
Parallel Computing Toolkit and

Numerical Experiments

Petr Girg
University of West Bohemia,
Pilsen, Czech Republic

 Preprint no. 172

Special thanks

JanČepička, pioneer in NumericalExperiments ;
Jan Frisch, systemdesigner and administratorof grid - and

distributed - computing resources in our department.

Introduction

In our talk we would like to briefly acquaint the audience with prototype problems studied in
our workgroup, to show how to use Mathematica in our problems, and finally we would like to
suggest improvements in Mathematica which would make our work more effective.

Numerous phenomena in physics, chemistry, biology, and economy can be modelled by bound-
ary-value problems for differential equations. These boundary-value problems (BVPs for short)
can often be written in an operator form

L HuL + H Hu, pL = f ,

here

L (linear or nonlinear) mapping between appropriate function spaces X and Y ;

H: X ä n Ø Y being an nonlinear operator ;

f œ Y being fixed ;

p œ n being parameters .

Solvability, multiplicity and bifurcation of solutions are of particular interest for people from
praxis. Note that the BVPs depending on parameters describe such important phenomena as
resonance, in which the real systems usually undergo drastic changes leading to their collapse
(suitable small perturbations in external forcings effect in big changes in their corresponding
responses).

Petr Girg: Parallel Computing 2

Examples of problems:

Mathematical models of stationary processes from nonlinear heat trasfer,
nonlinear reaction-diffusion theory, magnetohydrodynamics and glaceology :

- div(» gradu »p-2 grad u) - l » u »p-2 u + g(l, x, u)= f , in W ;
 u=0, on ∑W
or its one-dimensional variant

- (» u ' »p- 2u')' - l » u »p-2 u + g(l, x, u)= f, in (0,1);
 u(0)=0, u(1)=0 .

Mathematical models of one-degree-freedom oscillator:

u'' + l u + g(l, x, u, u') = f

subject to the preriodic b.c. :

u(0)=u(p), u'(0)=u'(p)

or subject to the Dirichlet b.c. :

u(0)=0 , u(p)=0

or the Neuman b.c.:

u'(0)=0 , u'(p)=0 .

With more general nonlinearities involved in the equations, one looses idea what can be
proved or disproved. For that reason, numerical experiments become an indispensable tool of
nonlinear analyst nowadays in the following way. In order to get at least rough idea about the
qualitative behavior, one performs a set of numerical experiments by discretizing over the
domain of parameters. This approach leads to an enormous amount of BVPs usually. To solve
such a number of BVPs would hardly be possible without parallelization. The parallelization
with respect to the discretized set of parameters can be considered as a pure data-parallel
approach (same code, different data). Parallel Computing Toolkit (PCT for short) brings data-
parallel methods into Mathematica efficiently.

Example of an numerical experiment:

Given 1<p, let us investigate the set of all (l, u) œ äW1,pH0, 1L satisfying the following

- (» u ' »p- 2u')' - l » u »p-2 u = f T + a j1 , in (0,1);
 u(0)=0, u(1)=0 .

Petr Girg: Parallel Computing 3

boundary value problem with l being close to l1 .

Here l1 œ  and j1 œ W1,pH0, 1L satisfy

- (» j1 ' »p- 2 j1 ')' - l1 » j1 »p-2 j1 = 0 , in (0,1);

 ϕ1 (0)=0, ϕ1 (1)=0 ;

0

1

 » j1 »p=1.

Note that this problem is related with the so-called nonlinear Fredholm alternative.
Fredholm alternative is the necessary and sufficient condition for the solvability of
abstract equations with compact linear operators. In 1960-ties atempts to extend
this theory to nonlinear but still homogeneous operators have been started. "It is easy
to see that the differential operator u # -(» u ' »p- 2 u')' - l » u »p-2u "is (p-1)-homogeneous:

-(» Ha uL ' »p- 2 Ha uL ')' - l » Ha uL »p-2 Ha uL = - » a »p-2 a {(» u ' »p- 2 u')' - l » u »p-2u}

Parallelization with NDSolve

For mathematically correct setting of the problem and thorough discussion of numerical experi-
ments, we kindly invite the reader to see [3], [4].

It is well known fact that the shooting method is very robust approach of solving BVPs for
ODE's. Corresponding initial-value problem for the first-order system of ODE's:

u' = » v »p'-2 v ;
v' = -l » u »p-2 u + f T + a j1 ;
j1 '= » w »p'-2 w ;
w' = l » j1 »p-2 j1

subject to

u(0) = 0
v(0) = » uH0L »p-2 uH0L = » a »p-2 a
j1 (0) = 0
w(0) = pp

p-1

Resulting system contains nonlinearities which are not all Lipschitz continuous. For that rea-
son, uniqueness of solutions is not guarranteed. We speak of numerical experiment rather
than of numerical computation of solutions.

Petr Girg: Parallel Computing 4

We are ready to apply numerical methods now.

General philosophy of problem solving in Mathematica

Use build-in Mathematica functions as much as possible.

General philosophy of data-parallel approach:

Divide the problem into independent parts where different data are processed by the same
code.

Solution:

Let u(l, a, a, 1) denote the value of the solution u to the initial boudary value problem.

It is not difficult to define corresponding numerical function in Mathematica using
NDSolve .

We parallelize with respect to the parameter a œ , i.e., we consider set of discrete values
 ai œ  , i œ {1, 2, 3, ..., n}, where n œ  is an multiple of the number of processors avail-
able, typically.

Value of ai given, we use ContourPlot to function u(#1, #2, ai , 1)& with an option Contours
Ø {0}.
Complexity of this step is O(PlotPoints2) passed to ContourPlot.

Nodes of contour lines are then refined using FindRoot ; complexity being O(PlotPoints).

See figures attached in postscript files Fredholm.ps, LandesmanLazer.ps, Oscilatory.ps.

Parallelization for symbolic code

Given 1<p, let us find (l, u) œ äW1,pH0, 1L satisfying the following

- (» u ' »p- 2u')' - l » u »p-2 u = f T + a j1 , in (0,1);
 u(0)=0, u(1)=0 .

boundary value problem with l being close to l1 . Let us use spectral Ritz-Galerkin method

Petr Girg: Parallel Computing 5

now.

Corresponding potential:

0

1

(-
p
1 » u ' »p - l -

p
1 » u »p + (f T + a j1) u) „x ,

For p=2 k, k œ  we can handle this problem symbolically (at least partially).

We take

uHxL = b1 sinHxL + b2 sinH2 xL + b3 sinH3 xL + b4 sinH4 xL

as the finite dimensional approximation of u.

For p=4 and f(x)=sin(2 x), the integrand in thepotential is computedby :

int =

ReleaseHold@
Hold@H1êp D@u@xD, xD^p − λ ê p Hu@xDL^p + f@xD u@xDLD ê.
8u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD,

f@xD −> Sin@2 xD<
D

1cccc4 Hb1 Cos@xD + 2 b2 Cos@2 xD + 3 b3 Cos@3 xD + 4 b4 Cos@4 xDL4 +

Sin@2 xD Hb1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xDL −
1cccc4 λ Hb1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xDL4

Petr Girg: Parallel Computing 6

Calculatingthe potentialby direct integration :

Integrate@int, 8x, 0, Pi<D êê Timing

927.139 Second, 3 b14 πccccccccccccc32 + b2 πcccccccc2 + 3cccc2 b12 b22 π + 3 b24 πccccccccccccc2 + 3cccc8 b13 b3 π +
9cccc2 b1 b22 b3 π + 27cccccc8 b12 b32 π + 27cccccc2 b22 b32 π + 243 b34 πccccccccccccccccc32 + 3 b12 b2 b4 π +

18 b1 b2 b3 b4 π + 27 b2 b32 b4 π + 6 b12 b42 π + 24 b22 b42 π + 54 b32 b42 π +

24 b44 π − 3cccccc32 b14 π λ − 3cccc8 b12 b22 π λ − 3cccccc32 b24 π λ + 1cccc8 b13 b3 π λ − 3cccc8 b1 b22 b3 π λ −
3cccc8 b12 b32 π λ − 3cccc8 b22 b32 π λ − 3cccccc32 b34 π λ + 3cccc8 b12 b2 b4 π λ − 3cccc4 b1 b2 b3 b4 π λ −
3cccc8 b2 b32 b4 π λ − 3cccc8 b12 b42 π λ − 3cccc8 b22 b42 π λ − 3cccc8 b32 b42 π λ − 3cccccc32 b44 π λ=

Trickywayof integrationbyusing linearityof the integral :

Map@
Integrate@#, 8x, 0, Pi<D &, Expand@intD
D êê Timing

95.167 Second, 3 b14 πccccccccccccc32 + b2 πcccccccc2 + 3cccc2 b12 b22 π + 3 b24 πccccccccccccc2 + 3cccc8 b13 b3 π +
9cccc2 b1 b22 b3 π + 27cccccc8 b12 b32 π + 27cccccc2 b22 b32 π + 243 b34 πccccccccccccccccc32 + 3 b12 b2 b4 π +

18 b1 b2 b3 b4 π + 27 b2 b32 b4 π + 6 b12 b42 π + 24 b22 b42 π + 54 b32 b42 π +

24 b44 π − 3cccccc32 b14 π λ − 3cccc8 b12 b22 π λ − 3cccccc32 b24 π λ + 1cccc8 b13 b3 π λ − 3cccc8 b1 b22 b3 π λ −
3cccc8 b12 b32 π λ − 3cccc8 b22 b32 π λ − 3cccccc32 b34 π λ + 3cccc8 b12 b2 b4 π λ − 3cccc4 b1 b2 b3 b4 π λ −
3cccc8 b2 b32 b4 π λ − 3cccc8 b12 b42 π λ − 3cccc8 b22 b42 π λ − 3cccc8 b32 b42 π λ − 3cccccc32 b44 π λ=

Speed up :

27.139` ê5.167`
5.25237

Petr Girg: Parallel Computing 7

Here, weuse the fact thatexpanded integrandhas thehead Plus :

Expand@intD

1cccc4 b14 Cos@xD4 + 2 b13 b2 Cos@xD3 Cos@2 xD + 6 b12 b22 Cos@xD2 Cos@2 xD2 +

8 b1 b23 Cos@xD Cos@2 xD3 + 4 b24 Cos@2 xD4 + 3 b13 b3 Cos@xD3 Cos@3 xD +

18 b12 b2 b3 Cos@xD2 Cos@2 xD Cos@3 xD + 36 b1 b22 b3 Cos@xD Cos@2 xD2 Cos@3 xD +

24 b23 b3 Cos@2 xD3 Cos@3 xD + 27cccccc2 b12 b32 Cos@xD2 Cos@3 xD2 +

54 b1 b2 b32 Cos@xD Cos@2 xD Cos@3 xD2 + 54 b22 b32 Cos@2 xD2 Cos@3 xD2 +

27 b1 b33 Cos@xD Cos@3 xD3 + 54 b2 b33 Cos@2 xD Cos@3 xD3 + 81cccccc4 b34 Cos@3 xD4 +

4 b13 b4 Cos@xD3 Cos@4 xD + 24 b12 b2 b4 Cos@xD2 Cos@2 xD Cos@4 xD +

48 b1 b22 b4 Cos@xD Cos@2 xD2 Cos@4 xD + 32 b23 b4 Cos@2 xD3 Cos@4 xD +

36 b12 b3 b4 Cos@xD2 Cos@3 xD Cos@4 xD + 144 b1 b2 b3 b4 Cos@xD Cos@2 xD Cos@3 xD Cos@4 xD +

144 b22 b3 b4 Cos@2 xD2 Cos@3 xD Cos@4 xD + 108 b1 b32 b4 Cos@xD Cos@3 xD2 Cos@4 xD +

216 b2 b32 b4 Cos@2 xD Cos@3 xD2 Cos@4 xD + 108 b33 b4 Cos@3 xD3 Cos@4 xD +

24 b12 b42 Cos@xD2 Cos@4 xD2 + 96 b1 b2 b42 Cos@xD Cos@2 xD Cos@4 xD2 +

96 b22 b42 Cos@2 xD2 Cos@4 xD2 + 144 b1 b3 b42 Cos@xD Cos@3 xD Cos@4 xD2 +

288 b2 b3 b42 Cos@2 xD Cos@3 xD Cos@4 xD2 + 216 b32 b42 Cos@3 xD2 Cos@4 xD2 +

64 b1 b43 Cos@xD Cos@4 xD3 + 128 b2 b43 Cos@2 xD Cos@4 xD3 + 192 b3 b43 Cos@3 xD Cos@4 xD3 +

64 b44 Cos@4 xD4 − 1cccc4 b14 λ Sin@xD4 + b1 Sin@xD Sin@2 xD − b13 b2 λ Sin@xD3 Sin@2 xD +

b2 Sin@2 xD2 − 3cccc2 b12 b22 λ Sin@xD2 Sin@2 xD2 − b1 b23 λ Sin@xD Sin@2 xD3 −
1cccc4 b24 λ Sin@2 xD4 − b13 b3 λ Sin@xD3 Sin@3 xD + b3 Sin@2 xD Sin@3 xD −

3 b12 b2 b3 λ Sin@xD2 Sin@2 xD Sin@3 xD − 3 b1 b22 b3 λ Sin@xD Sin@2 xD2 Sin@3 xD −

b23 b3 λ Sin@2 xD3 Sin@3 xD − 3cccc2 b12 b32 λ Sin@xD2 Sin@3 xD2 −

3 b1 b2 b32 λ Sin@xD Sin@2 xD Sin@3 xD2 − 3cccc2 b22 b32 λ Sin@2 xD2 Sin@3 xD2 −

b1 b33 λ Sin@xD Sin@3 xD3 − b2 b33 λ Sin@2 xD Sin@3 xD3 − 1cccc4 b34 λ Sin@3 xD4 −

b13 b4 λ Sin@xD3 Sin@4 xD + b4 Sin@2 xD Sin@4 xD − 3 b12 b2 b4 λ Sin@xD2 Sin@2 xD Sin@4 xD −

3 b1 b22 b4 λ Sin@xD Sin@2 xD2 Sin@4 xD − b23 b4 λ Sin@2 xD3 Sin@4 xD −

3 b12 b3 b4 λ Sin@xD2 Sin@3 xD Sin@4 xD − 6 b1 b2 b3 b4 λ Sin@xD Sin@2 xD Sin@3 xD Sin@4 xD −

3 b22 b3 b4 λ Sin@2 xD2 Sin@3 xD Sin@4 xD − 3 b1 b32 b4 λ Sin@xD Sin@3 xD2 Sin@4 xD −

3 b2 b32 b4 λ Sin@2 xD Sin@3 xD2 Sin@4 xD − b33 b4 λ Sin@3 xD3 Sin@4 xD −
3cccc2 b12 b42 λ Sin@xD2 Sin@4 xD2 − 3 b1 b2 b42 λ Sin@xD Sin@2 xD Sin@4 xD2 −
3cccc2 b22 b42 λ Sin@2 xD2 Sin@4 xD2 − 3 b1 b3 b42 λ Sin@xD Sin@3 xD Sin@4 xD2 −

3 b2 b3 b42 λ Sin@2 xD Sin@3 xD Sin@4 xD2 − 3cccc2 b32 b42 λ Sin@3 xD2 Sin@4 xD2 −

b1 b43 λ Sin@xD Sin@4 xD3 − b2 b43 λ Sin@2 xD Sin@4 xD3 −

b3 b43 λ Sin@3 xD Sin@4 xD3 − 1cccc4 b44 λ Sin@4 xD4

Petr Girg: Parallel Computing 8

We can define:

pot@λ_, p_, f_, b1_, b2_, b3_, b4_, b5_D := Map@
Integrate@#, 8x, 0, Pi<D &,
Expand@

ReleaseHold@
Hold@H1êp D@u@xD, xD^p − λê p Hu@xDL^p + f@xD u@xDLD ê.

u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD
D
D
D

Usage:

pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D

Parallelizationis usefullhere !

use ParallelMap instead of Map

To avoid a lot of communication, use partitioning.

Example of partitioning:

On a 5-node homogeneous cluster, do the following

ParallelMap@
Map@
HIntegrate@#, 8x, 0, Pi<D &L, #

D &,
With@8numberOfNodes = 5<,

Partition@List @@ Expand@
ReleaseHold@

Hold@H1êp D@u@xD, xD^p − λ êp Hu@xDL^p + f@xD u@xDLD ê.
8u@xD → b1 Sin@xD + b2 Sin@2 xD + b3 Sin@3 xD + b4 Sin@4 xD,

f@xD −> Sin@2 xD<
D
D, numberOfNodes, numberOfNodes, 81, 1<, 0D êê Transpose

D
D

Petr Girg: Parallel Computing 9

More clear explanation to partitioning:

With@8numberOfNodes = 5<,
Partition@
8int01, int02, int03, int04, int05,

int06, int07, int08, int09, int10,
int11<,
numberOfNodes, numberOfNodes, 81, 1<, 0D

êê Transpose
D
êê TableForm

processor 1 : int01 int06 int11
processor 2 : int02 int07 0
processor 3 : int03 int08 0
processor 4 : int04 int09 0
processor 5 : int05 int10 0

Equations to solve:

D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b1] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b2] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b3] == 0
D[pot@λ, 3, Sin@2 #D &, b1, b2, b3, b4D, b4] == 0

Using FindRoot (or Reduce if the number of variables is not very big) we can obtain bifurcation
diagram in 3-D äW where W is spanned by {Sin(x), Sin(2 x)}:

Petr Girg: Parallel Computing 10

0

5

10

15

20

-2

0

2

-5

-2.

0

2

5

-5

-2

0

This methodworks also for partial differentialequations

Ionly prospectivedifficulty is to find basis functions in W1,pHW LM.

Parameter Idetification in NonlinearModels

If a heat-exchanger tube array is subjected to a cross-flow fluid-elastic instabilities occur for
some range of velocities. Since the resulting amplitudes of tube oscillations may become
large causing damage of the heat exchanger,this phenomena of self-excitation has to be
avoided whenever possible. Lacking satisfactory theoretical models in aeroelasticity we are
limited to semi-empirical models. On purpose, we employ a nonlinear model:

 m u'' + b u' + k u - V2 g (u-y-c)(u-y)(u-y+c)=0
 y'+b y = u
 uH0L = u0 , u ' H0L = v0, yH0L = 0

introduced by Tondl [Tondl, Quenching of Self-Excited Vibrations, Academia, Prague, 1991] in
a slightly different context (here m, b, k are structural mass, damping, and stiffness, respec-
tively, u is the deflection of the tube, y is an auxiliary variable, V2 the free-stream velocity, c,
b and g are parameters,).

Realistic values of parameters c, b and g are difficult to estimate theoretically. For that reason

Petr Girg: Parallel Computing 11

we have decided to estimate them using parameter identification from measured data. There
were several problems we encountered in doing so.We mention the most significant ones:

(i) Ratio of the time needed to achieve either stable equilibrium or the limit cycle and the
period of oscillations of the system is very high (about 30000). This forces to use very small

integration step when solving the system numerically (small in comparison with the time
domain) and to use enormous amount of data to which the solution of the nonlinear problem
has to be fitted.This leads to possible accumulation of rounding errors.

(ii) The objective function has many local critical points.To find the global minimum is very
difficult.

(iii) Fluctuations of the velocity of the free stream during the measurement.

We have partially solved problem (i) by using higher precision arithmetic supported by Mathe-
matica (if it would not have been enough we can use multishooting methods). This approach
is extremely both memory and time consuming, however.To partially overcome problem
(ii),we use global optimization algorithms based on differential evolution (genetic algorithm) to
get near to the prospective global minimum. Then we proceed by using standard local meth-
ods such as the Newton method to find the critical point. Finally,the problem (iii) was solved
by considering the velocity of the free stream as a function of t.

Conclusion - improvementssuggestions

In processing of our problems we often use shooting method, which is implemented using
NDSolve accompanied with FindRoot, ContourPlot or NMinimize in Mathematica. Since

NDSolve is called with the same equation and different initial conditions many times within the

shooting, we found NDSolve methods very useful (significant speed-up). In many of our prob-

lems parameters are present. However, NDSolve methods are unable to process new choices

of parameters. For that reason we would like to ask developers to include this possibility in
NDSolve methods together with initial conditions in one command if possible (one would
reduce number of high-level calls resulting in increase of speed). Finaly, I would like to
present an example where also options of NDSolve have to be changed in each step of compu-

tation of the bifurcation diagram.

− I » u ' »p- 2 u 'M ' − l » u »p-2 u + Sin@uD = f T + a j1 , in H0, 1L;
u H0L = 0, u H1L = 0 .

Analogously as above, we employ shooting method for obtaining bifurcation diagrams. It is
known see e.g. [7,8] or references therein that u/˛u˛ has its profile of the form Sin[p t] in
[0,1] for ˛u˛Ø +¶. For that reason,
we have to integrate initial value problem with highly oscillating term Sin[u]ºSin[˛u˛ Sin[p t]]:

Petr Girg: Parallel Computing 12

In[134]:=

Plot@Sin@100 ∗ Sin@Pi tDD, 8t, 0, 1<D

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Out[134]=

h Graphics h

In[136]:=

Plot@Sin@1000 ∗ Sin@Pi tDD, 8t, 0, 1<, PlotPoints → 3000D

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Out[136]=

h Graphics h

In order to get reasonable results, we have to satisfy Nyquist criterion of the integrand sam-
pling. Since the frequency of oscillations is strongly depending on ˛u˛ which can be estimated
from u'(0), it would be nice to have possibility of having NDSolve methods for changing Max-

StepSize together with processing initial values, (and hopefully with parameters; see above).

This would significantly speed-up our computations.

Let me conclude this work advertising our project called CML (Central Mathematics Labora-
tory) where most of know-how presented in contribution will be accesible through
web Mathematica interface.

Petr Girg: Parallel Computing 13

References to works of our research workgroup

[1] Benedikt, J., Girg, P., Takáč, P., The Fredholm Alternative for the p-Laplacian at higher
eigenvalues in one dimension, in Preparation.
[2] Čepička, J., "Numerical Experiments for Nonlinear Problems'', Ph.D. Thesis, University of
West Bohemia, Pilsen, 2001, pp. 97.
[3] Čepička, J., Drábek, P., Girg, P., Quasilinear Boundary Value Problems: Existence and
Multiplicity Results, in
"Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms", John M.
Neuberger, Northern Arizona University, Editor, Contemporary Mathematics Series, AMS,

2004, 285 pp., Softcover, ISBN 0-8218-3339-1.
[4] Čepička, J., Drábek, P., Girg, P., Open problems related to the p-Laplacian operator,
Bol. Soc. Esp. Mat. Apl. 29(2004), pp. 13-34.
[5] Del Toro, P., Girg, P., Roca, F., Dirichlet Problem with Nonlinearity Depending only on the

Derivative, Appl. Math. Lett. 16(2003), pp. 7-12.
[6] Drábek, P., Girg, P., Roca, F., On the Range Properties of Certain Landesman-Lazer-type
Problem, J. Math. Anal. Appl. 257(2001), pp. 131-140.
[7] Drábek, P., Girg, P., Takáč, P., Ulm, M., The Fredholm alternative for the p-Laplacian:
bifurcation
from infinity, existence and multiplicity of solutions, Indiana Univ. Math. J., 53 (2) (2004), pp.
433-482.
[8] Drábek, P., Girg, P., Takáč, P., Bounded perturbations of homogeneous quasilinear opera-
tors using bifurcations from infinity, to appear in J. Differential Equations, accepted 2003,
electronic version available on-line via www.elsevier.com (2004).
[9] Frisch J., Personal Communication (permanent).
[10] Girg, P., Some Notes on Aeroelastics of Tube Arrays, Technical Report, University of West
Bohemia, Pilsen 2004.
[11] Girg, P., Roca, F., Villegas, S., Semilinear Sturm Liouville Problem with Periodic Nonlinear-
ity, to appear in Nonlinear Analysis T.M.A., accepted 2000.
[12] Girg, P., Takáč, P., Bifurcations of Positive and Negative Continua in Quasilinear Elliptic
Eigenvalue Problems,
in Preparation.
[13] Girg, P., Mathematical Model of Heat-Exchanger Tube and Parameter Identification, in
"Interaction of Dynamic Systems with Surroundings and Systems with Feedbacsk", I. Zolo-
tarev, Institute of Thermomechanics AS CR, Editor, Prague, pp. 17-22, Softcover, ISBN 80-
85918-91-9.

Petr Girg: Parallel Computing 14

References
@1D MathematicaBook3 - 5
@2D NDSolveAdvancedDocumentation
@3D ParallelComputingToolkitDocumentation
@4D All referencescited in works in References to works of our research workgroup

www.cam.zcu.cz

drift.cam.zcu.cz

Acknowledgement

All expanses related to my participaton at Wolfram Developer Conference 2004 and prepara-
tion of this contribution have been covered by the grant 1N04078 of the Ministry of Education,
Youth and Sports of the Czech Republic (sponsor of CML). Since numerical experiments are
important tool in my theoretical research in various topics in nonlinear analysis, research
presented in this contribution has been supported from several sources depending on subject
(in chronological ordering):
by the Grant number 201/03/0671 (quasilinear differential equations; nonlinear stationary
diffusion);
by the Grant number 101/02/1225 (nonlinear models of heat exchanger tubes);
by the Humboldt Foundation during my 12-month fellowship 2003/04 (quasilinear differential
equations with periodic nonlinearity).

 Finally, I would like to thank to Wolfram Research staff for organizing very nice conference
and especially for possibility of consulting and solving our problems. My special thanks go to
Joy Costa, Rob Knapp , Roman Maeder, and Michael Trott .

On the next three pages, graphical representation of some of our numerical experiments
follow.

Petr Girg: Parallel Computing 15

