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ABSTRACT . Over the past few decades several variations on a "half GCD" algorithm for obtaining the pair of 
terms in the middle of a Euclidean sequence have been proposed. In the integer case algorithm design and proof 
of correctness are complicated by the effect of carries. This paper will demonstrate a variant with a relatively 
simple proof of correctness. We then apply this to rational recovery for a linear algebra solver. After showing 
how this same task might be accomplished by lattice reduction, albeit more slowly, we proceed to use the half 
GCD to obtain asymptotically fast planar lattice reduction.

This is an extended version of a paper presented at ISSAC 2005 [17]. It also contains minor changes.

Categories and Subject Descriptors
F.2.1  [Analysis  of  Algorithms and Problem Complexity]:  Numerical  Algorithms and Problems−−− Number−theo−
retic  computations;  I.1.2  [Symbolic  and  Algebraic  Manipulation]:  Algorithms−−−  Algebraic  Algorithms;  G.4
[Mathematical Software]−−− Algorithm design and analysis

General Terms
 Algorithms, Performance

Keywords
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1. INTRODUCTION AND RELATED WORK

The "half GCD" (HGCD) algorithm, as described in [19] and [1], works by taking the high parts of a pair of inputs in a
Euclidean domain, first recursively finding the pair of elements in the Euclidean sequence for that pair that straddles the
middle  of  the  larger  input  as  well  as  the  2´ 2 matrix  that  converts  to  this  middle  pair.  It  then  uses  these  values  to
convert  the  original  pair  to  something  sufficiently  smaller.  This  is  repeated  one  time,  along  with  Euclidean  steps  at
appropriate  points,  in  such  a  way  that  one  obtains  the  corresponding  middle  values  for  the  original  pair  of  inputs.
Various analyses explain why this is asymptotically fast compared to direct computation of the full Euclidean sequence
(we refer below to this latter as the "standard" Euclidean algorithm). The method itself  is  loosely based on an earlier
asymptotically  fast  algorithm presented for continued fractions in [22].  As is  indicated in that  work, it  in  turn can be
adapted to find a GCD although there appears to be some extra bookkeeping. That work was in turn an improvemnt on
a slower though still subquadratic method presented in [14].

Since  its  introduction  in  the  early  1970’s,  the  asymptotically  fast  HGCD idea  has  given  rise  to  several  variants  and
descriptions thereof. This state of affairs has come to pass because of difficulties encountered in proofs of correctness. It
turns out that the integer case is particularly troublesome due to the possibility of carries that may cause intermediate
values to be too large or too small relative to what the algorithm requires. Several papers ([3], [25], and [20]) redress
this with fix−up steps that involve a limited number of Euclidean steps or reversals thereof. These papers tend to have
proofs that involve analysis of many detailed cases, thus making them difficult to follow, let alone implement. (To be
fair,  they  strive  for  greater  generality  in  some  respects).  The  main  contribution  of  this  paper  is  to  provide  a  simple
formulation  with  straightforward proofs.  We  should  mention  that  the  method  of  [22]  is  not  known  to  this  author  to
suffer from issues of correctness, though for GCD purposes it is likely to be a bit slower and is also not as convenient as
HGCD for purposes of rational recovery.

As testimony to its relative simplicity, the gcd method we present is now implemented as of version 5.1 of Mathematica
(TM) [29]. It is an improved version of that which appeared in version 5.0. The prior work was coded by David Terr,
with assistance from Mark Sofroniou and the author, in early 2001. It  could be described as a "Las Vegas" approach
insofar  as  it  is  always  correct  but  only  probabilistically  fast;  in  practice we have  never  noticed  it  to  falter.  The  fully
deterministic method of this paper was coded by the author and Mark Sofroniou.

Some important uses of asymptotically fast gcd to date are in finding greatest common divisors of pairs of large univari−
ate polynomials or integers. An important advantage it enjoys is that, with little loss in efficiency, it finds corresponding
cofactors when needed (that is, it  computes the extended gcd). This is required, for example, in Hermite normal form
computations.  Moreover in  finding  cofactors  for  steps  that  take  us  half  the  distance  to  the  gcd,  the  HGCD is  ideally
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cofactors when needed (that is, it  computes the extended gcd). This is required, for example, in Hermite normal form
computations.  Moreover in  finding  cofactors  for  steps  that  take  us  half  the  distance  to  the  gcd,  the  HGCD is  ideally
suited to fast recovery of rationals from p−adic images (as we will see, the code involved is trivial). The second contribu−
tion of this paper is to show this as applied to linear equation solving. This will give some indication of speed improve−
ment over a standard Euclidean algorithm based recovery method. We will also describe a method of rational recovery
based on planar lattice reduction, and, reversing the process, show how to do fast planar lattice reduction via HGCD.

In another recent paper, [24] take a different direction by operating on the low (rather than high) end of the inputs. This
has the advantage that carries are no longer an issue. A possible drawback is that rational recovery becomes slightly less
transparent though they show how it may still be done. They present a timing comparison that clearly demonstrates the
efficacy of their code. At present it is not simple to compare directly to ours, due to different installations of the underly−
ing GMP bignum arithmetic facility [12] as well as possible differences in memory management and timing thereof, but
they appear to be in the same ballpark. I have also learned that recent work described in [18] and [21] is similar to the
present  work  in  regard  to  asymptotically  fast  GCD  computation.  The  former  is  quite  promising  insofar  as  there  is
efficient code written for comparison of several related approaches. It is expected that the best will eventually go into
public domain software [12].

I  thank two anonymous referees for detailed remarks and suggestions that  improved the exposition of  this paper, and
thank  the  second  referee  as  well  for  bringing  several  errors  in  the  draft  to  my  attention.  I  thank  Erich  Kaltofen  for
posing questions that caused me to look more closely at the earlier work of Schönhage in [22]. I thank Damien Stehlé,
Niels Möller, and Fritz Eisenbrand for email correspondence that helped to clarify some points about their related work.

2. A QUICK REVIEW OF EUCLIDEAN REMAINDER SEQUENCES
Much of what we discuss in this section applies to general Euclidean domains once one adjusts definitions (e.g. of the
floor function) as needed, but we restrict our attention to integers as the case of interest. We are given a pair of positive

integersJmn N  (we will  use column vector notation throughout, as we frequently multiply on the left  by a matrix) with

m> n. We are interested in elements in the Euclidean remainder sequence m=m0, n=m1, ..., mk. The integer quotients

are the floor of the divisions of successive terms in this sequence. qj = emj-1�mju.  We define the matrix Rj  such that

Rj Jmn N = K
mj

mj+1
O. For example, R1 = J 0 1

1 -q1
N (matrices of this form are called "elementary") and Rj = K 0 1

1 -qj
ORj-1.

From this last it is clear that the top row of Rj+1 is just the bottom row of Rj . Hence we may write Rj = K sj t j

sj+1 t j+1
O. We

state a few basic facts about these quantities.

LEMMA 1. Assume Rj  is a nontrivial product of elementary matrices.
(i) sj-1 = sj+1 + qj sj  and t j-1 = t j+1 + qj t j .

(ii) If Rj Jmn N = K
mj

mj+1
O then mj-1 =mj+1 +qj mj .

(iii) The signs in Rj  alternate in both rows and columns: sj t j < 0 and sj sj+1 < 0.

(iv) The sizes grow top to bottom and left to right: sj+1 > sj , t j+1 > t j , and t j > sj .

(v) qj = e sj+1�sj u = e t j+1� t j u.
PROOF.

(i)−(iv) Quickly proven by writing out the product Rj = K 0 1
1 -qj

ORj-1.

(v) As qj sj = sj-1 - sj+1, parts (iii) and (iv) together imply that sj+1 ³ qj sj > I sj+1 - sj M. This suffices to give
the first floor equality for qj . The second is done similarly. á

This lemma shows how to compute Rj-1 and mj-1 given Rj  and the remainder sequence pair K mj

mj+1
O. The significance

is that we can "go back" in the Euclidean sequence should we happen to overshoot (this will be discussed later). Note
also that in the special case of R0, which is an elementary matrix, we can obtain q0  immediately. We easily recognize
this case, as it arises if and only if the first matrix element is zero. We also use part (iii) to prove the next lemma.

LEMMA 2. Assume Rj  is a nontrivial product of elementary matrices. Then ý sj ý £ n�mj-1 and ý t j ý £m�mj-1.

PROOF.  This  is  done  by  induction.  The  base  case  gives  equalities.  For  the  inductive  step  we  will  show  that

sj+1 £ n�mj ;  the  case  for  t j+1  is  handled  similarly.  By  lemma  1(iii)  we  know  e sj+1�sj u = qj .  Hence

q s �
�
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� e � u
sj+1�sj £ qj .  Thus  sj+1 £ qj sj .  By  the  inductive  hypothesis  sj £ n�mj-1.  Hence

sj+1 £ qj n�mj-1 = emj-1�mju n�mj-1 £ n�mj . á

This lemma is used to bound various quantities in the lemmas of the next section.

LEMMA 3. For m> n> 0 suppose we are given a product of elementary matrices times Jmn N such that the result, J uv N
satisfies u> v> 0. Then J uv N are a consecutive pair in the remainder sequence for Jmn N.
This is presented as Fact 1 in [25]. It is important because it tells us that we may take a product of elementary matrices
of  the  form  Rj  above,  computed  with  respect  to  a  new  pair  of  integers,  and  still  arrive  at  a  consecutive  pair  in  the
remainder sequence for the original pair.

Finally  we remark that  there is  obviously  an index k for which the pair  J mk
mk+1

N  straddle m ,  i.e.  mk ³ m >mk+1.

These together,  and in  order, are referred to  as  the "middle"  pair  in  the remainder sequence (regardless of  where the
index occurs in the sequence of such indices).

3. BASIC THEORY FOR THE HGCD ALGORITHM

Again we begin with a pair of positive integersJmn N with m> n. Take k to be a positive integer less than the size of m in

bits  (initially  it  will  be  elog2 m�2u  but  we  do  not  use  that  until  the  next  section).  We write  Jmn N =
2k f0 + f1
2k g0 + g1

 with

8 f1, g1< < 2k and recursively compute the middle pair, and corresponding multiplier matrix, for the pair J f0
g0
N. This gives

a matrix Ri  and pair J r i
r i+1
N  with Ri J f0

g0
N = J r i

r i+1
N  and r i+1 < f0 £ r i .  We want to use Ri ,  or a close relative, on the

original  pair  Jmn N.  We  have  Ri
2k f0 + f1
2k g0 + g1

= 2k J r i
r i+1
N +Ri J f1

g1
N.  We  will  call  this  product  J vi

vi+1
N.  The  next  two

lemmas will  find  bounds,  one upper and one lower,  for  these elements.  We first  handle  vi+1.  We bound the absolute
value  and,  under  certain  circumstances,  we  place  a  tighter  bound on  how negative  it  may  become.  This  is  important
because, in order to invoke lemma 3, we will need a way to correct for the negative case.

LEMMA 4.

 (i) ý vi+1 ý < 2k+1 f0 .

(ii) Suppose r i > 2 f0 .  Then vi+1 > -2k-1 f0 .

PROOF. Note that 8si+1, ti+1< < f0 � r i < f0 . We have vi+1 = 2k r i+1 + si+1 f1 + ti+1 g1.

(i) Using the upper bound of 2k  on 8 f1, g1< and the alternating signs in the matrix Ri , the absolute value is bounded by

ý vi+1 ý < 2k f0 + 2k f0 = 2k+1 f0 .

(ii) Since r i > 2 f0  we have vi+1 > -2k f0

2 f0
= -2k-1 f0 . á

We will  use these same notions in subsequent lemmas (particularly the sign alternation, in effect to ignore one of the
three terms) without further mention.

We now look at vi = 2k r i + si f1 + ti g1.

LEMMA 5.

(i) Suppose r i > 2 f0 . Then vi > 2k-1 f0 .

(ii) Suppose r i £ 2 f0 . Then vi > 2k-1.
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PROOF. Lemmas 1 and 2 sign alteration and size bounds in Ri  gives vi = 2k r i + si f1 + ti g1 > 2k r i - 2k f0

r i-1
. 

(i) The hypothesis and the fact that r i-1 > r i  yield vi > 2k r i -
f0

2 f0
> 2k f0

2
= 2k-1 f0 .

(ii)  Now we write the lower bounding value as 2k

r i-1
Hr i r i-1 - f0L.  Since f0 £ r i < r i-1  and the latter two are integers,

there  is  an  a> 1  with  r i-1 = f0 + a.  So  we  have  vi >
2k

J f0 +aN
Jr iJ f0 + aN - f0N.  This  in  turn  is  larger  than

2k

J f0 +aN
J f0 J f0 + aN - f0N = 2k

J f0 +aN
a f0  which is bounded below by 2k-1. á

For  the  pair  J vi
vi+1
N =Ri Jmn N  lemmas 4  and 5  give  an  upper  bound on  one element  and  a  lower  bound on  the  other.

There will be situations in which we must backtrack a Euclidean step to use Ri-1, that is, the multiplier matrix preceding

Ri  in the remainder sequence for J f0
g0
N. In this case we need to bound J vi-1

vi
N =Ri-1Jmn N.

LEMMA 6.

(i) vi-1 > 2k-1 f0 .

(ii) Suppose r i £ 2 f0 . Then vi < 2k 3 f0 .

PROOF.
(i) vi-1 = 2k r i-1 + si-1 f1 + ti-1 g1 > 2k r i-1 - 2k f0 � r i-2 =

2k r i-1 - 2k f0

qi-1 r i-1+r i
> 2k Jr i-1 -

f0

2 r i
N > 2k f0 -

f0

2
= 2k-1 f0 .

(ii) vi = 2k r i + si f1 + ti g1 £ 2k 2 f0 + 2k f0

r i-1
< 2k 2 f0 + 2k f0

f0
= 2k 3 f0 . á

Given a pair Jmn N with m> n> 0 we will see that the above lemmas allow us to find a pair J vi
vi+1
N with magnitudes in

the desired ranges (this will be explained more carefully in the next section). Two problems may arise. One is that we
require  both  to  be  nonnegative;  the  lemmas  will  only  guarantee  that  vi > 0.  Second,  we  require  that  vi >vi+1.  These
requirements are  in  order  to  meet  the  hypotheses  of  lemma 3  and  thus  assert  that  we  have  a  consecutive  pair  in  the
remainder sequence for our inputs. We now provide a lemma to assist in repairing our intermediate pair, should either
of these possible flaws arise.

LEMMA 7. Given an elementary matrix K 0 1
1 -qj

O (this implies qj  is a positive integer). Then for any integer h< qj  the

product J 1 0
h 1 N K

0 1
1 -qj

O is also an elementary matrix. In particular this holds for any negative integer h.

PROOF. The product is simply K 0 1
1 h- qj

O and by definition this is elementary precisely when h- qj < 0.á

We will use such products to repair deficiencies in sign or order of a pair J vi
vi+1
N.

4. THE HGCD ALGORITHM
Input: A pair of nonnegative integers m> n.

Output: A pair J vi
vi+1
N of consecutive integers in the Euclidean remainder sequence for Jmn N with vi ³ m > vi+1, and a

matrix Ri  which is the product of elementary transformation matrices, such that RiJmn N = J
vi

vi+1
N.

Step 1: With the same input specification as in the previous sections, we begin by choosing k= f log2 m

2
v. Thus, as above,

< 2k k
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f v
we write Jmn N =

2k f0 + f1
2k g0 + g1

 with 8 f1, g1< < 2k. Moreover the choice of k gives 2k
> m > 2k-1 and g0 £ f0 < 2 m .

Step 2: Recursively compute HGCDJ f0
g0
N. With notation as in the last section, the result is a matrix Ri  and pair J r i

r i+1
N

with Ri J f0
g0
N = J r i

r i+1
N and 0£ r i+1 < f0 < r i .

Step  3:  Compute  J vi
vi+1
N =RiJmn N.  Note  that  we  already  have  the  "upper  part"  of  the  resulting  vector  computed  as

J r i
r i+1
N; this can be used to reduce the size of the multiplications in this step.

Step 4: The bounds presented in the lemmas do not rule out the possibility that vi+1 may be negative, or that vi < vi+1. If

vi > vi+1 > 0 then we set J uv N = J
vi

vi+1
N and move to step 5 at this point. Otherwise we must repair the pair in such a way

that  the  transformation  matrix  remains  a  product  of  elementary  matrices.  This  is  necessary  so  that  we  may  invoke

lemma 3 to know the resulting vector is a consecutive pair in the remainder sequence for Jmn N. We split into three cases

that together comprise all possibilities.

Case  (i).  Suppose  vi+1 > vi .  Take  the  matrix  H = J 1 0
-h 1 N  where  h= dvi+1 �vit ³ 1.  By  lemma  7  H Ri  is  a  product  of

elementary matrices. The new pair thus obtained is J uv N =H J vi
vi+1
N = J vi

vi+1 - h vi
Nwhich satisfies the requirement that

u> v> 0.  For purposes of  notation we continue to call  the resulting matrix Ri .  Note that  the value of  u is  unchanged
(hence lemma bounds still apply), while the absolute value of v has diminished. We now move on to step 5.

Case (ii). Suppose vi+1 < 0 and vi+1 + vi ³ 0.

Subcase (a). First assume qi > 1. Then we use the matrix H = J 1 0
1 1 N and proceed, as we did in case (i) above, to obtain

a positive pair via J uv N =H J vi
vi+1
N . This is appropriate because the product J 1 0

1 1 N J
0 1
1 -qi

N is an elementary matrix so

we may invoke lemma 3. Again we call the resulting pair J uv N, and continue to call the transformation matrix Ri . Note

that u- v= ý vi+1 ý < 2k+1 f0 .  This means that a Euclidean step will  bring the pair into the range claimed in step 6

below. As it also shows that u> v, we have a consecutive pair in the remainder sequence.
Subcase  (b).  If  qi = 1 the  situation  is  a  bit  more  subtle.  Again  we  use  the  matrix  H  as  defined  above,  and  again  we

obtain a positive pair in the correct order; unfortunately the product H Ri  is J 0 1
1 0 N, which is not an elementary matrix.

To correct for this  we multiply  by J 0 1
1 0 N  again,  giving as product the identity  matrix.  This has the effect  of  flipping

J uv N.  Thus  we  have  used  premultipliers  to  take  us  from Ri  to  Ri-1,  which  we  know  is  also  a  product  of  elementary

matrices. We have also obtained as our vector J vu N; it has appropriate components except they are in the wrong order.

As this is exactly the situation of case (i) above we proceed there to correct it.

Case (iii).  If  vi+1 < 0 and vi+1 + vi < 0 then either vi £ 2k-1 f0  or vi+1 £ -2k-1 f0 .  In either case, lemmas 5(i)  and

4(ii)  respectively  guarantee  that  r i £ 2 f0 .  We  will  perform  a  reversal  of  a  Euclidean  step,  obtaining  the  pair

J uv N = J
vi-1
vi
N =Ri-1 Jmn N. As r i £ 2 f0 , lemma 5(ii) guarantees that v> 0 and furthermore v< 2k 3 f0  by lemma 6,

so again the bounds given in step 6 will hold. If u< v then we go to case (i) above.

We remark that cases (ii−b) and (iii) are identical in terms of actual treatment. We separated them in the way we did in

order to  explicate  the rationale.  But  since qi = 1 in  case (ii−b),  and we adjusted via  the matrix  H = J 1 0
1 1 N  ,  we have

simply done nearly a reversal of a Euclidean step. The only difference in the outcome is we also reversed the order to

N N

v
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N
simply done nearly a reversal of a Euclidean step. The only difference in the outcome is we also reversed the order to

J vi
vi-1
N.  The next  adjustment in  (ii−b),  to get  a valid elementary matrix,  flipped the order to get  J vi-1

vi
N;  thus we now

have indeed done a Euclidean step reversal, just  as is used in case (iii).  From the hypotheses of  case (ii−b) we know
vi-1 < vi ,  hence  we  must  proceed  to  case  (i)  to  correct  this.  Again,  this  is  something  we  check  for  in  case  (iii).  The
upshot is that in actual code cases (ii−b) and (iii) will be handled as one.

Step 5: Perform a Euclidean reduction on J uv N. We obtain the next consecutive pair J v
w N in the remainder sequence for

Jmn N, with elementary transformation matrix Q= J 0 1
1 -q N , where q= du�vt, and w= u- q v. We form the correspond−

ing transformation matrix R=Q Ri .

Step 6: At this point we examine the values of our pair J v
w N. Lemmas 4, 5, 6, the remarks from the step 4 cases, and our

choice  of  k  (implying  f0 < 2 m  and  2k-1
< m )  guarantee  that  0< v< 2k 3 f0 < 2k+1�2 3m1�4

< 23�2 3m3�4  and

u> 2k-1
> m �4.

Case (i). w< m . If v³ m  we have our pair straddling m . We return it along with the transforming matrix R. If

v< m  we  do  reverse  Euclidean  steps,  updating  our  remainder  sequence  pair  and  transformation  matrix  using  the

formulas in lemma 1. Since u> m �4 and it immediately precedes v in the remainder sequence, we have at most five

such  steps  before  an  element  exceeds  m  (possibly  one  could  decrease  this  upper  bound  by  constructing  tighter

bounds in the lemmas). We perform as many such steps as is needed to obtain the pair straddling m , returning it and
corresponding transformation matrix.

Case (ii).  m £w< v< 23�2 3m3�4  (in  typical  examples,  w and v will  both be close to  m3�4).  Similarly to  step 1,  we

take l = elog2 mu - elog2 vu  (so 2l  is within a factor of 2 of m�v;  we will  soon see why this is the appropriate value).

Observe  that  l  is  roughly  between  one  fourth  and  one  half  the  bit  length  of  m.  Specifically,  we  have

elog2 mu�4- 3< l < elog2 mu�2+ 3. We proceed to step 7.

Step 7: This time we write J v
w N =

2l f2 + f3
2l g2 + g3

 with elog2 f2u = elog2 vu - l. The upper bound on log2 v and lower bound

on l  show that f2 and g2 are no larger than OI m M. This fact is required for the claim of asymptotic speed (though not
for correctness).

As in step 2, recursively compute HGCDJ f2
g2
N. As in steps 3 and 4 we obtain a transformation matrix S, and a consecu−

tive pair K vj

vj+1
O  in the remainder sequence for Jmn N,  with vj > vj+1 ³ 0. If  vj £ 2l-2 f2  then the condition of lemma

5(i) cannot hold, and thus lemma 6(ii) applies. So we do a single reverse Euclidean step to get the previous consecutive

pair  in  the  sequence.  At  this  point  we  have  a  consecutive  pair,  call  it  J xy N,  wherein  lemma  6  guarantees  that

y< 2l+2 f2  and x> 2l-2 f2 .

Step 8: From step 7 we know that f2  is within a factor of 2 of 2-l v and hence 2l f2 » 2l�2 v »
m

v
v = m

where the approximation from first to last is within a factor of 2 because each intermediate approximation is within a

factor of  2 .  The inequalities at  the end of  step 7 therefore imply  y< 8 m  and x> m �8;  this  was the point  in

selecting l  as we did.  Thus with a limited number of  Euclidean steps,  or reversals thereof,  we obtain the consecutive

pair in the remainder sequence that straddles m , and the transformation matrix that gives this pair. Possibly with care
we might tighten the bound on the number of forward or reverse Euclidean steps. In practice this is unimportant. One
simply codes a while loop for the iterations; that it terminates in a fixed number of steps suffices to prove the claim of
asymptotic speed.
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5. APPLICATIONS OF THE HGCD ALGORITHM
First note that the asymptotic complexity is OHn MHnLL where n is the bit size of the inputs and MHnL is the complexity of
multiplying a pair of number of that size. This is well known (see the various references) and follows from the fact that
we  do  two  recursive steps  on  numbers  no  larger  than  roughly  n�2 (see  steps  1  and  7  above),  along  with  a  bounded
number of multiplications, Euclidean steps, and reverses thereof. It is this speed that motivates the various applications
mentioned below.

The HGCD algorithm is used recursively in gcd computations. An HGCD computation followed by a Euclidean step is
guaranteed to reduce the size of the inputs (in bits) by at least half. Another advantage is that one gets the corresponding
multiplier matrix for free, so computation of the extended gcd is not much more costly than that of the ordinary gcd.
This  is  important  for  e.g.  matrix  Hermite  normal  form  or  integer  Gröbner  basis  computations  [16],  where  speed  of
extended  gcds  is  paramount.  As  a  standard  benchmark  example  we  will  find  the  gcd  of  a  pair  of  consecutive  large
Fibonacci  numbers. This and all  other timings are from runs using version 5.1 of  Mathematica under Linux on a 1.4
GHz Athelon processor.

fibs = 8Fibonacci@10^7D, Fibonacci@10^7+ 1D<;

Each has about two million digits. We compute both regular and extended gcd and check that the result is plausible.

Timing@gcd = Apply@GCD, fibsD;D
Timing@8gcd2, mults< = Apply@ExtendedGCD , fibsD;D
mults.fibs� gcd � gcd2 == 1
831.04 Second, Null<
840.21 Second, Null<
True

A particularly  nice  application  of  the  HGCD is  in  recovering rational  numbers  from p−adic  approximations.  This  is
explained in some detail in chapter 5 of [10]. Given a prime power pk and a smaller nonnegative integer x not divisible

by p,  we can obtain a rational a�b equivalent  to x modulo pk  with both numerator and denominator smaller than the

square root of the prime power. It is obtained directly from the HGCD matrix and middle pair given by HGCDK pk

x
O. In

brief,  we  have  a  matrix  Rj = K sj t j

sj+1 t j+1
O  with  Rj K pk

x
O = J uv N.  Moreover  9v, t j+1= < pk  and   v

t j+1
ºpk x  because

sj+1 pk
+ t j+1 x= v. Thus we have our desired rational.

The below code will do this recovery given the input pair 9x, pk=.
rationalRecover@x_, pk_D :=
HHð@@2, 2DD � ð@@1, 2, 2DDL &L@Internal‘HGCD@pk, xDD

For contrast we also give the standard Euclidean sequence method as well as a simple method based on lattice reduction.

rationalRecover2@a_, b_D := Module@
8mat, aa = a, bb = b, cc = 1, dd = 0, quo<,
mat = 88aa, cc<, 8bb, dd<<;
While@Abs@aaD ³ Sqrt@bD,
quo = Quotient@bb, aaD;
88aa, cc<, 8bb, dd<< =
88bb, dd< - quo * 8aa, cc<, 8aa, cc<<;D;

aa � ccD

rationalRecover3@n_, pq_D :=
Hð@@1DD � ð@@2DD &L@First@LatticeReduce@88n, 1<, 8pq, 0<<DDD

We illustrate this application by solving linear systems over the rationals, using a simple p−adic linear solver based on
the method presented in [6] (the code for pAdicSolve  is in the appendix). To get some idea of speed we will compare
to the built  in LinearSolve function. The latter at this time uses a Gaussian elimination via one−step row reduction
[2]. The tests we use will involve creating random linear systems of a given dimension and coefficient size in decimal
digits.  In the results we will  show timings, a check that the results agree, and the size in decimal digits of the largest
denominator in the result.
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testPAdicSolver@dim_Integer , csize_Integer , recoveryfunc_D :=
Module@
8ls1, ls2, mat, b<,
mat = Table@Random@Integer,
8-10^csize, 10^csize<D, 8dim<, 8dim<D;

b = Table@Random@Integer,
8-10^csize, 10^csize<D, 8dim<D;

8First@Timing@ls1 =
pAdicSolve@mat, b, recoveryfuncDDD,

First@Timing@ls2 = LinearSolve@mat, bDDD,
ls1 === ls2, Max@Log@10., Denominator@ls1DDD<D

In the set of tests below input data will consist of 10−digit integers. First we try a 50 x 50 system.

testPAdicSolver@50, 10, rationalRecoverD

81.35 Second, 0.62 Second, True, 517.912<

The built in method was faster by a factor between 2 and 3. The standard Euclidean algorithm of rationalRecover2
makes it about three times slower still, thus indicating that even at this low dimension most of the time might be spent
in rational recovery if we use a pedestrian approach. This example takes about 17 seconds using rationalRecover3.

We now double the dimension.

testPAdicSolver@100, 10, rationalRecoverD

811.79 Second, 9.04 Second, True, 1053.32<

This time the speeds are quite close. Doubling again will show the p−adic solver well ahead.

testPAdicSolver@200, 10, rationalRecoverD

893.26 Second, 173.27 Second, True, 2136.99<

We  remark  that  most  of  the  time  is  spent  in  finding  the  p−adic  approximate  solutions.  The  utility  of  fast  rational
recovery is  indirectly witnessed in  the above computations;  were we to  use a less efficient  method,  it  would become
more prominent in the timings. As it stands, the overwhelming component is now in the improvement iterations.

We should note that one can use a very different iterative approach when the input matrix is well conditioned. One can
solve the stem numerically to sufficiently high precision using the iterative method of [11]. Then the exact result may
be recovered using rationalization of a high precision approximate result. Interestingly, the technology underlying this
type  of  rational  recovery  involves  continued  fractions;  efficient  computation  of  these  is  similar  to  the  divide−and−
conquer approach of HGCD. A potential drawback to this method (in addition to the conditioning requirement) is that it
requires an a priori  precision estimate that  might  be quite  large, or else an expensive check of  correctness that  could
outweigh the cost of the actual construction of a solution.

Quite  recently  a  related  method  based  on  iterative  refinement  of  numerical  solutions  was  described  in  [28].  It  uses
rescaling of residuals and stepwise rational approximations to construct its result. At this time it appears to be the state
of the art in solving linear systems over the rationals. That said, clearly there remains a need for fast rational recovery
from a p−adic approximation. For example, other recent methods requiring rational recovery have been discussed in [8]
and [5]. Both derive speed by clever use of level 3 BLAS for modulo prime linear algebra as described in [7]. While [5]
describes ways to speed this process considerably even when using the standard Euclidean method, it remains true that
an asymptotically fast rational recovery is a desirable further improvement. 

Another application of HGCD is in the Smith|Cornacchia algorithm [4] for solving x2
+ d y2

= n with Hd, nL  relatively

prime. This can be used to factor primes of the form 4k+ 1 into products of Gaussian primes. Yet another application,
which we present later, is to fast planar lattice reduction.
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6. RATIONAL RECOVERY VIA LATTICE REDUCTION
We now show that the method based on integer lattice reduction is more than just a heuristic. While not particularly fast
we feel this is of interest in its own right as yet another simple application of lattice methods. We first set up the prob−

lem. Given integers m> n> 0,  here is a simple approach to finding a "small" rational 
r

s
 with s nºm r. We form a 2x 2

lattice Jm 0
n 1N and reduce it via LLL [15], say to Jr s

t uN, where the top row is smaller in Euclidean norm than the bottom.

We then take r
s
 as our reconstructed rational. Heuristically we expect this to work frequently because typically we will

have 8r, s< < m  and this is roughly what we require for the rational recovery procedure. It turns out that under mild
hypotheses (that in essence amount to lifting half a bit more than we otherwise might), we can guarantee that we obtain
the correct value.

Remark: Lattice reduction via LLL assumes a value for a certain parameter, often called Α in the literature and taken to

be 3
4
 as in the original paper. But it can be any value in the open interval I 1

4
, 1M. If it is not the standard 3

4
 then one must

modify accordingly the lifting bounds and proof of the below theorem.

THEOREM. Suppose we have a bound k on numerator and denominator of a rational, and moreover we have a power
of  a  prime  pq  and  a  p−adic  image  n of  the  value  (obtained,  say,  as  in  the  linear  algebra  examples  in  the  previous

section).  Suppose moreover  that  pq
> 2 2 k2  and  

r

s
 is  a  rational  equal  to  n modulo  pq  with  8 ý r ý, s< < pq  and  r

relatively  prime to  s (that  is,  it  is  the  value  we seek).  Form the  lattice  L  with  row vectors  given  (in  matrix  form)  as

Kpq 0
n 1O.  Reduce it  to J t u

v wN  with t2 + u2
£ v2
+w2(that  is,  rows ordered by norm).  Then 8t, u< = ± 8r, s<  and hence we

recover our rational from the reduced lattice.

PROOF. 
(i) First we show that 8r, s< Î L. By assumption there is an integer j with s n+ j pq

= r. Thus j 8pq, 0< + s8n, 1< = 8r, s<.
(ii) Next we claim that 8r, s< is a minimal vector in L. The Euclidean norm squared is r2

+ s2
< 2k2

<
pq

2
. If 8x, y< Î L

is  any  vector  independent  of  8r, s<  then  we  must  have  x2
+ y2
> 2 pq,  because  the  product  of  the  norms  of  any

independent pair much be at  least  as large as the lattice determinant, pq.  If  instead 8x, y<  is  a scalar multiple of  8r, s<
then the scalar must be at least 1 in absolute value, by the assumption that r and s are relatively prime.
(iii) Finally we show that ± 8r, s< is in the LLL−reduced basis. This follows from the fact that the smallest vector 8t, u<
in the reduced basis has t2 + u2

£ 2 Ir2
+ s2M by 1.11(iii) of [15], and we know this is smaller than 2 pq by (ii) above.

Again from (ii) we know that any vector in L independent of 8r, s< cannot satisfy this inequality. If instead 8t, u< were a
nontrivial multiple of 8r, s<, we would not have a correct basis because L contains 8r, s< by (i) above.á

We remark that  this  is  a  sort  of  opposite  extreme to  the method for  finding extended greatest  common divisors pre−
sented in [13]. They use a form of column−weighted LLL to obtain extended gcds of more than two integers, such that
the multipliers are small (moreover, by considering multiple columns and geometrically scaled weights, they derive an
Hermite  normal  form  algorithm  based  on  LLL).  For  the  sort  of  lattice  we  construct  above,  such  weighting  would
counter the tendency of LLL to take one toward the middle pair in the remainder sequence.

We give a quick demonstration of this method using one of our earlier tests.

testPAdicSolver@50, 10, rationalRecover3D

817.5 Second, 0.62 Second, True, 517.912<

Not surprisingly, this is not competitive in speed with the asymptotically fast HGCD method.

7. PLANAR LATTICE REDUCTION VIA HGCD
Having seen that rational recovery can be effected by planar lattice reduction, it should be no surprise to find that such
reduction can be handled by means of HGCD computations. We demonstrate how this might be done; relevant theory
may be found in [9]. Earlier asymptotically fast methods wre presented in [] and [26].

Suppose we have a 2 x2 integral matrix M = Ja b
c dN where we regard the rows as generating a lattice in Z

2. The goal is

to find a reduced form, that is, a unimodular multiplier matrix A such that A M= L where L is the lattice reduced form
of M. We compute the reduction as follows.
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J N

of M. We compute the reduction as follows.

Step  1.  Put  M  into  Hermite  normal  form.  As  is  well  known,  this  uses  the  extended  gcd  algorithm,  hence  (for  large

inputs) amounts to a few HGCD invocations. We obtain M1 = Jg j
0 kN, where g= gcdHa, cL, and a unimodular transforma−

tion matrix  A1 with A1 M =M1.

Step 2. See if this is lattice reduced. If so, we are finished. If not, we now have a "small" element in the upper left and a
zero beneath it. We now work on the second column.

Step 3. FindHGCDH j, kL.
Step 4. Use the multiplier matrix A2 to form A2 A1 M = A2 M1 = Js m

t n N.
Step  5.  We  now  have  a  short  vector.  If  the  second  vector  is  not  short  we  can  reduce  it  using  Euclidean  steps  (this
method of reducing planar vectors is due to Gauss). Since we divide by an element in the short vector, the number of
such steps is bounded.

Here is a simple example. We work with a lattice of two row vectors. We construct it in such a way as to be quite far
from reduced. Specifically,  the second row is (with high probability) a small  offset of the first. We first reduce using
LLL in order to find the expected lengths of the resulting elements.

SeedRandom@1111D;
row = Table@Random@Integer,8-10^100, 10^100<D, 82<D;
lat = 8row, row+ 810^10, 10^20<<;
redlat = LatticeReduce@latD;

We check the sizes of the initial and reduced vectors.

Log@10., Abs@latDD
Log@10., Abs@redlatDD
8899.9937, 99.8255<, 899.9937, 99.8255<<

8810., 20.<, 899.9937, 89.9937<<

We now do step 1 and again check sizes (the zero corresponds to an entry of unity, and the −¥ corresponds to an entry
of zero).

8a0, hnf< = Developer‘HermiteNormalForm@latD;
Log@10., Abs@8a0, hnf<DD
88898.8304, 98.8304<, 899.9937, 99.9937<<, 880., 118.83<, 8-¥, 119.994<<<

Each row in the Hermite form has a large entry so we deduce it is not reduced. We now do step 3.

8a1, col2< = Internal‘HGCD@Apply@Sequence, hnf@@All, 2DDDD;

We check that this is correct.

a1.hnf@@All, 2DD � col2

True

We’ll now recover a short vector using step 4.

lattoo = a1.a0.lat;
Log@10., Abs@lattooDD
889.22796, 109.994<, 810., 20.<<

It is clear that we can use the second vector to reduce the magnitude of the first by making the second component much
smaller. We do so as per step 5. Specifically,  we can take a quotient,  form a multiplier matrix similar to that used in
HGCD, and obtain a reduction of the larger vector.

q = Quotient@lattoo@@1, 2DD, lattoo@@2, 2DDD;
a2 = 881, -q<, 80, 1<<;
latthree = a2.lattoo
88-9856220730 047694401 632388898359410 889450006931893 281121833193315 �

680250563903 159129824369221 690297741, 75 868793220380069 225<,
810000 000000, 100000000000 000000000<<

We check that the transformations are unimodular and get the sizes of the elements in the reduced lattice.
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Det@a2.a1.a0D
Log@10., Abs@latthreeDD
-1

8899.9937, 19.8801<, 810., 20.<<

It  is  straightforward to  verify that  these row norms are comparable to  those of  redlat and indeed they have the same
small vector.

Short code that does this, without checking for the special cases, is in teh appendix. An expanded version is used in [27]
in order to compute Frobenius numbers for sets of three elements. It appears to be on average far faster than previously
known methods as discussed in [27] and references therein.

8. SUMMARY
We have demonstrated a correct, asymptotically fast  integer gcd algorithm based on the classical  Half−GCD method.
The various correction steps needed to address deficiencies caused by integer carries are, we believe, relatively simple
both from the standpoint of theory and practical implementation. We apply this to solving large linear systems over the
rationals, obtaining results that scale well with dimension.

After demonstrating that a similar rational recovery result can be attained via planar lattice reduction, we then proceed
to do such reduction using HGCD.

9. APPENDIX: P−ADIC SOLVER AND PLANAR REDUCTION CODE 
Below is code for a simple p−adic solver for linear systems with integer coefficients; extension to rationals is straightfor−
ward.  The  code  below computes  a  solution  modulo  a  particular  prime.  In  production  code  one  would  make  sure  the
system was solvable modulo that prime or else resort to another tactic.

vectorNorm@vec_D := Apply@Plus, Map@Abs, vecDD
matrixNorm@mat_D := Apply@Times, Map@Sqrt@N@ðD.N@ðDD &, matDD

powerUp@vals_, mod_D := Map@FromDigits@ð, modD &, Transpose@Reverse@valsDDD

pAdicSolve@mat_ ?MatrixQ, rhs_ ?VectorQ, recoveryfunc_D :=
Module@8len = Length@matD, b, mod = Prime@2222D,

mnorm, lud, sol= 8<, corr, power, j= 0, logpow = 0, logm<,
logm = Log@N@modDD;
lud = LUDecomposition@mat, Modulus ® modD;
b = rhs;
power = 1;
mnorm = 2. * Log@H2. * matrixNorm@matD * vectorNorm@rhsDLD;
While@logpow < mnorm + .5,
j++;
corr = LUBackSubstitution@lud, b, Modulus® modD;
b = 1 � mod * Hb - mat.corrL;
sol = 8sol, corr<;
logpow += logmD;

power = mod^j;
sol2 = Partition@Flatten@solD, lenD;
sol2 = powerUp@sol2, modD;
Map@recoveryfunc@ð, powerD &, sol2DD

Below is a version of planar reduction that will tend to find a reduced lattice with smallest vector. It is based loosely on
the exposition in [9].

planarReduce@88a_Integer , b_Integer<, 8c_Integer , d_Integer<<D := Module@
8hgcd, mult, lat, g, u11, u12, col2, c22, r1, r2, k, n= 0<,
8g, 8u11, u12<< = ExtendedGCD@a, cD;
col2 = 88u11, u12<, 8-c, a< � g<.8b, d<;
c22 = col2@@2DD;
col2@@1DD = Mod@col2@@1DD, c22, Ceiling@-c22 � 2DD;
8mult, hgcd< = Apply@Internal‘HGCD , col2D;
lat = Transpose@8mult@@All, 1DD * g, hgcd<D;
8r1, r2< = Sort@lat, Norm@N@ðD, 2D &D;
While@k =!= 0 && n £ 3, n++;
k = Round@Hr1.r2L � Hr1.r1LD;
r2 = r2 - k * r1;
8r1, r2< = Sort@8r1, r2<, Hð1.ð1 < ð2.ð2L &D;D;
8r1, r2<D

A more elaborate version is used in [27] to recover several small lattice vectors. This appears to give the fastest cur−
rently known method for computing Frobenius numbers of sets of three large integers.
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rently known method for computing Frobenius numbers of sets of three large integers.
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