![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) More on the distribution of the sum of uniform random variables
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) The paper provides a simplified derivation of the density of the sum of independent non-identically distributed uniform random variables via an inverse Fourier transform. We also provide examples illustrating the quality of the Normal approximation and corresponding MATHEMATICA code.
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Uniform distribution · Inverse fourier transform · Normal, approximation
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |