
The Network Structure of the
Uniform Commerical Code:
It’s A Small World After All
' Seth J. Chandler 2005
The Uniform Commercial Code is the body of law governing many forms of transactions in the United States, including sales of
goods, leases, most forms of payments, and so-called "secured transactions." Consisting of eleven "articles," which in turn
contain a nested structure of sections and subsections, the UCC is a cross-referenced body of law developed in committees by
two private organizations and then generally adopted with few modifications by the fifty American states. It is studied extensively
in American law schools and constitutes the primary legal authority used by many commercial lawyers in the United States. This
article uses Mathematica to study the formal and textual network structure of the UCC. It first uses the Regular Expression
constructs of Mathematica to parse the UCC and reveal the structure of nodes and connections it implicitly contains. It then
develops tools in Mathematica to analyze and visualize this network. Standard embedding algorithms, coupled with numeric
analysis , highlight that the UCC is a classic "Small World Network" in which highly clustered portions of the law have weak ties
to distant clusters in a way that reduces the diameter of the network. The article is also able to show the most important and
intricate provisions of the UCC as well as to reveal useful methods of studying this significant body of law.

Creating the Textual, Formal and Full Networks

� Introduction

What I propose to do in this work is to determine what features of the law are lost, revealed, or clarified when its textual represen -
tation is stripped of its treasured linguistic content and all that is preserved are the connections among different chunks of the
text. This radical compression cannot be done without human judgment. Because legal texts and not explicitly designed as
mathematical objects, decisions must be made about what counts as a "node" and what counts as an "edge." Such an effort must
be exogenously informed by expertise in the law; the ghost of the text thus persists in the formation of the network.

uccanalysis.nb 1

� The Cornell-LII Text

The solution chosen here draws on the expertise of Cornell University’s Legal Information Institute ("Cornell-LII"), which has
created and which maintains an electronic version (HTML format) of the entire Uniform Commercial Code
(http://www.law.cornell.edu/ucc/index.htm). The text is stored in 11 files, one for each article of the code, that collectively
consume about 1.5 megabytes of text. This version is particularly useful in that Cornell-LII has carefully inserted HTML anchors
for each section and subsection of the each of the articles as well as for each obviously defined term (such as "goods" or
"instrument"). The Cornell-LII has likewise carefully inserted HTML hyperlinks each time the text cross references either
another section of the UCC or one of the defined terms. The By way of example, here is how the Cornell-LII text denotes the
connection between various provisions of law cited in section 2-207(2) of the UCC. I have highlighted the hyperlinks. What I
would like is to extract links, therefore, from "s2-2072" to "contract" and from "s2-2072" to "BetweenMerchants". The Cornell-
LII version is thus well suited as the foundation for a mathematical network in which hyperlink anchors form the nodes of the
network and the hyperlinks themselves form the links. I will refer to this network as the "textual UCC network" because it
imposes no structure on the text other than that perceived by Cornell-LII, one which seems quite logical to me along with other
professors of contract law. It is important to note that terms that are used often, such as "person" or "reasonable" that are not
themselves defined in the UCC are not considered nodes (even if they are used quite frequently) and thus have no links coming to
them or emerging from them.

(2) The additional terms are to

be construed as proposals for addition to the contract. Between

merchants such terms become part of the contract unless:</p>

<p class="Text-Level2">(a) the offer expressly limits acceptance to the terms

of the offer;</p>

<p class="Text-Level2">(b) they materially alter it; or</p>

<p class="Text-Level2">(c) notification of objection to them has already been

given or is given within a reasonable time after notice of them is received.</p>

There is another latent network I believe within the Uniform Commercial Code, however, that Cornell-LII has not captured,
perhaps because to conventional legal scholars it is so obviously present. The UCC, like many modern legal codes, is formally
structured as a tree. Articles contain chapters that contain sections that contain subsections. And while Cornell-LII has created
hyperlinks noting the connectivity between items of text and these various sections or subsections, no hyperlinks are inserted to
denote the internal tree structure. To illustrate, subsection (b) of section 2-207 of the UCC, which has its own anchor, does not
contain a hyperlink to section 2-207 of the UCC, even though the latter full section has an anchor and even though subsection (b)
is obviously part of section 2-207. The internal structure of the Cornell-LII version is essentially "flat," with no attempt being
made to use XML or other methods to replicate the nested structure of the original legal code. (XML structuring has been used on
other some of the other texts maintained by Cornell-LII). One of my tasks here, therefore, will be to breathe life into the latent
formal tree structure and to integrate the resulting "formal network" with the textual UCC network.

� Importation of the Cornell-LII Text from the Web

Mathematica is the technology I use to accomplish these tasks. It can be used swiftly to import and then combine the HTML files

into one large textual file, which can be locally stored for simplicity. The StringReplace command is used to address some typos
and mild irregularities in the Cornell-LII markup of the text. Those who are more interested in the results of this analysis than the
methodology may safetly skip this and the next subsection.

I begin by loading two packages that will be used extensively in this notebook.

Needs@"DiscreteMath‘GraphPlot‘"D; Needs@"DiscreteMath‘Combinatorica‘"D;

uccanalysis.nb 2

ExportA"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph
Theoretic Structure of Common Law\\UCC\\ucctext.txt",

ucctext = WithA9fixes =9RegularExpressionA"H?<!sLH\\dH?:AÈaL-\\d.+L"E¦

"s" <>"$1", RegularExpression@"^UCCH\\d.*L"D¦"s" <>"$1",

RegularExpression@"H?<!sL2H?:aÈAL-H\\d\\w+L"D¦"s2A-" <>"$1",

RegularExpression@"s2H?:aÈAL-H\\d\\w+L"D¦"s2A-" <>"$1",

RegularExpression@"H?<!sL4H?:aÈAL-H\\d\\w+L"D¦"s4A-" <>"$1",

RegularExpression@"s4H?:aÈAL-H\\d\\w+L"D¦"s4A-" <>"$1"==,
Fold@StringReplace@ð1, ð2D&, StringJoin ��

Map@Import@"http:��www.law.cornell.edu�ucc�" <>

ð<>"�article" <>ð<>".htm", "Text"D&,8"1", "2", "2A", "3", "4", "4A", "5", "6", "7", "8", "9"<D, fixesDE, "Text"E;
Once this is done,we can, of course, simply import the local version of the file.

getucc@location_String:

"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph Theoretic Structure of Common

Law\\UCC\\ucctext.txt"D:=Import@location, "Text"D;
ucctext =getucc@D;

� The Textual Structure of the UCC

I now disinter two networks from the text of the UCC: the "textual network" and the "formal network." Ultimately, I combine the
two networks into the "Full UCC Networks" by taking the union of the nodes and the union of the edges.

� Finding the Textual Structure

To recover the textual structure of the UCC, I start by splitting the entire text into pairs of anchors and the text that follows up

until the next anchor. I insert a "dummy anchor"at the very beginning of the text. Regular Expressions coupled with the String-
Cases and StringSplit functions perform this task swiftly.

anchorNameRegExp =

RegularExpression@"<H?:aÈAL\\s+@̂ >D*name\\s*=\\s*\"H@̂ \">D*L\"@̂ >D*>"D;
AbsoluteTiming@anchortextpairs =

Thread@List@Prepend@StringCases@ucctext, anchorNameRegExp ¦"$1"D, "ZeroStart"D,
StringSplit@ucctext, anchorNameRegExpDDD;D

80.1718904 Second, Null<
I now need to take the textual component of these anchor-text pairs, extract the hyperlinks contained within the text, and then
thread the anchors over the hyperlinks to show that the anchored segment of text contains a reference to the anchor contained in
the hyperlink. This process produces a list of edges in the textual UCC network. Because some of the hyperlinks in the Cornell-
LII database reference anchors within files that are stored separately on the Cornell web site, and because some of the hyperlinks
reference things that simply are not relevant to this project, each of the links must be properly resolved.

uccanalysis.nb 3

resolvetarget@s_StringD:= With@8
hashString ="ðH@̂ %D+L", cornellString ="http:��www.law.cornell.edu�uccH.+L"<,

Which@
StringMatchQ@s, RegularExpression@hashStringDD,
First@StringCases@s, RegularExpression@hashStringD¦"$1"DD,
StringMatchQ@s, RegularExpression@cornellString <>hashStringDD,
First@StringCases@s, RegularExpression@cornellString <>hashStringD¦"$2"DD,
True, "UNRESOLVABLE"DD

Short@textualuccedges = With@8anchorHrefRegExp =

RegularExpression@"<H?:aÈAL\\s+@̂ >D*href\\s*=\\s*\"H@̂ !\">D*L\"@̂ >D*>"D<,
Flatten@DeleteCases@Map@Thread@

MapAt@DeleteCases@resolvetarget ��StringCases@ð, anchorHrefRegExp ¦"$1"D,
"UNRESOLVABLE"D&, ð, 2DD&, anchortextpairsD, 8<D, 1DDD

Averylargeoutputwasgenerated. Hereisasampleofit:

88s1-103a, Agreement<, �7512�, 8s9-709b, dfinancingstatement<<

ShowLess ShowMore ShowFullOutput SetSizeLimit...

� Preparing to Visualize the Textual Structure

I can now use the same techniques as above to visualize the textual structure of the UCC. I first get a list of the labels for all
nodes and then I extract a list of numbered edges.

Short@textualUCClabels =Union@Flatten@textualuccedgesDDD
82-104, 2-106, 2-401, 2-403, �2192�, warehouse, Warehousereceipt, Writing<
AbsoluteTiming@Short@textualuccgraph =Rule ���Htextualuccedges �. Dispatch@MapIndexed@Rule@ð1, ð2P1TD&, textualUCClabelsDDLDD

Averylargeoutputwasgenerated. Hereisasampleofit:

80.0312528 Second, 8309 ®52, 310 ®105, 311 ®281, 314 ®145,

�7506�, 2161 ®194, 2163 ®1814, 2163 ®1682, 2163 ®155<<

ShowLess ShowMore ShowFullOutput SetSizeLimit...

I let Combinatorica construct a graph out of the edges (Combinatorica and GraphPlot currently use different network formats).

textualuccgraphC =SetVertexLabels@
FromOrderedPairs@List ���textualuccgraph, Type ®DirectedD, textualUCClabelsD

Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<7514, 2199, Directed>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

For visualization purposes, I eliminate from the graph a few very small unconnected components.

uccanalysis.nb 4

textualUCCgraphCC = With@8cc =ConnectedComponents@textualuccgraphCD<,
InduceSubgraph@textualuccgraphC, ccPFirst�Ordering@Length ��cc, -1DTDD

Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<7500, 2175, Directed>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

I can also create an undirected variant of this graph.

textualUCCgraphCCU =MakeUndirected@textualUCCgraphCCD
Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<6269, 2175, Undirected>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

� A Picture of the Textual Structure of the Uniform Commercial Code

I now use GraphPlot to visualize the textual structure of the UCC. Here, I use Mathematica’s implementation of the Fruchterman-
Reingold algorithm, termed the "SpringElectricalModel," to embed the nodes. This algorithm assigns the nodes of the network
some initial position in space. The space is usually two dimensional but can have a higher dimensionality. All nodes then repel
each other but do so in a fashion that is inversely proportional to the Euclidean physical distance between them, much in the way
two particles with like electrical charge would repel each other. Thus, two nodes that lie at a distance of two from each other
repel each other more strongly than do two nodes that lie at a distance of five from each other. Nodes that are connected to each
other, however, attract in a counterbalancing fashion that is proportional to the physical distance between them. The general idea,
quite complex in its implementation and subject to numerous variations, is to position the nodes in a fashion that minimizes the
total attractive and repulsive force exerted. This method tends to produce a layout that is both attractive and that often both
recapitulates and extends intuitions about the structure of the network under consideration. I use the Tooltip construct of Mathe-

matica 6 to permit those using this notebook in an interactive way to determine the content of each of the embedded nodes.

Short@textualUCCcoords =GraphCoordinates@textualUCCgraphCC,
Method ®8"SpringElectricalModel", "RepulsiveForcePower" ®-1.5, RecursionMethod ®8"Multilevel", CoarseningScheme ®"MaximalIndependentVertexSetRugeStuben"<<DD

883.40983, -4.77647<, �2173�, 8-4.24539, -�19�<<

uccanalysis.nb 5

gptextual =

If@$VersionNumber ³6., Panel@GraphPlot@textualUCCgraphCC, VertexStyleFunction :>H8Hue@0D, Tooltip@Disk@ð, 0.002D, textualUCClabels@@ðDDD<&L,
EdgeStyleFunction ®H8GrayLevel@0.25D, Line@8ð1, ð2<D<&L,
VertexCoordinates ®textualUCCcoords, AspectRatio ®1D,

"The Textual Structure\nof the Uniform Commercial Code"D,
GraphPlot@textualUCCgraphCC, VertexStyleFunction :>H8Hue@0D, Disk@ð, 0.002D<&L,
EdgeStyleFunction ®H8GrayLevel@0.25D, Line@8ð1, ð2<D<&L,
VertexCoordinates ®textualUCCcoords, AspectRatio ®1,

PlotLabel ®"The Textual Structure\nof the Uniform Commercial Code"DD
TheTextualStructure

oftheUniformCommercialCode

Notice that the graph embedding routines contained in Mathematica have constructed a plausible structure for the Uniform
Commercial Code simply from the connectivity information contained in the text, without any knowledge as to the tree structure
of the Code, and without any understanding of what the Code actually says. I say "plausible" because the picture may be inter-
preted as clusters of highly interrelated provisions with weak ties to other clusters of highly interrelated provisions, which
corresponds with many scholars intuition as to the structure of the UCC.

uccanalysis.nb 6

� The Formal Structure of the UCC

In addition to this textual structure, the UCC also has an implicit formal structure created by the hierarchical labelling of articles,
chapters, sections and subsections. As noted above, however, the Cornell-LII text has not preserved this nested structure. One
way to recover it, however, is to find all the "leaves" of the tree using Regular Expressions and then to find the parent "branches"
by combining Regular Expression constructs with independent knowledge of naming conventions adopted by the UCC. Again,
those interested primarily in the legal aspects of this article may skip the remainder of this subsection.

� Finding the Formal Structre

The following code captures all "leaves" contained in the Uniform Commercial Code.

AbsoluteTiming@Short@uccleaves =

With@8likelyuccreference =RegularExpression@"Hs\\dH?:AÈaL?-\\d83<\\w*L"D<,
Union@StringCases@ucctext, likelyuccreference ¦"$1"DDDDD

80.0781320 Second,
8s1-101a, s1-101b, s1-102, s1-103, �2422�, s9-708, s9-709, s9-709a, s9-709b<<

I now show how to recover the "geneaology"of these statutory leaves. I know, for example, that the parent of UCC subsection
"s2-207b" is "s2-207" because I know that the framers of the UCC denote a section by a chapter number (a one or two character
string), followed by a hyphen, followed by three digits. I know that the parent of UCC section "s9-102a80" is "s9-102a" because a
shift from numeric characters to letter characters after the three digit section number is used in the Cornell-LII text to mark a
change from subsection to subsubsection. The Mathematica code set forth below shows how all this may be done. Basically, it
tries to match a list of Regular Expressions and then capture that part of the appropriate regular expression that represents the
parent.

parent@s_D:= With@8articlestring ="^s\\dH?:AÈaL?-", chapterstring ="\\d", sectionstring ="\\d\\d",

terminalsubsectionstring ="H?:H?<=\\DL\\d+ÈH?<=\\dL\\D+L$"<,
StringReplace@s, 8RegularExpression@"H" <>articlestring <>chapterstring <>

sectionstring <>".+" <>"L" <>terminalsubsectionstringD¦"$1",

RegularExpression@"H" <>articlestring <>chapterstring <>sectionstring <>

"L" <>"H\\d+È\\D+L$"D¦"$1", RegularExpression@
"H" <>articlestring <>chapterstring <>"L" <>sectionstring <>"$"D¦"$1",

RegularExpression@"H" <>articlestring <>"L" <>chapterstring <>"$"D¦

StringReplace@"$1", "-" ®""D<DD
I can do this recursively using Mathematica’s FixedPoint construct to find the entire geneaology of a UCC leaf.

parentlist@s_D:=Most@FixedPointList@parent, s, 20DD
I can now find all the "edges" of the formal UCC graph.

AbsoluteTiming@Short@formaluccedges =

Union@Flatten@Map@Partition@parentlist@ðD, 2, 1D&, uccleavesD, 1DDDD
80.3594072 Second,

88s1-1, s1<, 8s1-101, s1-1<, �2481�, 8s9-709a, s9-709<, 8s9-709b, s9-709<<<

uccanalysis.nb 7

� Preparing to Visualize the Formal Structure of the Uniform Commercial Code

I can use the same techniques as before to go from a listing of these edges to creation of network objects suitable for manipula-
tion and analysis using various Mathematica packages.

AbsoluteTiming@Short@formaluccgraph =Rule ���Hformaluccedges �.
Dispatch@MapIndexed@Rule@ð1, ð2P1TD&, Union@Flatten@formaluccedgesDDDDLDD

80.0156264 Second, 82 ®1, 3 ®2, 4 ®3, 5 ®3, 6 ®2, 7 ®2, �2474�,

2492 ®2487, 2493 ®2466, 2494 ®2466, 2495 ®2494, 2496 ®2494<<
Short@formalUCClabels =Union@Flatten@formaluccedgesDDD
8s1, s1-1, s1-101, s1-101a, s1-101b, �2487�, s9-708, s9-709, s9-709a, s9-709b<
edges2label =Dispatch@MapIndexed@Rule@ð2P1T, ð1D&, formalUCClabelsDD;
Short@formalUCCcoords =GraphCoordinates@formaluccgraph, Method ->"RadialDrawing"DD
880.0821706, 9.14582<, �1�, �2492�, 8�1�<, 83.45919, �19�<<

I can also create a Combinatorica version of the network.

formalUCCgraphC =SetVertexLabels@
FromOrderedPairs@List ���formaluccgraph, Type ®DirectedD, formalUCClabelsD

Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<2485, 2496, Directed>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

� A Picture of the Formal Structure of the Uniform Commercial Code

The GraphPlot package can now be used to show the formal structure of the Uniform Commercial Code. I use a "radial embed-
ding" method because I know, in advance, that the structure will be tree like. The remaining code essentially mimics that used
above to prepare the visualization of the textual structure of the UCC. The result is, indeed, a set of disconnected trees, each
reflecting an article of the UCC. The trees are disconnected because there is no way for any provision in, say Article 2 of the
UCC to be part of the hierarchy for, say, Article 7.

uccanalysis.nb 8

gpformal =If@$VersionNumber ³6., Panel@GraphPlot@formaluccgraph,
VertexStyleFunction ®H8Hue@0D, Tooltip@Disk@ð, 0.05D, formalUCClabelsPðTD<&L,
VertexCoordinates ®formalUCCcoordsD,

"The Formal Structure of the Uniform Commercial Code"D,
GraphPlot@formaluccgraph, VertexStyleFunction ®H8Hue@0D, Disk@ð, 0.05D<&L,
VertexCoordinates ®formalUCCcoords,

PlotLabel ->"The Formal Structure\nof the Uniform Commercial Code"DD
TheFormalStructureoftheUniformCommercialCode

� The Full Structure of the UCC

� Creating the Full Structure

With the formal and textual structures of the UCC now recovered, I can combine the two to obtain the full structure of this body
of law. Basically, I do this by joining the edges of the textual graph with the edges of the formal graph.

Short@uccedges =Join@formaluccedges, textualuccedgesDD
Averylargeoutputwasgenerated. Hereisasampleofit:

88s1-1, s1<, 8s1-101, s1-1<, �9996�, 8s9-709b, dfinancingstatement<<

ShowLess ShowMore ShowFullOutput SetSizeLimit...

I can use the same techniques shown above to produce data structures representing this full UCC network to both the GraphPlot
package and the Combinatorica package.

Short@allucclabels =Union@Flatten@uccedgesDDD
82-104, 2-106, 2-401, 2-403, �2833�, warehouse, Warehousereceipt, Writing<

uccanalysis.nb 9

AbsoluteTiming@Short@uccgraph =

Rule ���Huccedges �. Dispatch@MapIndexed@Rule@ð1, ð2P1TD&, allucclabelsDDLDD
Averylargeoutputwasgenerated. Hereisasampleofit:

80.0312528 Second, 8310 ®309, 311 ®310, 312 ®311, 313 ®311,

�9991�, 2801 ®194, 2804 ®2404, 2804 ®2251, 2804 ®155<<

ShowLess ShowMore ShowFullOutput SetSizeLimit...

alledges2label =Dispatch@MapIndexed@Rule@ð2P1T, ð1D&, allucclabelsDD;
gd =SetVertexLabels@

FromOrderedPairs@List ���uccgraph, Type ®DirectedD, allucclabelsD
Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<9999, 2840, Directed>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

I can also create an undirected version of the network, which is useful for portions of the analysis.

g =RemoveSelfLoops@MakeUndirected@gdDD
Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<8758, 2840, Undirected>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

And I can extract the largest connected component of this undirected network.

gu = With@8cc =ConnectedComponents@gD<,
InduceSubgraph@g, ccPFirst�Ordering@Length ��cc, -1DTDD

Averylargeoutputwasgenerated. Hereisasampleofit:

�Graph:<8756, 2837, Undirected>�

ShowLess ShowMore ShowFullOutput SetSizeLimit...

� Preparing to Visualize the Full Structure of the Uniform Commercial Code

I can now visualize the full Uniform Commercial Code using the same techniques as before.

Short@fullUCCcoords =GraphCoordinates@gu,
Method ®8"SpringElectricalModel", "RepulsiveForcePower" ®-1.5, RecursionMethod ®8"Multilevel", CoarseningScheme ®"MaximalIndependentVertexSetRugeStuben"<<DD

882.59161, -2.54955<, �2835�, 8-3.67459, �19�<<
Short@fullUCClabels =GetVertexLabels@guDD
82-104, 2-106, 2-401, 2-403, �2830�, warehouse, Warehousereceipt, Writing<

� A Picture of the Full Structure of the Uniform Commercial Code

uccanalysis.nb 10

�

A Picture of the Full Structure of the Uniform Commercial Code

I use GraphPlot again to visualize the full structure of the Uniform Commercial Code. The result is a set of intricately connected
clusters each of which contains a few ties to most of the other clusters and each of which contains a small number of satellite
"clusterettes." As discussed below, the picture resembles that of "small world networks" in which the diameter of a highly
clustered system is reduced through the existence of just a few weak ties between key nodes of each of the clusters.

gpfull =If@$VersionNumber ³6., Panel@GraphPlot@gu,
EdgeStyleFunction ®H8Thickness@0.001D, GrayLevel@0.25D, Line@8ð1, ð2<D<&L,
VertexCoordinates ®fullUCCcoords,

VertexStyleFunction ®H8Hue@0D, Tooltip@Disk@ð, 0.002D, fullUCClabelsPðTD<&LD,
"The Structure of the Full Uniform Commercial Code"D, GraphPlot@gu,
EdgeStyleFunction ®H8Thickness@0.001D, GrayLevel@0.25D, Line@8ð1, ð2<D<&L,
VertexCoordinates ®fullUCCcoords,

VertexStyleFunction ®H8Hue@0D, Disk@ð, 0.002D<&LDD
TheStructureoftheFullUniformCommercialCode

Analyzing the Uniform Commercial Code Network
I can use Mathematica conveniently to do some basic exploration of the full UCC network and of the two components from
which it is derived: the textual graph and the formal graph.

uccanalysis.nb 11

� Basic Analysis

� Graph Density

One basic measure of graphs is their density: the ratio between edges that exist and all possible edges that could potentially exist.
All the variants of the UCC network � the directed version, the undirected version, the formal version, the textual version � are
extremely sparse. Of the connections that might possibly exist among the different "nodes," only 2/10 of a percent exist at most.

graphdensity@g_GraphD:= ���
M@gD

V@gD HV@gD-1L�2
With@8t =Thread@88"Full UCC Undirected Graph", "Full UCC Directed Graph",

"Full UCC Undirected Graph Hlargest connected componentL",
"Formal UCC Graph", "Textual UCC Graph Hlargest connected componentL"<,

N@graphdensity ��8g, gd, gu, formalUCCgraphC, textualUCCgraphCC<D<D<,
If@$VersionNumber ³ 6., Panel@Grid@t, RowLines ®True, ColumnLines ®True,

ColumnAlignments ®LeftD, "Graph Density"D, TableForm@tDDD
GraphDensity

FullUCCUndirectedGraph 0.00217246

FullUCCDirectedGraph 0.00248029

FullUCCUndirectedGraphHlargestconnectedcomponentL 0.00217656

FormalUCCGraph 0.00079807

TextualUCCGraphHlargestconnectedcomponentL 0.00317229

� Degree Distribution

Each node in a directed network has an "out degree" and an "indegree." The node’s out degree is the number of other nodes it
points to. The node’s in degree is the number of nodes that point to it. The statistical distribution of in degrees among the nodes
is often a useful measure of the structure of a graph.

Shallow@networkdegreedistributions =

Outer@ð2@ð1D&, 8gd, textualUCCgraphCC<, 8OutDegree, InDegree<, 1, 1D, 4D
888�2840�<, 8�2840�<<, 88�2175�<, 8�2175�<<<
Short@exceedances =

Map@With@8n =Last@ðD<, Table@8i, Count@n, _?Hð³i &LD<, 8i, 1, Max@ðP2TD<DD&,

networkdegreedistributionsDD
8881, 1070<, 82, 876<, �440�, 8443, 1<, 8444, 1<<, 8�1�<<
Needs@"Graphics‘Graphics‘"D
logexceedances =exceedances �. 8a_Integer, b_Integer<->8Log@10, aD, Log@10, bD<;
Needs@"Graphics‘MultipleListPlot‘"D

uccanalysis.nb 12

If@$VersionNumber ³ 6., Panel@ListLinePlot@logexceedances, Axes ®True,

Ticks ®Automatic, PlotMarkers ®Automatic, PlotStyle ®88Red<, 8Blue<<,
AxesLabel ®8"Degree", "Number of Nodes\nExceeding This Degree"<D,

"Log-Log Plot of Degree Distribution\nfor Full and Textual UCC networks"D,
MultipleListPlot@Sequence ��logexceedances, Axes ®False, Frame ®True,

Ticks ®Automatic, PlotMarkers ®Automatic, PlotStyle ®88Red<, 8Blue<<,
AxesLabel ®8"Degree", "Number of Nodes\nExceeding This Degree"<, PlotLabel ->

"Log-Log Plot of Degree Distribution\nfor Full and Textual UCC networks"DD
Log-LogPlotofDegreeDistribution

forFullandTextualUCCnetworks

1.25 1.50 1.75 2.00 2.25 2.50
Degree

0.5

1.0

1.5

2.0

2.5

3.0

Number of Nodes

Exceeding This Degree

Most of the resulting plot looks fairly linear, suggesting that the UCC has similarities to a truncated scale free network.
(http://en.wikipedia.org/wiki/Scale-free_network; http://mathworld.wolfram.com/Scale-FreeNetwork.html). Several points follow
from this resemblance. First, the existence of some nodes of very high degree means that there are a couple of key provisions of
the UCC as to which any imprecision or confusion in their meaning can have cascading effects throughout the legal system.
Problems with other less well connected provisions of the UCC may not ruin operation of the legal system, however. Second, it
means that studies of other roughly scale free systems, such as the Internet, may have relevance to an understanding of the
Uniform Commercial Code.

� Centrality Measures

One can also use network methods to try and determine the most "important" or central provisions or concepts in the UCC. Three
methods are often used: (1) citation; (2) Markov Centrality; (3) Closeness or "Kevin Bacon" centrality; and (4) Betweenness
Centrality.

� Most Cited

The chart below shows the most cited "nodes" of the full UCC network and the textual UCC network. As one can see, they are
quite similar. (The prefixing of the letter "d" in front of certain terms denotes that the term in question is defined specifically for
Article 9 of the Uniform Commercial Code, which has a special provenance).

uccanalysis.nb 13

With@8t =MapThread@Part@
Thread@8GetVertexLabels@ð1D, Last@ð2D<D, Reverse�Ordering@Last�ð2, -20DD&,88gd, textualUCCgraphCC<, networkdegreedistributions<D<,

If@$VersionNumber ³6., Row@MapThread@Panel@Grid@ð, ColumnAlignments ®LeftD, ð2D&,8t, 8"Citations to Full UCC", "Citations to Textual UCC"<<DD,
ColumnForm@Insert@Map@TableForm, tD, " ", 2DDDD

CitationstoFullUCC

Goods 444

ddebtor 227

Instrument 193

dsecuredparty 169

Lessee 160

Buyer 158

Seller 154

Lessor 149

Bank 149

Leasecontract 144

dfinancingstatement123

Item 117

contract 113

Paymentorder 104

Issuer 89

dgoods 85

s9-102a 79

Receivingbank 74

drecord 69

Lease 67

CitationstoTextualUCC

Goods 444

ddebtor 227

Instrument 193

dsecuredparty 169

Lessee 160

Buyer 158

Seller 154

Lessor 149

Bank 149

Leasecontract 144

dfinancingstatement123

Item 117

contract 113

Paymentorder 104

Issuer 89

dgoods 85

Receivingbank 74

drecord 69

Lease 67

Indorsement 66

� Markov Centrality

Another frequent measure of the centrality of a particular node on a graph, and a cousin of the "most cited" measure, is its
"Markov Centrality." The idea here is to start at some random position on the graph and then take an infinite-length random walk
on the graph. By random walk, I mean that the walker starts at some node and then randomly chooses an outgoing edge to follow
to the next node. The process then repeats itself. The "Markov Centrality" of a node is the probability that, at the end of such an
infinite process, the walker will find itself on a particular node. It is generally simpler to use this process on an undirected graph,
and that is the course of action that will be followed here.

The Mathematica code below determines the Markov Centrality of each node in the graph. The idea is to create a Markov
transition matrix in which the probability of going from node i to node j is zero if the two nodes are unconnected and one divided
by the number of outgoing nodes otherwise. In theory, the first eigenvector of the transpose of the matrix created by this process
is the sought-for result. In practice, for large graphs, computation of the eigenvector may require some methodological tweaking
and a willingness to accept some modest approximation.

Options@eigenGraphD=Options@EigenvectorsD;
eigenGraph@g_, opts___D:=

WithA9ev =FirstAEigenvectorsAMap@ð�Max@1, Total@ðDD&, N@ToAdjacencyMatrix@gDDD̈ ,

1, optsEE=, ev�Total@evDE

uccanalysis.nb 14

Options@markovcentralityD=Options@eigenGraphD;
markovcentrality@g_, opts___D:= With@8Ε=eigenGraph@g, optsD<,

Part@Thread@8GetVertexLabels@gD, Ε<D, Reverse@Ordering@ΕDDDD;
Here, I use this code to determine the Markov Centrality of the nodes in the full UCC graph and the textual UCC graph. I show
the most central nodes in the table below.

AbsoluteTimingBgmarkovc =

markovcentralityBg, Method ®:"Arnoldi", "StartingVector" ®TableB������������
1.

V@gD, 8V@gD<F,
"MaxIterations" ®1000, "Tolerance" ®0.0000001>F;F

84.3753920 Second, Null<
AbsoluteTimingB
textualUCCgraphCCUmarkovc =markovcentralityBMakeUndirected@textualUCCgraphCCD,

Method ®:"Arnoldi", "StartingVector" ®TableB��
1.

V@textualUCCgraphCCD,
8V@textualUCCgraphCCD<F, "MaxIterations" ®1000, "Tolerance" ®0.0000001>F;F

82.7658728 Second, Null<

uccanalysis.nb 15

If@$VersionNumber ³6.,

Row@MapThread@Panel, 88Grid@Take@gmarkovc, 20D, ColumnLines ®True, RowLines ®True,

ColumnAlignments ®LeftD, Grid@Take@textualUCCgraphCCUmarkovc, 20D,
ColumnLines ®True, RowLines ®True, ColumnAlignments ®LeftD<,8"Markov Centrality, Full UCC", "Markov Centrality, Textual UCC"<<DD,

ColumnForm@Insert@Map@TableForm, 8Take@gmarkovc, 20D,
Take@textualUCCgraphCCUmarkovc, 20D<D, " ", 2DDD

MarkovCentrality, FullUCC

Goods 0.0185391

dsecuredparty 0.0102108

ddebtor 0.00884174

Instrument 0.00815719

Seller 0.00735858

Lessee 0.0072445

Buyer 0.0072445

Lessor 0.00701633

Bank 0.00695929

Leasecontract 0.00661702

dfinancingstatement0.00644591

Paymentorder 0.00530503

contract 0.00524798

Issuer 0.00524798

dgoods 0.00507687

Item 0.00473459

s9-102a 0.00456348

drecord 0.00342261

Receivingbank 0.0034226

Indorsement 0.0034226

MarkovCentrality, TextualUCC

Goods 0.0259419

dsecuredparty 0.014288

ddebtor 0.0123723

Instrument 0.0114144

Seller 0.0102969

Lessee 0.0101373

Buyer 0.0101373

Lessor 0.00981801

Bank 0.00981799

Leasecontract 0.00925927

dfinancingstatement0.0090198

Paymentorder 0.00742336

contract 0.00734355

Issuer 0.00734353

dgoods 0.00710409

Item 0.00662515

drecord 0.00478927

Receivingbank 0.00478926

Indorsement 0.00478926

Lease 0.00470945

The results are again quite similar regardless of whether the full or the textual network is used. The results are also quite similar
to those for simple "citation." Goods is the most central part of the UCC, with the terms "secured party" (as used in Article 9),
"debtor" (as used in Article 9), Instrument, Seller, Lessee, Buyer and Bank being the next most central.

� Kevin Bacon Centrality

A third way of measuring the importance of nodes in a network is average closeness. This measurement depends on the concept
of a "geodesic" on a graph. A "geodesic" between two nodes on a graph is the smallest set of edges that go from one node to the
other. Notice that for a connected graph with n nodes, there are n2 geodesics (n(n-1)/2 if the graph is undirected, each of which
may contain up to n values. Thus a 2,000 node connected graph will have 4 million geodesics, each of which may contain a
number of integers bounded only by the diameter of the graph. Nodes at the "center" of a network will tend to be closer on
average to other nodes via geodesics than nodes on the periphery. The "Kevin Bacon" name for this measure derives from the
belief (since proven not quite correct) that actor Kevin Bacon lay at the center of the Hollywood movie database using this
measure of centrality. As it turns out, actor Rod Steiger lies at the center.

uccanalysis.nb 16

One can use Combinatorica to find the nodes on the shortest path between any two nodes. Unfortunately, the algorithm depends

on Combinatorica’s AllPairsShortestPath function, which does not scale particularly well to large graphs. The code listed below
takes up to eight hours to run on a relatively swift computer. Some of the code below is thus devoted to file storage and retrieval
of this information to avoid recomputation costs.

Short@textualapsp = AllPairsShortestPath@textualUCCgraphCCU, ParentDD
Short@gapsp = AllPairsShortestPath@gu, ParentDD
gapsp >>

"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph Theoretic Structure of Common Law\\UCC\\gapsp"

textualapsp >>"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\textualapsp"

gapsp =<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\gapsp";

textualapsp =<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\textualapsp";

The "kevinbacon" function below converts the output of the AllPairsShortestPath function (when used Parent as its second
argument) to the Kevin Bacon measure of average closeness.

kevinbacon@apsp_D:=Mean@Cases@ð, _Integer?Hð>0 &LDD& ��HFirst�apspL
I now determine Kevin Bacon closeness on the full UCC network and the textual network. The results are somewhat surprising.
Although "goods" retains its place as the central theme of the UCC, other less well known provisions assume higher prominence.
Section 1-301(g), a sort of meta-rule for determining which rule of the UCC to apply becomes quite prominent. So does the
concept of a "buyer in the ordinary course of business," a concept addressing those who purchase goods in a fashion that violates
the rights of third parties. Various provisions of UCC Article 7 (Documents of Title) also appear as central to the textual database.

If@$VersionNumber ³6.,

Row@MapThread@Panel, 8MapThread@With@8kb =kevinbacon@ðD<, Grid@
Take@Part@Thread@8GetVertexLabels@ð2D, N@kbD<D, Ordering@kbDD, 10D,
RowLines ®True, ColumnLines ®True, ColumnAlignments ®LeftDD&,88gapsp, textualapsp<, 8gu, textualUCCgraphCCU<<D,8"Kevin Bacon Closeness, Full UCC", "Kevin Bacon Closeness, Textual UCC"<<DD,

ColumnForm@Insert@MapThread@With@8kb =kevinbacon@ðD<, TableForm@
Take@Part@Thread@8GetVertexLabels@ð2D, N@kbD<D, Ordering@kbDD, 10DDD&,88gapsp, textualapsp<, 8gu, textualUCCgraphCCU<<D, " ", 2DDD

KevinBaconCloseness, FullUCC

Goods 3.7165

s1-301g 4.04231

Buyerinordinarycourseofbusiness4.17348

s2A-3091 4.23484

s7-402 4.25212

s7-305b 4.25353

s2-4022 4.25599

s2A-105 4.26904

s7-203 4.27292

s7-502a 4.27891

KevinBaconCloseness, TextualUCC

Goods 3.55796

s2A-3091 3.95998

Buyerinordinarycourseofbusiness4.00782

s7-502a 4.10488

s7-301a 4.11132

s7-305b 4.11132

s7-402 4.11132

s7-203 4.11224

s7-301b 4.11224

s7-301d 4.11224

� Betweenness Centrality

uccanalysis.nb 17

�

Betweenness Centrality

Another way of measuring the importance of nodes in a network is there so-called "Betweenness Centrality." This measurement
likewise depends on the concept of a "geodesic" on a graph. The "betweenness" of a particular node is the fraction of geodesics
between all possible nodes on the graph that traverse the particular node. In theory, one can also compute the "betweenness" of a
particular edge as the fraction of geodesics between all possible nodes on the graph that traverse the particular edge.

To implement this in Mathematica, one first takes the list of path predecessors created as the second part of the output from

AllPairsShortestPath and then creates the actual shortest paths. The UpperDiagonalOnly option prevents double counting of
paths on undirected graphs and the ProcessingFunction option permits different forms of computation as well as side effects to
occur, thus potentially saving memory. The long set of somewhat ugly code below outlines the rather complex process of determin-
ing betweenness centrality for the fairly large UCC network without crashing the Mathematica kernel due to memory limitation
issues. Basically, it involves using a somewhat elaborate "ProcessingFunction" to compute "betweenness" as shortest paths are
being determined rather than storing information and computing it afterwards.

Needs@"LinearAlgebra‘MatrixManipulation‘"D
Options@MyParentsToPathsD=8UpperDiagonalOnly ®True, ProcessingFunction ®Hð&L<;
MyParentsToPaths@m_?SquareMatrixQ, opts___D:=

With@8f =ProcessingFunction �. 8opts< �. Options@MyParentsToPathsD<,
MapIndexed@Function@8z, i<, If@And@i@@1DD>i@@2DD,

UpperDiagonalOnly �. 8opts< �. Options@MyParentsToPathsDD, 8Indeterminate<,
f@Rest@Reverse@FixedPointList@m@@i@@1DD, ð1DD&, i@@2DDDDDDDD, m, 82<DD

Short@textualnodecounts = Array@0 &, Length@Last�textualapspDDD
80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, �2151�, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
MyParentsToPaths@Last�textualapsp, ProcessingFunction ®HFunction@q,Htextualnodecounts =MapAt@ð+1 &, textualnodecounts, Partition@q, 1DD; "x"LDLD;
textualnodecounts >>"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\textualnodecounts";

Short@fullnodecounts = Array@0 &, Length@Last�gapspDDD
80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, �2813�, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
MyParentsToPaths@Last�gapsp, ProcessingFunction ®HFunction@q,Hfullnodecounts =MapAt@ð+1 &, fullnodecounts, Partition@q, 1DD; 0LDLD;
fullnodecounts >>"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\fullnodecounts";

Once these complex computations are done, one can reload the data.

textualnodecounts =

<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph Theoretic Structure of Common

Law\\UCC\\textualnodecounts";

fullnodecounts =

<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph Theoretic Structure of Common

Law\\UCC\\fullnodecounts";

Needs@"Statistics‘DescriptiveStatistics‘"D

uccanalysis.nb 18

betweenness@parentmatrix_, nodesD:=

Sort@Frequencies@DeleteCases@Flatten@parentmatrixD, IndeterminateDDD
betweenness@parentmatrix_, edgesD:=

Sort@Frequencies@Flatten@Map@Partition@ð, 2, 1D&, parentmatrix, 82<D, 2DDD
AbsoluteTiming@textualmp2p =MyParentsToPaths@Last�textualapspD;D
894.6305360 Second, Null<
textualmp2p >>"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\textualmp2p"

AbsoluteTiming@gmp2p =MyParentsToPaths@Last�gapspD;D
8165.1987344 Second, Null<
gmp2p >>

"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph Theoretic Structure of Common Law\\UCC\\gmp2p"

gmp2p =<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\gmp2p";

textualmp2p =<<"H:\\CDR\\LAW&ECON\\ARTICLE\\Graph

Theoretic Structure of Common Law\\UCC\\textualmp2p";

I am now able to present results. As one can see, "goods" triumphs again as the center of the UCC with "isuser" and "secured
party" (as used in Article 9) also playing important roles. This analysis reveals important roles for several somewhat obscure
provisions, however. Section 2-309(1), which governs the situations in which goods (subject to the UCC) become fixtures (mostly
governed by non-UCC real estate law) proves important as does section 9-502(a) governing the sufficiency of "financing state-
ments," basically a notice of a security interest in property. Also highly "between" is section 7-502(a), which governs (roughly
speaking) the circumstances under which "negotiation" of documents of title confers property interests in the underlying goods.

uccanalysis.nb 19

With@8fullbetweennesstable =

Take@Reverse@Part@Thread@8GetVertexLabels@guD, fullnodecounts<D,
Ordering@fullnodecountsDDD, 20D, textualbetweennesstable =Take@

Reverse@Part@Thread@8GetVertexLabels@textualUCCgraphCCUD, textualnodecounts<D,
Ordering@textualnodecountsDDD, 20D<, If@$VersionNumber ³6., Row@MapThread@Panel@Grid@ð, ColumnAlignments ®LeftD,
ð2D&, 88fullbetweennesstable, textualbetweennesstable<,8"Betweenness Full UCC", "Betweenness Textual UCC"<<DD,8fullbetweennesstable, textualbetweennesstable<DD

BetweennessFullUCC

Goods 1334082

Issuer 599586

dsecuredparty 560972

s7-502a 418204

s2A-3091 417056

s9-502a 415497

s1-301g 391457

s9-203b 344935

Bank 330844

Item 263832

s4-210c 256287

Instrument 246833

Goodfaith 244135

s9-102a 218556

Person 215542

ddebtor 212034

Seller 201549

s7-106 194859

dfinancingstatement164269

s9-3 157784

BetweennessTextualUCC

Goods 930520

dsecuredparty 482199

s2A-3091 457400

s9-502a 456893

Issuer 436724

s7-502a 338641

s9-203b 289691

s4-210c 236517

Item 233220

Bank 213625

ddebtor 189970

Instrument 171599

Person 167526

Goodfaith 158046

dfinancingstatement 149220

Buyerinordinarycourseofbusiness114525

Draft 113560

Seller 111695

Securityinterest 105479

Creditor 103055

� Deconstructing the Network: Minimum Cuts

A difficulty in studying highly connected networks is that everything is ultimately connected to everything else and, yet, studying
everything at once is far too complicated. It is thus sometimes useful to break the small world network up into pieces and study
each of the parts, accepting that this reductionist approach is flawed precisely because it omits what may be crucial connections
to other components of the network. The "MinCut" algorithm provided in Mathematica’s GraphPlot package facilitates this
approach. Basically, it tries to use a minimum number of edge cuts to create a graph with a user-specified number of discon-
nected components. The function implements this process by returning a list of lists, each of which contains the vertices in each
of the resulting components of the network. These components can then be studied by inducing a subgraph based on the vertex
list.

Traditionally, in American law schools, the Uniform Commercial Code is broken down into courses such as sales, payment
systems and secured transactions, often with some sort of miscellaneous course added on to deal with matters such as uncertifi -
cated securities or bulk sales. I can use Mathematica to see if an algorithmically optimal partitioning of the textual version of the
UCC matches the traditional compartmentalization of the subject matter employed by American law schools. I thus cut the full
and textual UCC into four parts and then show the contents and structure of these four parts.

uccanalysis.nb 20

Shallow@fullmincut =MinCut@g, 4DD
8851, 71, 78, 80, 81, 92, 95, 96, 102, 104, �702�<,

83, 4, 5, 6, 10, 11, 12, 24, 27, 28, �699�<,
81, 2, 7, 8, 9, 13, 14, 23, 25, 26, �699�<,
815, 16, 17, 18, 19, 20, 21, 22, 40, 41, �700�<<

Shallow@textualmincut =MinCut@textualUCCgraphCCU, 4DD
881, 2, 7, 8, 9, 19, 21, 27, 31, 34, �533�<,

83, 4, 5, 6, 10, 20, 22, 23, 24, 25, �534�<,
840, 44, 46, 48, 57, 58, 59, 60, 64, 65, �535�<,
811, 12, 13, 14, 15, 16, 17, 18, 36, 37, �533�<<

fulluccpartitions =Map@InduceSubgraph@g, ðD&, fullmincutD;
textualuccpartitions =Map@InduceSubgraph@textualUCCgraphCCU, ðD&, textualmincutD;

� Deconstructing the Full Uniform Commercial Code

I now show the partitions for both the full UCC and the textual UCC. The first set of graphs shows that the full UCC indeed
breaks down fairly well into the compartments traditionally used in teaching. The first partition is pretty much a traditional "Sales
and Leasing" course with "goods" and "seller," "lease contract" and "lessor" constituting the central concepts. The second
partition is predominantly a "Secured Transactions" course with "secured party", "debtor", "financing statement" and "goods" at
the center. The third partition is the lesser-taught potpourri of more obscure UCC provisions governing bulk sales, uncertificated
securities, warehouse receipts and similar arcane manners. The fourth partition clearly relates to payment systems and banking. It
has "bank" and "instrument" at its center. But this algorithmic replication of the tradtiional learning may be caused partly by the
confluence of the academy paying considerable attention to the formal structure of the UCC and the lack of connectivity in the
formal graph between articles resulting in a preference for cutting the graph between articles.

If@$VersionNumber ³ 6.,

MapIndexed@With@8labels =GetVertexLabels@ðD<, Panel@GraphPlot@ð,

Method ®8"SpringElectricalModel", "RepulsiveForcePower" ®-1.2,

RecursionMethod ®8"Multilevel", "CoarseningScheme" ®

"MaximalIndependentVertexSetRugeStuben"<<, Background ®GrayLevel@1D,
EdgeStyleFunction ®H8GrayLevel@0.5D, Thickness@0.0001D, Line@8ð1, ð2<D<&L,
VertexStyleFunction ®H8Hue@0D, Tooltip@Disk@ð, 0.01D, labels@@ðDDD<&LD,

"Full Partition " <>ToString@ð2@@1DDDDD&, fulluccpartitionsD ��ColumnD
FullPartition1

FullPartition2

uccanalysis.nb 21

FullPartition3

FullPartition4

The code and panels below show the most between nodes of the various partitions. I can use the simpler "betweenness" function
here because the partitions are of a more manageable size than the entire UCC graph.

mostbetweenconcepts@g_, n_: 10D:=Module@8t1apsp, t1mp2p<,
t1apsp = AllPairsShortestPath@g, ParentD;
t1mp2p =MyParentsToPaths@Last�t1apspD;
Take@With@8b =betweenness@t1mp2p, nodesD<,

Reverse@Thread@8Part@GetVertexLabels@gD, Last ��bD, First ��b<DDD, nDD
Column@MapThread@Panel@Grid@mostbetweenconcepts@ð, 10D, ColumnAlignments ®LeftD,

"Most Between Nodes of Full Partition " <>ð2D&,8fulluccpartitions, 8"1", "2", "3", "4"<<DD

uccanalysis.nb 22

MostBetweenNodesofFullPartition1

Goods 112015

Seller 39502

Leasecontract25393

Lessor 19404

contract 15848

Termination 10234

Lessee 8890

s2A-2 7890

s2A-221 7099

Supplier 6875

MostBetweenNodesofFullPartition2

dsecuredparty 76378

ddebtor 44097

dfinancingstatement35166

dgoods 22797

s9-3 19067

drecord 14363

s9-406 12015

s2-2102 10425

s9-708 9796

s2-210 9777

MostBetweenNodesofFullPartition3

Issuer 114921

Delivery 79761

Securitycertificate64706

s7-502a 37033

Securityinterest36522

s1-2 34928

s1-204 32998

s1-310 31661

s1-201 30177

s1-201b 29814

MostBetweenNodesofFullPartition4

Bank 69089

value 51719

Instrument43757

s4-211 39963

Item 35613

Draft 31675

Goodfaith17514

s3-303 16143

s3-103b 15050

s4A-302b 14714

uccanalysis.nb 23

� Deconstructing the Textual Uniform Commercial Code

If one looks at the textual UCC, the breakdown into four partitions results in a far less traditional decomposition of the code. The
first partition appears to have leasing (Article 2A) at is center but contains significant satellites involving letters of credit (Article
5) and filing of securities interests under Article 9. The second partition involves mostly secured transactions (Article 9) but also
a significant satellite involving bulk transfers (Article 6). The term "secured party" is the most between in the second partition.
The third partition involves two distinct segments (suggesting that, really, one should break the textual UCC into five parts), the
first involving sales and the second involving aspects of bank deposits (Article 4) and fund transfers (Article 4A), with goods,
seller and bank being the central concepts. The final partition involves payment systems (Article 3) and uncertificated securities
(Article 8) with issuer, instrument, party and indorsement providing the central concepts.

If@$VersionNumber ³ 6.,

MapIndexed@With@8labels =GetVertexLabels@ðD<, Panel@GraphPlot@ð,

Method ®8"SpringElectricalModel", "RepulsiveForcePower" ®-1.2,

RecursionMethod ®8"Multilevel", "CoarseningScheme" ®

"MaximalIndependentVertexSetRugeStuben"<<, Background ®GrayLevel@1D,
EdgeStyleFunction ®H8GrayLevel@0.5D, Thickness@0.0001D, Line@8ð1, ð2<D<&L,
VertexStyleFunction ®H8Hue@0D, Tooltip@Disk@ð, 0.01D, labels@@ðDDD<&LD,

"Textual Partition " <>ToString@ð2@@1DDDDD&, textualuccpartitionsD ��ColumnD
TextualPartition1

TextualPartition2

uccanalysis.nb 24

TextualPartition3

TextualPartition4

I can again run a "betweenness centrality" computation on the four partitions of the textual network.

Column@MapThread@Panel@Grid@mostbetweenconcepts@ð, 10D, ColumnAlignments ®LeftD,
"Most Between Nodes of Textual Partition " <>ð2D&,8textualuccpartitions, 8"1", "2", "3", "4"<<DD

uccanalysis.nb 25

MostBetweenNodesofTextualPartition1

Lessee 48280

s2A-5281 46119

s2A-3091 46117

s1-302 45084

s9-502a 44991

s5-103c 44793

s5-117d 40902

Lessor 40341

dfinancingstatement36454

value 19457

MostBetweenNodesofTextualPartition2

dsecuredparty63015

ddebtor 30396

s6-1033 30066

s9-610 19195

s9-623c 17547

dgoods 15983

s9-602 12127

s9-620 11580

dproceeds 7454

s9-109d 6964

MostBetweenNodesofTextualPartition3

Goods 27220

Seller 19936

Bank 10733

contract 6769

Item 5270

Paymentorder5254

Receivingbank3519

warehouse 2923

sale 2753

Sender 2559

MostBetweenNodesofTextualPartition4

Issuer 56170

Instrument 49122

Party 20299

Indorsement 17698

Uncertificatedsecurity15359

Securitycertificate 14756

Delivery 13402

Financialasset 13397

s3-103b 11210

Draft 9417

uccanalysis.nb 26

� The Core of the Uniform Commercial Code

One often interesting characteristic of a graph or network is its so-called "main core." The concept here is to find the maximal
subset of nodes in a (undirected) graph that are connected to at least x other members of the subset, where x is an integer such
that, for any number greater than x, the subset becomes empty. This subset can be taking a low value of x and then iteratively
eliminating nodes that are connected to fewer than x other nodes. The process continues until a fixed point is reached. One then
increases x by one. This outer loop continues until the subset disappears. So one remembers the subset generated by the last value
of x for which the subset didn’t disappear. While there is no exact meaning that can be ascribed to the main core of a graph
composed of legal "stuff," I like to think of it as areas particularly prone to complexity, in which the level of interconnection is
greatest. To be sure, complexity may occur at lower levels of connectivity, but in the main core, understanding of any one of the
concepts constituting a node requires an understanding of relationships to a large variety of other concepts and provisions.

core@g_Graph, v_Integer, maxiters_IntegerD:=FixedPoint@
InduceSubgraph@ð, Flatten@Position@Degrees@ðD, _?Hð³v &LDDD&, g, maxitersD

maincore@g_Graph, vinit_Integer, maxiters_Integer, maxv_IntegerD:=

NestWhile@8ð@@1DD+1, core@ð@@2DD, ð@@1DD, maxitersD<&, 8vinit, g<,
Function@V@ð@@2DDD¹0D, 1, maxv, -1D �. 8a_, gr_Graph<¦8a -1, gr<

I now find the main core of the full and textual UCC networks.

mc =Map@maincore@ð, 5, 30, 10D&, 8gu, textualUCCgraphCCU<D
887, �Graph:<233, 45, Undirected>�<, 87, �Graph:<218, 42, Undirected>�<<

uccanalysis.nb 27

If@$VersionNumber ³ 6.,

Column@MapThread@Function@8z, {<, Module@8g, gccoords, labels<,
g =Last�z;

gccoords =GraphCoordinates@gD;
labels =GetVertexLabels@gD; Panel@GraphPlot@g,

VertexStyleFunction ®H8Hue@0D, Tooltip@Disk@ð, 0.05D, labelsPðTD<&L,
VertexCoordinates ®gccoordsD, {DDD,8mc, 8"Main Core of Full Uniform Commercial Code",

"Main Core of Textual Uniform Commercial Code"<<DD,
MapThread@Function@8z, {<, Module@8g, gccoords, labels<,

g =Last�z;

gccoords =GraphCoordinates@gD;
labels =GetVertexLabels@gD;
GraphPlot@g, VertexStyleFunction ®H8Hue@0D, Disk@ð, 0.05D<&L,
VertexCoordinates ®gccoords, PlotLabel ®{DDD,8mc, 8"Main Core of Full Uniform Commercial Code",

"Main Core of Textual Uniform Commercial Code"<<DD
MainCoreofFullUniformCommercialCode

MainCoreofTextualUniformCommercialCode

Here I find two areas of maximal complexity, the first involving a cluster of issues relating to banks, payments and fund transfers,
the second involving a cluster of issues relating mostly to defaults under a commercial lease.

uccanalysis.nb 28

� Is the Uniform Commercial Code a "Small World Network"?

The embedding process visually indicates that,whether one considers the full structure of the Uniform Commercial Code or just
the textual structure of the Uniform Commercial Code, the result is a classic "small world network," one which has a small
diameter like random graphs but which is highly "clustered" like strongly regular graphs. (http://mathworld.wolfram.com/Scale-
FreeNetwork.html; http://en.wikipedia.org/wiki/Small_world_phenomenon). Mathematica permits me to assess the hint provided
by the visualizations.

I first assess the diameter of the full UCC network and the textual UCC network. I do so using the PseudoDiameter command of
the GraphPlot package. I find that it they are 13 and 14 respectively.

HPseudoDiameter@ðDP1, 1TL& ��8gu, textualUCCgraphCCU<
813, 14<

Experiments with true random graphs of similar numbers of vertices and similar numbers of edges show that the diameter on the
connected components is usually equal to 8 to 9, although sometimes the figure is higher. Thus, both the textual UCC graph and
the full UCC are somewhat more "structured" than a random graph.

Module@8vfull =V@guD, vtextual =V@textualUCCgraphCCUD,
fullequivalent, textualequivalent<,

fullequivalent =RandomGraph@vfull,
∆�. First@Solve@∆vfull Hvfull -1L�2 �M@guD, ∆DD, Type ®UndirectedD;

textualequivalent =RandomGraph@vtextual,
∆�. First@Solve@∆vtextual Hvtextual -1L�2 �M@textualUCCgraphCCUD, ∆DD,
Type ®UndirectedD;HPseudoDiameter@ðDP1, 1TL& ��8fullequivalent, textualequivalent<D

89, 10<
I now assess the clustering of the full and textual graphs. Clustering asks the following question: if node A is connected to node
B and node A is also connected to node C, how likely is it that node B is connected to node C? The code below determines the
approximate clustering coefficient of a node or set of nodes.

clustering@g_Graph?UndirectedQ, i : 8___Integer<D:=Module@8sg =

Map@InduceSubgraph@g, ðD&, Map@Complement@Neighborhood@g, ð, 1D, 8ð<D&, iDD<,
Map@8M@ðD, V@ðD HV@ðD-1L�2<&, sgDD

I can now determine and display for nodes of varying degrees, the mean clustering coefficient for nodes of the full UCC graph
and the textual UCC graph. I use sampling to increase execution speed.

Short@uccclustertables =Map@Function@gr, With@8d =Degrees@grD<,
Map@With@8z =Flatten@Position@d, ðDD<,8ð, Length@zD, clustering@gr, RandomChoice@z, Min@20, Length@zDDDD<D&,

Select@Union@dD, ð³2 &DDDD, 8gu, textualUCCgraphCCU<DD
88�1�<, 8�1�<<

uccanalysis.nb 29

Short@meanclusteringbydegree =

Map@Map@8ð@@1DD, ð@@2DD, Mean@First ��Part@ð, 3DD�ð@@3, 1, 2DD<&, ðD&,

uccclustertablesDD
::82, 333, 0<, �62�, :325, 1, ���������������

298
26 325

>>, 8�1�, �60�, 8�1�<<>

WithB:means =MapBWithB8t =Transpose@ðD<, NB��
Dot ��t

Total@First�tDFF&,

Map@Part@ð, 82, 3<D&, meanclusteringbydegree, 82<DF>,
Panel@ListLinePlot@DeleteCases@Map@Log@10, Part@ð, 81, 3<DD&,

meanclusteringbydegree, 82<D, 8_, -¥<, 82<D,
AxesLabel ®8"Degree", "Clustering"<, PlotStyle ®88Green<, 8Blue<<D,

"Clustering of UCC By Degree\nLog-Log Plot HGreen is

Full, Blue is TextualL\nMean Clustering is Full: " <>

ToString@First�meansD<>"; Textual: " <>ToString@Last�meansDDF
ClusteringofUCCByDegree

Log-LogPlotHGreenisFull, BlueisTextualL
MeanClusteringisFull: 0.140713; Textual: 0.381221

0.5 1.0 1.5 2.0 2.5
Degree

-2.5

-2.0

-1.5

-1.0

-0.5

Clustering

The results for the full graph and textual graph are roughly consonant to what one sees in a small world graph. The full graph is
less clustered because the subsections of a section of the UCC often do not reference each other.

Conclusion
Two types of conclusions that can one can draw from this study of the Uniform Commercial Code.

The first set of conclusions relates to the Uniform Commercial Code. This study shows the UCC to be a fairly sparse "small
world network." Unlike most of the network of Supreme Court precedents earlier studied by this author, the UCC has definite
"structure" and contains a set of loosely linked clusters. The UCC decomposes fairly well along the cleavages that traditionally
mark its study, though part of this correspondence is an artifact of the confluence between the hierarchical structure of the UCC
and the article-specific focus of most studies of the UCC. An alternative decomposition that permits study of portions of multiple
articles simultaneously also appears to be sensible, however. This work shows the concepts of "goods" and of "secured parties" to
have great prominence in the UCC, along with several other terms such as "debtor", "instrument" and "buyer in the ordinary
course of business." The concept of "good faith," which many have heralded as somewhat of a UCC novelty, also has a promi-
nent place in the network. The most interrelated portions of the UCC, and those thus most likely to be complex, relate to fund
transfers under article 4A and default under leases pursuant to article 2A.

uccanalysis.nb 30

The first set of conclusions relates to the Uniform Commercial Code. This study shows the UCC to be a fairly sparse "small
world network." Unlike most of the network of Supreme Court precedents earlier studied by this author, the UCC has definite
"structure" and contains a set of loosely linked clusters. The UCC decomposes fairly well along the cleavages that traditionally
mark its study, though part of this correspondence is an artifact of the confluence between the hierarchical structure of the UCC
and the article-specific focus of most studies of the UCC. An alternative decomposition that permits study of portions of multiple
articles simultaneously also appears to be sensible, however. This work shows the concepts of "goods" and of "secured parties" to
have great prominence in the UCC, along with several other terms such as "debtor", "instrument" and "buyer in the ordinary
course of business." The concept of "good faith," which many have heralded as somewhat of a UCC novelty, also has a promi-
nent place in the network. The most interrelated portions of the UCC, and those thus most likely to be complex, relate to fund
transfers under article 4A and default under leases pursuant to article 2A.

The second set of conclusions relates to Mathematica. Mathematica’s Regular Expression and Internet import capabilities make it
feasible readily to reduce complex legal texts found on the Internet to be radically compressed into a mathematical network. This
capability is facilitated when, as with the UCC, electronic versions of the text have already been expertly marked up. Once the
network is created, Mathematica, with its GraphPlot package and Combinatorica augmenting its basic functionality, is able to
handle many of the traditional problems in network analysis without great difficulty. For small networks, there is not a great need
to resort to external functions via J/Link or to external programs using file transfer mechanisms. The system has considerable
difficulty, however, scaling certain forms of analysis, notably those relying on distance measurements amongst the nodes, to
larger networks. Some of the analyses for this paper took over eight hours to run on a relatively swift computers; others forced the
Mathematica kernel to shut down with memory problems. Still others required uncomfortably baroque work arounds and a
tolerance for approximation. Various extensions to the functionality of GraphPlot and Combinatorica would thus appear to be
critical if Mathematica is to become a leading tool of network analysis. The UCC network, though large, is hardly among the
larger networks that will be the subject of examination in the years ahead.

uccanalysis.nb 31

