
 N Function of MATHEMATICA
and Some Notices to Numerical Quadrature

Monika Kováčová

Dept. of Mathematics, Fac. of Mechanical Engineering,
Slovak Technical University, Bratislava

kovacova_v@dekan.sjf.stuba.sk

Abstract: There are many mathematical operations that are inherently infinite in nature:
limits, infinite sums, Riemann integrals, even derivatives are defined as a limit of a
difference quotient. Because these operations are essentially infinite it is not possible to
perform them numerically; the best we can do is evaluate some finite analogue that is
designed to have a relatively small error in most practical situations. Of course
MATHEMATICA can sometimes actually do the operation symbolically and it is
generally recommended that you make use of this ability when possible.

1. Introduction

There are many mathematical operations that are inherently infinite in nature:
limits, infinite sums, Riemann integrals, even derivatives are defined as a limit of a
difference quotient. Because these operations are essentially infinite it is not possible
to perform them numerically; the best we can do is evaluate some finite analogue that
is designed to have a relatively small error in most practical situations. Of course
MATHEMATICA can sometimes actually do the operation symbolically and it is
generally recommended that you make use of this ability when possible.

The main point of the mathematical concept of a limit is rigorously to define
things that give problems otherwise. For example, the function sin x / x is undefined at
x = 0, but by taking the limit as x approaches 0 it is possible to give a value to the
function x=0 in a natural way. Now if it were possible to deal with such problems in a
finite way then it would also be possible to design algorithms to numerically perform
infinite numerical operations that would be rather proof.

In fact such is not the case; each of the MATHEMATICA functions we will
discuss here can give incorrect answers. It is also the case that by choosing the options
to these functions appropriately you can always get the correct answer.

 2. Numerical Quadrature

One of the problems with symbolic algebra programs is that, while they may
be powerful, their power often results in huge answers. Some of the most common
examples of this occur as the results of integration. If the value of an integral requires
tens of pages to be expressed it is for most purposes not useful. And of course there
are many definite integrals for which there simply is no ”closed form” for the value.
An alternative to symbolic definite integration is numerical quadrature. The term
"numerical integration " is generally reserved for the numerical solution of an
ordinary differential equation. Although NIntegrate[] can be used to simulate
indefinite integration by repeatedly evaluating definite integrals with varying limits of

integration it will be much slower than is necessary. For indefinite integration you
should write the problem as an ordinary differential equation and use NDSolve[]
since this works incrementally rather than repeatedly evaluating the integral over
nearly the same interval. In our paper we explain how MATHEMATICA does
quadrature and how you can make NIntegrate[]more effective by an appropriate
choice of options.

3. Integrate[] or Integrate[]//N (N[Integrate[]])

There are several ways to define integration in MATHEMATICA:

Integrate[],
N[Integrate[],],
NIntegrate[],
Integrate[N[],].

Because there are so many different ways to evaluate integrals in MATHEMATICA
you may wonder what is the best way for a particular problem and what each of them
actually does.

The primary difference between Integrate[] and NIntegrate[] is while
Integrate[] tries to evaluate the integral symbolically much as you might do by
hand, NIntegrate[] works by sampling points in the region of integration and
taking a weighted average of the values given by the integrand at those points. If
Integrate[] is unable to find the vale of the integrand in closed form it will return
itself. If you want a value for the integral you may still be able to get a numerical
approximation to it by applying N[] to Integrate[], but MATHEMATICA will first
re-attempt to evaluate Integrate[]. Eventually NIntegrate[] will be used
(assuming the integral could not be evaluated symbolically). However since N[]
allows no options, only the options WorkingPrecision, AccuracyGoal, and
PrecisionGoal of NIntegrate[] can be controlled even indirectly; the rest just use
default values. If you want any degree of control over the options of NIntegrate[]
you sholud use NIntegrate[] directly rather than through N[Integrate[],].

NIntegrate[]

Several of the numerical operations have many options. NIntegrate[] is one
such function; it has nine different options. While default values have been given for
them that are reasonable for many problems, significant efficiency improvements can
often be achieved by changing them for specific problems. This paper can help you
better understand how to use NIntegrate[].

4. WorkingPrecision, AccuracyGoal, and PrecisionGoal

The there options WorkingPrecision, AccuracyGoal, and PrecisionGoal are used
for several other numerical operations in addition to NIntegrate[]. All three deal
with in some arithmetic in some way.

WorkingPrecision is simply the number of digits used in the arithmetic as the
integrand is evaluated. In particular, the integrand must be evaluated at many different
values of the integration variable. The value of the integration variable will have
precision WorkingPrecision when the integrand is evaluated. If bignum arithmetic is

being used, i. e., if WorkingPresicion is greater than machine precision, the precision
of the evaluated integrand may be more or less than the precision of the integration
variable; it just depends on how ill-conditioned the integrand is. If machine arithmetic
is being used, you will not get control of the amount of error in evaluating the
integrand at any particular point (except in as much as you can find a well-
conditioned algorithm to evaluate it), but you will get a significant improvement in
speed. The default for WorkinPrecision is to use machine precision. Using machine
precision you get a machine precision answer.

In[1]:=
NIntegrate [Sin[x],{x,0,Pi}]-2

Out[1]=
 -16
4.44089 10

Giving WorkingPrecision a value of a 30 causes bignum arithmetic to be used

In[2]:=
y=NIntegrate[Sin[x],{x,0,Pi}, WorkingPrecision->30]

Out[2]=
2.0000000000000000000

With bignum arithmetic the accuracy of the result is reduced to what is justified by
the estimate of the error

In[3]:=
Precision[y]

Out[3]=
20

The actual error often is smaller than the estimate of the error

In[4]:=
SetPrecision[y,40]-2

Out[4]=
 -39
-3. 10

AccuracyGoal and PrecisonGoal are used specify how much error you are willing
to accept in the result. AccuracyGoal specifies the accuracy desired in the result and
PrecisionGoal specifies the precision desired in the result, but NIntegrate[] will
return a result as soon as either goal is satisfied. If you don't care about the accuracy
of the result, but want to get the answer correct to four significant digits, you can set
AccuracyGoal->Infinity (ensuring that it will never be achieved) and set
PrecisionGoal->4. The default for AccuracyGoal is Infinity and the default for
PrecisionGoal is Automatic, i.e., stop when the estimated relative error is less
than 10-(w-10), where w is the WorkingPrecision. There is exception to this. Different
machines have different precision for their machine arithmetic. To have some
consistency between machines, when machine arithmetic is being used, the values of
Automatic for PrecisionGoal means that the precision goal is to be six digits.

5. Compiled

The option Compiled is also common to many numerical functions in
MATHEMATICA. It can take only two values: True, which is default, and False.
Compiled specifies whether the integrand is to be compiled. However, if the
WorkingPrecision is more than machine precision no compilation will be performed
even if Compiled is set to True since it would not make sense to do so.

6. Method

Currently there are four different methods that can be used for quadrature.
Quadrature refers to the process of numerically evaluating an integral. The term
cubature is used refer to the process of numerically evaluating a multi-dimensional
integral when the multidimensional aspects are being emphasized.

In each of these methods the basic idea is to evaluate the integrand at several
points and approximate the integral by a weighted average of the values of the
integrand at the various points. The error in the approximation is estimated by taking
another weighted average of the values of the integrand over a different set of points
and with different weights. If the estimate of the error is sufficiently small, the value
that is supposed to have less error is returned as the value of the integral.

The different methods are GaussKronrod, DoubleExponential, Trapezoidal and
MultiDimensional. The default value for Method is Automatic, which uses
GaussKnonrod for one dimensional quadrature and MultiDimensional for two or more
dimensions. The methods GaussKronrod, DoubleExponential and Trapezoidal can
also be used for cubature, but result is evaluated as a Cartesian product of one
dimensional quadratures and is usually much slower than MultiDimensional.
MultiDimensional is not valid for one dimensional quadrature.

DoubleExponential and Trapezoidal are fundamentally different from the other
two methods of quadrature. GaussKronrod and Multidimensional are adaptive, that is
they are able to concentrate their efforts where strange things are happening, e.g., at
a discontinuity or some type of singularity.

DoubleExponential quadrature depends on the fact that the integrand is analytic
on an open set in the complex plane containing the interval of integration. The idea
with DoubleExponential quadrature is to apply the trapezoid rule to the problem after
a certain reparametrization has occurred. If the estimated error in the approximation to
the interval is too large, the step size is halved and trapezoid rule applied again. By
halving the step size it is easy to incorporate the previous evaluations of the integrand
into the approximation to the interval without having to save them explicitly.

DoubleExponential quadrature converges as exp(-cN/log N), where N is the
number of the function evaluations. This means that for large N, the accuarcy varies
nearly linearly with N. The only trouble is that if for a certain value of N the accuracy
is too low, you will have to approximately double N to get more accuracy. Of course
in doing it you will approximately double the accuracy as well, but doubling the
accuracy may be much more than what you want. Since accuracy is nearly linear in N,
very high precision quadrature of analytic integrands should usually be done using
DoubleExponential quadrature, other methods converge much more slowly. This is
especially true when the integrand itself takes a long time to evaluate. The only
exception to this is when the integrand is so smooth and well behaved that the
numerical simplicity of GaussKronrod can give it the advantage.

Another case where DoubleExponential quadrature has a distinct advantage is
when the integrand is highly oscillatory. In such cases GaussKronrod must resolve
each of the wiggles; this requires many function evaluations. On the other hand

DoubleExponential quadrature can depend on the fact that integrand is analytic and
get a good estimate of the integral with many fewer function evaluations. In fact, in
evaluating
NIntegrate[Sin[x]/x,{x,300,700},Method->DoubleExponential,
WorkingPrecision->120],
only 87 of the function evaluations occur between 400 and 600, yet the error in the
final result is less than 10^{-107}.

Trapeziodal quadrature can used to examine the trapezoidal method where the
step size is indirectly controlled by the options MinRecursion and MaxRecursion.
However it is especially useful for problems where the integrand is analytic and
periodic and the interval of quadrature is exactly one period.

7. MinRecursion and MaxRecursion

MinRecursion and MaxRecursion have slightly different meanings for the each
of the methods. With MultiDimensional quadrature, if the estimated error is too large,
the region of integration is bisected in the dimension that is estimated to be
responsible for most of the error, with GaussKnonrod quadrature there is only one
dimension from which to choose. With both GaussKnonrod and MultiDimensional
quadrature, each recursive bisection counts toward the level of recursion, which is not
permitted to exceed MaxRecursion. Setting MinRecursion to a positive value forces
recursive bisection before the integrand is ever evaluated. This can be done to ensure
that a narrow spike in the integrand is not missed. It can also speed things up a little
since if bisection were found necessary to reduce the error, time would have been
spent evaluating the integrand at points that would ultimately be discarded anyway. In
MultiDimensional quadrature there is no way of telling a priori which dimension
should be bisected, so an effort is made to bisect in each dimension for each level of
recursion in MinRecusrion.

With DoubleExponential and Trapezoidal quadrature, no recursive bisection of
the interval of integration occurs, so MinRecusrion and MaxRecursion have a
different meaning. Recall that with these methods the trapezoid rule is used and the
step size is halved. The recursion level refers to the number of times the stepsize has
been halved and MinRecursion and MaxRecursion bound the level of recursion.

8. Singularity Depth

Both GaussKronrod and Multidimensional quadrature are adaptive, that is
bisection in only done on those subregions where the error is estimated to be large. If
there is an integrable singularity on the boundary of the given

Region of integration, bisection could easily recurse to depth MaxRecursion
before convergence occured. To deal with these situations there is option
SingularityDepth. If the level of recursion reaches SingularityDepth on a subregion
containing a boundary point of the original interval, a change of variable will be
performed to make the asssumed singularity easier to integrate. Note that the
singularity in only assumed to exist. If SingularityDepth is set too small the
reparametrization will often occur when there is no singularity. Since the change of
variable is expensive we want to avoid unnecessary reparametrizations. If
SingularityDepth is set too large, too much time be spent trying to achieve
convergence via recursive bisection while a change of variable would allow
convergence much more quickly.

For example we define a function depending on SingularityDepth. Note the
integrable singularities in the integrand at the endpoint of the interval of integration.

In[5]:=
g[n_]:=NIntegrate[1/Sqrt[x (1-x)],{x,0,1},MaxRecursion->50,
SingularityDepth->n]

If there are singularities at the endpoints, it is generally faster to deal with them
sooner rather than later.

In[6]:=

Table[First[Timing[g[n]]]/Second,{n,6}]

Out[6]=
{1.26, 0.55, 0.28, 0.27, 0.28, 0.33}

An another example:

In[7]:=
h[n_]:=NIntegrate[Sin[x],{x,0,13Pi},MaxRecursion->50,

SingularityDepth->n]

If there are not singularities at the endpoints, it can be very time consuming to do the change of
variable.

In[8]:=

Table[First[Timing[h[n]]]/Second,{n,10}]

Out[8]=
{1.87, 0.33, 0.27, 0.17, 0.16, 0.17, 0.16, 0.11, 0.17, 0.16}

Singularities internal to the region of integration cannot be dealt with in any special
way because it must be known exactly where each singularity occurs. Of course, if
you know that a singularity occurs at some internal point, you can specify it, in the
range of integration. Then the region of integration will just be treated as two (or
more) regions of integration and the result will be added together.

SingularityDepth is not used with either DoubleExponential or Trapezoidal
quadrature. This is because the reparametrization inherent in DoubleExponential
quadrature is already able to deal with integrable singularities at endpoints of the
interval of integration and Trapezoidal quadrature is designed for periodic
integrands.

9. Discontinuous Integrands

Often one wants to integrate a function that has some sort of singularity in the
region of integration. A convenient way to do this is with Which statement. However,
quadrature and cubature necessarily assume a certain amount of continuity in the
integrand and its derivatives. If this continuity is missing, convergence will be very
slow. Some short example:

In[9]:=
f[x_]:= Which[x<0,0, x<1,x^2,x<2,2x,x<3,4,x>=3,0]
Plot[f[x],{x,-6,6}]

-6 -4 -2 2 4 6

1

2

3

4

Out[10]=
-Graphics-

We don’t get convergence because of discontinuities in the integrand or its
derivatives.

In[11]:=
NIntegrate[f[x],{x,-6,6}]

NIntegrate::slwcon:
 Numerical integration converging too slowly; suspect one of
the
 following: singularity, value of the integration being 0,
 oscillatory integrand, or insufficient WorkingPrecision. If
 your integrand is oscillatory try using the option
 Method->Oscillatory in NIntegrate.

NIntegrate::ncvb:
 NIntegrate failed to converge to prescribed accuracy after 7
 recursive bisections in x near x = 0.984375.

Out[11]=
7.32966

Integrating it as several individual pieces solves the problem of the convergence.

In[12]:=
NIntegrate[f[x],{x,-6,0,1,2,3,6}]

Out[12]=
7.33333

10. SequenceLimit[] and Oscillatory Integrands

The MATHEMATICA function SequenceLimit[] is perhaps the one function

in MATHEMATICA that is most easily abused. The basic purpose of
SequenceLimit[]is take a finite sequence of numbers and extrapolate to the limit.
For example, given sequence

{3+1/2, 3+1/4, 3+1/8, 3+1/16, 3+1/32, 3+1/64}
SequenceLimit[] should return the result 3. It is clear that in general there

is no way that a finite segment of an infinite sequence can determine the behavior of
the sequence at infinity. It is equally clear, however, that we would often like the
ability to do so if the sequence is well behaved in some sense. Because it purports to
do the impossible, SequenceLimit[] can give complete garbage if applied to a
sequence to which it is not applicable. On the other hand it can give amazingly good
results very quickly if used correctly. SequenceLimit[]used Wynn’s algorithm and
in order to get the correct value for the limit the option WynnDegree is the number of
degrees of freedom in the model for the data. The algorithm for SequenceLimit[]
works by transforming a sequence of length n into a sequence of length n-2. This
transforming is done WynnDegree times although the first iteration is slightly
different. If the resulting sequence is still of length 3 or greater the cycle of
transformations starts over and this process continues until sequence is too short to
continue. This basic algorithm requires that the length of the original sequence be at
least of length 2 WynnDegree+1 so that at least one cycle may complete. However, in
order to estimate the error in the result, the original sequence needs to be at least of
length 2 WynnDegree +2. The only exception to this is if WynnDegree is set to
Infinity in which case it just iterates as many times as it can.

For example we define a sequence with total degree 3 and length 8

In[13]:=
post = Table[a+(b0+b1 n) lambda^n,{n,8}];

The limit of the sequence is a regardless of the size of lambda. Note that
SequenceLimit does work on symbolic sequences as well. However, it leads to useless
results if the model does not fit exactly.

In[14]:=
SequenceLimit[post,WynnDegree->3]

Out[14]=
a

The amazing thing about SequenceLimit[] is that it often gets the right answer
even when the terms of the sequence are not of the correct form.

Put post2 to a sequence of numbers known to convergence to Pi/4

In[15]:=
post2= FoldList[Plus,0,Table[(-1)^k/(2k+1),{k,0,16}]]//N

Out[15]=
{0, 1., 0.666667, 0.866667, 0.72381, 0.834921, 0.744012,

 0.820935, 0.754268, 0.813091, 0.76046, 0.808079, 0.764601,

 0.804601, 0.767564, 0.802046, 0.769788, 0.800091}

Use the default value for the option WynnDegree goves a prettz good approximation
to the limit.

In[16]:=
SequenceLimit[N[post2]]– N[Pi/4]

Out[16]=
 -13

1.83852 10

Using a different value for WynnDegree gives an approximation not much worse

In[17]:=
SequenceLimit [N[post2] , WynnDegree->Infinity] - N[Pi/4]

Out[17]=
 -13
-7.25864 10

Occasionally we want to integrate an integrand that is oscillatory and the integral is
not absolutely convergent. To deal effectively with these integrals we must know the
zeroes of the integrand, but often we only need the first few to get a quite reasonable
answer. The idea is to look at the sequence of partial integrals from some fixed point
to succesive zeroes of the integrand. This can be accomplished by simply using
NIntegrate[] over the various ranges of integration, but a faster way is to integrate
only between successive zeros and then accumulate these alternating pieces. Consider
the problem of trying to evaluate

x x
x

dx
.sin
2

0 4 4�

�

�

�
�

Let define a function that gives the integral between successive zeros.

In[18]:=
f[n_]:= NIntegrate[x Sin[x]/(x^2+4),{x, n Pi, (n+1) Pi}]

Form a list of the integrals over the first 10 intervals and form the sequence of the
partial sum

In[19]:=
a =Table[f[n],{n, 0,10}]

Out[19]=
{0.434001, -0.362003, 0.240436, -0.176644, 0.138989, -0.114386,

 0.0971148, -0.084344, 0.0745262, -0.0667473, 0.0604339}

In[20]:=

b= FoldList[Plus,0,a]

And now we find numerical limit of the sequence

In[21]:=
c1=SequenceLimit[b]

Out[21]=
0.212584

The error is reasonably small and including more terms in the sequence would make it even smaller.

In[22]:=
c1-N[Pi/(2 E ^ 2)]

Out[22]=
 -8
4.79579 10

An alternative is just to use NSum[] with Method -> SequenceLimit

In[23]:=
c2=NSum[f[n],{n,0, Infinity}, Method->SequenceLimit,
VerifyConvergence->False]

Out[23]=
0.212584

In[14]:=
c2 - N[Pi/(2 E ^ 2)]

Out[24]=
 -15
6.77236 10

The error is quite small.

References:

[1] Halada L.: Stabilita úloh a algoritmov vo výučbe numerickej matematiky na SJF STU,
Proceedings of the scientific conference with international participation, INFORMATICS AND
ALGHORITHMS ’98, Prešov 3. - 4. sept. 1998, pp.147-151
[2] Halada L.: Použitie systému Dotest pri výčbe a skúšaní matematiky,
MATHEMATICA 99, Bratislava 29.6.-2.7. 1999
[3] Kolesárová A.: Výučba Fourierových radov s podporou systému MATHEMATICA,
MATHEMATICA 99, Bratislava 29.6.-2.7. 1999
[4] Kováčová M., Halada L. : Experimentálna výučba numerickej matematiky pomocou
programového systému MATHEMATICA na Sjf STU, Matematická štatistika a Numerická
matematika, Kálnica 1. -5. júna 1998, pp.142-150
[5] Omachelová M.: Zisťovanie priebehu funkcie 1 reálnej premennej s podporou pg.
systému MATHEMATICA , MATHEMATICA 99, Bratislava 29.6.-2.7. 1999
[6] Záhonová V.: Lineárne diferenciálne rovnice n-tého rádu s konštantnými koeficientami a
program. systém MATHEMATICA, MATHEMATICA 99, Bratislava 29.6.-2.7. 1999, pp.
[7] Záhonová, V.: Výučba integrálneho počtu funkcie jednej reálnej premennej s podporou
programového systému MATHEMATICA, In.:25 VŠTEP-Z Matematika v inžinierskom
vzdelávaní, Trnava, 7. - 10. September 1998, pp. 192 - 197
[8] Wolfram Research: The MATHEMATICA Book 3rd ed., Wolfram Media/Cambridge
University Press, 1996.

	N Function of MATHEMATICA
	and Some Notices to Numerical Quadrature
	NIntegrate[]

