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Abstract.  We  address  the  following  question:  Given  five  points  in  R
3,  determine  a  right  circular  cylinder

containing those points. We obtain algebraic equations for the axial line and radius parameters and show that
these  give  six  solutions  in  the  generic  case.  An  even  number  (0,  2,  4,  or  6)  will  be  real  valued  and  hence
correspond to actual cylinders in R3. We will investigate computational and theoretical matters related to this
problem.  In  particular  we  will  show  how  exact  and  numeric  Gröbner  bases,  equation  solving,  and  related
symbolic−numeric methods may be used to advantage. We will also discuss some applications.
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1. Outline of the Problem and Related Work
Given  five  points  in  R3,  we  are  to  determine  all  right  circular  cylinders  containing  those  points.  We  do  this  by
solving equations for the axial line and radius parameters. We will show that generically one obtains six solutions to
these equations. Of these an even number are real valued, as the complex valued ones appear in conjugate pairs (an
immediate consequence is that there is no "unique" real cylinder through five given points unless it a solution with
multicity).  Moreover there are open regions in the real configuration space that give each of these possibilities so
we learn that none are disallowed.

The basic  problem of  determining cylinders  from five  points  may  be  recast  in  a  computational  geometry  setting:

Given five points in R3, find the smallest positive r  and orientation parameters such that the cylinder of radius 2 r
with those parameters encloses tangentially the balls of radius r centered at the points.

Here are some questions we will consider. The first three are classical; we address them here to illustrate the utility
of symbolic computation in such investigations. The last ones are related to more recent work in computational and
integral geometry.

(1) Given the points and corresponding cylinder parameters, how might we display them graphically?

(2) Given the cylinder parameters, how may we obtain its implicit equation as a hypersurface in R
3?

(3) Reversing this, how can one obtain parameters from the implicit form?

(4) Given six or more points, how do we find the coordinates of a (generically unique) cylinder in R
3 that "best" fits

those points?
(5) Given five points chosen with random uniform distribution in a cube, what is the expected probability that one
lies inside the convex hull of the other four (this is related to the "no real cylinder" case).
(6)  How  might  we  rigorously  provide,  via  straightforward  computation,  the  generic  number  of  solutions  to  the
algebraic equations that describe cylinders through five indeterminate points.

In the sequel we frequently use the term "real cylinders" to denote real valued solutions to the cylinder equations
that arise from a given configuration of five points. Sometimes we refer to arbitrary solutions as "cylinders" even if
they  have complex  values.  The meaning should  be  clear  from context.  We refer to  configurations as  "generic"  if
they do not  have multiple solutions and if  all  sufficiently  small  perturbations of  the configuration give rise to the
same number of solutions. This amounts to the configuration not lying on the discriminant variety [25] but we will
not belabor this point. In some places we also use generic to mean that a system is in general position so that the
Shape Lemma applies [2]. As we will have occasion to change our underlying set of variables we note that this last
notion is dependent on the variables under consideration.



That one obtains six cylinders was previously demonstrated in [5] though by rather different means. Various proofs

are also presented in [8] [14] [28] [29]. A related problem, finding cylinders of a given radius through four given

points in R3, is discussed in [16] [20] [30] [33]. A nice survey of computational commutative algebra methods that

are applicable to nonlinear problems in computational geometry can be found in [7].  Another good general treat−

ment  of  theoretical  and  practical  aspects  of  Gröbner  bases  in  computational  geometry  is  chapter  7  of  [19].  A

companion paper to this one [28] delves further into enumerative geometry aspects of cylinders through five points.

The  remainder  of  this  paper  is  structured  as  follows.  In  section  2  we  present  several  computational  sides  to  the
problem. These include finding and counting cylinder solutions. In section 3 we handle various associated computa−
tional  geometry problems, and basics of  point/cylinder visualization.  Section 4 delves into the frequencies of  real
cylinders containing random point sets from a certain distribution. These investigations are again largely computa−
tional, though we relate some to a recent result in integral geometry. In section 5 we use simple symbolic computa−
tion  methods  to  prove  the  enumerative  geometry  result  that  there  are  six  solutions  to  a  generic  set  of  cylinder
equations.  Section  6  poses  some  further  questions  regarding cylinders  through  five  points,  and  outlines  how  one
might  attack  them computationally  using  aspects  of  the  discriminant  variety  [25].  Following  that  is  a  brief  sum−
mary. An attempt is made to emphasize the ways in which symbolic, numeric, and hybrid computation methods are
useful  in  these  investigations.  Computations  in  the  sequel  were  performed with  the  version  of  Mathematica [38]
under development at the time of this writing. All implementation code is provided in the appendix. While the code
used seems generally good for the tasks at hand, the author makes no claim to the effect that other programs might
not  be  as  good  (or  perhaps  better).  Explanatory  detail  is  provided  so  that  readers  inclined  to  programming,  and
armed with software capable of symbolic and numeric computation, might reproduce results similar to those shown
herein. An incomplete list of programs capable of handling some or all of the computations in the sequel includes
CoCoA, Macaulay 2,  Magma,  Maple,  Risa/Asir,  and Singular.  More specialized software well  suited for some of
these computations (e.g. Gröbner bases and numeric system solving) would include FGb and PHCpack.
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2. Computing Cylinders Through Five Points

Finding cylinder parameters from a set of 5 points

We will assume unless otherwise stated that our points are generic. In particular, no three are collinear, no four are
coplanar,  cylinder axes do not  lie  in  coordinate planes,  and so forth.  With these assumptions we avoid computa−
tional pitfalls that would arise from parametrizing axial directions using a sphere (this gives rise to two problems:
we have one extra variable, and so to eliminate it we would add an equation that normalizes the direction. Moreover
we  would  double  the  size  of  our  solution  set  because  any  direction  is  equivalent  to  its  negative.)  Given  these
stipulations we proceed as follows. 

With our assumptions in place, given a cylinder axis line L in R3 we may parametrize it as

(1)9y = a x + b, z = c x + d=
For any r > 0  there is a unique circular cylinder C of radius r with center axis L. Supposing we have five points on

that cylinder the following questions now arise. How do we find L  and r? How do we use them to parametrize C
e.g. for purposes of plotting it?

First we discuss why this data will determine finitely many cylinders. Given a point on C we will project orthogo−

nally  onto  L  in  order  to  get  an  equation  involving  the  parameters  we  wish  to  find.  We  have  five  parameters  to
determine in the setup used above. For each  point we denote the length of the orthogonal projection by perp . It is

�
L
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determine in the setup used above. For each  point we denote the length of the orthogonal projection by perpj . It is

computed as follows. We take L
�
 to be the subspace obtained by translating L  to pass through the origin. For each

point pj  take pj
�  to be the correspondingly translated point. We subtract from pj

�  its projection onto L
�
. This differ−

ence is the orthogonal complement of the projection and thus its magnitude is perpj . This projection will give us an

algebraic equation of the form

(2) ²perp
j
¶2 - r2

= 0

A concise coordinate−free formulation of this appears in [34], and simple code to compute it is in the appendix. We

show here the actual equation in terms of our point coordinates and cylinder parameters. If pj  is given as Ixj , yj , zjM
then, after clearing denominators, the explicit equation in terms of cylinder parameters Ha, b, c, d, rL is:

(3)
b2
+ b2 c2

- 2 a b c d + d2
+ a2 d2

- r2
- a2 r2

- c2 r2
+ 2 a b xj + 2 c d xj + a2 xj

2
+ c2 xj

2
- 2 b yj - 2 b c2 yj +

2 a c d yj - 2 a xj yj + yj
2
+ c2 yj

2
+ 2 a b c zj - 2 d zj - 2 a2 d zj - 2 c xj zj - 2 a c yj zj + zj

2
+ a2 zj

2
= 0

For generic choice of points the equations should be algebraically independent, hence the dimension of the solution
set  would  be  zero.  In  more  detail,  if  we  take  five  points  with  indeterminate  coordinates  (that  is,  coordinates
expressed as variables) then we obtain a system of five equations of the form f jHa, b, c, d, rL = 0, each arising from

(3) with appropriate point coordinates plugged in. From these we want to solve for the cylinder parameters in terms
of those coordinates. To show there are finitely many solutions it suffices by the implicit function theorem to show
that the Jacobian of the map H f1 f2, f3, f4, f5L has full rank for these generic coordinates. One can do this explicitly
by  finding the symbolic  Jacobian,  plugging in  random values for  the  coordinates,  and checking that  the  resulting
matrix has full rank. We will instead show a computation in the last section that demonstrates there are generically
at most nine solutions. Simple reasoning will further reduce this to eight. We also provide computational proofs that
there are in fact but six.

Let us demonstrate how to solve for the cylinder parameters with a specific example. We will take as our parameter
values

(4) a= 3, b = 2, c = 4, d = -1, r = 21

The  locus  of  points  on  C  is  obtained  as  sums  of  a  vector  on  L  plus  a  vector  of  length  r  perpendicular  to  L.  All

vectors perpendicular to L are spanned by any independent pair. We can obtain an orthonormal pair Hw1, w2L in the
standard way by finding the null space to the matrix whose one row is the vector along the axial direction, that is,
vec= H1, a, cL,  and  then  using  Gram−Schmidt  to  orthogonalize  that  pair.  From  this  we  obtain  vectors

I-4� 17 , 0, 1� 17 M and I-3� 442 , 17�26 ,-6 2�221 M.
We will then select five "random" points on C. We do this by selecting five values for an axial vector scale factor x

and five values for an angle Θ  such that 0£ Θ £ 2Π. Our points will be of the form v+w where 

v= offset + vec x

w = r cosHΘLw1 + r sinHΘLw2

We now discuss recovery of  a set  of  cylinder parameters from these five points.   Given a point  on C we want to

project orthogonally onto L,  to get  an equation involving the parameters we wish to find.  As discussed above we

first translate our point by subtracting offset. We then project onto the line spanned by vec. Subtracting this projec−
tion from the translated vector gives us our perp.  For example,  one point  on the cylinder in  question is  approxi−

mately H5.86419, 9.90186, 16.3218L. The corresponding expression we set to zero is 

364.45 - 116.133 a + 300.791 a2
- 19.8037 b + 11.7284 a b + b2

- 191.429 c -

323.233 a c + 32.6437 a b c + 132.435 c2
- 19.8037 b c2

+ b2 c2
- 32.6437 d -

32.6437 a2 d + 11.7284 c d + 19.8037 a c d - 2 a b c d + d2
+ a2 d2

- r2
- a2 r2

- c2 r2

We can use numerical methods to find some roots. This is very sensitive to initial conditions. For example, starting
at  Ha, b, c, d, rL =  H3.2, 2.8, 3.7,-1.6, 3.3L,  which  is  quite  close  to  the  values  we  began  with,  will  recover  those
values.  Starting  instead  at  3L  gives  solution  parameters  L =

4.44L
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at  Ha, b, c, d, rL =  H3.2, 2.8, 3.7,-1.6, 3.3L,  which  is  quite  close  to  the  values  we  began  with,  will  recover  those
values.  Starting  instead  at  H2.7, 1.8, 3.2,-.7, 3L  gives  solution  parameters  Ha, b, c, d, rL =
H1.91, 7.09, 2.49, 7.02,-4.44L to three decimal places.

Another well known method to find numeric roots is to sum the squares of the polynomials to be satisfied, and then
minimize  this  sum.  This  too  is  sensitive  to  initial  guesses.  Using  initial  values  of  Ha, b, c, d, rL =
H2.4, 1.8, 2.2,-1.8, 3L  recovers  the  second  solution  shown  above.  Using  instead  H2.4, 1.8, 3.2,-.8, 3L  gives  a

useless result with residual larger than 106. Clearly we need a better approach.

Solving simultaneously for all roots of the cylinder parameter equations

An obvious drawback to the methods seen thus far is the need for good initial guesses. We may take advantage of
the fact that the equations are all polynomial and instead use a global solver suitable for such systems. We demon−
strate below the utility of this approach. In order to have simpler equations for visual purposes will work with a new
example comprised of integer coordinates in the range (−10,10). To further simplify matters we will  solve for the
square of the radius (this will avoid solutions with negative values for r  as well as cut in half the number of complex
valued  solutions).  An  example  problem  with  pseudorandom  coordinates  in  the  indicated  range  gave  rise  to  the
polynomials shown below. The points we chose to lie on the cylinder(s) are:

(5)(7,9,8),(8,−4,−10),(−4,1,4),(−9,−9,−10),(−7,−10,−10)

The five corresponding polynomials we set to zero are as below.

(6)

I145 - 126 a + 113 a2
- 18 b + 14 a b + b2

- 112 c - 144 a c + 16 a b c + 130 c2
- 18 b c2

+

b2 c2
- 16 d - 16 a2 d + 14 c d + 18 a c d - 2 a b c d + d2

+ a2 d2
- rsqr - a2 rsqr - c2 rsqr,

116 + 64 a + 164 a2
+ 8 b + 16 a b + b2

+ 160 c - 80 a c - 20 a b c + 80 c2
+ 8 b c2

+ b2 c2
+

20 d + 20 a2 d + 16 c d - 8 a c d - 2 a b c d + d2
+ a2 d2

- rsqr - a2 rsqr - c2 rsqr,

17 + 8 a + 32 a2
- 2 b - 8 a b + b2

+ 32 c - 8 a c + 8 a b c + 17 c2
- 2 b c2

+ b2 c2
-

8 d - 8 a2 d - 8 c d + 2 a c d - 2 a b c d + d2
+ a2 d2

- rsqr - a2 rsqr - c2 rsqr,

181 - 162 a + 181 a2
+ 18 b - 18 a b + b2

- 180 c - 180 a c - 20 a b c + 162 c2
+ 18 b c2

+

b2 c2
+ 20 d + 20 a2 d - 18 c d - 18 a c d - 2 a b c d + d2

+ a2 d2
- rsqr - a2 rsqr - c2 rsqr,

200 - 140 a + 149 a2
+ 20 b - 14 a b + b2

- 140 c - 200 a c - 20 a b c + 149 c2
+ 20 b c2

+

b2 c2
+ 20 d + 20 a2 d - 14 c d - 20 a c d - 2 a b c d + d2

+ a2 d2
- rsqr - a2 rsqr - c2 rsqrM

We mention that this system is not substantially simpler to solve numerically than the preceding one; its main virtue
for our purposes is that it is more concise to print. In contrast to local methods, which, as we saw, may fail to get a
particular solution, it  turns out to be computationally straightforward to obtain all  solutions to this system. We do
this in Mathematica with the NSolve function. It uses a hybrid symbolic−numeric technique to efficiently find all
roots. Details  of  this  technology are discussed in [10]  [11]  [27].  The basic idea is  to compute a numeric Gröbner
basis and then do an eigendecomposition of a certain matrix formed therefrom. Our solution set is as below.

9a® -1.03253 + 0.760393 ä, b® 6.11349 - 3.37419 ä, c® -0.322931 - 1.37768 ä,

d® -0.295427 + 6.8709 ä, rsqr® 344.25 + 23.8554 ä=, 9a® -1.03253 - 0.760393 ä,

b® 6.11349 + 3.37419 ä, c® -0.322931 + 1.37768 ä, d® -0.295427 - 6.8709 ä, rsqr® 344.25 - 23.8554 ä=,
9a® 0.151635, b® -1.25748, c® 1.58897, d® -6.45046, rsqr® 83.0554=,
9a® 30.9362, b® 93.172, c® 37.1186, d® 92.7034, rsqr® 198.258=,
9a® 0.613253 - 0.359335 ä, b® -4.49777 - 3.77132 ä, c® 0.102934 + 0.159852 ä,

d® -1.56979 + 2.23275 ä, rsqr® 57.5606 + 13.7534 ä=, 9a® 0.613253 + 0.359335 ä,

b® -4.49777 + 3.77132 ä, c® 0.102934 - 0.159852 ä, d® -1.56979 - 2.23275 ä, rsqr® 57.5606 - 13.7534 ä=
Actually we can get exact solutions in the same way, albeit at greater (though still quite reasonable) computational
cost.  This  illustrates  a  sort  of  cascading  hybrid  algorithm:  one  starts  with  a  symbolic−numeric  method  to  handle
numeric problems, then modifies it to give exact rather than approximate results.

Timing @exactsolns = NSolve @exprs, 8a, b, c, d, rsqr <, WorkingPrecision ® Infinity D; D
80.972061 Second, Null<

The exact values for the solution set have a leaf count of 12139. These solutions are comprised of algebraic num−
bers coming from defining polynomials with integer coefficients of several hundred digits. This is far too large to
warrant printing.

4



bers coming from defining polynomials with integer coefficients of several hundred digits. This is far too large to
warrant printing.

Overview of other approaches to solving the cylinder equations

We can improve considerably on the computational efficiency of finding cylinder parameters from five points. For
one, a different formulation of the problem, to be utilized later, finds directions for which all points project onto the
same circle in a plane perpendicular to the direction. Using this we can reduce the computational time by a substan−
tial factor vs. the method shown above. 

In addition to changing the formulation of the problem to one that is computationally easier, one might also change
the solver method. We discuss one very efficient alternative. This is the sparse homotopy method described in [26].
Here one constructs a readily solved system using information from the Newton polytope. One then forms a homo−
topy  to  move  from each  solution  of  the  first  system to  a  solution  of  the  new system.  Specifically,  if  we  call  the
systems FHxL and GHxL respectively, where x denotes a vector of variables, then one adds a new variable, t, and sets

up the homotopy between solutions in each set as a relation H1- tL FHxL + t GHxL = 0. At time t = 0 we have a solu−
tion to the first system, and at time t = 1 we have a solution to the new system. Techniques for moving along the
homotopy path generally utilize a predictor−corrector method to increment t  by a small  amount and then alter the

coordinates of x to maintain the relation above; a general introduction to this method is presented in [24]. For our

cylinder problem there is a nice refinement that goes by the name of the "cheater’s homotopy" [26] wherein we start
with known solutions for one set of points and hence can skip the first step of the general approach. In order to find
cylinder  parameters  for  each  subsequent  set  of  points  we  simply  use  a  homotopy  appropriate  for  the  new  set  of
equations.

An occasional  disadvantage to  the general  sparse homotopy technique is  that  in  some cases one has fewer actual
solutions than are given by the starting system. When this occurs, in the process of following the homotopies some
must wander off to infinity. This can pose difficulties for the software in terms of deciding when a path is diverging
rather than merely wandering afar prior to  converging. For our problem family  the sparse homotopy method will
predict  that  there  are  eight  solutions  for  cylinder  parameters,  two  more  than  are  actually  present.  Hence  the
cheater’s  homotopy  is  all  the  more  appealing  for  this  class  of  problems.  It  should  be  noted,  however,  that  the
general sparse method [36] is far better at approximating the correct number of solutions than any earlier approach
based on homotopies. Moreover it tends to handle systems with far more solutions than can successfully be tackled
by methods that require computation of matrix eigensystems such as that presented in [10].

The size of the solution set

The preceding example had six solutions. We now investigate further. Again taking the polynomial system (6), we

form a  lexicographic Gröbner basis.  This  is  a  standard tactic  for  computational  equation  manipulation  [1]  [3]  [6]

[12]  [18].  The  idea  is  that  it  effectively  triangulates  the  polynomial  system  in  a  manner  that  will  become  clear
below. If we order so that a is the lexicographically "smallest" variable then we obtain a univariate in that variable,
along with other polynomials. As the coefficients are large we will only show that first polynomial.

33 369 819 849 015 - 260 250 873 299 469 a + 250 872 620 195 750 a2
+

127 385 909 908 067 a3
- 186 344 103 956 650 a4

- 259 033 149 843 189 a5
+ 8 563 282 997 415 a6

It is instructive to learn the structure of the Gröbner basis. The first polynomial is of degree 6 in the variable a (as
we already knew), and the rest are quintic in a and linear and with a constant coefficient in each of the respective
other variables.  So now we see what  was meant  by triangularizing the system. To solve it  one could find the six
roots in a and back substitute each into the remaining equations in order to get six corresponding solutions in each
of the remaining variables.

This tells us to expect six solutions in general. As noted earlier this result may be found in several references. Later
we will  give computational proofs. For now we offer two reasons to believe this result; each may be viewed as a
Monte Carlo "proof".

1: In the theory of lexicographic Gröbner bases there is a fact known as the Shape Lemma [2], which may be stated
as follows.  As is  well  known, a generic zero dimensional  polynomial  ideal  over an infinite field is  radical and in
general position with respect to the last variable in any ordering of the variables. In other words, the variety has no
multiplicity and moreover its finitely many points do not share any coordinates. The lemma states that under these
circumstances any lexicographic Gröbner basis will have exactly one polynomial with leading term a pure product
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multiplicity and moreover its finitely many points do not share any coordinates. The lemma states that under these
circumstances any lexicographic Gröbner basis will have exactly one polynomial with leading term a pure product
in each variable, all but the one in the smallest variable will be linear, and that one in the smallest variable will have
degree equal to the size of the solution set. One interpretation of the Shape Lemma is almost a matter of philosophy:
one proves the above fact given a radical ideal in general position, and then asserts that generic ideals satisfy these
hypotheses.  In  addition  to  the  Shape  Lemma there  is  the  following  result:  lexicographic  Gröbner  bases  of  ideals
defined over rational function fields remain Gröbner bases after generic specialization of coefficients [17] [22]. In
other words, there is a Zariski−open set in the parameter space for which specializations do not alter the skeleton of
the  basis.  We  use  these  facts  as  follows:  if  our  selection  of  coefficients  was  generic,  we  may  conclude  that  the
generic Gröbner basis has the same shape as that of the basis we just obtained. Moreover we may believe that our
selection was generic because (i)  it  had the correct shape of  a generic basis,  and (ii)  we used pseudorandom data
selected from a fairly large set.

2: A simulation with 212 randomly chosen configurations always gave exactly six solutions.

One might ask why we do not simply compute a lexicographic basis for our system using indeterminates as coeffi−
cients. The answer is that it does not finish in finite time. Indeed, even making one coordinate a parameter leads to
tremendous computational  effort  (several  minutes on current processors) and very large coefficients for the basis.
That is to say, polynomials in that parameter are of high degree and have large integer coefficients. An alternative
computational  approach  to  finding  generic  cardinality  of  solution  sets~one  with  the  added  virtue  of  being
tractable~is presented in [29].

As Gröbner bases computations never leave their base field (that is, if we begin with real data then the polynomials
in the basis will  have real coefficients)  we conclude that  complex solutions will  be in pairs. Thus we might  have

zero, two, four, or six (real) cylinders in R3. In the case of the example above we have two. We will later use the
results of the large simulation tests to say a bit about percentages of examples for which one obtains given numbers
of real solutions.

3. Computational Geometry of the Solution Cylinders

Finding the implicit equation of a cylinder from its parametric form

Given the parameters of a cylinder, it is natural to ask how one might obtain the implicit form. The first method we
show,  best  described as "applied brute force",  is  from modern elimination theory.  Some references for  this  tech−
nique are [1] [12] [19] [23]. We begin with equations for Hx, y, zL  in terms of the five parameters and the sine and
cosine of an (unrestricted) angular parameter.

In more detail,  we have a parametrization for the cylinder in terms of a scalar multiplier t  for the direction vector

vec and an angle Θ to determine a unit vector in the plane orthogonal to vec. To make this parametrization algebraic
we can use the usual pair of trigonometric functions, abbreviated below as algebraic variables Hcos, sinL. This gives

one  parameter  more  but  of  course  we  also  now  have  the  polynomial  cos2 + sin2
- 1.  A  standard  Gröbner  basis

method for elimination of  variables uses a term ordering that  is  typically  efficient  for partially triangularizing the
polynomials. In particular it weights terms that involve any of the elimination variables higher than all other terms.
We  form  a  Gröbner  basis  with  respect  to  such  an  ordering  and  remove  all  polynomials  that  contain  any  of  the
elimination  variables  Ht, cos, sinL.  What  remains,  a  single  polynomial,  is  the  implicit  relation  in  the  variables
Hx, y, zL.

b2
+ b2 c2

- 2 a b c d + d2
+ a2 d2

- r2
- a2 r2

- c2 r2
+ H2 a b + 2 c dL x + Ia2

+ c2M x2
+

I-2 b - 2 b c2
+ 2 a c dM y - 2 a x y + I1 + c2M y2

+ I2 a b c - 2 d - 2 a2 dM z - 2 c x z - 2 a c y z + I1 + a2M z2

Note that, as one might expect, the implicit polynomial is a function of r2.

For the example using cylinder parameters from (4) the implicit polynomial is computed to be

-420 + 4 x + 25 x2
- 92 y - 6 x y + 17 y2

+ 68 z - 8 x z - 24 y z + 10 z2
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There is a simpler way to find the implicit form for a cylinder. Just use the formulation we described for finding the
distance from a point to the axial line. This gives an equation satisfied by every point on the cylinder. Hence it will
be the hypersurface expression we seek. As is so often the case, we see that brute force can be useful but it  is no
match for finesse. The first approach remains of interest because it is a standard technique in computational alge−
braic geometry, and works when geometric intuition may not be so readily available.

Finding cylinder parameters from the implicit form

Now we look into the reverse problem of finding parameters from the implicit form. While algebraic parametriza−

tion  is  in  general  difficult,  the  case  of  quadric  surfaces  in  R
3  is  not  terribly  hard;  general  methods  for  this  are

presented in chapter 5 of [19]. For the case of cylinders we will  show a very simple approach which we illustrate
using the example above.

As we know the general implicit  form, it  suffices merely to equate coefficients with those of the specific implicit
form and solve for the parameters. Some of the coefficients are linear in the cylinder parameters so this is computa−
tionally  quite  easy.  For  the  example  with  cylinder  parameters  given  in  (4)  the  implicit  form  is  shown  in  the

previous  subsection.  One  can  equate  coefficients  using,  for  example,  the  Mathematica function  SolveAlways.
This yields, as we expect, 8rsqr® 21, b® 2, d®-1, a® 3, c® 4<.
Were the coefficient equations not so readily solvable we could instead do as follows. Starting with that cylinder in
implicit  form  we  generate  at  least  five  points  that  lie  on  it.  To  this  end  we  might  simply  take  values  for  Hx, yL
coordinates, and solve for z.  We then form equations for the parameters from the first five points and solve them.
This gives candidate parameter values. Last we find the implicit equation corresponding to each set of parameters:
the correct parameters will be the ones that recover the original implicit form (up to scalar multiple).

Solving for overdetermined cylinders

An important question to ask is what we might do to find a cylinder when we are given more than five given points?
The  typical  case  is  where  the  points  all  lie  approximately  on  a  cylinder  and  we  wish  to  find  the  best  fitting  one
(perhaps to assess tolerance). We will use a local optimization method for this task. We can set up an expression to
minimize as follows. First form the list of orthogonal complements to projections of our points onto the axial line.
Then take a sum of squares of differences between projected lengths and radius.

We already saw that it is quite important to have good starting values. We do this by taking five points, solving for
all exactly determined cylinder parameters therefrom, and then using other points to decide which of the six possibili−
ties  we should  utilize.  Specifically,  at  the  set  of  "good"  approximations we will  have real  values  and our  sum of
squares will be near zero. This is referred to as a minimal subset method. 

To illustrate we resurrect our original example but this time we use more points and we add random noise to all of
them. The eight points below are thus perturbed slightly from the known example cylinder.

H-2.61303, 4.97448, -3.39489L, H-6.50929, -17.4652, -19.5735L,
I9.39443, 18.5 3.93821´1012, 18.2057M, H12.7263, 29.6737, 32.2087L, H5.481, 20.4069, 30.6016L,
H7.21938, 33.4364, 34.1586L, H10.6382, 20.9278, 29.2479L, H-4.81338, -25.7862, -39.1488L

We first obtain a set of candidate starting values. Using the method described above, we get six possible sets. We
select the best candidate by calculating values of the six implicit  equations at all  points, summing absolute values
for each equation over all  points, and using the parameters that correspond to the implicit  equation that yields the
smallest such sum. For a particular set of choices we obtained the residuals below.

H340.514, 340.514, 8047.95, 0.1098, 1973.7, 1973.7L
It  is  clear  that  the  fourth  set  of  initial  values  is  the  one  we  should  use.  With  this  providing initial  values  a  local
minimization of the sum of squares of residuals gives the resulting parameter values below.

94.02685´10-9, 8a® 2.99996, b® 1.99945, c® 3.99999, d® -1.00099, r® 4.58255<=
As  a  general  remark,  attempts  with  different  optimization  methods  indicate  that  this  sort  of  expression  is  quite
problematic  to  minimize  without  reasonable  starting  points.  Hence  the  ability  to  solve  the  exactly  determined
system is quite important as it provides an essential preprocessing step.

There  are  interesting  applications  to  this.  In  the  industrial  realm of  geometric  tolerancing one  wishes  to  measure
how well an object conforms to specifications. The cylinder is of course a very common object in manufacture. A
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how well an object conforms to specifications. The cylinder is of course a very common object in manufacture. A
good approach to metrology involving cylinders may be found in [15].  The technology discussed therein is espe−
cially effective when the object in question is small and may be readily positioned, but one might accept a cruder
approach e.g. to check an underground pipeline. For this sort of task one could probe five points, obtain from them
a  set  of  approximate  cylinder  parameters,  then  probe  several  others  and  obtain  parameters  for  a  least−squares
nearest cylinder as above. One can then check whether all probed points are within specification tolerance in actual
radial measure from the computed axial line. Other applications include fitting a cylinder to a point cloud [8] [9],

positioning  of  femur  pieces  for  surgical  fracture  reduction  [37],  and  the  first  step  of  fitting  peptides  and  other

biomacromolecules  to  a  helix  [4].  We  note  that  the  method  above  is  strictly  a  fitting  problem.  If  we  wish  to  fit
points in regions with multiple objects we must preprocess via image segmentation. A robust statistics approach is
presented in [31] that also relies on sampling exact fits of minimal subsets. In order to qualify as "robust" it requires
a method to  distinguish and discard outliers.  Once the object  points  in  the region are segmented one can then fit
cylinders as above.

Visualization of cylinders containing a set of points

Once one has parameters for real cylinders containing a set of points one might wish to plot the configuration. For
this purpose it is often useful to shrink the cylinder radius mildly so that the points are more readily visible. We also
connect them by segments as this tends to make more clear how they are situated on the cylinder.

Let  us  look  at  an  interesting  configuation.  Our  points  are  H1, 0, 0L,  I-1�2, 3 �2, 0M,  I-1�2, - 3 �2, 0M,
I0, 0, 2 M, and I0, 0,- 2 M. One notes that it is hardly generic in the sense that the points form a double regular

tetrahedron (with edge length of 3 ). In particular gives a pair of cylinders with axes parallel to the y z coordinate

plane, and this means we cannot obtain all  six cylinder parameters as solutions to the equations based on (1),  (3)
that we have worked with thus far.

For  this  example  we  instead  use  the  third  coordinate  to  parametrize the  cylinder  axis,  as  8a z+ b, c z+ d, z<.  The
change this imposes on the code is quite modest and is indicated in the appendix. With respect to this setup one gets
a very simple set of parameter values where the radii are all 9�10. Two are

Ia, b, c, d, rsqrM= K0, 1 �10, 2 �3 , 0, 81 �100O

Ha, b, c, d, rsqrL = K-1� 2 , -1�20,-1� 6 , 3 �20, 81�100O
The rest are similar to these first  two but  with various of  the first  four components negated.  Here are plots using
various viewpoints. We show some renditions of the first solution cylinder using different graphics and viewpoints.
This may help to visualize how the cylinder axes pass through pairs of faces of the doubled tetrahedra.
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Here is a plot of all six cylinders containing these five points.

11



It is interesting to note that from this double regular tetrahedron construction one may obtain twelve real cylinders
of a certain radius that intersect four particular points. Such an example was first presented in [30]; here we show
how it  arises naturally  from our construction above.  We begin  with  a  regular tetrahedron and this  time glue four
others onto it, one on each face. The vertices of the original tetrahedron will be our four points. Clearly from each
of the glued on tetrahedra we get the six cylinders as above, each intersecting those four points and all having the
same radius.While this would appear to give 4 x6= 24 cylinders, they pair off so that the actual total is twelve. We
remark that computational techniques essentially identical to those we have shown can be used to find the parame−
ters for this problem as well. A different approach, using homotopy continuation methods as described e.g. in [26],

was employed in [16]. A generalization of finding cylinders of possibly different given radii through four points has

been studied in [20]. In [34] there is a construction giving 6 real cylinders that is similar to the one above, but using
a perturbed configuration that avoids symmetry. Computations are similar to those in the appendix.
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4. Real Cylinders: Probabilities and Configurations

Enumerating real cylinders

We now investigate cases in which a configuration of five points will give rise to the various possible numbers of
real cylinders containing it. First we note one obvious situation for which there can be no real cylinders: if one point
is inside the convex hull of the other four then, as right circular cylinders are convex,  no real cylinder can contain
all five points. It would be interesting to know how frequently this arises for point sets that are random under some

reasonable distribution. A simple simulation is revealing. We used 212 examples with point coordinates chosen as
independent and uniformly distributed pseudorandom integers in the range @-100, 100D.  From these we found the
frequencies of zero, two, four, or six real cylinders.

In one such simulation the frequencies obtained were H931, 2206, 865, 94L. So roughly 23% give no real cylinders.
It is natural to ask whether these are all configurations in which one point is enclosed by the other four. This turns
out not to be so. We first discuss the frequency of such random configurations for which one point is enclosed by
the hull of the other four. Presently we will see an open set in the configuration space for which no point lies inside
the hull of the rest, and for which there are no real cylinders through all points.

To  approximate  the  one−enclosed−by−four  situation  we  generated  214  random  configurations  and  checked  how

many cases one point was within the convex hull of the other four. In a simulation we obtained 1147�214 or about

0.070. Thus, for the no−real−cylinder examples subject to the distribution of points we used (which closely approxi−
mates  points  uniformly distributed in  a  cube),  we surmise that  almost  three out  of  four  cases  do  not  arise in  this
way.  A  partly  proven  conjecture  in  [28]  states  that  the  remaining  configurations  with  no  real  solutions  may  be
regarded as perturbations of the ones wherein one point is enclosed by the other four.

The frequency of one point being enclosed by the others is related to some classical problems in integral geometry.
One way to pose it is as a three dimensional version of Sylvester’s problem [13]: What is the probability that five
points chosen at random in a unit cube all lie on the convex hull they define? Another variant is to find the expected
volume of a random tetrahedron in the unit cube (several other variations are posed in the reference). We will call
this expected volume vTet. To see how these problems are related, we order the five random points, then ask what is
the probability that the first is enclosed by the others. This is exactly that expected volume. Now observe that the
expected likelihood that any one point is enclosed by the other four is 5vTet, as these are each pairwise exclusive
events.  Indeed,  by  taking  the  average  of  the  five  cases  of  one−point−enclosed−by−the−rest  one  obtains  a  Monte
Carlo simulation of vTet: it is in the ballpark of 1�70.

Taking this another step we might refine the estimate by quadrature. We utilized a quasi−Monte Carlo evaluation
and  obtained  as  our  approximation  0.01364.  This  is  clearly  in  accord  with  the  approximation  by  simulation
described above.

The problem of finding the expected volume of a tetrahedron with vertices independently and uniformly distributed
inside a cube was recently solved [39]  using an elaborate breakdown of  the region and several exact  multivariate

integral  computations.  The  actual  value  is  3977�216 000- Π2�2160,  or  approximately  .013843.  This  agrees  with

both the quadrature result and the simulation to almost three decimal places.

Configurations that give six real cylinders

We previously obtained six real cylinders above by starting with a regular tetrahedron and gluing a copy of itself to
one face to obtain five points. If  the common face is in the x y plane (so that one tetrahedron points up, the other
down),  then  each  intersects  one  of  the  three  faces  of  the  upper  tetrahedron  and  one  the  faces  of  the  lower  not
connected by an edge to the intersected upper face.  In  fact  it  is  quite clear by symmetry that  if  we have one real
cylinder then we must have six: we get two "conjugates" by rotating, and three more by reflecting through the x y

plane. There is another configuration, from [32], that can be seen to give six cylinders. We have four points forming
vertices of a square in the x y plane. This is the base of a pyramid with the fifth point as its apex above the centroid
of  this  square. We obtain two horizontal  cylinders each passing through a pair  of  opposite  triangular faces of  the
pyramid. The remaining four each pass through a triangular face, angled upward, and an edge of the base.

It is a (vague) conjecture that all configurations giving rise to six cylinders in R
3  are small perturbations of one of

these two configurations. This idea, admittedly difficult to quantify, is based on visual experimental evidence.
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It is a (vague) conjecture that all configurations giving rise to six cylinders in  are small perturbations of one of
these two configurations. This idea, admittedly difficult to quantify, is based on visual experimental evidence.

More configurations that give no real cylinders

As noted earlier we get no real cylinders whenever one point is in the convex hull of the other four. It is also clear
from experiments (and theoretical  grounds discussed in  [28])  that  there are other  configurations that  give  no  real
cylinders. We now use symbolic computation to derive a particular family of such configurations.

We begin with a double tetrahedron glued along a common face in the horizontal plane, allowing the upper vertex
to vary on a vertical line. To make results of computations more concise we now work with a lower z coordinate

that  is  -1 instead of  - 2 . Thus our points are now H1, 0, 0L,  I-1�2, 3 �2, 0M,  I-1�2, - 3 �2, 0M,  H0, 0,-1L,
and H0, 0,zL. One may readily check that when the indeterminate coordinate is 1 we have 6 real cylinders (all radii
are 5�6). If we alter either or both of the upper and lower vertices we can jump from having six cylinders through
the five points to having none. This is explained via a symmetry argument that we outline below. As noted earlier, if
we have one real cylinder from such a configuration then the threefold symmetry will give us two more, for three
cylinders  (counting  multiplicity).  As  this  is  an  odd  value  either  we  must  have  another  (and  again  by  threefold
symmetry,  six  altogether),  or  else  there  must  be  multiplicity.  One  can  argue  against  multiplicity  on  geometric
grounds, but  a simple algebraic observation is that  in any case we cannot have multiple solutions on more than a
finite  set  of  configurations  as  we  move  that  top  vertex  along  a  vertical  line  (else  we  would  have  multiplicity  of
solutions everywhere on that  variety in the configuration space).  As we cannot  have three real solutions counting
multiplicity, we see that we either have six or none.

Below  we  explicitly  show  this  phenomenon.  Note  that  as  we  use  a  Gröbner  basis  approach  we  cannot  in  any
straightforward way impose positivity  on  that  mobile  vertex.  Were it  to  become negative  we would  have no real
cylinders because either it or the other negative vertex will be in the tetrahedron hull of the remaining four vertices.
Our interest is in the case where it gets larger, however, and our discussion will handle that.

We  use  the  five  equations  based  on  (2),  with  the  axial  parametrization  8a z+ b, c z+ d, z<,  to  obtain  the  cylinder
polynomials.  Let  us  now  look  at  a  lexicographic  Gröbner  basis  for  this  polynomial  set.  We  regard  the  moving
vertex  vertical  coordinate  z as  a  parameter  and  do  the  basis  computation  over  the  rational  function  field  in  that
parameter. When the variables are ordered so that c is lexicographically smallest we have the basis given below.

9-6 + 16 z - 20 z2
+ 8 z3

+ c2 H-9 + 18 zL + c4 I-12 + 48 z - 48 z2M + c6 I-4 + 24 z - 48 z2
+ 32 z3M,

2 + c2 H5 - 10 zL + a I-2 + 6 z - 4 z2M + c4 I2 - 8 z + 8 z2M,
c3 H-5 + 10 zL + c5 I-2 + 8 z - 8 z2M + c I2 - 8 z + 4 z2M + d I-4 - 4 z + 8 z2M,
-1 - 2 z + b I2 - 8 z2M + c4 I-2 + 8 z - 8 z2M + c2 I-4 + 6 z + 4 z2M, 5 + 20 z2

+ rsqr I-4 - 16 z - 16 z2M=
We saw from symmetry  considerations that  we  obtain  at  least  one  real  solution  if  and  only  if  we  obtain  six  real
solutions. So it suffices to indicate situations where we cannot have six. For this we focus on the univariate polyno−

mial in the last variable, c. First note that it is a cubic polynomial in c2. For our task it suffices to find values of z for

which this cubic has no positive roots. Writing the cubic in a new variable s= c2 we have

(7)-6 + 16 z - 20 z2
+ 8 z3

+ H-9 + 18 zL s + I-12 + 48 z - 48 z2M s2
+ I-4 + 24 z - 48 z2

+ 32 z3M s3

For z sufficiently  large the leading coefficient  is  asymptotically  32z3.  Dividing (7)  by this  leading coefficient  we
have  a  cubic  with  quadratic  and  linear  coefficients,  as  rational  function  in  z,  asymptotically  going  to  0,  and

"constant"  term approaching 1/4.  That  is,  for z sufficiently  large, our cubic approaches s3
+ 1�4. As this does not

have positive roots, neither does the cubic for sufficiently  large z.  Hence the sixth degree polynomial  in c has no
real roots when z is large, so the system has no real solutions in that case.

Note  that  for  all  but  finitely  many  values  of  z we  have  a  lexicographic  Gröbner  basis  with  generic  shape.  This

follows from the main theorem of the next section (because it gives 6 solutions, has first polynomial univariate and
of degree 6, and remaining polynomials linear in each respective variable; in order to conclude genericity we need
to know the generic solution count is 6). This holds in particular for sufficiently large z. In that case we just showed
that there are no real cylinders containing the five points. From this it is not hard to show that small perturbations of
any  of  the  five  points  in  any  directions will  also  not  give  rise to  real  valued  cylinder  parameters (because suffi−
ciently small perturbations of the input will still give a basis conforming to the Shape Lemma). Hence we have an
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any  of  the  five  points  in  any  directions will  also  not  give  rise to  real  valued  cylinder  parameters (because suffi−
ciently small perturbations of the input will still give a basis conforming to the Shape Lemma). Hence we have an
open set in configuration space for which there are no real solutions.

5. Counting Cylinders Through Five Points
The above investigations indicate computational ways in which one might approach questions involving cylinders
through  five  points.   We  now  show  how  purely  computational  methods  can  be  brought  to  bear  on  some  of  the
theory. Related results are presented in [28].

PROPOSITION 1. Generic configurations of five points in R3 lie of the surface of finitely many cylinders. 
Moreover an upper bound on the number of these cylinders is nine.

PROOF: We set  up some linear algebra similar  to  that  already seen,  but  now we reduce to  two equations in  two
variables along with the configuration parameters. The linear algebra is  as follows. Without loss of  generality we
have one point at the origin, another at H1, 0, 0L, and a third in the x y coordinate plane. We project these onto the set

of planes through the origin, parametrized generically by a normal vector Ha, b, 1L.  In each such plane these three
points determine a circle, and we get one equation for each of the remaining two points in order that they project
onto  the  same  circle  (which  is  the  condition  that  the  five  be  cocylindrical).  Our  points  are  H0, 0, 0L,  H1, 0, 0L,
Hx2, y2, 0L, Hx3, y3, z3L, and Hx4, y4, z4L. From these we obtain the polynomials below.

(8)

I-x3 y2 - b2 x3 y2 + x3
2 y2 + b2 x3

2 y2 + x2 y3 + b2 x2 y3 - x2
2 y3 - b2 x2

2 y3 + 2 a b x2 y2 y3 -

2 a b x3 y2 y3 - y2
2 y3 - a2 y2

2 y3 + y2 y3
2
+ a2 y2 y3

2
- b x2 z3 - b3 x2 z3 + b x2

2 z3 + b3 x2
2 z3 + a y2 z3 +

a b2 y2 z3 - 2 a b2 x2 y2 z3 - 2 a x3 y2 z3 + b y2
2 z3 + a2 b y2

2 z3 - 2 b y2 y3 z3 + a2 y2 z3
2
+ b2 y2 z3

2,

-x4 y2 - b2 x4 y2 + x4
2 y2 + b2 x4

2 y2 + x2 y4 + b2 x2 y4 - x2
2 y4 - b2 x2

2 y4 + 2 a b x2 y2 y4 -

2 a b x4 y2 y4 - y2
2 y4 - a2 y2

2 y4 + y2 y4
2
+ a2 y2 y4

2
- b x2 z4 - b3 x2 z4 + b x2

2 z4 + b3 x2
2 z4 + a y2 z4 +

a b2 y2 z4 - 2 a b2 x2 y2 z4 - 2 a x4 y2 z4 + b y2
2 z4 + a2 b y2

2 z4 - 2 b y2 y4 z4 + a2 y2 z4
2
+ b2 y2 z4

2M
Factoring shows that they are irreducible and hence are relatively prime. So generically they have finite intersection
and an upper bound is given by the Bezout theorem. In fact, as each polynomial has degree three in the variables
Ha, bL,  we  see  that  there are at  most  nine  solutions  for  the  cylinder  axis  direction parameters,  hence at  most  nine
solutions for the set of cylinder parameters. �

In [14] it is noted that this projected circles approach is related to the Delaunay triangulation of projections of the
five points on all possible planes. Specifically, directions of projection where the triangulation changes are impor−
tant, as these occur exactly when four points become cocircular. This gives a direct tie between the enumerative and
computational geometry of cylinders through five points.

PROPOSITION 2. Real valued solutions always have positive values for the square of the radius.  

The significance of this proposition is that all real valued solutions do indeed give cylinders in R
3.

PROOF. Suppose we form a lexicographic Gröbner basis for the system of five generic polynomials from (3), with
the  radius−square  variable  ordered  as  smallest.  Then  generically  (Shape  Lemma)  we  have  a  basis  containing  a
univariate polynomial in that variable. For each of the other variables there will correspond a linear polynomial in
the basis, and it will have real valued coefficients. Suppose a solution to that univariate polynomial is real valued.
Then the remaining cylinder parameters, on back substitution, will  also be real valued as they are given by linear
polynomials over the reals. Now recall that our original equations were of the form equating a sum of squares to the
squared radius. Here the left hand side is a polynomial function of the input data and cylinder parameters. Hence all
the original equations will have positive left hand sides, so the radius squared must also be positive. �

THEOREM. Five generic points in R3 determine six distinct sets of cylinder parameters, of which an even number 
(counting multiplicity) are real valued. That number can be zero, two, four, or six.

Note that the number of real valued solutions being even follows from the fact that complex solutions must appear
in conjugate pairs (since all the polynomial equations have real coefficients). Moreover we saw in the enumeration
simulation that all four possible cases of real valued cylinder counts arise. So we need only prove that the number of
solutions is six.

PROOF  1.  We  form  a  Gröbner  basis  with  respect  to  a  degree  based  term  ordering  for  the  polynomials  (8)  we

created  in  proposition  1.  Looking  at  the  head  terms  we  find  that  there  are  6  monomials  in  Ha, bL  that  are  not
6 �
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created  in  proposition  1.  Looking  at  the  head  terms  we  find  that  there  are  6  monomials  in  Ha, bL  that  are  not
reducible with respect to this basis and hence 6 solutions to the system [10] [11]. �

PROOF 2. We compute the resultant of the pair of polynomials with respect to one of the two variables. We obtain
a polynomial of degree 6 in the other (with large symbolic coefficients). This means there are at most 6 solutions.
As we already know there are at least that many, this suffices to show that there are generically six solutions. �

REMARK  1:  One might  wish to use the method of  mixed volume to compute the number of  solutions [21].  One
finds the convex hull  of  the Newton polytopes of  the exponent  vectors for each polynomial  and then computes a
mixed volume. This is easy to do using the computation from the proof of proposition 1. Each of the two polynomi−
als  has  the  same set  of  power products in  Ha, bL  and specifically  the  hull  of  the  exponent  vectors is  given by  the
vertex set H0, 0L, H2, 0L, H2, 1L, H1, 2L, and H0, 3L.
The volume of this region is 4. The Minkowski sum of the two polytopes is just the same hull  scaled to twice its
size,  and  the  mixed  volume is  equal  to  the  total  volume minus  the  sum of  the  volumes  of  each  separate  hull,  or
16- 8= 8. So the generic number of solutions for equations with these sets of exponent vectors is 8 rather than 6.
Indeed, one can verify this immediately by solving a pair of  random equations that use the same power products.
We thus conclude that the entire family of cylinder problems is nongeneric with respect to the theory presented in
[21]. A hint as to why this is so may be gleaned from the computational proof of theorem 1 presented in [28]. This

sort of nongeneric example is also noted in [21]. The related problem discussed in [16] and [30] similarly fails to be
generic for the polyhedral homotopy solving method.

REMARK  2:  Proof  1  uses  a  brute force computation  of  a  Gröbner  basis  for  a  system with  generic  configuration
parameters. This approach is not tractable for most geometric problems, and that it worked here is indication of the
relative simplicity of this formulation of the problem.

REMARK 3: Proof 2 is similar in method to an argument in [33] which implies that there are at most 12 cylinders
of a given radius through four fixed points.

REMARK  4:  Other  proofs  of  varying levels  of  complexity  may  be  found  in  [5]  [8]  [14]  [28].  An  algorithm that
effectively automates finding the cardinality of generic solution sets to geometric configuration problems is given in
[29].  It  relies  on  showing  that  the  solution  count  is  constant  in  a  neighborhood of  a  given  point  in  configuration
space.

6. Nongeneric solution sets (too many, too few, or too familiar)
Some further problems of interest include understanding the configurations of five distinct points that are degener−
ate for the problem at hand. Specifically we would like to know:

(1) When the number of solutions is infinite.
(2) When the number, counting multiplicity, is less than 6.
(3) When there are multiple solutions.

Some aspects of the first two questions are addressed in the companion paper [28]. Among other things we note that
a sufficient condition to have either infinitely many cylinders through five points, or at most four, is that the points
be  coplanar.  It  is  conjectured  in  [28]  that  these  are  also  necessary  conditions,  and  moreover  that  infinitely  many
cylinders exist  exactly  when either four points are collinear or three are collinear with the line determined by the
remaining two parallel to the line through those first three. In this section we discuss how some ideas involving the
discriminant variety [25] might be used to approach these questions. We emphasize that this is entirely tentative as
we have not obtained concrete results with this approach to date, in part due to certain complexities presented by the
problem formulation (and in no small way to gaps in the author’s understanding of the work in question). We will
describe code in the appendix that starts out along this computational path.

The  basic  idea,  from  [25],  is  to  formulate  polynomial  conditions  for  where  we  do  not  have  6  solutions  to  our
cylinder equations. We will start with the two equations for the two axis variables (these will be our "main" vari−
ables),  given in (8).  We create a block term order for all  variables, including the indeterminate point  coordinates,
such that the heavier weighted block corresponds to the main variables. We find the basis and look at leading terms
in the two main variables; these have coefficients in the indeterminate parameters. A necessary condition that  the
basis not be valid for a configuration is that such a leading term coefficient vanish.
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This computational method has weaknesses. First, one really needs to ensure that the five points are distinct. This
might be done by adding polynomial conditions (with new variables) to enforce that certain differences be nonzero
(or at least that one difference from some set of possibilities be nonzero; this is not harder in principle but does use
polynomials of higher degree in the new variables).

A second difficulty is that our algebraicization of the problem took a shortcut in setting a direction coordinate to 1.
We  may  be  in  a  situation  similar  to  that  posed  by  the  doubled  regular  tetrahedra,  wherein  our  initial  choice  of
direction  parameters  could  not  describe  all  actual  cylinders  through  the  points.  The  code  in  the  appendix  will
generate leading coefficient factors that include y2, for example. Were this to vanish we would have three collinear
points on the x axis, and this would force all cylinder directions to be in that direction and hence have a last coordi−
nate of zero. Another such factor is shown below.

y2 y4 z3 - y4
2 z3 - y2 y3 z4 + y3

2 z4 + z3
2 z4 - z3 z4

2

It is less obvious how this might be a result of the limitations in our representation of the direction vector, though
presumably that is the case. Other factors are far longer and correspondingly less amenable to this author’s under−
standing. 

We might try to adjust for the direction vectors which we cannot capture, e.g. by using polynomial relations to rule
out configurations that would give such cylinders. An alternative would be to work with the computationally more
difficult formulation wherein a direction vector has three variables and a new polynomial is used to "normalize" this
direction (e.g. by making the sum of squares equal to 1). Actually this too is not going to get all possible cylinders
because we consider complex solutions, and in that setting we can have a complex "direction" vector with square
sum  of  coordinates  vanishing.  This  method  has  the  drawback  of  being  computationally  more  intensive  than  the
shortcut approach.

Yet another issue is that we may have a variety in the configuration parameter space for which leading terms in our
basis vanish, but for which a different term ordering might behave perfectly well  (these are called "representation
singularities" in [35]). That is, we might have the correct solution count but a basis that is not of the same shape as
generic bases.

A  related  matter  of  interest  is  to  describe  the  configurations  that  give  some  given  number  (even,  counting  by
multiplicity)  of  real solutions.  In  [28]  there is  considerable discussion of  the case of  no real cylinders. Again one

might wish to approach this computationally using discriminant variety tools from [25]. Here the ideal of interest is
the  set  of  certain  Jacobian  minors  (as  well  as  the  original  polynomials).  At  multiple  solutions  these  will  vanish.
Hence  any  characterization of  these,  intersected  with  real  space,  will  include  the  boundaries  in  the  configuration
space between different numbers of real solutions. Computationally this would appear to be a daunting problem and
it would be interesting to learn if any existing software can make progress with it. Also as the result is expressed in
terms of algebraic relations, it would then be useful to understand from them the underlying geometric relations that
describe the four cases of real solution cardinalities.

7. Summary
We have discussed computational methods for finding cylinders through a given set of five points in R

3. Along the
way we have covered several related problems and computational approaches thereto. We have investigated various
real  valued  scenarios  using  simulation.  Overall  we  have  combined  geometric  reasoning  with  Gröbner  bases  and
several related tools from symbolic computation in order to study a rich family of problems from enumerative and
computational geometry.
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9. Appendix
We give Mathematica code used herein. Small amounts of text relate the code to the ways in which it is used in the
body of this article. It should be of interest that in total there is not much code. This again points to the importance
of symbolic−numeric computation in investigations of the sort found herein: this would be something of a hardship
to code "from scratch" but is straightforward with programs that support such functionality.

Below is code used to set up our first example.

perp @vec1_, vec_, offset_ D : = vec1 - offset - Projection @vec1 - offset , vec, Dot D
8a, b, c, d, r < = 83, 2, 4, -1, Sqrt @21D<;
vec = 81, a, c <; offset = 80, b, d <;
pair = NullSpace @8vec <D;
8w1, w2< = Orthogonalize @pair, Dot D;

SeedRandom@111 111 D;
xvals = Table @Random@Real, 8-10, 10 <D, 85<D;
thetas = Table @Random@Real, 80, 2 Π<D, 85<D;
points = Table @xvals Pj T vec + offset + r Cos @thetas Pj TD w1+ r Sin @thetas Pj TD w2, 8j, 5 <D;

When we  use  this  point  set  to  find  r  and  the  parameters describing  L  we  must  of  course  clear  those  that  we  set
above so they become symbolic indeterminates. Using these points we will obtain the needed algebraic expressions
for extraction of roots.

Clear @vec, offset , a, b, c, d, r D
vec = 81, a, c <; offset = 80, b, d <;
perps = Map@perp @ð, vec, offset D &, points D;
exprs = Map@Numerator @Together @ð. ð - r ^ 2 DD &, perps D;

Here we attempt to get solutions to the parameter equations using local root−finding methods.

rt1 = FindRoot @Evaluate @Thread @exprs � 0DD, 8a, 3.4 <,
8b, 2.8 <, 8c, 3.7 <, 8d, -1.6 <, 8r, 3.3 <, MaxIterations ® 500D

rt2 = FindRoot @Evaluate @Thread @exprs � 0DD, 8a, 2.7 <, 8b, 1.8 <,
8c, 3.2 <, 8d, -.7 <, 8r, 3 <, MaxIterations ® 500D

Now we use local optimization, minimizing a sum of squares with the Levenberg−Marquardt method (which tends
to be good for sums of squares).

esquares = Apply @Plus, Map @ð^ 2 &, exprs DD;
8m3, rt3 < = FindMinimum @Evaluate @esquares D, 8a, 2.4 <, 8b, 1.8 <,
8c, 3.2 <, 8d, -.8 <, 8r, 3 <, MaxIterations ® 500, Method ® LevenbergMarquardt D

8m4, rt4 < = FindMinimum @Evaluate @esquares D, 8a, 2.4 <, 8b, 1.8 <,
8c, 2.2 <, 8d, -1.8 <, 8r, 3 <, MaxIterations ® 500, Method ® LevenbergMarquardt D

We use NSolve as below to find all solutions.

Timing @solns = NSolve @exprs, 8a, b, c, d, rsqr <DD
We can even use NSolve to find exact solutions.

Timing @exactsolns = NSolve @exprs, 8a, b, c, d, rsqr <, WorkingPrecision ® Infinity D; D
In our second example we indicate the polynomial exponent structure of a set of polynomials. This is done with the
code below.

gb = GroebnerBasis @exprs, Sort ® True D;
list1 = Map@Apply @List, ðD &, gb D �. _Integer *x_ ® x;
list2 = Map@Cases@ð, a_ �; ! IntegerQ @aDD &, list1 D

The code below will find the implicit form of a cylinder given a parametric formulation. It implements a standard
elimination method using Gröbner bases.

Clear @a, b, c, d, t, r D;
vec = 81, a, c <; offset = 80, b, d <;
pair = NullSpace @8vec <D;
8w1, w2< = Orthogonalize @pair, Dot D;

polys = AppendAt vec + offset + r cos w1 + r sin w2 - 8x, y, z <, sin 2
+ cos 2

- 1E;

ee = Numerator @MapAll @Together , polys DD;
ff = Numerator @Together @PowerExpand @eeDDD;
implicit = First @GroebnerBasis @ff, 8x, y, z <, 8t, sin, cos <, Sort ® True,

MonomialOrder ® EliminationOrder , CoefficientDomain ® RationalFunctions DD;
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We can check this on the particular example by showing that each given point is a root of the polynomial.

thisExample = implicit �. 8a ® 3, b ® 2, c ® 4, d ® -1, r ® Sqrt @21D<
thisExample �. Map@Thread @8x, y, z < -> ðD &, points D �� Chop

Here  is  another  way  to  get  the  implicit  form.  It  is  quite  simple,  but,  unlike  the  preceding general  approach,  it  is
specific to the geometric object in question.

pp = perp @8x, y, z <, vec, offset D;

implicit2 = Numerator ATogether App.pp - r 2EE
Here we find the parameter values from the implicit form of a cylinder.

generalImplicitForm = implicit �. r 2
® rsqr;

thiscase = generalImplicitForm �. 8a ® 3, b ® 2, c ® 4, d ® -1, rsqr ® 21<;
SolveAlways @thisExample � generalImplicitForm , 8x, y, z <D

An alternative approach to the parametrization is given below.

points = Partition @
Flatten @8x, y, z < �. Table @Solve @8thiscase � 0, x � j, y � 0<, 8x, y, z <D, 8j, 0, 2 <DD, 3 D;

perps = Table @perp @points PkT, vec, offset D, 8k, 5 <D;
exprs = HNumerator @Together @ð1. ð1 - rsqr DD &L �� perps;

Select Bcandidates , NumericQ BTogether B
generalImplicitForm �. ð1

thiscase
FF &F

Below we create an overdetermined example  of  eight  points.  It  contains  some random noise  to  move it  from the
exact parameter values.

SeedRandom@1 111 111 D;
8a, b, c, d, rsqr < = 83, 2, 4, -1, 21 <;
numpts = 8;
vec = 81, a, c <; offset = 80, b, d <;
pair = NullSpace @8vec <D;
8w1, w2< = Orthogonalize @pair, Dot D;
xvals = Table @Random@Real, 8-10, 10 <D, 8numpts <D;
thetas = Table @Random@Real, 80, 2 Π<D, 8numpts <D;
randomNoise3D @max_D : = max Table @Random@D, 83<D
points = Table Bxvals Pj T vec + offset + rsqr Cos @thetas Pj TD w1+

rsqr Sin @thetas Pj TD w2+ randomNoise3D @0.001 D, 8j, numpts <F;

We obtain a set of candidate starting values as below (again we need to clear the various parameters that we used
above to recreate the example).

Clear @a, b, c, d, rsqr D;
vec = 81, a, c <; offset = 80, b, d <;
perps = Table @perp @points @@j DD, vec, offset D, 8j, numpts <D;
exprs = Map@Numerator @Together @Rationalize @ð. ð, 0 D - rsqr DD &, Take @perps, 5 DD;
solns = NSolve @exprs, 8a, b, c, d, rsqr <D;

We find the correct set of starting values for a local optimization of parameters.

squaresums =

Apply @Plus, Abs @HgeneralImplicitForm �. solns L �. Map@Thread @8x, y, z < ® ðD &, points DDD;
candidate = solns @@Position @squaresums , Min @squaresums DD@@1, 1 DDDD;

We use the starting values in a local minimization of a sum of squares in order to get a best fit cylinder to the point
set.

sumsquarelens = Plus �� J ð1. ð1 - r N
2

& �� perps;

startvals = HList �� ð1 &L �� candidate ;

newstartvals = startvals �. 8rsqr, v_ < ¦ :r, v >;

8min, ee < = FindMinimum @Evaluate @sumsquarelens D, Evaluate @Sequence �� newstartvals DD
Below is code used for plotting a cylinder and point set.
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showlines @points_List , rest___ D : = Module A8plotpoints , plotlines , len = Length @points D<,

plotpoints = Table @Graphics3D @8Blue, PointSize @0.05 D, Point @points Pj TD<D, 8j, 1, len <D;

plotlines = Table AGraphics3D A9HueA1�26 Ij 2
+ k - 4ME, Line @8points Pj T, points PkT<D=E,

8k, 1, len - 1<, 8j, k + 1, len <E;

Show@plotpoints , plotlines , rest, DisplayFunction ® Identity , Boxed ® False, Axes ® True,

AxesLabel ® 8"x" , "y" , None <, ViewPoint ® 8-1�2, 2, 1 <, ImageSize ® 8300, 480 <DE
cylinderplot @rt_, pts_List , vec_, offset_ , showcyl_ : True D : =

Module A8r, vec2, lin, x, theta, w1, w2, circ, cylplot , axis, pair <,

r = rsqr �. rt ; vec2 = vec �. rt; lin = x vec + offset �. rt;

pair = NullSpace @8vec2 <D;
8w1, w2< = Orthogonalize @pair, Dot D;
circ = 0.7 r Cos @theta D w1+ 0.7 r Sin @theta D w2�. rt;
cylplot = ParametricPlot3D @Evaluate @lin + circ D, 8x, -3, 3 <,
8theta, -0.5 Π, 0.85 Π<, Shading ® True, DisplayFunction ® Identity D;

axis = ParametricPlot3D @lin, 8x, -3.5, 3.5 <, DisplayFunction ® Identity D;
If @showcyl , showlines @pts, axis, cylplot , DisplayFunction ® Identity D,

showlines @pts, axis, DisplayFunction ® Identity DDE
Our  example  uses  two  regular  tetrahedra  glued  along  a  face  of  each.  The  common  face  is  in  the  x y coordinate
plane. As this cannot be handled with the setup used above, we take different direction and offset vectors. Specifi−
cally, we have solutions with axes parellel to the y z coordinate plane, that is to say, x coordinate of zero, and our

generic axis of choice, H1, a, cL,  will  not find these parameter sets. Hence instead we use Ha, c, 1L  as our direction
vector.

dpoints = 981, 0, 0 <, 9-1�2, 3 � 2, 0 =, 9-1�2, - 3 � 2, 0 =, 90, 0, 2 =, 90, 0, - 2 ==;

vec = 8a, c, 1 <; offset = 8b, d, 0 <;

solveCylinders @pts_List , vec_, offset_ , prec_ : Automatic D : = Module @8exprs, k, perps <,
perps = Table @perp @pts PkT, vec, offset D, 8k, 5 <D;
exprs = HNumerator @Together @ð1. ð1 - rsqr DD &L �� perps;
NSolve @exprs, 8a, b, c, d, rsqr <, WorkingPrecision ® prec DD

One obtains the exact cylinder parameters as below.

solns = solveCylinders @dpoints , vec, offset , Infinity D;
FullSimplify @8a, b, c, d, rsqr < �. solns D

The first two may be plotted with the following code.

nsols = N@solns D;
Show@GraphicsArray @Table @cylinderplot @nsols @@j DD, dpoints , vec, offset , True D, 8j, 2 <DDD;

A nice plot may be constructed more simply in the version of Mathematica under development at the time of this
writing. We show it for the first solution cylinder.
8p1, p2, p3, p4, p5 < = dpoints ;
top1 = Hvec *2 + offset L �. solns @@1DD;
bot1 = H-vec *2 + offset L �. solns @@1DD;

Graphics3D @
88Red, Sphere @ð, 0.04 D & �� 8p1, p2, p3 <, Green, Sphere @p4, 0.04 D, Blue, Sphere @p5, 0.04 D<,
8White, Opacity @0.1 D, Polygon @88p1, p2, p4 <, 8p2, p3, p4 <, 8p3, p1, p4 <<D,

Polygon @88p1, p2, p5 <, 8p2, p3, p5 <, 8p3, p1, p5 <<D<,
8Yellow , Opacity @0.6 D, Cylinder @8top1, bot1 <, 0.70 D<<,

Axes ® True, AxesLabel ® 8"x" , "y" , None <D
One can instead plot the cylinders together in one picture using the code below.
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multiplecylinderplot @rt_, pts_List , vec_, offset_ D : =

Module A8len = Length @pts D, r, vec2, lin, x, theta,

w1, w2, circ, cylplot , axis, cyls, plotpoints , plotlines <,
plotpoints = Table @Graphics3D @8Blue, PointSize @0.05 D, Point @pts Pj TD<D, 8j, 1, len <D;

plotlines = Table AGraphics3D A9HueA
1

26
Ij 2
+ k - 4ME, Line @8pts Pj T, pts PkT<D=E,

8k, 1, len - 1<, 8j, k + 1, len <E;

cyls = Table A

r = rsqr �. rt @@j DD ;

vec2 = vec �. rt @@j DD;
lin = x vec + offset �. rt @@j DD;
pair = NullSpace @8vec2 <D;
8w1, w2< = Orthogonalize @pair, Dot D;
circ = 0.87 r Cos @theta D w1+ 0.87 r Sin @theta D w2�. rt @@j DD;
axis = ParametricPlot3D @lin, 8x, -3.5, 3.5 <, DisplayFunction -> Identity D;
cylplot = ParametricPlot3D @Evaluate @lin + circ D,
8x, -3, 3 <, 8theta, -0.85 Π, 0.85 Π<, DisplayFunction -> Identity D;

cylplot

, 8j, Length @rt D<E;

Show@plotpoints , plotlines , Apply @Sequence , cyls D, ViewPoint -> 81�4, 3, 0 <D
E

For example we might plot the six from the doubled tetrahedron example.

solns = solveCylinders @dpoints , vec, offset D;
multiplecylinderplot @N@Take@solns, 6 DD, dpoints �. z ® Sqrt @2. D, vec, offset D

Here  we  counted  the  number  of  real  solutions  for  212  point  configurations  wherein  coordinates  were  taken  as
pseudorandom integers uniformly and independently distributed in the range @-100, 100D.

Clear @a, b, c, d, rsq D;
vec = 81, a, c <; offset = 80, b, d <;
pair = NullSpace @8vec <D;
8w1, w2< = Orthogonalize @pair, Dot D;

SeedRandom@1111D;

len = 212 ;
intpoints = Table @Table @Random@Integer , 8-100, 100 <D, 85<, 83<D, 8len <D;

Timing @rvals = Table @perps = Table @perp @intpoints @@j, k DD, vec, offset D, 8k, 5 <D;
exprs = Map@Numerator @Together @ð. ð - rsqr DD &, perps D;
solns = NSolve @exprs, 8a, b, c, d, rsqr <D;
rs = N@rsqr �. solns D;
8j, Cases @rs, _Real D<, 8j, len <D; D

We separate into numbers of real cylinders.

rvals2 = Sort @rvals , Length @ð1P2TD £ Length @ð2P2TD &D;
lens = HLength @ð1P2TD &L �� rvals2 ;
lenlens = Length �� Split @lens D

Below is a simulation of the one−enclosed−by−four configuration. The code below will generate random configura−
tions and then check to see in how many cases one point lies within the convex hull of the rest.

plane @p1_, p2_, p3_ D : = With @8norm = Cross @p1 - p2, p1 - p3D<,
8norm, norm.p1 <D

sameside @8p1_, p2_, p3_ <, p4_, p5_ D : = Module @8norm, d <,
8norm, d < = plane @p1, p2, p3 D;
Hnorm.p4 - dL*Hnorm.p5 - dL > 0D

encloses @pnts : 8p1_, p2_, p3_, p4_ <, p5_ D : = Module @8combos , j <,
combos = Table @8Drop @pnts, 8j <D, pnts @@j DD<, 8j, Length @pnts D<D;
Apply @And, Map@sameside @ð@@1DD, ð@@2DD, p5 D &, combos DDD

anyenclosed @pnts : 8p1_, p2_, p3_, p4_, p5_ <D : = Module @8combos , j <,
combos = Table @8Drop @pnts, 8j <D, pnts @@j DD<, 8j, Length @pnts D<D;
Apply @Or, Map @encloses @ð@@1DD, ð@@2DDD &, combos DDD

SeedRandom@1111D;

len = 214 ;
realpoints = Table @Table @Random@Real, 8-100, 100 <D, 85<, 83<D, 8len <D;
Timing @enclosedlist = Transpose @8Range@len D, Map@anyenclosed , realpoints D<D; D
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We now can check the proportion of cases with one point enclosed by the rest.

hasenclosed = Cases@enclosedlist , 8_, True <D;
numenclosed = Length @hasenclosed D
N@numenclosed � len D

We estimate via quadrature the expected volume of a tetrahedron with vertices uniformly and indepently distributed
in the unit cube.

vol @p1_, p2_, p3_, p4_ D : = Abs@Hp2 - p1L.Cross @p3 - p1, p4 - p1DD�6

NIntegrate @Evaluate @vol @8x1, y1, z1 <, 8x2, y2, z2 <, 8x3, y3, z3 <, 8x4, y4, z4 <DD,
8x1, 0, 1 <, 8y1, 0, 1 <, 8z1, 0, 1 <, 8x2, 0, 1 <, 8y2, 0, 1 <, 8z2, 0, 1 <,
8x3, 0, 1 <, 8y3, 0, 1 <, 8z3, 0, 1 <, 8x4, 0, 1 <, 8y4, 0, 1 <, 8z4, 0, 1 <,
PrecisionGoal ® 2, AccuracyGoal ® 6, MaxPoints ® 1 000 000 D

We generate the six real cylinders containing points that are vertices of a pyramid with square base in the horizontal
plane and four upward triangular faces.

dpoints = 881, 0, 0 <, 8-1, 0, 0 <, 80, 1, 0 <, 80, -1, 0 <, 80, 0, 3 �2<<;
vec = 81, a, c <; offset = 80, b, d <;
solns = solveCylinders @dpoints , vec, offset D

We  plot  two  as  below.  They  illustrate  the  two  types  of  cylinder  we  obtain  from  this  configuration.  One  is  the
fourfold set through each triangular face and sloped downward through the square base. The other two are horizon−
tal and go through a pair of opposite triangular faces.

Show@GraphicsArray @Map@cylinderplot @nsols @@ðDD, dpoints , vec, offset , True D &, 83, 5 <DDD;

We form a family of point configurations based on regular tetrahedra glued along a face in the horizontal plane, but
with the upper vertex allowed to move vertically.

dpointslong = 881, 0, 0 <, 8-1�2, Sqrt @3D�2, 0 <, 8-1�2, -Sqrt @3D�2, 0 <, 80, 0, -1<, 80, 0, z <<;
vec = 81, a, c <; offset = 80, b, d <;
perps = Table @perp @dpointslong @@kDD, vec, offset D, 8k, 5 <D;
exprs = Map@Numerator @Together @ð. ð - rsqr DD &, perps D

We get a Gröbner basis over the field of rational functions in the coordinate of that moving vertex.

gb = GroebnerBasis @exprs, 8rsqr, d, b, a, c <, CoefficientDomain ® RationalFunctions D
We reformulate the cylinder problem as follows. We seek direction vectors such that projection onto a plane normal
thereto gives five points on a circle. Such directions will give rise to cylinders containing the five points; from the
direction  vector  one  can  solve  for  the  remaining  cylinder  parameters.  As  our  interest  is  in  counting  solutions,
without loss of generality we can fix one point at the origin, another at one unit along the x axis, and a third lying in
the x y coordinate plane.

Clear @a, b D;
normal = 8a, b, 1 <;
spanners = Orthogonalize @NullSpace @8normal <D, Dot D;
points = 880, 0, 0 <, 81, 0, 0 <, 8x2 , y 2 , 0 <, 8x3 , y 3 , z 3<, 8x4 , y 4 , z 4<<;

projpoint @p_, span_ D : = â
j =1

Length @span D
p.span Pj T span Pj T;

projpoints = Table @Together @projpoint @points Pj T, spanners DD, 8j, Length @points D<D;

circle @8p1_, p2_, p3_ <, normal_ D : = Module @8rsqr, c1, c2, c3, c, cp1, cp2, cp3, gb <,
c = 8c1, c2, c3 <;
cp1 = c - p1; cp2 = c - p2; cp3 = c - p3;
polys = Append@Thread @8cp1.cp1, cp2.cp2, cp3.cp3 < - rsqr D, c.normal D;
gb = GroebnerBasis @polys, 8c1, c2, c3, rsqr <, CoefficientDomain ® RationalFunctions D;
88c1, c2, c3 <, rsqr < �. Solve @gb � 0, 8c1, c2, c3, rsqr <DD

8cen, radsqr < = First @circle @Take@projpoints , 3 D, normal DD;
vec1 = projpoints @@4DD - cen;
vec2 = projpoints @@5DD - cen;
polys = Numerator @Together @8vec1.vec1 - radsqr , vec2.vec2 - radsqr <DD;

The first proof of  theorem 1 computes a Gröbner basis for polys and uses it  to count solutions. The code for this

counting is a few dozen lines and is omitted. Similar code may be found in [29].

In the second proof of theorem 1 we find the resultant of our pair of polynomials generated above, with respect to
one variable. We then look at its degree in the remaining variable as this gives an upper bound on the number of
solutions.
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res = Resultant @polys @@1DD, polys @@2DD, b D;
Exponent @res, a D

In another proof of theorem 1 (presented in [28]) we look at the vanishing set at infinity. To this end we homogenize
our two cubic polynomials, find the highest degree terms, and solve for when they vanish.

hompolys  = Expand[a*polys  /. {a −> a*t,  b −> b*t}]  /. t^(n_.)  :> w^(4 − n)/a;  
initials  = hompolys  /. w −> 0

We solve for the vanishing of the initials.

solns = Solve @initials � 0, 8a, b <D
One can plot the intersections of the vanishing sets for the direction parameter polynomials with real space. Intersec−
tions of these two curves give real cylinders. One way to do such a plot is as below. This is used to illustrate a result
in [28] concerning the case of no real cylinders.

p1 = ContourPlot @polys @@1DD, 8a, -40, 40 <, 8b, -40, 40 <, Contours -> 80<, ContourShading ® False,
PlotPoints ® 200, ContourStyle ® 8Thickness @.0005 D, Dashing @8.03, .01 <D, Hue @.04 D<D;

p2 = ContourPlot @polys @@2DD, 8a, -40, 40 <, 8b, -40, 40 <,
Contours -> 80<, ContourShading ® False, PlotPoints ® 200,
ContourStyle ® 8Thickness @.001 D, Dashing @8.12, .04 <D, Hue @.6 D<, DisplayFunction ® Identity D;

Show@8p1, p2 <, DisplayFunction ® $DisplayFunction D
We define a utility to give a matrix of weights for exponent vectors to effect the degree reverse lexicographic term
order. One can put together blocks of such orders (on subsets of variables) using blockMatrix below. This might
be  useful  in  computing  a  basis  over  cylinder  variables  and  point  coordinate  parameters  e.g.  for  attempting  to
determine cases in which we lose solutions.

drlMatrix @n_D : = Prepend @Table @-KroneckerDelta @j + k - Hn + 1LD, 8j, n - 1<, 8k, n <D, Table @1, 8n<DD
blockMatrix @m1_, m2_D : = Module @8l1 = Length @m1D, l2 = Length @m2D, mat1 <,

mat1 = Transpose @Join @Transpose @m1D, Table @0, 8l2 <, 8l1 <DDD;
mat2 = Transpose @Join @Table @0, 8l1 <, 8l2 <D, Transpose @m2DDD;
Join @mat1, mat2 DD

We  continue  to  work  with  our  set  of  two  polynomials  in  the  axis  direction  variables.  We  extract  the  coordinate
parameters and build a block term order where the direction variables are weighted higher.

vars = 8a, b <;
params = Complement @Variables @polys D, vars D;
avars = Join @vars, params D;
wmat = blockMatrix @drlMatrix @Length @vars DD, drlMatrix @Length @params DDD;

We form this Gröbner basis.

gb = GroebnerBasis @polys, avars, MonomialOrder ® wmatD;

The code below finds leading terms that are pure products in one of the axis direction variables. These have coeffi−
cients that are polynomials in the coordinates. We find each such leading term with its coefficient polynomial and
factor it. 

leads = First @GroebnerBasis‘DistributedTermsList @gb, avars, MonomialOrder ® wmatDD;
leads2 = Map@First , Map @Function @8x<, Split @x, Take @ð1@@1DD, 2 D === Take@ð2@@1DD, 2 D &DD, leads DD;
leads3 = Select @leads2 , ð@@1, 1, 1 DD === 0 ÈÈ ð@@1, 1, 2 DD === 0 &D;

We now find all the square free parts of the coefficient factors. 

pc = Map@ð@@2DD*Apply @Times, avars ^ ð@@1DDD &, leads3 , 82<D;
pc2 = Apply @Plus, pc, 81<D;
fax = Map@FactorList , pc2 D;

leadfax = DeleteCases @Map@First , Flatten @fax, 1 DD, _Integer D �. 8a ¦ Sequence @D, b ¦ Sequence @D<;
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