
 Ç Å ¡ 1 of 24

Frobenius Numbers by Toric Gröbner Bases

Daniel Lichtblau
Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL USA, 61820

danl@wolfram.com
ACA 2005, Nara, Japan
August 2005

 Ç Å ¡ 2 of 24

ACA2005_Frobenius.nb 1

Abstract

Given a set A = 8a1, ¼, an< of positive integers with gcd 1, it is not hard to show that all
"sufficiently large" integers can be represented as a nonnegative integer combination of
elements of A. The Frobenius number of the set is defined as the largest integer not so
representable. The Frobenius instance problem (also called the money changing or postage
stamp problem) is to determine, given a positive integer M, a set of nonnegative integers
X = 8x1, ¼, xn< such that X.A = n, or else show no such set exists. We will briefly recall
how this can be addressed via toric Gröbner bases.

It is known that the Frobenius number problem is NP−hard in general. For dimension 2 it
is trivial (Sylvester solved in two decades before Frobenius publicized the problem). In
dimension 3 a very efficient method was found independently by Greenberg and Davison.
For higher dimensions some quite effective methods are known for the case where one
element of A is not too large (say, less than 107).

Recent work has given rise to methods that are effective when the above restrictions do not
hold, although the dimension must be bounded by 10 or so. It turns out that there is a way
to recast this work using toric Gröbner bases, wherein the "fundamental domain" for the
set A is given by the staircase of the basis with respect to a particular ordering. It is
reasonably efficient in dimensions 4 to 7, when the elements in the set are as large as 1040
or so. We will illustrate this.

 Ç Å ¡ 3 of 24

ACA2005_Frobenius.nb 2

Introduction: Background and brief history

We are given a set A = 8a1, ¼, an< of positive integers with gcdHAL = 1. We assume for
later purposes that the set is in ascending order.

Problem 1 (Frobenius instance problem): Given a nonnegative integer M, find a set of
nonnegative integers X = 8x1, ¼, xn< such that X.A = n, or else show no such set exists.

Problem 2 (Frobenius number problem): Find the largest integer not representable as a
nonnegative integer combination of A.

In the 80’s and 90’s Greenberg and Davison independenly found an ultrafast method for
problem 2 when n = 3. Beyond this size no specialized (that is, dimension specific)
methods are known, and we must resort to general tactics.

Reasonably effective methods based mostly on graph theory have appeared also in the past
30 years or so. Some very nice new ones are presented, along with older approaches, in
very recent work by Beihoffer, Hendry, Nijenhuis, and Wagon. It should be noted that the
third author helped originate the graph theory approach. These methods are limited by the
size of a1, but not by n.

 Ç Å ¡ 4 of 24

ACA2005_Frobenius.nb 3

Introduction: Background and brief history

This restriction apparently rankled the fourth author, who continued to pursue the problem
using different tactics. Forthcoming joint work by David Einstein, Adam Strzebonski, Stan
Wagon, and myself will show how one can attack this problem effectively using lattice
methods and integer programming. While we can do away with the size restriction on a0
we do get into some algorithmic complexity due to dimension, and at present cannot get
beyond n = 11 or so. Some of the technology we use is also applicable to problem 1,
where we can manage higher dimension (25 or larger).

It so happens that much of this can be recast in a setting of toric varieties. While problem
1, which boils to integer linear programming, has long been known to be amenable to such
an approach (as per work by Conti and Traverso), this is apparently a new tactic for
finding Frobenius numbers. We can exploit it to handle examples that, to the best of my
knowledge, could not be done by methods known as of a year ago. A nice benefit we will
soon see is that the needed code is quite short (three pages or so).

We will define a "fundamental domain" which is a generalization by Wagon that subsumes
both lattice diagrams in earlier literature and a graph description from Beihoffer et al. The
Frobenius number will be the furthest corner from the origin, in a suitably weighted l1
norm. As we will see, an important domain feature is what we term "elbows". The method
to find those via a Gröbner basis "staircase" constitutes the new material in this talk.

 Ç Å ¡ 5 of 24

ACA2005_Frobenius.nb 4

Solving a Frobenius instance via toric Gröbner bases

Say we are given the set and value

A = 8200, 230, 528, 863, 905, 1355, 1725
b = 7777;

We wish to know whether or how we can write b as a nonnegative combination of
elements of A. We may do this as follows. Create a variable t that will be raised to the
powers in this set. Create a variable for each set element a j and equate it to ta j . We form a
Gröbner basis in these variables, using an order that makes powers of t larger than all
monomials that do not contain it. For this we use a weight matrix. It is structured in such a
way as to be efficient for the task at hand. Basically it is like an elimination ordering on t
with degree−reverse−lexicographic on the remaining variables, except instead of using
(homogenious) total degree we weight by the values in A.

 Ç Å ¡ 6 of 24

ACA2005_Frobenius.nb 5

Solving a Frobenius instance via toric Gröbner bases

len = Length@AD;
vars = Array@x, lenD;
polys = vars - t^A;
wtmat = RotateRight@Reverse@-IdentityMatrix
wtmat@@2DD *= -1;
wtmat@@1DD = Prepend@A, 0D;
wtmat@@81, 2<DD = wtmat@@82, 1<DD;
wtmat881, 0, 0, 0, 0, 0, 0, 0, 0, 0<,80, 200, 230, 528, 863, 905, 1355, 1725 ,80, 0, 0, 0, 0, 0, 0, 0, 0, -1<,80, 0, 0, 0, 0, 0, 0, 0, -1, 0<,80, 0, 0, 0, 0, 0, 0, -1, 0, 0<,80, 0, 0, 0, 0, 0, -1, 0, 0, 0<,80, 0, 0, 0, 0, -1, 0, 0, 0, 0<,80, 0, 0, 0, -1, 0, 0, 0, 0, 0<,80, 0, 0, -1, 0, 0, 0, 0, 0, 0<,80, 0, -1, 0, 0, 0, 0, 0, 0, 0<<

 Ç Å ¡ 7 of 24

ACA2005_Frobenius.nb 6

Solving a Frobenius instance via toric Gröbner bases

Timing@
gb = GroebnerBasis@polys, Prepend@vars ,

MonomialOrder ® wtmatD;D89.8775 Second, Null<
Length@gbD
264

To check whether we can represent b as a nonnegative integer combination of A, we
reduce (using the same term ordering) tb by this Gröbner basis.

red = PolynomialReduce@t^7777, gb, Prepend ,
MonomialOrder ® wtmatD@@2DD

x@2D4 x@3D x@5D x@9D3

 Ç Å ¡ 8 of 24

Solving a Frobenius instance via toric Gröbner bases

Now replace variables by their values and get corresponding exponents as the multipliers.

ACA2005_Frobenius.nb 7

fax = Drop@FactorList@redD, 1D
exponvec = fax �. x@j_D ¦ A@@jDD88x@2D, 4<, 8x@3D, 1<, 8x@5D, 1<, 8x@ <88230, 4<, 8528, 1<, 8905, 1<, 81808, <

We check this. We want to see that 4* 230+ 1* 528+ 1* 905+ 3* 1808= 7777.

Total@Apply@Times, exponvec, 2DD
7777

Remark: The above illustrates more or less the original formulation for handling ILPs via
toric Gröbner bases. Subsequent improvements have appeared and quite likely this can be
done much more efficiently now. This concludes our brief review of how one might solve
a Frobenius instance problem using the method of Conti and Traverso. We return to the
main task at hand, which is computation of Frobenius numbers.

 Ç Å ¡ 9 of 24

ACA2005_Frobenius.nb 8

The Fundamental Domain

We define a lattice by the set of integer combinations of 8a2, ¼, an< that are zero modulo
a1. This is a full dimensional lattice in Zn-1. The set of residues of Zn-1 modulo this
lattice gives rise to what we call the fundamental domain, which, as we see, lives in a
space of dimension one less than the size of our set. It is not hard to see that there are a1
distinct residue classes, so we know the cardinality of this domain. We now define the
"weight" of a vector v Î Zn-1 as v.8a2, ¼, an<. It can be shown that every residue class has
at least one element with all nonnegative entries. Among those, we choose one of minimal
weight. In case of tie, choose the one that is lexicographically last. This uniquely defines
the set of residues that we take to comprise the fundamental domain.

 Ç Å ¡ 10 of 24

The Fundamental Domain

This domain can be shown to have several interesting properties.

· It is a staircase. If it contains a lattice element then it contains all nonnegative vectors
with any coordinate strictly smaller.
· It tiles Zn-1.
· It is a cyclic group Z � a1 Z.
· It can be given a circulant graph structure. It is this structure that was utilized in various
shortest−path graph methods. Old and new methods for this are discussed at length in the
recent work by Beihoffer et al.

ACA2005_Frobenius.nb 9

For our purposes the property of most interest is the first one. We can recover this staircase
by computing a toric Gröbner basis.

 Ç Å ¡ 11 of 24

Definitions related to the Fundamental Domain

From the staircase property the fundamental domain has turning points we refer to as
elbows. It has extremal points called corners. Specifically, a corner is a point c in the
domain, such that c + e j is not in the domain, where e j is the jth coordinate vector. An
elbow is a point x that is not in the domain, but is such that, for each j, either x j = 0 or
x - e j is in the domain.

There are two other definitions that play a role in the algorithm. We will not descibe them
too carefully but, roughly, there are as follows.
(i) Protoelbows. These have both positive and negative coordinates and correspond to
certain "minimal" equivalences (that is, reducing relations) in the lattice. In Gröbner basis
terms, these are given as exponent vectors of binomial pairs in the basis.
(ii) Preelbows. These are the "positive parts" of the protoelbows. Elbows are minimal
elements in the partially ordered (ascending by inclusion) set of preelbows.

 Ç Å ¡ 12 of 24

ACA2005_Frobenius.nb 10

Fundamental Domain, illustrated

Since this region is one dimension smaller than the input set (as verything is done modulo
a1), it can be illustrated for the cases n = 3 and n = 4. The illustrations are due to Stan
Wagon.

With respect to these domains, the Frobenius number corresponds to the farthest corner
from the origin, with distance an l1 metric weighted by element sizes. In the planar
diagram the "elbows" are the lattice points on the axes that bound the diagram, and the
lattice point in the interior just outside the "ell". The corners are the two extremal points
reached by intersecting vertical and horizontal lines through the elbows. This picture tells
the entire story as regards the n = 3 case, because it can be shown that there is at most one
interior elbow and two such corners, and finding them is easy.

 Ç Å ¡ 13 of 24

ACA2005_Frobenius.nb 11

Fundamental Domain, illustrated

In the three dimensional diagram the elbows are again the axial "bounding lattice points"
as well as bounding points where the staircase goes up in the coordinate planes and in the
interior. They are demarcated by yellow tetrahedra. The green boxes are corners and the
blue box is the maximal corner.

 Ç Å ¡ 14 of 24

ACA2005_Frobenius.nb 12

The Algorithm, in brief

The gist of our efficient algorithm is to use integer linear programming to find certain sets
containing elbows, then use a method David and Stan devised to go from elbows to
corners. We finish when we have the furthest corner. While pathological cases (too many
elbows) arise even at n = 4, the average case performance (e.g. random examples) is quite
nice. Some of the ILP ideas appear in work by Aardal, Hurkins and Lenstra with
subsequent refinement by Aardal and Lenstra. I also had techniques similar to those in
AHL which I used to find large examples of what are known Keith numbers.

Getting back to Frobenius numbers, it turns out that one can use toric Gröbner bases to
find what are called "protoelbows". These are lattice points where positive combinations of
one subset equal positive combinations of another. From these we get a superset of the
elbows, and we use a domination algorithm of Bentley, Clarkson, and Levine to get the
"kernel" set which comprise the actual elbows. The hardest step, algorithmically, is in
coming up with the protoelbows. This can be done with a toric Gröbner basis.

As with instance solving, the idea is again to set up relations (that is, generating
polynomials for a toric ideal) of the form x j - ta j , and eliminate t. Except we do not do this
at all...

 Ç Å ¡ 15 of 24

ACA2005_Frobenius.nb 13

Finding "elbow" relations

...For better efficiency we now use an improvement, due to Pottier, in the Gröbner basis
computation of the elimination ideal. Instead of x j - ta j we work with polynomials
x j

e j
+

- x j
e j

-
 where e j

+ and e j
- are the positive and negative parts respectively of the jth

generator for the null space of A. We can use any basis for this purpose, so we chose one
that is lattice reduced so as to keep down the exponent sizes. We augment by a polynomial
u - Û x j that in effect allows us to invert negative exponents, and use a monomial ordering
that eliminates the new variable u.

From this basis we next want to find a new one that will enforce the "lexically last"
provision of the definition. As our lattice is now represented by exponent vectors in a toric
ideal, this amounts to an inverse lexicographical term ordering. But this is not a
well−founded ordering for monomials because it has constants larger than any power
products (it is an ordering appropriate for a local ring). For this we use a standard tactic of
homogenizing, making the homogenizer variable largest, and working with a degree based
term order. As we want an inverse lexicographic order we use the customary graded
reverse−lexicographic. So we now compute a new Gröbner basis with respect to this order
and then dehomogenize. Note that this second basis computation is quite fast compared to
the first, hence not problematic in regard to efficiency.

 Ç Å ¡ 16 of 24

ACA2005_Frobenius.nb 14

Finding "elbow" relations

Since it is the exponent vectors we are after, we extract them from the basis. We convert to
lattice elements by subtracting second term powers from first (this may sound complicated
but it is just the usual translation from toric ideal to lattice terminology). Recalling that we
are only interested in equalities modulo a1, we strip off the first terms of the lattice vectors.
To satisfy a technical consideration for protoelbows (see our full paper) we may need to
negate the lattice vector. Taking positive parts of the resulting lattice vectors gives us our
preelbows.

It is important to note that we are using the Gröbner basis for its staircase structure. Unlike
the instance solving usage, we do not work geometrically with a polyhedron.

 Ç Å ¡ 17 of 24

Code to find elbows

preElbows@vals_D :=
Module@8n = Length@valsD, vars, x, t, nspace, pos, neg, polys
nspace = integerNullSpace@valsD;
vars = Array@x, nD;
pos = Hnspace + Abs@nspaceDL �2;
neg = -nspace + pos;
polys = Map@Inner@Power, vars, #, TimesD &, posD - Map@Inner
polys = Join@polys, 8Apply@Times, varsD *y< - 1D;
polys = GroebnerBasis‘ToricGroebnerBasis@polys, vars,
polys = homogenize@polys, vars, hD;
polys = GroebnerBasis@polys, Reverse@Append@vars, hDD,

MonomialOrder ® DegreeReverseLexicographicD �. h ® 1
exponvecs = First@GroebnerBasis‘DistributedTermsList@
exponvecs = Map@First@-#@@1DD + #@@2DDD &, exponvecsD;
exponvecs = Map@orient@#, valsD &, exponvecsD;
exponvecs = Map@Rest, exponvecsD; H*protoelbows*LUnion D

ACA2005_Frobenius.nb 15

elbows@vals_D := Sort@dominationKernel@preElbows@valsDDD
 Ç Å ¡ 18 of 24

More code: utility functions

integerNullSpace@vec : 8_Integer ..<D := Module@8mat, hnf<, mat = Transpose@Join@8vec<, IdentityMatrix
hnf = Last@Developer‘HermiteNormalForm@matDD;
LatticeReduce@Map@Drop@#, 1D &, Drop@hnf, 1DDDD

homogenize@poly_, vars_, new_D �; HHead@polyD =!= Plus && Head@polyD =!= ListL := poly
homogenize@polys_List, vars_, v_D := Map@homogenize@#, vars, vD &, polysD
homogenize@poly_, vars_, new_D := Module@8degfunc, totdeg, j<, degfunc = Apply@Plus, Map@
degfunc = Distribute@degfunc, Function, PlusD;
totdeg = Max@Map@degfunc, Apply@List, polyDDD;
Apply@Plus, Table@poly@@jDD *new^Htotdeg - degfunc@poly@@jDDDL, 8j, Length@polyD<DDD

orient@vec_, basevec_D := Module@8val = Rest@vecD.Rest@basevecD, j = 1<,
Which@val > 0, vec, val < 0, -vec, True, While@vec@@jDD === 0, j++D; -Sign@vec@@jDDD *vec D

dominationKernel@X_D :=
Module@8Y = X@@Ordering@Map@Tr, XDDDD, Z, i = 2, len = 1, k<, Z = Table@8<, 8Length@YD<D;
Z@@1DD = Y@@1DD;
While@i £ Length@YD && Tr@Y@@iDDD � Tr@Y@@1DDD, len++;
Z@@lenDD = Y@@iDD; i++D;
Do@k = 1;
While@k £ len,
If@And �� Thread@Z@@kDD £ Y@@jDDD, k = len + 2; Break@D, k++DD;
If@k � len + 1, len++; Z@@lenDD = Y@@jDDD, 8j, len + 1, Length@YD<D;
Sort@Take@Z, lenDDD
ClearNegsAndDeleteZeroVector@vecs_D := If@vecs � 8<, 8<, Union@DeleteCases@vecs �. _?Negative ;

 Ç Å ¡ 19 of 24

Rest of code: corners

The method below for using elbows to find the "Frobenius corner" is largely due to David
Einstein, with refinements and code provided by Stan Wagon.

ACA2005_Frobenius.nb 16

farthest@corns_, A_D := Fold@If@#2.Rest@AD > #1@@2DD, 8#2, #2.Rest@AD<, #1D &, 8Table@0,
Options@FarthestCornerD = 8TopLevelTraceQ ® False, TraceStep ® 1<;
FarthestCorner@A_, elbows_?MatrixQ, opts___RuleD := Module@8pts, p1, p2, B, cc, trQ, farvertex8tlQ, ts< = 8TopLevelTraceQ, TraceStep< �. 8opts< �. Options@FarthestCornerD;

skipct = counter = 0;
currfar = farthest@elbows, AD.Rest@AD;
pts = Select@elbows, #@@1DD > 0 &D;
Scan@Hcounter++;8p1, p2< = 8First@#D, Rest@#D<;

B = Rest �� Select@elbows, #@@1DD < p1 &D;
B = dominationKernel@ClearNegsAndDeleteZeroVector@# - p2 & �� BDD;
maxes = Prepend@Max �� Transpose@BD, 0D;
If@tlQ && Mod@counter, tsD � 0, Print@8counter, Length@ptsD, "Length of sent set
If@Hmaxes + #L.A1 > currfar, cc = FarthestCornerSub@A, B, currfar, #, optsD;
farvertex = farthest@Prepend@# + p2, p1D & �� cc, AD;
currfar = Max@currfar, farvertex.A1D, skipct++;
If@tlQ && Mod@counter, tsD � 0, Print@8counter, Length@ptsD, "got a cutoff, total

currfar - Total@ADD �; Length@elbows@@1DDD > 2;

FarthestCorner@A_, elbows_?MatrixQ, opts___RuleD := farthest@FarthestCornerSub@A, elbows

FarthestCornerSub@A_, elbows_, currfar_, backdata_, opts___D :=
Module@8p1, p2, B, maxes<,
Flatten@
Map@H8p1, p2< = 8#@@1DD, Rest@#D<;

B = Rest �� Select@elbows, First@#D < p1 &D;
B = dominationKernel@ClearNegsAndDeleteZeroVector@# - p2 & �� BDD;
If@B � 8<, 8<, maxes = Prepend@Max �� Transpose@BD, 0D;
If@HPadLeft@maxes + #, Length@AD - 1D + backdataL.Rest@AD > currfar,HPrepend@# + p2, p1D & �� FarthestCornerSub@A, B, currfar, PadLeft@#, Length@AD ,

Select@elbows, First@#D > 0 &DD, 1DD �; Length@elbows@@1DDD > 2;

FarthestCornerSub@_, elbows_, ___D := HPartition@Take@Flatten@Reverse �� Reverse@elbowsD ;

 Ç Å ¡ 20 of 24

Examples

We show several examples to get some idea of time needed for these computations.

ACA2005_Frobenius.nb 17

vals1 = 8200, 230, 528, 863, 905, 1355
vals2 = 813557, 20002, 52831, 86312,
vals3 = 818543816, 27129592, 43226644
vals4 = 811615, 27638, 32124, 48384,
vals5 = 810^10, 18543816066, 27129592681 ,

78522678316<;
vals6 = 810000000000, 35550333799, 42807347468,

67932625953, 75136205898, 79022523654
vals7 = 810000000000, 35550333799, 42807347468,

67932625953, 75136205898, 79022523654 ;

 Ç Å ¡ 21 of 24

Examples, continued

Timing@elbows1 = elbows@vals1DD
Timing@f1 = FarthestCorner@vals1, elbows1 D84.89226 Second, 880, 0, 0, 0, 0, 2<, 80, 0, 0, 0, 2, 1<, 80 ,80, 0, 0, 1, 1, 0<, 80, 0, 0, 2, 0, 0<, 80, 0, 1, 0, 0, 1<, ,80, 0, 5, 0, 0, 0<, 80, 1, 0, 0, 1, 1<, 80, 1, 4, 0, 0, 0<, ,80, 3, 2, 0, 0, 0<, 80, 4, 1, 0, 0, 0<, 80, 5, 0, 0, 0, 0<, ,82, 0, 4, 0, 0, 0<, 83, 0, 0, 0, 2, 0<, 83, 0, 3, 1, 0, 0<, ,85, 0, 0, 0, 1, 0<, 85, 0, 2, 1, 0, 0<, 88, 1, 0, 0, 0, 0<, ,811, 0, 2, 0, 0, 0<, 813, 0, 1, 0, 0, 0<, 814, 0, 0, 1, 0, <80.053992 Second, 4192<
Timing@elbows2 = elbows@vals2D;
f2 = FarthestCorner@vals2, elbows2DD80.314952 Second, 2185053<

ACA2005_Frobenius.nb 18

Timing@elbows3 = elbows@vals3D;
f3 = FarthestCorner@vals3, elbows3DD80.030995 Second, 33335274131<
Timing@elbows4 = elbows@vals4D;
f4 = FarthestCorner@vals4, elbows4DD82.50562 Second, 861905<

 Ç Å ¡ 22 of 24

Examples, continued

Timing@elbows5 = elbows@vals5DD
Timing@f5 = FarthestCorner@vals5, elbows5 D80.100984 Second,880, 0, 0, 210<, 80, 0, 162, 153<, 80 ,80, 234, 111, 89<, 80, 244, 307, 0<, ,80, 518, 0, 0<, 8165, 174, 80, 26<, ,8264, 448, 0, 83<, 8358, 0, 0, 147<, ,8454, 0, 327, 0<, 8459, 458, 0, 0<, <80.022997 Second, 38563214973583<
Timing@elbows6 = elbows@vals6D;D
Timing@f6 = FarthestCorner@vals6, elbows6 D826.7119 Second, Null<80.619906 Second, 22024636179389<

ACA2005_Frobenius.nb 19

Timing@elbows7 = elbows@vals7D;D
Timing@f7 = FarthestCorner@vals7, elbows7 D8801.31 Second, Null<810.59 Second, 10155222194133<

To the best of my knowledge, the Frobenius numbers in examples 5 through 7 could not be
done with methods available as of one year ago.

 Ç Å ¡ 23 of 24

Summary

We have seen how toric Gröbner bases can be used to find the elbows of the Fundamental
Domain for the Frobenius number problem. Unlike most applications of Gröbner bases
involving finite varieties, toric and otherwise, what is paramount in this case is the actual
staircase for the "normal set" with respect to a certain monomial order. The fact that
Gröbner bases can be used at all to find Frobenius numbers, and the fact that we use them
to gain staircase information, both seem to be of interest.

It is also of interest that this approach can handle Frobenius number problems that were
not amenable to ANY method know as recently as a year or two ago.

The more efficient methods in our work in preparation heavily involve integer linear
programming. Much of this has been incorporated into the Mathematica kernel, in the
functions Reduce, FindInstance, and Minimize/Maximize.

Open questions:
(1) Would dedicated toric basis code do better? Probably so. How much better?
(2) Are there better ways to do the term ordering so that we can still get adequate
information about the fundamental domain, but faster?

ACA2005_Frobenius.nb 20

Open questions:
(1) Would dedicated toric basis code do better? Probably so. How much better?
(2) Are there better ways to do the term ordering so that we can still get adequate
information about the fundamental domain, but faster?

 Ç Å ¡ 24 of 24

References

K. Aardal, C. A. J. Hurkens, and A. K. Lenstra. Solving a system of linear diophantine equations with lower
and upper bounds on the variables. Mathematics of Operations Research 25:427−442, 2000.

K. Aardal and A. K. Lenstra. Hard equality constrained knapsacks. Proceedings of the 9th Conference on
Integer Programming and Combinatorial Optimization (IPCO 2002), W. J. Cook and A. S. Schulz, eds.
Lecture Notes in Computer Science 233, 350−366. Springer−Verlag, 2002.

D. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algorithms for Frobenius numbers. The
Electronic Journal of Combinatorics 12. 2005.

J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear .expected−time algorithms for computing maxima
and convex hulls. Algorithmica 9(2): 168−183. 1993.

P. Conti and C. Traverso. Gröbner bases and integer programming. Proceedings of AAECC−9.
Springer−Verlag LNCS 539 130−139. 1991.

J. L. Davison. On the linear Diophantine problem of Frobenius. J. Number Theory 48 353−363. 1994.

D. Einstein, D. Lichtblau, A. Strzebonski, and S. Wagon. Frobenius numbers by lattice enumeration. In
preparation. 2005.

H. Greenberg. Solution to a linear Diophantine equation for nonnegative integers. J. Algorithms 9 353−363.
1988.

ACA2005_Frobenius.nb 21

M. Keith. (Web page discussing Keith numbers)
http://users.aol.com/s6sj7gt/mikekeit.htm

D. Lichtblau. Solving knapsack and related problems. Manuscript.

L. Pottier. Gröbner bases of toric ideals. INRIA Rapport de recherche 2224. 1994.

ACA2005_Frobenius.nb 22

