Half-GCD, Fast Rational Recovery, and Planar Lattice Reductio

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Center Dr.
Champaign IL 61820

danl@wolfram.com

ABSTRACT. Over the past few decades several variations on a "half GCD" algorithm for obtaining the
terms in the middle of a Euclidean sequence have been proposed. In the integer case algorithm desigr
of correctness are complicated by the effect of carries. This paper will demonstrate a variant with a rela
simple proof of correctness. We then apply this to rational recovery for a linear algebra solver. After shc
how this same task might be accomplished by lattice reduction, albeit more slowly, we proceed to use 1
GCD to obtain asymptotically fast planar lattice reduction.

This is an extended version of a paper presented at ISSAC 2005 [17]. It also contains minor changes.

Categories and Subject Descriptors

F.2.1 Analysis of Algorithms and Problem Complexity: Numerical Algorithms and Problems——- Number-th
retic computations; 1.1.2Symbolic and Algebraic Manipulation]: Algorithms——- Algebraic Algorithms; G.
[Mathematical Software]-—— Algorithm design and analysis

General Terms
Algorithms, Performance

Keywords
integer gcd, subquadratic arithmetic, rational recovery

1. INTRODUCTION AND RELATED WORK

The "half GCD" HGCD) algorithm, as described in [19] and [1], works by taking the high parts of a pair of inpi
Euclidean domain, first recursively finding the pair of elements in the Euclidean sequence for that pair that str
middle of the larger input as well as tBex 2 matrix that converts to this middle pair. It then uses these vali
convert the original pair to something sufficiently smaller. This is repeated one time, along with Euclidean
appropriate points, in such a way that one obtains the corresponding middle values for the original pair
Various analyses explain why this is asymptotically fast compared to direct computation of the full Euclidean
(we refer below to this latter as the "standard" Euclidean algorithm). The method itself is loosely based on
asymptotically fast algorithm presented for continued fractions in [22]. As is indicated in that work, it in turr
adapted to find a GCD although there appears to be some extra bookkeeping. That work was in turn an impi
a slower though still subquadratic method presented in [14].

Since its introduction in the early 1970’'s, the asymptotically FESCD idea has given rise to several variants
descriptions thereof. This state of affairs has come to pass because of difficulties encountered in proofs of cor
turns out that the integer case is particularly troublesome due to the possibility of carries that may cause in
values to be too large or too small relative to what the algorithm requires. Several papers ([3], [25], and [2C
this with fix—up steps that involve a limited humber of Euclidean steps or reversals thereof. These papers te
proofs that involve analysis of many detailed cases, thus making them difficult to follow, let alone implemen
fair, they strive for greater generality in some respects). The main contribution of this paper is to provide
formulation with straightforward proofs. We should mention that the method of [22] is not known to this a
suffer from issues of correctness, though for GCD purposes it is likely to be a bit slower and is also not as cor
HGCD for purposes of rational recovery.

As testimony to its relative simplicity, the gcd method we present is now implemented as of versidv&Heafatic:
(TM) [29]. It is an improved version of that which appeared in version 5.0. The prior work was coded by Da'
with assistance from Mark Sofroniou and the author, in early 2001. It could be described as a "Las Vegas"
insofar as it is always correct but only probabilistically fast; in practice we have never noticed it to falter. 1
deterministic method of this paper was coded by the author and Mark Sofroniou.

Some important uses of asymptotically fast gcd to date are in finding greatest common divisors of pairs of larg
ate polynomials or integers. An important advantage it enjoys is that, with little loss in efficiency, it finds corres
cofactors when needed (that is, it computes the extended gcd). This is required, for example, in Hermite nc

computations. Moreover in finding cofactors for steps that take us half the distance to the gcd, the HGCD
suited to fast recovery of rationals frgmadic images (as we will see, the code involved is trivial). The second cc
tion of this paper is to show this as applied to linear equation solving. This will give some indication of speed

ment over a standard Euclidean algorithm based recovery method. We will also describe a method of ration:
based on planar lattice reduction, and, reversing the process, show how to do fast planar lattice reduction via |

In another recent paper, [24] take a different direction by operating on the low (rather than high) end of the in
has the advantage that carries are no longer an issue. A possible drawback is that rational recovery becomes
transparent though they show how it may still be done. They present a timing comparison that clearly demor
efficacy of their code. At present it is not simple to compare directly to ours, due to different installations of the
ing GMP bignum arithmetic facility [12] as well as possible differences in memory management and timing the
they appear to be in the same ballpark. | have also learned that recent work described in [18] and [21] is sin
present work in regard to asymptotically fast GCD computation. The former is quite promising insofar as
efficient code written for comparison of several related approaches. It is expected that the best will eventua
public domain software [12].

| thank two anonymous referees for detailed remarks and suggestions that improved the exposition of this
thank the second referee as well for bringing several errors in the draft to my attention. | thank Erich Kal
posing questions that caused me to look more closely at the earlier work of Schdonhage in [22]. | thank Dami
Niels Moller, and Fritz Eisenbrand for email correspondence that helped to clarify some points about their relat

2. A QUICK REVIEW OF EUCLIDEAN REMAINDER SEQUENCES

Much of what we discuss in this section applies to general Euclidean domains once one adjusts definitions 1
floor function) as needed, but we restrict our attention to integers as the case of interest. We are given a pair

. m
mtegers(n) (we will use column vector notation throughout, as we frequently multiply on the left by a matri

m> n. We are interested in elements in the Euclidean remainder sequentg, n=my, ..., M. The integer quotien
are the floor of the divisions of successive terms in this sequapeg¢m;_, /m;|. We define the matriR; such tha

(my (o m; (0 1 . . " . 0 1)\,
R (n) = (M) For exampleR; = (1 —q) (matrices of this form are called "elementary") &= (1 —q)R,_l.

. - . . Sj 1
From this last it is clear that the top rowR)f.; is just the bottom row dR;. Hence we may writ&; = (s 'l t'Jl) We
j+1 b+
state a few basic facts about these quantities.

LEMMA 1. AssumeR; is a nontrivial product of elementary matrices.
0] Sj-1=Sj+1 + 0; Sj andtj_l =tj;1+qjtj.

, m

(i) 1t Ry (M) = (mjil)thenmj_l = Mjq +0; M,

(iii) The signs inR; alternate in both rows and columrst; < 0 ands; sj.1 < 0.

(iv) The sizes grow top to bottom and left to righgi.1 | > |sj |, |tica| > |t |, and|t;| > | sj]-
W a = |spa/si|] =t/ 1]

PROOF.

(i)—(iv) Quickly proven by writing out the produgy; = (2 —%1]) Rj-1.

(V) As q; s = Sj_1 — Sj+1, parts (iii) and (iv) together imply thdtsj,1 | = aj|s;| > (|sq|—]s;|). This suffices to giv
the first floor equality fo;. The second is done similarly.

. . . m; -
This lemma shows how to compuRg.; andm;_; givenR; and the remainder sequence ajt L) The significanc
]+

is that we can "go back" in the Euclidean sequence should we happen to overshoot (this will be discussed |
also that in the special caseRf, which is an elementary matrix, we can obtginmmediately. We easily recogni
this case, as it arises if and only if the first matrix element is zero. We also use part (iii) to prove the next lemm
LEMMA 2. AssumeR; is a nontrivial product of elementary matrices. Thepu <n/mj_y and 1tj1 <m/mj_;.

PROOF. This is done by induction. The base case gives equalities. For the inductive step we will ¢
|sjs1| =n/mj; the case for|t.1| is handled similarly. By lemma 1(iii) we knoy|si.1/s;||=a;. Hence

|sis1/si| =g Thus |sji| =<gjs. By the inductive hypothesis |sj| <n/mi_;. Hence
|| =qin/mig=[mi1/m[n/m1<n/m.0
This lemma is used to bound various quantities in the lemmas of the next section.

LEMMA 3. For m>n> 0 suppose we are given a product of elementary matrices @iﬁhﬁuch that the resul(,s)

satisfiesu>v> 0. Then(3) are a consecutive pair in the remainder sequenc(a'ﬁJ).

This is presented as Fact 1 in [25]. It is important because it tells us that we may take a product of elementa
of the formR; above, computed with respect to a new pair of integers, and still arrive at a consecutive p:
remainder sequence for the original pair.

Finally we remark that there is obviously an indefor which the pair(rTT‘l) straddlevm, i.e.me=vm >mg,.
+

These together, and in order, are referred to as the "middle" pair in the remainder sequence (regardless o
index occurs in the sequence of such indices).

3. BASIC THEORY FOR THE HGCD ALGORITHM
Again we begin with a pair of positive integ(arlrg) with m> n. Takek to be a positive integer less than the size af

Zk fo + fl) with

bits (initially it will be |log, m/2| but we do not use that until the next section). We v(rﬁe) = (Zkg ‘g
o+ 01

{f1, g1} < 2€ and recursively compute the middle pair, and corresponding multiplier matrix, for tI’(eéE)éerhis give:

fi

) 1) andri.1 <4/ fo =ri. We want to usd&,, or a close relative, on t
I+

a matrixR, and pair(r:l) with R (;g) = (r

2K fo+ f1 _ k(T . f1 . . Vi
ok go+gl)_2 (Fi+1)+R'(91)' We will call this product(Vit

lemmas will find bounds, one upper and one lower, for these elements. We first andiwe bound the absolt

value and, under certain circumstances, we place a tighter bound on how negative it may become. This is
because, in order to invoke lemma 3, we will need a way to correct for the negative case.

LEMMA 4.

(I) Vi1l < 2k+1 1/ fo .
(i) Suppose; > 24/ fo . Thenvi,, > -2<14/ o .

PROOF. Note thdls, 1, ti;1} < fo/ri <4/ fo . We havevi,1 = 2K lis1 +S+1 f1 +tiz1 01

original pair(r:). We haveR,-() The next twi

(i) Using the upper bound & on{f1, g1} and the alternating signs in the matRx the absolute value is bounded

Wit <24 fo + 2o =211y .

f
i) Sincer; > 24/ fo we haveyi,; > -2k —— = -2<1,/f, .0
() i 0 1+1 2\/? 0

We will use these same notions in subsequent lemmas (particularly the sign alternation, in effect to ignore
three terms) without further mention.

We now look at; = 2Kr; + 5 f1 +t g1.
LEMMA 5.

(i) Suppose; > 24/ fo . Theny; > 251/ fo .

(ii) Suppose; < 24/ fo . Theny; > 2¢1,

PROOF. Lemmas 1 and 2 sign alteration and size bourRigyimesv; = 2r; + s fi +t; gy > 2Kr; — 2K rf—"

i-1

i i v o ok fo Vo _ok-1 [
(i) The hypothesis and the fact that, > r; yield v; > 2 [r. - ﬁ] > 2 = 2 fo .

k
(i) Now we write the lower bounding value r?\zs (riri_1 — fo). Since4/ fo =<r; <ri_; and the latter two are intege
i-1

there is ana>1 with ri_i=+/ fo +a So we havev > %(ri(\/ fo +a)— fo). This in turn is larger the
fo +a

2 (ﬁ (ﬁ + a) - fo) = (\/fik+a) aﬁ which is bounded below Bf-1. o
0

(fo +a)

For the pair(v?’il)z R (rrr:) lemmas 4 and 5 give an upper bound on one element and a lower bound on tl
1+
There will be situations in which we must backtrack a Euclidean step ®_ys¢hat is, the multiplier matrix precedi

R in the remainder sequence fodf‘é) In this case we need to bOL(n\(/i,‘il) = R_l(?:)

LEMMA 6.

() via> 2 fo .

(i) Suppose; <2 4/ fo . Thenv; <2434/ fy .

PROOF.
(i) Vica=2%riog + 521 fr+tisa 01> 21 = 2 fo /rin =

f f f
2kri—l_2kﬁ>2k(ri_1_2_Z)>2k(\[fo —g]:zk_]',’ fo .

() vi=2kri+s f+tige2X2fo +28 0 <k [, +2k 2 —2k3.[f, .0

li-1 [
. ./m . . . Vj . . .
Given a pa|r(n) with m>n> 0 we will see that the above lemmas allow us to find a(R;ai\irl) with magnitudes i
+

the desired ranges (this will be explained more carefully in the next section). Two problems may arise. One
require both to be nonnegative; the lemmas will only guaranteesthd@. Second, we require tha>vi,;. Thest
requirements are in order to meet the hypotheses of lemma 3 and thus assert that we have a consecutiv¢
remainder sequence for our inputs. We now provide a lemma to assist in repairing our intermediate pair, shi
of these possible flaws arise.

LEMMA 7. Given an elementary matr(xcl) _(111_) (this impliesg; is a positive integer). Then for any intedex g; the

product(ﬁ 2) ((1) —]C-]j) is also an elementary matrix. In particular this holds for any negative integer

PROOF. The product is simp()g h _lqj) and by definition this is elementary precisely wheng; < 0.0

We will use such products to repair deficiencies in sign or order of é\pYélir).
I+

4. THE HGCD ALGORITHM
Input: A pair of nonnegative integamrs> n.

Output: A pair(V_V‘l) of consecutive integers in the Euclidean remainder sequené(r%:f))with Vi=Vm >viq, and ¢
i+

matrix R which is the product of elementary transformation matrices, sucRi(hré]t) = (VYil)
i+

Step 1: With the same input specification as in the previous sections, we begin by ch@o%lﬁ%mj. Thus, as abov

k
we write(rr?) = (:k ;0 I ;1) with {1, g1} < 2. Moreover the choice & gives2¢>vm > 21 andgy < fo<2vVm.
0 1

Step 2: Recursively computehGCD(gf]g) With notation as in the last section, the result is a m&rand pair(r-ril)
I+

f
i1

e)

) andO<rjq < fo <rj.

Step 3: Computké V:/ll): R(w) Note that we already have the "upper part" of the resulting vector compt

(r_ril); this can be used to reduce the size of the multiplications in this step.
i+
Step 4: The bounds presented in the lemmas do not rule out the possibiNty;tihady be negative, or thgt< vi,;. If

u Vi -

Vv > Vi, > 0 then we se@v) = (v 'l) and move to step 5 at this point. Otherwise we must repair the pair in suct
i+

that the transformation matrix remains a product of elementary matrices. This is necessary so that we Ir

lemma 3 to know the resulting vector is a consecutive pair in the remainder sequeéq;;e). fdre split into three cas

that together comprise all possibilities.

Case (i). Suppose,; >V;. Take the matrixH :(—1h 8) whereh=|vi;1/vi]= 1. By lemma 7H R, is a product ¢

elementary matrices. The new pair thus obtaine(cti)s: H (VY‘l) = (v 1\f hv)WhiCh satisfies the requirement t
I+ 1+ |

u>v> 0. For purposes of notation we continue to call the resulting mBtriklote that the value af is unchange
(hence lemma bounds still apply), while the absolute valwéhas diminished. We now move on to step 5.

Case (ii). Suppose,; <0andvi,; +Vv; = 0.
Subcase (a). First assume> 1. Then we use the matrbt = (i 2) and proceed, as we did in case (i) above, to ¢

Vi

_ . 1.0\/0 1.)
Vit) This is appropriate because the proc(%:tl) (1 —q) is an elementary matrix

a positive pair viz(\lj) =H (
we may invoke lemma 3. Again we call the resulting é%l) and continue to call the transformation maijx Note

thatu—v=1vi,11 <21,/ fy . This means that a Euclidean step will bring the pair into the range claimed in

below. As it also shows that> v, we have a consecutive pair in the remainder sequence.
Subcase (b). Ifj =1 the situation is a bit more subtle. Again we use the métrixs defined above, and again

obtain a positive pair in the correct order; unfortunately the praduRtis ((1) é) which is not an elementary mat
To correct for this we multiply bfg é) again, giving as product the identity matrix. This has the effect of fli|

(\lj) Thus we have used premultipliers to take us flRnto R,_;, which we know is also a product of elemen

matrices. We have also obtained as our ve(cx [it has appropriate components except they are in the wrong

As this is exactly the situation of case (i) above we proceed there to correct it.
Case (jii). Ifvi,1 <0 andvi,1 +Vv; <0 then eithen; <21/ fy orvi,1 <-2K1/ fy . In either case, lemmas 5(i) ¢
4(ii) respectively guarantee that<2+/ fo . We will perform a reversal of a Euclidean step, obtaining the

(\Lj) = (Vi/‘il) = Ri,l(rr?) Asri<2 ﬁ, lemma 5(ii) guarantees that- 0 and furthermorer < 24 Sﬁ by lemma €

so again the bounds given in step 6 will holdi v then we go to case (i) above.
We remark that cases (ii—b) and (iii) are identical in terms of actual treatment. We separated them in the way

order to explicate the rationale. But sirgge= 1 in case (ii—b), and we adjusted via the matlix (i (1)) , we haw

simply done nearly a reversal of a Euclidean step. The only difference in the outcome is we also reversed tl

(VYil) The next adjustment in (ii—b), to get a valid elementary matrix, flipped the order éc\)/{p]e) thus we nov
- |

have indeed done a Euclidean step reversal, just as is used in case (iii). From the hypotheses of case (ii-|
Vi_1 <V;, hence we must proceed to case (i) to correct this. Again, this is something we check for in case

upshot is that in actual code cases (ii—b) and (iii) will be handled as one.

Step 5: Perform a Euclidean reduction(q%). We obtain the next consecutive p(a\\}i;) in the remainder sequence

(rr?) with elementary transformation matix= (? —1q) whereq = [u/v], andw=u-qVv. We form the correspont

ing transformation matriR=Q R.

Step 6: At this point we examine the values of our (q\é,l) Lemmas 4, 5, 6, the remarks from the step 4 cases, a

choice ofk (implying fo<2vm and 2! <+ m) guarantee tha®<v<2¢34/ fy <2123 mb4 < 2323mP* anc
u>2<t>+m /a4

Case ()w<vm.If v=v m we have our pair straddlinﬁ. We return it along with the transforming matgx If
v<vm we do reverse Euclidean steps, updating our remainder sequence pair and transformation matrix
formulas in lemma 1. Sinag> v m /4 and it immediately precedesn the remainder sequence, we have at mos

such steps before an element excesas (possibly one could decrease this upper bound by constructing

bounds in the lemmas). We perform as many such steps as is needed to obtain the pair s,f@dlbtgrning it an
corresponding transformation matrix.

Case (i)).Vm =w<v<2¥%23m¥ (in typical examplesw andv will both be close tan?4). Similarly to step 1, w
takel = |log, m| - |log, v| (so2' is within a factor of2 of m/v; we will soon see why this is the appropriate va
Observe thatl is roughly between one fourth and one half the bit lengthmof Specifically, we hav
|log, m|/4-3<1<|log,m|/2+ 3. We proceed to step 7.

2 f, + f3
20 +0s
on| show thatf, andg, are no larger tha@(\/ﬁ). This fact is required for the claim of asymptotic speed (thoug
for correctness).

Step 7: This time we writ(e\xl) :() with |log, f,| =|log, v| - I. The upper bound deg, v and lower boun

As in step 2, recursively compLHECD(52) As in steps 3 and 4 we obtain a transformation m&trand a consect
tive air(v
p Vi

5(i) cannot hold, and thus lemma 6(ii) applies. So we do a single reverse Euclidean step to get the previous «

1) in the remainder sequence (orlr?), with vj > vj1 = 0. If vj < 2'-2./ f, then the condition of lemn

pair in the sequence. At this point we have a consecutive pair, o@)jt wherein lemma 6 guarantees !

y<2*2,/ f, andx>2"2,/f,.

Step 8: From step 7 we know thiatis within a factor of2 of 27'v and hence' \/ f, ~22Vv ~ [T Vv =vm

where the approximation from first to last is within a facto2dfecause each intermediate approximation is witl
factor of V2. The inequalities at the end of step 7 therefore imphBvV m andx>vm /8; this was the point |
selectingl as we did. Thus with a limited number of Euclidean steps, or reversals thereof, we obtain the co

pair in the remainder sequence that stradgies, and the transformation matrix that gives this pair. Possibly witl
we might tighten the bound on the number of forward or reverse Euclidean steps. In practice this is unimpo
simply codes avhile loop for the iterations; that it terminates in a fixed number of steps suffices to prove the
asymptotic speed.

5. APPLICATIONS OF THE HGCD ALGORITHM

First note that the asymptotic complexitydgn M(n)) wheren is the bit size of the inputs aidi(n) is the complexity ¢
multiplying a pair of number of that size. This is well known (see the various references) and follows from the
we do two recursive steps on numbers no larger than rougRl\see steps 1 and 7 above), along with a bot
number of multiplications, Euclidean steps, and reverses thereof. It is this speed that motivates the various &
mentioned below.

The HGCD algorithm is used recursively in gcd computations.HBCD computation followed by a Euclidean ste
guaranteed to reduce the size of the inputs (in bits) by at least half. Another advantage is that one gets the ca
multiplier matrix for free, so computation of the extended gcd is not much more costly than that of the ordit
This is important for e.g. matrix Hermite normal form or integer Grobner basis computations [16], where :
extended gcds is paramount. As a standard benchmark example we will find the gcd of a pair of conseci
Fibonacci numbers. This and all other timings are from runs using version Matleématicaunder Linux on a 1.
GHz Athelon processor.

fibs = {Fi bonacci [1077], Fi bonacci [10"7+1]};
Each has about two million digits. We compute both regular and extended gcd and check that the result is plat

Ti mi ng[gcd = Appl y [GCD, fibs];]

Ti m ng[{gcd2, nmul ts} = Appl y [Ext endedGCD, fi bs];]
mults. fibs=gcd=gcd2 ==

{31. 04 Second, Null }

{40. 21 Second, Nul |}

True

A particularly nice application of theElGCD is in recovering rational numbers fropradic approximations. This
explained in some detail in chapter 5 of [10]. Given a prime p@ivand a smaller nonnegative integemot divisible

by p, we can obtain a rational/b equivalent tox modulo p with both numerator and denominator smaller thar

K
square root of the prime power. It is obtained directly fromHBCD matrix and middle pair given t}yGCD('3() In

. . Si . K
brief, we have a matriR; = (s '1 t'Jl) with R; (g():(\Lj) Moreover {v, tj.1} </ p* and tl = X becaus
)+]+ j+1

Sj+1 Pk + tj-1 X=Vv. Thus we have our desired rational.

The below code will do this recovery given the input paip*}.

rati onal Recover [x_, pk_] : =
((#[[2, 211 /#[[1, 2, 2]1]) &) [Internal * HGCD[pk, X]]

For contrast we also give the standard Euclidean sequence method as well as a simple method based on lattit

rational Recover2[a_, b_] :=Mdul e[
{mat, aa=a, bb=b, cc=1, dd =0, quo},
mat = {{aa, cc}, {bb, dd}};
VWi | e[Abs[aa] = Sgrt [b],
quo = Quoti ent [bb, aa];
{{aa, cc}, {bb, dd}} =
{{bb, dd} - quo % {aa, cc}, {aa, cc}}; 1;
aa/cc]
rati onal Recover3[n_, pqg_] : =
(H[[11]1 /7#[[2]] &) [First [LatticeReduce[{{n, 1}, {pg, 0}}111]

We illustrate this application by solving linear systems over the rationals, using a piraglie linear solver based
the method presented in [6] (the codedadi cSol ve is in the appendix). To get some idea of speed we will cor
to the built inLi near Sol ve function. The latter at this time uses a Gaussian elimination via one—step row re
[2]. The tests we use will involve creating random linear systems of a given dimension and coefficient size i

digits. In the results we will show timings, a check that the results agree, and the size in decimal digits of t
denominator in the result.

t est PAdi cSol ver [di m I nteger , csize_l nteger , recoveryfunc] : =
Modul e [
{ls1, Is2, mat, b},
mat = Tabl e [Random[I nt eger ,
{-10~"csize, 10"csizer], {dim}, {dim}];
b = Tabl e[Random[I nt eger ,
{-10~csi ze, 10~csizer], {dim}];
{First [Timng[lsl=
pAdi cSol ve[mat , b, recoveryfunc]]],
First [Tim ng[l s2 = Li near Sol ve[mat, b]]11],
| s1 ===1s2, Max[Log[10., Denom nator [l s1]]]}]

In the set of tests below input data will consist of 10—digit integers. First we@x &C system.

t est PAdi cSol ver [50, 10, rati onal Recover]
{1. 35 Second, 0.62 Second, True, 517.912}

The built in method was faster by a factor between 2 and 3. The standard Euclidean algardhimaefl Recover 2
makes it about three times slower still, thus indicating that even at this low dimension most of the time migh
in rational recovery if we use a pedestrian approach. This example takes about 17 seconds iusited Recover 3

We now double the dimension.

t est PAdi cSol ver [100, 10, rational Recover]
{11. 79 Second, 9. 04 Second, True, 1053. 32}

This time the speeds are quite close. Doubling again will shoptheic solver well ahead.

t est PAdi cSol ver [200, 10, rational Recover]
{93. 26 Second, 173. 27 Second, True, 2136.99}

We remark that most of the time is spent in finding phredic approximate solutions. The utility of fast ratic
recovery is indirectly witnessed in the above computations; were we to use a less efficient method, it woul
more prominent in the timings. As it stands, the overwhelming component is now in the improvement iterations
We should note that one can use a very different iterative approach when the input matrix is well conditionec
solve the stem numerically to sufficiently high precision using the iterative method of [11]. Then the exact re
be recovered using rationalization of a high precision approximate result. Interestingly, the technology undel
type of rational recovery involves continued fractions; efficient computation of these is similar to the divic
conquer approach ®iGCD. A potential drawback to this method (in addition to the conditioning requirement) is
requires an a priori precision estimate that might be quite large, or else an expensive check of correctness
outweigh the cost of the actual construction of a solution.

Quite recently a related method based on iterative refinement of numerical solutions was described in [2!
rescaling of residuals and stepwise rational approximations to construct its result. At this time it appears to b
of the art in solving linear systems over the rationals. That said, clearly there remains a need for fast ratione
from ap-adic approximation. For example, other recent methods requiring rational recovery have been discus
and [5]. Both derive speed by clever use of level 3 BLAS for modulo prime linear algebra as described in [7]."
describes ways to speed this process considerably even when using the standard Euclidean method, it reme
an asymptotically fast rational recovery is a desirable further improvement.

Another application of HGCD is in the Smi@ornacchia algorithm [4] for solving? + d y? = n with (d, n) relatively

prime. This can be used to factor primes of the fdi 1 into products of Gaussian primes. Yet another applic:
which we present later, is to fast planar lattice reduction.

6. RATIONAL RECOVERY VIA LATTICE REDUCTION

We now show that the method based on integer lattice reduction is more than just a heuristic. While not partic
we feel this is of interest in its own right as yet another simple application of lattice methods. We first set up

lem. Given integersmm>n> 0, here is a simple approach to finding a "small" ratiorsnwith sn=nr. We form a 2x |
Iattice(rr? 2) and reduce it via LLL [15], say (c{ 3) where the top row is smaller in Euclidean norm than the bc

We then take}; as our reconstructed rational. Heuristically we expect this to work frequently because typically

have{r, s} < v m and this is roughly what we require for the rational recovery procedure. It turns out that unc
hypotheses (that in essence amount to lifting half a bit more than we otherwise might), we can guarantee tha
the correct value.

Remark: Lattice reduction via LLL assumes a value for a certain parameter, ofterciallthte literature and taken
be?1 as in the original paper. But it can be any value in the open in(gllnva). If it is not the standaré then one mu:
modify accordingly the lifting bounds and proof of the below theorem.

THEOREM. Suppose we have a bouk@n numerator and denominator of a rational, and moreover we have a
of a primepY and ap-adic imagen of the value (obtained, say, as in the linear algebra examples in the pi

section). Suppose moreover tha#t> 2V2 1R andrg is a rational equal tan modulo p® with {ir1, sf<+/ p? andr
relatively prime tos (that is, it is the value we seek). Form the latticevith row vectors given (in matrix form)

n 1 vV W
recover our rational from the reduced lattice.
PROOF.
(i) First we show thafr, s} € L. By assumption there is an integewith sn+ j p%=r. Thusj {pY, 0} + s{n, 1} ={r, s}.

q
(p 0). Reduce it td u) with t2 + u? < V2 + w2(that is, rows ordered by norm). Thénu} = +{r, s} and hence w

ii) Next we claim thafr, s} is a minimal vector i.. The Euclidean norm squaredrfs+ & < 2k? < P X, ylelL
V2

is any vector independent ¢f, s} then we must hava2+y2>\/? pY, because the product of the norms of
independent pair much be at least as large as the lattice deterrpthdhtinstead{x, y} is a scalar multiple ofr, s}
then the scalar must be at lehst absolute value, by the assumption thahds are relatively prime.

(iii) Finally we show that:{r, s} is in the LLL-reduced basis. This follows from the fact that the smallest ecto
in the reduced basis htfs+ u? < 2(r? + s?) by 1.11(iii) of [15], and we know this is smaller thsl2 pY by (i) above
Again from (ii) we know that any vector inindependent ofr, s} cannot satisfy this inequality. If insteéidu} were ¢
nontrivial multiple of{r, s}, we would not have a correct basis becdusentaingr, s} by (i) above

We remark that this is a sort of opposite extreme to the method for finding extended greatest common div
sented in [13]. They use a form of column-weighted LLL to obtain extended gcds of more than two integers,

the multipliers are small (moreover, by considering multiple columns and geometrically scaled weights, they
Hermite normal form algorithm based on LLL). For the sort of lattice we construct above, such weightin
counter the tendency of LLL to take one toward the middle pair in the remainder sequence.

We give a quick demonstration of this method using one of our earlier tests.

t est PAdi cSol ver [50, 10, rati onal Recover 3]
{17.5 Second, 0.62 Second, True, 517.912}

Not surprisingly, this is not competitive in speed with the asymptotically fast HGCD method.

7. PLANAR LATTICE REDUCTION VIA HGCD

Having seen that rational recovery can be effected by planar lattice reduction, it should be no surprise to finc
reduction can be handled by means of HGCD computations. We demonstrate how this might be done; rele\
may be found in [9]. Earlier asymptotically fast methods wre presented in [] and [26].

Suppose we have2x 2 integral matrixM = (3 3) where we regard the rows as generating a latti@?irThe goal i

to find a reduced form, that is, a unimodular multiplier ma#iguch thatA M = L whereL is the lattice reduced for

of M. We compute the reduction as follows.
Step 1. PuiM into Hermite normal form. As is well known, this uses the extended gcd algorithm, hence (f

inputs) amounts to a few HGCD invocations. We oblkéin= (8 ll<) whereg = gcda, ¢), and a unimodular transform

tion matrix A; with Ay M = M;.

Step 2. See if this is lattice reduced. If so, we are finished. If not, we now have a "small" element in the uppet
zero beneath it. We now work on the second column.

Step 3. FindHGCD(j, k).

Step 4. Use the multiplier matri to formA, Ay M = A, My = (s m)_

tn
Step 5. We now have a short vector. If the second vector is not short we can reduce it using Euclidean

method of reducing planar vectors is due to Gauss). Since we divide by an element in the short vector, the
such steps is bounded.

Here is a simple example. We work with a lattice of two row vectors. We construct it in such a way as to be
from reduced. Specifically, the second row is (with high probability) a small offset of the first. We first reduc
LLL in order to find the expected lengths of the resulting elements.

SeedRandom[1111]7;

row = Tabl e[Random[| nt eger , {-107100, 107 100}], {2}1;
lat = {row, row+ {10710, 10" 20}};

redl at = Latti ceReduce[l at];

We check the sizes of the initial and reduced vectors.

Log[10., Abs[lat]]
Log[10., Abs[redlat]]
{{99. 9937, 99.8255}, {99.9937, 99.8255}}

{{10., 20. 1}, {99.9937, 89.9937}}
We now do step 1 and again check sizes (the zero corresponds to an entry of unity, anddhesponds to an en
of zero).

{a0, hnf} = Devel oper* Her m t eNor mal For m[| at];
Log[10., Abs[{a0, hnf}]]
{{{98. 8304, 98.8304}, {99.9937, 99.9937}}, {{0., 118.83}, {-w, 119.994}}}

Each row in the Hermite form has a large entry so we deduce it is not reduced. We now do step 3.

{al, col 2} = I nternal * HGCD[App! y [Sequence, hnf[[AIl, 21111;
We check that this is correct.

al. hnf[[AIl, 2]] ==col 2
True

We’ll now recover a short vector using step 4.

|attoo =al.al.l at;
Log[10., Abs[l attoo]]

({9.22796, 109.994}, {10., 20.}}

It is clear that we can use the second vector to reduce the magnitude of the first by making the second comp
smaller. We do so as per step 5. Specifically, we can take a quotient, form a multiplier matrix similar to the
HGCD, and obtain a reduction of the larger vector.

g=Quotient [lattoo[[1, 2]], lattoo[[2, 2]]1;
a2 = {{1, -q}, {0, 1}};
|atthree = a2.l attoo
{{-9856220730047694401632388898359410889450006931893281121833193315-
680250563903159129824 369221690297 741, 75868793220380069 225},
{10000 000000, 100 000000000000000000}}

We check that the transformations are unimodular and get the sizes of the elements in the reduced lattice.

10

Det [a2. al. a0]
Log[10., Abs[latthree]]
-1

{{99. 9937, 19.8801}, {10., 20.}}

It is straightforward to verify that these row norms are comparable to thaggllaf and indeed they have the st
small vector.

Short code that does this, without checking for the special cases, is in teh appendix. An expanded version is
in order to compute Frobenius numbers for sets of three elements. It appears to be on average far faster thal
known methods as discussed in [27] and references therein.

8. SUMMARY

We have demonstrated a correct, asymptotically fast integer gcd algorithm based on the classical Half-GC
The various correction steps needed to address deficiencies caused by integer carries are, we believe, relat
both from the standpoint of theory and practical implementation. We apply this to solving large linear system:
rationals, obtaining results that scale well with dimension.

After demonstrating that a similar rational recovery result can be attained via planar lattice reduction, we the
to do such reduction using HGCD.

9. APPENDIX: P-ADIC SOLVER AND PLANAR REDUCTION CODE

Below is code for a simple—adic solver for linear systems with integer coefficients; extension to rationals is stre
ward. The code below computes a solution modulo a particular prime. In production code one would make
system was solvable modulo that prime or else resort to another tactic.

vect or Norm[vec_] : = Appl y [Pl us, Map[Abs, vec]]
matri xNorm[mat _] : = Appl y [Ti mes, Map[Sqrt [N[#]. N[#]] & mat]]

power Up[vals_, nod_] : = Map[FronDi gits[#, nod] & Transpose[Reverse[vals]]]

pAdi cSol ve[mat _?Matri xQ, rhs_?VectorQ, recoveryfunc] : =
Modul e[{l en = Length[mat], b, nmod = Pri ne[2222],
morm, |lud, sol = {}, corr, power, j =0, | ogpow= 0, | ogni},
| ogm= Log[N[nhDd]];
| ud = LUDeconposi tion[mat, Mdul us - nod];
b =rhs;
power =1;
morm= 2. xLog[(2. »matri xNorm[mat] » vect or Norm[rhs])1];
Whi | e[l ogpow < rmor m+ . 5,
] +4;
corr = LUBackSubstitution[lud, b, Mdul us- nod];
b=1/nod=x (b-nmat.corr);
sol = {sol, corr};
| ogpow += 1| ogm];
power = nod”j;
sol2 =Partition[Flatten[sol], |l en];
sol 2 = power Up[sol 2, nod];
Map [recoveryfunc [#, power] & sol 2]]

Below is a version of planar reduction that will tend to find a reduced lattice with smallest vector. It is based ¢
the exposition in [9].

pl anar Reduce[{{a_I nteger , b_I nteger}, {c_Integer, d_Integer}}] :=Mdul e[
{hgcd, mult, lat, g, ull, ul2, col2, c22, r1, r2, k, a0},
{g, {ull, ul2}} = ExtendedGCD[a, c];
col 2 = {{ull, ul2}, {-c, a}/g}. {b, d};
c22 =col 2[[2]1;
col 2[[1]] = Mod[col 2[[1]], c22, Ceiling[-c22/2]];
{mul t, hgcd} = Appl y[I nternal ‘ HGCD, col 2;
| at = Transpose[{rmult [[All, 1]] =g, hgcd}];

{rl, r2} =Sort [lat, Norm[N[#], 2] &];
Wiile[k =1=0&&n <3, n++;

k =Round[(rl1.r2) /(rl.r1)];

r2=r2-kxri;

{rl, r2} =Sort [{rl, r2}, (#1.#1 <#2.482) &];1;
{rl, r2}]

A more elaborate version is used in [27] to recover several small lattice vectors. This appears to give the f:

11

rently known method for computing Frobenius numbers of sets of three large integers.

10REFERENCES

1]

[21]

[22]
[23]

[24]

[25]
[26]

[27]
(28]

[29]

A. V. Aho, J. E. Hopcroft, and J. D. Ulimafhe Design and Analysis of Computer AlgorithAddison—Wesley Publishir
Company, Reading Massachussetts, 1974.

E. H. Bareiss. Sylvester’s identity and multistep integer—preserving Gaussian elimination. Math.22@®®):565-57¢
1968.

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations and comput:
approximants. Journal of Algorithnis259-295. 1980.

J. Buhler and S. Wagon. Basic number theory algorithms. Surveys in Algorithmic Number Theory, J. P. Buhls
Stevenhagen, eds. Mathematical Sciences Research Institute Publications vol. 44. Cambridge University Press. Tc
Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on integer matrices. Proceedings o
International Symposium on Symbolic and Algebraic Computation (ISSAC 2005), M. Kauers, ed. 92-99. ACM Pr
York City, 2005.

J. D. Dixon. Exact solutions of linear equations usprgdic expansions. Numerische Mad:137-141. 1982.

J. G. Dumas, T. Gautier, and C. Pernet. Finite field linear algebra subroutines. Proceedings of the 2002 In
Symposium on Symbolic and Algebraic Computation (ISSAC 2002), T. Mora, ed.. 63-74. ACM Press, New Y
2002.

J. G. Dumas, P. Giorgi, and C. Pernet. Finite field linear algebra package. Proceedings of the 2004 International ¢
on Symbolic and Algebraic Computation (ISSAC 2004), J. Gutierrez, ed. 119-126. ACM Press, New York City, 20(
F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information Processing 2424rs126, 2001

J. von zur Gathen and J. Gerhdvthdern Computer Algebra&Cambridge University Press, 1999.

K. O. Geddes and W. W. Zheng. Exploiting fast hardware floating point in high precision computation. Proceedit
2003 International Symposium on Symbolic and Algebraic Computation (ISSAC 2003), J. R. Sendra, ed. 111-]
Press, New York City, 2003.

GMP: The Gnu Multiprecision Bignum Library. Web site: http://www.swox.com/gmp/

G. Havas, B. S. Majewski, K. R. Matthews. Extended GCD and Hermite normal form algorithms via lattice basis 1
Experimental Mathematicq2): 125-126. A. K. Peters, Ltd., 1998.

D. Knuth. The analysis of algorithms. Proceedings of the 1970 International Congress of Mathematicians (Nice
3:269-274, 1970.

A. K. Lenstra, H. W. Lenstra, Jr., L. Lovasz. Factoring polynomials with rational coefficients. Mathematische
261:515-534. 1982.

D. Lichtblau. Revisiting strong Grébner bases over Euclidean domains. Manuscript, 2003.

D. Lichtblau. Half-GCD and Fast Rational Recovery. Proceedings of the 2005 International Symposium on Syn
Algebraic Computation (ISSAC 2005), M. Kauers, ed. 231-236. ACM Press, New York City, 2005.
N. Méller. On Schoénhage’s algorithm and subquadratic integer gcd computation. Manuscript, 2005.

R. T. Moenck. Fast computation of GCDs. Proceedings of the 5th ACM Annual Symposium on Theory of Ca
142-151. ACM Press, New York City, 1973.

V. Y. Pan and X. Wang. Acceleration of Euclidean algorithm and extensions. Proceedings of the 2002 Int
Symposium on Symbolic and Algebraic Computation (ISSAC 2002), T. Mora, ed. 207-213. ACM Press, New Y
2002.

A divide—and—-conquer method for integer—to—rational conversion. Proceedings of the Symposium in Honor
Buchberger’s 60th Birthday (Logic, Mathematics and Computer Science: Interactions). October 20-22, 2002, R!
Castle of Hagenberg, Austria. K. Nakagawa, ed. 231-243. 2002.

A. Schénhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Inforimb&gal44, 1971.

A. Schoénhage. Fast reduction and composition of binary quadratic forms. Proceedings of the 1991 International £
on Symbolic and Algebraic Computation (ISSAC 1991), S. Watt, ed. 128-133. ACM Press, New York City, 2002.
D. Stehlé and P. Zimmermann. A binary recursive GCD algorithm. Proceedings of the Algorithmic Number Th
International Symposium (ANTS-VI), Lecture Notes in Computer Science 3076, D. Buell, ed. 411-425. Springe
2004.

Draft appearing as: Rapport de recherche INRIA 5050. 2003.

K. Thull and C. K. Yap. A unified approach to HGCD algorithms for polynomials and integers. Manuscript, 1990
able at: http://cs.nyu.edu/cs/faculty/yap/allpapers.html

C. K. Yap. Fast unimodular reduction: planar lattices. Proceedings of the 33rd Annual Symposium on Fount
Computer Science (Pittsburgh USA), 437-446. IEEE Computer Society Press, 1992.

S. Wagon, D. Einstein, D. Lichtblau, A. Strzebonski. Frobenius numbers by lattice point enumeration. Submitted, :

Z. Wan. An algorithm to solve integer linear systems exactly using numerical methods. To appear, Journal of
Computation.

Earlier draft: Exactly solve integer linear systems using numerical methods (2004) available at: http://www.eec
du/~wan/

S. Wolfram.The Mathematica Bookifth edition. Wolfram Media, Cambridge, 2003.

12

