],

 Multipanel[
 {{0, 1}, {0, 1}},
 {2, 2},
 XPlotRanges -> {0, 1}, YPlotRanges -> {-1, 1},
 XFrameLabels -> textit["x"], YFrameLabels -> textit["f(x)"], BufferL -> 1.5,
 XPanelSizes -> {2, 1}, XGapSizes -> 0.25, YGapSizes -> 0.1,
 Order -> Vertical
],
 FigurePanel[{1, 1}],
 FigurePanel[{2, 1}],
 FigurePanel[{1, 2},
 PanelAdjustments -> {{0, 0}, {+1.1, 0}},
 ShowFrameLabels -> {True, True, False, False}
]

 },
 PlotRange -> {{0, 1}, {0, 1}},
 ImageSize -> 72*{5, 3}
]

fx


a

x

fx


b

x

fx


c

ü Axes

SchemeAxis Top Bottom ,
 x1, x2 , y,

SchemeAxis Left Right,
x ,  y1, y2 

Axis line, with optional tick marks, arrowhead, and axis label

Stand–alone axes.

SchemeAxis is used to produce free-standing axes within a figure. Any number of axes may be drawn,
as needed, and the axes respect the plot regions or user scaled coordinates currently in effect. They are thus very

LevelScheme | 39

useful in providing scales for multipart figures. The axis line has the appearance of a LineArrow and respects
the same arrowhead control options (ShowHead, HeadLength, HeadLip). Ticks are specified with the option
Ticks and must be given explicitly (e.g., with LinTicks), not as Automatic. All the tick formatting options
listed above for Panel (ShowTicks, TickNudge, TickFontSize, etc.) can be used, except that only a
single value should be given instead of a list of four values. A single axis label can be specified with LabB,
LabL, LabT, or LabR, as appropriate, and its positioning controlled as shown for Panel above. The following
provides a simple example.

SchemeAxis[
 Left,0,{0,1.15},
 TicksLinTicks[0,1,0.2,2],TickFontSize12,
 LabL->Row[{textit["E"]," (MeV)"}],FontSize15,BufferL4
]

0.000

0.632

0.0

0.2

0.4

0.6

0.8

1.0

E
M

eV


Creating a free-standing axis.

ü Further description of the Figure command

The Figure command, introduced briefly earlier, accepts a list of LevelScheme objects as its argument.
The list can contain any of the objects created by the commands described above, and arbitrary Mathematica
Graphics objects can be included so long as they are enclosed within a RawGraphics object. The Figure
command is very forgiving about the format of the object list. The objects can be contained in arbitrarily nested
sublists (for instance, if the Table list creation function is used to automatically produce grids of boxes or bands
of levels). Any non-graphical entry in the list is quietly ignored, so arithmetic scratchwork, variable value
assignments, and careless extra commas can be included in the list without causing problems.

LevelScheme | 40

option name default value

PlotRange mandatory Coordinate range covered by plotting region;
specified in the form x1, x2 ,  y1, y2 ;
this option is not actually optional, since the values are

needed for LevelScheme' s internal calculations

ImageSize Automatic Specifies the absolute size x, y
of the displayed scheme in printer ' s points;

if Automatic a 4 inch width is used
with the golden ratio aspect ratio

Axes False Controls whether or not
Mathematica ' s plot axes are displayed

Ticks None Tick marks for axes

Formatting options for Figure differing from or beyond those for Panel.

The options for Figure are essentially a subset of those encountered above for Panel, with the few
additions listed above. However, the behavior obtained with some of these options is slightly different, since
Figure relies on the Mathematica Show function to draw the frame and tick marks, while Panel takes care of
all drawing itself.

Of the basic panel properties, PlotRange, Background, Frame, Color, most of the line style
options (LineColor, Thickness, and Dashing), and most of the font style options (FontFamily,
FontSize, FontWeight, FontSlant, FontTracking, FontColor) apply to Figure as well. For
Figure, the line style options affect only the frame or axis lines, not the tick marks. Frame labels can be
specified either with LabB, LabL, LabT, and LabR or with FrameLabel, as for Panel, but none of the
LevelScheme label positioning options apply. FrameTicks is used to specify the frame ticks, and the tick font
style options can be given as for Panel.

A major "quirk" arising from Figure's reliance on Mathematica's Show for drawing the frame is that
Figure shrinks the main body of the plot to something smaller than the size specified with ImageSize to
make room for any tick mark or frame labels on the outside. But font sizes are not scaled down with the rest of
the plot, so the proportion of labels to the graphics around them is affected. The shrinking is also very undesirable
if predictability and consistency of the size of the plot frame is desired (for instance, if the plot is later to be
displayed alongside others of the same size). To avoid these problems, Figure can be used with Frame
False, and any frame needed can be drawn manually inside the plot canvas with Panel, as in the example given
earlier.

ü Parallel versions of the same figure (conditional inclusion)

SchemeFlags  Flags set for conditional inclusion of parts of scheme

Conditional inclusion option for the Figure command.

SchemeIfDef
flag, object1, …

Includes objects in scheme only if flag is specified in the SchemeFlags option

SchemeIfNDef
flag, object1, …

Includes objects in scheme only if flag
is not specified in the SchemeFlags option

Conditional figure construction commands.

LevelScheme | 41

The SchemeFlags option and the SchemeIfDef and SchemeIfNDef commands are for use in
maintaining multiple parallel versions of the same figure, e.g., one in color for conference presentation and one in
black and white with figure letters for publication, without the need for multiple separate copies of the code for the
figure. It is tedious to maintain two copies of the code, since this leads to double work whenever changes need to
be made. Rather, a single copy can be used, and any segment of code which is applicable only to one version
should be placed within a SchemeIfDef command. It will then only be evaluated as part of the scheme when
the designated flag is set with SchemeFlags. Here is an example: the level scheme on the left was generated

with SchemeFlags{"Title","Color"} and that on the right with SchemeFlags{"FigureA"}.

SchemeIfDef["Title",
 ScaledLabel[{0.05,0.95},"Expt",ColorDimGray]
],
SchemeIfDef["FigureA",
 ScaledLabel[{0.05,0.95},"(a)"]
],
SchemeIfDef["Color",
 SetOptions[Lev,ColorBlue],
 SetOptions[LevelLabel,ColorRed]
]

GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Expt

0

100

100 y

50 ps

a

0

100

100 y

50 ps

Using conditional code inclusion to maintain parallel versions of a figure.

ü Layers

LevelScheme organizes graphics into "layers". Objects assigned to lower-numbered layers (background)
are drawn before, and thus might be hidden by, objects assigned to higher-numbered layers (foreground). Objects
within the same layer are rendered in the order they appear in the list given to Figure. By default, outlines and
fills are in layer 1, white-out boxes are in layer 2, and text is in layer 3. All Mathematica graphics included using
RawGraphics appear in layer 1, and the colored background generated by Panel is drawn in layer 0. Layered
drawing prevents text labels from being hidden by other drawing elements in dense level schemes or technical
diagrams. Most importantly, with this layering system, white-out boxes hide any lines or fills behind them, but
they do not block neighboring text. This keeps nearby labels with white-out boxes from obstructing each other.
The layer of an object may be modified with the Layer option, e.g., to push it to the background or pull it to the
foreground.

ü Custom tick marks

The default tick marks produced by Mathematica's plotting functions are typically not suitable for publica-
tion. Most notably, Mathematica drops trailing zeros after the decimal point in its default tick marks, leading to a
series of ticks of "ragged" lengths (e.g., "0.", "0.5", "1.", …). The CustomTicks package, a component of the
LevelScheme system, provides extensive customization of tick mark placement and formatting. It may be used to
generate the tick mark specifications to be given as options to SchemeAxis, Panel, or Figure, and it may
also be used with Mathematica plotting functions in general. Linear, logarithmic, and general nonlinear axes are

LevelScheme | 42

supported. The flexibility achieved matches or exceeds that available with most commercial scientific plotting
software. (Beyond the considerable built-in customization options, the user can supply arbitary label formatting or
axis transformations functions using the Mathematica programming language.) Documentation for this package
may be found in the file CustomTicksGuide.pdf.

ü Text formatting

Mathematica offers advanced capabilities for typesetting text and formulas. This provides great flexibility
in typesetting complex text for figure labels. These are described in the Mathematica documentation and are not
the topic of the present section.

Rather, LevelScheme provides some extra commands to help typeset labels for scientific figures. These
are summarized here.

StackText
alignment, linespacing ,
 line1, … 

Produces multiline label; alignment can be Left, Center, or Right

Commands for constructing composite labels.

The commands TightRowBox and StackText are provided to facilitate laying out composite labels.
TightRowBox functions similarly to Mathematica's RowBox, combining several text elements side-by-side, but
it eliminates undesirable horizontal spacing which usually appears between elements in a RowBox. StackText
allows the construction of multiline labels with various forms of centering and adjustable line spacing. Examples
are provided at the end of this section.

textup text Produces ordinary upright text

textsl text Produces slanted text

textit text Produces italic text

textmd text Produces ordinary-weight text

textbf text Produces boldface text

textrm text Produces Roman text Times
texttt text Produces typewriter text Courier
textsf text Produces sans-serif text Helvetica

textcolor color, text Produces text of arbitrary color

textsize size, text Produces text of arbitrary size

hspace dist Produces a horizontal displacement; dist is specified in ems
a unit equal to the width of the letter M, chosen here for technical reasons

Some LaTeX-like text formatting commands.

LevelScheme provides several LATEX-like commands for changing typeface. (These are simply typing
shortcuts for much longer Mathematica StyleForm directives.)

LevelScheme | 43

DiagonalFractionBox
a, b

Typesets fraction a b in compact, diagonal format

DiagonalFractionize
x

Extracts the numerator and denominator
of a rational number x and typesets as above

Diagonal fraction formatting.

Mathematica only displays fractions in horizontal or "slash" form (e.g., "1/2") or in vertical form
(numerator above denominator). LevelScheme provides commands DiagonalFractionBox and Diago-
nalFractionize for typesetting fractions in the more compact diagonal format, i.e., with the numerator in the
"northwest" and the denominator in the "southeast", which is often more readable in figure labels.

ManualLabel[{1,0},DiagonalFractionize[1/2]]

12 1

2
Conventional

1  2
Diagonal

LabelJP spin, parity Produces a level spin–parity label;
parity argument is optional default + and may be 1, 1, or None

LabelJiP
spin, i, parity

Produces a level spin–parity label with subscript i;
parity argument is optional default + and may be 1, 1, or None

Spin-parity labels.

There are also specialized spin-parity labels LabelJP and LabelJiP for use in level schemes.

Following are some examples of labels formatted using these commands.

ManualLabel[{0,0},Row[{textit[SubscriptBox["E","x"]]," (keV)"}]],
ManualLabel[{0.7,0},textbf[StackText[Left,0,{Row[{SuperscriptBox["","102"],"Pd"}],textsize
[10,"Experiment"]}]]],
ManualLabel[{1.15,0},LabelJiP[0,2]],
ManualLabel[{1.45,0},LabelJP[DiagonalFractionize[7/2]]],
ManualLabel[{2.4,0},Row[{"137.2"," ",textcolor[Red,"TENTATIVE"]}],Orientation10*Degree]

Ex keV 102Pd
Experiment

02
+ 7  2

+

Although the "box" commands for creating labels may seem a little cumbersome, they are also very
powerful, since the expressions you use to create text are expressions like any other Mathematica expression. For
instance, they can include references to variables, like the variable J in the example below.

Table[
 Lev[
 J/2,J/2+1,J*(J+1),
 LabC->RowBox[{SuperscriptBox[textit["J"],""],"=",LabelJP[J]}]
],

LevelScheme | 44

 {J,0,8,2}
]

Jp=0+
Jp=2+

Jp=4+

Jp=6+

Jp=8+

VII. Data plotting (under development)

Extensive data plotting capabilities are under development in LevelScheme. These will be fully realized
(and documented!) in a future release. However, the examples given in the file Examples-DataPlots.nb
will allow you to get started if your are particularly adventurous. Here let us just take an example which illus-
trates the main components of generating a data plot. Here is the plot we are working towards:

-80

-60

-40

-20

0

E
M

eV


a

Experiment
Theory

0 1 2 3 4 5 6 7 8
N

6

7

8

9

10

11

12

13

S n
M

eV


b

First we need to assemble our data in a table (a table or matrix is represented in Mathematica as a list of
lists, as you can read more about in the Mathematica help). We might enter data manually, for instance:

ExptData={{0, 0., None}, {1, -7.363, 7.363}, {2, -19.843, 12.480}, {3, -27.776, 7.933},
{4, -38.906, 11.13}, {5, -46.321, 7.415}, {6, -56.715, 10.394}, {7, -63.991, 7.276}, {8,
-73.936, 9.945}};

This results in the data table

LevelScheme | 45

0 0. None
1 7.363 7.363
2 19.843 12.48
3 27.776 7.933
4 38.906 11.13
5 46.321 7.415
6 56.715 10.394
7 63.991 7.276
8 73.936 9.945

Here we will use the first column for the “x” values and the second and third columns as “y” values. We might
instead reading it in from a data file, using Import[]. We can even calculate the numerical values from a
formula or using some more sophisticated function written in Mathematica:. For instance, if we have defined a
function named SeniorityData to calculate the predictions of the “seniority model” in nuclear physics

TheoryData=SeniorityData[-9.323,0.75];

Now we are ready to prepare the figure. You can find the complete code for this example in Examples-
DataPlots.nb. The following notes explain what you will find in the example code. We need to specify the
appearance of the data line and data symbols for each data set. We can define defaults for all data sets

SetOptions[DataSymbol, SymbolSize -> 4],

and we can also define specific named styles, based on these defaults but overriding some of the options, for later
use

DefineDataStyle["expt", DataLine -> {Dashing -> True}, DataSymbol -> {SymbolShape ->
"Cross", Thickness -> 1.5}],
DefineDataStyle["theory", DataSymbol -> {FillColor -> Firebrick}],

Then it is easy to plot the data itself, either just using the first two columns of the data table as (XY) pairs

FigurePanel[{1,1}],
DataPlot[ExptData,DataStyle”expt”],
DataPlot[TheoryData,DataStyle”theory”],

or choosing specific X and Y data columns

FigurePanel[{2,1}],
DataPlot[DataSet[ExptData,DataColumns{1,3}],DataStyle”expt”],
DataPlot[DataSet[TheoryData,DataColumns{1,3}],DataStyle”theory”],

Then we can also draw a legend based on the line and symbol styles, defined either in a named style (as in this
example) or any data set which was plotted

DataLegend[{0.1,0.45},
{
{“expt”,”Experiment”},
{“theory”,”Theory”}
}
],

The first argument {0.1,0.45} here gives the position for the upper left-hand corner of the legend, as scaled
coordinates (fraction of the way across and up) within the panel.

LevelScheme | 46

VIII. Producing Encapsulated PostScript (EPS) or Portable Document
Format (PDF) output

After creating a level scheme in Mathematica, you will usually want to export the graphics for use in a
document or presentation. The most robust approach to exporting Mathematica graphics is to produce an
Encapsulated PostScript (EPS) file or Portable Document Format (PDF) file.

ü Method #1: Select image in notebook and save as EPS/PDF

In the Mathematica’s notebook interface, you can simply select the figure graphics (for instance, use the
mouse to click on the image) and select “File > Save selection as...” from the menus. Chose EPS or PDF as the
format, as you prefer. Under some operating systems (e.g., Microsoft Windows), you can get to this menu more
directly by right-clicking on the figure.

ü Method #2: Export the figure

 You can store the graphics produced by Figure in a variable, and then give this as an argument to Export.

For example:

P=Figure[...];
Export["c:\\work\\fig3.eps",P,"EPS"];

The advantage here is that you already have the file name typed into the notebook in case you want to export a
revised version later (or want to export several different files with similar names).

ü Method #3: “Printing” to a PostScript driver (for EPS) or PDF distiller (for PDF)

Mathematica’s export functions are now much more robust and reliable than in earlier versions, where
they usually failed to produce reasonable output (if text was involved). However, they still occasionally fail to
produce accurate output. There is fallback approach, which is generally the most robust of these three approaches,
but it requires a little setup in advance.

For EPS output: To produce a satisfactory EPS file, you can "print" the graphics to a PostScript printer
driver and save the results to a file. It is first necessary to install the printer driver software for a color PostScript
printer, such as the HP Color LaserJet. (There is no need to have any printer actually physically attached to the
computer.) The instructions vary depending upon your operating system.

Example — EPS printer driver installation for Windows XP: From the task bar, select Start»"Control Panel".
Open the "Printers and Faxes" window. Select "Add Printer". Following the prompts, select "Local printer" and
deselect the check box for "Automatically detect and install". Choose "FILE:" as the port to print to. For the
model of printer, select "Hewlett Packard HP Color LaserJet PS". For the printer name, enter some descriptive
name, such as "EPS file". Select "No" when asked whether or not to make this the default printer or to print a test
page. Select "Finish". Now, back in the "Printers and Faxes" window, find this new printer in the list of printers.
Select (highlight) it and, under the "File" menu, choose "Properties..." to modify its properties. Under the "Device
Settings" tab, set both "Minimum font size to download as outline" and "Maximum font size to download as
bitmap" to 0. Select "OK". Open the "Properties..." window for this printer again. Under the "General" tab, click
"Printing Preferences...". Under the "Layout" tab, click "Advanced..." and, in the list of options, under "Document
Options", find "PostScript Options". You may need to click the "+" sign to the left to expand this list of options.
Set "PostScript Output Option" to "Encapsulated PostScript (EPS)", set "TrueType Font Download Option" to
"Outline", and set "PostScript Language Level" to "1". (To avoid problems with washed-out colors, you may also
wish to find the "Graphic" option "ICM Method" and set it to "ICM Disabled".) Select "OK".

Now, whenever you are ready to create an EPS file of one of your level schemes in Mathematica, first turn off
Mathematica's printing of page headers. (Under File»"Printing settings"»"Headers and footers", check the box by

LevelScheme | 47

"No header on first page" and uncheck the box by "Include line".) You only need to do this once for the notebook,
and these settings will be saved with the notebook. Select the cell containing the level scheme you wish to print
by clicking with the mouse on the blue bracket to its right. Choose File»"Print selection", select the EPS "printer"
you just installed, and press "OK". A window should pop up prompting you for the name you would like for the
EPS file.

For PDF output: To produce a PDF file, you may follow the instructions for EPS output above, to generate an EPS
file, and then run a PDF converter (ps2pdf, Acrobat Distiller, etc.) on this EPS file. Or, you can directly install a
PDF printer driver program (such as an Acrobat Distiller printer).

ü Adjusting the EPS bounding box

Before you include this EPS file in another document (e.g., a LATEX document), you will probably want to
adjust the "bounding box" for the file. Various programs can be used to do this. For instance, you may wish to
use Ghostgum's GSView (http://www.ghostgum.com.au, and read the help topic “PS to EPS”) or the

widely-available command-line utilities ps2epsi and epstool. Let us briefly consider what this means and why it is
desirable. The graphics in an EPS file are specified in terms of coordinates on an imaginary piece of standard-
sized paper. These graphics usually only fill a portion of the coordinate space, leaving the rest as white space. If
you wish to include the EPS file as a figure in a word processor or LATEX document, it is necessary to specify to
the word processor what portion of the page contains the actual graphics, so that the software can crop tightly
around the graphics. This is accomplished by adding a "bounding box" definition to the file. The Mathematica
Export command sets the bounding box to encompass the full figure area you defined with PlotRange. But
this generally leaves some white space around the actual drawing elements, which you can trim off by defining a
tighter bounding box.

ü Note on cutting and pasting (use at your own peril)

Under some operating systems, such as Microsoft Windows, it is also possible to simply "cut and paste"
graphics from Mathematica into other applications via the windowing system clipboard. However, beware that
any text in the figure may fail to display properly if the resulting file is ever used on a computer which does not
have the Mathematica fonts installed -- for instance, undoubtedly, the conference computer on which you will by
trying to display your PowerPoint presentation.

Appendices

ü Appendix A: Transition autospacing for decay schemes

Some special definitions are provided to facilitate the drawing of decay schemes in the classic style for
such schemes. Such schemes consist of a stacked series of levels, connected by an array of vertical arrows which
are equally spaced horizontally and grouped by starting level.

AutoLevelInit
x0, dintra, dinter

Initializes autospacing,
specifying horizontal coordinate x0 for the first transition,
spacing dintra between transitions from the same level,
and spacing dinter between groups of transitions from different levels

AutoLevel level1 Specifies that the following transitions originate from level level1

AutoTrans level2 Draws a transition to level2; any options are passed on to Trans

Transition autospacing commands.

The following example illustrates the use of the AutoLevelInit, AutoLevel, and AutoTrans
commands. Negative spacings are specified in AutoInit to draw the transitions successively from right to left.

LevelScheme | 48

It is usually desirable to set the option BackgroundTAutomatic for Trans, to create a white-out box
behind each label, blocking out any higher-lying levels behind the label. If this box also cuts into the level line of
the level from which the transition originates, the label can be nudged upwards with NudgeT.

SetOptions[Lev,Thickness2,LabRAutomatic,WingTipWidth25,
 Margin0],
Lev[lev0,0,1,"0",LabLLabelJP[0,+1]],
Lev[lev121,0,1,"121",LabLLabelJP[2,+1]],
Lev[lev366,0,1,"366",LabLLabelJP[4,+1]],
Lev[lev684,0,1,"684",LabLLabelJP[0,+1],WingHeight-5],
Lev[lev706,0,1,"706",LabLLabelJP[6,+1],WingHeight+5],
Lev[lev810,0,1,"810",LabLLabelJP[2,+1]],
Lev[lev963,0,1,"963",LabLLabelJP[1,-1]],

SetOptions[Trans,BackgroundTAutomatic,NudgeT2],
AutoLevelInit[0.85,-0.04,-0.08],
AutoLevel[lev121],
AutoTrans[lev0,LabT"121"],
AutoLevel[lev366],
AutoTrans[lev121,LabT"244"],
AutoLevel[lev684],
AutoTrans[lev121,LabT"562"],
AutoTrans[lev0,LabT"684",LineColorRed,DashingAutomatic],
AutoLevel[lev706],
AutoTrans[lev366,LabT"340"],
AutoLevel[lev810],
AutoTrans[lev684,LabT"125",LineColorRed],
AutoTrans[lev366,LabT"443"],
AutoTrans[lev121,LabT"688"],
AutoTrans[lev0,LabT"810"],
AutoLevel[lev963],
AutoTrans[lev810,LabT"152",LineColorBlue],
AutoTrans[lev684,LabT"278",LineColorBlue],
AutoTrans[lev121,LabT"841",LineColorBlue],
AutoTrans[lev0,LabT"963",LineColorBlue]

0+ 0

2+ 121

4+ 366

0+ 684
6+ 706
2+ 810

1- 963

12
1

24
4

56
2

68
4

34
012

5
44

3
68

8
81

0

15
2

27
8

84
1

96
3

Example of transition autospacing.

ü Appendix B: Notes for advanced users

Following are a few older and very cursory notes on some undocumented features. However, a massive updating
of the documentation is in the works.

Line dashing: The option Dashing allows any combination of dash lengths to be specified, but the gap between
them is automatically calculated. The following options allow control over the gap length. If different gap

LevelScheme | 49

lengths are desired between successive dashes (rarely needed), this may also be accomplished, by giving the
option DashingAbsoluteDashing[…] (see the Mathematica help for AbsoluteDashing).

option name default value

DashingGap Automatic The length of the gap between dashes,
in printer ' s points;
if Automatic the length is determined from

the average gap length specified with Dashing

DashingCorrection True Whether or not the dash lengths and gap lengths
should be corrected for the finite “pen width”
in PostScript graphics recommended to prevent

the gaps from filling in for thick lines
Advanced dashing options.

Coordinate conversion: The function ConvertCoordinate converts coordinates between the five Lev-
elScheme coordinate systems. ConvertCoordinate[system,newsystem,type,{x,y}] converts a point,
while ConvertCoordinate[system,newsystem,type,x,axis] converts a single coordinate, either x or y
depending upon whether axis is 1 or 2. The coordinate systems are specified as AbsoluteCoords, CanvasCo-
ords, RegionCoords, ScaledCoords, or UserCoords. The conversion type (C or D) indicates whether

the conversion is of a coordinate (scale and offset) or of a displacement (scale only). Coordinate conversion can
be of use in carrying out positioning tasks involving adjustments in printer's points. In multipanel plots, it can be
convenient to convert the coordinates of a point from user coordinates to canvas coordinates and save the result
for later use in drawing annotations, such as arrows, spanning multiple panels.

Functions for converting coordinate ranges or regions, ConvertRange[system,newsystem,type-
,{x1,x2},axis] and ConvertRegion[system,newsystem,type,{{x1,x2},{y1,y2}}], are also available.

Point saving and retrieval: SavePoint[ID,{x,y}] or SavePoint[ID,{x,y},system] saves the location
of a point for later retrieval with GetPoint[ID] or GetPoint[ID,system]. The coordinates are automati-

cally converted at the time of retrieval to whatever coordinate system is currently active. This is especially useful
for drawing annotations (e.g., arrows) which span different panels of a plot with different coordinate system
definitions.

Levels: The ID argument is optional (however, it is good practice to always habitually define IDs for levels, to
avoid having to go back and haphazardly add IDs when they are needed to specify transitions, connectors, etc.).
In addition to left, center, and right labels, top and bottom labels can be specified as well (these are only rarely
useful, as they are usually redundant to the center label).

The symbol LastLevel evaluates to the ID of the most recently defined level, and the energy of a level
can be retrieved with LevelEnergy[level].

The energy of a level may be adjusted upwards or downwards with the option EnergyNudge. The
default energy label formatting may be overridden by providing a function as the value for the option EnergyLa-
belFunction.

Panels: PanelLetter[] returns a string giving the panel letter of the current panel. It accepts the panel letter
formatting options listed earlier for Multipanel.

In a multipanel plot, additional options X/YMarginSizes may be used to specify the widths of gaps to

the left of the leftmost panel, to the right of the rightmost panel, above the topmost panel, or below the bottom-
most panel, on the same relative scale as used in the X/YPanelSizes and X/YGapSizes options. This is
occasionally useful for layout purposes.

LevelScheme | 50

Graphics utilities: If a Mathematica Graphics object contains just a single curve, as is often the case for the
output of Plot and other Mathematica plotting and geometry routines, the GrabPoints function may be used
to extract a list of the points from which this curve is constructed. (The ExtractLines function can be used to
extract a list of curves from more complicated plots.) These points can be used as the argument to SchemeLine
or SchemePolygon. This allows greater control of the appearance of the plot than is available with RawGraph-
ics, since it allows the curve to be used as the boundary of a filled region or to be maniplated in various ways.

GrabPoints graphics Extracts a list of points from a simple enough
graphics object typically the output of a plotting routine

ExtractLines graphics Extracts a list of lines from a graphics object

Command for manipulating graphics.

Appendix C: For users of earlier versions

Mathematica 6 introduced major changes to how graphics are created and also many new function names (some of
which conflicted with those defined by LevelScheme). Therefore, LevelScheme had to change along with Mathe-
matica. If you were using an older version of LevelScheme, under Mathematica 5 or earlier, you might wish to be
aware of the following:

1. The LevelScheme command Figure (or Scheme), like all plotting functions in Mathematica now, should no
longer be followed by a semicolon. A semicolon in Mathematica suppresses output. If the figure command is
followed by a semicolon, the graphics it produces will not be displayed.

2. The LevelScheme command Panel has been renamed FigurePanel, to avoid conflicting with the new
Mathematica symbol Panel. (Similarly, ScaledPanel has been renamed ScaledFigurePanel.)

3. The LevelScheme command ViewPort has been renamed ViewPort3D, to avoid conflicting with the new
Mathematica symbol ViewPort. (Similarly, ScaledViewPort has been renamed ScaledViewPort3D.)

4. Object transparency is now possible in Mathematica graphics. LevelScheme supports transparency through
new drawing options Opacity, LineOpacity, FillOpacity, FontOpacity, etc., similar to the existing
color options. Caution:Use of transparency is not compatible with PostScript output and may cause Mathematica
to hang if you try to print or export.

5. Only a new, more-limited set of colors (LightRed, etc.) defined are defined by Mathematica now. However,
LevelScheme defines the pre-Mathematica 6 named colors (AliceBlue, etc.) so that they are available for your
use. Both sets of colors are displayed together in the LevelScheme color palette.

© Copyright 2013, Mark A. Caprio.

LevelScheme | 51

