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Abstract

It  is known that five points in R3  generically
determine a finite number of cylinders contain−
ing those points. We discuss ways in which it
can be shown that the generic (complex) num−
ber  of  solutions,  with  multiplicity,  is  six,  of
which  an  even  number  will  be  real  valued
and hence correspond to actual cylinders in
R
3.  We partially classify the case of no real

solutions in terms of the geometry of the five
given points. We also investigate the special
case where the five given points are copla−
nar,  as  it  differs  from the  generic  case  for
both  complex  and  real  valued  solution
cardinalities.



Introduction

The problem

Given five generic points in R3 we wish to know how many cylinders
pass through them. By setting up a system of polynomial equations
this  can be construed as a  problem in  complex space though of
course the focus of most interest is on the real solutions. We will
consider aspects of both. When I say "cylinders" I mean to include
both complex and real solutions to the equations that describe right
circular cylinders through a set of five points.

Why is this of interest?

There are constraint geometry applications:

í Find smallest cylinder enclosing five given balls of equal radius.

í Find cylinder best fitting many points (one might first find an exact fit
to five points, then use optimization to get a least squares best fit to
all points). Useful in scene reconstruction, tolerancing, helical molec−
ular structure recognition...

í Related to other constraint geometry problems e.g. find cylinders of
given radius through four given points (applications to scene occlu−
sion and elsewhere).

í Can be tackled computationally in several  ways.  Or one can use
pure theory if so inclined...So problem is ripe for exploration.

í The enumerative geometry itself is interesting. The possible num−
bers of real cylinders for coplanar configurations is strictly less than
the number of complex solutions.



Introduction

Contribution of this work

í Several ways to show there are, generically, six solutions.

í Better understanding of situation in which there are no real solutions.

í Better understanding of nongeneric cases.

This is a work in two parts. The next, which I think of as "part 1", is
to be presented in a few days at ICMS. It will focus more on the com−
putational  tactics  I  have used over  the years to  work on this.  Of
course there is some overlap in the actual talks.

Why you should not work on this

It is mildly addictive.



Setting up the problem

í We algebraicize to get two equations in two unknowns. We use a
"generic" formulation of the axial direction vector.

Place one point at the origin, another at H1, 0, 0L, and a third in the
x y  coordinate plane at Hx2, y2, 0L. We project these onto the set of
planes through the origin parametrized by normal vector Ha, b, 1L. In
each such projection they uniquely determine a (possibly degener−
ate) circle. We obtain two polynomials in 8a, b< by enforcing that the
two  remaining  points,  Hx3, y3, z3L  and  Hx4, y4, z4L,  project  onto  the
same circle.
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Setting up ...

Immediate observation: Each is cubic in 8a, b<  so the Bezout for−
mula shows there are at most nine solutions.

Less immediate: The number of solutions is even, so there are at
most 8. Follows from:
(1) Real data coordinates force complex solutions to appear in pairs
(2) There are "open" sets of configurations with no real solutions.

Remark: A mixed volume computation also gives 8. So this family of
problems is degenerate from the point of view of mixed volume solu−
tion counts.

The actual solution count

THEOREM. Five generic points in R3  determine six distinct sets of
cylinder parameters, of which an even number are real valued.

First proved by Bottema and Veldkamp (1977).

Other proofs have been devised in recent years:
Chaperon and F. Goulette (2003)
Devillers, Mourrain, Preparata, and Trebuchet (2003)



Proving the actual solution count

I have a few proofs that are, to varying extents, computational.

í Proof 1 (used in this paper): Count the solutions at infinity by homog−
enizing  and  getting  the  degree  forms.  Find  that  there  are  three,
hence there are six affine solutions.

í Proof 2: (i)Take a random set of values for the parameters. Solve
the axis direction equations.  Obtain six solutions.  This shows the
generic count is at least 6 (and "shape lemma" implies it is almost
certainly exactly 6, or you have a bad random generator).
(ii) Now form the resultant with respect to b, obtain a polynomial of
degree 6 in a. This shows it is at most 6.
(iii) Tricky step (uses deep result from real analysis...) Observe 6£È
solnsÈ£6 implies ÈsolnsÈ=6.

í Proof 3: Compute a Gröbner basis for the polynomials in 8a, b< with
respect to a convenient term order. The coordinates involve parame−
ters that are "coefficients" for purposes of this computation. Count
the size of the "normal set" (monomials not divisible by the basis
lead monomials). This gives the number of solutions, and it is six.

í Proof 4: Show there are six solutions not just to a particular configu−
ration but to all configurations in some neighborhood thereof. This is
work in progress; it uses symbolic perturbation approach that might
also be applicable to actual perturbation problems e.g. approximate
gcd.



Counting real solutions: Basics

What can we say about how many real solutions there might 
be?

Obvious:  When we restrict  point  coordinates to real  values,  since
complex solutions pair off there are an even number of real solu−
tions counted by multiplicity.

Easy to show: In this setting, any of the possible numbers (0, 2, 4,
or 6) may arise, and indeed there are open sets in real parameter
space that give rise to each possible real cylinder count.

(1) Beyond this, fairly little is known about classifying the cases of
various possible numbers of real solutions.
(2) I will indicate what I do know, and say a bit about why I think this
classification problem is hard.



Case 1 of six real solutions

I am aware of two configurations that readily give six cylinders. The
first uses points on a pyramid with square base and equilateral trinag−
ular  faces.  We get  four  cylinders  like  the first  one below (cutting
base and one face), and two like the second (through pairs of oppo−
site faces).



Case 2 of six real solutions

The second uses points on two regular  tetrahedra that  are glued
along a common face. This gives rise to six solutions, two of which
are shown below.

I find this configuration to be interesting because a simple perturba−
tion, moving the top point  upwards vertically, will reach a point at
which we go from six to zero real solutions. Also of interest:  it  is
closely related to a case where the common tangent to four given
spheres has all solutions real (12 of them).

I have a vague belief, which I elevate to "conjecture", that any config−
uration with six solutions is in some sense a perturbation of one of
the two described above. Of course this does not rule out that they
may be perturbations of one another. (What does this mean? That
one can move points to go from one to the other in such a way that
there are six solutions at every intermediate configuration.)



Case 2...
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Cases of no real solutions

One−inside−four situation, and nearby configurations

Basic observation: If one point is in the convex hull of the other four
then there are no real cylinders containing all five.

Reason: All projections along any direction onto a plane orthogonal
to that direction will keep that one point in the hull of the others. So
the projected five points cannot be cocircular. But if  they lie on a
cylinder there is a projection (in real space) where they become cocir−
cular,  to wit,  projection onto a plane perpendicular to the cylinder
axis.

Theorem: We can have that point inside move "slightly" outside the
hull of the other four and still have no real cylinders containing all
five.

Proof sketch: When the fifth point is in the hull of the others all projec−
tions have the five lying on hyperbolas (five points in a plane deter−
mine a quadratic). As we move the point to the hull boundary and
slightly outside along any path, these projected quadratics remain
hyperbolas, hence there is no direction of cocircularity.



Geometric understanding of no real solutions 
cases

More generally...

Conjecture (partly proven): If we have a configuration that yields no
real cylinders then it is a perturbation of a configuration of one point
in the hull of the rest (again, this means we can move a point inside
the hull in such a way that all intermediate configurations have no
real cylinders).

We make some observations:

The vanishing set  of  the first  direction equation polynomial  in the
a b  plane (a curve)  corresponds to  directions Ha, b, 1L  where the
fourth  point  is  cocircular  with  the first  three.  Likewise the second
vanishing set is for directions where the fifth is cocircular with the
first three. 

So...the directions for cylinders containing all five are the intersec−
tions of these two curves.

Take a configuration with no real cylinders. Say the first curve has
one topological component in the real plane (this appears to be a
common situation). Also suppose that in some direction given by a
point on this curve, the remaining configuration point (the fifth one)
projects inside the cylinder containing the first  four.  Then it  stays
inside all cylinders determined by the first four points. (Reason: if it
moves outside, then in some direction it actually hits and we have a
cylinder containing all five points).



No real solutions...

Next note that this holds for ANY point in the interior of the hull of
the five given points. Reason: If a point is in the hull of the first four,
it is inside any cylinder containing them. If not it is a convex combina−
tion of the five points with nontrivial component of the fifth, hence
will  project inside any circle containing projections of the first four
(because we know the fifth projects inside).

Arrange first four points so that three are in the x y  coordinate plane
and the remaining two have a segment joining them that intersects
the triangle defined by the first three. We place the fourth point on
the z axis beneath the origin.



No real solutions...

More observations:

Projecting from the fourth point onto a plane in the direction of the
segment between the fourth and fifth points gives a unique a circle
containing the first three.

The  cylinder  along  that  direction  and  containing  that  circle  thus
encloses the fourth and fifth points.

Now we simply move one of the direction coordinates, forming new
projections and cylinders containing the first three points, until one
of the remaining points (say, the fourth) hits that cylinder. What we
have done is to arrive on one of the two direction solution curves.
Thus we obtain a cylinder containing four points and enclosing the
fifth.

From the discussion above we know that this holds for all cylinders
defined  by  this  component  (in  the  real  plane)  of  the  curve  of
directions.

Conclusion: We can formulate sufficient conditions for which a config−
uration with no real solutions can be perturbed so that one point is
in the hull  of the other four. A sufficient condition, for example, is
that each of the cubic curves for the cocircularity directions of four
points have one component in the real plane.



Example with no real solutions

There  are  no  real  cylinders  containing  the  set  of  points  (0,0,0),
(2,0,0), (1,2,0), (5/4,1,1/2), and (3/4,1,−1/3). Observe that the seg−
ment joining highest and lowest points pierces the triangle formed
by the other three.



Example...

Here are the direction parameter polynomials for this example:

I-575- 40 a- 384 a2
- 40 b- 200 a b+ 160 a2 b- 159 b2

- 40 b3,

-207- 24 a- 128 a2
+ 24 b+ 72 a b- 96 a2 b- 47 b2

+ 24 b3M

We plot the vanishing curves.
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As each has one component in real projective space (look at how
they connect "at infinity") we see this conforms to the sufficient condi−
tion mentioned earlier. Hence we can move one of the points inside
the  hull  of  the  others  at  everywhere  on  the  path  have  no  real
solutions.



Nongeneric configurations, in brief

í Five coplanar but otherwise generic points will give four (complex−
valued) cylinders.

í Of these, either zero or two will be real valued (second case illus−
trated below). This is an interesting contrast to the case of cylinders
of given radius through four coplanar points. In that case there are
eight solutions, and ALL can be real valued (Megyesi, 2001).

CONJECTURE: Any configuration of  five  distinct  points  for  which
there is a dimensional component to the cylinder parameter solution
set  must  be  coplanar.  Moreover  either  four  of  the  points  will  be
collinear or three will  be collinear with the line determined by the
remaining two being parallel to it.



Nongeneric configurations, in brief

Why is this hard to show?

í Computationally: The computations might be attempted by Gröbner
basis methods. A problem is to enforce that all five points are dis−
tinct. This can be done by introducing new variables and polynomi−
als but the complexity seems to become exorbitant.

í Mathematically:  I  have not  come up with a good formulation.  But
maybe someone with better ideas will  succeed at this. Related: a
recent article by Borcea, Goaoc, S. Lazard, and Petitjean discusses
the infinite solution case of a tangent to four fixed spheres with copla−
nar centers, showing a result involving collinearity.



Summary

Given five points in real space...

What we know

í There are six cylinders in complex space that contain them.

í Any even number of which may be real cylinders.

í We have a geometric idea of how to classify cases for which there
are no real solutions (as perturbations of cases where one point is
in the hull of the others).

í We have two types of examples that give six solutions. Each has
considerable  symmetry.  All  other  pseudorandom  cases  I  have
observed appeared, visually, to be a perturbation of one of these.

í We have a family of  examples that  gives two solutions (coplanar
points  lying  on an ellipse  in  that  plane).  Do perturbations  of  this
describe all cases? (I doubt it.)



Summary

What we do not know

í We have no proven classification of the cases that give solutions
with dimensional components.

í We have no algebraic description of the cases of no real solutions.
Such a classification might be obtainable, say, by understanding the
discriminant variety of the ideal of axial direction polynomials in the
product space of directions x point coordinate parameters.

í We have no (plausible) conjectures that describe the cases of two
or four real solutions. 

í In application settings one expect to have real solutions. Is there a
"typical" number in such settings? (Is it, say, two?) Might this knowl−
dege be useful for practical reasons?


