Making Change and Finding Repfigits: Balancing a Knapse

Daniel Lichtblau

100 Trade Center Dr
Champaign IL 61820
USA
danl@wolfram.com

Abstract. We will discuss knapsack problems that arise in certain computational number the
settings. A common theme is that the search space for the standard real relaxation is large
sense this translates to a poor choice of variables. Lattice reduction methods have been de
in the past few years to |m|E_)rove handling of such problems. We show explicitly how they m
applied to computation of Frobenius instances, Keith numbers (also called "repfigits"), and
first step in computation of Frobenius numbers.

Key words. Frobenius instance solving, lattice reduction, integer linear programming, chang
making problem, Frobenius numbers, Keith numbers, repfigits.

A shorter, differently formatted version of this article appearetroceedings of the Second Internatic
Congress on Mathematical Software (ICMS 20@6)Iglesias and N. Takayama, eds. Lecture Notes in (
puter Sciencd151:182-193. Springer—Verlag.2006.

1. Introduction

Various problems in the realm of computational number theory have as key steps the solving of a lint
tion or system over the integers, subject to some linear inequality constraints. The Frobenius instanc
(also known as the change—making problem) is a well-known example. The problem of finding what &
repfigits, to be described below, is another. These may be regarded as a class of knapsack problems\
is allowed to take only certain integer multiples of various items in forming a "valid" combination. A
these fall into the category of integer linear programming (ILP).

Classical methods for solving such problems include branch—-and-bound and cutting plane methods
These approaches alone are often inadequate for certain classes of problems due to a phenomer
described as "unbalanced bases". A method for dealing with this deficiency was developed in [1] [2]. I
it involves working with a basis that is reduced (in the sense of [11]) and ordered by size, in conjunc
standard branch—and-bound. We will describe and illustrate this for the types of problem mentionet
We remark that the handling of Frobenius instances is by no means new, having been discussed in the
tioned references. We also show how the method is applied in a new algorithm for finding Frobenius ni
task that is substantially harder than solving Frobenius instances.

The algorithms described in this paper have been implementddthematica[18]. Selected code is provid
in the appendix.

2. Frobenius I nstances

Suppose we have a set of positive intedets(a;, ..., a,) and a targeM, a positive integer. We seek nonne
tive integer multipliers< = (xq, ..., X5) such thaX- A= M. This is a standard problem in integer linear prog
ming. A classical method [16] for solving this would be to solve the relaxed problem wherein we en
inequality constraints but all variables to be real rather than integer valued. If in the solution we ent
variablea with values that is not an integer then we spawn two subproblems where we enforce respecti
a<|[s] and a=[s]. We continue this process of solving relaxed subproblems, splitting when a variab
noninteger value. It can be shown that eventually either we exhaust all possibilities or we obtain a
valued solution [16]; in either case clearly the algorithm terminates.

A drawback to this approach is that the search space for the relaxed subproblems might appear to be
the sense of having many points with not all coordinates integer valued. In particular it may be the ¢
standard LP solver will find real valued solutions to the restricted subproblems without making rapid

to an (entirely) integer valued solution, because it might be possible to subdivide the (real valued)
polytope in such a way that integer points do not readily appear at corners.

The method of [1], [2] was developed as a way to improve on this situation. Roughly it proceeds as
First we find a description of a solution set to our equations that is a priori integer valued but possibly
satisfy the required inequalities. We arrange that this solution set has "good" basis vectors, such tha
solve relaxed problems with these we more rapidly walk through our (real valued) solution polytop
correctly, the polytope is likely to intersect fewer hyperplanes orthogonal to larger direction vectors an
by integral multiples of those vectors.

With respect to the Frobenius instance problem it goes as follows. First we find a solutiorkveatoZ" anc
a basisv for the integer null space (that is;- 1 independent vectolg; € Z" with V;- A= 0); for this we use
method based on the Hermite normal form [5]. We use multiples of the basis vectors to find a "small"
which we still callX. The tactic utilized to do this is sometimes called the embedding method. It appare
been independently discovered several times; variants appear in [1], [12], [13], and [14], with sh
provided in the appendix of this paper. In starting with a solution ZAlemather than the nonnegativid8 we

are working with what is called an integer relaxation of the nonnegativity constraint. We will later
nonnegativity via the more common LP relaxations wherein integrality is not enforced.

We define variable$= (ty, ..., t,_1) so that solution vectors are given Kyt V. For purposes of finding
valid solution to the problem at hand we need to impose two requirements. The first is that all compc
nonnegative and the second is that all are integers. The first can be met by standard linear programmi
second, as in the classical approach, we will use branching on subproblems. Specifically we find sc
relaxed LP problems wherein we now work over nonnegative reals. We then branch on noninteger
those solutions. For example, if a solution has, gay5/4, we create two subproblems identical to the on

just solved, but with the new constraits |5/4] = 1 andt; = [5/4] = 2, respectively (though note that if ot

variables also had noninteger solutions then we need not have chosen this particular one). As obser
this branching process will terminate eventually, with either a valid solution or the information that |
solution exists.

We explain again, in slightly different terms, why it is important to work with a small integer solution
integer relaxation (that is, allowing negative values) and a lattice reduced basis for the null vector:
methodology is to take combinations of these null vectors, effectively they define directions in a
polytope for the transformed problem. By working with a reduced basis we in effect change our cc
system to one where the various search directions are roughly orthogonal. This helps us to avoid the
of taking many steps in similar directions in searching the polytope of nonnegative solutions for on
integer valued. Thus we explore it far more efficiently. Moreover, in starting with a small solution w
closer to the nonnegative orthant. Heuristically this seems to make the sought—for multipliers of the nu

relatively small, and this is good for computational speed. This is discussed in section 2 of [1], witl
explanation and illustrations found in [3].

A further efficiency, from [2], is to choose carefully the variable on which to branch. We order by inc
size the reduced lattice of null vectors. Branching will be done on the noninteger multiplier variable cori
ing to the largest of these basis vectors. This has the effect of exploring the solution polytope in dire
which it is relatively thin, thus more quickly finding integer lattice points therein or exhausting the spa

refinement is important for handling pathological examples of the sort presented in [1] and [2].

As we have a constraint satisfaction problem we are also free to impose any linear integer objective fi
our choosing. Thus an optimization is to obtain extremal values for linear forms with integer coefficie

use these results as simple cutting planes [16]. For example we can minimize or maximize the variot
nate valued;, selecting one either in some specific order or at random for each subproblem. This

amounts to finding the width of the polytope along the directions of our lattice basis vectors, and ¢
integrality of the optimized variable helps to further restrict the search space.

As reported in [2] this method is very effective in solving Frobenius instances. We illustrate with an
from [17].

A=(10000000000, 10451674296, 18543816 066, 27129592681, 272759
29754323979, 31437595145, 34219677075, 36 727009 883, 43226 64
47122613303, 57481379652, 73514433751, 74355454078, 7852267
86905143028, 89114826334, 91314621669, 92498011 383, 93095 7z

We let the target b862 323 77(In several seconds the instance solver returns the empty set. This has |
tions for bounding the Frobenius number’pfwe will discuss that in a later section.

3. Keith Numbers

Keith numbers, also known as repfigits, were introduced in 1987 by Michael Keith [10] as a sort of ¢
tional novelty that relates a Fibonacci-like sequence to a linear equation involving its seed. They are 1
follows. Suppose we are given a numbef n digits (we work in bas&0, but these can be defined with res;
to arbitrary bases). We may form a sequence in Fibonacci style as follows. Timeeliestents are the dig

themselves. Then+ 1) element is the sum of the firstdigits. Subsequent elements are the sums ¢
precedingn elements. Thenis called a Keith number provided it appears in this sequence. As an exarr

sequence fol97is {1, 9, 7, 17, 33, 57, 107, 197, } and s0l97 is a Keith number. Keith originally referr
to these as repfigits, for "replicating Fibonacci digits".

Keith numbers tend to be quite rare (there are @ilpf them below10'). Prior methods for finding the
involved clever segmentation of an enumeration. While flawless (in the sense that they find all of the
are limited in range due to algorithmic complexity and memory requirements. At the time the present \
begun the state of the art, from [10], was that all such numbersli§xigits had been found but no larger c
were known. We will take this substantially further.

To begin we must find equations to describe these things. If the digitdyadg, ..., d,_1} then the number

guestion iszrj‘;édj 10™1-1. We form the appropriate sequence using a Fibonacci matrix of dimensidis i

simply a matrix that, when operating on a vector, replaces each element up to the last by its succ
010
001
111

replaces the last by the sum of the elements. For examptes-1it is

If we multiply this matrix by itselk — 1 times then the dot product of the bottom row with the digit seqr
will give the (n+ k)" term in the sequence. Some simple inequality considerations will give fairly tight |
on how many such multiples can possibly work for a given number of digitge will use each possibility

form a homogeneous linear diophantine equation. In the actual code we take advantage of the struc
matrix to avoid forming explicit matrix products.

We demonstrate with a short example. We start by obtaining the set of candidate equation vestdigit
examples. One of them (s8207, 1705, 3069, 3395, 35¢ That is, we will seek a solution to the system

-8207 x1 + 1705 x5 + 3069 x3 + 3395 x4 + 3524 x5 = 0
with eachx; € {0, 1,...9} andx; = 1.

As in the last section, the first step in the process of [1] and [2] is to find a full set of integer solutions 1
system. Since these are homogeneous equations we require only the integer null space. This can |
readily from the Hermite normal form for the matrix comprised of the vector for the homogeneous €
augmented by an identity matrix. Again we want to work with vectors that are small and close to orthc
we apply lattice reduction to get a "good" set of vectors spanning the same solution set. W
(-3,-1,-3,-3,-1),(-2,-4,-3, 3,-3), (1, 6,-5, 6,-2), and(7, -3, -15, 5, 26.

Notice that for any solution vector, its negative is also a solution vector. Looking at the first vecto
solution basis we thus see t13t331is a Keith humber of five digits. That was too easy; there is no gua
we will have a solution vector with all components in the desired range. We look at a slightly larger ex
see this. For six digits one candidate equation—defining vectero8160,-4224, 5752, 7144, 7482, 76}.
This time we get the following small null vectors@, 3,-3,0,4,0, (-1,1,-3,-2,-4,-4),
(0,-6,-3,1,0,-2,(0,-1, 1, 5, 0,-6), and(0, 4,-12, 15,-12, 9. So we have a generating set of small
vectors none of which have entirely nonnegative or entirely nonpositive values (with the first being no
order that they give a legitimate six digit number). We now need a way to recombine these so tha
component is positive and the rest are nonnegative.

Again we have something we can tackle with standard branch—-and-bound iterations [8] [1\g]. Letv,} be
our null space basis (here is one less than the number of digits). We seek an integer vector of th
a V1 + ...+ ay vy such that all components lie in the radf@el, ..., 9} with the first component strictly pos
tive. For this we create variablé¢s,, ..., a,} which will ultimately be required to take on integer value:

order to effect this we will solve relaxed linear programming problems with appropriate inequality con
As noted earlier, these are simply constraint satisfaction problems, so we can use arbitrary linear
functions as a means of obtaining integer cuts cheaply. When some variables do not take on intege
the solution we choose one such on which to branch and spawn a pair of subproblems. Our choice ag

[2]; we branch on that variable of noninteger solution value whose corresponding basis vector is larges
To summarize, we first find the appropriate sets of integer equations. For each we find spanning set

tions that do not in general satisfy the digit inequality constraints. We lattice reduce these. We use ILF
to find all possible solutions subject to the usual inequality constraints on digits.

Code that implements this is found in the appendix. We used this to find all Keith numbers up through
We show all repfigits between 20 and 29 digits below.

{1, 2, 7,6, 3, 3,1, 4,4, 7,9, 4,6, 1, 3,8, 4,2, 7, 9}

{2, 7, 8,4, 7,6,5,2,5 7,7,9,0,5,7,9, 3, 4, 1, 3}

{4, 5 4,1, 9, 2,6,6, 4,1, 44,9, 56,0, 1, 9, 0, 3}

{8, 5,5, 1,91, 3, 2, 43,3,038,02, 3,9, 7,9, 8, 9}

{7, 6, 5, 7,2, 3,0 8,8, 2, 2,5 9,5,48,7, 2, 3,5,9, 3}

{2, 6,8,4,2,9, 09,442, 2,6,3,7,1,1, 2,5, 2, 3,3, 3, 7}

{3, 6,8,9,9 2, 7,7,5 9,3,8,5,2,6,0,9 9,9, 7, 4 0, 3}

{6, 1, 3, 3, 3, 8, 5,3,6,0, 2,1, 2, 9,8,1,09, 1, 8,09, 6, 6, 8}

{2, 2,9,1,46, 41, 3,1, 3 6,5,8, 5,5 5,8,46,1, 2, 2 7}

{9, 8, 3,8,6,7 8,6,8, 7 9,1,5,1,9, 85,99, 2,0 0, 6, 0, 4}

{1, 8, 3, 5, 4, 9,7, 2,5 8,5, 2,2 5,3,5,8,0,6,7, 7,1, 8, 2, 6, 6}

{1, 9, 8, 7, 6, 2, 3, 4,9, 2,6, 4,5,7,2,8,8,5 1,19 47,9, 4, 5}
{9,809 3,811,912 1,422 07,1,28,05,0,3,0, 1, 3, 1, 2}

{1, 5, 3, 6, 6, 9, 3, 5,4, 45,5, 48,2, 5,6,0, 09,8, 7, 1,7, 8, 3, 4 2}
{1, 5, 4, 6, 7,7, 8,8,1,40,1,0,0,7,7,9, 9,9,7, 45,6, 4 3, 3, 6}
{1, 3,3, 1, 1,8,4,1,1,1,7, 40,5 9,6,8,8,3,9 10, 45,9, 5, 5}
{1, 5, 4, 1, 4,0, 2, 7,5, 4,2,8,3,3,9,09,409,8,9,09,09, 2, 2,6, 5, 0}
{2, 9,5,7,6,8,2,3,7,3,6,1,2, 9 1,7,0,8,6, 45, 2 2,7,4,17, 4}
{9, 5,6,6,3,3,7,2,0,46,4,1,1,45, 1,5,8, 90 3,1, 8, 4,1, 0}
{9, 8, 8,2, 4,2 3,103,9, 3,86,0,3,9,00,6, 6,9, 1,1, 4,1, 4}
{9, 4,9, 3,9, 7,6,8, 403,902 6,5,8,6,8,5,2,2, 06,7 2,0 0}
{4, 1, 7, 9,6, 2 0,5,7,6,5,1,4,7,42,6,9,7, 47,0, 47,9, 1,5, 2, 8}
{r, 0, 2,6, 7,3, 7,5 5,1,0,2,0,7,8,8,5, 2,42, 2,1, 8,8, 3, 7, 4 0, 4}

We remark that lattice methods alone can find sporadic large Keith numbers. One approach, f
improves the chances of getting a valid result from the lattice reduction step. The idea is to augment
vector with a zero, and augment the lattice with a row consisting of some nonzero value (typically or
new column of zeros, an% everywhere else. Thus if there is a valid solution then this augmented
contains the vector consisting of that nonzero value (or its negative) and the remaining entries in
{—g, g} As this would be a fairly "small" vector, one can hope that it will appear in the reduced basis
essentially the idea used by Schnorr and Euchner, in a binary setting, to raise the density at whic

typically solve subset sum problems). In practice we get a few Keith numbers this way as well as sev
near misses.

It might be effective to combine this different lattice formulation with the branch—and-bound r
described above. This is not entirely trivial as that required that the vectors span a solution space for €
neous equation, whereas the vectors in this modified lattice need not satisfy that equation.

Observe that the Keith numbers beginning at 24 digits but smalleR&hdigits all have leading digit in the !
{1, 2, 9. One might well wonder if there is a deep reason for this, and whether the trend retur?8 difjés.
Also all known Keith numbers from 25 digits onward have a final digit that is either even or 5, and he
cannot be prime. Again, one might wonder whether this trend continues, and, if so, whether there is ar
ing reason behind it.

We will say a bit about the practical complexity of the method we have described for solving ILPs. \
principle branching can have very bad performance, in practice we find that the complexity scales re
well with problem size. Although we cannot claim that the methods described in this paper are polynol
even in fixed dimension, in practice they do seem to scale that way. The behavior with respect to din
of course not so nice. For Keith number computations we find that, on average, the time spent for
n+ 1 digits is roughly twice the time needed fodigits. Considering that each additional digit multiplies
search space by a factoridf this is still not so bad. To give an indication of computational speed, the imj
tation in the appendix was able to han2iedigits in around three days on a 3.0 GHz machine. We emp
that this is but a crude measure both of complexity and actual performance, as various sorts of opt

could have a significant impact on each. For example, preliminary experiments with the software in [6]
room for improvement in the handling of the ILP solving after the lattice reduction phase.

4. Frobenius Numbers

We are given a s = (ay, ..., ay) Of positive integers witlycd A) = 1. For later purposes we assume tha
set is in ascending order. It can be shown that there are at most finitely many numbers not represe
nonnegative integer combination of elementsAinThe largest such nonrepresentable is called the Frol
number of the set. The "Frobenius number problem" is to find it. Generally speaking this tends to be &
and usually harder problem than the Frobenius instance solving discussed earlier. We will give a muct
ated discussion here in order to indicate how the sort of knapsack solving under discussion plays

computation of these numbers. References may be found in [4] and [17].

It turns out that this is trivial fon = 2 (this was shown by Sylvester in the late 1800’s, even before the pi
was popularized by Frobenius early in the twentieth century). Moreover in the 1980’s some very good
appeared for the case= 3. For largem, if one orders the elements by increasing size and resdyittsbe les
than around.0’ then there are effective algorithms to find the Frobenius numbéx. fBinis is roughly indeper
dent of the size ofi; they can handle = 10C, for example. Our interest is in handling the case whgre¢he
smallest element iR, is large (say, up t0'%). As the problem is known to be intrinsically difficult we car
hope to have both, andn large. Hence we limit the latter 1® or so.

In [17] one finds a definition of a "fundamental domain” which is a generalization that subsumes bo
diagrams in earlier literature and a circulant graph description from [4]. Similar ideas, expressed in the
ogy of Minimal Distance Diagrams, appear in [9]. The Frobenius number will be determined by the
corner from the origin, in a suitably weightBdnorm. As we will see, an important domain feature is whz
term "elbows". We give a quick idea of what is this fundamental domain for oAr=sg;, ..., a,).

We start with the lattice of integer combinations{a, ..., a,} that are zero modula;. This is a full dimen

sional lattice inZ"1. The set of residues &"! modulo this lattice gives rise to the fundamental dor
which lives in a space of dimension one less than the size of our set. It is not hard to see thatathdigtian

residue classes, so we know the cardinality of this domain. We now define the "weight" of areeZfor as

v.(ay, ..., &y)- It can be shown that every residue class has at least one element with all nonnegativ

From those we choose one of minimal weight. In case of a tie we choose the one that is lexicograph
This uniquely defines the set of residues that we take to comprise the fundamental domain.

This domain has several interesting properties. (1) It is a staircase: if it contains a lattice element then
all nonnegative vectors with any coordinate strictly smaller. (2) It ZRes. (3) It is a cyclic grouZ/a; Z. (4)
It can be given a circulant graph structure. It is this structure that was utilized in various shortest—pi
methods. Old and new approaches using such methods are discussed at length in [4]. In contrast, the

forth in [17] primarily makes use of the staircase structure.

From the staircase property the fundamental domain has turning points we refer to as elbows. It ha:
points called corners. Specifically, a corner is a point the domain, such that+ e; is not in the domail

whereg; is thej™ coordinate vector. An elbow is a poithat is not in the domain, but is such that, for eja
eitherx; = 0 or x—g; is in the domain. An elbow with all but one coordinate zero is called an "axial" elk

indicates how far one can go along a given axis and still remain inside the domain. There are two oth
tions that play a role in the algorithm. We will not descibe them too carefully but, roughly, there are as f

(1) Protoelbows. These have both positive and negative coordinates and correspond to certain
equivalences (that is, reducing relations) in the lattice.

(2) Preelbows. These are the positive parts of the protoelbows. Elbows are minimal elements in the
ordered (ascending by inclusion) set of preelbows.

With respect to these domains the Frobenius number corresponds to the farthest corner from the or
distance is ay metric weighted by element sizes. In brief one sees this as follows. Recall that each el
the domain corresponds to a residue mod@ulthat satisfies a minimal nonnegativity property. Thus valu
the same residue class but of smaller weight cannot be attained using nonnegative combinations of €
A, whereas values of equal or larger weight are attained as such combinations. We conclude that
nonattainable value for the residue class of the eleiXentx,, ...X,) iSay Xo + ... + a, X, — a;. From this an

the staircase property of the fundamental domain it is clear that the largest nonattainable value ayésat
than the largest weight of a corner element.

Below are pictures (provided courtesy of Stan Wagon) of fundamental domains corresponding tmnc
n =4 respectively (recall that the fundamental domain lives in a space of dimension one lags thahe
planar diagram the elbows are the lattice points on the axes that bound the diagram, and the lattice
interior just outside the "ell'. The corners are the two extremal points reached by intersecting ver
horizontal lines through the elbows. This picture tells the entire story as regards ghease because it can
shown that there is at most one interior elbow and two corners, and finding them is easy. The three el
axial, one internal) are denoted by circles.

EEEEO
EEEE
EEEE

EEEO

EEEEEEEER

EEEEEEEERO
In the three dimensional diagram the elbows are again the axial bounding lattice points as well as
points where the staircase goes up in the coordinate planes and in the interior. They are demz
tetrahedra.

With this brief background we now say a bit about how knapsack solving can play a role in the compt
Frobenius numbers. First, it turns out that axial elbows are defined by an integer programming prot

[17]) which, in complexity if not details of definition, is similar to the Frobenius instance problem. Fr

axial elbows we immediately get good lower and upper bounds on the Frobenius number (each elboy
is in the domain, and the farthest corner is bounded by the vector with all components given by corre
axial elbows less one). More importantly for our purposes is that they give a search space from which
elbows. They are particular integer points in a polyhedron that satisfy certain inequality conditions. Ful

including a method for finding them, are provided in [17]. From the elbows one can find all corner:
particular the one that gives the Frobenius number of the set.

Another tactic presented in [17] makes direct use of Frobenius instance solving to find axial elbows. O

bisection approach, working down from an a priori bound on the axial elbow values. The goal is to
smallest value for which a certain set of Frobenius instances have no solution.

Still another point of overlap between Frobenius instances and numbers is the obvious fact that w
Frobenius instance solver returns an empty solution we automatically have a lower bound on the
number. One can test random values that are, say, an order of magnitude below the heuristic approxi

the Frobenius number presented in [4]. If any such test gives no solution we thereby establish a lov
that is often better than a priori bounds to be found in the literature.

There is also a heuristic method in [17] for more efficiently "guessing" the likely Frobenius number

restricted set of elbows. It gives an a priori upper bound, and a single Frobenius instance invocatior
verify whether it is in fact the actual value. In random examples this appears always to be the case.

We sketched above how efficient ILP knapsack solving, of the sort used for Frobenius instances, als
applied to the (generally much harder) problem of finding Frobenius numbers. From the fundaments
pictures one realizes a possible alternative approach. Working an axis at a time, a branch—-and-boui
might be directly applied to get to extremal vertices (corners) in the domain. Thus we could have
branching algorithm, with the outer level iterating over these extrema, and the inner one using relax:
solve the ILPs needed to move to new vertices. This might become an alternative to the algorithm de

[17].

We remark that there is a connection between another knapsack solving technique and the problem ¢
ing Frobenius numbers. It is well known that integer programming e.g. for knapsack problems can be 1
toric Grébner bases [7]. What is not so obvious is that they may also be used to deduce the stairway ¢
the fundamental domain. An algorithm for this purpose is presented in [17]. The basic idea is to for
term ordering so that the staircase structure of the fundamental domain is captured by the stairci
Grobner basis lead monomials. This has the added virtue of finding all elbows at once, so no elaborg
is needed to search a bounding box defined by axial elbows. An implementation by the author ha
Frobenius number problems involving as many amimbers o#0Q digits. While it is not competitive with tl
main approach in [17] (which has handled sets of upltaumbers), Frobenius number problems of this
are apparently larger than what can be handled by other methods from the published literature.

Another link between Frobenius numbers and methods from ideal theory appears implicitly in [9] as

other literature concerning what are called "multiple—loop networks". There, as in [4], one works with .
lant directed graph based on residues modulo a positive integer. Now, however, the modulus is the lar
than smallest element of the given set. While the authors did not explicitly consider the connection to |
numbers, some of the ideas are quite similar. In particular the maximum diameter of this graph, which
to the Frobenius number (though using an unweighted metric), plays an important role in their wo
discuss several aspects of the related domain (actually family of domains, as they do not impose
conditions) in terms of monomial ideals. They define a generalized ell shape and prove their dor
always of such a shape; this corresponds to the uniqueness of the interior elbow as shown in [17]. It
interesting to understand better how their ideas, in particular regarding use of monomial ideals, rel:
toric ideal construction of the fundamental domain given in [17].

5. Summary

We have investigated several examples of integer linear programs with the common feature that a st
ward branch—-and-bound approach, working with real relaxations, will tend to bog down in searchin(
polytope. We utilize a method based on solving of an integer relaxation to the set of equality constr
reformulate the problem as one of adding combinations of null vectors to a specific solution. The v
guestion tend to be well suited to the problem at hand because we use lattice reduction to make the
orthogonal. We then enforce inequality constraints via branch—and-bound on real relaxations of
problem. We use a branching choice that tends to make the polytope thin in the search direction and
to exhaust it efficiently.

We reviewed this approach as it was applied to the change—making problem [1] [2]. We then used it 1
Keith numbers through 29 digits; previous methods had gone only through 19 digits. This brought us t
where we could observe curious patterns in leading and trailing digits, something not present in th
Keith numbers. We also gave a brief idea of how this method is used in a new algorithm to compute
numbers.

A further direction would be to incorporate effective cutting planes. The code in the appendix only at
very naive sort of cut (by using random coordinate variables as objective function). Preliminary exp
with an external library [6] indicate that more serious cutting plane efforts can give substantial speed i

ment; we have seen ILP examples that improve by an order of magnitude. We emphasize that this st
preprocessing with lattice reduction in the manner described in this paper.

Acknowledgements

| thank Stan Wagon for providing the diagrams of fundamental domains and for his careful reading &
suggestions that improved the exposition. | thank Victor Moll for inviting me to attend the 2005 ¢
Lectures conference at Tulane, where | presented an earlier version of this work. | thank the two ar
referees for their several suggestions which improved readability, and the second referee moreover fc

out the relevance of [9] and related literature on multiple—loop networks.

6. Appendix: Mathematica I mplementation of Selected Algorithms

We solve a system of integer equations over integers and extract a small solution by using combinatic
vectors to decrease the size of a specific solution. This is used as a first step in solving Frobenius ins
example.

systenBol ve[(mat _) ?Matri xQ, (rhs_)?VectorQ] : =
Modul e[{newrat , nodrows, hnf, j=1, len=Length[mat], zeros, solvec, nullvecs},

newrat = Prepend[Transpose[mat], rhs];

newrat = Transpose[Joi n[Transpose [newrat], | dentityMatri x[Length[newmat]1]1]1];
hnf = Her m t eDeconposi ti on[newrat] [[2]];

zeros =Tabl e[0, {len}];

Wil e[j <Length[hnf] & Take[hnf [[j 1], | en] =t=zeros, | ++];

solvec =Dropr[hnf [[j 1], len+ 1]/ (-hnf [[j, len+1]]);

nul l vecs = (Drop[#l, len+1] &) /@Dropl[hnf, jI;

{sol vec, LatticeReduce[nul | vecs]}

1/; Length[rhs] ==Length[mat]

smal | Sol ution[(sol _)?VectorQ, (nulls_)?MatrixQ]:=NMdul el
{max, di m=Length[nulls] +1, weight, auglat, lat, k, soln, lat =Prepend[nulls, sol];
max = Max [Fl atten[Abs[lat]]1;
wei ght =di m«max " 2;
augl at = (Prepend[#l, 0] &) /el at;
augl at [[1, 1]] =wei ght;
| at = Latti ceReduce[augl at];
For [k =1, lat [[k, 111 =0, k++];
soln=1at [[K]];
Which[soln[[1]] == wei ght, Drop[soln, 1],
soln[[1]] == -wei ght , -Drop[sol n, 1],
True, sol]]

The code below will find the set of Keith number linear equations for a given number of digits. Integer ¢
to any of these equations, subject to the constraints that the first variable be positive and all vai

between 0 and 9, will give Keith numbers.

kei t hEquations [l en_I nteger /; len>0]:=Mdule[{matrow, n, list, res, vecs,
res=list[];
Do[matrow[j] = Tabl e[KroneckerDel taf[k, j +11, {k, len}], {j, len-1}];
mat row[l en] = Tabl e[1, {len}];
n=1Ien;
Wil e[9%Appl y[Plus, matrow[n]] <10 (len-1), n++;
mat row[n] = Sum[matrow[k], {k, n-len, n-1}1;1;
Wil e[First [matrow[n]] <10~ (len-1), res=1Iist[res, matrow[n]];
n++,
mat row[n] = Sum[mat row[k], {k, n-len, n-1}1;1;
vecs = Appl y[List, Flatten[res, Infinity, list]];
Map[(# - 10" Range[len -1, 0, -1]) & vecs]]

Here we give a fairly straightforward implementation of the Keith number solver. The input is a set o
vectors spanning the solution space for a particular Keith number homogeneous linear equation. Thi
will find all possible combinations that have all components between 0 and 9 and the first one nonzer:
correspond to digits with the leading one positive), or else terminate with an empty solution set.

kei thSol utions[onulls_]: =
Modul e[{nul I's, vars, x, len=Length[onulls], vecs, constraints, program,

stack, soln, solns={}, badvar, varvals, val, counter=1, var, extra,

1
maxs, mns, ctnp={}, octnp, bad=Fal se, vhum, vval , eps= E rndvar},
nul | s = Reverse[onul | s[Orderi ng[Norm/@N[onul | s]]111; vars =Array[x, |en];
vecs =vars.nulls; constraints=Join[{1<First [vecs] <9}, (0<#l<9¢&) /@Rest [vecs]];
While[ctnp=!=octnp, mns=Table[
I nternal ‘ Deacti vat eMessages[val =NM ni mi ze[{vars[j], Join[constraints, ctnp}, vars];
| f [Head[val] ===NM ni m ze || ! FreeQ[val , | ndetermi nate], bad=True; Break[]];
val =First [val], NMninmize::"nsol "], {j, len}]; maxs = Tabl e[
I nternal ‘ Deacti vat eMessages [val = NVaxi mi ze[{vars[j], Join[constraints, ctnp}, vars];
| f [Head[val] === NMaxi m ze || ! FreeQ[val , | ndetermni nate], bad=True; Break[]];
val =First [val], NMaxim ze::"nsol "], {j, len}]; octnp =ctnp;
ctnp =Join[Thread[vars < Fl oor [maxs +eps]], Thread[vars =Ceiling[m ns -eps]]];];
| f [bad, Return[{counter, {}}1]; constraints =Join[constraints, ctnpl;
program=constraints; stack= {program, {}};
Wi |l e[stack =!= {}, counter ++; program=stack[1]; stack =stack[2];
rndvar =var s[Random nt eger [{1, | en}]]; program= {rndvar, progran};
I nternal ‘ Deacti vat eMessages [val s = NM ni mi ze [program, vars], NM ninm ze::"nsol "J];
| f [Head[val s] == NM ni i ze, Continue[]]; vval =Ceiling[First[vals] -eps];
val s = Chop[val s[2]]; sol n=Chop[vecs /. val s];
If[!FreeQ[soln, Indetermi nate], Continue[]];
constraints =program[2]; varval s =vars /. val s;
badvar = Position[varvals, a_/; Chop[a-Round[a]] =!=0, {1}, 1, Heads - Fal se];
| f [badvar = {}, sol n=Round[sol n]; sol ns = {sol n, sol ns};
Do[extra = Tabl e[vecs [k] == sol n[k], {k, j -1}1;
stack = {Join[constraints, Append[extra, vecs[j] <soln[j]-11], stack};
stack = {Joi n[constraints, Append[extra, vecs[[j] 2soln[j]+1]], stack};,
{j, Length[soln]}]; Continue[]]; badvar =badvar [1, 1]; var =vars[badvarT];
val =var /. val s; stack= {Join[constraints, {rndvar =vval , var <Fl oor [val 1}], stack};
stack = {Joi n[constraints, {rndvar =2vval , var 2Ceiling[val 1}], stack}; 1;

{counter, Partition[Flatten[solns], Length[First [nulls]]]}]

Not surprisingly there are various ways to improve on this sort of solving once one begins with a good
Some dedicated ILP solvers seem to do these perhaps an order of magnitude faster.

The next snippets of code will generate all possible Keith number equations for 2 through 29 digits an
solver above on each.
i ntegerNul | Space[vec: {_Integer ..}]:=Mdul e[{mat, hnf},
mat = Transpose[Join[{vec}, ldentityMatrix[Length[vec]]]];

hnf = Last [Devel oper‘ Hermi t eNor mal For m[mat]7;
LatticeReduce[Map[Drop[#, 1] & Drop[hnf, 11111
Do[
kegns[j] = kei t hEquations|[j];
Do[vecs =i nteger Nul | Space[keqns[j 1[[k]111;
nulls[j, k] =Reverse[vecs[[Ordering[Map[Norm, N[vecs]]1]1]111, {k, Length[kegns[j]]1}1,
.2 295

Tabl e[{keithSol utions[nulls[j, k]1}, {j, 2, 29}, {k, Length[kegns[j]]}]
We can readily check whether a given sequence represents a Keith number.

Kei thQ[n_] : = Last [Nest Whi | e [Append [#, Total [Take[#, -Length[IntegerDigits[n]]]]l] &,
IntegerDigits[n], Last [#] <n&]] =n;

The routine below is an adaptation of one in [15] for solving low density binary knapsack problems. Wt
in order to try for solutions with variables taking nonnegative single digit values.

10

i ntegerNul | Space2[origvec : {_Integer ..}]:=
Modul e[{vec, mat, hnf, red, vecs, m, vec =origvec;

mat = Transpose[Join[{vec}, ldentityMatrix[Length[vec]]]];
hnf = Drop[Last [Devel oper*‘ Her m t eNor mal Form[mat 1], 1];

vec = Tabl e[-9/2, {Length[vec] +1}];

vec[[1]]1=1;

hnf =Latti ceReduce[hnf];

hnf = Prepend[hnf, vec];

red = Latti ceReduce[hnf];

vecs =Cases[red, {1|-1, __ }I;

vecs = Map[Rest [#/Si gn[First [#]]] & vecs];

vecs +9/2]

7. References

(1]
(2]

3]
[4]
3]
(6]
[7]

(8]
9]

(10]

(11]

[12]
(13]
[14]

[15]

[16]

[17]
(18]

K. Aardal, C. A. J. Hurkens, and A. K. Lenstra. Solving a system of linear diophantine equations with lower ¢
bounds on the variableBlathematics of Operations Resea@$h427-442, 2000.

K. Aardal and A. K. Lenstra. Hard equality constrained knapsackardeeedings of the 9th Conference on Int
Programming and Combinatorial OptimizatidfPCO 2002), W. J. Cook and A. S. Schulz, eds. Lecture No
Computer Science 2337, 350-366. Springer—Verlag, 2002.

K. Aardal, R. Weismantel, and L. A. Wolsey. Non-standard approaches to integer progradisingte Applie:
Mathematicsl23:5-74, 2002.

D. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algorithms for Frobenius nuieerd. Combinatoric
12, 2005.

W. A. Blankenship. Algorithm 288: Solution of simultaneous linear diophantine equa@onsnunications of tt
ACM9(7):514, 1966.

COmputational INfrastructure for Operations Research (COIN-OR). Home page URL:
http://www.coin-or.org/documentation.html

P. Conti and C. Traverso. Grobner bases and integer progranPnaugedings of the 9th International Symposiur
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECCH9)-. Mattson, T. Mora, and T.
N. Rao, eds. Lecture Notes in Computer Science 539, 130-139. Springer-Verlag, 1991

G. Dantzig. Linear Programming and ExtensianPrinceton Landmarks in Mathematics and Physics. Prin
University Press, 1963 (Reprinted 1998).

D. Gémez-Perez, J. Gutierrez, and A. Ibeas. Circulant digraphs and monomialRdeegedings of the 8th Intern
tional Workshop on Computer Algebra in Scientific Computing (CASC 200%). Ganzha, E. W. Mayr, and E.
Vorozhtsov, eds. Lecture Notes in Computer Science 3718, 196-205. Springer—Verlag, 2005.

Extended version available electronically at:

http://personales.unican.es/ibeasaj/circula/

M. Keith. Determination of all Keith Numbers up]tOlg. Electronic manuscript, 1998.
Available electronically at:

http://users.aol.com/s6sj7gt/keithnum.htm

See also:

http://users.aol.com/s6sj7gt/mikekeit.htm

A. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficidiathematische Annali
261:515-534, 1982.

D. Lichtblau. Revisiting strong Grobner bases over Euclidean domains. Manuscript, 2003.
K. R. Matthews. Short solutions of A X=B using a LLL-based Hermite normal form algorithm. Manuscript, 2C

P. Nguyen. Cryptanalysis of the Goldreich—-Goldwasser—Halevi cryptosystem from Crypto '97. Advances in
ogy, Proceedings of CRYPTO 19%anta Barbara, CA, 1999. Lecture Notes in Computer Science 1666, 2¢
Springer—Verlag, 1999.

Available electronically at:

http://www.di.ens.fr/~pnguyen/pub.html#Ng99

C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving su
problems. InProceedings of the 8th International Conference on Fundamentals of Computation, TkeSiry L
Budach, ed. Lecture Notes in Computer Science 529, 68-85. Springer—Verlag, 1991.

A. Schrijver. Theory of Linear and Integer Programming/iley-Interscience Series in Discrete Mathematics
Optimization, 1986.

S. Wagon, D. Einstein, D. Lichtblau, and A. Strzebonski. Frobenius numbers by lattice enumeration. Submitt

S. Wolfram.The Mathematica Bod6th edition). Wolfram Media, 2003.

11

