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Abstract. We will discuss knapsack problems that arise in certain computational number theory 
settings. A common theme is that the search space for the standard real relaxation is large; in a 
sense this translates to a poor choice of variables. Lattice reduction methods have been developed 
in the past few years to improve handling of such problems. We show explicitly how they may be 
applied to computation of Frobenius instances,  Keith numbers (also called "repfigits"), and as a 
first step in computation of Frobenius numbers.
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1. Introduction

Various problems in the realm of computational number theory have as key steps the solving of a linear equa−
tion or system over the integers, subject to some linear inequality constraints. The Frobenius instance problem
(also known as the change−making problem) is a well−known example. The problem of finding what are called
repfigits, to be described below, is another. These may be regarded as a class of knapsack problems wherein one
is  allowed  to  take  only  certain  integer  multiples  of  various  items  in  forming  a  "valid"  combination.  As  such
these fall into the category of integer linear programming (ILP).

Classical  methods  for  solving  such  problems include  branch−and−bound  and  cutting  plane  methods  [8]  [16].
These  approaches  alone  are  often  inadequate  for  certain  classes  of  problems  due  to  a  phenomenon  roughly
described as "unbalanced bases". A method for dealing with this deficiency was developed in [1] [2]. In essence

it involves working with a basis that is reduced (in the sense of [11]) and ordered by size, in conjunction with
standard branch−and−bound.  We will  describe and  illustrate  this  for  the  types  of  problem mentioned  above  .
We remark that the handling of Frobenius instances is by no means new, having been discussed in the aforemen−
tioned references. We also show how the method is applied in a new algorithm for finding Frobenius numbers, a
task that is substantially harder than solving Frobenius instances.

The algorithms described in this paper have been implemented in Mathematica [18]. Selected code is provided
in the appendix.

2. Frobenius Instances

Suppose we have a set of positive integers A= Ha1, ..., anL and a target M, a positive integer. We seek nonnega−

tive integer multipliers X= Hx1, ..., xnL such that X ×A=M.  This is a standard problem in integer linear program−

ming.  A classical  method [16]  for solving this  would be to solve the relaxed problem wherein we enforce all
inequality  constraints  but  all  variables to  be  real  rather than integer  valued.  If  in  the  solution  we encounter  a
variable a with value s that is not an integer then we spawn two subproblems where we enforce respectively that
a£ dst  and  a³ `sp.  We continue this process of  solving relaxed subproblems, splitting when a variable has a
noninteger  value.  It  can  be  shown  that  eventually  either  we  exhaust  all  possibilities  or  we  obtain  an  integer
valued solution [16]; in either case clearly the algorithm terminates.

A drawback to this approach is that the search space for the relaxed subproblems might appear to be "large", in
the sense of having many points with not all coordinates integer valued. In particular it may be the case that a
standard LP solver will  find real valued solutions to the restricted subproblems without making rapid progress
to  an  (entirely)  integer  valued  solution,  because  it  might  be  possible  to  subdivide  the  (real  valued)  solution
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standard LP solver will  find real valued solutions to the restricted subproblems without making rapid progress
to  an  (entirely)  integer  valued  solution,  because  it  might  be  possible  to  subdivide  the  (real  valued)  solution
polytope in such a way that integer points do not readily appear at corners.

The method of  [1],  [2]  was developed as a way to improve on this  situation.  Roughly  it  proceeds as follows.
First we find a description of a solution set to our equations that is a priori integer valued but possibly does not
satisfy the required inequalities. We arrange that this solution set has "good" basis vectors, such that when we
solve  relaxed  problems  with  these  we  more  rapidly  walk  through  our  (real  valued)  solution  polytope.  More
correctly, the polytope is likely to intersect fewer hyperplanes orthogonal to larger direction vectors and spaced
by integral multiples of those vectors.

With respect to the Frobenius instance problem it goes as follows. First we find a solution vector X over Zn and

a basis V for the integer null space (that is, n- 1 independent vectors Vj ÎZ
n with Vj ×A= 0); for this we use a

method based on the Hermite normal form [5]. We use multiples of the basis vectors to find a "small" solution

which we still call X. The tactic utilized to do this is sometimes called the embedding method. It apparently has

been  independently  discovered  several  times;  variants  appear  in  [1],  [12],  [13],  and  [14],  with  short  code

provided in the appendix of this paper. In starting with a solution over Z
n  rather than the nonnegatives Nn  we

are  working  with  what  is  called  an  integer  relaxation  of  the  nonnegativity  constraint.  We  will  later  enforce
nonnegativity via the more common LP relaxations wherein integrality is not enforced.

We  define  variables  t = Ht1,¼, tn-1L  so  that  solution  vectors  are  given  by  X+ t V.  For  purposes  of  finding  a
valid solution to the problem at hand we need to impose two requirements. The first is that all components are
nonnegative and the second is that all are integers. The first can be met by standard linear programming. For the
second,  as in  the classical  approach, we will  use branching on subproblems. Specifically  we find solutions to
relaxed LP  problems wherein  we  now work  over  nonnegative  reals.  We then  branch on  noninteger  values  in
those solutions. For example, if a solution has, say, t j = 5�4, we create two subproblems identical to the one we

just solved, but with the new constraints t j £ d5�4t = 1 and t j ³ `5�4p = 2, respectively (though note that if other

variables also had noninteger solutions then we need not have chosen this particular one). As observed above,
this  branching  process  will  terminate  eventually,  with  either  a  valid  solution  or  the  information  that  no  such
solution exists.

We explain again,  in  slightly  different terms, why it  is  important to work with a small  integer solution to the
integer  relaxation  (that  is,  allowing  negative  values)  and  a  lattice  reduced  basis  for  the  null  vectors.  As  our
methodology  is  to  take  combinations  of  these  null  vectors,  effectively  they  define  directions  in  a  solution
polytope  for  the  transformed  problem.  By  working  with  a  reduced  basis  we  in  effect  change  our  coordinate
system to one where the various search directions are roughly orthogonal. This helps us to avoid the possibility
of  taking  many  steps  in  similar  directions  in  searching  the  polytope  of  nonnegative  solutions  for  one  that  is
integer  valued.  Thus  we explore it  far  more efficiently.  Moreover,  in  starting with  a  small  solution  we begin
closer to the nonnegative orthant. Heuristically this seems to make the sought−for multipliers of the null vectors
relatively  small,  and  this  is  good  for  computational  speed.  This  is  discussed  in  section  2  of  [1],  with  further

explanation and illustrations found in [3].

A further efficiency, from [2],  is to choose carefully the variable on which to branch. We order by increasing
size the reduced lattice of null vectors. Branching will be done on the noninteger multiplier variable correspond−
ing to the largest of these basis vectors. This has the effect of exploring the solution polytope in directions in
which it is relatively thin, thus more quickly finding integer lattice points therein or exhausting the space. This
refinement is important for handling pathological examples of the sort presented in [1] and [2].

As we have a constraint satisfaction problem we are also free to impose any linear integer objective function of
our choosing.  Thus an optimization is to obtain extremal values for linear forms with integer coefficients and
use these results as simple cutting planes [16]. For example we can minimize or maximize the various coordi−
nate  values  t j ,  selecting  one  either  in  some  specific  order  or  at  random  for  each  subproblem.  This  process

amounts  to  finding  the  width  of  the  polytope  along  the  directions  of  our  lattice  basis  vectors,  and  enforcing
integrality of the optimized variable helps to further restrict the search space.

2



As reported in [2] this method is very effective in solving Frobenius instances. We illustrate with an example

from [17]. 

A= H10 000 000 000, 10 451 674 296, 18 543 816 066, 27 129 592 681, 27 275 963 647,
29 754 323 979, 31 437 595 145, 34 219 677 075, 36 727 009 883, 43 226 644 830,
47 122 613 303, 57 481 379 652, 73 514 433 751, 74 355 454 078, 78 522 678 316,
86 905 143 028, 89 114 826 334, 91 314 621 669, 92 498 011 383, 93 095 723 941L

We let the target be 862 323 776. In several seconds the instance solver returns the empty set. This has implica−
tions for bounding the Frobenius number of A; we will discuss that in a later section.

3. Keith Numbers

Keith numbers, also known as repfigits, were introduced in 1987 by Michael Keith [10] as a sort of computa−
tional novelty that relates a Fibonacci−like sequence to a linear equation involving its seed. They are defined as
follows. Suppose we are given a number s of n digits (we work in base 10, but these can be defined with respect
to arbitrary bases). We may form a sequence in Fibonacci style as follows. The first n elements are the digits

themselves.  The  Hn+ 1Lth  element  is  the  sum  of  the  first  n  digits.  Subsequent  elements  are  the  sums  of  the
preceding n elements. Then s is called a Keith number provided it appears in this sequence. As an example, the

sequence for 197 is 81, 9, 7, 17, 33, 57, 107, 197, ...<  and so 197 is a Keith number.  Keith originally referred
to these as repfigits, for "replicating Fibonacci digits".

Keith  numbers  tend  to  be  quite  rare (there  are  only  71 of  them below 1019).  Prior  methods  for  finding  them
involved clever segmentation of an enumeration. While flawless (in the sense that they find all of them), these
are limited in range due to algorithmic complexity and memory requirements. At the time the present work was
begun the state of the art, from [10], was that all such numbers up to 19 digits had been found but no larger ones
were known. We will take this substantially further.

To begin we must find equations to describe these things. If the digits are 8d0, d1, ..., dn-1< then the number in

question is Új=0
n-1dj 10n-1- j . We form the appropriate sequence using a Fibonacci matrix of dimension n. This is

simply  a  matrix  that,  when  operating  on  a  vector,  replaces  each  element  up  to  the  last  by  its  successor,  and

replaces the last by the sum of the elements. For example, for n= 3 it is 
0 1 0
0 0 1
1 1 1

.

If we multiply this matrix by itself k- 1 times then the dot product of the bottom row with the digit sequence

will give the Hn+ kLth term in the sequence. Some simple inequality considerations will give fairly tight bounds
on how many such multiples can possibly work for a given number of digits n. We will use each possibility to
form a homogeneous linear diophantine equation. In the actual code we take advantage of the structure of the
matrix to avoid forming explicit matrix products.

We demonstrate with a short example.  We start  by obtaining the set  of  candidate equation vectors for 5 digit
examples. One of them is H-8207, 1705, 3069, 3395, 3524L. That is, we will seek a solution to the system

-8207 x1 + 1705 x2 + 3069 x3 + 3395 x4 + 3524 x5 = 0

with each xj Î 80, 1,¼9< and x1 r 1.

As in the last section, the first step in the process of [1] and [2] is to find a full set of integer solutions to such a
system.  Since  these  are homogeneous  equations  we require only  the  integer  null  space.  This  can  be  obtained
readily  from the  Hermite  normal  form for  the  matrix  comprised of  the  vector  for  the  homogeneous equation,
augmented by an identity matrix. Again we want to work with vectors that are small and close to orthogonal so
we  apply  lattice  reduction  to  get  a  "good"  set  of  vectors  spanning  the  same  solution  set.  We  obtain
H-3, -1, -3, -3, -1L, H-2, -4, -3, 3,-3L, H1, 6,-5, 6,-2L, and H7, -3, -15, 5, 26L.
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Notice  that  for  any  solution  vector,  its  negative  is  also  a  solution  vector.  Looking  at  the  first  vector  in  our
solution basis we thus see that 31 331 is a Keith number of five digits. That was too easy; there is no guarantee
we will have a solution vector with all components in the desired range. We look at a slightly larger example to
see  this.  For  six  digits  one  candidate  equation−defining  vector  is  H-96 160,-4224, 5752, 7144, 7482, 7616L.
This  time  we  get  the  following  small  null  vectors:  H0, 3,-3, 0, 4, 0L,  H-1, 1,-3, -2, -4, -4L,
H0, -6, -3, 1, 0,-2L, H0, -1, 1, 5, 0,-6L, and H0, 4,-12, 15,-12, 9L. So we have a generating set of small null
vectors none of which have entirely nonnegative or entirely nonpositive values (with the first being nonzero, in
order  that  they  give  a  legitimate  six  digit  number).  We  now  need  a  way  to  recombine  these  so  that  the  first
component is positive and the rest are nonnegative.

Again we have something we can tackle with standard branch−and−bound iterations [8] [16]. Let 8v1,¼, vn< be
our  null  space  basis  (here  n  is  one  less  than  the  number  of  digits).  We  seek  an  integer  vector  of  the  form
a1 v1 +¼+ an vn  such that all  components lie in the range 80, 1,¼, 9<  with the first component strictly posi−
tive.  For  this  we  create  variables  8a1,¼, an<  which  will  ultimately  be  required  to  take  on  integer  values.  In
order to effect this we will solve relaxed linear programming problems with appropriate inequality constraints.
As  noted  earlier,  these  are  simply  constraint  satisfaction  problems,  so  we  can  use  arbitrary  linear  objective
functions as a means of obtaining integer cuts cheaply. When some variables do not take on integer values in
the solution we choose one such on which to branch and spawn a pair of subproblems. Our choice again is from
[2]; we branch on that variable of noninteger solution value whose corresponding basis vector is largest.

To summarize, we first find the appropriate sets of integer equations. For each we find spanning sets of solu−
tions that do not in general satisfy the digit inequality constraints. We lattice reduce these. We use ILP methods
to find all possible solutions subject to the usual inequality constraints on digits.

Code that implements this is found in the appendix. We used this to find all Keith numbers up through 29 digits.
We show all repfigits between 20 and 29 digits below.

81, 2, 7, 6, 3, 3, 1, 4, 4, 7, 9, 4, 6, 1, 3, 8, 4, 2, 7, 9<
82, 7, 8, 4, 7, 6, 5, 2, 5, 7, 7, 9, 0, 5, 7, 9, 3, 4, 1, 3<
84, 5, 4, 1, 9, 2, 6, 6, 4, 1, 4, 4, 9, 5, 6, 0, 1, 9, 0, 3<
88, 5, 5, 1, 9, 1, 3, 2, 4, 3, 3, 0, 8, 0, 2, 3, 9, 7, 9, 8, 9<
87, 6, 5, 7, 2, 3, 0, 8, 8, 2, 2, 5, 9, 5, 4, 8, 7, 2, 3, 5, 9, 3<
82, 6, 8, 4, 2, 9, 9, 4, 4, 2, 2, 6, 3, 7, 1, 1, 2, 5, 2, 3, 3, 3, 7<
83, 6, 8, 9, 9, 2, 7, 7, 5, 9, 3, 8, 5, 2, 6, 0, 9, 9, 9, 7, 4, 0, 3<
86, 1, 3, 3, 3, 8, 5, 3, 6, 0, 2, 1, 2, 9, 8, 1, 9, 1, 8, 9, 6, 6, 8<
82, 2, 9, 1, 4, 6, 4, 1, 3, 1, 3, 6, 5, 8, 5, 5, 5, 8, 4, 6, 1, 2, 2, 7<
89, 8, 3, 8, 6, 7, 8, 6, 8, 7, 9, 1, 5, 1, 9, 8, 5, 9, 9, 2, 0, 0, 6, 0, 4<
81, 8, 3, 5, 4, 9, 7, 2, 5, 8, 5, 2, 2, 5, 3, 5, 8, 0, 6, 7, 7, 1, 8, 2, 6, 6<
81, 9, 8, 7, 6, 2, 3, 4, 9, 2, 6, 4, 5, 7, 2, 8, 8, 5, 1, 1, 9, 4, 7, 9, 4, 5<
89, 8, 9, 3, 8, 1, 9, 1, 2, 1, 4, 2, 2, 0, 7, 1, 8, 0, 5, 0, 3, 0, 1, 3, 1, 2<
81, 5, 3, 6, 6, 9, 3, 5, 4, 4, 5, 5, 4, 8, 2, 5, 6, 0, 9, 8, 7, 1, 7, 8, 3, 4, 2<
81, 5, 4, 6, 7, 7, 8, 8, 1, 4, 0, 1, 0, 0, 7, 7, 9, 9, 9, 7, 4, 5, 6, 4, 3, 3, 6<
81, 3, 3, 1, 1, 8, 4, 1, 1, 1, 7, 4, 0, 5, 9, 6, 8, 8, 3, 9, 1, 0, 4, 5, 9, 5, 5<
81, 5, 4, 1, 4, 0, 2, 7, 5, 4, 2, 8, 3, 3, 9, 9, 4, 9, 8, 9, 9, 9, 2, 2, 6, 5, 0<
82, 9, 5, 7, 6, 8, 2, 3, 7, 3, 6, 1, 2, 9, 1, 7, 0, 8, 6, 4, 5, 2, 2, 7, 4, 7, 4<
89, 5, 6, 6, 3, 3, 7, 2, 0, 4, 6, 4, 1, 1, 4, 5, 1, 5, 8, 9, 0, 3, 1, 8, 4, 1, 0<
89, 8, 8, 2, 4, 2, 3, 1, 0, 3, 9, 3, 8, 6, 0, 3, 9, 0, 0, 6, 6, 9, 1, 1, 4, 1, 4<
89, 4, 9, 3, 9, 7, 6, 8, 4, 0, 3, 9, 0, 2, 6, 5, 8, 6, 8, 5, 2, 2, 0, 6, 7, 2, 0, 0<
84, 1, 7, 9, 6, 2, 0, 5, 7, 6, 5, 1, 4, 7, 4, 2, 6, 9, 7, 4, 7, 0, 4, 7, 9, 1, 5, 2, 8<
87, 0, 2, 6, 7, 3, 7, 5, 5, 1, 0, 2, 0, 7, 8, 8, 5, 2, 4, 2, 2, 1, 8, 8, 3, 7, 4, 0, 4<

We  remark  that  lattice  methods  alone  can  find  sporadic  large  Keith  numbers.  One  approach,  from  [15],
improves the chances of getting a valid result from the lattice reduction step. The idea is to augment each null
vector with a zero, and augment the lattice with a row consisting of some nonzero value (typically one) in the

new  column  of  zeros,  and  9

2
 everywhere  else.  Thus  if  there  is  a  valid  solution  then  this  augmented  lattice

contains  the  vector  consisting  of  that  nonzero  value  (or  its  negative)  and  the  remaining  entries  in  the  range

9- 9

2
,

9

2
=. As this would be a fairly "small" vector, one can hope that it will appear in the reduced basis (this is

essentially  the  idea  used  by  Schnorr  and  Euchner,  in  a  binary  setting,  to  raise  the  density  at  which  one  can
typically solve subset sum problems). In practice we get a few Keith numbers this way as well as several more
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=
essentially  the  idea  used  by  Schnorr  and  Euchner,  in  a  binary  setting,  to  raise  the  density  at  which  one  can
typically solve subset sum problems). In practice we get a few Keith numbers this way as well as several more
near misses.

It  might  be  effective  to  combine  this  different  lattice  formulation  with  the  branch−and−bound  regimen
described above. This is not entirely trivial as that required that the vectors span a solution space for a homoge−
neous equation, whereas the vectors in this modified lattice need not satisfy that equation.

Observe that the Keith numbers beginning at 24 digits but smaller than 29 digits all have leading digit in the set
81, 2, 9<. One might well wonder if there is a deep reason for this, and whether the trend returns after 29 digits.
Also all known Keith numbers from 25 digits onward have a final digit that is either even or 5, and hence they
cannot be prime. Again, one might wonder whether this trend continues, and, if so, whether there is an interest−
ing reason behind it.

We will  say a bit  about the practical complexity of  the method we have described for solving ILPs.  While in
principle branching can have very bad performance, in practice we find that the complexity scales reasonably
well with problem size. Although we cannot claim that the methods described in this paper are polynomial time
even in fixed dimension, in practice they do seem to scale that way. The behavior with respect to dimension is
of  course  not  so  nice.  For  Keith  number  computations  we  find  that,  on  average,  the  time  spent  for  handling
n+ 1 digits is roughly twice the time needed for n digits. Considering that each additional digit  multiplies the

search space by a factor of 10 this is still not so bad. To give an indication of computational speed, the implemen−
tation in the appendix was able to handle 29 digits in around three days on a 3.0 GHz machine. We emphasize
that  this  is  but  a  crude measure both  of  complexity  and actual  performance, as  various sorts of  optimizations
could have a significant impact on each. For example, preliminary experiments with the software in [6] indicate
room for improvement in the handling of the ILP solving after the lattice reduction phase.

4. Frobenius Numbers

We are given a set A= Ha1,¼, anL of positive integers with gcdHAL = 1. For later purposes we assume that the
set is in ascending order. It  can be shown that there are at  most finitely many numbers not representable as a
nonnegative  integer  combination  of  elements  in  A.  The  largest  such  nonrepresentable is  called  the  Frobenius
number of the set. The "Frobenius number problem" is to find it. Generally speaking this tends to be a different
and usually harder problem than the Frobenius instance solving discussed earlier. We will give a much abbrevi−
ated  discussion  here  in  order  to  indicate  how  the  sort  of  knapsack  solving  under  discussion  plays  a  role  in
computation of these numbers. References may be found in [4] and [17].

It turns out that this is trivial for n= 2 (this was shown by Sylvester in the late 1800’s, even before the problem
was popularized by Frobenius early in the twentieth century). Moreover in the 1980’s some very good methods
appeared for the case n= 3. For larger n, if one orders the elements by increasing size and restricts a1 to be less

than around 107 then there are effective algorithms to find the Frobenius number for A. This is roughly indepen−

dent of the size of n;  they can handle n= 100, for example. Our interest is in handling the case where a1,  the

smallest element in A, is large (say, up to 10100). As the problem is known to be intrinsically difficult we cannot

hope to have both a1 and n large. Hence we limit the latter to 10 or so.

In  [17]  one finds a definition of  a "fundamental  domain"  which is  a generalization that  subsumes both lattice

diagrams in earlier literature and a circulant graph description from [4]. Similar ideas, expressed in the terminol−

ogy  of  Minimal  Distance  Diagrams,  appear  in  [9].  The  Frobenius  number  will  be  determined by  the  furthest

corner from the origin, in a suitably weighted l1 norm. As we will see, an important domain feature is what we
term "elbows". We give a quick idea of what is this fundamental domain for our set A= Ha1,¼, anL.

We start with the lattice of integer combinations of 8a2,¼, an< that are zero modulo a1. This is a full dimen−

sional  lattice  in  Zn-1.  The  set  of  residues  of  Zn-1  modulo  this  lattice  gives  rise  to  the  fundamental  domain,
which lives in a space of dimension one less than the size of our set. It is not hard to see that there are a1 distinct

residue classes, so we know the cardinality of this domain. We now define the "weight" of a vector vÎZn-1 as
L.  It  can  be  shown  that  every  residue  class  has  at  least  one  element  with  all  nonnegative  entries.
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residue classes, so we know the cardinality of this domain. We now define the "weight" of a vector vÎZ  as
v.Ha2,¼, anL.  It  can  be  shown  that  every  residue  class  has  at  least  one  element  with  all  nonnegative  entries.
From those we choose one of minimal weight. In case of a tie we choose the one that is lexicographically last.
This uniquely defines the set of residues that we take to comprise the fundamental domain.

This domain has several interesting properties. (1) It is a staircase: if it contains a lattice element then it contains

all nonnegative vectors with any coordinate strictly smaller. (2) It tiles Z
n-1. (3) It is a cyclic group Z �a1Z. (4)

It  can be given a circulant graph structure. It  is  this  structure that  was utilized in  various shortest−path graph
methods. Old and new approaches using such methods are discussed at length in [4]. In contrast, the method put

forth in [17] primarily makes use of the staircase structure.

From the staircase property the fundamental  domain has turning points we refer to as elbows. It  has extremal
points  called  corners.  Specifically,  a  corner is  a  point  c in  the  domain,  such  that  c+ ej  is  not  in  the  domain,

where ej  is the jth coordinate vector. An elbow is a point x that is not in the domain, but is such that, for each j,

either xj = 0 or x- ej  is in the domain. An elbow with all but one coordinate zero is called an "axial" elbow. It

indicates how far one can go along a given axis and still remain inside the domain. There are two other defini−
tions that play a role in the algorithm. We will not descibe them too carefully but, roughly, there are as follows.

(1)  Protoelbows.  These  have  both  positive  and  negative  coordinates  and  correspond  to  certain  "minimal"
equivalences (that is, reducing relations) in the lattice.

(2)  Preelbows.  These  are  the  positive  parts  of  the  protoelbows.  Elbows  are  minimal  elements  in  the  partially
ordered (ascending by inclusion) set of preelbows.

With respect to these domains the Frobenius number corresponds to the farthest corner from the origin where
distance is an l1 metric weighted by element sizes. In brief one sees this as follows. Recall that each element in
the domain corresponds to a residue modulo a1 that satisfies a minimal nonnegativity property. Thus values in
the same residue class but of smaller weight cannot be attained using nonnegative combinations of elements of

A,  whereas  values  of  equal  or  larger  weight  are  attained  as  such  combinations.  We  conclude  that  the  largest

nonattainable value for the residue class of the element X= Hx2,¼xnL is a2 x2 +¼+ an xn - a1. From this and
the staircase property of the fundamental domain it is clear that the largest nonattainable value overall is a1 less
than the largest weight of a corner element.

Below  are  pictures  (provided  courtesy  of  Stan  Wagon)  of  fundamental  domains  corresponding  to  n= 3 and
n= 4 respectively  (recall  that  the  fundamental  domain  lives  in  a  space  of  dimension  one  less  than  n).  In  the
planar diagram the elbows are the lattice points on the axes that bound the diagram, and the lattice point in the
interior  just  outside  the  "ell".  The  corners  are  the  two  extremal  points  reached  by  intersecting  vertical  and
horizontal lines through the elbows. This picture tells the entire story as regards the n= 3 case because it can be
shown that there is at most one interior elbow and two corners, and finding them is easy. The three elbows (two
axial, one internal) are denoted by circles.

In  the  three  dimensional  diagram the  elbows  are  again  the  axial  bounding  lattice  points  as  well  as  bounding
points  where  the  staircase  goes  up  in  the  coordinate  planes  and  in  the  interior.  They  are  demarcated  by
tetrahedra.
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With this brief background we now say a bit about how knapsack solving can play a role in the computation of
Frobenius  numbers.  First,  it  turns  out  that  axial  elbows  are  defined  by  an  integer  programming problem (see

[17])  which,  in  complexity  if  not  details  of  definition,  is  similar to  the Frobenius instance problem. From the
axial elbows we immediately get good lower and upper bounds on the Frobenius number (each elbow less one
is in the domain, and the farthest corner is bounded by the vector with all components given by corresponding
axial elbows less one). More importantly for our purposes is that they give a search space from which to find all
elbows. They are particular integer points in a polyhedron that satisfy certain inequality conditions. Full details,
including  a  method  for  finding  them,  are  provided  in  [17].  From the  elbows  one  can  find  all  corners  and  in
particular the one that gives the Frobenius number of the set.

Another tactic presented in [17] makes direct use of Frobenius instance solving to find axial elbows. One uses a
bisection  approach,  working down from an  a  priori  bound  on  the  axial  elbow values.  The  goal  is  to  find  the
smallest value for which a certain set of Frobenius instances have no solution.

Still  another  point  of  overlap  between  Frobenius  instances  and  numbers  is  the  obvious  fact  that  whenever  a
Frobenius  instance  solver  returns  an  empty  solution  we  automatically  have  a  lower  bound  on  the  Frobenius
number. One can test random values that are, say, an order of magnitude below the heuristic approximation for
the Frobenius number presented in [4].  If  any such test  gives no solution we thereby establish a lower bound
that is often better than a priori bounds to be found in the literature.

There  is  also  a  heuristic  method  in  [17]  for  more  efficiently  "guessing"  the  likely  Frobenius  number  from a
restricted set of  elbows. It  gives an a priori upper bound, and a single Frobenius instance invocation can then
verify whether it is in fact the actual value. In random examples this appears always to be the case.

We sketched above how efficient ILP knapsack solving, of the sort used for Frobenius instances, also may be
applied to the (generally much harder) problem of  finding Frobenius numbers. From the fundamental  domain
pictures one realizes a possible alternative approach. Working an axis at a time, a branch−and−bound strategy
might  be  directly  applied  to  get  to  extremal  vertices  (corners)  in  the  domain.  Thus  we  could  have  a  bilevel
branching algorithm, with the outer level iterating over these extrema, and the inner one using relaxed LPs to
solve the ILPs needed to move to new vertices. This might become an alternative to the algorithm described in
[17].

We remark that there is a connection between another knapsack solving technique and the problem of comput−
ing Frobenius numbers. It is well known that integer programming e.g. for knapsack problems can be done with
toric Gröbner bases [7]. What is not so obvious is that they may also be used to deduce the stairway structure of

the  fundamental  domain.  An algorithm for  this  purpose is  presented in  [17].  The basic  idea is  to  formulate a
term  ordering  so  that  the  staircase  structure  of  the  fundamental  domain  is  captured  by  the  staircase  of  the
Gröbner basis lead monomials. This has the added virtue of finding all elbows at once, so no elaborate method
is  needed  to  search  a  bounding  box  defined  by  axial  elbows.  An  implementation  by  the  author  has  handled
Frobenius number problems involving as many as 7 numbers of 40 digits. While it is not competitive with the
main approach in [17] (which has handled sets of up to 11 numbers), Frobenius number problems of this size
are apparently larger than what can be handled by other methods from the published literature.
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Another  link  between  Frobenius  numbers  and  methods  from ideal  theory  appears  implicitly  in  [9]  as  well  as

other literature concerning what are called "multiple−loop networks". There, as in [4], one works with a circu−
lant directed graph based on residues modulo a positive integer. Now, however, the modulus is the largest rather
than smallest element of the given set. While the authors did not explicitly consider the connection to Frobenius
numbers, some of the ideas are quite similar. In particular the maximum diameter of this graph, which is similar
to  the  Frobenius  number  (though  using  an  unweighted  metric),  plays  an  important  role  in  their  work.  They
discuss  several  aspects  of  the  related  domain  (actually  family  of  domains,  as  they  do  not  impose  uniqueness
conditions)  in  terms  of  monomial  ideals.  They  define  a  generalized  ell  shape  and  prove  their  domains  are
always of such a shape; this corresponds to the uniqueness of the interior elbow as shown in [17]. It would be
interesting  to  understand  better  how  their  ideas,  in  particular  regarding  use  of  monomial  ideals,  relate  to  the
toric ideal construction of the fundamental domain given in [17].

5. Summary

We have investigated several examples of integer linear programs with the common feature that a straightfor−
ward branch−and−bound approach,  working with  real  relaxations,  will  tend to  bog down in  searching a  large
polytope. We utilize a method based on solving of an integer relaxation to the set of  equality constraints. We
reformulate the  problem as  one  of  adding  combinations  of  null  vectors  to  a  specific  solution.  The  vectors  in
question tend to be well suited to the problem at hand because we use lattice reduction to make them close to
orthogonal.  We  then  enforce  inequality  constraints  via  branch−and−bound  on  real  relaxations  of  the  new
problem. We use a branching choice that tends to make the polytope thin in the search direction and thus helps
to exhaust it efficiently.

We reviewed this approach as it was applied to the change−making problem [1] [2]. We then used it to find all
Keith numbers through 29 digits; previous methods had gone only through 19 digits. This brought us to a range
where  we  could  observe  curious  patterns  in  leading  and  trailing  digits,  something  not  present  in  the  smaller
Keith numbers. We also gave a brief idea of how this method is used in a new algorithm to compute Frobenius
numbers.

A further direction would be to incorporate effective cutting planes. The code in the appendix only attempts a
very  naive  sort  of  cut  (by  using  random coordinate  variables  as  objective  function).  Preliminary  experiments
with an external library [6] indicate that more serious cutting plane efforts can give substantial speed improve−
ment; we have seen ILP examples that improve by an order of magnitude. We emphasize that this still requires
preprocessing with lattice reduction in the manner described in this paper.
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6. Appendix: Mathematica Implementation of Selected Algorithms

We solve a system of integer equations over integers and extract a small solution by using combinations of null
vectors to decrease the size of a specific solution. This is used as a first step in solving Frobenius instances, for
example.
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systemSolve@Hmat_L?MatrixQ, Hrhs_L?VectorQD :=
Module@8newmat, modrows, hnf, j= 1, len = Length@matD, zeros, solvec, nullvecs<,

newmat = Prepend@Transpose@matD, rhsD;
newmat = Transpose@Join@Transpose@newmatD, IdentityMatrix@Length@newmatDDDD;
hnf = HermiteDecomposition@newmatD@@2DD;
zeros = Table@0, 8len<D;
While@j £ Length@hnfD && Take@hnf@@jDD, lenD =!= zeros, j++D;
solvec = Drop@hnf@@jDD, len + 1D�H-hnf@@j, len + 1DDL;
nullvecs = HDrop@ð1, len + 1D &L �� Drop@hnf, jD;
8solvec, LatticeReduce@nullvecsD<
D �; Length@rhsD � Length@matD

smallSolution@Hsol_L?VectorQ, Hnulls_L?MatrixQD := Module@
8max, dim = Length@nullsD + 1, weight, auglat, lat, k, soln<, lat = Prepend@nulls, solD;
max = Max@Flatten@Abs@latDDD;
weight = dim*max ^2;
auglat = HPrepend@ð1, 0D &L �� lat;
auglat@@1, 1DD = weight;
lat = LatticeReduce@auglatD;
For@k = 1, lat@@k, 1DD � 0, k++D;
soln = lat@@kDD;
Which@soln@@1DD � weight, Drop@soln, 1D,
soln@@1DD � -weight, -Drop@soln, 1D,
True, solDD

The code below will find the set of Keith number linear equations for a given number of digits. Integer solutions
to  any  of  these  equations,  subject  to  the  constraints  that  the  first  variable  be  positive  and  all  variables  lie
between 0 and 9, will give Keith numbers.

keithEquations@len_Integer �; len > 0D := Module@8matrow, n, list, res, vecs<,
res = list@D;
Do@matrow@jD = Table@KroneckerDelta@k, j + 1D, 8k, len<D, 8j, len - 1<D;
matrow@lenD = Table@1, 8len<D;
n = len;
While@9*Apply@Plus, matrow@nDD < 10^Hlen - 1L, n++;
matrow@nD = Sum@matrow@kD, 8k, n - len, n- 1<D;D;

While@First@matrow@nDD £ 10^Hlen - 1L, res = list@res, matrow@nDD;
n++;
matrow@nD = Sum@matrow@kD, 8k, n - len, n- 1<D;D;

vecs = Apply@List, Flatten@res, Infinity, listDD;
Map@Hð - 10^Range@len - 1, 0, -1DL &, vecsDD

Here we give a fairly straightforward implementation of the Keith number solver. The input is a set of integer
vectors spanning the solution space for a particular Keith  number homogeneous linear equation.  The program
will find all possible combinations that have all components between 0 and 9 and the first one nonzero (so they
correspond to digits with the leading one positive), or else terminate with an empty solution set.
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keithSolutions@onulls_D :=
ModuleB:nulls, vars, x, len= Length@onullsD, vecs, constraints , program,

stack, soln, solns= 8<, badvar, varvals, val, counter= 1, var, extra,

maxs, mins, ctmp= 8<, octmp, bad= False, vnum, vval, eps=
1

105
, rndvar>,

nulls = Reverse@onullsPOrdering@Norm �� N@onullsDDTD; vars = Array@x, lenD;
vecs = vars.nulls; constraints= Join@81 £ First@vecsD £ 9<, H0 £ ð1 £ 9 &L �� Rest@vecsDD;
While@ctmp =!= octmp, mins= Table@

Internal‘DeactivateMessages@val = NMinimize@8varsPjT, Join@constraints , ctmpD<, varsD;
If@Head@valD === NMinimize ÈÈ ! FreeQ@val, IndeterminateD, bad = True; Break@DD;
val = First@valD, NMinimize ::"nsol"D, 8j, len<D; maxs = Table@

Internal‘DeactivateMessages@val = NMaximize@8varsPjT, Join@constraints , ctmpD<, varsD;
If@Head@valD === NMaximize ÈÈ ! FreeQ@val, IndeterminateD, bad = True; Break@DD;
val = First@valD, NMaximize ::"nsol"D, 8j, len<D; octmp = ctmp;

ctmp = Join@Thread@vars £ Floor@maxs + epsDD, Thread@vars ³ Ceiling@mins - epsDDD;D;
If@bad, Return@8counter, 8<<DD; constraints = Join@constraints , ctmpD;
program = constraints ; stack= 8program, 8<<;
While@stack =!= 8<, counter++; program = stackP1T; stack = stackP2T;
rndvar = varsPRandomInteger@81, len<DT; program = 8rndvar, program<;
Internal‘DeactivateMessages@vals = NMinimize@program , varsD, NMinimize ::"nsol"D;
If@Head@valsD � NMinimize , Continue@DD; vval = Ceiling@First@valsD - epsD;
vals = Chop@valsP2TD; soln = Chop@vecs �. valsD;
If@! FreeQ@soln, IndeterminateD, Continue@DD;
constraints = programP2T; varvals = vars �. vals;
badvar = Position@varvals, a_�; Chop@a - Round@aDD =!= 0, 81<, 1, Heads® FalseD;
If@badvar � 8<, soln = Round@solnD; solns = 8soln, solns<;
Do@extra = Table@vecsPkT � solnPkT, 8k, j - 1<D;
stack = 8Join@constraints , Append@extra, vecsPjT £ solnPjT - 1DD, stack<;
stack = 8Join@constraints , Append@extra, vecsPjT ³ solnPjT + 1DD, stack<;,
8j, Length@solnD<D; Continue@DD; badvar = badvarP1, 1T; var = varsPbadvarT;

val = var �. vals; stack= 8Join@constraints ,8rndvar ³ vval, var£ Floor@valD<D, stack<;
stack = 8Join@constraints ,8rndvar ³ vval, var³ Ceiling@valD<D, stack<;D;
8counter, Partition@Flatten@solnsD, Length@First@nullsDDD<F

Not surprisingly there are various ways to improve on this sort of solving once one begins with a good basis set.
Some dedicated ILP solvers seem to do these perhaps an order of magnitude faster.

The next snippets of code will generate all possible Keith number equations for 2 through 29 digits and call the
solver above on each.

integerNullSpace@vec : 8_Integer ..<D := Module@8mat, hnf<,
mat = Transpose@Join@8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Last@Developer‘HermiteNormalForm@matDD;
LatticeReduce@Map@Drop@ð, 1D &, Drop@hnf, 1DDDD

Do@
keqns@jD = keithEquations@jD;
Do@vecs = integerNullSpace@keqns@jD@@kDDD;
nulls@j, kD = Reverse@vecs@@Ordering@Map@Norm, N@vecsDDDDDD, 8k, Length@keqns@jDD<D,
8j, 2, 29<D;

Table@8keithSolutions@nulls@j, kDD<, 8j, 2, 29<, 8k, Length@keqns@jDD<D

We can readily check whether a given sequence represents a Keith number.

KeithQ@n_D := Last@NestWhile@Append@ð, Total@Take@ð, -Length@IntegerDigits@nDDDDD &,
IntegerDigits@nD, Last@ðD < n &DD � n;

The routine below is an adaptation of one in [15] for solving low density binary knapsack problems. We modify
in order to try for solutions with variables taking nonnegative single digit values.
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integerNullSpace2@origvec :8_Integer ..<D :=
Module@8vec, mat, hnf, red, vecs, m<, vec = origvec;
mat = Transpose@Join@8vec<, IdentityMatrix@Length@vecDDDD;
hnf = Drop@Last@Developer‘HermiteNormalForm@matDD, 1D;
vec = Table@-9�2, 8Length@vecD + 1<D;
vec@@1DD = 1;
hnf = LatticeReduce@hnfD;
hnf = Prepend@hnf, vecD;
red = LatticeReduce@hnfD;
vecs = Cases@red, 81 -1, ___<D;
vecs = Map@Rest@ð�Sign@First@ðDDD &, vecsD;
vecs + 9�2D
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