
Wolfram Programming Language Fundamentals
Professor Richard J. Gaylord

rjgaylord@gmail.com

These notes form the basis of a series of lectures in
which the fundamental principles underlying the Wolfram pro-
gramming language (WL) are discussed and illustrated with
carefully chosen examples. This is not a transcription of
those lectures, but rather, the note set that was used to
create a set of transparencies which I showed and spoke
about during my lectures. These notes formed the basis for
both a single 6-hour one-day lecture and a series of four
90-minute lectures, field-tested over many years, to stu-
dents and professionals at university, commercial and gov-
ernment organizations. In the final section of this note
set, the use of WL in writing various programs for the
‘Game of Life’ is demonstrated.

Introduction

In order to use WL efficiently, you need to understand the
details of how a WL program is executed when it is entered
and run. This tutorial is intended to provide you with the
necessary background for writing your own code in an opti-
mum manner.

Note: This material will also make you more comfortable
with WL which often seems obscure, even enigmatic, when
first encountered by someone whose programming experience
is with one of the traditional procedural languages.

In this note set, the following aspects of WL are empha-
sized: the nature of expressions, how expressions are evalu-
ated, how pattern-matching works, creating rewrite rules,
and using higher-order functions.

à Summing the elements in a list

Consider the data structure {1,2,3}. How can we add up the
elements in the list?

Consider the data structure {1,2,3}. How can we add up the
elements in the list?

In[1]:= Apply@Plus, 81, 2, 3<D
Out[1]= 6

What’s going on here?

à Everything is an expression

Every quantity entered into WL is represented internally
as an expression. An expression has the form

head@arg1, arg2, …, argnD
where the head and argi can be other expressions.

For example, if we look at two common quantities, a list
data structure, {a,b,c}, and an arithmetic operation,
a+b+c, they appear to be quite different, but if we use
the FullForm function to look at their internal
representation

In[2]:= FullForm@8a, b, c<D
Out[2]//FullForm=

List@a, b, cD
In[3]:= FullForm@a + b + cD

Out[3]//FullForm=

Plus@a, b, cD
we see that they differ only in their heads.

The use of a common expression structure to represent every-
thing is not merely cosmetic; it allows us to perform some
computations quite simply. For example, to add the ele-
ments in a list, it is only necessary to change the head
of the expression, List, to Plus. This can be done using
the built-in Apply function.

2 Wolfram Programming Language Fundamentals.nb

In[4]:= ? Apply

Apply@f, exprD or f �� expr replaces
the head of expr by f. Apply@f, expr,
levelspecD replaces heads in parts
of expr specified by levelspec. More…

In[5]:= Trace@Apply@Plus, 81, 2, 3<DD
Out[5]= 8Plus �� 81, 2, 3<, 1 + 2 + 3, 6<

à Changing a sum into a list

The obvious approach to this task is to do the same sort
of thing that we did to add the elements in a list.

In[6]:= Apply@List, a + b + cD
Out[6]= 8a, b, c<
This works when the list elements are symbols, but it does-
n’t work for a list of numbers.

In[7]:= Apply@List, 1 + 2 + 3D
Out[7]= 6

In order to understand the reason for the different
results obtained above, it is necessary to understand how
WL evaluates expressions.

Expressions

à Non-atomic expressions

Non-atomic expressions have parts which can be extracted
from the expression with the Part function, and can be
replaced with the ReplacePart function. For example:

In[8]:= Part@8a, 7, c<, 1D
Out[8]= a

In[9]:= 8a, 7, c<@@0DD
Out[9]= List

Wolfram Programming Language Fundamentals.nb 3

In[10]:= Part@a + b + c, 0D
Out[10]= Plus

In[11]:= ReplacePart@8a, 7, c<, e, 2D
Out[11]= 8a, e, c<

à Atomic expressions

Atomic expressions constitute the basic “building blocks”
of WL. There are three kinds of atomic expressions:

1. A symbol, consisting of a letter followed by letters
and numbers (eg., darwin)

2. Four kinds of numbers:

integer numbers (eg., 4)

real numbers (eg., 5.201)

complex numbers (eg., 3+4I)

rational numbers (eg., 5/7)

3. A string, comprised of letters, numbers and spaces
(ie., ASCII characters) between quotes (eg., "Computer Simu�
lations with Mathematica")

Atomic expressions differ from non-atomic expressions in
several ways:

The FullForm of an atomic expression is the atom itself.

In[12]:= 8FullForm@darwinD, FullForm@4D,
FullForm@"Computer Simulations with Mathematica"D<

Out[12]= 8darwin, 4, "Computer Simulations with Mathematica"<
The head (or 0th part) of an atom is the type of atom that
it is.

In[13]:= 8Head@ListD, Head@
"Computer Simulations with Mathematica"D, 5@@0DD<

Out[13]= 8Symbol, String, Integer<
An atomic expression has no parts which can be extracted
or replaced.

4 Wolfram Programming Language Fundamentals.nb

An atomic expression has no parts which can be extracted
or replaced.

In[14]:= Part@"Computer Simulations with Mathematica", 1D
Part::partd : Part specification

Computer Simulations with MathematicaP1T
is longer than depth of object. More…

Out[14]= Computer Simulations with MathematicaP1T

à Compound expressions

A CompoundExpression is an expression consisting of a
sequence of expressions separated by semi-colons (;).

expr1; expr2; …; exprn

In[15]:= a = 5 + 3; 4 a

Out[15]= 32

à Entering an expression

When an expression is entered in WL, it is evaluated and
the result is returned, unless it is followed by a semi-
colon.

In[16]:= 4^3

Out[16]= 64

When an expression is followed by a semi-colon, the expres-
sion is also evaluated, even though nothing is returned.

In[17]:= 2 - 6;

In[18]:= % + 3

Out[18]= -1

In[19]:= %%

Out[19]= -4

When the entered expression is a compound expression, its
contents are evaluated sequentially and the result of the
last evaluation is returned.

Wolfram Programming Language Fundamentals.nb 5

In[20]:= Trace@a = 3 + 5; 4 aD
Out[20]= 8a = 3 + 5; 4 a, 883 + 5, 8<, a = 8, 8<,

88a, 8<, 4 ´ 8, 32<, 32<

à How expressions are evaluated

WL is a term rewriting system (TRS). Whenever an expres-
sion is entered, it is evaluated by term rewriting using
rewrite rules. These rules consist of two parts: a pattern
on the left-hand side and a replacement text on the right-
hand side. When the lhs of a rewrite rule is found to pat-
tern-match part of the expression, that part is replaced
by the rhs of the rule, after substituting values in the
expression which match labelled blanks in the pattern into
the rhs of the rule. Evaluation then proceeds by searching
for further matching rules until no more are found.

The evaluation process in WL can be easily understood with
the following analogy:

Think of your experiences with using a handbook of mathemat-
ical formulas, such as the integral tables of Gradshteyn
and Ryzhik. In order to solve an integral, you consult the
handbook which contains formulas consisting of a left-hand
side (lhs) and a right-hand side (rhs), separated by an
‘equals’ sign. You look for an integration formula in the
handbook whose left-hand side has the same form as your
integral.

Note: While no two formulas in the handbook have the identi-
cal lhs, there may be several whose lhs have the same form
as your integral (eg., one lhs might have specific values
in the integration limits of in the integrand, while
another lhs has unspecified (dummy) variables for these
quantities). When this happens, you use the formula whose
lhs gives the closest fit to your integral.

à
0

1

x2 âx

à xn âx =
xn+1

n + 1

6 Wolfram Programming Language Fundamentals.nb

à x2 âx =
x3

3

à
a

b

xn âx =
bn+1 - an-1

n + 1

à
0

1

xn âx =
1

n + 1

à
a

b

x2 âx =
b3 - a3

n + 1

à
0

1

x2 âx =
1

3

You then replace your integral with the right-hand side of
the matching lhs and you substitute the specific values in
your integral for the corresponding variable symbols in
the rhs.

Finally, you look through the handbook for formulas (eg.,
trigonometric identities or algebraic manipulation) that
can be used to change the answer further.

This depiction provides an excellent description of the WL
evaluation process.

However, the application of the term rewriting process to
a WL expression requires a bit more discussion because a
WL expression consists of parts, a head and zero or more
arguments which are themselves expressions.

expr@expr1, expr2, …, exprnD
It is therefore necessary to understand the order in which
the various parts of an expression are evaluated by term
rewriting.

The implementation of the evaluation procedure is (with a
few exceptions) straightforward:

1. If the expression is a number or a string, it isn’t
changed.

Wolfram Programming Language Fundamentals.nb 7

1. If the expression is a number or a string, it isn’t
changed.

2. If the expression is a symbol, it is rewritten if there
is an applicable rewrite rule in the global rule base; oth-
erwise, it is unchanged.

3. If the expression is not a number, string or symbol,
its parts are evaluated in a specific order:

a. The head of the expression is evaluated.

b. The arguments of the expression are evaluated from left
to right in order. An exception to this occurs when the
head is a symbol with a hold attribute (eg., HoldFirst,
HoldRest, or HoldAll), so that some of its arguments are
left in their unevaluated forms (unless they, in turn,
have the head Evaluate). For example, the Set or SetDe�
layed function which we will discuss in a moment.

4. After the head and arguments of an expression are each
completely evaluated, the expression consisting of the eval-
uated head and arguments is rewritten, after making any nec-
essary changes to the arguments based on the Attributes
(such as Flat, Listable, Orderless) of the head, if there
is an applicable rewrite rule in the global rule base.

5. After carrying out the previous steps, the resulting
expression is evaluated in the same way and then the
result of that evaluation is evaluated, and so on until
there are no more applicable rewrite rules.

The details of the term-rewriting process in steps 2 and 4
are as follows:

a. part of an expression is pattern-matched by the lhs of
a rewrite rule

b. the values which match labelled blanks in the pattern
are substituted into the rhs of the rewrite rule and
evaluated.

c. the pattern-matched part of the expression is replaced
with the evaluated result.

With this understanding of the evaluation procedure, we
can now understand what happened when we entered

8 Wolfram Programming Language Fundamentals.nb

In[21]:= Apply@List, 1 + 2 + 3D
Out[21]= 6

In evaluating this expression, the argument 1+2+3 was evalu-
ated before the Apply function was employed.

à Controlling the evaluation

We should point out that the user can (to some extent)
wrest control of the evaluation process from WL and either
force or prevent evaluation. We won’t go into the details
of doing this but we can indicate functions that can be
used for this purpose: Hold, HoldAll, HoldFirst, HoldRest,
HoldForm, HeldPart, ReleaseHold, Evaluate, Unevaluated,
and Literal.

In order to turn the sum into a list, it is necessary to
prevent the argument Plus[1,2,3] from being prematurely
evaluated before the symbol Plus is replaced with the sym-
bol List.

In[22]:= Apply@List, Unevaluated@1 + 2 + 3DD
Out[22]= 81, 2, 3<
Since term rewriting is based on pattern-matching, we need
to look at the various sorts of patterns that WL
recognizes.

Patterns

à Blanks

Patterns are defined syntactically, ie., by the internal
representation of an expression as given using FullForm.

In general, an expression will be matched by several pat-
terns, of differing specificity. For example, constructing
as many patterns to match x^2, in order of increasing
generality.

1. x raised to the power of two.

2. x raised to the power of a number.

Wolfram Programming Language Fundamentals.nb 9

3. x raised to the power of something.

4. a symbol raised to the power of two.

5. a symbol raised to the power of a number.

6. a symbol raised to the power of something.

7. something raised to the power of two.

8. something raised to the power of a number.

9. something raised to the power of something.

10. something.

The term ‘something’ used above can be replaced by the
term ‘an expression’, so that for example, the last case
says that x^2 pattern-matches an expression (which is true
since x^2 is an expression). To be precise, we need a nota-
tion to designate a pattern that has the form of an expres-
sion. We also need to designate a pattern that has the
form of a sequence of expressions, consecutive expressions
separated by commas.

Patterns are defined in WL as expressions that may contain
blanks. A pattern may contain a single (_) blank, a double
(__) blank, or a triple (___) blank (the differences will
be discussed shortly).

Note: A pattern can be labelled (given a name) by preced-
ing the blank(s) by a symbol, eg., name_ or name__ or
name___. The labelled pattern is matched by exactly the
same expression that matches its unlabeled counterpart
(pattern labeling, as we will see, is used to create dummy
variables).

Note: A blank can be followed by a symbol, eg., _h or __h
or ___h, in which case, an expression must have the head h
to match the pattern (this is used to perform type
checking).

à Pattern-matching an expression

We can use the MatchQ function to determine if a particu-
lar pattern matches an expression or a sequence of expres-
sions. The most specific pattern-match is between an expres-
sion and itself.

10 Wolfram Programming Language Fundamentals.nb

We can use the MatchQ function to determine if a particu-
lar pattern matches an expression or a sequence of expres-
sions. The most specific pattern-match is between an expres-
sion and itself.

In[23]:= MatchQ@x^2, x^2D
Out[23]= True

To make more general (less specific) pattern-matches, a sin-
gle blank is used to represent an individual expression,
which can be any data object.

We’ll work with x^2 to demonstrate the use of the Blank
function in pattern-matching. In the following examples
(which are arbitrarily chosen from the many possible pat-
tern matches), we’ll first state the pattern-match and
then check it using MatchQ.

x^2 pattern matches ‘an expression’.

In[24]:= MatchQ@x^2, _D
Out[24]= True

x^2 pattern-matches ‘x raised to the power of an
expression’.

In[25]:= MatchQ@x^2, x^_D
Out[25]= True

x^2 pattern-matches ‘x raised to the power of an integer’
(to put it more formally, ‘x raised to the power of an
expression whose head is Integer’).

In[26]:= MatchQ@x^2, x^_IntegerD
Out[26]= True

x^2 pattern-matches ‘an expression whose head is Power’.

In[27]:= MatchQ@x^2, _PowerD
Out[27]= True

x^2 pattern-matches ‘an expression whose head is a symbol
and which is raised to the power 2’.

Wolfram Programming Language Fundamentals.nb 11

In[28]:= MatchQ@x^2, _Symbol^2D
Out[28]= True

x^2 pattern-matches ‘an expression raised to the power 2’.

In[29]:= MatchQ@x^2, _^2D
Out[29]= True

x^2 pattern-matches ‘an expression whose head is a symbol
and which is raised to the power of an expression whose
head is an integer’ (or stated less formally, ‘a symbol
raised to the power of an integer’).

In[30]:= MatchQ@x^2, _Symbol^_IntegerD
Out[30]= True

x^2 pattern-matches ‘an expression raised to the power of
an expression’.

In[31]:= MatchQ@x^2, _^_D
Out[31]= True

x^2 pattern-matches ‘x raised to the power of an expres-
sion’ (the label y does not affect the pattern-match).

In[32]:= MatchQ@x^2, x^y_D
Out[32]= True

As a final example, we look at

In[33]:= MatchQ@5^2, _^_D
Out[33]= False

à Pattern-matching a sequence of one or more expressions

A sequence consists of a number of expression separated by
commas. A double blank represents a sequence of one or
more expressions and __h represents a sequence of one or
more expressions, each of which has head h.

For example a sequence in a list pattern-matches a double
blank (note: we are pattern-matching the sequence in the
list, not the list itself)

12 Wolfram Programming Language Fundamentals.nb

For example a sequence in a list pattern-matches a double
blank (note: we are pattern-matching the sequence in the
list, not the list itself)

In[34]:= MatchQ@8a, b, c<, 8__<D
Out[34]= True

but the arguments of an empty list (which has no argu-
ments) do not pattern-match a double blank.

In[35]:= MatchQ@8<, 8__<D
Out[35]= False

An expression that pattern-matches a blank will also pat-
tern match a double blank. For example,

In[36]:= MatchQ@x^2, __D
Out[36]= True

à Pattern-matching a sequence of zero or more expressions

A triple blank represents a sequence of zero or more expres-
sions and ___h represents a sequence of zero or more expres-
sions, each of which has the head h. For example, the
triple blank pattern-matches the empty list.

In[37]:= MatchQ@8<, 8___<D
Out[37]= True

An expression that pattern-matches a blank and a sequence
that pattern-matches a double blank pattern both pattern-
match a triple blank pattern.

In[38]:= MatchQ@x^2, ___D
Out[38]= True

It is important to be aware that for the purposes of pat-
tern-matching, a sequence is not an expression. For
example,

In[39]:= MatchQ@8a, b, c<, 8_<D
Out[39]= False

à Alternative pattern-matching

We can make a pattern-match less restrictive by specifying
alternative patterns that can be matched.

Wolfram Programming Language Fundamentals.nb 13

We can make a pattern-match less restrictive by specifying
alternative patterns that can be matched.

In[40]:= MatchQ@x^2, 8_< _^2D
Out[40]= True

à Conditional pattern-matching

We can make a pattern-match more restrictive by making it
contingent upon meeting certain conditions. (Note: satisfy-
ing these conditions will be a necessary, but not suffi-
cient, requirement for a successful pattern-match.)

If the blanks of a pattern are followed by ?test, where
test is a predicate (ie., a function that returns a True
or False), then a pattern-match is only possible if test
returns True when applied to the entire expression. ?test
is used with built-in predicate functions and with anony-
mous predicate functions.

In[41]:= MatchQ@x^2, _^_?OddQD
Out[41]= False

In[42]:= MatchQ@2, _?Hð > 3 &LD
Out[42]= False

In[43]:= MatchQ@2, _?Hð > 1.5 &LD
Out[43]= True

In[44]:= MatchQ@2, _Integer?Hð > 3 &LD
Out[44]= False

If part of a labeled pattern is followed by /; condition,
where condition contains labels appearing in the pattern,
then a pattern-match is possible only if condition returns
True when applied to the labelled parts of an expression.
For example,

In[45]:= MatchQ@x^2, _^y_D
Out[45]= True

14 Wolfram Programming Language Fundamentals.nb

In[46]:= MatchQ@a^b, _^y_ �; Head@yD � SymbolD
Out[46]= True

With this understanding of how pattern-matching works in
WL, we can discuss how to create our own rewrite rules
which can be used in term rewriting.

Rewrite rules

à Built-in functions

WL provides many built-in functions that can be used for
term rewriting. These rules are located in the global rule
base whenever WL is running. Functions defined in a pack-
age are also placed in the global rule base during the ses-
sion in which the package is loaded. Functions in the
global rule base are always available for term rewriting
and they are always used whenever applicable.

à User-defined functions

In addition to the built-in rewrite rules, user-defined
rewrite rules can be created and placed in the global rule
base where they are always available, and always used,
when applicable for the duration of the ongoing session.
However, they are not automatically preserved beyond the
session in which they are created.

There are basically two ways to create a user-defined
rewrite rule: with the Set function and with the SetDe�
layed function.

à Declaring a value using the Set (=) function

A value declaration is essentially a nickname for a value
(eg., for a list or number) which can be used in place of
the value. It is written using Set[lhs, rhs] or, more com-
monly, as

lhs = rhs

The lhs starts with a name, starting with a letter fol-
lowed by letters and/or numbers (with no spaces). The rhs
is either an expression or a compound expression enclosed
in parentheses.

Wolfram Programming Language Fundamentals.nb 15

The lhs starts with a name, starting with a letter fol-
lowed by letters and/or numbers (with no spaces). The rhs
is either an expression or a compound expression enclosed
in parentheses.

Note: the name on the lhs may be followed by a set of
square brackets containing a sequence of patterns or
labelled patterns, and the rhs may contain the labels, with-
out the blanks.

For example, consider the following two simple Set
functions

In[47]:= a = 8-1, 1<
Out[47]= 8-1, 1<
In[48]:= rand1 = RandomInteger@81, 2<D
Out[48]= 2

Notice that when a Set function is entered, a value is
returned (unless it is followed by a semi-colon). If we
look into the global rule base to see what rewrite rules
have been created when a and rand1 were entered

In[49]:= ? a

Global`a

a = 8-1, 1<
In[50]:= ? rand1

Global`rand1

rand1 = 2

we find that the rewrite rule associated with a is the
same as the Set function we entered, but the rewrite rule
associated with rand1 differs from the corresponding Set
function. The reason for this is that when a Set function
is entered into the global rule base, its lhs is left
unevaluated while its rhs is evaluated and when the
rewrite rule that has been created is used, the unevalu-
ated lhs and the evaluated rhs of the function are used.
This property is known as the HoldFirst attribute.

In[51]:= Attributes@SetD
Out[51]= 8HoldFirst, Protected, SequenceHold<

16 Wolfram Programming Language Fundamentals.nb

In[52]:= ? HoldFirst

HoldFirst is an attribute which specifies that
the first argument to a function is to be
maintained in an unevaluated form. More…

The reason for the Set function having the HoldFirst
attribute is easily demonstrated by seeing what happens
when Set does not have this attribute.

In[53]:= Set@a, 6D
Out[53]= 6

In[54]:= a

Out[54]= 6

In[55]:= ClearAttributes@Set, HoldFirstD
In[55]:= Attributes@SetD
Out[55]= 8Protected, SequenceHold<
In[55]:= Set@a, 7D

Set::setraw : Cannot assign to raw object 6. More…

Out[55]= 7

In[55]:= SetAttributes@Set, HoldFirstD
In[56]:= Attributes@SetD
Out[56]= 8HoldFirst, Protected, SequenceHold<
When the rhs is a compound expression enclosed in parenthe-
ses, the expressions of the rhs are evaluated in sequence
and the rhs of the resulting rewrite rule is the result of
the final evaluation. For example,

In[57]:= rand2 = Hb = 8-1, 1<; RandomReal@bDL
Out[57]= -0.642186

In[58]:= ? rand2

Global`rand2

rand2 = -0.642186

What happened here is that the b was first evaluated to
give {-1,1} and this value was then used to evaluate the
random number function.

Wolfram Programming Language Fundamentals.nb 17

What happened here is that the b was first evaluated to
give {-1,1} and this value was then used to evaluate the
random number function.

The order of expressions on the rhs is important. An expres-
sion on the rhs must appear before it is used in another
expression on the rhs. For example,

In[59]:= rand3 = HRandomReal@cD; c = 8-1, 1<L
Random::randn :
Range specification c in Random@Real, cD is

not a valid number or pair of numbers. More…

Out[59]= 8-1, 1<
Note that even though an error message was generated when
the first expression in the compound expression was evalu-
ated, the overall evaluation of the compound expression con-
tinued by evaluated the second expression and its value
was then entered into the global rule base.

In[60]:= ? rand3

Global`rand3

rand3 = 8-1, 1<
In[61]:= ? c

Global`c

c = 8-1, 1<
When a Set function is entered, both it and any Set or
SetDelayed functions on the rhs create rewrite rules in
the global rule base.

In[62]:= ? b

Global`b

b = 8-1, 1<
In[63]:= ? c

Global`c

c = 8-1, 1<
After a value has been declared by entering a Set func-
tion, the appearance of the value’s name during an evalua-
tion causes the value itself to be substituted in (which
is why we say that it acts like a nickname). For example,

18 Wolfram Programming Language Fundamentals.nb

After a value has been declared by entering a Set func-
tion, the appearance of the value’s name during an evalua-
tion causes the value itself to be substituted in (which
is why we say that it acts like a nickname). For example,

In[64]:= Abs@rand2D
Out[64]= 0.642186

What happened here was that the rewrite rule associated
with rand2 in the global rule base was used as an argument
to the Abs function.

The lhs of a rewrite rule can only be associated with one
value at a time. When a Set function is entered, the result-
ing rewrite rule ‘overwrites’ any previous rewrite rule
with the identical lhs. For example,

In[65]:= rand4 = RandomInteger@81, 2<D;
In[66]:= ? rand4

Global`rand4

rand4 = 2

In[67]:= rand4 = RandomInteger@81, 2<D;
In[68]:= ? rand4

Global`rand4

rand4 = 1

What we see is that the value of rand4 was 2 after rand4
was first entered and this value was then changed to 1
after rand4 was re-entered.

While the lhs of a rewrite rule can only be associated
with one value at a time, a value can be associated with
several names, simultaneously. We made use of this earlier
when we defined both b and c as {-1,1}.

Finally, user-defined rewrite rules can be removed from
the global rule base using either the Clear or Remove
function.

In[69]:= Clear@bD
In[70]:= ? b

Global`b

Wolfram Programming Language Fundamentals.nb 19

In[71]:= Remove@cD
In[72]:= ? c

Information::notfound : Symbol c not found. More…

à Defining a function using the SetDelayed (:=) function

Function definitions (ie., programs) are written as

name@arg1_, arg2_, …, argn_D := Hexpr1; expr2; … exprmL

The lhs starts with a name. The name is followed by a set
of square brackets containing a sequence of labelled pat-
terns, which are symbols ending with one or more under-
scores (ie., blanks). The rhs is either an expression or a
compound expression enclosed in parentheses, containing
the labels on the lhs (without the blanks).

For example, consider the function definition

f@x_D := Random@Real, 80, x<D

We’ll enter this program

In[73]:= f@x_D := RandomReal@80, x<D
The first thing we notice is that, in contrast to a Set
function, nothing is returned when a SetDelayed function
is entered. If we query the rule base,

In[74]:= ? f

Global`f

f@x_D := Random@Real, 80, x<D
we see that a rewrite rule associated with f has been
placed in the global rule base that is identical to the
SetDelayed function. The reason is that when a SetDelayed
function is entered both its lhs and the rhs are left
unevaluated. This property is known as the HoldAll
attribute.

In[75]:= Attributes@SetDelayedD
Out[75]= 8HoldAll, Protected, SequenceHold<

20 Wolfram Programming Language Fundamentals.nb

In[76]:= ? HoldAll

HoldAll is an attribute which specifies that
all arguments to a function are to be
maintained in an unevaluated form. More…

A user-defined function is called in the same way as a
built-in function is called, by entering its name with spe-
cific argument value(s).

In[77]:= f@8D
Out[77]= 0.791243

Each time the lhs of a SetDelayed rewrite rule is entered
with specific argument values, the rhs of the rule is evalu-
ated using these values, and the result is returned.

In[78]:= f@8D
Out[78]= 3.20796

Note: In contrast to the := function, the = function only
evaluates the rhs when it is first entered and thereafter,
that same evaluated rhs is returned each time the lhs is
entered with specific argument values. For example,
consider

In[79]:= f@x_D = x;

In[80]:= ? f

Global`f

f@x_D = x

In[81]:= f@9D
Out[81]= 9

In[82]:= f@7D
Out[82]= 7

In[83]:= ? f

Global`f

f@x_D = x

The definition of f above seems to work fine. However, the
problem arises when the rhs of the Set function has
already had a value assigned to it prior to the entry of
the Set function.

Wolfram Programming Language Fundamentals.nb 21

The definition of f above seems to work fine. However, the
problem arises when the rhs of the Set function has
already had a value assigned to it prior to the entry of
the Set function.

In[84]:= y = 7;

In[85]:= g@y_D = y;

In[86]:= ? g

Global`g

g@y_D = 7

In[87]:= g@3D
Out[87]= 7

This problem does not arise when the SetDelayed function
is used.

In[88]:= z = 8;

In[89]:= g@z_D := z

In[90]:= ? g

Global`g

g@z_D := z

In[91]:= g@2D
Out[91]= 2

This property of fresh evaluation of both the lhs and rhs
of the := function with each use, is why the := function
is used to write programs rather than the = function.

When the rhs of the SetDelayed function is a compound
expression enclosed in parentheses, no rewrite rules are
created from the auxiliary functions on the rhs when the
function is entered (this is because the rhs is not evalu-
ated). When the program is run (or equivalently, a user-
defined function is called) for the first time, all of the
auxiliary functions are then placed in the global rule
base.

In[92]:= g@x_D := Hd = 2; x + dL

22 Wolfram Programming Language Fundamentals.nb

In[93]:= ? g

Global`g

g@x_D := Hd = 2; x + dL
In[94]:= ? d

Global`d

In[95]:= g@3D
Out[95]= 5

In[96]:= ? d

Global`d

d = 2

à Placing constraints on a rewrite rule

The use of a rewrite rule can be restricted by attaching
constraints on either the lhs or the rhs of a SetDelayed
rule. Conditional pattern-matching with _h or with _? and
_/; can be attached to the dummy variable arguments on the
lhs. Also, /; can be placed on the rhs, immediately after
the (compound) expression.

In[97]:= s@x_?EvenQD := N@Sqrt@xDD
In[98]:= s@6D
Out[98]= 2.44949

In[99]:= s@5D
Out[99]= s@5D

à Localizing names in a rewrite rule

As we have pointed out, when the lhs of a Set or SetDe�
layed function is evaluated (which occurs when a Set func-
tion is first entered and when a SetDelayed rewrite rule
is first called), rewrite rules for all of its auxiliary
functions are placed in the global rule base. This can
cause a problem if a name being used in a program con-
flicts with the use of the name elsewhere.

We can prevent a name clash by ‘insulating’ the auxiliary
functions within the rewrite rule so that they are not
placed in the global rule base as separate rewrite rules;
they will only ‘exist’ while being used in the evaluation
of the rule.

Wolfram Programming Language Fundamentals.nb 23

We can prevent a name clash by ‘insulating’ the auxiliary
functions within the rewrite rule so that they are not
placed in the global rule base as separate rewrite rules;
they will only ‘exist’ while being used in the evaluation
of the rule.

This is usually done using the Module function.

lhs := Module@8name1 = val1, name2, …<, rhsD
For example,

In[100]:=

t@y_D := Module@8m<, m = 2; y + mD
In[101]:=

? m

Global`m
In[102]:=

t@3D
Out[102]=

5

In[103]:=

? m

Global`m

à Ordering rewrite rules

When the lhs of more than one built-in and/or user-defined
rewrite rule is found to pattern-match an expression
(which occurs when the lhs’s only differ in their speci-
ficity), the choice of which rule to use is determined by
the order of precedence:

A user-defined rule is used before a built-in rule.

A more specific rule is used before a more general rule (a
rule is more specific, the fewer expression it pattern-
matches).

So, for example, if we have two rewrite rules whose lhs’s
have the same name but whose labelled patterns have differ-
ent specificity, both rules will appear in the global rule
base (since their lhs’s are not identical) and the more spe-
cific rule will be used in preference to the more general
rule. For example, if we enter both of the following func-
tion definitions

24 Wolfram Programming Language Fundamentals.nb

So, for example, if we have two rewrite rules whose lhs’s
have the same name but whose labelled patterns have differ-
ent specificity, both rules will appear in the global rule
base (since their lhs’s are not identical) and the more spe-
cific rule will be used in preference to the more general
rule. For example, if we enter both of the following func-
tion definitions

In[104]:=

f@x_D := x ^2
f@x_IntegerD := x ^3

and then query the rule base,

In[106]:=

? f

Global`f

f@x_IntegerD := x3

f@x_D := x2

Now, entering f with a real-valued argument

In[107]:=

f@6.D
Out[107]=

36.

returns a different result from entering f with an integer-
valued argument.

In[108]:=

f@6D
Out[108]=

216

This occurs because while an integer-valued argument pat-
tern-matches both x_ and x_Integer (and hence pattern-
matches both of the f rewrite rules), the second rule is a
more specific pattern-match for the integer value 6.

Note: If WL cannot deduce which rule is more general, it
uses the rules in the order in which they appear in the
global rule base.

The ordering of rewrite rules makes it possible for us to
create sets of rewrite rules with the same name that give
different results, depending on the arguments used. This
is key to writing rule-based programs.

Note: It is necessary to be careful about the labelling of
patterns in rewrite rules because if two or more rules are
identical except for the labelling, these rules will all
be placed in the global rule base and it may not be obvi-
ous which rule will be used. For example,

Wolfram Programming Language Fundamentals.nb 25

Note: It is necessary to be careful about the labelling of
patterns in rewrite rules because if two or more rules are
identical except for the labelling, these rules will all
be placed in the global rule base and it may not be obvi-
ous which rule will be used. For example,

In[109]:=

w@x_D := x ^4

In[110]:=

w@_D := RandomReal@D
In[111]:=

w@2D
Out[111]=

16

In[112]:=

? w

Global`w

w@x_D := x4

w@_D := Random@D

Transformation rules

There are times when we want a rewrite rule to only be
applied to (ie., used inside) a specific expression,
rather than being placed in the global rule base where it
will be used whenever it pattern-matches an expression.
For example, the ‘temporary’ substitution of a value for a
name in an expression may be preferable to the permanent
assignment of the name to the value via a Set function.
When this is the case, the ReplaceAll function can be used
together with a Rule or RuleDelayed function to create a
transformation (or local rewrite) rule which is placed
directly after the expression to which it is to be applied.

à Using the Rule (->) function

A Rule function is attached to an expression. It is written

expression �. lhs ® rhs

The lhs can be written using symbols, numbers or labelled
patterns.

When an expression with an attached Rule transformation
rule is entered, the expression itself is evaluated first.
Then, both the lhs and the rhs of the Rule transformation
rule are evaluated. Finally, the fully evaluated transforma-
tion rule is used in the evaluated expression. For example

26 Wolfram Programming Language Fundamentals.nb

When an expression with an attached Rule transformation
rule is entered, the expression itself is evaluated first.
Then, both the lhs and the rhs of the Rule transformation
rule are evaluated. Finally, the fully evaluated transforma-
tion rule is used in the evaluated expression. For example

In[113]:=

Clear@aD
In[114]:=

Table@1, 84<D �. RandomInteger@80, 1<D ® a
Out[114]=

8a, a, a, a<
In[115]:=

Table@1, 84<D �. RandomInteger@80, 1<D ® a
Out[115]=

81, 1, 1, 1<
In[116]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[116]=

8b, b, b, b<
In[117]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[117]=

81, 1, 1, 1<
In[118]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ® 8a, b<PRandomInteger@81, 2<DT

Out[118]=

8a, a, a, a<
We can attach a list of rules to an expression using

expression �. 8lhs1 ® rhs1, lhs2 ® rhs2, …<
For example,

In[119]:=

8a, b, c< �. 8c ® b, b ® a<
Out[119]=

8a, a, b<
Multiple transformation rules are used in parallel. The
rules are applied in order so that a later rule in the
list is used only if all the earlier rules do not match,
and only one transformation rule at most, is applied to a
given part of an expression, and no matching rules are
used thereafter, as the above example illustrates.

Wolfram Programming Language Fundamentals.nb 27

Multiple transformation rules are used in parallel. The
rules are applied in order so that a later rule in the
list is used only if all the earlier rules do not match,
and only one transformation rule at most, is applied to a
given part of an expression, and no matching rules are
used thereafter, as the above example illustrates.

à Using the RuleDelayed (:>) function

A RuleDelayed function is attached to an expression. It is
written

expression �. lhs ¦ rhs

or, for a list of rules

expression �. 8lhs1 ¦ rhs2, lhs2 ¦ rhs2, …<
The lhs can be written using symbols, numbers or labelled
patterns.

When an expression with an attached rule is entered, the
expression itself is evaluated first. Then, the lhs of the
RuleDelayed transformation rule is evaluated but the rhs
is not evaluated. Finally, the partially evaluated transfor-
mation rule is used in the evaluated expression (the uneval-
uated rhs will be evaluated subsequently).

For example,

In[120]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[120]=

8a, b, b, b<
In[121]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[121]=

8b, a, b, a<
In[122]:=

Table@1, 84<D �.
RandomInteger@80, 1<D ¦ 8a, b<PRandomInteger@81, 2<DT

Out[122]=

81, 1, 1, 1<

28 Wolfram Programming Language Fundamentals.nb

à Placing constraints on a transformation rule

By placing /; condition immediately after a RuleDelayed :>
transformation rule, its use can be restricted in the same
way that using /; condition can be used to restrict the
use of a SetDelayed rewrite rule.

Note: Placing a /; condition after a Rule -> transforma-
tion rule serves no purpose since the rhs of the rule has
already been evaluated before it is used and hence the con-
ditional restriction is ignored.

à Applying a transformation rule repeatedly

To apply one or more transformation rules repeatedly to an
expression until the expression no longer changes, the
ReplaceRepeated function is used. For example,

In[123]:=

8a, b, c< ��. 8c ® b, b ® a<
Out[123]=

8a, a, a<
Note: In using //. with a list of transformation rules, it
is important to keep in mind the order of application of
the rules. The transformation rules are not repeatedly
applied in order. Rather, each rule, in turn, is applied
repeatedly.

rule evaluated unevaluated

lhs = rhs rhs lhs
lhs := rhs lhs, rhs
expr �. lhs ® rhs expr, lhs, rhs
expr �. lhs ¦ rhs expr, lhs rhs

Functional programming style

WL works with built-in and user-defined functions in ways
which are characteristic of the ‘functional’ style of
programming.

à Nested function calls

Consider the following consecutive computations:

Wolfram Programming Language Fundamentals.nb 29

In[124]:=

Tan@4.0D
Out[124]=

1.15782

In[125]:=

Sin@%D
Out[125]=

0.915931

In[126]:=

Cos@%D
Out[126]=

0.609053

We can combine these function calls into a nested function
call.

In[127]:=

Cos@Sin@Tan@4.0DDD
Out[127]=

0.609053

Notice that the result of one function call is immediately
fed into another function without having to first name (or
declare) the result.

A nested function call is the application of a function to
the result of applying another function to some argument
value. In applying functions successively, it is not neces-
sary to declare the value of the result of one function
call prior to using it as an argument in another function
call.

We can illustrate the use of nested function calls using a
deck of playing cards:

In[128]:=

Range@2, 10D
Out[128]=

82, 3, 4, 5, 6, 7, 8, 9, 10<
In[129]:=

Join@%, 8J, Q, K, A<D
Out[129]=

82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<

30 Wolfram Programming Language Fundamentals.nb

In[130]:=

Outer@List, 8§, ¨, ©, ª<, %D
Out[130]=

888§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<<,

88¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<<,

88©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<<,

88ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<<

In[131]:=

Flatten@%, 1D
Out[131]=

88§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<,
8¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<,
8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<,
8ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<

Combining these operations, we can define cardDeck by com-
bining the operations above.

In[132]:=

cardDeck = Flatten@Outer@List, 8§, ¨, ©, ª<,
Join@Range@2, 10D, 8J, Q, K, A<DD, 1D

Out[132]=

88§, 2<, 8§, 3<, 8§, 4<, 8§, 5<, 8§, 6<, 8§, 7<, 8§, 8<,
8§, 9<, 8§, 10<, 8§, J<, 8§, Q<, 8§, K<, 8§, A<,
8¨, 2<, 8¨, 3<, 8¨, 4<, 8¨, 5<, 8¨, 6<, 8¨, 7<, 8¨, 8<,
8¨, 9<, 8¨, 10<, 8¨, J<, 8¨, Q<, 8¨, K<, 8¨, A<,
8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, J<, 8©, Q<, 8©, K<, 8©, A<,
8ª, 2<, 8ª, 3<, 8ª, 4<, 8ª, 5<, 8ª, 6<, 8ª, 7<, 8ª, 8<,
8ª, 9<, 8ª, 10<, 8ª, J<, 8ª, Q<, 8ª, K<, 8ª, A<<

Wolfram Programming Language Fundamentals.nb 31

Shuffling a deck of cards

In[133]:=

Transpose@Sort@
Transpose@8RandomReal@80, 1<, 52D, cardDeck<DDDP2T

Out[133]=

88ª, 6<, 8ª, A<, 8©, 9<, 8©, 10<, 8¨, 6<, 8©, 7<,
8§, K<, 8¨, 4<, 8ª, 7<, 8§, 6<, 8§, 9<, 8©, A<, 8©, 3<,
8ª, 10<, 8ª, J<, 8¨, 2<, 8©, 2<, 8ª, 5<, 8§, J<,
8§, 4<, 8¨, A<, 8ª, K<, 8©, 5<, 8§, 3<, 8§, Q<, 8§, A<,
8©, 6<, 8©, Q<, 8ª, Q<, 8¨, 9<, 8§, 5<, 8ª, 3<, 8¨, J<,
8ª, 9<, 8©, 4<, 8ª, 4<, 8©, K<, 8§, 2<, 8¨, 10<,
8§, 10<, 8¨, Q<, 8¨, K<, 8¨, 7<, 8¨, 5<, 8§, 8<,
8¨, 3<, 8©, 8<, 8¨, 8<, 8ª, 8<, 8ª, 2<, 8§, 7<, 8©, J<<

Note: We can also shuffle a deck of cards using a transfor-
mation rule.

In[134]:=

Sort@Transpose@8RandomReal@80, 1<, 52D, cardDeck<DD �.
8_, y_< ¦ y

Out[134]=

88ª, K<, 8ª, 6<, 8¨, 4<, 8§, K<, 8¨, A<, 8©, Q<, 8ª, 4<,
8§, 7<, 8§, 3<, 8¨, 10<, 8ª, 10<, 8¨, 9<, 8§, 10<,
8¨, J<, 8ª, 7<, 8¨, 3<, 8§, J<, 8©, 2<, 8ª, 9<, 8©, A<,
8ª, A<, 8©, 6<, 8¨, 5<, 8©, 9<, 8ª, 3<, 8§, 2<, 8§, A<,
8¨, K<, 8ª, J<, 8¨, 2<, 8©, 8<, 8¨, 7<, 8ª, 5<,
8§, 6<, 8§, Q<, 8¨, 6<, 8©, 10<, 8¨, Q<, 8¨, 8<,
8ª, 2<, 8©, 3<, 8©, J<, 8ª, Q<, 8©, 7<, 8©, K<,
8ª, 8<, 8§, 8<, 8©, 5<, 8§, 4<, 8©, 4<, 8§, 5<, 8§, 9<<

à Anonymous functions

User-defined anonymous functions can be created and used
‘on the spot’ without being named or entered prior to
being used.

An anonymous function is written using the same form as
the rhs of a rewrite rule, replacing variable symbols with
#1, #2, … and enclosing the expression in parentheses fol-
lowed by an ampersand (&).

This notation can be demonstrated by converting some sim-
ple user-defined functions into anonymous functions. For
example, a rewrite rule that squared a value

32 Wolfram Programming Language Fundamentals.nb

This notation can be demonstrated by converting some sim-
ple user-defined functions into anonymous functions. For
example, a rewrite rule that squared a value

In[135]:=

square@x_D := x ^2

can be written as an anonymous function and applied to an
argument, eg., 5, instantly.

In[136]:=

Hð ^2L &@5D
Out[136]=

25

An example of an anonymous function with two arguments,
raises the first argument to the power of the second
argument.

In[137]:=

Hð1^ð2L &@5, 3D
Out[137]=

125

It is important to distinguish between an anonymous func-
tion which takes multiple arguments and an anonymous func-
tion which takes a list with multiple elements as its
argument.

For example, the anonymous function just given doesn’t
work with an ordered pair argument.

In[138]:=

Hð1^ð2L &@82, 3<D
Function::slotn :

Slot number 2 in ð1ð2 & cannot be filled

from Ið1ð2 &M@82, 3<D. More…

Out[138]=

92ð2, 3ð2=

If we want to perform the operation on the components of
an ordered pair, the appropriate anonymous function is

Wolfram Programming Language Fundamentals.nb 33

In[139]:=

Hð@@1DD^ð@@2DDL &@82, 3<D
Out[139]=

8

à Nesting anonymous functions

Anonymous functions can be nested, in which case it is some-
times necessary to use the form

Function@x, bodyD
Function@8x, y, …<, bodyD

rather than the #·& form, in order to distinguish between
the arguments of the different anonymous functions.

In[140]:=

Hð ^3L &@Hð + 2L &@3DD
Out[140]=

125

In[141]:=

Function@y, y ^3D@Function@x, x + 2D@3DD
Out[141]=

125

The two forms can also be used together.

In[142]:=

Function@y, y ^3D@Hð + 2L &@3DD
Out[142]=

125

In[143]:=

Hð ^3L &@Function@x, x + 2D@3DD
Out[143]=

125

Anonymous functions are useful for making predicates and
arguments for higher-order functions.

Note: An anonymous predicate function must be written
using the #·& form.

à Higher-order functions

A higher-order function takes a function as an argument
and/or returns a function as a result. This is known as
‘treating functions as first-class objects’. We’ll illus-
trate the use of some of the most important built-in
higher order functions.

34 Wolfram Programming Language Fundamentals.nb

A higher-order function takes a function as an argument
and/or returns a function as a result. This is known as
‘treating functions as first-class objects’. We’ll illus-
trate the use of some of the most important built-in
higher order functions.

Apply
In[144]:=

? Apply

Apply@f, exprD or f �� expr replaces
the head of expr by f. Apply@f, expr,
levelspecD replaces heads in parts
of expr specified by levelspec. More…

We have already seen Apply used to add the elements of a
linear list. Given a nested list argument, Apply can be
used on the outer list or the interior lists. For example,
for a general function, f, and a nested list.

In[145]:=

Apply@f, 88a, b<, 8c, d<<D
Out[145]=

f@8a, b<, 8c, d<D
In[146]:=

Apply@f, 88a, b<, 8c, d<<, 2D
Out[146]=

8f@a, bD, f@c, dD<

Map
In[147]:=

? Map

Map@f, exprD or f �� expr applies f to
each element on the first level in expr.
Map@f, expr, levelspecD applies f to
parts of expr specified by levelspec. More…

For a general function, f, and a linear list.

In[148]:=

Map@f, 8a, b, c, d<D
Out[148]=

8f@aD, f@bD, f@cD, f@dD<
For a nested list structure, Map can be applied to either
the outer list or to the interior lists, or to both. For
example, for a general function g:

Wolfram Programming Language Fundamentals.nb 35

For a nested list structure, Map can be applied to either
the outer list or to the interior lists, or to both. For
example, for a general function g:

In[149]:=

Map@g, 88a, b<, 8c, d<<D
Out[149]=

8g@8a, b<D, g@8c, d<D<
In[150]:=

Map@g, 88a, b<, 8c, d<<, 82<D
Out[150]=

88g@aD, g@bD<, 8g@cD, g@dD<<

MapThread
In[151]:=

? MapThread

MapThread@f, 88a1, a2, ... <, 8b1,
b2, ... <, ... <D gives 8f@a1, b1, ...
D, f@a2, b2, ... D, ... <. MapThread@f,
8expr1, expr2, ... <, nD applies f to
the parts of the expri at level n. More…

For a general function, g, and a nested list.

In[152]:=

MapThread@g, 88a, b, c<, 8x, y, z<<D
Out[152]=

8g@a, xD, g@b, yD, g@c, zD<
In[153]:=

MapThread@List, 88a, b, c<, 8x, y, z<<D
Out[153]=

88a, x<, 8b, y<, 8c, z<<
In[154]:=

MapThread@Plus, 88a, b, c<, 8x, y, z<<D
Out[154]=

8a + x, b + y, c + z<

NestList and Nest

Nest performs a nested function call, applying the same
function repeatedly.

36 Wolfram Programming Language Fundamentals.nb

Nest performs a nested function call, applying the same
function repeatedly.

The Nest operation applies a function to a value, then
applies the function to the result, and then applies the
function to that result and then applies… and so on a speci-
fied number of times.

In[155]:=

? NestList

NestList@f, expr, nD gives a list of the results of
applying f to expr 0 through n times. More…

In[156]:=

80.7, Sin@0.7D, Sin@Sin@0.7DD, Sin@Sin@Sin@0.7DDD<
Out[156]=

80.7, 0.644218, 0.600573, 0.565115<
In[157]:=

NestList@Sin, 0.7, 3D
Out[157]=

80.7, 0.644218, 0.600573, 0.565115<
If we are only interested in the final result of the
NestList operation, we can use the Nest function which
does not return the intermediate results.

In[158]:=

? Nest

Nest@f, expr, nD gives an expression
with f applied n times to expr. More…

In[159]:=

Nest@Sin, 0.7, 3D
Out[159]=

0.565115

FixedPointList and FixedPoint

The Nest operation does not stop until it has completed a
specified number of function applications. There is
another function which performs the Nest operation, stop-
ping after whichever of the following occurs first: (a)
there have been a specified number of function applica-
tions, (b) the result stops changing, or (c) some predi-
cate condition is met.

Wolfram Programming Language Fundamentals.nb 37

The Nest operation does not stop until it has completed a
specified number of function applications. There is
another function which performs the Nest operation, stop-
ping after whichever of the following occurs first: (a)
there have been a specified number of function applica-
tions, (b) the result stops changing, or (c) some predi-
cate condition is met.

In[160]:=

? FixedPointList

FixedPointList@f, exprD generates a list giving the
results of applying f repeatedly, starting with
expr, until the results no longer change. More…

In[161]:=

? FixedPoint

FixedPoint@f, exprD starts with
expr, then applies f repeatedly until
the result no longer changes. More…

As an example,

In[162]:=

FixedPointList@Sin, 0.7, 5, SameTest ® Hð2 < 0.65 &LD
Out[162]=

80.7, 0.644218<
In[163]:=

FixedPointList@Sin, 0.7,
5, SameTest ® HHð1 - ð2L < 0.045 &LD

Out[163]=

80.7, 0.644218, 0.600573<
Note: In these examples, #1 refers to the next-to-last ele-
ment in the list being generated and #2 refers to the last
element in the list.

FoldList and Fold
In[164]:=

? FoldList

FoldList@f, x, 8a, b, ... <D gives
8x, f@x, aD, f@f@x, aD, bD, ... <. More…

In[165]:=

? Fold

Fold@f, x, listD gives the last
element of FoldList@f, x, listD. More…

The Fold operation takes a function, a value and a list,
applies the function to the value, and then applies the
function to the result and the first element of the list,
and then applies the function to the result and the second
element of the list and so on. For example,

38 Wolfram Programming Language Fundamentals.nb

The Fold operation takes a function, a value and a list,
applies the function to the value, and then applies the
function to the result and the first element of the list,
and then applies the function to the result and the second
element of the list and so on. For example,

In[166]:=

Fold@Plus, 0, 8a, b, c, d<D
Out[166]=

a + b + c + d

In[167]:=

FoldList@Plus, 0, 8a, b, c, d<D
Out[167]=

80, a, a + b, a + b + c, a + b + c + d<
In[168]:=

FoldList@Plus, 0, RandomInteger@80, 1<, 5DD
Out[168]=

80, 1, 1, 2, 2, 2<

Examples of WL Programs

The Game of Life (GoL) is undoubtably, the most famous cel-
lular automaton (CA) and watching the GoL program run
offers deep insight into fundamental tenets concerning the
modeling of natural phenomena. The GoL was created in 1969
by the mathematician John Conway and was published in Mar-
tin Gardner’s Scientific American column (see http://www.-
maa.org/sites/default/files/pdf/pubs/focus/Gardner_GameofLi
fe10-1970.pdf). The GoL can be described as follows:

On an ‘n by n’ two-dimensional square grid (aka
‘checkerboard’), each of the n^2 cells (aka ‘sites’) can
have two possible values, 0 (aka a ‘dead’ cell) or 1 (aka
a ‘live’ cell). On each time step, the values of all of
the cells are updated simultaneously, based on the value
of a cell and the sum of the values of the cells adjacent
to (i.e. touching) the cell being updated. The neighbor-
hood’ of a cell is comprised of the 8 nearest-neighbor
(nn) cells, lying north, northeast, east, southeast,
south, southwest, west, and northwest of the cell (these
nn cells comprise what is known as the Moore neighbor-
hood). The rules governing the updating are as follows:

(1) if a cell is alive and has exactly two living nn cell,
the cell remains alive (if its value is 1, it remains 1).

(2) if a cell has exactly three living nn sites, the cell
remains alive (if its value is 1, it remains 1) or

 is ‘born’and becomes alive (if its value is 0, it
changes to 1).

(3) any other cell either remains dead (if its value is 0,
it remains 0) or ‘dies’ and becomes dead (if its value is
1, it changes to 0).

Wolfram Programming Language Fundamentals.nb 39

On an ‘n by n’ two-dimensional square grid (aka
‘checkerboard’), each of the n^2 cells (aka ‘sites’) can
have two possible values, 0 (aka a ‘dead’ cell) or 1 (aka
a ‘live’ cell). On each time step, the values of all of
the cells are updated simultaneously, based on the value
of a cell and the sum of the values of the cells adjacent
to (i.e. touching) the cell being updated. The neighbor-
hood’ of a cell is comprised of the 8 nearest-neighbor
(nn) cells, lying north, northeast, east, southeast,
south, southwest, west, and northwest of the cell (these
nn cells comprise what is known as the Moore neighbor-
hood). The rules governing the updating are as follows:

(1) if a cell is alive and has exactly two living nn cell,
the cell remains alive (if its value is 1, it remains 1).

(2) if a cell has exactly three living nn sites, the cell
remains alive (if its value is 1, it remains 1) or

 is ‘born’and becomes alive (if its value is 0, it
changes to 1).

(3) any other cell either remains dead (if its value is 0,
it remains 0) or ‘dies’ and becomes dead (if its value is
1, it changes to 0).

note: T.H. Huxley’s statement that “The chess-board is the
world; the pieces are the phenomena of the universe; the
rules of the game are what we call the laws of Nature” is
often used in conjunction with cellular automata; however,
this is an incorrect, or at least imprecise, analogy
because in a CA, it is the values of the cells themselves
that we are conerned with.

à Creating Four WL Programs for ‘The Game of Life’

The LifeGame program is basically a straightforward imple-
mentation of GoL employing the rule-making, array-process-
ing and pattern-matching capabilities of WL.

LifeGame@n_, steps_D :=
Module@8gameboard, liveNeighbors, update<,

gameboard = Table@Random@IntegerD, 8n<, 8n<D;
liveNeighbors@mat_D :=

Apply@Plus, Map@RotateRight@mat, ðD &,
88-1, -1<, 8-1, 0<, 8-1, 1<, 80, -1<,
80, 1<, 81, -1<, 81, 0<, 81, 1<<DD;

update@1, 2D := 1;
update@_, 3D := 1;
update@_, _D := 0;
SetAttributes@update, ListableD;

Nest@update@ð, liveNeighbors@ðDD &, gameboard, stepsDD
The bowlOfCherries program is a ‘one-liner’, employing a
nested anonymous (aka pure) function which uses the short-
hand notation (...)& and is comprised of three other anony-
mous functions which are written using Function with one
formal parameter (Function[x, ...], Function[y, ...] and
Function[z, ...]).

The behaviors of the three anonymous functions nested
within the outermost anonymous function, do can be readily
discerned by referring to the LifeGame program:

Values of the sum of each cell’s eight nn cells (0 thru 8)
are calculated by adding together the results of eight rota-
tions of the gameboard matrix (the values of the sums are
the same as the values determined using liveNeighbors in
LifeGame).

Ordered pairs are created, in each of which the first ele-
ment is the value of a cell (0 or 1) and the second ele-
ment is the sum of the values (0 thru 8) of the cell’s
eight nn cells (the two elements in each ordered pair are
the same as the two arguments used in the update rules of
LifeGame).

Transformation rules are applied to each of the ordered
pairs (the rules are analagous to the update rules of
LifeGame).

40 Wolfram Programming Language Fundamentals.nb

The bowlOfCherries program is a ‘one-liner’, employing a
nested anonymous (aka pure) function which uses the short-
hand notation (...)& and is comprised of three other anony-
mous functions which are written using Function with one
formal parameter (Function[x, ...], Function[y, ...] and
Function[z, ...]).

The behaviors of the three anonymous functions nested
within the outermost anonymous function, do can be readily
discerned by referring to the LifeGame program:

Values of the sum of each cell’s eight nn cells (0 thru 8)
are calculated by adding together the results of eight rota-
tions of the gameboard matrix (the values of the sums are
the same as the values determined using liveNeighbors in
LifeGame).

Ordered pairs are created, in each of which the first ele-
ment is the value of a cell (0 or 1) and the second ele-
ment is the sum of the values (0 thru 8) of the cell’s
eight nn cells (the two elements in each ordered pair are
the same as the two arguments used in the update rules of
LifeGame).

Transformation rules are applied to each of the ordered
pairs (the rules are analagous to the update rules of
LifeGame).

bowlOfCherries@n_, steps_D :=
Nest@HMapThread@List, Function@x,

8x, Function@y, Apply@Plus, Map@Function@
z, RotateRight@y, zDD,
88-1, -1<, 8-1, 0<, 8-1, 1<, 80, -1<,
80, 1<, 81, -1<, 81, 0<, 81, 1<<DDD@

xD<D@ðD, 2D �. 881, 2< -> 1,
8_, 3< -> 1, 8_, _< -> 0<L &,

Table@Random@IntegerD, 8n<, 8n<D, stepsD
The OblaDeOblaDa program creates and then employs a lookup
table comprised of 512 update rules, one for each of the
2^9 possible configurations of a cell and its eight near-
est-neighbor cells.

Wolfram Programming Language Fundamentals.nb 41

OblaDeOblaDa@n_, steps_D :=
Module@8gameboard, Moore,

update, LiveConfigs, DieConfigs<,
gameboard = Table@Random@IntegerD, 8n<, 8n<D;
LiveConfigs = Join@Map@Join@80<, ðD &,

Permutations@81, 1, 1, 0, 0, 0, 0, 0<DD,
Map@Join@81<, ðD &,

Permutations@81, 1, 1, 0, 0, 0, 0, 0<DD,
Map@Join@81<, ðD &,

Permutations@81, 1, 0, 0, 0, 0, 0, 0<DD D;
DieConfigs = Complement@Flatten@Map@Permutations,

Map@Join@Table@1, 8ð<D, Table@0, 8H9 - ðL<D D &,
Range@0, 9DDD, 1D, LiveConfigsD;

Apply@Hupdate@ððD = 1L &, LiveConfigs, 1D;
Apply@Hupdate@ððD = 0L &, DieConfigs, 1D;
Moore@func__, lat_D :=
MapThread@func, Map@RotateRight@lat, ðD &,

880, 0<, 81, 0<, 80, -1<, 8-1, 0<, 80, 1<,
81, -1<, 8-1, -1<, 8-1, 1<, 81, 1<<D, 2D;

Nest@Moore@update, ðD &, gameboard, stepsD D
note: A GoL program in WL that is very much faster than
any of the three ‘home-brewed’ programs above, uses WL’s
built-in CellularAutomaton function.

WLLife@n_, steps_D := CellularAutomaton@
8224, 82, 882, 2, 2<, 82, 1, 2<, 82, 2, 2<<<, 81, 1<<,
Table@Random@IntegerD, 8n<, 8n<D, 888steps<<<D

Unfortuntely, it is not clear (to me) what the arguments
used in the one-liner CellularAutomaton version of GoL rep-
resent, what algorithm is being used, or if the algorithm
is implemented in WL or in another programming language
(such as C). It would be interesting to compare the speed
of running the GoL in WLLife with the speed of running the
GoL in the blazingly fast ‘Golly’ app (see http://golly.-
sourceforge.net and also http://www.drdobbs.com/jvm/an-algo-
rithm-for-compressing-space-and-t/184406478).

42 Wolfram Programming Language Fundamentals.nb

à end notes on GoL:

The use of the built-in Compile function might speed up
some of the GoL programs (see http://www.cs.berkeley.edu/~-
fateman/papers/cashort.pdf (note: the Lisp version of the
forest fire CA program given therein is IMO repulsive and
speaks to the benefit of programming in WL) and http://math-
ematica.stackexchange.com/questions/1803/how-to-compile-
effectively and http://blog.wolfram.com/2011/12/07/10-tips-
for-writing-fast-mathematica-code/).

GoL programs written in other programming languages can be
found at http://rosettacode.org/wiki/Conway’s_Game_of_Life.

Finally, as an philosophical aside, the GoL is relevant to
fundamental issues in the natural sciences, such as emer-
gent phenomena, theoretical modeling of behavior in natu-
ral systems, and the nature of reality. For those individu-
als interested in this, see the book: “The Grand Design”
by Stephen Hawking and Leonard Mlodinow (the relevant sec-
tion in this book can also be found at http://aminotes.tum-
blr.com/post/27848853009/s-hawking-l-mlodinow-on-why-is-
there-something), and the two articles by Israeli and Gold-
enfeld: “Computational Irreducibility and the predictabil-
ity of complex physical systems” in Physical Review Let-
ters, 92(7), 074105 (2004) (accessible at http://arx-
iv.org/pdf/nlin/0309047.pdf) and “Coarse-graining of cellu-
lar automata, emergence, and the predictability of complex
systems” in Physical Review E, 73, 026203 (2006)
(accessible at http://arxiv.org/pdf/nlin/0508033.pdf).

Wolfram Programming Language Fundamentals.nb 43

