![](/common/images/spacer.gif)
![Wolfram Library Archive](/images/database/subheader.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![Downloads](/images/database/downloads-top.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Functions of Matrices
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) 0202-284
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) 1992-06-01
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Defines a function, MatrixReplace, to evaluate an expression at a matrix using a generalization of a formula in R. B. Kirchner, "An Explicit Formula for e^(A t)", American Mathematical Monthly, Vol 74, No 10, December 1967. For example, let A be a square matrix. MatrixReplace[f[x], x -> A] returns f[A], where multiplication is matrix multiplication. MatrixReplace[E^(x t), x -> A] returns the matrix exponential of A t. MatrixReplace[x^n, x -> A] returns the nth matrix power of A.
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Algebra, Eigen value, Eigen vector, Matrix exponential, Matrix multiplication, Matrix operations, Matrix replace, MatrixPower, MatrixReplace, MatrixReplace.m
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/download-cdf-player.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
| MatrixReplace.m (4.4 KB) - Mathematica Package |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
|
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
| | | | ![](/common/images/spacer.gif) | |
|