![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![Downloads](/images/database/downloads-top.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Solution of ODEs and Eigenvalue Problems with a Chebyshev Polynomial Spectral Method
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
Organization: | University of Notre Dame |
Department: | Department of Chemical Engineering |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) 0210-205
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) 1999-05-18
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) This notebook demonstrates the Orszag-tau (a modification of the Galerkin) spectral method for a simple ODE and an ODE eigenvalue problem. It is intended as a first introduction to solving these problems with a spectral numerical method. Reference: S. A. Orszag (1971) "Accurate solution of the Orr-Sommerfeld stability equation", Journal of Fluid Mechanics, 50 pp 689-703. The coefficients of the algebraic equations are computed directly from the orthogonality properties of the Chebyshev polynomials using orthogonality. Reference: R. Miesen and B. J. Boersma (1995) "Hydrodynamic stability of a sheared liquid film", Journal of Fluid Mechanics, 301 pp 175-202.
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/grey-line.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) Tau-spectral method, numerical eigenvalue problem, spectral method
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |
![](/images/database/download-cdf-player.gif) |
![](/images/database/grey-line.gif) |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif)
| spectral_ode_eigens.nb (764.8 KB) - Mathematica notebook |
![](/common/images/spacer.gif) |
![](/common/images/spacer.gif) |