
Half GCD and Fast Rational Recovery

Daniel Lichtblau
Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820

danlüwolfram.com
ISSAC 2005, Beijing
July 2005

FileName 1

Abstract
Over the past few decades several variations on a "half GCD" algorithm for
obtaining the pair of terms in the middle of a Euclidean sequence have been
proposed. In the integer case algorithm design and proof of correctness are
complicated by the effect of carries. This paper will demonstrate a variant with
a relatively simple proof of correctness. We apply this to the task of rational
recovery for a linear algebra solver. We also show how it is applicable to lat
tice reduction in the plane.

FileName 2

Background and brief history
The basic idea behind the "half GCD" HHGCDL algorithm is similar to that of
many divide and conquer algorithms. We split our input integer into two
parts of roughly half the size Hbased on the larger oneL. We do a recursive half
GCD call It gives multipliers as well Hsimilar to those obtained by extended
gcd, and in fact HGCD is a very good way to do extended gcd computationsL.
We use these to reduce not just the half size reduced inputs, but the full sized
originals. We show that this reduces them by approximately 1ê4 in size. Repeat
ing this reduces to 1ê2 the original size Hthis is the crude idea: the devil is in the
detailsL. We now have something that can indeed be used recursively.

FileName 3

Background and brief history
HGCD is based on a method for computing continued fractions presented by
Schönhage around 1971. It is superlinear in bit complexity, as it is seen to be
logHnL times worse than multiplication, which had been shown to be superlin
ear. It is related to...

FileName 4

Background and brief history
HGCD is based on a method for computing continued fractions presented by
Schönhage around 1971. It is superlinear in bit complexity, as it is seen to be
logHnL times worse than multiplication, which had been shown to be superlin
ear. It is related to...

A slower superlinear algorithm by Knuth that had just appeard. This in turn is
related to...

FileName 5

Background and brief history
HGCD is based on a method for computing continued fractions presented by
Schönhage around 1971. It is superlinear in bit complexity, as it is seen to be
logHnL times worse than multiplication, which had been shown to be superlin
ear. It is related to...

A slower superlinear algorithm by Knuth that had just appeard. This in turn is
related to...

An earlier algorithm, "nearly" subquadratic, by Lehmer Hlong before emer
gence of subquadratic multiplicationL. This in turn is related to...

FileName 6

Background and brief history
HGCD is based on a method for computing continued fractions presented by
Schönhage around 1971. It is superlinear in bit complexity, as it is seen to be
logHnL times worse than multiplication, which had been shown to be superlin
ear. It is related to...

A slower superlinear algorithm by Knuth that had just appeard. This in turn is
related to...

An earlier algorithm, "nearly" subquadratic, by Lehmer Hlong before emer
gence of subquadratic multiplicationL. This in turn is related to...

A MUCH earlier algorithm, which had quadratic bit complexity.

FileName 7

Background and brief history
What Schönhage proposed was a method for efficient computation of contin
ued fractions. With small modification this becomes a gcd algorithm. It was
presented as such by Moenck and subsequently Aho, Hopcroft, and Ullman.
These worked primarily with the univariate polynomial case, and the latter also
discussed modifications needed to handle the integer case.

The problem was that subtle details related to integer carries made that variant
of the algorithm difficult to implement, and, indeed, difficult even to state
clearly. Even the polynomial case is not trivial, and the version appearing in
Aho, Hopcroft, and Ullman was a bit flawed.

Around 1990 Thull and Yap presented an algorithm with proof, but it is quite
intricate in terms of following all possible cases. I believe corrections have
been made from time to time; I do not know its present status but assume it is
correct. The polynomial case was discussed in detail in the text by von zur
Gathen and Gerhard, where it is mentioned that at that time H1999L similar meth
ods could probably be made to work for integers, but the details made a clean
proof problematic. This motivated a more recent variant by Pan and Wang that
seems correct but is a bit short on detail Hruthless enforcement of ISSAC page
limits?L, hence difficult to implement.

FileName 8

Background and brief history Hokay, it's not
so brief anymoreL

Around 2001 we at WRI Hspecifically David Terr, Mark Sofroniou, and
myselfL implemented a version that always worked but was only probabilisti
cally superlinear Hthough testing indicated it clearly had the expected bit com
plexity on large examplesL. More recently I wanted a version that was provably
correct, not so much for the speed but because I wanted to experiment with
rational recovery. This requires a "truly correct" HGCD, as opposed to one that
might merely take us nearby to the middle in a remainder sequence, which, for
asymptotic speed purposes, seems to be generally "good enough".

This necessitated that I figure out how correctly to do this, hence the main part
of this work. Of course the speed is important, so Mark Sofroniou and I Hmore
him than meL took this opportunity of overhaul to do some careful tuning and
make improvements in various places.

FileName 9

Recent related work
In the past few years there has been a nice binary recursive method imple
mented by Stehlé and Zimmermann. It avoids carry issues by working from
the least significant halves of the inputs, hence can be viewed as a superlinear
cousin of the well known binary gcd method. This one has also been done by
Mark Sofroniou. Quite recently there is work in progress by Niels Möller. It
uses a method also due to Schönhage, developed for reducing binary quadratic
forms. This, too, is closely related to work by Yap, and furthermore is a close
relative to the method of this talk. Möller moreover implemented prior variants
including the Stehlé and Zimmermann method, and reported on timing compari
sons Hall seem to be closeL.
One interesting point we will cover briefly is that one can in a sense reverse
the quadratic form reduction process,. That is, HGCD can be utilized to reduce
a binary quadratic form. We will in fact show how it may reduce a planar
lattice.

FileName 10

HGCD: What it does

Given a pair of positive integers ikjj m
n
y{zz with m > n. HGCD will return a multi

plier matrix and a new pair ikjj vi
vi+1

y{zz of consecutive values in the Euclidean

remainder sequence for ikjj m
n
y{zz. These straddle the half size point in that

vi ¥
è!!!!m > vi+1. The matrix Ri is the product of elementary transformation

matrices, and Ri
ikjj m

n
y{zz = ikjj vi

vi+1
y{zz.

FileName 11

HGCD: basic ideas of the paper

Ë Build matrix Ri as product of "elementary" matrices R j = ikjj 0 1
1 -q j

y{zz R j-1

where the q j are successive quotients in the remainder sequence of our input

integers ikjj m
n
y{zz.

Ë Simple lemmas show how to recover R j-1 from R j and describe growth bounds
of various quantities encountered.

Ë One lemma from the literature gives a sufficient condition for obtaining a con
secutive pair in the remainder sequence. The use is that we need not work with
the original inputs but Has observed by Lehmer almost 70 years agoL can work
with leading part. Later refinement: work recursively with top "half" of inputs.

Ë Formulate lemmas to bound sizes of values formed by multiplying the HGCD
matrix for the top halves with the full inputs: due to carries this is not entirely
trivial. With these we can bound number of fixup steps Hforward or backwards
Euclidean stepsL. This enforces complexity bound of logHnL MHnL, where MHnL
is the cost of multiplying a pair of n-bit integers.

Ë Formulate lemmas to "repair" a pair so that we can invoke the lemma regard
ing consecutive pairs in the sequence.

FileName 12

HGCD algorithm

Step 1: Take k = e ÅÅÅÅÅÅÅÅÅÅÅÅÅlog2 m
2 u. Write ikjj m

n
y{zz =

ikjjj2k f0 + f1
2k g0 + g1

y{zzz with 8 f1, g1< < 2k. We

have 2k >
è!!!!m > 2k-1 and g0 § f0 < 2

è!!!!m .

Step 2: Recursively compute HGCDikjj f0
g0

y{zz. Obtain matrix Ri and pair ikjj ri
ri+1

y{zz
with Ri

ikjj f0
g0

y{zz = ikjj ri
ri+1

y{zz and 0 § ri+1 <
è!!!!!f0 < ri.

Step 3: Compute ikjj vi
vi+1

y{zz = Ri
ikjj m

n
y{zz. Lemmas Hsee paperL bound ikjj vi

vi+1
y{zz, so that

we obtain cases of set 4. Some bounds are conditional on the size of ri. Rather
conveniently, it turns out that all conditions can be arranged to have the same
"crossover" value ri = 2 è!!!!!f0 . HWhat matters is that size conditions all be the
same; the actual crossover is not important except as a technical detail in
proofsL. We also bound vi-1.

Step 4: Possible cases: HiL vi+1 may be negative. HiiL vi < vi+1. If neither, that is,

vi > vi+1 > 0, then we set ikjj u
v
y{zz = ikjj vi

vi+1
y{zz and move to step 5. Else...

FileName 13

HGCD algorithm

Case i: vi+1 > vi. Take the matrix H = ikjj 1 0
-h 1

y{zz where h = dvi+1 ê vit ¥ 1. The

new pair is ikjj u
v
y{zz = H ikjj vi

vi+1
y{zz = ikjj vi

vi+1 - h vi
y{zzwhich satisfies the requirement

that u > v > 0. Move on to step 5.

Case ii: vi+1 < 0 and vi+1 + vi ¥ 0. First assume qi > 1. Then take H = ikjj 1 0
1 1

y{zz
and proceed as in case i above to obtain a positive pair in the correct order.
Note that u - v = ˝ vi+1 ˝ < 2k+1è!!!!!f0 . This means that a Euclidean step will
bring the pair into the range claimed in step 6 below. If qi = 1, again we use
the matrix H as defined above, and again we obtain a positive pair in the cor

rect order. But the product H Ri is ikjj 0 1
1 0

y{zz which is not an elementary matrix.

To correct, multiply by ikjj 0 1
1 0

y{zz again, giving as product the identity matrix.

This flips ikjj u
v
y{zz. Proceed back to step i to correct thie ordering.

Case HiiiL. If vi+1 < 0 and vi+1 + vi < 0 then either vi § 2k-1è!!!!!f0 or
vi+1 § -2k-1è!!!!!f0 . In either case we have ri § 2è!!!!!f0 . Perform a reversal of a

Euclidean step, obtaining pair ikjj u
v
y{zz = ikjj vi-1

vi
y{zz = Ri-1

ikjj m
n
y{zz. If u < v then we go to

case HiL above.

FileName 14

HGCD algorithm

Step 5: Perform a Euclidean reduction on ikjj u
v
y{zz, obtaining next consecutive pairikjj v

w
y{zz in the remainder sequence for ikjj m

n
y{zz, with elementary transformation

matrix Q = ikjj 0 1
1 -q

y{zz Hq = du ê vt, w = u - q vL. Form corresponding transforma

tion matrix R = Q Ri.

Step 6: Examine the values of our pair ikjj v
w
y{zz. We know:

0 < v < 2k 3è!!!!!f0 < 2k+1ê2 3 m1ê4 < 23ê2 3 m3ê4 and u > 2k-1 >
è!!!!m ë4.

Case i: w <
è!!!!m . If v ¥

è!!!!m we have our pair straddling è!!!!m . Return it along
with the transforming matrix R. If v <

è!!!!m we do reverse Euclidean steps,
updating our remainder sequence pair and transformation matrix. We have at
most five such steps before an element exceeds è!!!!m ; perform as many such
steps as is needed to obtain the pair straddling è!!!!m and return it with corre
sponding matrix.

Case HiiL. è!!!!m § w < v < 23ê2 3 m3ê4 Htypical: w and v both close to m3ê4L. Simi
larly to step 1, we take l = dlog2 mt - dlog2 vt. Note l is roughly between one
fourth and one half bit length of m HSpecifically:dlog2 mt ê4 - 3 < l < dlog2 mt ê2 + 3L. Proceed to step 7.

FileName 15

HGCD algorithm

Step 7: Write ikjj v
w
y{zz =

ikjjj2l f2 + f3
2l g2 + g3

y{zzz with dlog2 f2t = dlog2 vt - l. Can show: f2

and g2 are no larger than OIè!!!!m M.
As in step 2, recursively compute HGCDikjj f2

g2
y{zz. As in steps 3 and 4, obtain trans

formation matrix S, and consecutive pair ikjj v j
v j+1

y{zz in remainder sequence forikjj m
n
y{zz, with v j > v j+1 ¥ 0. If v j § 2l-2è!!!!!f2 . If necessary, do a single reverse

Euclidean step to get previous consecutive pair in the sequence. At this point

we have a consecutive pair, call it ikjj x
y
y{zz. Theory guarantees y < 2l+2è!!!!!f2 and

x > 2l-2è!!!!!f2 .

Step 8: We know f2 is within a factor of 2 of 2-l v , so
2lè!!!!!f2 º 2lê2è!!!v º "#####ÅÅÅÅmv

è!!!v =
è!!!!m Happroximation from first to last is within

a factor of 2 L. Inequalities from step 7 imply y < 8è!!!!m and x >
è!!!!m ë8. With

limited number of Euclidean steps, or reversals thereof, we obtain the consecu
tive pair in the remainder sequence that straddles è!!!!m , and the transformation
matrix that gives this pair.

While this is a bit intricate, it seems simpler than any other version I have seen
that enforces the "straddle the half size" condition. This in turn is important
for a simple coding of rational recovery.

FileName 16

Example to demonstrate speed
fibs = 8Fibonacci@10^7D, Fibonacci@10^7 + 1D<;

These have about two million digits:

Log@10., fibs@@1DDD
2.08988µ106

We'll take gcd Hregular and extendedL to get some idea of the speed of this
method. This is done on a 3 GHz machine under Linux, using a
not terribly optimized GMP installation for the bignum arithmetic.

Timing@gcd = Apply@GCD, fibsD;D
Timing@8gcd2, mults< = Apply@ExtendedGCD, fibsD;D
mults.fibs ã gcd ã gcd2 == 1841.0518 Second, Null<852.0571 Second, Null<
True

FileName 17

Example to demonstrate speed
Previous   Next

We contrast this to the time it takes just to multiply this pair.

Timing@product = Apply@Times, fibsD;D81.36279 Second, Null<
Note that with 2 000 000 digit inputs, we expect the ratio between multiplica
tion and HGCD based gcd to be, roughly, a factor of logH2 000 000L Husing
base of 2, since this is a divide and conquer algorithmL.

41.êLog@2., 2 000 000.D
1.95876

This indicates that the speed is in the expected ballpark.

FileName 18

Rational recovery
Because HGCD brings us right to the middle pair in a remainder sequence, it is
ideally suited for recovery of rationals from p adic images. The method is
explained in detail in the text by von zur Gathen and Gerhard. Given a prime
power pk and a smaller nonnegative integer x not divisible by p, we can obtain
a rational a êb equivalent to x modulo pk with both numerator and denominator
smaller than the square root of the prime power. It is obtained directly from the

HGCD matrix and middle pair given by HGCDikjj pk
x
y{zz.

To summarize, we have a matrix R j =
ikjj s j t j

s j+1 t j+1
y{zz with R j

ikjj pk
x
y{zz = ikjj u

v
y{zz. We

have 8v, t j+1< <
è!!!!!pk and ÅÅÅÅÅÅÅvt j+1 ªpk x because s j+1 pk + t j+1 x = v. Thus we have

our desired rational.

The Mathematica code below will do this recovery given the input pair 9x, pk=.
rationalRecover@x_, pk_D :=HHÒ@@2, 2DDêÒ@@1, 2, 2DDL &L@
Internal`HGCD@pk, xDD

rationalRecoverA
111 122 223 333 444 455 556 666 777 788 889 999,
Prime@222D17E
ÅÅ
226 563 468 288 751 478 292 482 603
350 240 101 969 175 888 689 266 729

FileName 19

Rational recovery
It is not hard to code the pedestrian approach, using the usual Euclidean algo
rithm to work down to where we first get below half the size of the second
input.

rationalRecover2@a_, b_D := Module@8mat, aa = a, bb = b, cc = 1, dd = 0, quo<,
mat = 88aa, cc<, 8bb, dd<<;
While@Abs@aaD ¥ Sqrt@bD,
quo = Quotient@bb, aaD;88aa, cc<, 8bb, dd<< =88bb, dd< - quo*8aa, cc<, 8aa, cc<<;D;
aaêccD

rationalRecover2A
111 122 223 333 444 455 556 666 777 788 889 999,
Prime@222D17E
ÅÅ
226 563 468 288 751 478 292 482 603
350 240 101 969 175 888 689 266 729

Yet another method involves lattice reduction.

rationalRecover3@n_, pq_D := HÒ@@1DDêÒ@@2DD &L@
First@LatticeReduce@88n, 1<, 8pq, 0<<DDD

rationalRecover3A
111 122 223 333 444 455 556 666 777 788 889 999,
Prime@222D17E
ÅÅ
226 563 468 288 751 478 292 482 603
350 240 101 969 175 888 689 266 729

FileName 20

Speed of rational recovery on a larger
example

We'll try a larger example to illustrate speed.8v1, v2< = 8Random@Integer, Prime@11111D^2222D,
Prime@11111D^2222<;

ByteCount@v2D
4704

Timing@rat = rationalRecover@v1, v2D;D80.023996 Second, Null<
Timing@rat2 = rationalRecover2@v1, v2D;D817.3534 Second, Null<
Timing@rat3 = rationalRecover3@v1, v2D;D8210.435 Second, Null<
rat == rat2 == rat3
True

Where the fast version is particularly important is in doing linear algebra over
the rationals. As dimension increases, so HtypicallyL do sizes of resulting num
bers. Hence asymptotically fast recovery is quite useful in order to keep that
step from being a bottleneck in the process. Other tactics may be found in
work by Chen and Storjohann from this conference.

FileName 21

Planar lattice reduction

Suppose we have a 2x2 integral matrix M = ikjja b
c d

y{zz where we regard the rows

as generating a lattice in 2. The goal is to find a reduced form, that is, a unimo
dular multiplier matrix A such that A M = L where L is the lattice reduced form
of M .

We already saw an example where lattice reduction of a certain 2x2 matrix
gave a result equivalent to HGCD Hit can be proven that that will always work
for rational recovery, given to certain size hypothesesL. Here we want to go in
the reverse direction, and apply HGCD like methods to reduce a lattice. The
literature on this topic contains needed theorems; we simply show the idea of a
method for the purpose at hand.

FileName 22

Planar lattice reduction
What is illustrated below appears to be essentially the same as the method
developed by Eisenbrand a few years ago.

Step 1. Put M into Hermite normal form. As is well known, this uses the
extended gcd algorithm, hence Hfor large inputsL amounts to a few HGCD invo

cations. We obtain M1 = ikjjg j
0 k

y{zz Hwhere g = gcdHa, cLL and a unimodular trans

formation matrix A1 with A1 M = M1.

Step 2. See if this is lattice reduced. If so, we are finished. If not, we now have
a "small" element in the upper left and a zero beneath it. Thus it makes sense
to work on the second column.

Step 3. Find HGCD H j, kL. Use the multiplier matrix A2 to form

A2 A1 M = A2 M1 = ikjjs m
t n

y{zz.
Step 4. We now have a short vector. If the second vector is not short we can
reduce it using Euclidean steps Hthis method of reducing planar vectors is due
to GaussL. Since we divide by an element in the short vector, the number of
such steps is bounded.

FileName 23

Planar lattice reduction example
We start with a matrix for which we know a small row exists. We will explic
itly form the reduced lattice and observe sizes of its elements.

SeedRandom@1111D;
row =
Table@Random@Integer, 8-10^100, 10^100<D, 82<D;

lat = 8row, row + 810^10, 10^20<<;
redlat = LatticeReduce@latD;
Log@10., Abs@latDD
Log@10., Abs@redlatDD8899.9937, 99.8255<, 899.9937, 99.8255<<8810., 20.<, 899.9937, 89.9937<<8a0, hnf< = Developer`HermiteNormalForm@latD;
Log@10., Abs@8a0, hnf<DD88898.8304, 98.8304<, 899.9937, 99.9937<<,880., 118.83<, 8-¶, 119.994<<<8a1, col2< =
Internal`HGCD@Apply@Sequence, hnf@@All, 2DDDD;

We check that this is correct.

a1.hnf@@All, 2DD == col2
True

FileName 24

Planar lattice reduction example
lattoo = a1.a0.lat88-1 690 297 741,
98562 207 300 476 944 016 323 888 983 594 108 894 500 Ö
069 318 932 811 218 331 933 156 802 505 639 031 591 Ö
298 243 692 275 868 793 220 380 069 225<,810000 000 000, 100 000 000 000 000 000 000<<

We see that we have recovered the short vector from the known reduced form.

But now we can take a quotient, form a multiplier matrix similar to that used in
HGCD, and obtain a reduction of the "large" vector".

q = Quotient@lattoo@@1, 2DD, lattoo@@2, 2DDD
985 622 073 004 769 440 163 238 889 835 941 088 945 000 Ö
693 189 328 112 183 319 331 568 025 056 390 315 912 982 Ö
436 922

FileName 25

Planar lattice reduction example
a2 = 881, -q<, 80, 1<<;
latthree = a2.lattoo88-9 856 220 730 047 694 401 632 388 898 359 410 889 450 Ö

006 931 893 281 121 833 193 315 680 250 563 903 159 Ö
129 824 369 221 690 297 741,

75868 793 220 380 069 225<,810000 000 000, 100 000 000 000 000 000 000<<
Now check that the transformations are unimodular, and get the sizes of the
elements in the reduced lattice.

mult = a2.a1.a2;
Det@multD
Log@10., Abs@latthreeDD
-18899.9937, 19.8801<, 810., 20.<<

FileName 26

Summary
We have seen a rich history of the HGCD algorithm. The major actors in this
play are largely of illustrious status in computational mathematics HI'm trying
not to drastically damage this chainL. Various applications make this all the
more of interest to computational math.

The method we presented has several virtues:

Ë Provably fast.

Ë Provably correct.

Ë Reasonably straightforward in regards to fixup steps.

Ë Can be applied immediately to rational recovery.

Ë Can be applied to reduction of planar lattices such as are given by binary qua
dratic forms.

Ë Faster extended gcdïfaster Hermite formïfaster linear diophantine solv
ing. This carries over to nonlinear algebra Hover rationals and integersL,
because it can enhance speed of Gröbner basis computations over both
domains.

FileName 27

Selected references
A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison Wesley Publishing Company, Reading

Massachussetts, 1974.

Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on integer matrices. These proceedings, 2005.

F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information Processing Letters 79 121 126, 2001

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

R. T. Moenck. Fast computation of GCDs. Proceedings of the 5th ACM Annual Symposium on Theory of Computing. 142 151. ACM Press, New York

City, 1973.

N. Möller. On Schönhage's algorithm and subquadratic integer gcd computation.Submitted, 2005.

V. Y. Pan and X. Wang. Acceleration of Euclidean algorithm and extensions. Proceedings of the 2002 International Symposium on Symbolic and

Algebraic Computation HISSAC 2002L. 207 213. ACM Press, New York City, 2002.

A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica 1 139 144, 1971.

D. Stehlé and P. Zimmermann. A binary recursive GCD algorithm. Rapport de recherche INRIA 5050, 2003. Published in: Proceedings of the 6th

Algorithmic Number Theory Symposium HANTS VIL, 2004, D. Buell ed. 411 425. LCNS 3076. 2004.

K. Thull and C. K. Yap. A unified approach to HGCD algorithms for polynomials and integers. Manuscript, 1990. Available at:

http:êêcs.nyu.eduêcsêfacultyêyapêallpapers.html

FileName 28

