uccanalysis.nb 1

The Network Structure of the
Uniform Commerical Code:

It's A Small World After All
' Seth J. Chandler 2005

The Uniform Commercial Code is the body of law governing many forms of transactions in the United States, including sales of
goods, leases, most forms of payments, and so-called "secured transactions.” Consisting of eleven "articles,” which in turn
contain a nested structure of sections and subsections, the UCC is a cross-referenced body of law developed in committees by
two private organizations and then generally adopted with few modifications by the fifty American states. It is studied extensively
in American law schools and constitutes the primary legal authority used by many commercial lawyersin the United States. This
article uses Mathematica to study the formal and textual network structure of the UCC. It first uses the Regular Expression
constructs of Mathematica to parse the UCC and reveal the structure of nodes and connections it implicitly contains. It then
develops tools in Mathematica to analyze and visualize this network. Standard embedding algorithms, coupled with numeric
analysis, highlight that the UCC isaclassic "Small World Network™ in which highly clustered portions of the law have weak ties
to distant clusters in a way that reduces the diameter of the network. The article is aso able to show the most important and
intricate provisions of the UCC as well asto reveal useful methods of studying this significant body of law.

Creating the Textual, Formal and Full Networks

m |ntroduction

What | propose to do in thiswork is to determine what features of the law are lost, revealed, or clarified when its textual represen-
tation is stripped of its treasured linguistic content and all that is preserved are the connections among different chunks of the
text. This radical compression cannot be done without human judgment. Because legal texts and not explicitly designed as
mathematical objects, decisions must be made about what counts as a "node" and what counts as an "edge." Such an effort must
be exogenously informed by expertise in the law; the ghost of the text thus persists in the formation of the network.

uccanalysis.nb 2

m The Cornell-LII Text

The solution chosen here draws on the expertise of Cornell University’sLegal Information Institute (“Cornell-LI1"), which has
created and which maintains an electronic version (HTML format) of the entire Uniform Commercial Code
(http://www.law.cornell.edu/ucc/index.htm). The text is stored in 11 files, one for each article of the code, that collectively
consume about 1.5 megabytes of text. This version is particularly useful in that Cornell-LI1 has carefully inserted HTML anchors
for each section and subsection of the each of the articles as well as for each obviously defined term (such as "goods" or
"instrument"). The Cornell-LII has likewise carefully inserted HTML hyperlinks each time the text cross references either
another section of the UCC or one of the defined terms. The By way of example, here is how the Cornell-LI1 text denotes the
connection between various provisions of law cited in section 2-207(2) of the UCC. | have highlighted the hyperlinks. What |
would like is to extract links, therefore, from "s2-2072" to "contract” and from "s2-2072" to "BetweenMerchants'. The Cornell-
LIl version is thus well suited as the foundation for a mathematical network in which hyperlink anchors form the nodes of the
network and the hyperlinks themselves form the links. | will refer to this network as the "textual UCC network™ because it
imposes no structure on the text other than that perceived by Cornell-LI1, one which seems quite logical to me along with other
professors of contract law. It is important to note that terms that are used often, such as "person” or "reasonable” that are not
themselves defined in the UCC are not considered nodes (even if they are used quite frequently) and thus have no links coming to
them or emerging from them.

(2) The additional terms are to

be construed as proposals for addition to the <a ISk liEIMg>contract. <a [lHEE=ENEE I ET SR> Between

merchants such terms become part of the contract unless:</p>
<p class="Text-Level2">(a) the offer expressly limits acceptance to the terms
of the offer;</p>
<p class="Text-Level2">(b) they materially alter it; or</p>
<p class="Text-Level2">(c) notification of objection to them has already been
given or is given within a reasonable time after notice of them is received.</p>

There is another latent network | believe within the Uniform Commercial Code, however, that Cornell-LII has not captured,
perhaps because to conventional legal scholars it is so obviously present. The UCC, like many modern legal codes, is formally
structured as a tree. Articles contain chapters that contain sections that contain subsections. And while Cornell-L1I has created
hyperlinks noting the connectivity between items of text and these various sections or subsections, no hyperlinks are inserted to
denote the internal tree structure. To illustrate, subsection (b) of section 2-207 of the UCC, which has its own anchor, does not
contain a hyperlink to section 2-207 of the UCC, even though the latter full section has an anchor and even though subsection (b)
is obvioudly part of section 2-207. The internal structure of the Cornell-LII version is essentially "flat,” with no attempt being
made to use XML or other methods to replicate the nested structure of the original legal code. (XML structuring has been used on
other some of the other texts maintained by Cornell-LI1). One of my tasks here, therefore, will be to breathe life into the latent
formal tree structure and to integrate the resulting "formal network” with the textual UCC network.

m Importation of the Cornell-LIl Text from the Web

Mathematica is the technology | use to accomplish these tasks. It can be used swiftly to import and then combine the HTML files
into one large textual file, which can be locally stored for simplicity. The StringReplace command is used to address some typos
and mild irregularities in the Cornell-L11 markup of the text. Those who are more interested in the results of this analysis than the
methodology may safetly skip this and the next subsection.

| begin by loading two packages that will be used extensively in this notebook.

Needs [" Di screteMat h* GaphPl ot‘ "]; Needs["Di screteMath’ Conbi natorica'"1];

uccanalysis.nb 3

Export [H: \\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Comon Law\\ UCC\\ucctext.txt",
ucctext = Wth[{fixes = {Regul ar Expression[" (?<!s) (\\d (?: Ala)-\\d. +)"] =
"s" <>"$1", Regul ar Expression["MUCC(\\d.)"] = "s" <>"$1",

Regul ar Expressi on[" (?<!s)2(?:a]A)-(\\d\\w+)"] = "S2A-" <>"$1",
Regul ar Expression["s2 (?:a]A)-(\\d\\w+)"] = "S2A-" <>"$1",
Regul ar Expressi on[" (?<!s)4 (?:a]A)-(\\Vd\\w+)"] = "s4A-" <>"$1",
Regul ar Expression["s4(?:alA)- (\d\\w+)"] = "s4A-" <>"$1" } 1,

Fol d[StringRepl ace [#1, #2] & StringJoinee

Map [l mport ["http: / mww. | aw. cornel | . edu/ucc/" <>
#<>"/article" <>a<>".htn, "Text"] &

a2t "2A", "3", "4", "4A", "5", "6", "7", "8", "9"}], fixes]], "Text"];

Once thisis done,we can, of course, simply import the local version of the file.

getucc [l ocation_String:
"H:\\ CDR\\ LAWKECON\ \ ARTI CLE\\ Graph Theoretic Structure of Common
Lam \ UCC\\ucctext.txt"]:=I1nmport [l ocation, "Text"7];

ucct ext =getucc[];

m The Textual Structure of the UCC

I now disinter two networks from the text of the UCC: the "textual network" and the "formal network." Ultimately, | combine the
two networks into the "Full UCC Networks' by taking the union of the nodes and the union of the edges.

m Findingthe Textual Structure

To recover the textual structure of the UCC, | start by splitting the entire text into pairs of anchors and the text that follows up
until the next anchor. | insert a"dummy anchor"at the very beginning of the text. Regular Expressions coupled with the String-
Cases and StringSplit functions perform this task swiftly.

anchor NameRegExp =
Regul ar Expressi on[" < (?: a|A)\\s+[*>Txname\\ sx A\ sx\ " ([M\">T%)\" [*>]*>"1;

Absol ut eTi mi ng[anchortextpairs =
Thread[Li st [Prepend[Stri ngCases [ucctext, anchor NameRegExp =» "$1"], "ZeroStart"],
StringSplit [ucctext, anchor NaneRegExp]11];]

{0.1718904 Second, Nul |}

I now need to take the textual component of these anchor-text pairs, extract the hyperlinks contained within the text, and then
thread the anchors over the hyperlinks to show that the anchored segment of text contains a reference to the anchor contained in
the hyperlink. This process produces a list of edges in the textual UCC network. Because some of the hyperlinks in the Cornell-
LIl database reference anchors within files that are stored separately on the Cornell web site, and because some of the hyperlinks
reference things that simply are not relevant to this project, each of the links must be properly resolved.

uccanalysis.nb 4

resol vetarget [s_String] :=Wth[{
hashString ="#([*%]+)", cornell String ="http: / mww. | aw. cornel | . edu/ucc (. +)"},
Whi ch [
StringMat chQ[s, Regul ar Expressi on[hashString]],
Fi rst [StringCases[s, Regul ar Expression[hashString] =»"$1"1],
Stringhat chQ[s, Regul ar Expression[cornell String<>hashString]l,
Fi rst [StringCases[s, Regul ar Expression[cornell String<>hashString] =»"$2"17,
True, "UNRESOLVABLE" 1]

Short [t extual uccedges = Wth[{anchor Hr ef RegExp =
Regul ar Expressi on["<(?: a|A)\\s+[*>]xhref\\sx2aA\sx\" ([*1\">]#)\" [*>]%>"1},
Fl atten[Del et eCases [Map [Thr ead [
MapAt [Del et eCases [resol vet arget /@ StringCases [#, anchor Hr ef RegExp =» " $1"],
"UNRESOLVABLE"] &, #, 2]]1 & anchortextpairs], {}1, 1111

Avenjargeoutpuwvasgeneratetierasasamplefit

{{s1-103a, Agreenent }, «<7512>, {s9-709b, dfi nanci ngstatenent }}

Show.esg| Showore ShovFuIIOutpuH SetSize imit.

m Preparing to Visualize the Textual Structure

I can now use the same techniques as above to visualize the textua structure of the UCC. | first get alist of the labels for all
nodes and then | extract alist of numbered edges.

Short [t ext ual UCC abel s = Uni on[Fl att en[t ext ual uccedges]]]

{2-104, 2-106, 2-401, 2-403, <<2192>>, war ehouse, War ehouserecei pt, Witing}

Absol ut eTi mi ng[Short [t extual uccgraph = Rul e eee
(t ext ual uccedges /. Di spat ch[Mapl ndexed [Rul e[#1, #2[1]] & textual UCO abel s1]1)11

Avenjargeoutpuwvasgeneratetierasasamplefit

{0. 0312528 Second, {309 -» 52, 310 -» 105, 311 - 281, 314 - 145,
<«<7506>>, 2161 -» 194, 2163 - 1814, 2163 - 1682, 2163 —» 155}}

Show esd| Showmord ShOV\FuIIOutpuH SetSizeLimit.

I let Combinatorica construct a graph out of the edges (Combinatorica and GraphPlot currently use different network formats).

t ext ual uccgraphC = Set Vert exLabel s [
FromOr der edPai r s [Li st @@et ext ual uccgraph, Type » Directed], textual UCO abel s]

Avenjargeoutpuvasggeneratetierasasamplefit

-G aph: <7514, 2199, Directed>-

Showesq| Showoreg ShovFuIlOutpuH SetSize_imit.

For visualization purposes, | eliminate from the graph afew very small unconnected components.

uccanalysis.nb 5

t ext ual UCCgr aphCC = Wth[{cc = Connect edConponent s [t ext ual uccgr aphC]},
I nduceSubgr aph [t ext ual uccgraphC, cc[First @O dering[Length /ecc, -11111

Avenjargeoutpuwvasgeneratetierasasamplefit

-Graph: <7500, 2175, Directed>-

Show.esg| Showore ShovFuIIOutpuH SetSizelimit.

| can also create an undirected variant of this graph.

t ext ual UCCgr aphCCU = MakeUndi r ect ed [t ext ual UCCgr aphCC]

Avenjargeoutpuwvasgeneratetierasasamplefit

-G aph: <6269, 2175, Undirected>-

Show esd| Showmord ShOV\FuIIOutpuH SetSizeLimit.

m A Picture of the Textual Structure of the Uniform Commercial Code

I now use GraphPlot to visualize the textual structure of the UCC. Here, | use Mathematica’ simplementation of the Fruchterman-
Reingold algorithm, termed the " SpringElectricalModel," to embed the nodes. This algorithm assigns the nodes of the network
some initial position in space. The space is usually two dimensional but can have a higher dimensionality. All nodes then repel
each other but do so in afashion that isinversely proportional to the Euclidean physical distance between them, much in the way
two particles with like electrical charge would repel each other. Thus, two nodes that lie at a distance of two from each other
repel each other more strongly than do two nodes that lie at a distance of five from each other. Nodes that are connected to each
other, however, attract in a counterbalancing fashion that is proportional to the physical distance between them. The general idea,
quite complex in its implementation and subject to numerous variations, is to position the nodes in a fashion that minimizes the
total attractive and repulsive force exerted. This method tends to produce a layout that is both attractive and that often both
recapitulates and extends intuitions about the structure of the network under consideration. | use the Tooltip construct of Mathe-
matica 6 to permit those using this notebook in an interactive way to determine the content of each of the embedded nodes.

Short [t ext ual UCCcoor ds = G aphCoor di nat es [t ext ual UCCgr aphCC,
Met hod -» {" Spri ngEl ectri cal Model ", "Repul si veForcePower"” - -1.5, Recursi onMet hod -»
{"Multilevel", Coarseni ngSchene -» " Maxi mal | ndependent Vert exSet RugeSt uben" }3}11

{{3.40983, -4.77647}, <«<2173>, {-4.24539, - «<19>}}

uccanalysis.nb

gpt extual =
I f [$Ver si onNunber 2 6., Panel [G aphPl ot [t ext ual UCCgr aphCC, VertexStyl eFunction: >
({Hue[0], Tooltip[Di sk[#, 0.002], textual UCCl abel s[[#]1]} &),
EdgeStyl eFuncti on » ({GayLevel [0.25], Line[{#l, #2}]} &),
Ver t exCoor di nat es » t ext ual UCCcoor ds, AspectRatio - 1],
"The Textual Structure\nof the Uniform Commercial Code"],
GraphPl ot [t ext ual UCCgr aphCC, VertexStyl eFunction: > ({Hue[0], Di sk[#, 0.002]} &),
EdgeStyl eFuncti on » ({GrayLevel [0.25], Line[{#l, #2}]} &),
Ver t exCoor di nat es -» t ext ual UCCcoor ds, AspectRatio -1,
Pl ot Label - "The Textual Structure\nof the Uniform Commercial Code"]]

TheTextuabtructure
oftheUniforr@ommerci@lode

Notice that the graph embedding routines contained in Mathematica have constructed a plausible structure for the Uniform
Commercial Code simply from the connectivity information contained in the text, without any knowledge as to the tree structure
of the Code, and without any understanding of what the Code actualy says. | say "plausible" because the picture may be inter-
preted as clusters of highly interrelated provisions with weak ties to other clusters of highly interrelated provisions, which
corresponds with many scholars intuition as to the structure of the UCC.

uccanalysis.nb 7

m The Formal Structure of the UCC

In addition to this textual structure, the UCC also has an implicit formal structure created by the hierarchical labelling of articles,
chapters, sections and subsections. As noted above, however, the Cornell-LI11 text has not preserved this nested structure. One

way to recover it, however, isto find al the "leaves" of the tree using Regular Expressions and then to find the parent "branches"
by combining Regular Expression constructs with independent knowledge of naming conventions adopted by the UCC. Again,
those interested primarily in the legal aspects of this article may skip the remainder of this subsection.

» Findingthe Formal Structre

The following code captures al "leaves" contained in the Uniform Commercial Code.

Absol ut eTi mi ng[Short [uccl eaves =
Wth[{likelyuccreference = Regul ar Expression[" (s\\d(?: Ala)?-\\d{3}\\wx)"]},
Uni on[StringCases [ucctext, |ikelyuccreference :»"$1"11111

{0. 0781320 Second,
{s1-101a, s1-101b, s1-102, s1-103, <«<2422>, s9-708, s9-709, s9-709a, s9-709b}}

I now show how to recover the "geneaology"of these statutory leaves. | know, for example, that the parent of UCC subsection
"s2-207b" is"s2-207" because | know that the framers of the UCC denote a section by a chapter number (a one or two character
string), followed by a hyphen, followed by three digits. | know that the parent of UCC section "s9-102a80" is"s9-102a" because a
shift from numeric characters to letter characters after the three digit section number is used in the Cornell-LI1 text to mark a
change from subsection to subsubsection. The Mathematica code set forth below shows how all this may be done. Basically, it
tries to match a list of Regular Expressions and then capture that part of the appropriate regular expression that represents the
parent.

parent [s_]:=Wth]
{articlestring =""s\\d(?: Ala)?-", chapterstring ="\\d", sectionstring ="\\d\\d",
term nal subsectionstring =" (?: (?<aA\D)\\d+| (?<a\d)\\D+)$"},
StringRepl ace[s, {Regul arExpression[" (" <>articlestring<>chapterstring<>
sectionstring<>".+" <>")" <>term nal subsectionstring] =»"$1",
Regul ar Expression[" (" <>articlestring<>chapterstring<>sectionstring<»>
") <>" \\d+|\\D+)$"] =" $1", Regul ar Expression[
" (" <>articlestring<>chapterstring<>")" <>sectionstring<>"$"1:="$1",
Regul ar Expression[" (" <>articlestring<>")" <>chapterstring<>"$"1 =»
StringReplace["$1", "-" »>""1}
1]

I can do thisrecursively using Mathematica’ sFixedPoint construct to find the entire geneaology of a UCC leaf.
parentlist [s_] : = Most [Fi xedPoi ntLi st [parent, s, 20]]
I can now find al the "edges" of the formal UCC graph.

Absol ut eTi m ng[Short [fornmal uccedges =
Union[Fl atten[Map[Partition[parentlist [#], 2, 1] & uccl eaves], 1111]

{0. 3594072 Second,
{{s1-1, sl1}, {s1-101, s1-1}, <<2481>>, {s9-709a, s9-709}, {s9-709b, s9-709}}}

uccanalysis.nb 8

m Preparing to Visualize the Formal Structure of the Uniform Commercial Code

I can use the same techniques as before to go from alisting of these edges to creation of network objects suitable for manipula-
tion and analysis using various M athematica packages.

Absol ut eTi mi ng[Short [formal uccgraph = Rul e e@ee(f or mal uccedges /.
Di spat ch[Mapl ndexed [Rul e[#1, #2[17] & Union[Fl atten[formal uccedges]11]1)1]

{0.0156264 Second, {21, 352, 453, 553, 652, 752, «<2474>,
2492 - 2487, 2493 - 2466, 2494 — 2466, 2495 — 2494, 2496 - 2494})

Short [f ormal UCO abel s = Uni on [Fl atten[formal uccedges]]]
{sl, s1-1, s1-101, sl1-101a, s1-101b, <«<2487>, s9-708, s9-709, s9-709a, s9-709b}
edges?2| abel =D spatch[Mapl ndexed [Rul e[#2[1], #1] & fornal UCCl abel s]1;
Short [f or mal UCCcoor ds = Gr aphCoor di nat es [f or mal uccgr aph, Met hod ->"Radi al Drawi ng"]1]
({0. 0821706, 9.14582), <<l>>, <«<2492>>, {<<l1>>}, {3.45919, <«19>})

| can aso create a Combinatorica version of the network.

f or mal UCCgr aphC = Set Vert exLabel s [
FromOr der edPai rs [Li st @e@ef or mal uccgraph, Type » Directed], fornmal UCO abel s]

Avenjargeoutputvasgeneratetierasasamplefit

-G aph: <2485, 2496, Directed>-

ShowLesq| Showoreg ShovFuIlOutpuH SetSize_imit.

m A Picture of the Formal Structure of the Uniform Commercial Code

The GraphPlot package can now be used to show the formal structure of the Uniform Commercial Code. | use a"radial embed-
ding" method because | know, in advance, that the structure will be tree like. The remaining code essentially mimics that used
above to prepare the visualization of the textual structure of the UCC. The result is, indeed, a set of disconnected trees, each
reflecting an article of the UCC. The trees are disconnected because there is no way for any provision in, say Article 2 of the
UCC to be part of the hierarchy for, say, Article 7.

uccanalysis.nb 9

gpformal =1f [$Versi onNunber > 6., Panel [G aphPl ot [f or nal uccgr aph,
Vert exStyl eFunction » ({Hue[O], Tooltip[Di sk[#, 0.05], formal UCO abel s[#]]1} &),
Vert exCoor di nat es - f or mal UCCcoords],
"The Formal Structure of the Uniform Commercial Code"],
GraphPl ot [formal uccgraph, VertexStyl eFunction » ({Hue[0], Di sk[#, 0.05]} &),
Ver t exCoor di nat es - f or mal UCCcoor ds,
Pl ot Label ->"The Formal Structure\nof the Uniform Comrercial Code"]]

TheFormabtructureftheUniforrcommerci@lode

m The Full Structure of the UCC

m Creating the Full Structure

With the formal and textual structures of the UCC now recovered, | can combine the two to obtain the full structure of this body
of law. Basically, | do this by joining the edges of the textual graph with the edges of the formal graph.

Short [uccedges = Joi n[f or mal uccedges, textual uccedges]]

Avenjargeoutpuwvasggeneratetierasasamplefit

{{sl1l-1, sl1}, {s1-101, sl1-1}, <«<9996>>, {s9-709b, dfi nanci ngstatenent }}

Showesq| Showoreg ShovFuIDutpuH SetSize_imit.

I can use the same techniques shown above to produce data structures representing this full UCC network to both the GraphPlot
package and the Combinatorica package.

Short [al | uccl abel s = Uni on[Fl att en[uccedges]]]

{2-104, 2-106, 2-401, 2-403, <<2833>>, war ehouse, Warehouserecei pt, Witing}

uccanalysis.nb 10

Absol ut eTi m ng[Short [uccgraph =
Rul e e@e@(uccedges /. Di spatch[Mapl ndexed [Rul e[#1, #2[1]] & allucclabels]]1)1]

Avenjargeoutpuwvasgeneratetierasasamplefit

{0. 0312528 Second, {310 -» 309, 311 -» 310, 312 -» 311, 313 - 311,
<«<9991>>, 2801 -» 194, 2804 - 2404, 2804 - 2251, 2804 -» 155}}

ShowLesq| Showoreg ShovFuIDutpuH SetSize_imit.

al | edges?2| abel = Di spatch[Mapl ndexed[Rul e[#2[1], #1] & al |l uccl abel s11;

gd = Set Vert exLabel s[
FronmOr der edPai r s [Li st e@e@uccgr aph, Type -» Directed], alluccl abel s]

Avenjargeoutpuwvasgeneratetierasasamplefit

-G aph: <9999, 2840, Directed>-

Show.ess| ShowMore ShOV\FuIIOutpuH SetSizeLimit.

| can aso create an undirected version of the network, which is useful for portions of the analysis.

g = RenoveSel f Loops [MakeUndi rect ed[gd]]

Avenjargeoutputvasgeneratetierasasamplefit

-G aph: <8758, 2840, Undirected>-

ShowLesq| Showoreg ShovFuIlOutpuH SetSizelimit.

And | can extract the largest connected component of this undirected network.

gu = Wth[{cc = Connect edConponents[g]},
I nduceSubgraph[g, cc[First @eOdering[Length/ecc, -1111]

Avenjargeoutpuwvasgeneratetierasasamplefit

-Graph: <8756, 2837, Undirected>-

Show.esg| Showlore ShovFuIDutpuH SetSizelimit.

m Preparing to Visualize the Full Structure of the Uniform Commercial Code
I can now visualize the full Uniform Commercial Code using the same techniques as before.

Short [ful | UCCcoords = G aphCoor di nat es [gu,
Met hod -» {" Spri ngEl ectri cal Model ", "Repul si veForcePower" - -1.5, Recursi onMet hod -»
{"Multilevel", Coarseni ngSchene - " Maxi mal | ndependent Vert exSet RugeSt uben" }3}11

{{2.59161, -2.54955}, <«<2835>, {-3.67459, <«19>>1}}

Short [ful | UCC abel s = Get Vert exLabel s[gu]]
{2-104, 2-106, 2-401, 2-403, <<2830>>, warehouse, Warehouserecei pt, Witing}

uccanalysis.nb 11

A Picture of the Full Structure of the Uniform Commercial Code

| use GraphPlot again to visualize the full structure of the Uniform Commercial Code. The result is a set of intricately connected
clusters each of which contains a few ties to most of the other clusters and each of which contains a small number of satellite
"clusterettes." As discussed below, the picture resembles that of “small world networks" in which the diameter of a highly
clustered system is reduced through the existence of just afew weak ties between key nodes of each of the clusters.

gpfull =1f [$VersionNunber > 6., Panel [G aphPl ot [gu,
EdgeStyl eFuncti on » ({Thi ckness[0.001], GrayLevel [0.25], Line[{#l, #2}]} &),
Ver t exCoor di nat es - f ul | UCCcoor ds,
Vert exStyl eFunction » ({Hue[O], Tool ti p[Di sk[#, 0.002], full UCC abel s[#]]1} &) 1,
"The Structure of the Full Uniform Conmercial Code"], G aphPl ot [gu,

EdgeStyl eFuncti on » ({Thi ckness[0.001], GrayLevel [0.25], Line[{#l, #2}]} &),
Vert exCoor di nat es - ful | UCCcoor ds,

Vert exStyl eFunction » ({Hue[0], Di sk[#, 0.002]} &) 1]
TheStructureftheFullUniforrcommerci@lode

I
W)

Analyzing the Uniform Commercial Code Network

| can use Mathematica conveniently to do some basic exploration of the full UCC network and of the two components from
which it is derived: the textua graph and the formal graph.

uccanalysis.nb 12

m Basic Analysis

= Graph Density

One basic measure of graphsis their density: the ratio between edges that exist and all possible edges that could potentially exist.
All the variants of the UCC network the directed version, the undirected version, the formal version, the textual version are
extremely sparse. Of the connections that might possibly exist among the different "nodes," only 2/10 of a percent exist at most.

.) M[g]

graphdensity[g_Gaph] : = ORI GERYE

Wth[{t =Thread[{{"Full UCC Undirected G aph", "Full UCC Directed G aph",
"Ful | UCC Undirected G aph (largest connected conmponent)",
"Formal UCC Graph", "Textual UCC G aph (l argest connected conponent)"},
N[graphdensity /e {g, gd, gu, formal UCCgraphC, textual UCCgraphCC}]1}1},

| f [$Versi onNunber > 6., Panel [Gid[t, RowLi nes » True, Col umLi nes - True,
Col umAl i gnnments » Left], "Graph Density"], Tabl eForm[t]1]]

Graplbensity
FulluCQUndirecte@raph 0.0021724
FulluUCirecteGraph 0.0024802
FullUCQJndirecte@raplilargestonnectecbmponentd.0021765
FormdUCGGraph 0.0007980
TextudUCQOGraphilargestonnectecbmponent 0.0031722

= Degree Distribution

Each node in a directed network has an "out degree" and an "indegree." The node' sout degree is the number of other nodes it
points to. The node’ sin degree is the number of nodes that point toit. The statistical distribution of in degrees among the nodes
is often a useful measure of the structure of a graph.

Shal | ow[net wor kdegr eedi stri buti ons =
Qut er [#2[#1] & {gd, textual UCCgraphCC}, {CQutDegree, | nDegree}, 1, 1], 4]

{{{<<2840>>}, {<<2840>>1}, {{<«<2175>}, {<<2175>1}}}

Short [exceedances =
Map[Wth[{n = Last [#]}, Table[{i, Count [n, _?#=2i &1}, (i, 1, Max[#[2]11}]] &
net wor kdegr eedi stri butions]]

{{{1, 1070}, {2, 876}, <<440>>, {443, 1}, {444, 11}, {<l1l>}}
Needs [" G aphi cs* Graphics' "]
| ogexceedances = exceedances /. {a_lnteger, b_Integer} ->{Log[10, a], Log[10, b]};

Needs [" G aphics* Mul tipleListPlot "]

uccanalysis.nb 13

| f [$Versi onNunber > 6., Panel [Li st LinePl ot [| ogexceedances, Axes - True,
Ti cks » Autormatic, Pl ot Markers - Automatic, PlotStyle » {{Red}, {Blue}},
AxeslLabel - {"Degree", "Nunber of Nodes\nExceeding This Degree"}],
"Log-Log Pl ot of Degree Distribution\nfor Full and Textual UCC networks"],
Mul ti pl eLi st Pl ot [Sequence @@l ogexceedances, Axes - Fal se, Franme - True,
Ti cks » Autormatic, Pl ot Markers - Automatic, PlotStyle » {{Red}, {Blue}},
AxeslLabel - {"Degree", "Nunber of Nodes\nExceeding This Degree"}, PlotlLabel ->
"Log-Log Plot of Degree Distribution\nfor Full and Textual UCC networks"]]

LogLogPlotofDegre®istribution
forFullandTextudUChetworks

noucel vl nuucsS

ceedi ng Thi s Degree
3.0

o e b e b e b 1 L [bgre
1.25 1.50 175 2.00 2.25 2.50

Most of the resulting plot looks fairly linear, suggesting that the UCC has similarities to a truncated scale free network.
(http://en.wikipedia.org/wiki/Scale-free_network; http://mathworld.wolfram.com/Scale-FreeNetwork.html). Several points follow
from this resemblance. First, the existence of some nodes of very high degree means that there are a couple of key provisions of
the UCC as to which any imprecision or confusion in their meaning can have cascading effects throughout the legal system.
Problems with other less well connected provisions of the UCC may not ruin operation of the legal system, however. Second, it
means that studies of other roughly scale free systems, such as the Internet, may have relevance to an understanding of the
Uniform Commercial Code.

m Centrality Measures

One can aso use network methods to try and determine the most "important" or central provisions or concepts in the UCC. Three
methods are often used: (1) citation; (2) Markov Centrality; (3) Closeness or "Kevin Bacon" centrality; and (4) Betweenness
Centrality.

= Most Cited

The chart below shows the most cited "nodes" of the full UCC network and the textual UCC network. As one can see, they are
quite similar. (The prefixing of the letter "d" in front of certain terms denotes that the term in question is defined specifically for
Article 9 of the Uniform Commercial Code, which has a special provenance).

uccanalysis.nb 14

Wth[{t = MapThread[Part [
Thread [{Get Vert exLabel s[#1], Last [#2]}], ReverseeOrdering[Last ex#2, -20]1] &,
{{gd, textual UCCgraphCC}, networkdegreedi stributions}]},
| f [$Versi onNunber 2 6., Row[MapThread[Panel [Gid[#, Col umAlignments » Left], #2] &,
{t, {("Ctations to Full UCC', "Citations to Textual UCC'}}1],

Col umFor m[l nsert [Map[Tabl eForm t]1, " ", 21111
Citation®FulluUCC Citation®d TextudUCC
Goods 444| | Goods 444
ddebtor 227| |ddebtor 227
Instrument 193| |Instrument 193
dsecuredparty 169| |dsecuredparty 169
Lessee 160| |Lessee 160
Buyer 158| |Buyer 158
Seller 154 |Seller 154
Lessor 149| |Lessor 149
Bank 149, |Bank 149

Leasecontract 144| |Leasecontract 144
dfinancingstatemdra3| |dfinancingstatemerit3

Item 117 |[ltem 117
contract 113| |contract 113
Paymentorder 104, | Paymentorder 104
Issuer 89 Issuer 89
dgoods 85 dgoods 85
s9-102a 79 Receivingbank 74
Receivingbank 74 drecord 69
drecord 69 Lease 67
Lease 67 Indorsement 66

= Markov Centrality

Another frequent measure of the centrality of a particular node on a graph, and a cousin of the "most cited" measure, isits
"Markov Centrality." The idea here is to start at some random position on the graph and then take an infinite-length random walk
on the graph. By random walk, | mean that the walker starts at some node and then randomly chooses an outgoing edge to follow
to the next node. The process then repeats itself. The "Markov Centrality” of a node is the probability that, at the end of such an
infinite process, the walker will find itself on a particular node. It is generally simpler to use this process on an undirected graph,
and that isthe course of action that will be followed here.

The Mathematica code below determines the Markov Centrality of each node in the graph. The idea is to create a Markov
transition matrix in which the probability of going from nodei to nodej is zero if the two nodes are unconnected and one divided
by the number of outgoing nodes otherwise. In theory, the first eigenvector of the transpose of the matrix created by this process
is the sought-for result. In practice, for large graphs, computation of the eigenvector may require some methodological tweaking
and awillingness to accept some modest approximation.

Opti ons [ei genGr aph] = Opti ons [Ei genvectors];

ei genGraph[g_, opts__] :=
Wth[{ev =First [Eigenvectors [Map[#/Mx[1, Total [#]] & N[ToAdjacencyMatrix[g]] 1,
1, opts]]}, ev/Total [ev]]

uccanalysis.nb 15

Options[markovcentrality] = Opti ons[ei genG aphl;

mar kovcentrality[g_, opts__]:=Wth[{e = ei genG aph[g, opts]},
Part [Thread[{CGet Vert exLabel s[g], €}], Reverse[Ordering[e]l]]l];

Here, | use this code to determine the Markov Centrality of the nodes in the full UCC graph and the textual UCC graph. | show
the most central nodes in the table below.

Absol ut eTi mi ng [gmarkovc =
1.
mar kovcentral ity [g, Met hod - {"Arnol di", "StartingVector" - Tabl e[-\-/-f-—], {VIg] }],
g

"Maxl terations" » 1000, "Tol erance" -» 0. 0000001}];]

{4. 3753920 Second, Nul I}

Absol ut eTi mi ng[

t ext ual UCCgr aphCCUmar kovc = mar kovcentral ity [l\/akeUndi rect ed [t ext ual UCCgr aphCCj,
1.
V[t ext ual UCCgr aphCC] '
{V[t ext ual UCCgr aphCC] }], "Maxlterations" -» 1000, "Tol erance" - 0. 0000001}];]

Met hod - { Arnoldi", "StartingVector" - Tabl e[

{2. 7658728 Second, Nul |}

uccanalysis.nb 16

| f [$Ver si onNunber 2 6.,
Row[MapThread [Panel , {{Gid[Take[gmarkovc, 20], Col umLi nes -» True, RowLi nes -» True,
Col umAl i gnments -» Left], Gid[Take[textual UCCgraphCCUmar kovc, 207,
Col umLi nes -» True, RowLi nes -» True, Col ummAl i gnments -» Left]},
{"Markov Centrality, Full UCC', "Markov Centrality, Textual UCC'}}]],
Col umFor m[l nsert [Map [Tabl eForm {Take[gmar kovc, 201,

Take [t ext ual UCCgr aphCCUmar kove, 207131, " ", 2111
MarkoCentralityrulluCC MarkoCentralitff extudUCC
Goods 0.0185391] |Goods 0.0259419
dsecuredparty [0.0102108 |dsecuredparty |0.014288
ddebtor 0.0088417| |ddebtor 0.0123723
Instrument 0.0081571 |Instrument 0.0114144
Seller 0.0073585| | Seller 0.0102969
Lessee 0.0072445| |Lessee 0.0101373
Buyer 0.0072445| |Buyer 0.0101373
Lessor 0.0070163| |Lessor 0.0098180
Bank 0.0069592 |Bank 0.0098179

Leasecontract 0.0066170, |Leasecontract 0.0092592
dfinancingstatemegn0064459 | dfinancingstateme&nh0090198
Paymentorder 0.0053050 |Paymentorder 0.0074233

contract 0.0052479, |contract 0.0073435
Issuer 0.0052479 |lIssuer 0.0073435
dgoods 0.0050768| |dgoods 0.0071040
Item 0.0047345 |ltem 0.0066251
s9-102aa 0.0045634| |drecord 0.0047892
drecord 0.0034226| |Receivingbank |0.0047892
Receivingbank |0.0034226 |Indorsement 0.0047892
Indorsement 0.0034226| |Lease 0.0047094

The results are again quite similar regardless of whether the full or the textual network is used. The results are aso quite similar
to those for simple "citation." Goods is the most central part of the UCC, with the terms "secured party” (as used in Article 9),
"debtor" (as used in Article 9), Instrument, Seller, Lessee, Buyer and Bank being the next most central.

= Kevin Bacon Centrality

A third way of measuring the importance of nodes in a network is average closeness. This measurement depends on the concept
of a"geodesic" on agraph. A "geodesic" between two nodes on a graph is the smallest set of edges that go from one node to the
other. Notice that for a connected graph with n nodes, there are n? geodesics (n(n-1)/2 if the graph is undirected, each of which
may contain up to n values. Thus a 2,000 node connected graph will have 4 million geodesics, each of which may contain a
number of integers bounded only by the diameter of the graph. Nodes at the "center" of a network will tend to be closer on
average to other nodes via geodesics than nodes on the periphery. The "Kevin Bacon" name for this measure derives from the
belief (since proven not quite correct) that actor Kevin Bacon lay at the center of the Hollywood movie database using this
measure of centrality. Asit turns out, actor Rod Steiger lies at the center.

uccanalysis.nb 17

One can use Combinatorica to find the nodes on the shortest path between any two nodes. Unfortunately, the algorithm depends
on Combinatorica’ sAllPairsShortestPath function, which does not scale particularly well to large graphs. The code listed below
takes up to eight hours to run on a relatively swift computer. Some of the code below is thus devoted to file storage and retrieval
of thisinformation to avoid recomputation costs.

Short [t extual apsp = Al | Pai rsShort est Pat h [t ext ual UCCgr aphCCU, Parent 1]

Short [gapsp = Al | Pai rsShort est Pat h[gu, Parent]]

gapsp >>
"H:\\ CDR\\ LAWKECON\\ ARTI CLE\\ Graph Theoretic Structure of Comron Lawh\UCQ\ \ gapsp"

t ext ual apsp >>"H \\ CDR\\ LAWKECON\ \ ARTI CLE\\ G- aph
Theoretic Structure of Common Lawh\ UCC\\t ext ual apsp"

gapsp = <<"H: \\ CDR\\ LAWKECON\ \ ARTI CLE\\ G aph
Theoretic Structure of Common Lawh\ UCQ\\ gapsp";

t ext ual apsp = <<"H: \\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Comron Lawh\ UCC\\t ext ual apsp";

The "kevinbacon" function below converts the output of the AllPairsShortestPath function (when used Parent as its second
argument) to the Kevin Bacon measure of average closeness.

kevi nbacon[apsp_]: = Mean[Cases[#, _Integer? (#>08&)]] &/@ (First eapsp)

I now determine Kevin Bacon closeness on the full UCC network and the textual network. The results are somewhat surprising.
Although "goods" retains its place as the central theme of the UCC, other less well known provisions assume higher prominence.
Section 1-301(g), a sort of meta-rule for determining which rule of the UCC to apply becomes quite prominent. So does the
concept of a "buyer in the ordinary course of business,” a concept addressing those who purchase goodsin a fashion that violates
the rights of third parties. Various provisions of UCC Article 7 (Documents of Title) also appear as central to the textual database.

| f [$Ver si onNunber 2 6.,

Row[MapThr ead [Panel , {MapThread [Wth[{kb = kevi nbacon[#]}, Gid[

Take[Part [Thread[{Get Vert exLabel s[#2], N[kb]}], Odering[kb]], 101,

RowLi nes - True, Col umLi nes » True, Col umAl i gnnments -» Left]] &,

{{gapsp, textual apsp}, {gu, textual UCCgraphCCU}}],
{"Kevin Bacon C oseness, Full UCC', "Kevin Bacon C oseness, Textual UCC'}}]1],
Col umFor m[l nsert [MapThread [Wth[{kb = kevi nbacon[#]}, Tabl eFor m[
Take[Part [Thread[{CGet Vert exLabel s [#2], N[kb]}], Ordering[kb]], 10117 &,

{{gapsp, textual apsp}, {gu, textual UCCgraphCCU}}], " ", 2111
KevirBacorClosenes&ullUCC KevirBacorClosenes3extudUCC
Goods 3.7165| | Goods 3.5579¢
s1-301 4.0423] |s2A-3091 3.9599¢
Buyerinordinarycourseofbus#hé&3s4§ |Buyerinordinarycourseofbush@83 87
S2A-3091 4.23484 |s7-502 4.1048¢
s7-402 4.25217 |s7-30h 4.11137
s7-30% 4.25353 |s7-30% 4.11137
s2-4022 4.25599 |s7-402 4.11137
s2A-105 4.26904 |s7-203 4.11224
s7-203 4.27297 |s7-30Db 4.11224
s7-502a 4.2789] |s7-30Md 4.11224

uccanalysis.nb 18

Betweenness Centrality

Another way of measuring the importance of nodes in a network is there so-called "Betweenness Centrality." This measurement
likewise depends on the concept of a "geodesic” on a graph. The "betweenness' of a particular node is the fraction of geodesics
between all possible nodes on the graph that traverse the particular node. In theory, one can also compute the "betweenness' of a
particular edge as the fraction of geodesics between all possible nodes on the graph that traverse the particular edge.

To implement this in Mathematica, one first takes the list of path predecessors created as the second part of the output from
AllPairsShortestPath and then creates the actual shortest paths. The UpperDiagonal Only option prevents double counting of
paths on undirected graphs and the ProcessingFunction option permits different forms of computation as well as side effects to
occur, thus potentially saving memory. The long set of somewhat ugly code below outlines the rather complex process of determin-
ing betweenness centrality for the fairly large UCC network without crashing the Mathematica kernel due to memory limitation
issues. Basically, it involves using a somewhat elaborate " ProcessingFunction” to compute "betweenness' as shortest paths are
being determined rather than storing information and computing it afterwards.

Needs [" Li near Al gebra‘ Matri xMani pul ati on‘ "]
Opti ons [MyPar ent sToPat hs] = {Upper Di agonal Only -» True, Processi ngFunction » (# &) };

MyPar ent sToPat hs [m_? SquareMatri xQ opts__] : =
Wth[{f = Processi ngFunction /. {opts} /. Options[M/ParentsToPat hs]},
Mapl ndexed [Function[{z, i}, If[And[i [[1]1] >i [[2]11,
Upper Di agonal Only /. {opts} /. Options[M/ParentsToPaths]], {lndeterm nate},
f [Rest [Reverse[Fi xedPointList [m[[i [[1]1], #1]1 & i [[211111111, m {2}11]

Short [t ext ual nodecounts = Array [0 & Length[Last et extual apspl]1]
{0, 0, 0,0,0 00000 0,0, «<2151», 0, 0, 0, 0, 0,0, 0,0,0, 0, 0, 0}
MyPar ent sToPat hs [Last et ext ual apsp, Processi ngFuncti on » (Function[q,
(t ext ual nodecount s = MapAt [#+1 & textual nodecounts, Partition[q, 1]11; "X")1)1;

t ext ual nodecount s >>"H:\\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Common Lawh\ UCC\\t extual nodecounts";

Short [ful | nodecounts = Array [0 & Length[Last egapsp]]]
(0, 0, 0,0,0 0000, 0, O, 0, «<2813>», 0, 0, 0,000, 0,000, 0,0}
MyPar ent sToPat hs [Last @gapsp, Processi ngFuncti on » (Function[q,

(ful l nodecounts = MapAt [#+1 &, fullnodecounts, Partition[q, 1]1; 0)1)1;

ful I nodecounts >>"H \\ CDR\\ LAW&KECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Conmon Lawh\ UCQ\\ful | nodecounts";

Once these complex computations are done, one can reload the data.

t ext ual nodecount s =
<<"H \\CDR\\ LAWKECON\\ ARTI CLE\\ Graph Theoretic Structure of Common
Lawh \ UCQC\ \ t ext ual nodecount s";

ful | nodecounts =
<<"H \\CDR\\ LAWKECON\\ ARTI CLE\\ Graph Theoretic Structure of Common
Lawh \ UCQ\\ f ul | nodecount s";

Needs ["Statistics' DescriptiveStatistics'"]

uccanalysis.nb 19

bet weenness [parentmatri x_, nodes] : =
Sort [Frequenci es [Del et eCases [Fl atten[parentmatri x], I ndetermnate]]]

bet weenness [parentmatri x_, edges] : =
Sort [Frequenci es[Flatten[Map[Partition[#, 2, 1] & parentmatrix, {2}1, 211]

Absol ut eTi m ng [t ext ual np2p = MyPar ent sToPat hs [Last et ext ual apsp];]
{94. 6305360 Second, Nul | }

t ext ual mp2p >>"H \\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Common Lawh\ UCC\\textual np2p"

Absol ut eTi m ng [gnp2p = MyPar ent sToPat hs [Last @egapsp];]
{165. 1987344 Second, Nul |}

gnp2p >>
"H: \\ CDR\\ LAWKECON\\ ARTI CLE\\ Graph Theoretic Structure of Common Lawh\ UCQ\\ gnp2p"

gnmp2p = <<"H: \\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Common Lawh\ UCQ\\ gnp2p";

t extual mp2p = <<" H:\\ CDR\\ LAWKECON\ \ ARTI CLE\\ Gr aph
Theoretic Structure of Comron Lawh\ UCQ\\t ext ual np2p";

I am now able to present results. As one can see, "goods' triumphs again as the center of the UCC with "isuser" and "secured
party” (as used in Article 9) aso playing important roles. This analysis reveals important roles for several somewhat obscure
provisions, however. Section 2-309(1), which governs the situations in which goods (subject to the UCC) become fixtures (mostly
governed by non-UCC real estate law) proves important as does section 9-502(a) governing the sufficiency of "financing state-
ments," basically a notice of a security interest in property. Also highly "between" is section 7-502(a), which governs (roughly
speaking) the circumstances under which "negotiation” of documents of title confers property interests in the underlying goods.

uccanalysis.nb 20

Wth[{full betweennesstable =

Take[Reverse[Part [Thread[{Cet Vert exLabel s[gu], full nodecounts}],

Ordering[ful |l nodecounts]]], 20], textual betweennesstabl e = Take[
Reverse[Part [Thread[{Get Vert exLabel s [t ext ual UCCgr aphCCU], t extual nodecounts}],
Orderi ng[textual nodecounts]]], 20]
}, | f [$Versi onNunber > 6., Row[MapThread[Panel [Gid[#, ColumAlignnents - Left],

#2] & {{full bet weennesst abl e, textual bet weennesst abl e},
{"Betweenness Full UCC', "Betweenness Textual UCC'}}]],

{ful | bet weennesst abl e, t extual bet weennesstabl e}]]

BetweennesslllUCC Betweenne3extudUCC

Goods 1334082| | Goods 930620
Issuer 599586 dsecuredparty 482199
dsecuredparty 56072 S2A-3091 457400
s7-502 41804 s9-502a 456393
S2A-3091 417056 Issuer 436724
s9-502a 415497 s7-502 33&%41
s1-304p 391457 s9-20d 28%91
s9-20D 344935 s4-21@ 23617
Bank 33®B44 Item 232220
Item 263832 Bank 213625
s4-21@ 25e287 ddebtor 18970
Instrument 246833 Instrument 171599
Goodfaith 24435 Person 167526
s9-102 21856 Goodfaith 158046
Person 21542 dfinancingstatement 14220
ddebtor 212034 Buyerinordinarycourseofbusiie®25
Seller 201549 Draft 11360
s7-106 194859 Seller 111695
dfinancingstatemar@4269 Securityinterest 105479
s9-3 157784 Creditor 103055

m Deconstructing the Network: Minimum Cuts

A difficulty in studying highly connected networks is that everything is ultimately connected to everything else and, yet, studying
everything at once is far too complicated. It is thus sometimes useful to break the small world network up into pieces and study
each of the parts, accepting that this reductionist approach is flawed precisely because it omits what may be crucial connections
to other components of the network. The "MinCut" algorithm provided in Mathematica’s GraphPlot package facilitates this
approach. Basically, it tries to use a minimum number of edge cuts to create a graph with a user-specified number of discon-
nected components. The function implements this process by returning a list of lists, each of which contains the vertices in each
of the resulting components of the network. These components can then be studied by inducing a subgraph based on the vertex
list.

Traditionally, in American law schools, the Uniform Commercial Code is broken down into courses such as sales, payment
systems and secured transactions, often with some sort of miscellaneous course added on to deal with matters such as uncertifi -
cated securities or bulk sales. | can use Mathematica to see if an algorithmically optimal partitioning of the textual version of the
UCC matches the traditional compartmentalization of the subject matter employed by American law schools. | thus cut the full
and textual UCC into four parts and then show the contents and structure of these four parts.

uccanalysis.nb 21

Shal | ow[ful | m ncut = M nCut [g, 4]]

{{51, 71, 78, 80, 81, 92, 95, 96, 102, 104, «<702>>},
{3, 4, 5, 6, 10, 11, 12, 24, 27, 28, <«<699>},

{1, 2, 7, 8, 9, 13, 14, 23, 25, 26, <«<699>>},

{15, 16, 17, 18, 19, 20, 21, 22, 40, 41, <«<700>}}

Shal | ow[t ext ual m ncut = M nCut [t ext ual UCCgr aphCCU, 4]]

{1, 2, 7, 8, 9, 19, 21, 27, 31, 34, «533>},
{3, 4, 5, 6, 10, 20, 22, 23, 24, 25, «534>},
{40, 44, 46, 48, 57, 58, 59, 60, 64, 65, <<535>},
{11, 12, 13, 14, 15, 16, 17, 18, 36, 37, <«<533>1}}

ful luccpartitions = Map[l nduceSubgraph[g, #] & fullm ncut];

textual uccpartitions = Map [l nduceSubgr aph [t ext ual UCCgr aphCCU, #] &, textual m ncut 1;

m Deconstructing the Full Uniform Commercial Code

I now show the partitions for both the full UCC and the textual UCC. The first set of graphs shows that the full UCC indeed
breaks down fairly well into the compartments traditionally used in teaching. The first partition is pretty much atraditional "Sales
and Leasing" course with "goods" and "seller," "lease contract” and "lessor" constituting the central concepts. The second
partition is predominantly a"Secured Transactions" course with "secured party”, "debtor”, "financing statement” and "goods" at
the center. The third partition is the lesser-taught potpourri of more obscure UCC provisions governing bulk sales, uncertificated
securities, warehouse receipts and similar arcane manners. The fourth partition clearly relates to payment systems and banking. It
has "bank" and "instrument" at its center. But this algorithmic replication of the tradtiional learning may be caused partly by the
confluence of the academy paying considerable attention to the formal structure of the UCC and the lack of connectivity in the
formal graph between articles resulting in a preference for cutting the graph between articles.

| f [$Ver si onNunber 2 6.,
Mapl ndexed [Wth[{l abel s = Get Vert exLabel s [#]}, Panel [G aphPI ot [#,
Met hod -» {" Spri ngEl ectri cal Model ", "Repul si veForcePower" - -1. 2,
Recur si onMet hod » {"Mul til evel ", "Coar seni ngSchene" -

" Maxi mal | ndependent Vert exSet RugeSt uben" }}, Background -» GraylLevel [1],

EdgeStyl eFuncti on » ({GayLevel [0.5], Thickness[0.0001], Line[{#l, #2}]1} &),

VertexStyl eFunction » ({Hue[O], Tooltip[Di sk[#, 0.01], labels[[#]]11} &)1,

"Full Partition " <>ToString[#2[[11]1]11]1 & fulluccpartitions] //Columm]

FullPartition

FullPartitiog

uccanalysis.nb 22

FullPartitiogd

The code and panels below show the most between nodes of the various partitions. | can use the simpler "betweenness® function
here because the partitions are of a more manageabl e size than the entire UCC graph.

nost bet weenconcepts[g_, n_: 10] : = Modul e[{t 1apsp, t 1np2p},
t lapsp = Al | Pai rsShort est Pat h[g, Parent];
t 1mp2p = MyPar ent sToPat hs [Last et 1apsp];
Take [Wth[{b = bet weenness [t 1np2p, nodes]},
Reverse[Thread[{Part [Get Vert exLabel s[g], Last /eb], First /@eb}11], nl]

Col um [MapThr ead [Panel [Gri d[nDst bet weenconcept s [#, 10], Col ummAl i gnnents - Left],
"Mbst Between Nodes of Full Partition " <>#2] &,
{fulluccpartitions, {"1", "2", "3", "4"}}1]

uccanalysis.nb

23

MosBetweenhNodewsfFullPartition

Goods 112015
Seller 39502
Leasecontra@5393
Lessor 19404

contract 15848
Termination 10234
Lessee 8890
S2A2 7890
s2A-221 7099
Supplier 6875

MosBetweenhNodesfFullPartitiog

dsecuredparty 76378
ddebtor 44097
dfinancingstateme&¥i166
dgoods 22797
s9-3 19067
drecord 14363
s9-406 12015
s2-2102 10425
s9-708 9796
s2-210 9777
MosBetweeNodesfFullPartitiol
Issuer 114921
Delivery 79761
Securitycertificaf&706
s7-502a 37033
Securityinterest36522
sl-2 34928
s1-204 32998
s1-310 31661
s1-201 30177
s1-20b 29814

MosBetweeNodesfFullPartitiod
Bank 69089
value 51719
Instrumend3757
s4-211 39963
Item 35613
Draft 31675
Goodfaith17514
s3-303 16143
s3-10®» 15050
sS4A-30D 14714

uccanalysis.nb 24

= Deconstructing the Textual Uniform Commercial Code

If one looks at the textual UCC, the breakdown into four partitions resultsin afar less traditional decomposition of the code. The
first partition appears to have leasing (Article 2A) at is center but contains significant satellites involving letters of credit (Article
5) and filing of securities interests under Article 9. The second partition involves mostly secured transactions (Article 9) but also
a significant satellite involving bulk transfers (Article 6). The term "secured party” is the most between in the second partition.
The third partition involves two distinct segments (suggesting that, really, one should break the textual UCC into five parts), the
first involving sales and the second involving aspects of bank deposits (Article 4) and fund transfers (Article 4A), with goods,
seller and bank being the central concepts. The fina partition involves payment systems (Article 3) and uncertificated securities
(Article 8) with issuer, instrument, party and indorsement providing the central concepts.

| f [$Versi onNunber 2 6.,
Mapl ndexed [Wth[{l abel s = Get Vert exLabel s [#]}, Panel [G aphPI ot [#,
Met hod -» {" Spri ngEl ectri cal Model ", "Repul si veForcePower" -» -1. 2,
Recursi onMet hod - {"Mul til evel ", "Coar seni ngSchene" -

" Maxi mal | ndependent Vert exSet RugeSt uben" }}, Background -» GraylLevel [1],

EdgeStyl eFuncti on » ({GrayLevel [0.5], Thickness[0.0001], Line[{#l, #2}]} &),

VertexStyl eFunction » ({Hue[O], Tooltip[Di sk[#, 0.01], labels[[#]]1]1} &)1,

"Textual Partition " <>ToString[#2[[1]1]1]1]1] & textualuccpartitions] //Colum]

TextudPartitio

TextudPartitiog

uccanalysis.nb 25

TextudPartitio

TextudPartitiod

I can again run a"betweenness centrality" computation on the four partitions of the textual network.

Col um [MapThr ead [Panel [Gri d[nDst bet weenconcept s [#, 10], Col umAl i gnnents - Left],
"Mbst Between Nodes of Textual Partition " <>#2] &,
{t extual uccpartitions, {"1", "2", "3", "4"}}11]

uccanalysis.nb

26

MosBetweenNodesfTextudPartition

Lessee 48280
sS2A-5281 46119
S2A-3091 46117
s1-302 45084
s9-502 44991
s5-10% 44793
s5-11d 40902
Lessor 40341
dfinancingstatema@454
value 19457
MosBetweeNodesfTextudPartitio®
dsecuredparg3015
ddebtor 30396
s6-1033 30066
s9-610 19195
s9-62% 17547
dgoods 15983
s9-602 12127
s9-620 11580
dproceeds 7454
s9-109 6964
MosBetweeNodesfTextudPartitio
Goods 27220
Seller 19936
Bank 10733
contract 6769
Item 5270
Paymentordeb254

Receivingbargs19
warehouse 2923

sale 2753
Sender 2559
MosBetweeNodesfTextudPartitiod

Issuer 56170
Instrument 49122
Party 20299
Indorsement 17698
Uncertificatedsecufisd59
Securitycertificate 14756
Delivery 13402
Financialasset 13397
s3-10d 11210
Draft 9417

uccanalysis.nb 27

m The Core of the Uniform Commercial Code

One often interesting characteristic of a graph or network is its so-called "main core." The concept here is to find the maximal
subset of nodes in a (undirected) graph that are connected to at least x other members of the subset, where x is an integer such
that, for any number greater than X, the subset becomes empty. This subset can be taking a low value of x and then iteratively
eliminating nodes that are connected to fewer than x other nodes. The process continues until a fixed point is reached. One then
increases x by one. This outer loop continues until the subset disappears. So one remembers the subset generated by the last value
of x for which the subset didn’t disappear. While there is no exact meaning that can be ascribed to the main core of a graph
composed of legal "stuff,” | like to think of it as areas particularly prone to complexity, in which the level of interconnection is
greatest. To be sure, complexity may occur at lower levels of connectivity, but in the main core, understanding of any one of the
concepts constituting a node requires an understanding of relationships to alarge variety of other concepts and provisions.

core[g_Gaph, v_Integer, maxiters_Integer] : =Fi xedPoint [
| nduceSubgraph[#, Flatten[Position[Degrees[#], ?(#=2Vv&)]1]1& g, maxiters]

mai ncore[g_Graph, vinit _Integer, maxiters_Integer, maxv_Integer]: =
NestWhi l e[{#[[1]] +1, core[#[[2]], #[[1]], maxiters]} & {vinit, g},
Function[V[#[[2]]] #0], 1, maxv, -1] /. {a_, gr _Graph} = {a-1, gr}

I now find the main core of the full and textual UCC networks.
nt = Map [nmai ncore[#, 5, 30, 10] & {gu, textual UCCgraphCCU}]
{{7, -Graph: <233, 45, Undirected>-}, {7, -G aph: <218, 42, Undirected>-}}

uccanalysis.nb 28

| f [$Ver si onNunber 2> 6.,
Col um [MapThr ead [Function[{z, ¢}, Mddul e[{g, gccoords, |abel s},
g = Last ez;
gccoords = GraphCoordi nates[g];
| abel s = Get Vert exLabel s[g]; Panel [GaphPI ot [g,
VertexStyl eFunction » ({Hue[0O], Toolti p[Di sk[#, 0.05], | abel s[#]1} &),
Ver t exCoor di nat es -» gccoords], 111,
{nc, {"Main Core of Full Uniform Comercial Code",
"Main Core of Textual Uniform Conmercial Code"}}]],
MapThread [Function[{z, ¢}, Mdul e[{g, gccoords, | abel s},
g = Last ez;
gccoords = GraphCoordi nates [g];
| abel s = Get Vert exLabel s[g];
GraphPl ot [g, VertexStyl eFunction -» ({Hue[0], Disk[# 0.05]} &),
Ver t exCoor di nat es -» gccoords, Pl otLabel - ¢]11,
{nc, {"Main Core of Full Uniform Comercial Code",
"Main Core of Textual Uniform Commercial Code"}}]]

MairCoreofFullUniforr@ommerci@lode

NN
NS
‘»’(/‘ NV
SN
RO

AN
Y
2
i

N

Here | find two areas of maximal complexity, the first involving a cluster of issues relating to banks, payments and fund transfers,
the second involving a cluster of issues relating mostly to defaults under a commercial lease.

uccanalysis.nb 29

m |s the Uniform Commercial Code a "Small World Network"?

The embedding process visually indicates that,whether one considers the full structure of the Uniform Commercial Code or just
the textua structure of the Uniform Commercial Code, the result is a classic "small world network,” one which has a small
diameter like random graphs but which is highly "clustered" like strongly regular graphs. (http://mathworld.wolfram.com/Scale-
FreeNetwork.html; http://en.wikipedia.org/wiki/Small_world_phenomenon). Mathematica permits me to assess the hint provided
by the visualizations.

| first assess the diameter of the full UCC network and the textual UCC network. | do so using the PseudoDiameter command of
the GraphPlot package. | find that it they are 13 and 14 respectively.

(PseudoDi anet er [#][1, 1]) &/@ {gu, textual UCCgr aphCCU}
{13, 14)

Experiments with true random graphs of similar numbers of vertices and similar numbers of edges show that the diameter on the
connected components is usually equal to 8 to 9, although sometimes the figure is higher. Thus, both the textual UCC graph and
the full UCC are somewhat more "structured" than a random graph.

Modul e[{vful | =V[gu], vtextual = V[textual UCCgraphCCU],
ful I equi val ent, textual equi val ent },
ful |l equi val ent = Randontraph [vful |,
6 /. First [Solve[svfull (vfull -1) /2 =M[gu], 611, Type » Undirected];
t ext ual equi val ent = RandomG& aph [vt ext ual ,
6 /. First [Sol ve[éVvtextual (vtextual -1) /2 == M[textual UCCgraphCCU], 611,
Type -» Undi rected];
(PseudoDi anet er [#]1[1, 11) &/e {ful | equi val ent, textual equi val ent }]

(9, 10}

I now assess the clustering of the full and textual graphs. Clustering asks the following question: if node A is connected to node
B and node A is also connected to node C, how likely is it that node B is connected to node C? The code below determines the
approximate clustering coefficient of a node or set of nodes.

clustering[g_Gaph?UndirectedQ i : {__Integer}] :=Mdule[{sg =
Map [| nduceSubgr aph[g, #] & Map[Conpl ement [Nei ghbor hood[g, #, 1], {#}]1 & i11},
Map [{M[#], V[#] (V[#] -1) /2} & sg]]

I can now determine and display for nodes of varying degrees, the mean clustering coefficient for nodes of the full UCC graph
and the textual UCC graph. | use sampling to increase execution speed.

Short [ucccl ustertabl es = Map[Function[gr, Wth[{d = Degrees[gr]},
Map[Wth[{z =Flatten[Position[d, #]1},
{#, Length[z], clustering[gr, RandontChoi ce[z, M n[20, Length[z]]]1]}] &
Sel ect [Union[d], #22&]1]1, {gu, textual UCCgraphCCU}1]
{«<1l>1, {«<1l>}}

uccanalysis.nb 30

Short [meancl ust eri ngbydegree =

Map[Map[{#[[1]1], #[[2]], Mean[First /ePart [#, 31]/#[[3, 1, 211} & #] &
ucccl ustertabl es]]

{{{2, 333, 0}, <«<62>>, {325, 1, = }}, {<«<1>, <<60>, {<<1>>}}}

Lot eet 11 &
Total [Firstet]d]
Map [Part [#, {2, 3}] & neancl usteringbydegree, {2}]]},
Panel [Li stLinePl ot [Del et eCases [Map[Log[10, Part [#, {1, 3}1] &,
meancl ust eri ngbydegree, {23}1, {_, -«}, {2}1,
AxeslLabel - {"Degree", "Custering"}, PlotStyle » {{Geen}, {Blue}}],
"Clustering of UCC By Degree\nLog-Log Plot (Geenis
Full, Blue is Textual)\nMean Clustering is Full: " <>

ToString[First eneans] <>"; Textual: " <>ToString[Last @means]]]

Wth[{rreans = Map[Wth[{t = Transpose [#]}, N[

ClusteringfUCByDegree
LogLogPlotGreeris Ful] Blues Textual
MearClusterinig Full 0.140713 extuaD.381221
lustering

L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 [bg re
0.5 1.0 15 2.0 25

—asé
~10}
—15;
20}

-25}

The results for the full graph and textual graph are roughly consonant to what one sees in a small world graph. The full graphis
less clustered because the subsections of a section of the UCC often do not reference each other.

Conclusion

Two types of conclusions that can one can draw from this study of the Uniform Commercial Code.

The first set of conclusions relates to the Uniform Commercial Code. This study shows the UCC to be a fairly sparse "small
world network." Unlike most of the network of Supreme Court precedents earlier studied by this author, the UCC has definite
"structure”" and contains a set of loosely linked clusters. The UCC decomposes fairly well along the cleavages that traditionally
mark its study, though part of this correspondence is an artifact of the confluence between the hierarchical structure of the UCC
and the article-specific focus of most studies of the UCC. An alternative decomposition that permits study of portions of multiple
articles simultaneously also appears to be sensible, however. This work shows the concepts of "goods" and of "secured parties' to
have great prominence in the UCC, aong with several other terms such as "debtor”, "instrument” and "buyer in the ordinary
course of business." The concept of "good faith," which many have heralded as somewhat of a UCC novelty, also has a promi-

uccanalysis.nb 31

nent place in the network. The most interrelated portions of the UCC, and those thus most likely to be complex, relate to fund
transfers under article 4A and default under leases pursuant to article 2A.

The second set of conclusions relates to Mathematica. Mathematica’ sRegular Expression and Internet import capabilities make it
feasible readily to reduce complex legal texts found on the Internet to be radically compressed into a mathematical network. This
capability is facilitated when, as with the UCC, electronic versions of the text have aready been expertly marked up. Once the
network is created, Mathematica, with its GraphPlot package and Combinatorica augmenting its basic functionality, is able to
handle many of the traditional problems in network analysis without great difficulty. For small networks, there is not a great need
to resort to external functions via JLink or to externa programs using file transfer mechanisms. The system has considerable
difficulty, however, scaling certain forms of analysis, notably those relying on distance measurements amongst the nodes, to
larger networks. Some of the analyses for this paper took over eight hours to run on arelatively swift computers; others forced the
Mathematica kernel to shut down with memory problems. Still others required uncomfortably barogue work arounds and a
tolerance for approximation. Various extensions to the functionality of GraphPlot and Combinatorica would thus appear to be
critical if Mathematica is to become a leading tool of network analysis. The UCC network, though large, is hardly among the
larger networks that will be the subject of examination in the years ahead.

