![](/common/images/spacer.gif)
![Wolfram Library Archive](/images/database/subheader.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![Downloads](/images/database/downloads-top.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Real Numbers. The Archimedes approach reinforced with Mathematica
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) College
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) The Archimedes method for calculating π is well known. It is suprising that Archimedes obtained the approximate value of π but he had no clear idea of the real numbers. In his time, real numbers were no more than irrational numbers, i.e. numbers not represented by fractions p/q. Presumably, Archimedes considered {an} and {bn} as infinite sequences of approximate values of π. From our point of view, the Archimedean pair ({an}, {bn}) is, in fact, the number {bn} itself. This goal of this tutorial is to extend this treatment to all real numbers. We would like to consider real numbers as appropriately defined Archimedean pairs of rational sequences.
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Archimedean pairs, rational sequences, Pythagorean theorem, natural logarithms, Cantor's axiom
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/download-cdf-player.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
| Real Numbers.nb (140.7 KB) - Mathematica Notebook |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
|
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
| | | | ![](/common/images/spacer.gif) | |
|