
A Simple Mesh Generator in Mathematica

Version 0.1

Zhe Hu
huzhe@iit.edu
Illinois Institute of Technology
September, 2004

In this notebook we experiment with Persson and Strang's mesh generation algorithm in Mathemat-
ica. The algorithm was implemented in MATLAB in their original paper [1], which is highly
recommended to be read along with this notebook.

Introduction

This Mathematica notebook is an effort to transcribe the MATLAB code of a 2-D mesh generation algorithm as

described explicitly in Persson and Strang's paper [1]. The goal is to make the algorithm executable in Mathematica so

that its users can also experiment with the algorithm.

Since the algorithm was expressed very clearly from their original paper [1] including the MATLAB code, which is a

perfect example of literate programming in MATLAB, it is pretty easy to translate the MATLAB code "literally" into

Mathematica. Such translation is virtually always possible in either directions even without human interference. And

such a Rosetta Stone kind of translation might be useful if one species of people coding in either MATLAB or Mathe-

matica were to disappear, future generations would still be able to rediscover one programming language by reading its

interpretation in the other one.

However, it is so tempting to present the literate programming capability of Mathematica by following its general

principles; that is, (a) documentation mingles with code and both get pretty-printed; (b) shuffle code pieces for human

readability. I decided to transcribe the code manually.

The original MATLAB code was documented as 8 steps (sections) in sequential order, which is easy to follow because

the ideas behind the code were explained beforehand in early parts of the paper. So it is recommended that you read

part 1 and 2 of the original paper. Instead of following the MATLAB code literally in 8 steps, this notebook breaks the

code pieces apart and examines each of them separately.

Printed by Mathematica for Students

Overview

In order to generate a triangular mesh, in the 2-D case, one needs to find locations of the meshpoints p x, y . Then both

MATALB and Mathematica have built-in Delaunay triangulation function of generating the triangular mesh from

these meshpoints.

In Persson and Strang's algorithm [1], user specifies the relative size of the mesh triangles by the size function h x, y .

In order to generate mesh triangles as well as the edges of them (meshbars) according to h x, y , an objective function

using "force" analogy is proposed, in which the meshbars act like springs exerting forces that move the meshpoints

around until an equilibrium (zero force) is reached. This "force" related objective function is difficult to minimize (or

zero) because it is not continuous as stated in the paper, "The force vector F p is not a continuous function of p, since

the topology (the presence or absence of connecting bars) is changed by Delaunay as the points move."

So the algorithm, in general, turns into an iterative process of minimizing the objective function

NestWhile[moveMeshpoints, initpoints, !(goodEnough[#])&]

The initial locations of the meshpoints can be randomly distributed or chosen according to h x, y . Since h x, y is a

relative measure, one doesn't need to define the exact size of each mesh triangle at location x, y .

The function moveMeshpoints keeps changing the locations of meshpoints so as to minimize this "force" related

objective function until the result is regarded by function goodEnough to be so.

In practice, meshpoints always have to reside within certain geometric region. User also needs to define this bounded

region by a distance function d x, y . And one difficult task is to maintain the meshpoints within the 2-D region

(whether it is a disk or a rectangle with a hole in it) during the iterative process. After each move, if some meshpoints

are pushed out of the 2-D region, they need to be brought back onto its boundary, which is carried out using this

distance function d x, y .

Using the Distance Function d x, y

Since distance function determines the shape for the algorithm, Let's start from it. Each distance function returns

negative for points within the defined region; positive or zero otherwise. Here is a distance function for a disk,

bounded by the circle.

dcircle x_, y_ , cx_, cy_, r_ : x cx 2 y cy 2 r2

Here is another example of a rectangular region, defined by the lower left point x1, y1 and the upper right point

x2, y2 . (This is the typical mathematical way of defining coordinates for a rectangular region, which is different from

the one for drawing rectangles on the computer screen.)

drectangle x_, y_ , x1_, y1_, x2_, y2_ :

Min Min Min y1 y, y2 y , x1 x , x2 x

To test if these distance functions can distinguish points within or out of the defined region, we start by seeding

meshpoints in a rectangular region, still defined by the lower left point x1, y1 and the upper right point x2, y2 . And

2 mesh111604.nb

Printed by Mathematica for Students

points in every other row are shifted so that the distance between every two points is h0 (corresponding to step 1 in the

paper).

seedMeshpoints x1_, y1_, x2_, y2_ , h0_ :

Table x
1 1 Quotient y y2,h0 3

2

4
h0, y ,

y, y1, y2,
3

2
h0 , x, x1, x2, h0 Flatten #, 1 &

Try to seed meshpoints in a rectangle between 2, 1 and 2, 1 with distance 0.1 between every two meshpoints.

seedMeshpoints 2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-2 -1 1 2

-1

-0.5

0.5

1

Graphics

Function selectMeshpoints use the distance function to select only meshpoints within the defined region

(corresponding to part of step 2 in the paper).

selectMeshpoints d_, x1_, y1_, x2_, y2_ , h0_ :

Select seedMeshpoints x1, y1, x2, y2 , h0 , d # 0 & ;

The distance function dcircle selects meshpoints within a disk.

mesh111604.nb 3

Printed by Mathematica for Students

selectMeshpoints dcircle #, 0, 0, 0.5 &,

2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

Graphics

The distance function drectangle selects meshpoints within a rectangle. You may notice from its definition that the

four corner points may not be included. This glitch can be fixed later.

4 mesh111604.nb

Printed by Mathematica for Students

selectMeshpoints drectangle #, 1, 0.5, 1, 0.5 &,

2, 1, 2, 1 , 0.1 ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-0.75 -0.5 -0.25 0.25 0.5 0.75

-0.4

-0.2

0.2

0.4

Graphics

How to define the distance function of a rectangle with a hole in the center? There are ways to combine distance

functions of simple geometric shapes to form more complex ones. For example, ddiff takes one shape out of the

other.

ddiff d1_, d2_ : Max d1, d2

For more ways of combining distance functions, see Figure 4.1 in the paper. Here is a disk taken out of a rectangle

mesh111604.nb 5

Printed by Mathematica for Students

selectMeshpoints ddiff drectangle #, 2, 1, 2, 1 ,

dcircle #, 0, 0, 0.5 &, 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &

-2 -1 1 2

-0.5

0.5

1

Graphics

There are two other places where the distance function is used. One is to select interior meshbars (discussed later). The

other is to move meshpoints back onto the boundary (step 7), if they were pushed out.

The closest boundary point to an outsider is along the gradient direction of the distance function. The function NGrad

calculates numerically the gradient for a given distance function at a specific point.

NGrad d_, x0_, y0_ :

ND d x, y0 , x, x0 , ND d x0, y , y, y0

Then the function backtoBoundary moves an outsider onto the closest boundary point. (FindRoot is used to find

the boundary point, which is a little bit different from step 7 in paper.)

backtoBoundary d_, x_, y_ :

Module expr , expr x, y s NGrad d, x, y ;

expr . FindRoot d expr , s, 0

To test this function, let's move all these points in a rectangle onto a circular boundary.

6 mesh111604.nb

Printed by Mathematica for Students

pointseverywhere seedMeshpoints 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &

-2 -1 1 2

-1

-0.5

0.5

1

Graphics

It's going to be very crowded.

mesh111604.nb 7

Printed by Mathematica for Students

backtoBoundary dcircle #, 0, 0, 0.5 &, # &

pointseverywhere ListPlot #,

AspectRatio Automatic, PlotStyle PointSize 0.01 &

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

Graphics

Well, it is a bit of abuse, since normally the function is only used to move points out of the region back to its boundary.

Distributing as the Size Function h x, y

The other important function in the algorithm is h x, y . It is actually the goal of the algorithm to make the size of

mesh triangles distributed, in 2-D case, as h x, y . The simplest case would be h x, y 1, such that all the mesh

triangles are of the same size. A more interesting example, the following definition ask for triangle sizes related by

x2 y2 , which means the closer they are to the center point 0, 0 , the smaller the triangle meshes are. It therefore

asks for more meshpoints as they are closer to the center point 0, 0 . So the size function h x, y determines the

locations of meshpoints indirectly.

h x_, y_ : 0.1 0.1 x2 y2

8 mesh111604.nb

Printed by Mathematica for Students

To distribute meshpoints initially, for example, in a 2-D disk, we assign a value to each would-be meshpoint xi, yi by

applying function h x, y to it. Since h x, y is a relative measure, there is a scaling process, i.e. to normalize all the

values between 0 and 1. Such scaling process is essential and will appear again later (step 6 in the paper). (The defini-

tion of function scale is a bit like MATLAB's style. It makes use of the "Listable" property of the function Divide.)

scale x_List :
x

Max x

— General::spell1 : Possible spelling error: new symbol

name "scale" is similar to existing symbol "Scale". More…

To attach a normalized value for each meshpoint

pts selectMeshpoints

dcircle #, 0, 0, 5 &, 10, 10, 10, 10 , 0.1 ;

values scale
1

h # 2
& pts ;

a more compact expression can be

values Divide #,Max # & 1 h # 2& pts

In the algorithm, a lottery is drawn to select which meshpoints to survive. The attached values isn't actually h x, y but

1 h x, y 2 instead, as being the probability of "survival" (part of step 2 in the paper). The meshpoint at locations

xi, yi where h xi, yi is smaller, has larger 1 h xi, yi
2 value so that has higher probability to survive, therefore more

meshpoints are located at where h x, y demands smaller mesh triangles.

mesh111604.nb 9

Printed by Mathematica for Students

p Extract pts, Position values, _? # Random &

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &

-4 -2 2 4

-4

-2

2

4

Graphics

The above graphic certainly shows more points toward the center, doesn't it. From now on, the number of meshpoints

in the list p is determined. No points will be drop out, but relocated while minimizing the "force".

Delaunay Triangulation

Now we have a fixed number of meshpoints selected. Delaunay triangulation can begin (part of step 3 in the paper)

t DelaunayTriangulation p ;

The Mathematica function returns mesh triangles in a different format from MATLAB function's. It even has a func-

tion to plot the meshes directly. We can define such a function ourselves (step 5 in the paper).

10 mesh111604.nb

Printed by Mathematica for Students

the Mathematica built in function

PlanarGraphPlot p, LabelPoints False

Graphics

But before we can plot these meshbars, we need to process the return values from DelaunayTriangulation to

get the unique meshbars.

the input is directly

from DelaunayTriangulation function

meshbar t_ : Union Sort

Thread List Sequence # & t Flatten #, 1 &

Get the unique bars (step 4 in the paper)

bars meshbar t ;

meshbarPlot p_, bar_List : Show

Graphics Line Part p, # & bar , AspectRatio Automatic

Our version of "PlanarGraphPlot"

mesh111604.nb 11

Printed by Mathematica for Students

meshbarPlot p, bars

Graphics

As mentioned earlier, the distance function is used again to select meshbars that are interior to the defined region. For

example, the following distance function defines a rectangle with a hole in the middle.

d x_, y_ : ddiff drectangle x, y , 2, 0.8, 2, 0.8 ,

dcircle x, y , 0, 0, 0.5

12 mesh111604.nb

Printed by Mathematica for Students

p2 selectMeshpoints d, 2, 1, 2, 1 , 0.1

ListPlot #, AspectRatio Automatic,

PlotStyle PointSize 0.01 &

-2 -1 1 2

-0.6

-0.4

-0.2

0.2

0.4

0.6

Graphics

bars2 meshbar DelaunayTriangulation p2 ;

meshbarPlot p2, bars2

Graphics

Obviously, these meshbars across the hole in the center need to be removed. Here we use a "middle point" approach

that is different from the original MATLAB code. However the idea is the same; that is, using distance function to

identify meshbars that lie out of the defined region.

middlepoint p_, a_, b_ :
p a p b

2

It selects only the meshbars interior to the region.

bars2 Select bars2, d middlepoint p2, # 0 & ;

mesh111604.nb 13

Printed by Mathematica for Students

meshbarPlot p2, bars2

Graphics

Now you may notice that two upper corner points of the rectangle are missing. This is caused by the definition of its

distance function. To remedy for this, we need to add these points to our list of meshpoints list p. Now the list is

completely initialized after putting in these missing meshpoints (if there is any). They are called fixed meshpoints

because they won't move at all during the force equilibrium process.

Since now we have the meshbars, they will start exerting force on the connecting meshpoints to achieve an equilib-

rium. Let the force be with them.

Force be with them

These meshbars act like a special kind of springs that have the following force vs. length relationship

f l, l0
k l l0 if l l0,

0 if l l0 .

The function barlength calculates l (the actual meshbar length) in the above equation, given the two connecting

meshpoints of a a meshbar.

barlength p_, a_, b_ : Norm p a p b

How about l0? It looks like a desired length since l l0 will certainly turn force f into 0. Guess who involves in the

calculation of l0, size function h x, y again. It is the second yet most important appearance of this function. It is

essentially the core of the algorithm—the desired mesh triangle size yields the desired meshbar length. So the iterative

process to zero the force is really a process to adjust the meshbar length to be close to l0, which inevitably and implic-

itly adjusts the mesh triangles to the size and distribution as h x, y . The clever part is that still h x, y gives a relative

measure, so a scaling process with scaling factor
li

2

h xi, yi
2

1 2

 is used.

scale a_List, p_, bars_ :

Plus Map barlength p, # 2 &, bars

Plus a2
a

14 mesh111604.nb

Printed by Mathematica for Students

The parameter Fscale=1.2 blows l0 a little bit. Now let's return to our disk example. To find the desired length l0
for each meshbar, we use the middle point of each meshbar as input to h x, y and then scale the output.

l0 With Fscale 1.2 ,

Fscale scale h middlepoint p, # & bars, p, bars ;

— General::spell1 : Possible spelling error: new symbol

name "Fscale" is similar to existing symbol "scale". More…

Now assuming k 1, the force can be calculated according to the "spring" relationship.

F Max #, 0 & l0 barlength p, # & bars ;

Now the force needs to be dissected into vectors of x-axis and y-axis components at each meshpoint so that they can be

summed in these two independent directions.

Fvec F
Subtract p #

barlength p, #
& bars ;

The MATLAB code (step 6) uses sparse matrix to sum forces (both x- and y-component) at each meshpoint. Here we

try the same way by defining a sparse array in Mathematica. The sparse array is a square matrix of n n dimensions,

with n = number of meshpoints. Each row stores the forces for one meshpoint and the columns are forces (x- and

y-component) exerted on it by neighboring meshpoints through connecting meshbars. Since one meshpoint only

connects with a small fraction of the total number of meshpoints, the matrix is very sparse (i.e., many zeros in the

matrix). A little trick (Hold) is used to store Fx, Fy at position a, b in the sparse array.

ForceRule a_, b_ , Fx_, Fy_ : a, b Hold Fx, Fy ,

Newton' s Third Law

b, a Hold Fx, Fy

A sparse array, forcematrix is built from these rules

forcematrix SparseArray #, Length p , Length p &

MapThread ForceRule, bars, Fvec Flatten #, 1 & ;

Then the movements of the meshpoints are induced by the force acting on it (Aristotle-ly) according to the for-

mula
pn 1 pn t F pn

We calculate the second term on the right hand side (with t 0.2) by summing all forces on each row of the sparse

array.

dp With deltat 0.2 , deltat Table

Plus ReleaseHold forcematrix i , i, Length p ;

So the movement of meshpoints

mesh111604.nb 15

Printed by Mathematica for Students

pp p dp;

As shown below, the meshpoints moves from the initial location

ListPlot p, AspectRatio Automatic,

PlotStyle PointSize 0.01

-4 -2 2 4

-4

-2

2

4

Graphics

after one iteration

16 mesh111604.nb

Printed by Mathematica for Students

ListPlot pp, AspectRatio Automatic,

PlotStyle PointSize 0.01 , RGBColor 1, 0, 0

-4 -2 2 4

-4

-2

2

4

Graphics

mesh111604.nb 17

Printed by Mathematica for Students

Show %, %%

-4 -2 2 4

-4

-2

2

4

Graphics

All these efforts up till now only moves meshpoints for one step. In order to go further, we need to define a function by

wrapping up those temporary variables inside.

18 mesh111604.nb

Printed by Mathematica for Students

forcemove p_ : Module t, bars, l0, F, Fvec, forcematrix, dp ,

t DelaunayTriangulation p ;

select only interia meshbars

bars Select meshbar t , d middlepoint p, # 0 & ;

l0 With Fscale 1.2 ,

Fscale scale h middlepoint p, # & bars, p, bars ;

F Max #, 0 & l0 barlength p, # & bars ;

Fvec F
Subtract p #

barlength p, #
& bars ;

forcematrix SparseArray #, Length p , Length p &

MapThread ForceRule, bars, Fvec Flatten #, 1 & ;

dp With deltat 0.2 , deltat Table Plus

ReleaseHold forcematrix i , i, Length p ;

Return p dp

Now we can try more iterations.

d x_, y_ : dcircle x, y , 0, 0, 2 ;

h x_, y_ : 0.1 0.1 x2 y2 ;

pts selectMeshpoints d, 10, 10, 10, 10 , 0.1 ;

values scale
1

h # 2
& pts ;

p2 Extract pts, Position values, _? # Random & ;

pp2 Nest forcemove, p2, 10 ;

So after 10 iterations, the result is quite good already.

mesh111604.nb 19

Printed by Mathematica for Students

ListPlot pp2, AspectRatio Automatic,

PlotStyle PointSize 0.01 , RGBColor 1, 0, 0

-2 -1 1 2

-2

-1

1

2

Graphics

Once we have the locations of the meshpoints, it is simply a function call to generate the meshes.

20 mesh111604.nb

Printed by Mathematica for Students

the Mathematica built in function

PlanarGraphPlot pp2, LabelPoints False

Graphics

Good Enough?

There are many ways to define and combine the termination criteria.

A convenient way for Mathematica would be, i.e. if two latest iterations output nearly equal locations, the program

doesn't go any further. (Like step 8 in the paper, we only choose interior meshpoints to compare.)

goodEnough p1_, p2_, eps_ :

Max Norm Extract p2 p1 , Position p2, _? d # 0 &

eps

Now we can assembly the whole program as predicted in the "overview" section. (It may take a while to run depending

on the speed of your computer.)

mesh111604.nb 21

Printed by Mathematica for Students

pp2

NestWhile forcemove, p2, goodEnough #1, #2, 0.02 &, 2, 50 ;

ListPlot pp2, AspectRatio Automatic,

PlotStyle PointSize 0.02 , RGBColor 1, 0, 0

-2 -1 1 2

-2

-1

1

2

Graphics

The boundary looks rough above. To complete the algorithm, we need to add the section that brings points outside

onto the boundary.

Mesh Generator as a Mathematica Package

All the previous sections have taken the original code pieces apart so that we can experiment with each component of

the algorithm. To assemble them together, we can put it into a Mathematica package (.m) file and fasten some screws

along the way. The package effectively hides the details of the algorithm so that end users can simply load the package

and use the functions available.

The Mathematica package is in a separate file (meshgenerator.m). To construct the package, I basically copy and

paste the cells from these previous sections into it. This could become tedious when the functions are numerous.

However there is no reason why an automatic process (maybe called MathematicaTangle) can't be used for larger

package constructions. Each code piece in an input cell can be tagged by a section name. And by using Author-

22 mesh111604.nb

Printed by Mathematica for Students

Tools and NotebookFind, NotebookWrite functions, etc., one can extract and assemble the pieces into a new

notebook. The whole notebook cell can then be marked as a initialization cell and saved as Mathematica package file.

Here is an example of using the package:

clear everything defined before

Remove "Global` "

set the current directory to where the

package file is stored and read in the package

SetDirectory "c:\\" ; meshgenerator`

? generateMesh

generateMesh d_,h_,h0_, x1_,y1_,x2_,y2_ generates a mesh
for a region defined by the distance function d x,y and
size function h x,y . The mesh sise is h0 and an initial
rectangle region is defined by x1,y1 and x2,y2 .

Options generateMesh

Fscale 1.2, DeltaT 0.2, Eps 0.2, MaxSteps 50

d x_, y_ :

ddiff dcircle x, y , 0, 0, 4 , dcircle x, y , 0, 2, 1 ;

h x_, y_ : 0.1 0.4 x2 y 2 2 ;

It may take quite a while to run

p2 generateMesh d, h, 0.1, 10, 10, 10, 10 ;

mesh111604.nb 23

Printed by Mathematica for Students

ListPlot p2, AspectRatio Automatic

-4 -2 2 4

-4

-2

2

4

Graphics

Summary and Discussion

This Mathematica notebook sets up an experiment environment for Persson and Strang's mesh generation algorithm. It

also tries to document the program in a literate programming style.

The translation from the original MATLAB code to the Mathematica code is far from complete. It only touches the

program in Figure 3.1 of the paper, though, I hope, it provides a good starting point for testing and understanding the

algorithm. Various experiments can be run from this point, such as defining different distance functions or size func-

tions, testing different scaling process or objective function, etc., especially when the optimization process gets stuck,

you can try many places to shake.

There are multiple ways to program in Mathematica, thus to transcribe the original MATLAB code. The original

MATLAB code makes good use of MATLAB's list processing ability and therefore is very concise. Here we adopted a

somewhat functional programming style in Mathematica. Like structure programming isn't really about getting rid of

"goto"s, functional programming isn't really about getting rid of "for" loops. A functional program avoids relying on

variables while builds up on definitions of functions. It then uses Map (/@), Apply (@@), and Nest, etc., to

glue these functions together. The advantage is that once these functions are declared, they won't change anymore. So

testing or running the program becomes declarative rather than imperative, which means the order of which expres-

24 mesh111604.nb

Printed by Mathematica for Students

sions are evaluated doesn't matter so much. Whereas the expressions that make heavy use of variables can have trouble

(side-effects) brought by changing the evaluation order or reevaluating them, which is not favorable for testing and

experimenting.

I am still learning to program in Mathematica. So the code here can certainly be improved both towards more elegant

in style and faster in speed, not to mention the hidden bugs to squash. Like so many open software and open docu-

ments on the internet, future versions of this notebook will be better through suggestions and advice from readers like

you.

My email address: huzhe@iit.edu

Mathematica Packages Needed

NumericalMath`NLimit`

DiscreteMath`ComputationalGeometry`

References
[1] Per-Olof Persson and Gilbert Strang, "A Simple Mesh Generator in MATLAB," SIAM Review (August, 2004)

[2] Roman Maeder, "Programming in Mathematica," Addison-Wesley, 1997

mesh111604.nb 25

Printed by Mathematica for Students

