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Abstract

The computation of  definite integrals presents one with  a variety of  choices. There are
various methods such as Newton−Leibniz or Slater’s convolution method. There are issues
such as whether to split or merge sums, how to search for  singularities on the path of
integration, when to issue conditional results, how to assess (possibly conditional) conver−
gence, and more. These various considerations moreover interact with  one another in  a
multitude of ways. Herein we discuss these various issues and illustrate with examples.

Introduction
In principle, algorithmic integration is fairly well understood. There are algorithms to handle various sorts
of integrands and integration bounds. But, in the words of librettist Ira Gershwin, "It  ain’t necessarily so"
[6],  and actual practice is an altogether different situation. Troublesome areas include:

è Determining (possibly conditional) convergence.

è Recognizing and handling cancellation of additive singularities.

è Intricacies of the algorithmic implementation, e.g. need for recursion or reliance on powerful transforma−
tions.

è Handling of parameters.

è Working with legacy code.

In this report I will  describe and illustrate many of the issues I have encountered in the process of work−
ing on the Mathematica [12]  I nt egr at e  code base. As best I  can tell, they also apply in part to other
existing programs (though approaches to handling said issues may vary).

This report discusses the situation primarily as it evolved through Mathematica versions 5 and 6 develop−
ment. I  wish to thank Oleg Marichev (in honor of  whose 60th  birthday I  spoke on this topic) [10]  for
many discussions where he patiently tried to walk me through issues involved in convolution of MeijerG
functions. I  also thank Bhuvanesh Bhatt, a senior Software Quality Assurance engineer at Wolfram
Research, for keeping me apprised of the situation regarding integration bugs in Mathematica, and for the
countless hours he spent tracking and diagnosing them, and making test cases.

While we focus on particulars of Mathematica handling, I  would be remiss in not pointing out that there
is other work on this topic, some of which takes very different approaches to similar issues. In particular,
see Davenport’s synopsis of this same topic [4], and various articles authored or coauthored by Jeffrey on

removal of path singularities [7, 8, 9].



Basic Structure of I nt egr at e Code in Mathematica
Indefinite Integration

The indefinite integration code consists primarily of a partial implementation of the Risch algorithm [2,

5], in addition to extensive table lookup methods. These latter attempt to handle integrands with exponen−
tials, trigs (and/or hyperbolics), elliptic integrals, and integrands involving special functions, particularly
after the Risch methods have given up. The actual situation is slightly more complicated in that Risch
code may handle part of an integrand, sending the rest to table lookup code. That in turn may do transfor−
mations and call the integration process recursively.

In  addition to what is stated above, some integrand transformations are attempted prior to all else. The
idea here is to recognize cases where one integrand may be converted to something that is easier to work
with, but equivalent modulo a differential constant.

Also  useful are mathematically equivalent transformations such as factorization and partial fractions
decomposition. An  added wrinkle is that such transformations can invert one another, and it  is often
difficult  to recognize which one will  be beneficial to a given integrand. Thus one must take care to avoid
attempting them blindly, and, in so doing, incurring the wrath of the gods of infinite recursion.

Definite Integration
Definite integration is done via a number of methods as indicated below.

è Special case contour integration.

è Newton−Leibniz code specialized for integrands of the form  rational ´ trig or rational ´ exponential.

è Newton−Leibniz code specialized for integrands containing logs or polylogs.

è A general case implementation of Newton−Leibniz integration.

è An implementation of definite integration by convolution of MeijerG  functions [1].  This requires that

we integrate from 0 to infinity. It also requires that the integrand be represented as a power of the integra−

tion variable times one or two Mei j er G functions. Since a UnitStep  function may be represented as a

MeijerG ,  we  may  lift  the  infinite  range requirement whenever the  integrand requires only  one

MeijerG . This method in particular uses several transformation tactics to handle algebraics, trigs, logs,
exponentials, and so forth.

The overall implementation is best described as a polyalgorithm that calls on any or all of the above in
various ways, depending on heuristics (or perhaps the mood of the little man inside the code).

Brief Descriptions and Examples of the Two Primary Methods of Definite 
Integration

Newton−Leibniz

First we find an antiderivative to the integrand. We then look at the integration path, finding candidate
singular points. We will  treat these in one of two ways (based on crude heuristics): either issue a proviso
on parameters that guarantee the point is not a "bad" point, or else split the integration path at that point
and use limits as we approach from either side. Once the integration path is split into suitable segments
we take appropriate limits of the antiderivative as we approach the segment endpoints from appropriate
directions, then sum these signed values to get the resulting definite integral.

Here is a classical example that incorrectly gave zero in a prior version of Mathematica.  Note that one
path, from -1 + ä to -1 - ä, must be split where it crosses the (negative) real axis.

Integrate[1/z,  {z,  1  +  I,  −1  +  I,  −1  −  I,  1  −  I,  1  +  I}]

2 ä Π

Slater Convolution via MeijerG Products

2



Slater Convolution via MeijerG Products

The idea in this case is to make suitable transformations so that we have an integrand in, say, the variable

z,  as a product zk  MeijerG @expression1D MeijerG @expression2D  where we integrate from 0 to infinity.

While this path may seem rather specialized, bear in mind that we can do translations and rotations to
move a path to the real axis, and we can represent UnitStep  as a MeijerG  function. This means we

can treat a finite interval on the positive axis as though it  was semi−infinite, at the cost of a MeijerG

factor. The basic convolution theorem is discussed in [1].

Several common functions such as trigs, various exponentials, Bessel functions, and certain common

algebraics e.g. Ha + b xnLm  may be represented as MeijerG  functions, while others may be brought to

MeijerG  form after some suitable transformation of variables. Hence we look for viable transformations
and then do a table driven conversion in an effort to obtain the desired form.

Once in the factored form above (or perhaps a simpler form wherein any factor or factors are not present)
we go into convolution code, at the heart of which lies a function that formulates the integrated result as a
new MeijerG expression via the Slater theorem. It then performs some manipulations in an effort to recast
in terms of better known functions.

Here is a simple example.

val = Integrate ABesselJ @2, xD x2 ã-x+2 ,8x, 0, ¥<, GenerateConditions ® False E
nval = NIntegrate ABesselJ @2, xD x2 ã-x+2 , 8x, 0, ¥<E
ChopBval - nval , ���������

1

108
F

��������������
3 ã2

4
�!!!!!

2

3.91864

0

This operated by first converting the integrand to an "inert" form representing the integrand product as

 x2 MeijerG @88<, 8<<, 880<, 8<<, xD MeijerG B88<, 8<<, 881<, 8-1<<, ����x2

4
F

Software Engineering Problems Associated with this Body of Code
Below is a list of some of the issues that any powerful symbolic integration implementation will  face.

è Different modules, written by different people, were often not on the best of  speaking terms. Hence
various pieces of functionality of potentially general use might require reinventing, in some cases with
bad consequences.

è Much is legacy code. It  was written over a period of about 15 years, by several different people. It  is
spread over some several dozen source code files. No one person understands all of it, and some parts are
no doubt not understood by anyone (this is one of the pitfalls of legacy code). I find it unlikely that in an
area of this scope any powerful body of code will  be entirely understood by the team that develops it.

è Some of the steps used are quite fragile. Specifically they may be sensitive to small changes in seemingly
unrelated functions such as Together  (providing a "canonical" form to rational functions), Apar t  (a
partial fractions decomposition, which is in fact stitched at the hip to Integrate ), Factor , Solve ,

Si mpl i f y , and others. After encountering this problem in many forms I  have come to conclude that it
really is endemic to symbolic integration and not simply an artifact of implementation details. The entire
idea of  working with  transformations of  integrands, coupled with  the mathematical impossibility of
creating canonical forms for all possible expressions, and the difficulty  of forcing transformations to be
improvements for  a given purpose, make this a thorny issue. Indeed, certain types of  standard tactics
such as integration by parts or use of l’Hospital’s rule for limit  extraction can actually lead to infinite
recursion if not done with considerable caution.
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è

Some of the steps used are quite fragile. Specifically they may be sensitive to small changes in seemingly
unrelated functions such as Together  (providing a "canonical" form to rational functions), Apar t  (a
partial fractions decomposition, which is in fact stitched at the hip to Integrate ), Factor , Solve ,

Si mpl i f y , and others. After encountering this problem in many forms I  have come to conclude that it
really is endemic to symbolic integration and not simply an artifact of implementation details. The entire
idea of  working with  transformations of  integrands, coupled with  the mathematical impossibility of
creating canonical forms for all possible expressions, and the difficulty  of forcing transformations to be
improvements for  a given purpose, make this a thorny issue. Indeed, certain types of  standard tactics
such as integration by parts or use of l’Hospital’s rule for limit  extraction can actually lead to infinite
recursion if not done with considerable caution.

è There are tradeoffs to be made between speed and power. One wants to try certain transformations, for
example, in  order to  handle certain classes of  problem. But  there is  no plausible way in  general to
perfectly delimit cases that may hang in the transformation process. Hence some form of delimiting is
required e.g. by time or operation count.

è Many classes of integration problem can make use of assumptions regarding, say, behavior of integrand
at infinity.  This creates a potential for  bugs when the code is not sufficiently careful to delimit what
inputs enter handlers that may utilize such assumptions. Moreover even where a handler explicitly tries
to determine such behavior there is the issue alluded to above, where, say, limit  extraction may hang if
not suitably constrained. But when constraints (on time, memory, or some measure of operation count)
are used, how is one to handle an aborted intermediate result? With a warning message? By giving up?
By continuing as though it had been a "good" case e.g. of convergence at infinity?

è Symbolic integration is one of  the most complicated pieces of  machinery to be found in  algorithmic
mathematics. The reliance on other functions as well as intricacies of integrand transformation attempts
certainly implies that it  will  have a nontrivial implementation. Hence it  is vital that the pieces be ade−
quately documented. This is a rule throughout the field  of  software development, but the importance
cannot be overstated in the context of integration.

è When I began work on this body of code, more than one out of every four open bugs in the Mathematica
kernel (with around 2000 functions) was in the category of definite integration (a part of one function,
I nt egr at e).  This mass posed several problems in  and of  itself. First, the function clearly receives
widespread usage, and hence it is difficult  to start from scratch. Second, the scope made it a bit difficult
to perform adequate triage (that is to say, it  is hard to see the forest for the trees). Third, the massive
overhaul needed strongly implied that there would be considerable breakage, at least in the short term.
Fourth is the likelihood that the scope of  trouble exceeds the capabilities of  any one developer (I  can
attest that it certainly exceeds the capabilities of this particular developer).

Issues in the Implementation of Indefinite Integration
We will  discuss in  brief some issues that tend to be specific to indefinite integration. As our primary
focus is on definite integration we defer to the next section those that are common to both.

The Curse of Recursing
Often an integral may be broken into two parts. The technical term for the first part is "done" while that
for  the second is "not done". The second term might be further rewritten in ways that return one to the
original problem or a variant thereof, thus leading to recursive splitting. As an example of an integrand
that might elicit such behavior, try I nt egr at e[ Si n[ x] / ( Sqr t [ a−x] * ( 1+x) ) , x]  in version 4 of
Mathematica.  One approach to  fixing  this involves use of  hashing to  recognize integrands that have
previously come our way.

Another common cause of descent into the infinite is the utilization of pairs of inverse transformations.
We might, for example, convert a trig to exponentials in one handler, and convert back to trigs in another,
applied later. We try to avoid this pitfall by using Block  to (what else?) block the dual handler when we
do one such transformation.

There is a bright side. We now tend to handle more problems than in the past. Here is an example that we
now handle due to more active use of transformations of the integrand. It comes from an integration test
suite in [3].
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á ������������������������������������������������������������������������
Tan@xD2

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%J1 - ���������������Sin @xD2

2
N J1 - ������������������2 Sin @xD2

5
N  âx

-
ikjjjjjjj4 ä $%%%%%%%���

5

3
Cos@xD2

ikjjjjjjjEllipticE Bä ArcSinh B$%%%%%%%���
3

5
Tan@xDF, ���

5

6
F -

EllipticF Bä ArcSinh B$%%%%%%%���
3

5
Tan@xDF, ���

5

6
Fy{zzzzzzz"############################################################H4 + Cos@2 xDL Sec@xD2 "###############################2 + Tan@xD2

y{zzzzzzz � K"######################################################################25 + 14 Cos@2 xD + Cos@4 xD O
Out on a Limb with a Cut Branch

Frequently we require transformations that bring into play multivalued functions. The consequence is that
we may arrive at an antiderivative that is only correct up to a piecewise multiplicative constant. Hence we
now attempt to restore the proper factor. This is not always trivial  and often leads to a significantly
enlarged form of result. Moreover it is not trivial to recognize in all cases how to correctly reverse effects
of such transformations.

Transformations
In  many cases it  is  well  understood how one might obtain an antiderivative for  a particular class of
integrand e.g. rational functions of  trigs. But the needed transformations must be applied carefully in
order to avoid potential explosion in intermediate complexity or that of the final result.

To Expand or Not Expand, Indefinitely
This is a (very important) special case of a transformation. As the issues are a subset of those that arise in
the context of definite integration we cover it there instead.

Issues in the Implementation of Definite Integration
In this section we arrive at the main focus of this report. Within symbolic definite integration one encoun−
ters a wide array of issues. In the subsections below I will  endeavor to present and illustrate many of them.

To Expand or Not Expand, Definitely
When one has certain types of input it  makes sense to expand over summands and integrate term−by−
term. In other cases this can be a very bad thing to do. So the question is when should one expand the
input and loop over summands. We will  illustrate the issue with a few examples.

First, a "simple" integrand involving a rational function.

p = 7 x13 + 10 x8 + 4 x7 - 7 x6 - 4 x3 - 4 x2 + 3 x + 3;

q = x14 - 2 x8 - 2 x7 - 2 x4 - 4 x3 - x2 + 2 x + 1;

result = à
2

5

���
p

q
 âx

(1/2)*(Log[6102576361/15553]  +  
   Sqrt[2]*Log[1/(1/2  −  (232482*Sqrt[2])/9764515)  −  1])

We do a numeric check that this is correct.
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N@result D - NIntegrate @p � q, 8x, 2, 5<D
-2.59224 ´ 10-11

Now we expand and integrate over each term, then try to simplify the result. It is a mess.

result2 = Simplify BMapBIntegrate @ð, 8x, 2, 5<D &, Expand B ���
p

q
FFF

����
1

2

ikjjjjjj-3 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

3 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

3 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð1

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

3 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð1

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð12

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð12

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð13

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð13

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

7 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð16

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

7 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð16

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð17

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

4 RootSumB ,

F -
6



4 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð17

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

10 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð18

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

10 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð18

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F -

7 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@2 - ð1D ð113

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&F +

7 RootSumB1 + 2 ð1 - ð12 - 4 ð13 - 2 ð14 - 2 ð17 - 2 ð18 + ð114 &,

�������������������������������������������������������������������������������������������������������������
Log@5 - ð1D ð113

1 - ð1 - 6 ð12 - 4 ð13 - 7 ð16 - 8 ð17 + 7 ð113
&Fy{zzzzzz

N@result2 - result D
-3.55271 ´ 10-15 + 0. ä

We see that the mess at least is correct. But it  is obvious that we are better served by avoiding such
expansion in this example.

Here is  an example where one must not expand. The reason is  that the summands have cancelling
singularities.

ii = à
0

¥Jã ���
ä

x - 1N Sin @xD âx

-1 + BesselK @1, 2D + ���
1

2
ä Π HBesselJ @1, 2D + ä BesselY @1, 2DL

ii = à
0

¥Jã ���
ä

x - 1N Sin @xD âx

-1 + BesselK @1, 2D + ���
1

2
ä Π HBesselJ @1, 2D + ä BesselY @1, 2DL

Again we validate this with a numeric check.
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N@ii D - NIntegrate BJã ���
ä

x - 1N Sin @xD,8x, .001 , 1000 <, WorkingPrecision ® 25F
-7.40734 ´ 10-6 + 0.000520847 ä

Clearly we cannot expand and handle summands separately.

MapBIntegrate @ð, 8x, 0, Infinity <D &, Expand BJã ���
ä

x - 1N Sin @xDFF
~ Integrate::idiv :

Integral of Sin@xD does not converge on 80, ¥<. More¼

~ Integrate::idiv :

Integral of ã ��
ä

x Sin@xD does not converge on 80, ¥<. More¼

à
0

¥

-Sin @xD âx + à
0

¥

ã ���
ä

x Sin @xD âx

By contrast, here is a case where preexpansion helps considerably.

integrand =

��������������������������
a c Cos@t D

g s
+ ������������������������������

b q Cos@2 t D
c f

+ ��������������������������
c Cos@3 t D

a d
+ ������������������������������

d f Cos@4 t D
a h n

+ ������������������������������
e q Cos@5 t D

a g
+

������������������������������
f l Cos@6 t D

mr w
+ ������������������������������

b g Cos@7 t D
n o x

+ ����������������������
h Sin @t D

b c
+ ��������������������������

i Sin @2 t D
e h r

+ ������������������������������
j y Sin @3 t D

l p
+

������������������������������
d k Sin @4 t D

c j
+ �����������������������������������

a l mSin @5 t D
b f h s

+ �������������������������������
mp Sin @6 t D

j k
+ ������������������������������

n q Sin @7 t D
c x

;

Timing Bà
0

2 Π

integrand  â t F
81. Second , 0<

Versions of Mathematica  that did not expand but instead tried to work with the entire integrand at one
time took about a minute to handle the same integration. The reason is that transformations involving
several trigonometric summands can be costly both in time and memory.

Yet  another drawback to expansion is that the individual pieces might have different ideas regarding
provisos for parameters, in particular if  they go through different routes in the code. If  conflicting provi−
sos emerge we might either get a useless result (if  we fail to recognize that the conditions cannot all hold)
or else be forced to redo the integral, thus having wasted time processing summands individually.

Heuristics Involving Method Choices and Transformations of Integrand 
Quite often one encounters an integrand that might be handled in different ways. As the result can vary
considerably in terms of speed and/or complexity it is a (wide) open problem to optimally dispatch based
on structure of the integrand. There is one nice feature to the decision process of whether or not to try an
approach based on evaluating an antiderivative at endpoints: we must first find that antiderivative. If  we
fail at that stage, we certainly know it is not a viable approach!

Here is an example where use of convolution approach gives a result faster.
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Timing Bà
0

¥

������
1

x8
 Sin @xD Sin B ���

x

3
F Sin B ���

x

5
F

Sin B ���
x

7
F Sin B ���

x

9
F Sin B ������

x

11
F Sin B ������

x

13
F Sin B ������

x

15
F âxF

:18.12 Second , �������������������������������������������������������������������������������������������������������������������������
467 807 924 713 440 738 696 537 864 469 Π

1 896 516 717 212 415 135 141 110 350 293 750 000
>

Here is an example where evaluation of an antiderivative gives a preferred form of result.

Integrate @Sin @x - yD, 8y, x, Pi <,
Assumptions ® 80 < x < Pi <, GenerateConditions ® False D

-1 - Cos@xD
While the nondefault option value may make it look pathological, it is spawned from the example below
which does not use any nondefault option settings.

Integrate @Abs@Sin @x - yDD, 8x, 0, Pi <, 8y, 0, Pi <D
2 Π

One would certainly prefer that either method give the "nice" form of result shown above. It is an unfortu−
nate fact that this state of affairs is quite difficult  to achieve. Thus one must use heuristics to distinguish
cases that might receive more favorable treatment for one or the other method. Noting that the integrands
in  these examples are both primarily  trigonometric functions of  linear functions of  the variable, it
becomes clear that formulation of good heuristics is by no means trivial.

A  related issue of  heuristics is  that frequently an integrand may appear amenable to  any of  several
different transformations. For example, for  a quadratic radical function of  the integration variable we
might want to transform to a Mei j er G function, or do  a linear change of coordinates in an effort to
simplify or remove the radical.

Another related issue is that some transformations may not be valid for all possible values of a parameter.

For example, one might wish to write Ia + b xdMn
 as an J1 + �������b xd

a
Nn

 (for  integration variable x)  in

order to convert to a Mei j er G form. This transformation is of  course not valid for  all  values of  the
parameter a.  We then must choose between issuing a conditional answer, or abandoning this approach

and trying another that might give an unconditional result.

Still another related issue is in how to transform products into Mei j er G functions. There may be several
possibilities, with the quality of outcome dependent on the choices made.

Generations of Generation of Provisos (Results That Depend on Conditions)
Below I indicate ways in which generation of conditions can be problematic. Several are illustrated with
older versions of  Mathematica  because we have made improvements that render the specific example
obsolete. But the ideas behind them are general and no doubt related problems still  lurk in the current
implementation.

9



Propagation of Conditions for Multiple Integrals

For multiple integration one may want to propagate conditions from inner to outer integrations. This is
problematic if  the conditions generated cannot adequately be simplified. On the other hand if  we fail  to
generate and propagate them we run a greater risk of obtaining a bad result.

Here is  an example where in  version 5.0 we  required conditions in  order to  propagate singularity
information.

result = Integrate AAbs@x - yDn ,8x, 0, 1<, 8y, 0, 1<, GenerateConditions ® True E
If BRe@nD > -1, ���������������������������

2

2 + 3 n + n2
,

Integrate AIntegrate AAbs@x - yDn , 8y, 0, 1<, Assumptions ® Re@nD £ -1E,8x, 0, 1<, Assumptions ® Re@nD £ -1EF
A numeric check validates this.

Hresult �. n ® 3.2 L - NIntegrate AAbs@x - yD3.2 , 8x, 0, 1<, 8y, 0, 1<E
1.18332 ´ 10-11

Note that if  we do not insist on generation of conditions we get a result that is quite obviously incorrect
insofar as the correct one clearly must lie between zero and one for positive values of n.

Integrate[Abs[x  −  y]^n,  {x,  0,  1},  {y,  0,  1},  GenerateConditions ® False]

���������������������������
2

2 + 3 n + n2

à
0

1à
0

1

Abs@x - yDn  ây  âx �. n ® 3.2

4.67829

Excessive Conditions

Various  algorithm  implementations may  force  generation of  unneeded conditions. For  example,
MeijerG  convolution will  require that certain values lie  in  "wedges" emanating from the origin, and
Newton−Leibniz methods may issue conditions based on the specific form of the antiderivative.

Here is a simple example using version 5.0. Special case code for handling exponentials via convolution
wants to insist that a parameter take a negative real part.
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Integrate Bã
- �����������������

a Ix-bM2

sigma 2 , 8x, -¥, ¥<, Assumptions ® 8a > 0, sigma Î Reals <F
If Bsigma ¹ 0 &&Re@bD < 0, �����������������������������������������

�!!!!!
Π Abs@sigma D�!!!!!

a
, Integrate Bã

- ������������������
a Hb-xL2

sigma 2 , 8x, -¥, ¥<,

Assumptions ® sigma Î Reals &&a > 0 &&Hsigma � 0 ÈÈ Re@bD ³ 0LFF
The current behavior is nicer.

Integrate Bã
- �����������������

a Ix-bM2

sigma 2 , 8x, -¥, ¥<, Assumptions ® 8a > 0, sigma Î Reals <F
If Bsigma ¹ 0, �����������������������������������������

�!!!!!
Π Abs@sigma D�!!!!!

a
,

Integrate Bã
- ������������������

a Hb-xL2

sigma 2 , 8x, -¥, ¥<, Assumptions ® sigma � 0FF
Necessity of Condition Generation

Often one may wish to ignore conditions. This happens for example in cases where we know in advance
that they will  be satisfied by parameter values we may later choose. A problem is that results can depend
on what path is taken in the code. If  the integration is split into parts, say because the path is split, and if
the parts take paths in the code that make different assumptions about parameters, then results might be
entirely incorrect. One manifestation might be incorrect cancellation. We illustrate with  the preceding
example. In  the code it  handles half the integration path using one assumption about the parameter b,
handles the other half range using a contrary assumption, and the end result is quite wrong.

Integrate Bã
- �����������������

a Ix-bM2

sigma 2 , 8x, -¥, ¥<, GenerateConditions ® False ,

Assumptions ® 8a > 0, sigma Î Reals <F
0

The upshot is that partial results cancelled, with no indication that they require conflicting conditions to
hold.

Genericity of Generated Conditions

Conditions generated may be only generically correct. Here is an example that exhibits this phenomenon.
Specifically, when Im@aD == Im@bD  (that is, a vertical integration path) we have a problem because
that their difference appears in some denominators.

11



à
a

b

Log@xD âx

If B �����������������������������������
Im@bD

Im@aD - Im@bD ³ 0 ÈÈ �����������������������������������������������������������������������
-Im@bD Re@aD + Im@aD Re@bD

Im@aD - Im@bD ³ 0 ÈÈ �����������������������������������
Im@aD

Im@aD - Im@bD £ 0,

a - b - a Log@aD + b Log@bD, Integrate BLog@xD, 8x, a, b<, Assumptions ®

Re@bD < �������������������������������
Im@bD Re@aD

Im@aD &&HHIm@aD > 0 &&Im@bD < 0L ÈÈ HIm@bD > 0 &&Im@aD < 0LLFF
Assessment of Convergence

Testing for convergence is closely related to generation of conditions insofar as the former can depend on
parameter values. But convergence testing, even in the absence of symbolic parameters, is no easy matter
(it is complicated by oscillatory factors, possible cancellation of singular terms, and so forth). Hence code
that tests integrands for convergence tends to be of an ad hoc nature. While it usually serves well it is by
no means a science at this time, and I  do not know how to make it  one. Were one to issue "uncertain of
convergence" messages in all possible cases where we cannot verify convergence or identify conditions
to generate that would ensure convergence, we would have a flood of messages. Even worse, we would
lose many integrals. The reason is that summands can separately spawn conflicting conditions, and this
can happen in cases when they should instead cancel singularities in pairs.

Here are some simple examples that may help to give an idea of the difficulties lurking within conver−
gence assessment. Mathematica will  evaluate them correctly but this was not always the case.

à
0

¥

��������������������
CosAx2E
Log@xD  âx

~ Integrate::idiv : Integral of ����������������������
CosAx2E
Log@xD does not converge on 80, ¥<.

à
0

¥

���������������������
Cos@x2D
Log@xD  âx

à
0

¥

ãx Sech@a xD x  âx

If BRe@aD > 1, ��������������������������������������������������������������������������������������������������������������������
-PolyGammaA1, ���3

4
- ������1

4 a
E + PolyGammaA1, ���������-1+a

4 a
E

8 a2
,

Integrate @ãx x Sech@a xD, 8x, 0, ¥<, Assumptions ® Re@aD £ 1DF
The first diverges, but not due to problems at either endpoint (there is a pole at 1). The second converges
conditionally, and version 4 of Mathematica even knows this, but then gets the condition wrong.

Below is an example that gives an idea of what is involved in sorting out conditions for convergence. We
need to look at possibilities of oscillatory, exponentially growing, and exponentially damped factors in
order to figure out the correct conditions on parameters. In this case the original assumption suffices to
guarantee convergence.
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Integrate @HSin @betty * r D * Sin @gramma* r DL � E^ Half * r ^ 2L,8r , -Infinity , Infinity <, Assumptions ® Re@alf D > 0D
���������������������������������������������������������������������������������

ikjjjjã
- �������������������������������������

Hbetty -grammaL2

4 alf - ã
- �������������������������������������

Hbetty +grammaL2

4 alf
y{zzzz �!!!!!

Π

2
�!!!!!!!!!!!

alf

Here is a slightly more difficult  variant, one that requires nontrivial conditions on parameters beyond
what is given in the assumptions option.

Integrate @HSin @betty * r ^ 2D * Sin @gramma* r ^ 2DL � E^ Half * r ^ 2L,8r , -Infinity , Infinity <, Assumptions ® Re@alf D > 0D
If BRe@alf D ³ Abs@Im@betty DD + Abs@Im@grammaDD,

���
1

4

i
k
jjjjjjjjjj ����������������������������������������������������������������������

1"#################################################################alf + ä Hbetty - grammaL + ��������������������������������������������������������������������
1"###############################################################alf - ä betty + ä gramma

-

����������������������������������������������������������������������
1"#################################################################alf - ä Hbetty + grammaL - ����������������������������������������������������������������������

1"#################################################################alf + ä Hbetty + grammaL
y
{
zzzzzzzzzz �!!!!!

Π ,

Integrate Aã-alf r 2
Sin Abetty r 2E Sin Agramma r 2E, 8r , -¥, ¥<,

Assumptions ® Re@alf D > 0 &&Re@alf D < Abs@Im@betty DD + Abs@Im@grammaDDEF
As another example we show an integral that converges. The integrand is a sum of two terms, each of
which separately will  diverge. If  the code splits this then it  must recognize that there will  be a cancella−
tion of singular parts.

Integrate @HLog@xD - Log@aDL � Hx - aL, 8x, 0, a<, Assumptions ® a > 1D
Difficulties Involving Parameters and Detection of Singularities

One issue is in finding singular points on the integration path. Even something as simple as a trig function
can be problematic.  There are other tar pits lurking beneath the surface of the swamp.

Parametric Singularities

The presence of elliptic functions in the antiderivative usually removes any hope of correctly detecting
parameter dependent singularities.  Below is an example.

13



à
0

���
Π

2 ikjjj-
ikjjjmMeijerG B881, 1<, 8<<, :: ���

1

2
, ���

3

2
>, 8<>, ������������

1

1 - m
Fy{zzz + Π EllipticK @mD

I1 + H-1 + mL Sin @yD2My{zzz � ikjjjΠ
"##################################################

1 + H-1 + mL Sin @yD2 y{zzz ây

If BIm@mD ¹ 0 ÈÈ Re@mD ³ 0, EllipticK @1 - mD HEllipticE @mD - EllipticK @mDL +

EllipticE @1 - mD EllipticK @mD, Integrate B ����������������������������������������������������������
EllipticK @mD"#####################################################1 + H-1 + mL Sin @yD2

-

���������������������������������������������������������������������������������������������������������������������
mMeijerG A881, 1<, 8<<, 99 ���1

2
, ���3

2
=, 8<=, �������1

1-m
E

Π "#####################################################1 + H-1 + mL Sin @yD2

- ����������������������������������������������������������
EllipticK @mD Sin @yD2"#####################################################1 + H-1 + mL Sin @yD2

+

��������������������������������������������������������������
mEllipticK @mD Sin @yD2"#####################################################1 + H-1 + mL Sin @yD2

, :y, 0, ���
Π

2
>, Assumptions ® m< 0FF

Whether the result is worth the screen real estate it occupies is open to debate.

Transcendentals and Singularity Detection

Often finding singularities depends on finding roots of expressions. These need not be algebraic, and a
general purpose transcendental root finder is  a nontrivial undertaking (also it  might be slow). In  the
example below, we find the bad point at the origin, and correctly decide the integral is divergent.

à
- ���

1

2

���
1

2

�����������������������������������������������������������
-2 + x2 + 20 Cos@xDI-6 x + x3 + 60 Sin @xDM2

 âx

~ Integrate::idiv :

Integral of ���������������������������������������������������������������
-2 + x2 + 20 Cos@xDI-6 x + x3 + 60 Sin@xDM2 does not converge on :- ����

1

2
, ����
1

2
>.

à
- ���

1

2

���
1

2

������������������������������������������������������������
-2 + x2 + 20 Cos@xDH-6 x + x3 + 60 Sin @xDL2

 âx

But minor modifications give rise to a singularity that is not at an algebraic number nor at a "convenient"
multiple thereof (e.g. Π times a rational).
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ii = à
1

5

���������������������������������������������������
-2 + x2 + 20 Cos@xD

-6 x + x3 + 60 Sin @xD  âx

N@ii D
NIntegrate B ���������������������������������������������������

-2 + x2 + 20 Cos@xD
-6 x + x3 + 60 Sin @xD , 8x, 1, 5<F

���
1

3
H-Log@-5 + 60 Sin @1DD + Log@95 + 60 Sin @5DDL

-0.0646864

~ NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy
after 10 recursive bisections in x near 8x< = 84.34763<.

0. ´ 101

Clearly this diverges. The denominator has a pole in the integration path, and it is a (nonalgebraic) root of
a transcendental equation.

FindRoot A-6 x + x3 + 60 Sin @xD � 0, 8x, 2<E
8x ® 4.34626 <

Parametrized Singularities in Multiple Integrals

Parametrized singularities can cause trouble, particularly in  multidimensional integration. Here is  an
example from [11]. We begin with a small variation on the actual problem.

à
0

Πà
0

Π

Abs@Sin @x - yDD ây  âx

2 Π

Now we double the region of integration in both directions.

à
0

2 Πà
0

2 Π

Abs@Sin @x - yDD ây  âx

4 Π

The second one is off by a factor of 2. The problem is that one singularity line, x � y, is recognized. But

the broken line  x � y + Π  modulo 2 Π  goes unrecognized. Hence we do not handle ranges correctly,

splitting only into two rather than three pieces in the first level of integration. Note that this is in version
5.0 of Mathematica; later versions do get the correct value of 8 Π.

15



The second one is off by a factor of 2. The problem is that one singularity line, x � y, is recognized. But

the broken line  x � y + Π  modulo 2 Π  goes unrecognized. Hence we do not handle ranges correctly,

splitting only into two rather than three pieces in the first level of integration. Note that this is in version
5.0 of Mathematica; later versions do get the correct value of 8 Π.

Branch Cuts Intersecting the Integration Path

It  is important to assess whether an integration path crosses a branch cut of an antiderivative (so that we
might split the path into segments). The example below does this in order to get the correct result.

i1 = à
-1-ä

-2+ä

Log@xD âx

N@i1 D
NIntegrate @Log@xD, 8x, -1 - ä, -2 + ä<D
ikjjjj ���

1

4
+ ���

ä

4

y{zzzz JH-2 - 6 äL + 3 ä Π + LogB4 H3 - 4 äL-1+3 äFN
-0.584615 + 0.863986 ä

-0.584615 + 0.863986 ä

Version 4 of Mathematica failed to catch the crossing and gave a result with imaginary part off  by 3 Π.
Needless to say, this problem becomes vastly more difficult  if  the crossing might or might not exist based
on parameter values. One might try the example below to get an indication of what might be a reasonable
result.

Integrate @Log@xD, 8x, -1 - I , y<D
Problems with Algebraic Manipulation

Here is an example that was quite wrong prior to version 5.1 (we show the result from version 5.0).

ii = à
0

¥

2 y ãy BesselK B0,
�!!!!!

3 y Sign @yDF ây

N@ii D
NIntegrate B2 y ãy BesselK B0,

�!!!!!
3 y Sign @yDF, 8y, 0, ¥<F

1 - ����������������������������������
ArcSec B�!!!!!

3 F�!!!!!
2

0.324489

2.54593

The problem was in the innards of the convolution code. At a key step we made use of an exponential of

the form exponential IH-2 äL Π - log I ���4
3

M + 2 log H2LM  and we subsequently required a square

root. Once we replace exponential  with Exp  we lose track of a factor of H-1L and this gave rise to a

bad result. While this example is now repaired the general problem remains of how to find and forestall
this phenomenon. 16



The problem was in the innards of the convolution code. At a key step we made use of an exponential of

the form exponential IH-2 äL Π - log I ���4
3

M + 2 log H2LM  and we subsequently required a square

root. Once we replace exponential  with Exp  we lose track of a factor of H-1L and this gave rise to a

bad result. While this example is now repaired the general problem remains of how to find and forestall
this phenomenon. 

Mathematica’s integration code once had an interesting method for eluding this branch cut sort of prob−
lem. The tactic was to convert various exponential things to trigs in  the hope that anything "bad" e.g.
explicitly complex values, would pack up for vacation. Often this worked, and indeed I introduced some
bugs simply by disabling some of this and making conversions in the reverse direction. But my feeling is
that the problem should be addressed at a more basic level, by finding the culprits and spanking the
branch cuts out of them. As an indication that this earlier method had severe limitations, I note that it too
failed on the example above.

The next examples have bugs in  current versions due to  branch cut issues not correctly handled in
convolution code. They show that not all changes can be viewed as progress, insofar as they gave correct
results in version 4. Needless to say, I hope to address these in the near future.

Integrate Bã-ä x t ikjjã
���
1

3
H-äL x3

- 1y{zz x- ���
3

2 , 8x, 0, ¥<, Assumptions ® t > 0F
H1 + äL �!!!!!!!!!!

2 Π
�!!!!!

t + ����������������������������������������������������������������������������������������������������������������������������������
H-1L7�12 Π HypergeometricPFQ B9- ���1

6
=, 9 ���1

3
, ���2

3
=, ����t 3

9
F

32�3 GammaA ���7
6

E -

�������������������������������������������������������������������������������������������������������������������������������������
H-1L11�12 Π t HypergeometricPFQ B9 ���1

6
=, 9 ���2

3
, ���4

3
=, ����t 3

9
F

31�3 GammaA ���5
6

E
A numerical check will  reveal that this is simply not correct.

The next example does not even involve a symbolic parameter. Again, the culprit  deep down is  in
convolution of Mei j er G functions.

ii = Integrate @ArcSin @vD * Log@vD � v, 8v, 0, 1<D
N@ii D
NIntegrate @ArcSin @vD * Log@vD � v, 8v, 0, 1<D
���
1

4
Π Log@2D

0.544397

-1.02331

¢ Previous   Next £
General Considerations

Here are some of the questions that require thought in the design and implementation of definite integra−
tion. They have emerged from study and overhaul of  our existing code base, but I  believe they apply
more generally e.g. to definite summation and related polyalgorithm computational calculus.

è Given a choice of methods, which should one attempt first? This can have serious repercussions in terms
of speed. For example, what might be a fast MeijerG  convolution can be very slow to evaluate as an
indefinite integral followed by extraction of limiting values. And of course the opposite can happen. Or
the methods might be comparable in speed but give results of vastly different complexity of form.17



è

Given a choice of methods, which should one attempt first? This can have serious repercussions in terms
of speed. For example, what might be a fast MeijerG  convolution can be very slow to evaluate as an
indefinite integral followed by extraction of limiting values. And of course the opposite can happen. Or
the methods might be comparable in speed but give results of vastly different complexity of form.

è When or how should one presimplify the input?

è When or how should one simplify the result?

è Special case methods may be very helpful for  speed or simplicity of  result. But they also proliferate
opportunities for bugs. Hence it  requires care to think through what classes are important to handle in
these ways.

è Some methods require intrinsically "slow" technology. For example, refinement of conditions (which is
sometimes essential in order that they not blow up) may require some level of CAD support behind the
scenes. Even limit  extraction for Newton−Leibniz methods can be slow. We are thus faced with ques−
tions of when to apply such technology and how to prevent it from causing many inputs to hang.

è In regard to prevention of hanging in computationally intensive technology noted above, we have found
it  quite necessary to place time constraints on certain pieces of code. (Motivation: often they succeed. If
they fail,  so be it,  and we then try other things.) This gives rise to a new set of problems. One is that
asynchronous interrupt handling, required by TimeConstrained ,  is imperfect and in rare cases will
cause a kernel crash. Another is that results now take on a platform dependent nature, and this is seri−
ously unsettling. A possible future direction that will  alleviate this: have potentially slow code stopped by
some measure of operation count rather than asynchronous interrupts.

è Indefinite integration is (generally) more powerful in  version 5 than in the past. This has come at the
price of speed: it  simply tries more transformations and the like. This in turn means all Newton−Leibniz
code is at risk of getting slower. We now cache some results from indefinite integration but  this is at best
a partial fix to the problem.

Provisional moral, or  maybe conundrum: The more things improve, the more opportunity for  closely
related things to deteriorate.

Summary and Directions for Future Work
Development and overhaul of  Integrate  has had successes and at least some setbacks. One should

hope these latter may prove to be temporary.

Among the successes, virtually all infinite recursion problems from earlier versions has been fixed. Cases
where a method failed and we did not move on to try another method, that is, premature bailout, have
likewise been addressed. Numerous problems in convergence assessment and singularity detection have
likewise been fixed. Much of the idiosyncratic ad hoc code has been removed or rewritten. Most open
problems fall  into the various categories described above, which, while large, is better understood than
the integration swamp that we had four years ago.

This has come at a cost of speed. Moreover we now have some level of platform dependent behavior.
Work remains to iron out bugs in convolution code and elsewhere. Heuristics to determine use of expan−
sion, simplification, refinement of conditions, and the like are crude and certainly imperfect. Modularity
of  the code, which affects usability, maintaince and further development, has improved but is likewise
still far from perfect. The same may be said for its documentation.

This presents a synopsis of  the issues faced in  development of  a robust definite integration. To some
extent will  also give a snapshot of the recent status of Integrate  in Mathematica. Lest the reader be

left with the idea that many of the issues presented above are specific to the Mathematica implementation
of  I nt egr at e,  we refer to [4]  for a discussion that overlaps ours but is not specific to any particular
body of code.

My opinion is that future work in definite integration within Mathematica should go in a few directions. I
list various possibilites below.

è Strengthening the Mei j er G convolution code, with attention paid to form of results, range of integrands
covered, and correct handling of convergence and branch cut problems.

è Better assessment of  convergence conditions. This will  include splitting the Gener at eCondi t i ons
option into two or three distinct ones so that meanings are more clear. At present the code may use it to
test for convergence, or to look for parameter conditions that guarantee convergence.
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è

Better assessment of  convergence conditions. This will  include splitting the Gener at eCondi t i ons
option into two or three distinct ones so that meanings are more clear. At present the code may use it to
test for convergence, or to look for parameter conditions that guarantee convergence.

è Figuring out  a  platform independent way to  measure work  done, and base an interruption scheme
thereon. It  is a fact of life  that certain possibly expensive operations are needed to make an integration
code work well, and they can also hang examples if  not terminated within reasonable time. Basing this on
something as crude as Ti meConst r ai ned is problematic, among other reasons because results are not
independent of the speed of the machine on which they are run.

è Continued debugging based on existing bugs in that code. The overall count of bugs in I nt egr at e  is
now about 30 percent of what it  was when this work was first undertaken. This brings the quantity to a
point where a careful categorization of specific problem areas becomes realistic. My anticipation is that
some of these specific areas will  simply need point fixes. What remains as problematic should be amena−
ble,  in  parts, to  rewriting  without  deleterious implications to  the overall structure and function of
I nt egr at e code.

è Continued addition to the test suite so as to avoid large scale breakage during overhaul. In past a problem
that led to the massive bugs list was that we did not have an adequate test suite It  had many integration
examples, but not enough for a function of the scope of I nt egr at e). Hence bug fixes might well cause
breakage elsewhere and no "trip  wire"  existed in  terms of  a sufficiently large test suite. At  present,
virtually all fixed bugs get made into new tests.
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