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ABSTRACT. We discuss computation of Grébner bases using approximate arithmetic for coefficients. '
show how certain considerations of tolerance, corresponding roughly to accuracy and precision from nt
computation, allow us to obtain good approximate solutions to problems that are overdetermined. We ¢
examples of solving overdetermined systems of polynomial equations. As a secondary feature we sho
handling of approximate polynomial GCD computations, using benchmarks from the literature.
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1. INTRODUCTION

Grobner bases provide a means for solving a myriad of problems in computational algebra. In their original
arithmetic was carried through exactly, on rational numbers. This was necessary in order to know when comb
polynomial coefficients cancel. In 1993 Shirayanagi [26] indicated a means to use approximate arithmetic
handle this "zero recognition” problem. Since that time several approaches have appeared that use approxi
metic [4, 5, 19, 24, 27, 29, 32]. The advantages to approximate arithmetic are several. First is that it avoids in
coefficient swell one often observes in exact Grébner basis computations. A second reason is that, in many
one works with approximate data and does not have access to exact values. Moreover, approximation by ratis
lead to intermediate swell, and still not improve on a solution based on the original approximate input values.

Work on numeric Grébner bases begins with [26, 27]. The method therein for controlling error is a bit similai
we will describe in section 2. It uses bookkeeping to measure loss of precision from arithmetic operations (sin
are discussed in [24]). The handling of coefficients can thus be viewed as an extension of floating point ¢
Traverso and Zanoni [30] describe use of both a modular image and a numeric approximation for coefficie
when both forms give zero (approximate, in the latter case) do we regard an apparent cancellation as trv
drawback is this requires exact input initially, or else a system that is not overdetermined. Other approach
extending the notion of Grébner bases to allow head terms with small coefficients to become non-head terr
29]. References [4, 30] contain some discussion of the overdetermined case. Use of syzygies to determine v
coefficients is described in [4, 5], with the latter describing a possible algorithmic treatment.

A typical situation in which one might desire to work with approximate coefficients is in solving polynomial sys
equations. A common method for this utilizes Grobner bases [2, 7, 9, 11, 2B]Stie function ofMathematicais
based on this approach). We start by discussing in brief some of the issues associated with the Grobner basi
computation, when carried out using approximate arithmetic. We go on to point out weaknesses that appear
systems are overdetermined. We then describe precision and accuracy tolerancing, and show how they car
address such weaknesses.

This work provides a description and empirical study of methods that extend Grébner bases to handle app
consistent polynomial systems. Many of the ideas we show have been developed independently in the cite
Our main contribution is to show how they can be made to work quite effectively on challenging problems. Wi
examples, many considered difficult, from the literature on numerical polynomial system solving and app
GCD computation. These serve to indicate the merit of the methods we describe.



2. APPROXIMATE GROBNER BASES IN POLYNOMIAL SYSTEMS

We begin with the observation that there are two variants of approximate Grobner basis computations. |
assume that coefficients of input are exactly known, and we use approximate numbers in order to avoid either
ate swell of integers, or difficult computations with algebraic numbers. Here we are interested in a differer
coefficients are known only approximately, and moreover we may have an overdetermined system. The n
section pertains to both settings. The sequel is then devoted to the case of interest. The first scenario is dis
companion paper to the present one [21].

Grobner bases computation using approximate arithmetic can be subject to several problems. First, as note
the issue of recognizing when a cancellation has occurred. The model of approximate arithmetic we use, s
arithmetic, turns out to be quite good at handling this. Indeed, over a decade of experience suggests this is ni
itself, a problem, provided we do not work with an overdetermined system [20]. The essential idea [16, 2
numbers carry with them an estimate of error. Standard arithmetic such as addition and multiplication of sucl
propagates error via first order approximations. We regard a sum as zero when there is full cancellation of all |
is, the result is less than the approximated error interval. (Use of "approximated" to describe the error is intent
is effectively a first order approximation to interval arithmetic.) The upshot is that, in contrast to the approact
we require no careful bookkeeping; the internal arithmetic does this automatically.

A secondary issue is that, with this choice of arithmetic, precision gradually erodes over the course of a comp
first order error estimates grow). What this means in practice is that often one must start with high precision i
a few hundred digits). Clearly this is well beyond the precision one can expect from input that arises as mee
of data. Again, when the problem at hand is not overdetermined, this is not a serious issue. One simply a
arbitrarily, to the input coefficients. If the problem is not ill conditioned then when finished we know we have :
nearby system. In practice one observes that residuals from such a solution, used in the original input, ar
small. If so desired, they can be further improved via local refinement methods.

Yet another problem, one particularly associated to use of significance arithmetic, is that in rare cases a dec
be made that a full cancellation took place, when in an exact computation perhaps a small but nonzero valu
obtained. This is discussed in [20]. It turns out to be a relatively unimportant issue in that it is uncommon, it
correctable by moving to higher precision, and generally only causes loss of huge solutions (consider the

between solutions of =1 and# X2+ x2=1).

We end this section with a brief historical note. As mentioned earlier, the first reported implementation of n
Grobner bases (of which this author is aware) is due to Shirayanagi [26] from 1993. This article discusses a |
ing approach to precision control that involves what are called "bracket coefficients". This approach is similar
if not details, to significance arithmetic. It was this article (both methodology and results) that motivated the
implement numerical Grobner bases in late 1993, in what would eventually become versibfatherhatica This
implementation is discussed briefly in [19]. We point out that it in effect requires either exact or at least "ni
high precision) input. It will not handle input that is known only to a few digits of precision and also overdet¢
To handle these situations we require the tolerancing approach of the present article.

3. OVERDETERMINED SYSTEMS

We have just given a brief overview of how we can manage approximate coefficient arithmetic reliably when
non-overdetermined (and reasonably well conditioned) systems. Indeed this suffices for many practical sorts |
tations. But there is a growing body of literature involving overdetermined systems. It thus becomes img
consider ways in which Grobner bases can be extended to address them. To motivate this we begin by desc
sources of such systems.

One place where overdetermined problems are encountered is in best—fitting of data. While local methods ar
used, there are cases where one might not have adequate information to give a starting point such that conv:
be attained. For these situations one can utilize an approximate solution to an overdetermined system, ob
help of a Grébner basis computation.

A related common scenario is when one uses an overdetermined system in order to rule out undesired sc
example is in camera pose estimation [22], where one or more extra reference points are used in order to re
consideration undesired solutions to a possibly ill conditioned problem. The problem encountered is that, «
approximate nature of coefficients, use of arithmetic as described in section 2 would often lead to an empty st
What we require, and will describe, are more tools to decide that coefficients are "small enough" to be regarde
Another source of overdetermined problems arises in trying to find "approximate” polynomial greatest comn
sors [8, 12, 14, 15, 23, 25]. In this setting one typically wants a result that is of highest possible degree,
constraints on coefficient sizes in remainders (after normalizing say, by making all leading coefficients unit



approaches in the literature use matrix methods (i.e. singular value decompositions) or remainder sequences
of computation. We will instead adapt Grobner basis methods from the exact realm to do these.

4. ARITHMETIC CONSIDERATIONS IN SOLVING OVERDETERMINED SYSTEMS

Once we go from an exactly determined to an overdetermined systems, high precision approximate aril
computing a Groébner basis no longer alone suffices to catch cancellation of coefficients. The problem is that \
expand the size of what we might regard to be zero, as it is now on a scale with the precision of our input.

We are thus faced with a situation where we need to "coarsen” our classification of what will be regarde
cancellation. We note that one must be a bit careful in terminology at this point; "zeros" can refer to apj
solutions to a system of equations, or to coefficient combinations that cancelled (see [13] for discussion of af
zeros, also referred to as "pseudozeros"). Typically our interest is in the former, and the latter appear as a byj
successful navigation of the computation.

We discuss in brief notions of tolerance, accuracy, and precision. This is entirely informal; the purpose is

motivate our approach to zero recognition. By tolerance we typically have in mind a small threshhold, below !
regard values as zero. Precision is a relative concept, in which one considers ratio of (estimated) error to v
this is referred to as "relative” error). Accuracy, by contrast, refers to the absolute magnitude of error.

Recall that the key operations in Grébner basis computations are forming of S—polynomials and reduction the
6, 10]. Our main concerns are twofold. We do not want to retain leading coefficients that, in an exact con
would have vanished. And we do not want polynomials that should have vanished in their entirety. In practic
these can happen if we do not employ some tactics for recognizing cancellation. We emphasize that the seco
is not a special case of the first; this indeed gets to the heart of the double—tolerance approach we will descri
a leading coefficient is analogous to a precision issue: one coefficient is notably smaller than most or all

contrast, an entire polynomial might be regarded as a full cancellation in a situation where all coefficients are
ble in size, but small in an absolute sense when compared with normalized inputs that gave rise to them.

Our approach to handling these cases is simple. We will have a "precision" tolerance and an "accuracy" tole
manipulations involve addition of pairs of polynomials. Prior to that we find the average magnitude of the co
in these polynomials (we’ll call this IPCA, for "input polynomial coefficient average"). If, after addition, a re
coefficient is less than the precision tolerance times IPCA, we regard it as zero and remove it. If instead all ¢
are smaller than the accuracy tolerance times IPCA, then we regard the entire resulting polynomial as zero. \
the "precision" mode to remove coefficients that are small relative to other coefficients. We use the "accuracy’
justify removing an entire polynomial when all coefficients are small in absolute magnitude (this does, |
assume some sort of normalization is in place for the polynomials that gave rise to it).

As a practical matter working with these tolerances can be troublesome. For example there are many proble
even after scaling of variables, coefficient sizes will be orders of magnitude apart. Thus a precision tole
remove coefficients that are actually needed. Cases where no precison can discern between coefficients 1
ones to discard are, for this method, ill conditioned.

The accuracy tolerance is typically less prone to misuse, at least in the sorts of examples we show. That sa
the examples required trial-and—error selection of tolerances in order to attain good results. On a brighter r
do not, and one can often base a sensible setting on the precision of the input. Typical values for the sort of |
the examples, with machine numbers for input, tend to be a@fidor precision and.0~2 for the accuracy toleranc

We mention that Kondratyev and coauthors [17, 18, 29] have a different way of handling the problem of sme
coefficients. Their "stabilized Grobner bases" retain such terms but bypass them for purposes of forming S—
als. Also Traverso and Zanoni [30] describe a hybrid arithmetic in terms of what they aallt, tolerances. Tf
second appears to serve the same purpose as the precision tolerance discussed above, and the first is ¢
accuracy tolerance. Moreover, Sasaki and Kako [24] used ideas similar to our accuracy tolerancing for the d
zero polynomials.

5. EXAMPLES

All examples were run using the versionMddthematicaunder development at the time of this writing. Auxiliary c
is provided in an appendix, as are inputs for several of the longer examples. Where we use pairs of tolerance
first denotes precision and the second accuracy. When one appears alone, it is interpreted as a precision toler

EXACTLY DETERMINED SYSTEMS

We begin with some classical numeric systems that are not overdetermined, in order to indicate that no speci
is needed (at least for the Grobner basis phase of the computations). These provides a sort of baseline for ¢
later computations. First we will show the Cassou—Nogués system. We require high precision for the eigensys
of the solver, hence the nondefanlorkingPrecision specification.



Ti m ng[Lengt h[sol nsCassou = NSol ve [pol ysCassou == 0, Wbr ki ngPreci si on » 200111
{0.236015, 10 }

We check that the residuals are indeed small.

Max [Abs [pol ysCassou /. sol nsCassou]]
0. x1071

Observe that the resulting residuals, while small, are many times larger than the precision. This simply indi
precision loss occurred in parts of the computation. We show another example, one that is considerably ¢
Caprasse system. It is troublesome because it has multiplicity of several roots, and moreover the mul
(endomorphism) matrices utilized in the solver are derogatory.

Ti m ng[Lengt h[sol nsCaprasse = NSol ve [pol ysCaprasse]]]
{14.7329,56 }

Max [Abs [pol ysCaprasse /. sol nsCaprasse]]
2.84217 x 1071

Last we show a small perturbation of this troublesome system. This moves the system to one that is nea
exactly derogatory. The numerical solver again obtains good results in reasonable time.

Ti m ng[Lengt h[sol nsCaprassehMbdi fi ed = NSol ve [pol ysCaprasseMdi fied]]]
{3.53622, 56 }

Max [Abs [pol ysCaprasseModi fied /. sol nsCaprasseMdi fied]]
2.80977 x10°1°

We now describe a system that is exactly determined, but shows quite interesting behavior if not handled witr
ing. It comes from [31]. As the input is long we will not show it, but simply describe the problem. It has nine po
als in nine variables, and describes configurations of a certain type of Stewart platform. The coefficients art
double precision complex numbers.

With default settingsNSolve will find 80 solutions. This is twice the number claimed at [31], and moreover t
the solutions give large residuals and are themselves large. This makes one suspect they are erroneou
raising the precision of the input and solving then gives 80 solutions, now all with modest residuals; this tells
indeed a "nearby" system for which all 80 solutions are valid.

The crux is that the input describes a numerically unstable situation, wherein coefficients need to satisfy cert
constraints in order to properly specify the type of platform in question. In making numerical coefficients, they
perturbed slightly and now we have a system with more solutions. Those that give large residuals, at machine
are in fact not wanted; they are the artifacts of having approximated the polynomial coefficients.

The tolerancing that repairs this is quite straightforward. We use a precision val0e‘band an accuracy dfo—=.
The overall result: we get the desired 40 solutions, and a factor of 6 speed improvement because extra wor
internally to get the "large" solutions to have acceptable residuals..

OVERDETERMINED AND ILL CONDITIONED SYSTEMS

We start with an example presented in [8]. We seek approximate singular points on a curve given implicitly a
set of a certain polynomial. This is simply a matter of finding points for which the polynomial and its two first
tives all (approximately) vanish.

poly =4.0y*+17.0x2y2+13.07 x y? -
19.572938 y? +4.0 x* +5. 228 x3 - 18. 29175 x* - 5. 228 x + 15. 29175;

1
NSol ve[{pol y, &xpoly, oypoly}, {x, y}, Tolerance » —
10

{{x —>1.18339,y —> 0.}

We now show an overdetermined camera pose problem from [22]. Here we need to raise precision artificia
the GroebnerBasis  step can run to completion (when precision of any coefficients becomes too low, it gi\
We postprocess by chopping off smallish imaginary parts.



coords = {{1, 2, 1.49071, 4, {1, 3, .400000, 8, {1, 4, .894427, 4,
(2, 3, 1.49071, 4, {2, 4, .666667, 8, (3, 4, .894427, &4};
vars = Array [x, 4];
polys = MapThread [x [#1]7 + x [#2]% - #3 x [#1] x [#2] - #4 & Transpose[coords]]
{-4+x[1]%-149071x [1] x[2] +X[2]% -8+x[1]?-04x [1]X[3] +x[3]?,
4 +x[1]%-0.894427x [1] x[4] +X[4]%, -4 +x[2]%2-1.49071x [2] x[3] +x[3]?,
-8+X[2]%-0.666667 x [2] X[4] +X[4]%, -4+x[3]%-0.894427x [3] x[4] +X[4]%}
Chop[sol n = NSol ve[pol ys, vars, Tol erance- {10” (-3), 0}, Worki ngPreci sion - 8],
10" (-3)1
{{X[1] - 2.23606, x [2] - 2.99999, x [3] - 2.23607,x [4] - 0.999999 },
{x[1] - 2.23606, x [2] —» 2.99999, x [3] — 2.23607,x [4] - 0.999999 1},
{x[1] - -2.23606, x [2] - -2.99999, x [3] —» -2.23607,x [4] —» -0.999999 },
{x[1] » -2.23606, x [2] - -2.99999, x [3] » -2.23607,x [4] - -0.999999 }}

We check that the worst residual is not terribly large.

Max [Abs [pol ys /. sol n]]
0.000064876

UNIVARIATE APPROXIMATE GCD

There is a vast literature on ways to compute approximate polynomial GCDs. Most involve reformulations
algebra problems, and make use of numeric algorithms well suited to computing matrix rank reliably in the pr
approximation input. For background on such methods, see [8, 12, 14, 15] and references therein. We do r
that the methods to be shown below are faster or more reliable. But they are to an extent automated (once |
precision and tolerances are selected), use very simple code, and give reasonable results quite quickly.

For univariate polynomials it is well known that we can extract a GCD via simple Grobner basis computation.
effect a form of polynomial remainder sequence, and thus bears similarity to the univariate case of the me
cussed by Sasaki and Sasaki in [25].

Here is an example from [8] . With a precision tolerance of two digits we recover a nontrivial approximate GCLC

pl = x** +3. 00001 x!° -7.99998 x’ - 25. 00002 » + 3. 00001 x** +

9. 00006 x° - 3. 00001 x° - 2. 00001 x& - 6. 00005 x* + 16. 00004 x + 2. 00001 ;
p2 = x*3 - 3. 00003 x° - 2. 99999 x® + 2. 99999 x'? - 9. 00006 X -

8.99997 x° - 1. 99998 x’ + 5. 99999 x° + 5. 99994 ;

First [N[G’ oebner Basi s [set CoefficientPrecision[{pl, p2}, 501,

1
x, CoefficientDomai n - | nexact Nunbers , Tol erance- —]]]

10?
-2.00015 +3.00024x 5+1.x 8

We see it corresponds closely to the GCD of the "obvious" polynomial pair formed by rounding coefficients.

Fi rst [GoebnerBasi s[{pl, p2} /. a_Real > Round[a], X]]
~2+3x5+x8

Now we show an example from [12], wherein we look for approximate multiple factors by taking the GCD of a
mial with its derivative. Using coarse tolerancing we get a common factor of degree 6, in agreement with that r

poly = x® - (5.833333 + 2. 333333 1) x® + (12. 888889 + 11. 7222222 1) X’ +
(-13. 416667 - 24. 694444 1) x® + (5. 293210 + 28. 703704 i) x5 +
(2. 389403 - 20. 183642 1) x* + (-3.790123 + 8. 750857 i) x° +
(1. 880630 - 2. 247914 1) x? + (-. 452884 +.299535 1) X + (. 045217 - . 013868 1);



Chop[N[Fi rst [Gr oebner Basi s [set CoefficientPrecision[{poly, D[poly, x1}, 40],

X, CoefficientDomain - | nexact Nunmbers , Tol erance- {i i}]]”

104 102
(0.013033486039440238  + 0.24739461042947114 i) -
0.3199779084192973 + 1.7517086950261698 i) X +
1.9659824714996788  +5.134785008354451 i) x? -
5.221808113608173 + 7.66519441636273 i) X3 +
6.888250445595586  + 5.721144296886046 i) x* -
(4.33302767357858  + 1.6663679299044327 i) x5 +1.x 8

MULTIVARIATE APPROXIMATE GCD

Multivariate polynomial approximate GCDs algorithms are presented in [8, 12, 14, 15, 23, 33]. They tend to u
methods or polynomial sequences,. We instead take an elimination ideal method from [1], using approximat

bases as the main computational engine to get the (approximate) LCM. We follow with generalized division
the GCD. Note that we make no effort to locally improve the result, e.g. by Newton’s method.

We first show example exFO7 from [14]. This is relatively straightforward insofar as the input, if rationalize

nontrivial (exact) GCD. The actual inputs are a bit long to display, but are available asdlearge?_list at the
URL in the references.

o~~~ —~

1 1
Tim ng[f gcd = f | oat Pol ynom al GCD[exFO7poI ys[[11], exFO7polys[[2]], {— —}”
108 10*
{0.816051,

2. +6.x +10.x 2+8.x%-2.x*+764022 x10 "My +8.xy +254509 x10 ¥ x%y -
8.x%y-8y?2-8xy?2-10.x2%y?+8.y3-4.xy3-6.y*+6.z -10.xz -10.x %z +
2.09215 x10 ¥ x3z+10.yz +8.xyz +4.x%2yz-4y2z+2.xy?z-8y3%z+6.z2%2-
4.xz2+2.x22%-10.yz *-10.xyz >-10.y *z?-2.2%+4.xz ®-6.yz ®-2.2 %}

Here is an example from [23].

2
n
CIX_, u_, nJ:= [X+Zu[j i +1]
i
. 2
f2[x_, u_, n]:= {xz—Zu[j]—.S]
i
. 2
g2[x_, u_, n_]:= [x2+Zu[j ] +.5]
i

We create a pair of polynomials with proscribed GCD. We readily recover it using approximate arithmetic.
f[5] = Expand [f2[Xx, u, 5] *c[X, u, 5]];
g[5] = Expand[g2[X, u, 5] *xc[X, u, 511;
Ti m ng[fl oat Pol ynom al GCD[f [5], g[5], {1/1076, 1/10"2}]1]
{8.27652,1. +2.x +1.x2+2.u [1]+2.xu [1] +1.u [1]®+2.u [2]%+

2.XUu [212+ .u 1 1u[212+1 uip21*+2.u31%+2.xu [31%+2.u [1]u[3]%+
2.u [21%u[3]1%+1.u [31%+2.u [41%+2.xu [4]1%+2.u [1]u[4]*+
2.u [21%u[41%+2.u [31%u[41%+1.u 418 +2.u [5]%+2.xu [5]%+
2.u [1]u[5]°+2.u [2]%u[5]°+2.u [3]%u[5]°+2.u [4]*u[5]°+1.u [5]'0}

Here we see that, with some amount of noise thrown in, we can still recover a reasonable approximate GCD.



fnoi se[5] = Expand [f2[x, u, 5] * (C[X, u, 5] +.001) +.0027;
gnoi se[5] = Expand[g2[Xx, u, 5] * (C[X, u, 5] -.004) -.007];
Ti m ng[f] oat Pol ynom al GCD[f noi se[5], gnoise[5], {10" (-2), 10" (-1)}1]
{8.85655,0.997 +2.x +1.x%+2.u [1]+2.xu [1] +1.u [1]%+2.u [2]%+

2.xu [2]%2+2.u [1]u[2]%+1.u [2]*+2.u [3]%+2.xu [3]1%+2.u [1]u[3]%+

2.u[27%u[3]%+1.u [3]1%+2.u [4]%+2.xu [4]*+2.u [1]u[4]*+
2.u [21%2u[41*+2.u [313u[41*+21.u [418+2.u [5]1%+2.xu [5]°+
2.u [1]u[5]°+2.u [2]%u[5]°+2.u [31%u[5]°+2.u [4]*u[5]°+1.u [5]'}

6. SUMMARY

We have demonstrated how precision and accuracy ideas from numerical computation can be adapted to th
numerical Grobner bases. While by no means flawless, we see from numerous examples that these appri
promise for handling overdetermined systems of algebraic equations. These computational methods also ap
problems from hybrid symbolic-numeric computation, such as finding approximate polynomial GCDs.

While most examples covered seem to work efficiently and give reasonable results, it remains an open que
how competitive these methods are in regard to speed and quality of results, as compared to other appr
advantage to Grobner bases is that polynomial algebra is carried out in a sparse setting; many methods bas
algebra require dense matrix manipulation. The examples presented offer evidence that, when working wit
modest degree, Grébner bases methods are viable. That the coding is simple makes them all the more attract

An open area for further work is in determining, in some automated fashion (perhaps based on problem type
reasonable tolerances for a specific problem. A possible approach would be to set up an outer level op
wherein one strives to maximize a degree of a candidate GCD, or the (finite) number of solutions to an overc
system, and has for parameters these tolerances. This is another place where SVD-based matrix approac
advantage: a "natural" tolerance is generally revealed from the largest ratio in consecutuve singular value:
excepting cases where a jump is from a very small singular value to zero). At present all Grobner basis me
some prespecification of tolerance.

Another avenue for future work is to adapt methods from [21] to handle overdetermined systems at modest
Those methods for polynomial GCD, say, tend to be faster than what we indicate in this paper. But we ha
succeeded in making them work for fuzzy systems where a GCD or factorization is only correct up to sorr
tolerance.

It is also an open question whether symbolic "epsilon" powers can be used to improve the methods of this

idea, roughly, is to replace coefficients that are deemed "small" (according to some precision tolerance, say)

powers of a variable that is local in the term ordering sense (hence monomials having powers of this ve
smaller than any monomial not containing it, including constants). Variants of this idea are discussed in [17, -
32].

Based on experimentation and comparison of timings with other methods reported, we state a tentative conc
methods of this paper are viable and effective when the problem at hand is unperturbed from an exactl
variant. They often give good results when the problem is overdetermined, provided the noise is modest rel:
exactly solvable nearby problem, and the scale of coefficients does not vary too much. In other situations it i
whether our methods can be adapted so readily.

7. CODE APPENDIX
Below is code used in computations in this paper.

set Coef ficientPrecision[a_?NunberQ, prec_] :=
| f [Abs[a] < 10" (-prec), O, SetPrecision[a, prec]]

set CoefficientPrecision[a_?NunberQxb_? (! Nunber Q[#] &), prec_] : =
set Coef ficientPrecision[a, prec] b

set CoefficientPrecision[(a_Plus |a_Times |a_List), prec_]:=
Map [set Coef fi ci ent Preci sion[#, prec] & al

set CoefficientPrecision[a_, _]1:=a



fl oat Pol ynom al LCM[pol y1_, poly2_, tol ] :=Mdule]
{vars, mat, v, cvars, newpolys, rels, gb, ru}, vars = Vari abl es[{pol y1, poly2}];
mat = {{1, 1, 1}, {polyl, O, 0}, {0, poly2, 0}};
cvars = Array [v, 3];
newpol ys = mat . cvars;
rels =Flatten[Uni on[Quter [Ti nes, cvars, cvars]]];
newpol ys = Joi n[newpol ys, rel s];
gb = G oebner Basi s [newpol ys, Prepend[vars, Last[cvars]],
Most [cvars], Monom al Order -» Eli minati onOrder , Tol erance-tol,
Coef fici ent Domai n » | nexact Nunber s [Preci si on[newpol ys]], Sort - True];
rul = Map[(#-> {}) & rels];
gb =Flatten[gb /. rul 1;
Fi rst [gh] /. Last [cvars] » 1]

fl oat Pol ynom al GCD[pl_, p2_, tol ]:=

Expand [Pol ynom al Reduce [pl % p2, fl oat Pol ynom al LCM[p1, p2, tol],
CoefficientDomai n » | nexact Nunbers][[1, 1]]]

Here are the longer examples we used.

pol ysCassou =
{15b*cd®*+6b*c®+21b*c?d-144bc-8bhc*e-28bcde-648bd+bd*e+9b?d®-120,
30b?c®d-32cde?-720bcd-24bcte-432bc?+576ce-576de+16bcd’e+16d%e?+
16c?e?+9b%c*+5184+39b%c?d?>+18b%cd®-432bd® +24bd®e-16bc?de-240c¢c
216 bcd-162bd®*-81bc?+5184 +1008 ce-1008de+15bc’de-15bcie -
80cde’+40d?e®+40c?e?, 261+4bcd-3bd°-4bc?+22ce-22de};
pol ysCapr asse =
{-2x+2t xy-z+y?z, 2+4x*-10t y+4t xX°y-10y*+2t y+4xz-x3z+4xy?z,
-X+t?x-2z+2tyz, 2-10t2-10t y+2t3y+4xz+4t>xz+422+4tyz?-x 23}
100001 z

pol ysCapr asseModi fi ed = {-2x+2t Xy - —+y22
100 000

2000001
1000 000
-X+t?x-2z+2tyz, 2-10t?2-10ty+2t3y+4xz+4t2xz+42%+41 yzz—xz3};

+4x%-10ty+4t x2y-10y?+2t y3+4xz-x3z+4xy?z,
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