

The Development of a Quality Control and Analysis Application for the ThermoFluor[®] High Throughput Screening Assay

Robert B. Nachbar¹ Delphine Collin² Jonathan Robinson¹ Thomas J. Mildorf³ Eugen Buehler¹

¹Applied Computer Science and Mathematics ²Automated Biotechnology ³Massachusets Institute of Technology

Introduction

- Goal: Facilitate and log the work flow for a user analyzing the results from one high throughput screening (HTS) plate that employs the ThermoFluor[®] assay technology
- Problem: Analysis using vendor supplied software was time consuming and had low quality control due to reliance on user to grade the response of each well
- Solution: Create computerized tool to facilitate the analysis

Background

ThermoFluor®

- Detection of unfolding of cytosolic proteins
- Characterization of specific binders
- Ranking as function of binding strength
- Throughput: 384 well plate, up to 7000 thermograms/24hrs
- High protein consumption: 1mg ~ 1500 samples

ThermoFluor®:

Fluorescent Detection of Protein Unfolding

Developing the Requirements

Goals

Quality Control

- Obvious problems
 - spikes
 - high fluoresence
 - no obvious transition
- Distorted transition
- Large $|\Delta T_m|$
- Multiple transitions
- Check whole plate for unusual patterns
- User is final authority

Analysis

- Smooth thermogram
- Calculate gradient, curvature, and critical points
- Calculate T_m for each well
- Calculate mean T_m for control wells
- Calculate ΔT_m for sample wells
- Export results to Excel file for data repository
- Audit trail notebook

Developing the Tools

Smooth Data, Calculate Critical Points and Transitions

```
In[2]:= TFD = FindCriticalPoints[TFD, Smoothing → {"SavitzkyGolay[3]", 5},
TemperatureRange -> {25, 75}]
```

Out[2]= -ThermoFluorData[<16, 24>, ControlWells \rightarrow <32>

, SampleWells \rightarrow <352>, EmptyWells \rightarrow {},

 $\texttt{TemperatureRange} \rightarrow \{\texttt{25, 75}\}, \texttt{Smoothing} \rightarrow \{\texttt{SavitzkyGolay[3], 5}\}$

, SmoothData \rightarrow {<51>, <384, 51>, <384, 51>},

CriticalPoints $\rightarrow \langle 384 \rangle$, validWells $\rightarrow \{\}$, InvalidWells $\rightarrow \{\}$] -

User's options and new results are appended

Running list of valid & invalid wells

maintained In[3]= TFD = FindTransitions[TFD, PseudoMaxMinRelativeGradient → 0.5, TmMinimumRelativeIntensity → 0.05, TmMinimumRelativeGradient → 0.25]

Out[3]= -ThermoFluorData[<15, 24>, ControlWells \rightarrow <32>

- , SampleWells \rightarrow <352 \rightarrow , EmptyWells \rightarrow {}, TemperatureRange \rightarrow {25, 75}, Smoothing \rightarrow {SavitzkyGolay[3], 5}, SmoothData \rightarrow {<51>, <384, 51>, <384, 51>}, CriticalPoints \rightarrow <384>
- , Transitions $\rightarrow \langle 384 \rangle$, PseudoMaxMinRelativeGradient $\rightarrow 0.5$,
- TmMinimumRelativeIntensity $\rightarrow 0.05$, TmMinimumRelativeIntensity $\rightarrow 0.25$
- , NoTmFailed \rightarrow <11>, ValidWells \rightarrow <373>, InvalidWells \rightarrow <11>]-

Spike Filter → Glitch Filter

In[8]:= FilterSpikes[TFD, Thresholds → Automatic]

Thermogram display developed for the user

User Can Override Automated QC

User Can Choose Among T_m

WOLFRAM TECHNOLOGY CONFERENCE 2007

Lessons

- Statistics could not be used to set thresholds—the errors are not normally distributed.
- Principal components and clustering could not be used to find outliers—too many false positives and false negatives.
- Machine learning classifiers were not successful.
- Heuristics and interactive user input worked.
 - The challenge was to make it efficient!
- Frequent dialog with the users identified simple improvements that made big differences.
- Experimental background of developer facilitated communication with users.

Developing the Application

Original Version of ThermoFluor Analysis in *Mathematica* Notebook

- First version created in Mathematica allowed for quantitative analysis of ThermoFluor plates
- Users needed to know Mathematica syntax and enter specific commands manually

```
SetOptions[FindTransitions, TmRelativeIntensity \rightarrow 0.05]
```

```
\{\texttt{Smoothing} \rightarrow \texttt{3, Window} \rightarrow \texttt{2}\}
```

```
\{\text{TmRelativeIntensity} \rightarrow 0.05\}
```

• A GUI to guide the user is much easier to use

Outsourcing

TECHNO

- Decision to outsource interface development allowed for internal focus on development and refinement of algorithms for ThermoFluor HTS plate analysis.
- Wolfram's Accredited *Mathematica* Consultants and Consulting Companies helped find a qualified consultant.
- Formal requirements document allowed consultant to easily scope the work and estimate cost.
- Punch list after delivery and user testing helped resolve all the issues.
- Outsourcing user documentation is not easy.

New Version

Graphical interface was outsourced

WOLFRAM

CE 2007

TECHNOLOG

- Included development of menu to guide users through workflow and some additional windows
- Graphical interface would allow for much quicker adoption of tool by making it user friendly and reducing training time
- Menu guides users through workflow

Live Demonstration

<u>continue</u>

🏙 test_data2007-01-042007-4-13.nb *		🌞 ThermoFluor An 🗖 🗖 🗙	
Input ♥ ■ ∰ 1 = = = = + + + + + + + + + + + + + + +	<u> 9</u>	Start Analysis	
		Calculate Tm	Buttons for
ThermoFluor Data Analysis	7	Filter Glitches	valid next
	_	Filter Spikes	actions are
Needs["HTS`ThermoFluor`"] n[4]:= ThermoFluorPackageVersion[]		Filter Initial Intensity	active
Out[4]= 2.4		Filter Tm Slope	
13 April 2007 15:04:29 GMT-4.		Filter Tm Intensity	
Notebook saved to: C:\ACSM\HTStests\testsfordocs\test_data2007-01-042007-4-13.nb]	Filter Tm Outliers	
■ Start Analysis	ןנ	Inspect Controls	
n[6]:= Unprotect[logbook]; logbook=EvaluationNotebook[]; Protect[logbook]:		Inspect Invalid Wells	Button for
The file to be analyzed is: C:\ACSM\HTStests\test_data2007-01-04.txt]	Inspect Valid Wells	
<pre>hn[8]:= TFD=Import["C:\\ACSM\\HTStests\\test_data2007-01-04.txt", "ThermoFluor"]</pre>	וןנ	Choose Tm	
Our®]= -ThermoFluorData[<16, 24>, ControlWells→ <64>, SampleWells→ <129> , EmptyWells→ <191>, ValidWells→ {}, InvalidWells→ {}]-		Analyze Controls	action is
<pre>hn(0):= If[!ThermoFluorDataQ[TFD],Message[ThermoFluorGUI::error, "Input file does not have "ThermoFluor"</pre>		Analyze Samples	Selected
format."];CloseGUIObject[HTS`ThermoFluor`GUI`Private`gg\$907];Quit[]]		Plot Plate View	
ln[10]:= ControlWells/.TFD]]]]		
Out[10]= {A1, A2, A23, A24, B1, B2, B23, B24, C1, C2, C23, C24, D1, D2, D23, D24,	2	Export to Excel	
E1, E2, E23, E24, F1, F2, F23, F24, G1, G2, G23, G24, H1, H2, H23, H24,			
I1, I2, I23, I24, J1, J2, J23, J24, K1, K2, K23, K24, L1, L2, L23, L24,		Reject Plate	
M1, M2, M23, M24, N1, N2, N23, N24, 01, 02, 023, 024, P1, P2, P23, P24}		First line Australia	
In[1]:= EmptyWells/.TFD 100% ▲ ⊀	ערן ווי אוויי	Finalize Analysis	

Audit trail notebook

Palette to guide user

Lessons

- Reuse of high-level graphics functions in GUI components speeds development.
- Notebook programming for the audit trail is not difficult.

TECHNOL

- Some tinkering is needed to get GUI components to appear on user's display in useful locations.
- GUIKit had all the components needed, except one—a customized file name and file type dialog was written in Java.
- Evaluations in *GUIKit* palette and audit trail notebook are asynchronous, which permits the user to get ahead of her/himself.
- Logic for workflow control with GUIKit is missing some critical pieces.

Conclusions

Benefits to the User

- Time Reduction for Analysis
 - Previous analysis by hand for one 384 well HTS plate took 2 days
 - Using the new software, analysis of a plate can be completed in 30 minutes or less
 - On a 30 plate assay, the estimated time savings is 12 person weeks
- More Consistent Analysis
 - Use of software produces more consistent analysis across all the plates

Acknowledgements

ScienceOps