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In this notebook we experiment with Persson and Strang's mesh generation algorithm in Mathemat-
ica. The algorithm was implemented in MATLAB in their original paper [1], which is highly 
recommended to be read along with this notebook.

Introduction

This Mathematica  notebook  is  an  effort  to  transcribe  the  MATLAB  code  of  a  2-D  mesh  generation  algorithm  as

described explicitly in Persson and Strang's paper [1]. The goal is to make the algorithm executable in Mathematica so

that its users can also experiment with the algorithm.

Since the algorithm was expressed very clearly from their original paper [1] including the MATLAB code, which is a

perfect example of literate programming in MATLAB, it is pretty easy to translate the MATLAB code "literally" into

Mathematica.  Such translation is virtually always possible in either directions even without human interference. And

such a Rosetta Stone kind of translation might be useful if one species of people coding in either MATLAB or Mathe-

matica were to disappear, future generations would still be able to rediscover one programming language by reading its

interpretation in the other one.

However,  it  is  so  tempting  to  present  the  literate  programming  capability  of Mathematica by  following  its  general

principles; that is, (a) documentation mingles with code and both get pretty-printed; (b) shuffle code pieces for human

readability. I decided to transcribe the code manually.

The original MATLAB code was documented as 8 steps (sections) in sequential order, which is easy to follow because

the ideas behind the code were explained beforehand in early parts of the paper. So it is recommended that you read

part 1 and 2 of the original paper. Instead of following the MATLAB code literally in 8 steps, this notebook breaks the

code pieces apart and examines each of them separately. 
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Overview

In order to generate a triangular mesh, in the 2-D case, one needs to find locations of the meshpoints p x, y . Then both

MATALB  and Mathematica  have  built-in  Delaunay  triangulation  function  of  generating  the  triangular  mesh  from

these meshpoints. 

In Persson and Strang's algorithm [1], user specifies the relative size of the mesh triangles by the size function h x, y .

In order to generate mesh triangles as well as the edges of them (meshbars) according to h x, y , an objective function

using  "force"  analogy  is  proposed,  in  which  the  meshbars  act  like  springs  exerting  forces  that  move  the  meshpoints

around until an equilibrium (zero force) is reached. This "force" related objective function is difficult to minimize (or

zero) because it is not continuous as stated in the paper, "The force vector F p  is not a continuous function of p, since

the topology (the presence or absence of connecting bars) is changed by Delaunay as the points move."

So the algorithm, in general, turns into an iterative process of minimizing the objective function

NestWhile[moveMeshpoints, initpoints, !(goodEnough[#])&]

The initial  locations of  the meshpoints can be randomly distributed or chosen according to h x, y .  Since h x, y  is  a

relative measure, one doesn't need to define the exact size of each mesh triangle at location x, y .

The function moveMeshpoints  keeps  changing the locations of  meshpoints  so  as  to minimize this  "force" related

objective function until the result is regarded by function goodEnough to be so.

In practice, meshpoints always have to reside within certain geometric region. User also needs to define this bounded

region  by  a  distance  function d x, y .  And  one  difficult  task  is  to  maintain  the  meshpoints  within  the  2-D  region

(whether it is a disk or a rectangle with a hole in it) during the iterative process. After each move, if some meshpoints

are  pushed  out  of  the  2-D  region,  they  need  to  be  brought  back  onto  its  boundary,  which  is  carried  out  using  this

distance function d x, y .

Using the Distance Function d x, y

Since  distance  function  determines  the  shape  for  the  algorithm,  Let's  start  from  it.  Each  distance  function  returns

negative  for  points  within  the  defined  region;  positive  or  zero  otherwise.  Here  is  a  distance  function  for  a  disk,

bounded by the circle. 

dcircle x_, y_ , cx_, cy_, r_ : x cx 2 y cy 2 r2

Here  is  another  example  of  a  rectangular  region,  defined  by  the  lower  left  point x1, y1  and  the  upper  right  point

x2, y2 . (This is the typical mathematical way of defining coordinates for a rectangular region, which is different from

the one for drawing rectangles on the computer screen.)

drectangle x_, y_ , x1_, y1_, x2_, y2_ :

Min Min Min y1 y, y2 y , x1 x , x2 x

To  test  if  these  distance  functions  can  distinguish  points  within  or  out  of  the  defined  region,  we  start  by  seeding

meshpoints in a rectangular region, still defined by the lower left point x1, y1  and the upper right point x2, y2 . And
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points in every other row are shifted so that the distance between every two points is h0 (corresponding to step 1 in the

paper).

seedMeshpoints x1_, y1_, x2_, y2_ , h0_ :

Table x
1 1 Quotient y y2,h0 3

2

4
h0, y ,

y, y1, y2,
3

2
h0 , x, x1, x2, h0 Flatten #, 1 &

Try to seed meshpoints in a rectangle between 2, 1  and 2, 1  with distance 0.1 between every two meshpoints.

seedMeshpoints 2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &
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0.5

1

Graphics

Function selectMeshpoints  use  the  distance  function  to  select  only  meshpoints  within  the  defined  region

(corresponding to part of step 2 in the paper).

selectMeshpoints d_, x1_, y1_, x2_, y2_ , h0_ :

Select seedMeshpoints x1, y1, x2, y2 , h0 , d # 0 & ;

The distance function dcircle selects meshpoints within a disk.
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selectMeshpoints dcircle #, 0, 0, 0.5 &,

2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-0.4 -0.2 0.2 0.4
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0.2

0.4

Graphics

The distance function drectangle selects meshpoints within a rectangle. You may notice from its definition that the

four corner points may not be included. This glitch can be fixed later.
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selectMeshpoints drectangle #, 1, 0.5, 1, 0.5 &,

2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-0.75 -0.5 -0.25 0.25 0.5 0.75
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-0.2

0.2

0.4

Graphics

How  to  define  the  distance  function  of  a  rectangle  with  a  hole  in  the  center?  There  are  ways  to  combine  distance

functions  of  simple  geometric  shapes  to  form more  complex  ones.  For  example, ddiff  takes  one  shape  out  of  the

other. 

ddiff d1_, d2_ : Max d1, d2

For more ways of combining distance functions, see Figure 4.1 in the paper. Here is a disk taken out of a rectangle
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selectMeshpoints ddiff drectangle #, 2, 1, 2, 1 ,

dcircle #, 0, 0, 0.5 &, 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &

-2 -1 1 2

-0.5

0.5

1

Graphics

There are two other places where the distance function is used. One is to select interior meshbars (discussed later). The

other is to move meshpoints back onto the boundary (step 7), if they were pushed out.

The closest boundary point to an outsider is along the gradient direction of the distance function. The function NGrad

calculates numerically the gradient for a given distance function at a specific point. 

NGrad d_, x0_, y0_ :

ND d x, y0 , x, x0 , ND d x0, y , y, y0

Then the function backtoBoundary moves an outsider onto the closest boundary point. (FindRoot is used to find

the boundary point, which is a little bit different from step 7 in paper.)

backtoBoundary d_, x_, y_ :

Module expr , expr x, y s NGrad d, x, y ;

expr . FindRoot d expr , s, 0

To test this function, let's move all these points in a rectangle onto a circular boundary.
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pointseverywhere seedMeshpoints 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &
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1

Graphics

It's going to be very crowded.

mesh111604.nb 7

Printed by Mathematica for Students



backtoBoundary dcircle #, 0, 0, 0.5 &, # &

pointseverywhere ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &
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Graphics

Well, it is a bit of abuse, since normally the function is only used to move points out of the region back to its boundary.

Distributing as the Size Function h x, y

The  other  important  function  in  the  algorithm is h x, y .  It  is  actually  the  goal  of  the  algorithm to  make  the  size  of

mesh  triangles  distributed,  in  2-D  case,  as h x, y .  The  simplest  case  would  be h x, y 1,  such  that  all  the  mesh

triangles  are  of  the  same  size.  A more  interesting  example,  the  following definition  ask  for  triangle  sizes  related  by

x2 y2 , which means the closer they are to the center point 0, 0 , the smaller  the triangle meshes are. It therefore

asks  for  more  meshpoints  as  they  are  closer  to  the  center  point 0, 0 .  So  the  size  function h x, y  determines  the

locations of meshpoints indirectly.

h x_, y_ : 0.1 0.1 x2 y2
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To distribute meshpoints initially, for example, in a 2-D disk, we assign a value to each would-be meshpoint xi, yi  by

applying function h x, y  to it.  Since h x, y  is  a  relative measure, there is  a scaling process,  i.e.  to normalize all  the

values between 0 and 1. Such scaling process is essential and will appear again later (step 6 in the paper). (The defini-

tion of function scale is a bit like MATLAB's style. It makes use of the "Listable" property of the function Divide.)

scale x_List :
x

Max x

— General::spell1 : Possible spelling error: new symbol

name "scale" is similar to existing symbol "Scale". More…

To attach a normalized value for each meshpoint

pts selectMeshpoints

dcircle #, 0, 0, 5 &, 10, 10, 10, 10 , 0.1 ;

values scale
1

h # 2
& pts ;

a more compact expression can be

values Divide #,Max # & 1 h # 2& pts

In the algorithm, a lottery is drawn to select which meshpoints to survive. The attached values isn't actually h x, y  but

1 h x, y 2  instead,  as  being  the  probability  of  "survival"  (part  of step  2  in  the  paper).  The  meshpoint  at  locations

xi, yi  where h xi, yi  is smaller, has larger 1 h xi, yi
2 value so that has higher probability to survive, therefore more

meshpoints are located at where h x, y  demands smaller mesh triangles.
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p Extract pts, Position values, _? # Random &

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &
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4

Graphics

The above graphic certainly shows more points toward the center, doesn't it. From now on, the number of meshpoints

in the list p is determined. No points will be drop out, but relocated while minimizing the "force". 

Delaunay Triangulation

Now we have a fixed number of meshpoints selected. Delaunay triangulation can begin (part of step 3 in the paper)

t DelaunayTriangulation p ;

The Mathematica  function returns mesh triangles in a different format from MATLAB function's. It even has a func-

tion to plot the meshes directly. We can define such a function ourselves (step 5 in the paper).
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the Mathematica built in function

PlanarGraphPlot p, LabelPoints False

Graphics

But before  we can plot  these meshbars,  we need to process  the return values from DelaunayTriangulation  to

get the unique meshbars. 

the input is directly

from DelaunayTriangulation function

meshbar t_ : Union Sort

Thread List Sequence # & t Flatten #, 1 &

Get the unique bars (step 4 in the paper)

bars meshbar t ;

meshbarPlot p_, bar_List : Show

Graphics Line Part p, # & bar , AspectRatio Automatic

Our version of "PlanarGraphPlot"
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meshbarPlot p, bars

Graphics

As mentioned earlier, the distance function is used again to select meshbars that are interior to the defined region. For

example, the following distance function defines a rectangle with a hole in the middle.

d x_, y_ : ddiff drectangle x, y , 2, 0.8, 2, 0.8 ,

dcircle x, y , 0, 0, 0.5
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p2 selectMeshpoints d, 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &
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Graphics

bars2 meshbar DelaunayTriangulation p2 ;

meshbarPlot p2, bars2

Graphics

Obviously, these meshbars across the hole in the center need to be removed. Here we use a "middle point" approach

that  is  different  from the  original  MATLAB code.  However  the  idea  is  the  same;  that  is,  using  distance  function  to

identify meshbars that lie out of the defined region.

middlepoint p_, a_, b_ :
p a p b

2

It selects only the meshbars interior to the region.

bars2 Select bars2, d middlepoint p2, # 0 & ;
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meshbarPlot p2, bars2

Graphics

Now you may notice that two upper corner points of the rectangle are missing. This is caused by the definition of its

distance  function.  To  remedy  for  this,  we  need  to  add  these  points  to  our  list  of  meshpoints  list p.  Now  the  list  is

completely  initialized  after  putting  in  these  missing  meshpoints  (if  there  is  any).  They  are  called  fixed  meshpoints

because they won't move at all during the force equilibrium process.

Since now we have  the meshbars,  they will  start  exerting  force  on the connecting  meshpoints  to  achieve  an equilib-

rium. Let the force be with them.

Force be with them

These meshbars act like a special kind of springs that have the following force vs. length relationship

f l, l0
k l l0 if l l0,

0 if l l0 . 

The  function barlength  calculates l  (the  actual  meshbar  length)  in  the  above  equation,  given  the  two  connecting

meshpoints of a a meshbar.

barlength p_, a_, b_ : Norm p a p b

How about l0? It looks like a desired length since l l0  will  certainly turn force f  into 0. Guess who involves in the

calculation  of l0,  size  function h x, y  again.  It  is  the  second  yet  most  important  appearance  of  this  function.  It  is

essentially the core of the algorithm—the desired mesh triangle size yields the desired meshbar length. So the iterative

process to zero the force is really a process to adjust the meshbar length to be close to l0, which inevitably and implic-

itly adjusts the mesh triangles to the size and distribution as h x, y . The clever part is that still h x, y  gives a relative

measure, so a scaling process with scaling factor 
li

2

h xi, yi
2

1 2

 is used. 

scale a_List, p_, bars_ :

Plus Map barlength p, # 2 &, bars

Plus a2
a
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The parameter Fscale=1.2  blows l0  a little bit. Now let's return to our disk example. To find the desired length l0
for each meshbar, we use the middle point of each meshbar as input to h x, y  and then scale the output.

l0 With Fscale 1.2 ,

Fscale scale h middlepoint p, # & bars, p, bars ;

— General::spell1 : Possible spelling error: new symbol

name "Fscale" is similar to existing symbol "scale". More…

Now assuming k 1, the force can be calculated according to the "spring" relationship.

F Max #, 0 & l0 barlength p, # & bars ;

Now the force needs to be dissected into vectors of x-axis and y-axis components at each meshpoint so that they can be

summed in these two independent directions.

Fvec F
Subtract p #

barlength p, #
& bars ;

The MATLAB code (step 6) uses sparse matrix to sum forces (both x- and y-component) at each meshpoint. Here we

try the same way by defining a sparse array in Mathematica. The sparse array is a square matrix of n n dimensions,

with  n  =  number  of  meshpoints.  Each  row  stores  the  forces  for  one  meshpoint  and  the  columns  are  forces  (x-  and

y-component)  exerted  on  it  by  neighboring  meshpoints  through  connecting  meshbars.  Since  one  meshpoint  only

connects  with  a  small  fraction  of  the  total  number  of  meshpoints,  the  matrix  is  very  sparse  (i.e.,  many  zeros  in  the

matrix). A little trick (Hold) is used to store Fx, Fy  at position a, b  in the sparse array.

ForceRule a_, b_ , Fx_, Fy_ : a, b Hold Fx, Fy ,

Newton' s Third Law

b, a Hold Fx, Fy

A sparse array, forcematrix is built from these rules

forcematrix SparseArray #, Length p , Length p &

MapThread ForceRule, bars, Fvec Flatten #, 1 & ;

Then  the  movements  of  the  meshpoints  are  induced  by  the  force  acting  on  it  (Aristotle-ly)  according  to  the  for-

mula
pn 1 pn t F pn

We calculate the second term on the right hand side (with t 0.2) by summing all forces on each row of the sparse

array.

dp With deltat 0.2 , deltat Table

Plus ReleaseHold forcematrix i , i, Length p ;

So the movement of meshpoints
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pp p dp;

As shown below, the meshpoints moves from the initial location

ListPlot p, AspectRatio Automatic,

PlotStyle PointSize 0.01
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2

4

Graphics

after one iteration

16 mesh111604.nb

Printed by Mathematica for Students



ListPlot pp, AspectRatio Automatic,

PlotStyle PointSize 0.01 , RGBColor 1, 0, 0
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4

Graphics
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Show %, %%

-4 -2 2 4

-4

-2

2

4

Graphics

All these efforts up till now only moves meshpoints for one step. In order to go further, we need to define a function by

wrapping up those temporary variables inside.
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forcemove p_ : Module t, bars, l0, F, Fvec, forcematrix, dp ,

t DelaunayTriangulation p ;

select only interia meshbars

bars Select meshbar t , d middlepoint p, # 0 & ;

l0 With Fscale 1.2 ,

Fscale scale h middlepoint p, # & bars, p, bars ;

F Max #, 0 & l0 barlength p, # & bars ;

Fvec F
Subtract p #

barlength p, #
& bars ;

forcematrix SparseArray #, Length p , Length p &

MapThread ForceRule, bars, Fvec Flatten #, 1 & ;

dp With deltat 0.2 , deltat Table Plus

ReleaseHold forcematrix i , i, Length p ;

Return p dp

Now we can try more iterations.

d x_, y_ : dcircle x, y , 0, 0, 2 ;

h x_, y_ : 0.1 0.1 x2 y2 ;

pts selectMeshpoints d, 10, 10, 10, 10 , 0.1 ;

values scale
1

h # 2
& pts ;

p2 Extract pts, Position values, _? # Random & ;

pp2 Nest forcemove, p2, 10 ;

So after 10 iterations, the result is quite good already. 

mesh111604.nb 19

Printed by Mathematica for Students



ListPlot pp2, AspectRatio Automatic,

PlotStyle PointSize 0.01 , RGBColor 1, 0, 0
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Graphics

Once we have the locations of the meshpoints, it is simply a function call to generate the meshes.
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the Mathematica built in function

PlanarGraphPlot pp2, LabelPoints False

Graphics

Good Enough?

There are many ways to define and combine the termination criteria. 

A convenient  way  for Mathematica  would  be,  i.e.  if  two  latest  iterations  output  nearly  equal  locations,  the  program

doesn't go any further. (Like step 8 in the paper, we only choose interior meshpoints to compare.)

goodEnough p1_, p2_, eps_ :

Max Norm Extract p2 p1 , Position p2, _? d # 0 &

eps

Now we can assembly the whole program as predicted in the "overview" section. (It may take a while to run depending

on the speed of your computer.)
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pp2

NestWhile forcemove, p2, goodEnough #1, #2, 0.02 &, 2, 50 ;

ListPlot pp2, AspectRatio Automatic,

PlotStyle PointSize 0.02 , RGBColor 1, 0, 0
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Graphics

The  boundary  looks  rough  above.  To  complete  the  algorithm,  we  need  to  add  the  section  that  brings  points  outside

onto the boundary.

Mesh Generator as a Mathematica Package

All the previous sections have taken the original code pieces apart so that we can experiment with each component of

the algorithm. To assemble them together, we can put it into a Mathematica package (.m) file and fasten some screws

along the way. The package effectively hides the details of the algorithm so that end users can simply load the package

and use the functions available. 

The Mathematica package is in a separate file (meshgenerator.m). To construct the package, I basically copy and

paste  the  cells  from  these  previous  sections  into  it.  This  could  become  tedious  when  the  functions  are  numerous.

However there is no reason why an automatic process (maybe called MathematicaTangle) can't be used for larger

package  constructions.  Each  code  piece  in  an  input  cell  can  be  tagged  by  a  section  name.  And  by  using Author-
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Tools and NotebookFind, NotebookWrite functions, etc., one can extract and assemble the pieces into a new

notebook. The whole notebook cell can then be marked as a initialization cell and saved as Mathematica package file.

Here is an example of using the package: 

clear everything defined before

Remove "Global` "

set the current directory to where the

package file is stored and read in the package

SetDirectory "c:\\" ; meshgenerator`

? generateMesh

generateMesh d_,h_,h0_, x1_,y1_,x2_,y2_ generates a mesh
for a region defined by the distance function d x,y and
size function h x,y . The mesh sise is h0 and an initial
rectangle region is defined by x1,y1 and x2,y2 .

Options generateMesh

Fscale 1.2, DeltaT 0.2, Eps 0.2, MaxSteps 50

d x_, y_ :

ddiff dcircle x, y , 0, 0, 4 , dcircle x, y , 0, 2, 1 ;

h x_, y_ : 0.1 0.4 x2 y 2 2 ;

It may take quite a while to run

p2 generateMesh d, h, 0.1, 10, 10, 10, 10 ;
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ListPlot p2, AspectRatio Automatic
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Graphics

Summary and Discussion

This Mathematica notebook sets up an experiment environment for Persson and Strang's mesh generation algorithm. It

also tries to document the program in a literate programming style. 

The translation from the original  MATLAB code to  the Mathematica  code  is  far  from complete.  It  only  touches  the

program in Figure 3.1 of the paper, though, I hope, it provides a good starting point for testing and understanding the

algorithm. Various experiments can be run from this point, such as defining different distance functions or size func-

tions, testing different scaling process or objective function, etc., especially when the optimization process gets stuck,

you can try many places to shake.

There  are  multiple  ways  to  program  in Mathematica,  thus  to  transcribe  the  original  MATLAB  code.  The  original

MATLAB code makes good use of MATLAB's list processing ability and therefore is very concise. Here we adopted a

somewhat functional programming style in Mathematica.  Like structure programming isn't really about getting rid of

"goto"s, functional  programming isn't  really about getting rid of "for" loops. A functional program avoids relying on

variables  while  builds  up  on  definitions  of  functions.  It  then  uses Map (/@), Apply (@@),  and Nest,  etc.,  to

glue these functions together. The advantage is that once these functions are declared, they won't change anymore. So

testing  or  running  the  program becomes  declarative  rather  than imperative,  which  means  the  order  of  which  expres-
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sions are evaluated doesn't matter so much. Whereas the expressions that make heavy use of variables can have trouble

(side-effects)  brought  by  changing  the  evaluation  order  or  reevaluating  them,  which  is  not  favorable  for  testing  and

experimenting.

I am still learning to program in Mathematica. So the code here can certainly be improved both towards more elegant

in  style  and faster  in  speed,  not  to  mention  the hidden bugs  to  squash.  Like so  many open software and open docu-

ments on the internet, future versions of this notebook will be better through suggestions and advice from readers like

you.

My email address: huzhe@iit.edu

Mathematica Packages Needed

NumericalMath`NLimit`

DiscreteMath`ComputationalGeometry`
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