
Wolfram Mathematica® Tutorial Collection

J/LINK™ USER GUIDE

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Todd Gayley

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction to J/Link . 1

J/Link and MathLink . 2

Calling Java from Mathematica . 3

J/Link Basics . 142
Advanced Topics in J/Link . 274
Example Programs . 380

Writing Java Programs That Use Mathematica . 406
Introduction . 406
What Is MathLink? . 407
Overview of the Main J/Link Interfaces and Classes . 408
Sample Program . 411
Creating Links with MathLinkFactory . 413
The MathLink Interface . 418
The KernelLink Interface . 426
Sending Computations and Reading Results . 429
Handling MathLinkExceptions . 443
Graphics and Typeset Output . 445
Aborting and Interrupting Computations . 454
Using Marks . 458
Using Loopback Links . 460
Using Expr Objects . 462
Threads, Blocking, and Yielding . 469
Sending Object References to Mathematica . 471
Some Special User Interface Classes . 474
Writing Applets . 478Writing Applets .

Introduction to J/Link

Welcome to J/Link, a product that integrates Mathematica and Java. J/Link lets you call Java

from Mathematica in a completely transparent way, and it also lets you use and control the

Mathematica kernel from a Java program. For Mathematica users, J/Link makes the whole

universe of existing and future Java classes an automatic extension to the Mathematica environ-

ment. For Java programmers, J/Link turns Mathematica into a scripting shell that lets you

experiment with, build, and test Java classes a line at a time. It also makes Java the ideal

language for writing programs that use the computational services of Mathematica.

J/Link’s most unique feature is that it lets you load arbitrary Java classes into Mathematica and

then create Java objects, call methods, and access fields directly from the Mathematica lan-

guage. Thus, you can use Mathematica to “script” the functionality of an arbitrary Java pro-

gram~in effect, writing a Java program in Mathematica. Essentially anything you can do from

Java you can now do from Mathematica, perhaps even more easily because you are working in

a true interpreted environment.

For example, you can now create a Java-based user interface entirely with Mathematica code.

This could be anything from a simple progress bar for a long computation to a dialog box or

sophisticated wizard that walks users through a calculation. Such an interface is completely

portable and can make full use of AWT, Swing, or any other user-interface class library.

† Call Java methods from Mathematica

† Write Java programs that use Mathematica services

† Create alternative front ends for Mathematica

† Create dialog boxes and other popup
user interface elements for Mathematica programs

† Write applets that use Mathematica kernels on the client or server

† Write servlets that make Mathematica services available to HTTP clients

Some uses for J/Link.

Java is a fast, robust, and portable general-purpose programming language. It is not just an

“internet” language, although it does have many useful internet features. Java is also emphati-

cally not just a language for writing applets. Applets are a powerful use for Java, but Java is

good for much more than that. In fact, applets have already been relegated to a relatively

minor category of Java programs. Today, Java is everywhere~on the client, server, browser,

database, device, and desktop. And J/Link lets you put Mathematica and Java together in any

way you want.

Java is a fast, robust, and portable general-purpose programming language. It is not just an

cally not just a language for writing applets. Applets are a powerful use for Java, but Java is

good for much more than that. In fact, applets have already been relegated to a relatively

minor category of Java programs. Today, Java is everywhere~on the client, server, browser,

database, device, and desktop. And J/Link lets you put Mathematica and Java together in any

way you want.

J/Link is designed for end-users and developers alike. The same features that let Mathematica

users transparently call any Java method also let developers create sophisticated commercial

add-ons to Mathematica. Programmers who want to write custom front ends for Mathematica,

or use Mathematica as a computational engine for another program, will find using Java with

J/Link is easier than using the traditional MathLink interface from C or C++.

Finally, J/Link comes with full source code. This includes the components written in Mathemat-

ica, Java, and C. You can examine the code to supplement the documentation, get tips for your

own programs, better understand how to use advanced features, or just see how it works.

Some familiarity with both Java and Mathematica is assumed in this manual. Even if you do not

know Java, J/Link is easy to use as a means to call existing Java classes from Mathematica.

This only requires learning what classes and methods are available~the syntax and intricacies

of the Java language are irrelevant, since you will be writing Mathematica programs, not Java

programs.

J/Link and MathLink

The underlying glue that makes this all work is MathLink, Wolfram Research’s protocol for

sending data and commands back and forth between Mathematica and other programs. At its

core, J/Link is a MathLink developer’s kit for Java, although it goes far beyond this. In fact,

J/Link’s best feature is that for a large class of uses, it hides MathLink completely, so users and

programmers do not need to know anything about it. This class corresponds to the so-called

“installable” or “template” MathLink programs, which plug into Mathematica and extend its

functionality. For all types of MathLink programs, J/Link provides a higher-level layer of function-

ality than the traditional C MathLink programming interface. This makes Java the easiest and

most convenient language for writing programs to interact with Mathematica.

2 J/Link User Guide

Calling Java from Mathematica

Preamble

J/Link provides Mathematica users with the ability to interact with arbitrary Java classes directly

from Mathematica. You can create objects and call methods directly in the Mathematica lan-

guage. You do not need to write any Java code, or prepare in any way the Java classes you

want to use. You also do not need to know anything about MathLink. In effect, all of Java

becomes a transparent extension to Mathematica, almost as if every existing and future Java

class were written in the Mathematica language itself.

This facility is called “installable Java” because it generalizes the ability that Mathematica has

always had to plug in extensions written in other languages through the Install function. You

will see later how J/Link vastly simplifies this procedure for Java compared to languages like C

or C++. In fact, J/Link makes the procedure go away completely, which is why Java becomes a

transparent extension to Mathematica.

Although Java is often referred to as an interpreted language, this is really a misnomer. To use

Java you must write a complete program, compile it, and then execute it (some environments

exist that let you interactively execute lines of Java code, but these are special tools, and simi-

lar tools exist for traditional languages like C). Mathematica users have the luxury of working in

a true interpreted, interactive environment that lets them experiment with functions and build

and test programs a line at a time. J/Link brings this same productive environment to Java

programmers. You could say that Mathematica becomes a scripting language for Java.

To Mathematica users, then, the “installable Java” feature of J/Link opens up the expanding

universe of Java classes as an extension to Mathematica; for Java users, it allows the extraordi-

narily powerful and versatile Mathematica environment to be used as a shell for interactively

developing, experimenting with, and testing Java classes.

Loading the J/Link Package

The first step is to load the J/Link package file.

Needs@"JLink`"D

Launching the Java Runtime

J/Link User Guide 3

Launching the Java Runtime

InstallJava

The next step is to launch the Java runtime and “install” it into Mathematica. The function for

this is InstallJava.

InstallJava@D launch the Java runtime and prepare it for use from
Mathematica

ReinstallJava@D quit and restart the Java runtime if it is already running

JavaLink@D give the LinkObject that is being used to communicate
with the Java runtime

Launching the Java runtime.

InstallJava@D

LinkObjectAd:\jdk122\bin\java, 5, 2E

InstallJava can be called more than once in a session. On every call after the first, it does

nothing. Thus, it is safe to call InstallJava in any program you write, without considering

whether the user has already called it.

InstallJava creates a command line that is used to launch the Java runtime (typically called

"java") and specify some initial arguments for it. In rare cases you will need to control what is

on this command line, so InstallJava takes a number of options for this purpose. Most users

will not need to use these options, and in fact you should avoid them. Programmers should not

assume that they have the ability to control the launch of the Java runtime, as it might already

be running. If for some reason you absolutely must apply options to control the launch of the

Java runtime, use ReinstallJava instead of InstallJava.

ClassPath->None use the default class path of your Java runtime

ClassPath->"dirs" use the specified directories and jar files

CommandLine->"cmd" use the specified command line to launch the Java run-
time, instead of “java”

Options for InstallJava .

Controlling the Command Used to Launch Java

4 J/Link User Guide

Controlling the Command Used to Launch Java

An important option to InstallJava and ReinstallJava is CommandLine. This specifies the

first part of the command line used to launch Java. One use for this option is if you have more

than one Java runtime installed on your system, and you want to invoke a specific one:

ReinstallJava@CommandLine Ø "d:\\full\\path\\to\\java.exe"D

By default, InstallJava will launch the Java runtime that is bundled with Mathematica 4.2 and

later. If you have an earlier version of Mathematica, the default command line that will be used

is java on most systems. If the java executable is not on your system path, you can use

InstallJava to point at it. Another use for this option is to specify arguments to Java that are

not covered by other options. Here is an example that specifies verbose garbage collection and

defines a property named foo to have the value bar.

ReinstallJava@CommandLine Ø "êpathêtoêjava -verbosegc -Dfoo=bar"D

Overriding the Class Path

The class path is the set of directories in which the Java runtime looks for classes. When you

launch a Java program from your system’s command line, the class path used by Java includes

some default locations and any locations specified in the CLASSPATH environment variable, if it

exists. If you use the -classpath command-line option to specify a set of locations, however,

then the CLASSPATH environment variable is ignored. The ClassPath option to InstallJava

and ReinstallJava works the same way. If you leave it at the default value, Automatic, then

J/Link will include the contents of the CLASSPATH environment variable in its class search path.

If you set it to None or a string, then the contents of CLASSPATH are not used. If you set it to

be a string, use the same syntax that you would use for setting the CLASSPATH environment

variable, which is different for Windows and Unix:

ReinstallJava@ClassPath Ø "c:\\my\\java\\dir;d:\\MyJavaStuff.jar"D H* Windows *L

ReinstallJava@ClassPath Ø "êmyêjavaêdir:êhomeêmeêMyJavaStuff.jar"D
H* UnixêLinux *L

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

you dynamically add new search locations while the Java runtime is running. This means that

using the ClassPath option to configure the class path when Java first launches is not very

important. One setting for the ClassPath option that is sometimes useful is None, to prevent

J/Link from finding any classes from the contents of CLASSPATH. You might want to do this if

you had an experimental version of some class in a development directory and you wanted to

make sure that J/Link used that version in preference to an older one that was present on your

CLASSPATH. "The Java Class Path" presents a complete treatment of the subject of how J/Link

searches for classes, and how to add locations to this search path.

J/Link User Guide 5

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

using the ClassPath option to configure the class path when Java first launches is not very

important. One setting for the ClassPath option that is sometimes useful is None, to prevent

J/Link from finding any classes from the contents of CLASSPATH. You might want to do this if

you had an experimental version of some class in a development directory and you wanted to

make sure that J/Link used that version in preference to an older one that was present on your

CLASSPATH. "The Java Class Path" presents a complete treatment of the subject of how J/Link

searches for classes, and how to add locations to this search path.

Loading Classes

LoadJavaClass

LoadJavaClass@"classname"D load the specified class into Java and Mathematica

LoadClass@"classname"D deprecated name from earlier versions of J/Link; use
LoadJavaClass instead

Loading classes.

To use a Java class in Mathematica, it must first be loaded into the Java runtime and certain

definitions must be set up in Mathematica. This is accomplished with the LoadJavaClass func-

tion. LoadJavaClass takes a string specifying the fully qualified name of the class (i.e., the full

hierarchical name with all the periods):

urlClass = LoadJavaClass@"java.net.URL"D

JavaClass@java.net.URLD

The return value is an expression with head JavaClass. This JavaClass expression can be used

in many places in J/Link, so you might want to assign it to a variable as done here. Virtually

everywhere in J/Link where a class needs to be specified as an argument, you can use either a

JavaClass expression, the fully qualified class name as a string, or an object of the class. Note

that you cannot create a valid JavaClass expression by simply typing it in~it must be returned

by LoadJavaClass.

When a class has been loaded, you can call static methods in the class, create objects of the

class, and invoke methods and access fields of these objects. You can use any public construc-

tors, methods, or fields of a class.

6 J/Link User Guide

StaticsVisible->True make static methods and fields accessible by just their
names, not in a special context

AllowShortContext->False make static methods and fields accessible only in their fully
qualified class context

UseTypeChecking->False suppress the type checking that is normally inserted in
definitions for calls into Java

Options for LoadJavaClass.

"The Java Class Path" discusses the details of how and where J/Link finds classes. J/Link will be

able to find classes on the class path, in the special Java extensions directory, and in a set of

extra directories that users can control even while J/Link is running.

When to Call LoadJavaClass

It is often the case that you do not need to explicitly load a class with LoadJavaClass. As

described later, when you create a Java object with JavaNew, you can supply the class name as

a string. If the class has not already been loaded, LoadJavaClass will be called internally by

JavaNew. In fact, anytime a Java object is returned to Mathematica its class is loaded automati-

cally if necessary. This would seem to imply that there is little reason to use LoadJavaClass.

There are a number of reasons why you would want or need to use LoadJavaClass explicitly:

† You need to call a static method of a class and you will not create, or have not yet created,
an object of that class. A class must be loaded before any of its static methods can be
called.

† You need to use one of the options to LoadJavaClass. When LoadJavaClass is called
internally by JavaNew, it is called with the default option settings.

† You want to see errors associated with loading a class reported at a well-defined time.

† You want to control where your users experience the initial delay associated with loading a
class. Loading a class can take several seconds if it or one of its parent classes is very large
(although it rarely takes that long). You might want to avoid a mysterious delay in a func-
tion that users expect to be very quick.

† You want to hang on to the JavaClass expression returned by LoadJavaClass to use it in
other functions. Although all functions that take a JavaClass can also take a class name
string, you might prefer to use a named JavaClass variable for readability purposes. It is
also slightly faster than using a string, but this will not be perceptible unless you are using
it many times in a loop.

† You feel that it makes your code more self-documenting.

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

J/Link User Guide 7

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

Developers writing code for a wide audience should always call LoadJavaClass on any classes

they need in every function that needs them. It is not suitable to call LoadJavaClass in the

body of your package code when it is read in, as the user may quit and restart the Java runtime

(i.e., UninstallJava and InstallJava) after your package was read. To be safe, every user-

level function that uses J/Link should call InstallJava and LoadJavaClass (if LoadJavaClass

is necessary; see the following). Both calls execute very quickly if they are not needed.

As mentioned already, loading a class can take several seconds in some cases. When a class is

loaded, all of its superclasses are loaded in succession, walking up the inheritance hierarchy.

Because a given class is only actually loaded once, if you load another class that shares some of

the same superclasses as a previously loaded class, these superclasses will not have to be

loaded again. This means that loading the second class will be much quicker than the first if any

of the shared superclasses were large. An example of this is loading classes in the java.awt

package. The class java.awt.Component is very large, so the first time you load a class that

inherits from it, say java.awt.Button, there will be a noticeable delay. Subsequent loading of

other classes derived from Component will be much quicker.

8 J/Link User Guide

Contexts and Visibility of Static Members

LoadJavaClass has two options that let you control the naming and visibility of static methods

and fields. To understand these options, you need to understand the problems they help to

solve. This explanation gets a bit ahead since how to call Java methods has not been discussed.

When a class is loaded, definitions are created in Mathematica that allow you to call methods

and access fields of objects of that class. Static members are treated quite differently from

nonstatic ones. None of these issues arise for nonstatic members, so only static members are

discussed in this section. Say you have a class named com.foobar.MyClass that contains a

static method named foo. When you load this class, a definition must be set up for foo so that

it can be called by name, something like foo@argsD. The question becomes: In what context do

you want the symbol foo defined, and do you want this context to be visible (i.e., on

$ContextPath)?

J/Link always creates a definition for foo in a context that mirrors its fully qualified classname:

com`foobar`MyClass`foo. This is done to avoid conflicting with symbols named foo that might

be present in other contexts. However, you might find it clumsy to have to call foo by typing

the full context name every time, as in com`foobar`MyClass`foo@argsD. The option

AllowShortContext -> True (this is the default setting) causes J/Link to also make definitions

for foo accessible in a shortened context, one that consists of just the class name without the

hierarchical package name prefix. In the example, this means that you could call foo as simply

MyClass`foo@argsD. If you need to avoid use of the short context because there is already a

context of the same name in your Mathematica session, you can use

AllowShortContext -> False. This forces all names to be put only in the “deep” context. Note

that even with AllowShortContext -> True, names for statics are also put into the deep con-

text, so you can always use the deep context to refer to a symbol if you desire.

AllowShortContext, then, lets you control the context where the symbol names are defined.

The other option, StaticsVisible, controls whether this context is made visible (put on

$ContextPath) or not. The default is StaticsVisible -> False, so you have to use a context

name when referring to a symbol, as in MyClass`foo@argsD. With StaticsVisible -> True,

MyClass` will be put on $ContextPath, so you could just write foo@argsD. Having the default be

True would be a bit dangerous~every time you load a class a potentially large number of

names would suddenly be created and made visible in your Mathematica session, opening up

the possibility for all sorts of “shadowing” problems if symbols of the same names were already

present. This problem is particularly acute with Java, because method and field names in Java

typically begin with a lowercase letter, which is also the convention for user-defined symbols in

Mathematica. Some Java classes define static methods and fields with names like x, y, width,

and so on, so shadowing errors are very likely to occur (see "Contexts" for a discussion of

contexts and shadowing problems).

J/Link User Guide 9

AllowShortContext, then, lets you control the context where the symbol names are defined.

The other option, StaticsVisible, controls whether this context is made visible (put on

$ContextPath) or not. The default is StaticsVisible -> False, so you have to use a context

name when referring to a symbol, as in MyClass`foo@argsD. With StaticsVisible -> True,

MyClass` will be put on $ContextPath, so you could just write foo@argsD. Having the default be

names would suddenly be created and made visible in your Mathematica session, opening up

the possibility for all sorts of “shadowing” problems if symbols of the same names were already

present. This problem is particularly acute with Java, because method and field names in Java

typically begin with a lowercase letter, which is also the convention for user-defined symbols in

Mathematica. Some Java classes define static methods and fields with names like x, y, width,

and so on, so shadowing errors are very likely to occur (see "Contexts" for a discussion of

contexts and shadowing problems).

For these reasons StaticsVisible -> True is recommended only for classes that you have

written, or ones whose contents you are familiar with. In such cases, it can save you some

typing, make your code more readable, and prevent the all-too-easy bug of forgetting to type

the package prefix. A classic example would be implementing the venerable “addtwo” MathLink

example program. In Java, it might look like this:

public class AddTwo {
public static int addtwo(int i, int j) {return i + j;}

}

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`addtwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious addtÖ

wo[3, 4].

Be reminded that these options are only for static methods and fields. As discussed later, non-

statics are handled in a way that makes context and visibility issues go away completely.

Inner Classes

Inner classes are public classes defined inside another public class. For example, the class

javax.swing.Box has an inner class named Filler. When you refer to the Filler class in a

Java program, you typically use the outer class name, followed by a period, then the inner class

name:

Box.Filler f = new Box.Filler(…);

You can use inner classes with J/Link, but you need to use the true internal name of the class,

which has a $, not a period, separating the outer and inner class names:

filler = JavaNew@"java.swing.Box$Filler", …D

If you look at the class files produced by the Java compiler, you will see these $-separated class

names for inner classes.

Conversion of Types Between Java and Mathematica

10 J/Link User Guide

Conversion of Types Between Java and Mathematica

Before you encounter the operations of creating Java objects and calling methods, you should

examine the mapping of types between Mathematica and Java. When a Java method returns a

result to Mathematica, the result is automatically converted into a Mathematica expression. For

example, Java integer types (e.g., byte, short, int, and so on), are converted into Mathematica

integers, and Java real number types (float, double) are converted into Mathematica reals. The

following table shows the complete set of conversions. These conversions work both ways~for

example, when a Mathematica integer is sent to a Java method that requires a byte value, the

integer is automatically converted to a Java byte.

Java type Mathematica type

byte , char , short , int , long Integer

Byte , Character , Short , Integer , Long , BigInteger

Integer

float , double Real

Float , Double , BigDecimal Real

boolean True or False

String String

array List

controlled by user (see "Complex
Numbers")

Complex

Object JavaObject

Expr any expression

null Null

Corresponding types in Java and Mathematica.

Java arrays are mapped to Mathematica lists of the appropriate depth. Thus, when you call a

method that takes a double[], you might pass it 81.0, 2.0, N@PiD, 1.23<. Similarly, a

method that returns a two-deep array of integers (i.e., int[][]) might return to Mathematica

the expression 881, 2, 3<, 85, 3, 1<<.

In most cases, J/Link will let you supply a Mathematica integer to a method that is typed to

take a real type (float or double). Similarly, a method that takes a double[] could be

passed a list of mixed integers and reals. The only times when you cannot do this are the rare

cases where a method has two signatures that differ only in a real versus integer type at the

same argument slot. For example, consider a class with these methods:

J/Link User Guide 11

In most cases, J/Link will let you supply a Mathematica integer to a method that is typed to

passed a list of mixed integers and reals. The only times when you cannot do this are the rare

cases where a method has two signatures that differ only in a real versus integer type at the

same argument slot. For example, consider a class with these methods:

public void foo(byte b, Object obj);
public void foo(float f, Object obj);
public void bar(float f, Object obj);

J/Link would create two Mathematica definitions for the method foo~one that required an

integer for the first argument and invoked the first signature, and one that required a real

number for the first argument and invoked the second signature. The definition created for the

method bar would accept an integer or a real for the first argument. In other words, J/Link will

automatically convert integers to reals, except in cases where such conversion makes it ambigu-

ous as to which signature of a given method to invoke. This is not strictly true, though, as

J/Link does not try as hard as it possibly could to determine whether real versus integer ambigu-

ity is a problem at every argument position. The presence of ambiguity at one position will

cause J/Link to give up and require exact type matching at all argument positions. This is start-

ing to sound confusing, but you will find that in most cases J/Link allows you to pass integers or

lists with integers to methods that take reals or arrays of reals, respectively, as arguments. In

cases where it does not, the call will fail with an error message, and you will have to use Mathe-

matica’s N function to convert all integers to reals explicitly.

Creating Objects

To instantiate Java objects, use the JavaNew function. The first argument to JavaNew is the

object’s class, specified either as a JavaClass expression returned from LoadJavaClass or as a

string giving the fully qualified class name (i.e., having the full package prefix with all the

periods). If you wish to supply any arguments to the object’s constructor, they follow as a

sequence after the class.

JavaNew@cls,arg1,…D construct a new object of the specified class and return it
to Mathematica

JavaNew@"classname",arg1,…D construct a new object of the specified class and return it
to Mathematica

Constructing Java objects.

12 J/Link User Guide

For example, this will create a new Frame.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

The return value from JavaNew is a strange expression that looks like it has the head

JavaObject, except that it is enclosed in angle brackets. The angle brackets are used to indi-

cate that the form in which the expression is displayed is quite different from its internal repre-

sentation. These expressions will be referred to as JavaObject expressions. JavaObject expres-

sions are displayed in a way that shows their class name, but you should consider them

opaque, meaning that you cannot pick them apart or peer into their insides. You can only use

them in J/Link functions that take JavaObject expressions. For example, if obj is a JavaObject,

you cannot use First@objD to get its class name. Instead, there is a J/Link function,

ClassName@objD, for this purpose.

JavaNew invokes a Java constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of JavaObject expressions~as references to Java objects very much like object

references in the Java language itself. What is returned to Mathematica is not large no matter

what type of object you are constructing. In particular, the object’s data (that is, its fields) are

not sent back to Mathematica. The actual object remains on the Java side, and Mathematica

gets a reference to it.

The Frame class has a second constructor, which takes a title in the form of a string. Here is
how you would call that constructor.
frm = JavaNew@"java.awt.Frame", "My Example Frame"D

«JavaObject@java.awt.FrameD »

Note that simply constructing a Frame does not cause it to appear. That requires a separate

step (calling the frame’s show or setVisible methods will work, but as you will see later,

J/Link provides a special function, JavaShow, to make Java windows appear and come to the

foreground).

The previous examples specified the class by giving its name as a string. You can also use a
JavaClass expression, which is a special expression returned by LoadJavaClass that identi-
fies a class in a particularly efficient manner. When you specify the class name as a string, the
class is loaded if it has not already been.
frameClass = LoadJavaClass@"java.awt.Frame"D;
frm = JavaNew@frameClass, "My Example Frame"D;

JavaNew is not the only way to get a reference to a Java object in Mathematica. Many methods

and fields return objects, and when you call such a method, a JavaObject expression is cre-

ated. Such objects can be used in the same way as ones you explicitly construct with JavaNew.

J/Link User Guide 13

JavaNew is not the only way to get a reference to a Java object in Mathematica. Many methods

and fields return objects, and when you call such a method, a JavaObject expression is cre-

ated. Such objects can be used in the same way as ones you explicitly construct with JavaNew.

At this point, you may be wondering about things like reference counts and how objects

returned to Mathematica get cleaned up. These issues are discussed in "Object References in

Mathematica".

J/Link has two other functions for creating Java objects, called MakeJavaObject and

MakeJavaExpr. These specialized functions are described in the section "MakeJavaObject and

MakeJavaExpr".

Calling Methods and Accessing Fields

Syntax

The Mathematica syntax for calling Java methods and accessing fields is very similar to Java

syntax. The following box compares the Mathematica and Java ways of calling constructors,

methods, fields, static methods, and static fields. You can see that Mathematica programs that

use Java are written in almost exactly the same way as Java programs, except Mathematica

uses @D instead of () for arguments, and Mathematica uses ü instead of Java’s . (dot) as the

“member access” operator.

An exception is that for static methods, Mathematica uses the context mark ` in place of Java’s

dot. This parallels Java usage also, as Java’s use of the dot in this circumstance is really as a

scope resolution operator (like :: in C++). Although Mathematica does not use this terminol-

ogy, its scope resolution operator is the context mark. Java’s hierarchical package names map

directly to Mathematica’s hierarchical contexts.

14 J/Link User Guide

constructors

Java: MyClass obj=new MyClass HargsL;

Mathematica: obj=JavaNew@"MyClass",argsD;

methods

Java: obj.methodName HargsL;

Mathematica: objümethodName@argsD

fields

Java: obj.fieldName=1;
value=obj.fieldName;

Mathematica: objüfieldName=1;
value=objüfieldName;

static methods

Java: MyClass.staticMethod HargsL;

Mathematica: MyClass`staticMethod@argsD;

static fields

Java: MyClass.staticField=1;
value=MyClass.staticField;

Mathematica: MyClass`staticField=1;
value=MyClass`staticField;

Java and Mathematica syntax comparison.

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: füx is equivalent to the more commonly used f@xD. J/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method:

H* These are equivalent *L
objümethod@argsD;
obj@method@argsDD;

The first form preserves the natural mapping of Java’s syntax to Mathematica’s, and it will be

used exclusively in this tutorial.

When you call methods or fields and get results back, J/Link automatically converts arguments

and results to and from their Mathematica representations according to the table in "Conversion

of Types between Java and Mathematica".

Method calls can be chained in Mathematica just like in Java. For example, if meth1 returns a

Java object, you could write in Java obj.meth1().meth2(). In Mathematica, this becomes

objümeth1@Dümeth2@D. Note that there is an apparent problem here: Mathematica’s ü operator

groups to the right, whereas Java’s dot groups to the left. In other words,

obj.meth1().meth2() in Java is really (obj.meth1()).meth2() whereas

objümeth1@Dümeth2@D in Mathematica would normally be objüHmeth1@Dümeth2@DL. I say

“normally” because J/Link automatically causes chained calls to group to the left like Java. It

does this by defining rules for JavaObject expressions, not by altering the properties of the ü

operator, so the global behavior of ü is not affected. This chaining behavior only applies to

method calls, not fields. You cannot do this:

J/Link User Guide 15

Method calls can be chained in Mathematica just like in Java. For example, if meth1 returns a

Java object, you could write in Java obj.meth1().meth2(). In Mathematica, this becomes

objümeth1@Dümeth2@D. Note that there is an apparent problem here: Mathematica’s ü operator

groups to the right, whereas Java’s dot groups to the left. In other words,

obj.meth1().meth2() in Java is really (obj.meth1()).meth2() whereas

objümeth1@Dümeth2@D in Mathematica would normally be objüHmeth1@Dümeth2@DL. I say

“normally” because J/Link automatically causes chained calls to group to the left like Java. It

does this by defining rules for JavaObject expressions, not by altering the properties of the ü

operator, so the global behavior of ü is not affected. This chaining behavior only applies to

method calls, not fields. You cannot do this:

H* These are incorrect. You cannot chain calls after a field access. *L
x = objüfieldümethod@argsD;
x = objüfield1üfield2;

You would have to split these up into two lines. For example, the second line above would

become:

temp = objüfield1;
x = tempüfield2;

In Java, like other object-oriented languages, method and field names are scoped by the object

on which they are called. In other words, when you write obj.meth(), Java knows that you are

calling the method named meth that resides in obj’s class, even though there may be other

methods named meth in other classes. J/Link preserves this scoping for Mathematica symbols

so that there is never a conflict with existing symbols of the same name. When you write

objümeth@D, there is no conflict with any other symbols named meth in the system~the

symbol meth used by Mathematica in the evaluation of this call is the one set up by J/Link for

this class. Here is an example using a field. First, you create a Point object.

pt = JavaNew@"java.awt.Point"D

«JavaObject@java.awt.PointD »

The Point class has fields named x and y, which hold its coordinates. A user’s session is also

likely to have symbols named x or y in it, however. You set up a definition for x that will tell

you when it is evaluated.

x := Print@"gotcha"D

Now set a value for the field named x (this would be written as pt.x = 42 in Java).

ptüx = 42;

You will notice that “gotcha” was not printed. There is no conflict between the symbol x in the

Global` context that has the Print definition and the symbol x that is used during the evalua-

tion of this line of code. J/Link protects the names of methods and fields on the right-hand side

of ü so that they do not conflict with, or rely on, any definitions that might exist for these

symbols in visible contexts. Here is a method example that demonstrates this issue differently.

16 J/Link User Guide

You will notice that “gotcha” was not printed. There is no conflict between the symbol x in the

Global` context that has the Print definition and the symbol x that is used during the evalua-

tion of this line of code. J/Link protects the names of methods and fields on the right-hand side

of ü so that they do not conflict with, or rely on, any definitions that might exist for these

symbols in visible contexts. Here is a method example that demonstrates this issue differently.

frm = JavaNew@"java.awt.Frame"D;
frmüshow@D

Even though a new symbol show is being created here, the show that is used by J/Link is the

one that resides down in the java`awt`Frame context, which has the necessary definitions set

up for it.

In summary, for nonstatic methods and fields, you never have to worry about name conflicts

and shadowing, no matter what context you are in or what the $ContextPath is at the

moment. This is not true for static members, however. Static methods and fields are called by

their full name, without an object reference, so there is no object out front to scope the name.

Here is a simple example of a static method call that invokes the Java garbage collector. You

need to call LoadJavaClass before you call a static method to make sure the class has been

loaded.

LoadJavaClass@"java.lang.Runtime"D;
Runtime`gc@D;

The name scoping issue is not usually a problem with statics, because they are defined in their

own contexts (Runtime` in this example). These contexts are usually not on $ContextPath, so

you do not have to worry that there is a symbol of the same name in the Global` context or in

a package that has been read. There is more discussion of this issue in the section on

LoadJavaClass, because LoadJavaClass takes options that determine the contexts in which

static methods are defined and whether or not they are put on $ContextPath. If there is

already a context named Runtime` in your session, and it has its own symbol gc, you can

always avoid a conflict by using the fully hierarchical context name that corresponds to the full

class name for a static member.

java`lang`Runtime`gc@D;

J/Link User Guide 17

Finally, just as in Java, you can call a static method on an object if you like. In this case, since

there is an object out front, you get the name scoping. Here you call a static method of the

Runtime class that returns the current Runtime object (you cannot create a Runtime object with

JavaNew, as Runtime has no constructors). You then invoke the (static) method gc on the

object, and you can use gc without any context prefix.

runtime = Runtime`getRuntime@D;
runtimeügc@D;

Underscores in Java Names

Java names can have characters in them that are not legal in Mathematica symbols. The only

common one is the underscore. J/Link maps underscores in class, method, and field names to

"U". Note that this mapping is only used where it is necessary~when names are used in

symbolic form, not as strings. For example, assume you have a class named com.acme.MyÖ

_Class. When you refer to this class name as a string, you use the underscore.

LoadJavaClass@"com.acme.My_Class"D;
JavaNew@"com.acme.My_Class"D;

But when you call a static method in such a class, the hierarchical context name is symbolic, so

you must convert the underscore to U.

com`acme`MyUClass`staticMethod@D;
MyUClass`staticMethod@D;

The same rule applies to method and field names. Many Java field names have underscores in

them, for example java.awt.Frame.TOP_ALIGNMENT. To refer to this method in code, use the

U.

LoadJavaClass@"java.awt.Frame"D;
Frame`TOPUALIGNMENT
0.

In cases where you supply a string, leave the underscore.

Fields@"java.awt.Frame", "*_ALIGNMENT"D

static final float BOTTOM_ALIGNMENT
static final float CENTER_ALIGNMENT
static final float LEFT_ALIGNMENT
static final float RIGHT_ALIGNMENT
static final float TOP_ALIGNMENT

18 J/Link User Guide

Getting Information about Classes and Objects

J/Link has some useful functions that show you the constructors, methods, and fields available

for a given class or object.

Constructors@clsD return a table of the public constructors and their
arguments

Constructors@objD constructors for this object’s class

Methods@clsD return a table of the public methods and their arguments

Methods@cls,"pat"D show only methods whose names match the string pattern
pat

Methods@objD show methods for this object’s class

Fields@clsD return a table of the public fields

Fields@cls,"pat"D show only fields whose names match the string pattern pat

Fields@objD show fields for this object’s class

ClassName@clsD return, as a string, the name of the class represented by cls

ClassName@objD return, as a string, the name of this object’s class

GetClass@objD return the JavaClass representing this object’s class

ParentClass@objD return the JavaClass representing this object’s parent
class

InstanceOf@obj,clsD return True if this object is an instance of cls, False
otherwise

JavaObjectQ@exprD return True if expr is a valid reference to a Java object,
False otherwise

Getting information about classes and objects.

You can give an object or a class to Constructors, Methods, and Fields. The class can be

specified either by its full name as a string, or as a JavaClass expression:

urlClass = LoadJavaClass@"java.net.URL"D;
urlObject = JavaNew@"java.net.URL", "http:êêwww.wolfram.com"D;
H* The next three lines are equivalent *L
Methods@urlClassD
Methods@urlObjectD
Methods@"java.net.URL"D

The declarations returned by these functions have been simplified by removing the Java key-

words public, final (removed only for methods, not fields), synchronized, native,

volatile, and transient. The declarations will always be public, and the other modifiers are

probably not relevant for use via J/Link.

Methods and Fields take one option, Inherited, which specifies whether to include members

inherited from superclasses and interfaces or show only members declared in the class itself.

The default is Inherited -> True.

J/Link User Guide 19

Methods and Fields take one option, Inherited, which specifies whether to include members

inherited from superclasses and interfaces or show only members declared in the class itself.

The default is Inherited -> True.

Inherited->False show only members that are declared in the class itself,
not inherited from superclasses or interfaces

Option for Methods and Fields.

There are additional functions that give information about objects and classes. These functions

are ClassName, GetClass, ParentClass, InstanceOf, and JavaObjectQ. They are self-explana-

tory, for the most part. The InstanceOf function mimics the Java language’s instanceof opera-

tor. JavaObjectQ is useful for writing patterns that match only valid Java objects:

Stringify@obj_?JavaObjectQD := obj@toString@DD

JavaObjectQ returns True if and only if its argument is a valid reference to a Java object or if it

is the symbol Null, which maps to Java’s null object.

Quitting or Restarting Java

When you are finished with using Java in a Mathematica session, you can quit the Java runtime

by calling UninstallJava@D.

UninstallJava@D quit the Java runtime

ReinstallJava@D restart the Java runtime

Quitting the Java runtime.

In addition to quitting Java, UninstallJava clears out the many symbols and definitions cre-

ated in Mathematica when you load classes. All outstanding JavaObject expressions will

become invalid when Java is quit. They will no longer satisfy JavaObjectQ, and they will show

up as raw symbols like JLink`Objects`JavaObject12345678 instead of

<< JavaObject[classname] >>.

Most users will have no reason to call UninstallJava. You should think of the Java runtime as

an integral part of the Mathematica system~start it up, and then just leave it running. All code

that uses J/Link shares the same Java runtime, and there may be packages that you are using

that make use of Java without you even knowing it. Shutting down Java might compromise

their functionality. Developers writing packages should never call UninstallJava in their pack-

ages. You cannot assume that when your application is done with J/Link, your users are done

with it as well.

20 J/Link User Guide

Most users will have no reason to call UninstallJava. You should think of the Java runtime as

an integral part of the Mathematica system~start it up, and then just leave it running. All code

that make use of Java without you even knowing it. Shutting down Java might compromise

their functionality. Developers writing packages should never call UninstallJava in their pack-

ages. You cannot assume that when your application is done with J/Link, your users are done

with it as well.

About the only common reason to need to stop and restart Java is when you are actively devel-

oping Java classes that you want to call from Mathematica. Once a class is loaded into the Java

runtime, it cannot be unloaded. If you want to modify and recompile your class, you need to

restart Java to reload the modified version. Even in this circumstance, though, you will not be

calling UninstallJava. Instead, you will call ReinstallJava, which simply calls

UninstallJava followed by InstallJava again.

Version Information

J/Link provides three symbols that supply version information. These symbols provide the same

type of information as their counterparts in Mathematica itself, except that they are in the

JLink`Information` context, which is not on $ContextPath, so you must specify them by

their full names.

JLink`Information`$Version a string giving full version information

JLink`Information`$VersionNumÖ
ber

a real number giving the current version number

JLink`Information`$ReleaseNumÖ
ber

an integer giving the release number (the last digit in a full
x.x.x version specification)

ShowJavaConsole@D the console window will show version information for the
Java runtime and the J/Link Java component

J/Link version information.

JLink`Information`$Version

JêLink Version 4.0.1

JLink`Information`$VersionNumber

4.

JLink`Information`$ReleaseNumber

1

The ShowJavaConsole@D function, described in "The Java Console Window", will also display

some useful version information. It shows the version of the Java runtime being used and the

version of the portion of J/Link that is written in Java. The version of the J/Link Java component

should match the version of the J/Link Mathematica component.

J/Link User Guide 21

The ShowJavaConsole@D function, described in "The Java Console Window", will also display

some useful version information. It shows the version of the Java runtime being used and the

version of the portion of J/Link that is written in Java. The version of the J/Link Java component

should match the version of the J/Link Mathematica component.

Controlling the Class Path: How J/Link Finds Classes

The Java Class Path

The class path tells the Java runtime, compiler, and other tools where to find third-party and

user-defined classes~classes that are not Java “extensions” or part of the Java platform itself.

The class path has always been a source of confusion among Java users and programmers.

Java can find classes that are part of the standard Java platform (so-called “bootstrap” classes),

classes that use the so-called “extensions” mechanism, and classes on the class path, which is

controlled by the CLASSPATH environment variable or by command-line options when Java is

launched. J/Link can load and use any classes that the Java runtime can find through these

normal mechanisms. In addition, J/Link can find classes, resources, and native libraries that are

in a set of extra locations, beyond what is specified on the class path at startup. This set of

extra locations can be added to while Java is running.

J/Link provides two ways to alter the search path Java uses to find classes. The first way is via

the ClassPath option to ReinstallJava. The second way, which is superior to modifying the

class path at startup, is to add new directories and jar files to the special set of extra locations

that J/Link searches. These two methods will be described in the next two subsections.

Overriding the Startup Class Path

For a class to be accessible via the standard Java class path, one of the following must apply:

† It is inside a .zip or .jar file that is itself named on the class path.

† It is a loose class file that is in an appropriately nested directory beneath a directory that is
on the class path.

“Appropriately nested” means that the class file must be in a directory whose hierarchy mirrors

the full package name of the class. For example, assume that the directory c:\MyClasses is on

the class path. If you have a class that is not in a package (there is no package statement at

the beginning of the code), its class file should be put directly into c:\MyClasses. If you have a

class that is in the package com.acme.stuff, its class file would need to be in the directory

c:\MyClasses\com\acme\stuff. Note that jar and zip files must be explicitly named on the class

path~you cannot just toss them into a directory that is itself named on the class path. Direc-

tory issues are not relevant for jar and zip files, meaning that regardless of how hierarchically

organized the classes inside a jar file are, you simply name the jar file itself on the class path

and all the classes inside it can be found.

22 J/Link User Guide

“Appropriately nested” means that the class file must be in a directory whose hierarchy mirrors

the full package name of the class. For example, assume that the directory c:\MyClasses is on

the class path. If you have a class that is not in a package (there is no package statement at

the beginning of the code), its class file should be put directly into c:\MyClasses. If you have a

class that is in the package com.acme.stuff, its class file would need to be in the directory

c:\MyClasses\com\acme\stuff. Note that jar and zip files must be explicitly named on the class

path~you cannot just toss them into a directory that is itself named on the class path. Direc-

tory issues are not relevant for jar and zip files, meaning that regardless of how hierarchically

organized the classes inside a jar file are, you simply name the jar file itself on the class path

and all the classes inside it can be found.

If you want to specify paths for classes that are not part of the standard Java platform or exten-

sions, you can use the ClassPath option to ReinstallJava. The value that you supply for the

ClassPath option is a string that names the desired directories and zip or jar files. This string is

platform-dependent; the paths are specified in the native style for your platform, and the

separator character is a colon on Unix and a semicolon on Windows. Here are typical

specifications:

ReinstallJava@ClassPath Ø "c:\\MyJavaDir\\MyPackage.jar;c:\\MyJavaDir"D
H* Windows *L

ReinstallJava@ClassPath Ø "~êMyJavaDirêMyPackage.jar:~êMyJavaDir"D
H* Unix *L

The default setting for ClassPath is Automatic, which means to use the value of the CLASSÖ

PATH environment variable. If you set ClassPath to something else, then J/Link will ignore the

CLASSPATH environment variable~it will not be able to find those classes. In other words, if you

use a ClassPath specification, you lose the CLASSPATH environment variable. This is similar to

the behavior of the -classpath command-line option to the Java runtime and compiler, if you

are familiar with those tools.

It is recommended that users avoid the ClassPath option. If you need the dynamic control that

the ClassPath option provides, you should use the more powerful and convenient

AddToClassPath mechanism, described in the next section. The most common reason for using

the ClassPath option is if you want to specifically prevent the contents of the CLASSPATH

environment variable from being used. To do this, set ClassPath -> None.

J/Link User Guide 23

Dynamically Modifying the Class Path

One thing that is inconvenient about the standard Java class path is that it cannot be changed

after the Java runtime has been launched. J/Link has its own class loader that searches in a set

of special locations beyond the standard Java class path. This gives J/Link an extremely power-

ful and flexible means of finding classes. To add locations to this extra set, use the

AddToClassPath function.

AddToClassPath@"location",…D add the specified directories or jar files to J/Link’s class
search path

Adding classes to the search path.

After Java has been started, you can call AddToClassPath whenever you wish, and it will take

effect immediately. One convenient feature of this extra class search path is that if you add a

directory, then any jar or zip files in that directory will be searched. This means that you do not

have to name jar files individually, as you need to do with the standard Java class path. For

loose class files, the nesting rules are the same as for the class path, meaning that if a class is

in the package com.acme.stuff, and you called AddToClassPath@"d:\\myClasses"D, then

you would need to put the class file into d:\MyClasses\com\acme\stuff.

Changes to the search path that you make with AddToClassPath only apply to the current Java

session. If you quit and restart java, you will need to call AddToClassPath again.

In addition to the locations you add yourself with AddToClassPath, J/Link automatically

includes any Java subdirectories of any directories in the standard Mathematica application

locations ($UserBaseDirectory/AddOns/Applications, $BaseDirectory/AddOns/Applications,

< Mathematica dir >/AddOns/Applications, and < Mathematica dir >/AddOns/ExtraPackages). This

feature is designed to provide extremely easy deployment for developers who create applica-

tions for Mathematica that use Java and J/Link for part of their implementation. This is

described in "Deploying Applications that use J/Link" in more detail, but even casual Java pro-

grammers who are writing classes to use with J/Link can take advantage of it. Just create a

subdirectory of AddOns/Applications, say MyStuff, create a Java subdirectory within it, and toss

class or jar files into it. J/Link will be able to find and use them. Of course, loose class files have

to be placed into an appropriately nested subdirectory of the Java directory, corresponding to

their package names (if any), as described.

The AddToClassPath function was introduced in J/Link 2.0. Previous versions of J/Link had a

variable called $ExtraClassPath that specified a list of extra locations. You could add to this

list like this:

24 J/Link User Guide

The AddToClassPath function was introduced in J/Link 2.0. Previous versions of J/Link had a

variable called $ExtraClassPath that specified a list of extra locations. You could add to this

list like this:

AppendTo@$ExtraClassPath, "d:\\MyClasses"D;

$ExtraClassPath was deprecated in J/Link 2.0, but it still works. One advantage of

$ExtraClassPath over using AddToClassPath is that changes made to $ExtraClassPath

persist across a restart of the Java runtime.

Examining the Class Path

The JavaClassPath function returns the set of directories and jar files in which J/Link will

search for classes. This includes all locations added with AddToClassPath or $ExtraClassPath,

as well as Java subdirectories of application directories in any of the standard Mathematica

application locations. It does not display the jar files that make up the standard Java platform

itself, or jar files in the Java extensions directory. Those classes can always be found by Java

programs.

JavaClassPath@D gives the complete set of directories and jar files in which
J/Link will search for classes

Inspecting the class search path.

Using J/Link’s Class Loader Directly

As stated earlier, J/Link uses its own class loader to allow it to find classes and other resources

in a dynamic set of locations beyond the startup class path. Essentially all the classes that you

load using J/Link that are not part of the Java platform itself will be loaded by this class loader.

One consequence of this is that calling Java’s Class.forName() method from Mathematica will

often not work.

J/Link User Guide 25

LoadJavaClass@"java.lang.Class"D;
cls = Class`forName@"some.class.that.only.JLink.can.find"D

Java::excptn : A Java exception occurred: java.lang.ClassNotFoundException:
some.class.that.only.JLink.can.find
at java.net.URLClassLoader$1.runHUnknown SourceL
at java.security.AccessController.doPrivilegedHNative MethodL
at java.net.URLClassLoader.findClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at sun.misc.Launcher$AppClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassInternalHUnknown SourceL
at java.lang.Class.forName0HNative MethodL
at java.lang.Class.forNameHUnknown SourceL
at

sun.reflect.NativeMethodAccessorImpl.invoke0HNative MethodL
at sun.reflect.NativeMethodAccessorImpl.invokeHUnknown SourceL
at

sun.reflect.DelegatingMethodAccessorImpl.invokeHUnknown SourceL.
$Failed

The problem is that Class.forName() finds classes using a default class loader, not the J/Link

class loader, and this default class loader does not know about the special directories in which

J/Link looks for classes (in fact, it does not even know about the startup class path, because of

details of how J/Link launches Java). If you are translating Java code into Mathematica, or if

you just want to get a Class object for a given class, watch out for this problem. The fix is to

force J/Link’s class loader to be used. One way to do this is to use the three-argument form of

Class.forName(), which allows you to specify the class loader to be used:

LoadJavaClass@"com.wolfram.jlink.JLinkClassLoader"D;
cls = Class`forName@"some.class.that.only.JLink.can.find",

True, JLinkClassLoader`getInstance@DD

An easier way is to use the static classFromName method of JLinkClassLoader:

cls = JLinkClassLoader`classFromName@"some.class.that.only.JLink.can.find"D

You should think of this classFromName HL method as being the replacement for Class.forÖ

Name(). When you find yourself wanting to obtain a Class object from a class name given as a

string, remember to use JLinkClassLoader.classFromName HL.

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

26 J/Link User Guide

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

 // Java code
 Class cls = Class.forName("SomeClassThatImplementsInterfaceX");
 X obj = (X) cls.newInstance();

If you are translating code like this into a Mathematica program, this operation can be per-

formed simply by calling JavaNew:

obj = JavaNew@"SomeClassThatImplementsInterfaceX"D

The point here is that for a very common usage of Class.forName(), you do not have to

translate it line-by-line into Mathematica~you can duplicate the functionality by calling JavaNew.

Performance Issues

Overhead of Calls to Java

The speed of Java programs is highly dependent on the Java runtime. On certain types of

programs, for example, ones that spend most of their time in a tight number-crunching loop,

the speed of Java can approach that of compiled, optimized C.

Java is a good choice for computationally intensive programs. Your mileage may vary, but do

not rule out Java for any type of program before you have done some simple speed testing. For

less demanding programs, where every ounce of speed is not necessary, the simplicity of using

J/Link instead of programming traditional MathLink “installable” programs with C makes Java an

obvious choice.

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

method calls per second, and considerably more if they are static methods, which require less

preprocessing in Mathematica. On some operating systems the results will be less. You should

keep in mind that there is a more or less fixed cost of a call into Java regardless of what the call

does, and on slow machines this cost could be as much as .001 seconds. Many Java methods

will execute in considerably less time than this, so the total time for the call is often dominated

by the fixed turnaround time of a J/Link call, not the speed of Java itself.

J/Link User Guide 27

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

preprocessing in Mathematica. On some operating systems the results will be less. You should

keep in mind that there is a more or less fixed cost of a call into Java regardless of what the call

does, and on slow machines this cost could be as much as .001 seconds. Many Java methods

will execute in considerably less time than this, so the total time for the call is often dominated

by the fixed turnaround time of a J/Link call, not the speed of Java itself.

For most uses, the overhead of a call into Java is not a concern, but if you have a loop that calls

into Java 500,000 times, you will have a problem (unless your program takes so long that the

J/Link cost is negligible, in which case you have an even bigger problem!). If your Mathematica

program is structured in a way that requires a great many calls into Java, you may need to

refactor it to do more on the Java side and thus reduce the number of times you need to cross

the Java-Mathematica boundary. This will probably involve writing some Java code, which

unfortunately defeats the J/Link premise of being able to use Mathematica to script the function-

ality of an arbitrary Java program. There are uses of Java that just cannot be feasibly scripted

in this way, and for these you will need to write more of the functionality in Java and less in

Mathematica.

Speeding Up Sending Large Arrays

You can send and receive arrays of most “primitive” Java types (e.g., byte, short, int, float,

double) nearly as fast as in a C-language program. The set of types that can be passed quickly

corresponds to the set of types for which the MathLink C API has single functions to put arrays.

The Java types long (these are 64 bits), boolean, and String do not have fast MathLink

functions, and so sending or receiving these types is much slower. Try to avoid using extremely

large arrays of these types (say, more than 100,000 elements) if possible.

A setting that has a big effect on the speed of moving multidimensional arrays is the one used

to control whether “ragged” arrays are allowed. As discussed in "Ragged Arrays", the default

behavior of J/Link is to require that all arrays be fully rectangular. But Java does not require

that arrays conform to this restriction, and if you want to send or receive ragged arrays, you

can call AllowRaggedArrays@TrueD in your Mathematica session. This causes J/Link to switch

to a much slower method for reading and writing arrays. Avoid using this setting unless you

need it, and switch it off as soon as you no longer require it.

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

500, this test can take a significant amount of time, probably similar to the time it takes to

actually transfer the array to Java. If you want to avoid the time taken by this testing of array

arguments, you can set the variable $RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

28 J/Link User Guide

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

500, this test can take a significant amount of time, probably similar to the time it takes to

actually transfer the array to Java. If you want to avoid the time taken by this testing of array

arguments, you can set the variable $RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

You probably do not want to leave $RelaxedTypeChecking set to True for a long time, and if

you are writing code for others to use you certainly do not want to alter its value in their ses-

sion. $RelaxedTypeChecking is intended to be used in a Block construct, where it is given the

value of True for a short period:

Block@8$RelaxedTypeChecking = True<, obj@meth@someLargeArrayDDD

$RelaxedTypeChecking only has an effect for arrays, which are the only types for which the

pattern test that J/Link creates is expensive relative to the actual call into Java.

Another optimization to speed up J/Link programs is to use ReturnAsJavaObject to avoid

unnecessary passing of large arrays or strings back and forth between Mathematica and Java.

ReturnAsJavaObject is discussed in the section "ReturnAsJavaObject".

An Optimization Example

Next examine a simple example of steps you might take to improve the speed of a J/Link pro-

gram. Java has a powerful DecimalFormat class you can use to format Mathematica numbers

in a desired way for output to a file. Here you create a DecimalFormat object that will format

numbers to exactly four decimal places.

fmt = JavaNew@"java.text.DecimalFormat", "Ò.0000"D;

To use the fmt object, you call its format() method, supplying the number you want

formatted.

fmtüformat@12.34D

12.3400

This returns a string with the requested format. Now suppose you want to use this ability to

format a list of 20000 numbers before writing them to a file.

J/Link User Guide 29

This returns a string with the requested format. Now suppose you want to use this ability to

format a list of 20000 numbers before writing them to a file.

data = Table@Random@D, 840000<D;

Map@fmtüformat@ÒD &, dataD;

The Map call, which invokes the format method 40000 times, takes 46 seconds on a certain PC

(this is wall clock time, not the result of the Timing function, which is not accurate for MathLink

programs on most systems). Clearly this is not acceptable. As a first step, you try using

MethodFunction because you are calling the same method many times.

methodFunc = MethodFunction@fmt, formatD;

Note that you use fmt as the first argument to MethodFunction. The first argument merely

specifies the class; as with virtually all functions in J/Link that take a class specification, you

can use an object of the class if you desire. The MethodFunction that is created can be used on

any object of the DecimalFormat class, not just the fmt object.

Map@methodFunc@fmt, ÒD &, dataD;

Using methodFunc, this now takes 36 seconds. There is a slight speed improvement, much less

than in earlier versions of J/Link. This means you are getting about 1100 calls per second, and

it is still not fast enough to be useful. The only thing to do is to write your own Java method

that takes an array of numbers, formats them all, and returns an array of strings. This will

reduce the number of calls from Mathematica into Java 40000 down to one.

Here is the code for the trivial Java class necessary. Note that there is nothing about this code

that suggests it will be called from Mathematica via J/Link. This is exactly the same code you

would write if you wanted to use this functionality within Java.

public class FormatArray {
public static String[] format(java.text.DecimalFormat fmt,double[] d) {

String[] result=new String[d.length];
for (int i = 0; i < d.length; i++)

result[i] = fmt.format(d[i]);
return result;

}
}

This new version takes less than 2 seconds.

LoadJavaClass@"FormatArray"D;
FormatArray`format@fmt, dataD;

Reference Counts and Memory Management

30 J/Link User Guide

Reference Counts and Memory Management

Object References in Mathematica

The earlier treatment of JavaObject expressions avoided discussing deeper issues such as

reference counts and uniqueness. Every time a Java object reference is returned to Mathemat-

ica, either as a result of a method or field or an explicit call to JavaNew, J/Link looks to see if a

reference to this object has been sent previously in this session. If not, it creates a JavaObject

expression in Mathematica and sets up a number of definitions for it. This is a comparatively

time-consuming process. If this object has already been sent to Mathematica, in most cases

J/Link simply creates a JavaObject expression that is identical to the one created previously.

This is a much faster operation.

There are some exceptions to this last rule, meaning that sometimes when an object is

returned to Mathematica a new and different JavaObject expression is created for it, even

though this same object has previously been sent to Mathematica. Specifically, any time an

object’s hashCode HL value has changed since the last time it was seen in Mathematica, the

JavaObject expression created will be different. You do not really need to be concerned with

the details of this, except to remember that SameQ is not a valid way to compare JavaObject

expressions to decide whether they refer to the same object. You must use the SameObjectQ

function.

SameObjectQ@obj1,obj2D return True if the JavaObject expressions obj1 and obj2
refer to the same Java object, False otherwise

Comparing JavaObject expressions.

Here is an example.

pt = JavaNew@"java.awt.Point", 1, 1D

«JavaObject@java.awt.PointD »

The variable pt refers to a Java Point object. Now put it into a container so you can get it back

out later.

vec = JavaNew@"java.util.Vector"D;
vecüadd@ptD;

Now change the value of one of its fields. For a Point object, changing the value of one of its

fields changes its hashCode() value.

J/Link User Guide 31

Now change the value of one of its fields. For a Point object, changing the value of one of its

fields changes its hashCode() value.

ptüx = 2;

Now you compare the JavaObject expression given by pt and the JavaObject expression

created when you ask for the first element of the Vector to be returned to Mathematica. Even

though these are both references to the same Java object, the JavaObject expressions are

different.

pt === vecüelementAt@0D

False

Because you cannot use SameQ (===) to decide whether two object references in Mathematica

refer to the same Java object, J/Link provides a function, SameObjectQ, for this purpose.

SameObjectQ@pt, vecüelementAt@0DD

True

You may be wondering why the SameObjectQ function is necessary. Why not just call an

object’s equals() method? It certainly gives the correct result for this example.

ptüequals@vecüelementAt@0DD

True

The problem with this technique is that equals() does not always compare object references.

Any class is free to override equals() to provide any desired behavior for comparing two

objects of that class. Some classes make equals() compare the “contents” of the objects, such

as the String class, which uses it for string comparison. Java provides two distinct equality

operations, the == operator and the equals() method. The == operator always compares

references, returning true if and only if the references point to the same object, but equals()

is often overridden for some other type of comparison. Because there is no method call in Java

that mimics the behavior of the language’s == operator as applied to object references, J/Link

needs a SameObjectQ function that provides that behavior for Mathematica programmers.

In an unusual case where you need to compare object references for equality a very large

number of times, the comparative slowness of SameObjectQ compared to SameQ could become

an issue. The only thing that could cause two JavaObject expressions that refer to the exact

same Java object to be not SameQ is if the hashCode() value of the object changed between

JavaObject expressions were created. If you know this has not hap-

pened, then you can safely use SameQ as the test whether they refer to the same object.

32 J/Link User Guide

In an unusual case where you need to compare object references for equality a very large

number of times, the comparative slowness of SameObjectQ compared to SameQ could become

an issue. The only thing that could cause two JavaObject expressions that refer to the exact

the times that the two JavaObject expressions were created. If you know this has not hap-

pened, then you can safely use SameQ as the test whether they refer to the same object.

ReleaseJavaObject

The Java language has a built-in facility called “garbage collection” for freeing up memory

occupied by objects that are no longer in use by a program. Objects become eligible for

garbage collection when no references to them exist anywhere, except perhaps in other objects

that are also unreferenced. When an object is returned to Mathematica, either as a result of a

call to JavaNew or as the return value of a method call or field access, the J/Link code holds a

special reference to the object on the Java side to ensure that it cannot be garbage-collected

while it is in use by Mathematica. If you know that you no longer need to use a given Java

object in your Mathematica session, you can explicitly tell J/Link to release its reference. The

function that does this is ReleaseJavaObject. In addition to releasing the Mathematica-specific

reference in Java, ReleaseJavaObject clears out internal definitions for the object that were

created in Mathematica. Any subsequent attempt to use this object in Mathematica will fail.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

Now tell Java that you no longer need to use this object from Mathematica.

ReleaseJavaObject@frmD

It is now an error to refer to frm.

ReleaseJavaObject@objD let Java know that you are done using obj in Mathematica

ReleaseObject@objD deprecated; replaced by ReleaseJavaObject in J/Link
2.0

JavaBlock@exprD all novel Java objects returned to Mathematica during the
evaluation of expr will be released when expr finishes

BeginJavaBlock@D all novel Java objects returned to Mathematica between
now and the matching EndJavaBlock@D will be released

EndJavaBlock@D release all novel objects seen since the matching
BeginJavaBlock@D

LoadedJavaObjects@D return a list of all objects that are in use in Mathematica

LoadedJavaClasses@D return a list of all classes loaded into Mathematica

J/Link memory management functions.

Calling ReleaseJavaObject will not necessarily cause the object to be garbage-collected. It is

quite possible that other references to it exist in Java. ReleaseJavaObject does not tell Java to

throw the object away, only that it does not need to be kept around solely for Mathematica’s

sake.

J/Link User Guide 33

Calling ReleaseJavaObject will not necessarily cause the object to be garbage-collected. It is

quite possible that other references to it exist in Java. ReleaseJavaObject does not tell Java to

throw the object away, only that it does not need to be kept around solely for Mathematica’s

sake.

An important fact about the references that J/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseJavaObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

frm = JavaNew@"java.awt.Frame"D;
b1 = JavaNew@"java.awt.Button"D;

The add() method of the Frame class returns the object added, so b2 refers to the same object

as b1:

b2 = frmüadd@b1D;

If you call ReleaseJavaObject@b1D, it is not the Mathematica symbol b1 that is affected, but

the Java object that b1 refers to. Therefore, using b2 is also an error (or any other way to refer

to this same Button object, such as %).

Calling ReleaseJavaObject is often not necessary in casual use. If you are not making heavy

use of Java in your session then you will usually not need to be concerned about keeping track

of what objects may or may not be needed anymore~you can just let them pile up. There are

special times, though, when memory use in Java will be important, and you may need the extra

control that ReleaseJavaObject provides.

JavaBlock

ReleaseJavaObject is provided mainly for developers who are writing code for others to use.

Because you can never predict how your code will be used, developers should always be sure

that their code cleans up any unnecessary references it creates. Probably the most useful

function for this is JavaBlock.

JavaBlock automates the process of releasing objects encountered during the evaluation of an

expression. Often, a Mathematica program will need to create some Java objects with JavaNew,

operate with them, perhaps causing other objects to be returned to Mathematica as the results

Block and Module, and in C,

C++, Java, and many other languages by block scoping constructs (e.g., {}). JavaBlock allows

you to mark a block of code as having the property that any new objects returned to Mathemat-

ica during the evaluation are to be treated as temporary, and released when JavaBlock finishes.

34 J/Link User Guide

JavaBlock automates the process of releasing objects encountered during the evaluation of an

expression. Often, a Mathematica program will need to create some Java objects with JavaNew,

of method calls, and finally return some result such as a number or string. Every Java object

encountered by Mathematica during this operation is needed only during the lifetime of the

program, much like the local variables provided in Mathematica by Block and Module, and in C,

C++, Java, and many other languages by block scoping constructs (e.g., {}). JavaBlock allows

you to mark a block of code as having the property that any new objects returned to Mathemat-

ica during the evaluation are to be treated as temporary, and released when JavaBlock finishes.

It is important to note that the preceding sentence said “new objects”. JavaBlock will not

cause every object encountered during the evaluation to be released, only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that JavaBlock will aggressively release an

object that is not truly temporary to that evaluation.

It is not enough simply to call ReleaseJavaObject on every object you create with JavaNew,

because many Java method calls return objects. You may not be interested in these return

values, or you may never assign them to a named variable because they may be chained

together with other calls (as in objüreturnsObject@Düfoo@D), but you still need to release

them. Using JavaBlock is an easy way to be sure that all novel objects are released when a

block of code finishes.

JavaBlock@exprD returns whatever expr returns.

Many J/Link Mathematica programs will have the following structure:

MyFunc@args__D :=
JavaBlock@

Module@8locals<,
...

D
D

It is very common to write a function that creates and manipulates a number of JavaObject

expressions, and then returns one of them, the rest being temporary. To facilitate this, if the

return value of a JavaBlock is a single JavaObject, it will not be released.

MyOtherFunc@args__D :=
JavaBlock@

Module@8obj<,
...
obj = JavaNew@"java.awt.Frame"D;
...
Return@objD

H* OK: obj will not be released when JavaBlock finishes. *L
D

D

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

JavaBlock expressions, you must call KeepJavaObject at each level. Alternatively, you can call

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

J/Link User Guide 35

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

JavaBlock expressions, you must call KeepJavaObject at each level. Alternatively, you can call

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

MyOtherFunc[args__] :=
Module[{obj1, obj2, obj3},

JavaBlock[
obj1 = JavaNew["java.awt.Frame"];
obj2 = JavaNew["java.awt.Button"];

 obj3 = JavaNew["SomeTemporaryObject"];
 ...
 KeepJavaObject[obj1, obj2];
 {obj1, obj2}
]
]

BeginJavaBlock and EndJavaBlock can be used to provide the same functionality as

JavaBlock across more than one evaluation. EndJavaBlock releases all novel Java objects

returned to Mathematica since the previous matching BeginJavaBlock. These functions are

mainly of use during development, when you might want to set a mark in your session, do

some work, and then release all novel objects returned to Mathematica since that point.

BeginJavaBlock and EndJavaBlock can be nested. Every BeginJavaBlock should have a

matching EndJavaBlock, although it is not a serious error to forget to call EndJavaBlock, even

if you have nested levels of them~you will only fail to release some objects.

LoadedJavaObjects and LoadedJavaClasses

LoadedJavaObjects@D returns a list of all Java objects that are currently referenced in Mathe-

matica. This includes all objects explicitly created with JavaNew and all those that were

returned to Mathematica as the result of a Java method call or field access. It does not include

objects that have been released with ReleaseJavaObject or through JavaBlock.

LoadedJavaObjects is intended mainly for debugging. It is very useful to call it before and after

some function you are working on. If the list grows, your function leaks references, and you

need to examine its use of JavaBlock and/or ReleaseJavaObject.

LoadedJavaClasses@D returns a list of JavaClass expressions representing all classes loaded

into Mathematica. Like LoadedJavaObjects, LoadedJavaClasses is intended mainly for debug-

ging. Note that you do not have to determine if a class has already been loaded before you call

LoadJavaClass. If the class has been loaded, LoadJavaClass does nothing but return the

appropriate JavaClass expression.

36 J/Link User Guide

LoadedJavaClasses@D returns a list of JavaClass expressions representing all classes loaded

into Mathematica. Like LoadedJavaObjects, LoadedJavaClasses is intended mainly for debug-

ging. Note that you do not have to determine if a class has already been loaded before you call

LoadJavaClass. If the class has been loaded, LoadJavaClass does nothing but return the

appropriate JavaClass expression.

Exceptions

How Exceptions Are Handled

J/Link handles Java exceptions automatically. If an uncaught exception is thrown during any

call into Java, you will get a message in Mathematica. Here is an example that tries to format a

real number as an integer.

LoadClass@"java.lang.Integer"D;
Integer`parseInt@"1234.5"D

Java::excptn :
A Java exception occurred : java.lang.ArrayIndexOutOfBoundsException.

$Failed

If the exception is thrown before the method returns a result to Mathematica, as in the exam-

ple, the result of the call will be $Failed. As discussed later in "Manually Returning a Result to

Mathematica", it is possible to write your own methods that manually send a result to Mathemat-

ica before they return. In such cases, if an exception is thrown after the result is sent to Mathe-

matica but before the method returns, you will get a warning message reporting the exception,

but the result of the call will be unaffected.

If the Java code was compiled with debugging information included, the Mathematica message

you get as a result of an exception will show the full stack trace to the point where the excep-

tion occurred, with the exact line numbers in each file.

The JavaThrow Function

In some cases, you may want to cause an exception to be thrown in Java. This can be done

with the JavaThrow function. JavaThrow is new in J/Link 2.0 and should be considered experi-

mental. Its behavior might change in future versions.

J/Link User Guide 37

JavaThrow@exceptionObjD throw the given exception object in Java

Throwing Java exceptions from Mathematica.

You will only want to use JavaThrow in Mathematica code that is itself called from Java. It is

quite common for J/Link programs written in Mathematica to involve both calls from Mathemat-

ica into Java and calls from Java back to Mathematica. Such “callbacks” to Mathematica are

used extensively in Mathematica programs that create Java user interfaces, as described in

detail later in the section "Creating Windows and Other User Interface Elements". For example,

you can associate a Mathematica function to be called when the user clicks a Java button. This

Mathematica function is called directly from Java, and you might want it to behave just like a

Java method, including having the ability to throw Java exceptions.

An example of throwing an exception in a callback from a user interface action like clicking a

button is not very realistic because there is typically nothing in Java to catch such exceptions;

thus they are essentially ignored. A more meaningful example would be a program that

involved a mix of Java and Mathematica code where, for flexibility and ease of development

reasons, you have a Mathematica function being called to implement the “guts” of a Java

method that can throw an exception. As a concrete example, say you are doing XML processing

with Java and Mathematica using the SAX (Simple API for XML) API. SAX processing is based

on a set of handler methods that are called as certain events occur during parsing of the XML

document. Each such method can throw a SAXException to indicate an error and halt the

parsing. You want to implement these handler methods in Mathematica code, and thus you

want a way to throw a SAXException from Mathematica. Here is a hypothetical example of one

such handler method, the startDocument() method, which is invoked by the SAX engine

when document processing starts:

startDocument@D :=
If@! readyToAcceptParsingEvents, JavaThrow@JavaNew@"org.xml.sax.SAXException",

"Mathematica code has not been initialized"DDD

After a call to JavaThrow, the rest of the Mathematica function executes normally, but there is

no result returned to Java.

38 J/Link User Guide

Returning Objects "by Value" and "by Reference"

References and Values

J/Link provides a mapping between certain Mathematica expressions and their Java counter-

parts. What this means is that these Mathematica expressions are automatically converted to

and from their Java counterparts as they are passed between Mathematica and Java. For exam-

ple, Java integer types (long, short, int, and so on) are converted to Mathematica integers

and Java real types (float and double) are converted to Mathematica real numbers. Another

mapping is that Java objects are converted to JavaObject expressions in Mathematica. These

JavaObject expressions are references to Java objects~they have no meaning in Mathematica

except as they are manipulated by J/Link. However, some Java objects are things that have

meaningful values in Mathematica, and these objects are by default converted to values. Exam-

ples of such objects are strings and arrays.

You could say, then, that Java objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are strings, arrays, complex numbers

(discussed later), BigDecimal and BigInteger (discussed later), and the “wrapper” classes

(e.g., java.lang.Integer). You could say that these exceptional cases are returned “by

value”. The table in "Conversion of Types between Java and Mathematica" shows how these

special Java object types are mapped into Mathematica values.

In summary, every Java object that has a meaningful value representation in Mathematica is

converted into this value, simply because that is the most useful behavior. There are times,

however, when you might want to override this default behavior. Probably the most common

reason for doing this is to avoid unnecessary traffic of large expressions over MathLink.

J/Link User Guide 39

ReturnAsJavaObject@exprD a Java object returned by expr will be in the form of a
reference

ByRef@exprD deprecated; replaced by ReturnAsJavaObject in J/Link
2.0

JavaObjectToExpression@objD give the value of the Java object obj as a Mathematica
expression

Val@objD deprecated; replaced by JavaObjectToExpression in
J/Link 2.0

“By reference” and “by value” control.

ReturnAsJavaObject

Consider the case where you have a static method in class MyClass called arrayAbs() that

takes an array of doubles and returns a new array where each element is the absolute value of

the corresponding element in the argument array. The declaration of this method thus looks

like double@D arrayAbs Hdouble@D aL. This is how you would call such a method from

Mathematica.

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
arrayAbs@81., -2., 3., 4.<D
81., 2., 3., 4.<

The example showed how you probably want the method to work: you pass a Mathematica list

and get back a list. Now assume you have another method named arraySqrt() that acts like

arrayAbs() except that it performs the sqrt() function instead of abs().

arraySqrt@arrayAbs@81., -2., 3., 4.<DD

81., 1.41421, 1.73205, 2.<

In this computation, the original list is sent over MathLink to Java and a Java array is created

with these values. That array is passed as an argument to arrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to Java as the argument for arraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the arrayAbs() method) living on the Java side, ready to be

passed to arraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to Java again as a new array with the same values! For this example,

the cost is negligible, but what if the array has 200,000 elements?

What is needed is a way to let the array data remain in Java and return only a reference to the

array, not the actual data itself. This can be accomplished with the ReturnAsJavaObject

function.

40 J/Link User Guide

What is needed is a way to let the array data remain in Java and return only a reference to the

array, not the actual data itself. This can be accomplished with the ReturnAsJavaObject

function.

ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DD

«JavaObject@@DD »

Note that the class name of the JavaObject is "[D", which, although a bit cryptic, is the actual

Java class name of a one-dimensional array of doubles. Here is how the computation looks

using ReturnAsJavaObject:

arraySqrt@ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DDD

81., 1.41421, 1.73205, 2.<

Earlier you saw arraySqrt() being called with an argument that was a Mathematica list of

reals. Here it is being called with a reference to a Java object that is a one-dimensional array of

doubles. All methods and fields that take an array can be called from Mathematica with either a

Mathematica list or a reference to a Java array of the appropriate type.

Strings are the other type for which ReturnAsJavaObject is useful. Like arrays, strings have

the two properties that (1) they are represented in Java as objects but also have a meaningful

Mathematica value, and (2) they can be large, so it is useful to be able to avoid passing their

data back and forth unnecessarily. As an example, say your class MyClass has a static method

that appends to a string a digit taken from an external device that you are controlling from

Java. It takes a string and returns a new one, so its signature is

static String appendDigit HString sL. You have a Mathematica variable named

veryLongString that holds a long string, and you want to append to this string 100 times. This

code will cause the string contents to make 100 round trips between Mathematica and Java.

Do@veryLongString = appendString@veryLongStringD, 8100<D;

Using ReturnAsJavaObject lets the strings remain on the Java side, and thus it generates

virtually no MathLink traffic.

Do@veryLongString = ReturnAsJavaObject@appendString@veryLongStringDD, 8100<D;

This example is somewhat contrived, since repeatedly appending to a growing string is not a

very efficient style of programming, but it illustrates the issues.

When the Do loop is executed, veryLongString gets assigned values that are not Mathematica

strings, but JavaObject expressions that refer to strings residing in Java. That means that

appendString HL gets called with a Mathematica string the very first iteration, but with a

JavaObject expression thereafter. As is the case with arrays, any Java method or field that

takes a string can be called in Mathematica either with a string or a JavaObject expression

that refers to one. The veryLongString variable started out holding a string, but at the end of

the loop it holds a JavaObject expression.

J/Link User Guide 41

When the Do loop is executed, veryLongString gets assigned values that are not Mathematica

strings, but JavaObject expressions that refer to strings residing in Java. That means that

appendString HL gets called with a Mathematica string the very first iteration, but with a

JavaObject expression thereafter. As is the case with arrays, any Java method or field that

takes a string can be called in Mathematica either with a string or a JavaObject expression

that refers to one. The veryLongString variable started out holding a string, but at the end of

the loop it holds a JavaObject expression.

veryLongString

«JavaObject@java.lang.StringD »

At some point, you probably want an actual Mathematica string, not this string object refer-

ence. How do you get the value back? You will visit this example again later when the

JavaObjectToExpression function is introduced.

In summary, the ReturnAsJavaObject function causes methods and fields that return objects

that would normally be converted into Mathematica values to return references instead. It is an

optimization to avoid unnecessarily passing large amounts of data between Mathematica and

Java, and as such it will be useful primarily for very large arrays and strings. As with all optimiza-

tions, you should not concern yourself with ReturnAsJavaObject unless you have some code

that is running at an unacceptable speed, or you know ahead of time that the code you are

writing will benefit measurably from it. Objects of most Java classes have no meaningful “by

value” representation in Mathematica, and they are always returned “by reference”.

ReturnAsJavaObject will have no effect in these cases.

Finally, note that ReturnAsJavaObject has no effect on methods in which the Java programmer

manually sends the result back to Mathematica (this topic is discussed later in this User Guide).

Manually returning a result bypasses the normal result-handling routines in J/Link, so there is

no chance for the ReturnAsJavaObject request to be accommodated.

JavaObjectToExpression

In the previous section, you saw how the ReturnAsJavaObject function can be used to cause

objects normally returned to Mathematica by value to be returned by reference. It is necessary

to have a function that does the reverse~takes a reference and converts it to its value represen-

tation. That function is JavaObjectToExpression.

Returning to the earlier appendString example, you used ReturnAsJavaObject to avoid costly

passing of string data back and forth over MathLink. The result of this was that the

veryLongString variable now held a JavaObject expression, not a literal Mathematica string.

JavaObjectToExpression can be used to get the value of this string object as a Mathematica

string.

42 J/Link User Guide

Returning to the earlier appendString example, you used ReturnAsJavaObject to avoid costly

passing of string data back and forth over MathLink. The result of this was that the

veryLongString variable now held a JavaObject expression, not a literal Mathematica string.

JavaObjectToExpression can be used to get the value of this string object as a Mathematica

string.

JavaObjectToExpression@veryLongStringD

0371180863626445344894922949289892878227919482840897422691222365928516678297006273940532098876Ö
2893368

The majority of Java objects have no meaningful value representation in Mathematica. These

objects can only be represented in Mathematica as JavaObject expressions, and using

JavaObjectToExpression on them has no effect.

The ReturnAsJavaObject function is not the only way to get a JavaObject expression for an

object that is normally returned to Mathematica as a value. The JavaNew function always

returns a reference.

JavaNew@"java.lang.String", "a string"D

«JavaObject@java.lang.StringD »

JavaObjectToExpression@%D

a string

The next section introduces the MakeJavaObject function, which is easier than using JavaNew

to construct Java objects out of Mathematica strings and arrays.

MakeJavaObject and MakeJavaExpr

Preamble

In addition to JavaNew, which calls a class constructor, J/Link provides two convenience func-

tions for creating Java objects from Mathematica expressions. These functions are

MakeJavaObject and MakeJavaExpr. Do not get them confused, despite their similar names.

MakeJavaObject is a commonly used function for constructing objects of some special types.

MakeJavaExpr is an advanced function that creates an object of J/Link’s Expr class representing

an arbitrary Mathematica expression.

MakeJavaObject

J/Link User Guide 43

MakeJavaObject

MakeJavaObject@valD construct an object of the appropriate type to represent
the Mathematica expression val (numbers, strings, lists,
and so on)

MakeJavaObject.

When you call a Java method from Mathematica that takes, say, a Java String object, you can

call it with a Mathematica string. The internals of J/Link will construct a Java string that has the

same characters as the Mathematica string, and pass that string to the Java method. Some-

times, however, you want to pass a string to a method that is typed to take Object. You cannot

call such a method from Mathematica with a string as the argument because although J/Link

recognizes that a Mathematica string corresponds to a Java string, it does not recognize that a

Mathematica string corresponds to a Java Object. It does this deliberately, for the sake of

imposing as much type safety as possible on calls into Java. For this example, assume that the

class MyClass has a method with the following signature:

void foo(Object obj);

Assume also that theObj is an object of this class, created with JavaNew. Try to call foo with a

literal string.

theObjüfoo@"this is a string"D

Java::argxs :
Themethod foowas calledwith an incorrect number or type of arguments.

$Failed

It fails for the reason given above. To call a Java method that is typed to take an Object with a

string, you must first explicitly create a Java string object with the appropriate value. You can

do this using JavaNew.

javaStr = JavaNew@"java.lang.String", "this is a string"D

«JavaObject@java.lang.StringD »

Now it works, because the argument is a JavaObject expression.

theObjüfoo@javaStrD

To avoid having to call JavaNew to create a Java string object, J/Link provides the

MakeJavaObject function.

44 J/Link User Guide

To avoid having to call JavaNew to create a Java string object, J/Link provides the

MakeJavaObject function.

javaStr = MakeJavaObject@"this is a string"D;

In the case of a string, MakeJavaObject just calls JavaNew for you. Of course, it would not be of

much use if it could only construct String objects. The same issue arises with other Java

objects that are direct representations of Mathematica values. This includes the “wrapper”

classes like java.lang.Integer, java.lang.Boolean, and so on, and the array classes. If

you want to call a Java method that takes a java.lang.Integer as an argument, you can call

it from Mathematica with a raw integer. But if you want to pass an integer to a method that is

typed to take an Object, you must explicitly create an object of type java.lang.Integer~

J/Link will not construct one automatically from an integer argument. It is simpler to call

MakeJavaObject than JavaNew for this.

MakeJavaObject@42D

«JavaObject@java.lang.IntegerD »

When given an integer argument, MakeJavaObject always constructs a java.lang.Integer,

never a java.lang.Short, java.lang.Long, or other “integer” Java wrapper object. Simi-

larly, if you call MakeJavaObject with a real number, it creates a java.lang.Double, never a

java.lang.Float. If you require an object of one of these other types, you will have to call

JavaNew explicitly.

MakeJavaObject also works for Boolean values.

MakeJavaObject@TrueD

«JavaObject@java.lang.BooleanD »

If MakeJavaObject were only a shortcut for calling JavaNew, it would not be all that useful. It

becomes indispensable, however, for creating objects of an array class. Recall that in Java,

arrays are objects and they belong to a class. These classes have cryptic names, but if you

know them you can create array objects with JavaNew. When creating array objects, the second

argument to JavaNew is a list giving the length in each dimension. Here you create a 2×3 array

of ints.

intArray2D = JavaNew@"@@I", 82, 3<D

«JavaObject@@@ID »

JavaNew lets us create array objects, but it does not let us supply initial values for the elements

of the array. MakeJavaObject, on the other hand, takes a Mathematica list and converts it into

a Java array object with the same values.

J/Link User Guide 45

JavaNew lets us create array objects, but it does not let us supply initial values for the elements

of the array. MakeJavaObject, on the other hand, takes a Mathematica list and converts it into

a Java array object with the same values.

intArray2D = MakeJavaObject@881, 2, 3<, 84, 5, 6<<D

«JavaObject@@@ID »

Thus, MakeJavaObject is particularly useful for creating array objects, because it lets you

supply the initial values for the array elements, and it frees you from having to learn and remem-

ber the names of the Java array classes (@@I for a two-dimensional array of ints, @D for a one-

dimensional array of doubles, and so on). MakeJavaObject can create arrays up to three dimen-

sions deep of integers, doubles, strings, Booleans, and objects.

The JavaObjectToExpression function is discussed in the section "JavaObjectToExpression",

and you can think of MakeJavaObject as being the inverse of JavaObjectToExpression.

MakeJavaObject takes a Mathematica expression that has a corresponding Java object that can

represent its value, and creates that object. It literally “makes it into a Java object”. The

JavaObjectToExpression function goes the other way~it takes a Java object that has a mean-

ingful Mathematica representation and converts it into that expression. It will always be the

case that, for any x that MakeJavaObject can operate on,

JavaObjectToExpression@MakeJavaObject@xDD === x

Remember that MakeJavaObject is not a commonly used function. You do not need to explicitly

construct Java objects from Mathematica strings, arrays, and so on, just to pass them to Java

methods~J/Link does this automatically for you. But even though J/Link will create objects

automatically from certain arguments in most circumstances, it will not do so when an argu-

ment is typed as a generic Object. Then you must create a JavaObject yourself, and

MakeJavaObject is the easiest way to do this.

The code for the SetInternetProxy function discussed in the section SetInternetProxy provides

a concrete example of using MakeJavaObject. To specify proxy information (for users behind

firewalls), you need to set some system properties using the Properties class. This class is a

subclass of Hashtable, so it has a method with the signature

Object put(Object key, Object value);

46 J/Link User Guide

You should always specify keys and values for Properties in the form of strings. Thus, you

might try this from Mathematica.

LoadJavaClass@"java.lang.System"D;
System`getProperties@Düput@"proxySet", "true"D

Java::argx :
Method named put defined in class java.util.Properties was called with

an incorrect number or type of arguments. The
arguments, shown here in a list, were 8proxySet, true<.

$Failed

For this to work, you need to use MakeJavaObject to create Java String objects:

System`getProperties@Düput@MakeJavaObject@"proxySet"D, MakeJavaObject@"true"DD

MakeJavaExpr

To understand the MakeJavaExpr function, you need to understand the motivation for J/Link’s

Expr class, which is discussed in detail in "Motivation for the Expr Class". Basically, an Expr is a

Java object that can represent an arbitrary Mathematica expression. Its main use is as a conve-

nience for Java programmers who want to examine and operate on Mathematica expressions in

Java. Sometimes it is useful to have a way of creating Expr objects in the Mathematica lan-

guage instead of from Java. MakeJavaExpr is the function that fills this need.

MakeJavaExpr@exprD construct an object of J/Link’s Expr class that represents
the Mathematica expression

MakeJavaExpr.

Note that if you are calling a Java method that is typed to take an Expr, then you do not have

to call MakeJavaExpr to construct an Expr object. J/Link will automatically convert any expres-

sion you supply as the argument to an Expr object, as it does with other automatic conver-

sions. Like MakeJavaObject, MakeJavaExpr is used in cases where you are calling a method

that takes a generic Object, not an Expr, and therefore J/Link will not perform any automatic

conversion for you. In such cases you need to explicitly create an Expr object out of some

Mathematica expression. One reason you might want to do this is to store a Mathematica expres-

sion in Java for retrieval later.

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

J/Link User Guide 47

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

e = MakeJavaExpr@1 + 2 x + x^2D

«JavaObject@com.wolfram.jlink.ExprD »

eülength@D

3

eüpart@3D

x2

eüinsert@x^3, -1D

1 + 2 x + x2 + x3

Note that Expr objects, like Mathematica expressions, are immutable. The above call to insÖ

ert() did not modify e; instead, it returned a new Expr.

JavaObjectToExpression@eD

1 + 2 x + x2

If you are having trouble understanding why you might want to use MakeJavaExpr in a Mathe-

matica program, do not worry. It is an advanced function that few programmers will have any

use for.

48 J/Link User Guide

Creating Windows and Other User Interface Elements

Preamble

One of the most useful applications for J/Link is to write user interface elements for Mathemat-

ica programs. Examples of such elements would be a progress bar monitoring the completion of

a computation, a window that displays an image or animation, a dialog box that prompts the

user for input or helps them compose a proper call of an unfamiliar function, or a mini-applica-

tion that leads the user through the steps of an analysis. These types of user interfaces are

distinct from what you might write for a Java program that uses Mathematica in the background

in that they “pop up” when the user invokes some Mathematica code. They do not replace the

notebook front end, they just augment it. In this way, they are like an extension of the palettes

and other specialty notebook elements you can create in the front end.

Mathematica with J/Link is an extremely powerful and productive environment for creating user

interfaces. The complexity of user interface code is ideally suited to the interactive line-at-a-

time nature of J/Link development. You can literally build, modify, and experiment with your

user interface while it is running.

Anyone considering writing user interfaces for Mathematica programs should also look at GUIKit.

GUIKit is built on top of J/Link, and provides an extremely high-level means of creating inter-

faces. Further discussion of GUIKit is beyond the scope of this manual, but be aware that

GUIKit was specifically designed to provide an easier means of creating user interfaces than

writing in “raw” J/Link, as described here.

Interactive and Non-Interactive Interfaces

To write Mathematica programs that create Java windows you need to understand important

distinctions between several types of such user interfaces. These distinctions relate to how they

interact with the Mathematica kernel.

At the highest level of categorization, there is a distinction between “interactive” and “non-

interactive” interfaces. The interactiveness under consideration here is with the Mathematica

J/Link User Guide 49

At the highest level of categorization, there is a distinction between “interactive” and “non-

kernel, not with the user. What we are calling non-interactive user interfaces have no need to

communicate back to Mathematica, although they typically are controlled by Mathematica. Such

interfaces often accept no user input at all~they are created, manipulated, and destroyed by

Mathematica code. An example of this type is a window that shows a progress bar (a complete

progress bar program is presented in "A Progress Bar"). A progress bar does not return a result

to Mathematica and it does not need to respond to user actions, at least not by interacting with

Mathematica. In other words, the window may go away when its close box is clicked (a user

action), but this is not relevant to Mathematica because it does not return a result or trigger a

call back into Mathematica. A progress bar is completely driven by a Mathematica program. The

flow of information is in one direction only.

Such user interfaces typically have lifetimes that are encompassed by a single Mathematica

program, as is the case with a progress bar. This is not required, however. Hosting an applet in

its own window, as described in "Hosting Applets", is an example where the window lives on

after the code that created it ends execution. The applet window is only dismissed when the

user clicks in its close box. Again, though, the important property is that the applet does not

need to interact with Mathematica.

This type of user interface, which requires no interaction back with Mathematica, poses no

special issues that need to be discussed in this section. A program that creates, runs, and

destroys such an interface is very much like a non-GUI Java computation that is accomplished

with a series of calls into Java. It just happens to produce a visual effect. You can examine the

progress bar code in "A Progress Bar" if you want to see a fully fleshed out example.

The more common “interactive” type of user interface needs to communicate back to Mathemat-

ica. This might be to return a result, like a typical modal input dialog, or to initiate a computa-

tion as a consequence of the user clicking a button. To understand the special problem this

imposes, it is useful to examine some basic considerations about the kernel’s “main loop”,

whereby it acquires input, evaluates it, and sends off any output.

When the Mathematica kernel is being used from the front end, it spends most of its life waiting

for input to arrive on the MathLink that it uses to communicate with the front end. This Math-

Link is given by $ParentLink, and it is $ParentLink that has the kernel’s “attention”. When

input arrives on $ParentLink, it is evaluated, any results are sent back on the link, and the

kernel goes back to waiting for more input on $ParentLink. When J/Link is being used, the

$ParentLink, which is typically the notebook front

end.

50 J/Link User Guide

When the Mathematica kernel is being used from the front end, it spends most of its life waiting

for input to arrive on the MathLink that it uses to communicate with the front end. This Math-

Link is given by $ParentLink, and it is $ParentLink that has the kernel’s “attention”. When

input arrives on $ParentLink, it is evaluated, any results are sent back on the link, and the

kernel has another MathLink open, the one that connects to the Java runtime. When you exe-

cute some code that calls into Java, the kernel sends something to Java and then blocks waiting

for the return value from Java. During this period when the kernel is waiting for a return value

from Java, the Java link has the kernel’s attention. It is only during this period of time that the

kernel is paying attention to the Java link. A more general way of saying this is that the kernel

is only listening for input arriving from Java when it has been specifically instructed to do so.

The rest of the time it is listening only to $ParentLink, which is typically the notebook front

end.

Consider what happens when the user clicks on a button in your Java window and that button

tries to execute some code that calls into Mathematica. The Java side sends something to

Mathematica and then waits for the result, but the kernel will never get the request because it

is not paying attention to the Java link. It is necessary to use some means to tell the kernel to

look for input arriving on the Java link. J/Link provides three different ways to manage the

kernel’s attention to the Java link, and thereby control its readiness to accept requests for

evaluations initiated by the Java side.

These three ways can be called “modal”, “modeless”, and “manual”. In modal interaction,

characterized by the use of the DoModal Mathematica function, the kernel is pointed at the Java

link until the Java side releases it. The kernel is a complete slave to the Java side, and is unavail-

able for any other computations. In modeless interaction, characterized by the use of the

ShareKernel Mathematica function, the kernel is kept in a state where it is receptive to evalua-

tion requests arriving from either the notebook front end or Java, evenly sharing its attention

between these two programs. Lastly, there is a manual mode, characterized by the use of the

ServiceJava Mathematica function, which in some ways is intermediate between modal and

modeless operation. Here, you manually instruct the kernel to allow single requests from Java

while in the middle of running a larger program. The next few sections are devoted to further

exploration of these types of user interfaces.

Before continuing, it is important to remember that all these issues about how to prepare the

kernel for computations arriving from Java are only relevant for computations initiated in Java,

typically by user actions like clicking a button. Calls from Java to Mathematica that are part of a

back-and-forth series of calls that involve a call from Mathematica into Java are not a problem.

Any time Mathematica has called into Java, Mathematica is actively listening for results arriving

from Java. This may sound confusing, but that is mostly because it is only in a much later

J/Link User Guide 51

Before continuing, it is important to remember that all these issues about how to prepare the

kernel for computations arriving from Java are only relevant for computations initiated in Java,

typically by user actions like clicking a button. Calls from Java to Mathematica that are part of a

back-and-forth series of calls that involve a call from Mathematica into Java are not a problem.

Any time Mathematica has called into Java, Mathematica is actively listening for results arriving

section that discusses writing your own Java methods to be called from Mathematica; such

methods can call back to Mathematica for computations before they return their result (typical

examples are to print something in the notebook window or display a message). These are true

callbacks into Mathematica, and Mathematica is always ready to handle them. In contrast, calls

to Mathematica that occur as the result of a user action in the Java side are, in effect, a sur-

prise to Mathematica, and it is not normally in a state where it is ready to accept them.

Modal versus Modeless Operation

A common type of user interface element is like a modal dialog: once it is displayed, the Mathe-

matica program hangs waiting for the user to dismiss the window. Typically, this is because the

window returns a result to Mathematica, so it is not meaningful for Mathematica to continue

until the window is closed. An example of such a window is a simple input window that asks the

user for some value, which it returns to Mathematica when the OK button is clicked.

It is important to understand our slightly generalized use of the term “modal” to describe these

windows. They may not be modal in the traditional sense that they must be dismissed before

anything else can be done in the user interface. Rather, they are modal with respect to the

Mathematica kernel~the kernel cannot do anything else until they are closed. A Java window

that you create might not be modal with respect to other Java windows on the screen (i.e., a

dialog might not have the isModal property set), but it ties up the kernel’s attention until it is

dismissed.

Another type of user interface element is like a modeless dialog: after it is displayed, the Mathe-

matica program that created it will finish, leaving the window visible and usable while the user

continues working in the notebook front end. This sounds a lot like the first type of user inter-

face element described earlier, but these windows are distinguished by the fact that they can

initiate interactions with Mathematica while they are visible. An example would be a window

that lets users load packages into Mathematica by selecting them from a scrolling list. You write

a J/Link program that creates this window, displays it, and returns. The window is left open and

usable until the user clicks in its close box. In the meantime, the user is free to continue work-

ing in the front end, going back to use this Java window whenever it is convenient.

Such a window is almost like another type of notebook or palette window in the front end. You

can have any number of front end or Java windows open at once, and active, meaning that they

52 J/Link User Guide

Such a window is almost like another type of notebook or palette window in the front end. You

can be used to initiate computations in Mathematica. They are each their own little interface

onto the same kernel. What is different about the Java window is that it is much more general

than a notebook window, and, importantly, it lives in a different application layer than the front

end. This last fact makes the Java window in effect a second front end, rather than an exten-

sion of the notebook front end. To accommodate such a second front end, the kernel must be

kept in a special state that allows it to handle requests for evaluations arriving from either the

notebook front end or Java.

Before presenting examples of how to implement modal and modeless windows, it is necessary

to jump ahead a little bit and explain the main mechanism by which Java user interface ele-

ments can communicate with Mathematica.

Handling Events with Mathematica Code: The “MathListener”
Classes

User interface elements typically have active components like buttons, scrollbars, menus, and

text fields that need to trigger some action when they are clicked. In the Java event model,

components fire events in response to user actions, and other components indicate their inter-

est in these events by registering as event listeners. In practice, though, components do not

usually act as event listeners directly. Instead, the programmer writes an adapter class that

implements the desired event-listener interface and calls certain methods in the component in

response to various events. This avoids having to subclass the responding component just to

have it act as an event listener. The only specialty code goes into the adapter class, allowing

the components that fire and respond to events to be generic.

As an example, say you are writing a standard Java program and you have a button that you

want to use to control the appearance of a text area. Clicking the button should toggle between

black text on a white background and white text on a black background. Buttons fire ActionÖ

Events when they are clicked, and a class that wants to receive notifications of clicks must

implement the ActionListener interface, and register with the button by calling its addActionÖ

Listener method. You would write a class, perhaps called MyActionAdapter, that implements

ActionListener. In its actionPerformed() method, which is what will be called when the

button is clicked, you would call the appropriate methods to set the foreground and background

colors of the text area.

If you have ever used a Java GUI builder that lets you create an application by dropping compo-

nents on a form and then wiring them together via events, the code that is being generated for

you consists in large part of adapter classes that manage the logic of calling certain methods in

the target objects when events are fired by the source objects.

J/Link User Guide 53

If you have ever used a Java GUI builder that lets you create an application by dropping compo-

nents on a form and then wiring them together via events, the code that is being generated for

you consists in large part of adapter classes that manage the logic of calling certain methods in

the target objects when events are fired by the source objects.

What all this is leading up to is simply that the wiring of components in a GUI typically involves

writing a lot of Java code in the form of classes that implement various event-listener inter-

faces. J/Link programmers want to write GUIs that use the standard Java event model, and

they should not have to write Java code to do it. The solution is simple: J/Link provides a com-

plete set of classes that implement the standard event-listener interfaces and whose actions are

to call back into Mathematica to execute user-defined code. This brings all the event-handling

logic down into Mathematica, where it can be scripted like every other part of the program.

Not only does this solution preserve the “pure Mathematica” property of even complex Java

GUIs, it is vastly more flexible than writing a traditional application in Java. When you write in

Java, or use a fancy drag-and-drop GUI builder, you hard-code the event logic. You have to

decide at compile time what every click, scroll, and keystroke will do. But when you use J/Link,

you decide how your program is wired together at run time. You can even change the behavior

on the fly simply by typing a few lines of code.

J/Link provides implementations of all the standard AWT event-listener classes. These classes

are named after the interfaces they implement, with “Math” prepended. Thus, the class that

implements ActionListener is MathActionListener. (Perhaps these classes would be better

named MathXXXAdapter.) The following table shows a summary of all the MathListener

classes, the methods they implement, and the arguments they send to your Mathematica

handler function.

54 J/Link User Guide

class methods arguments to Mathematica
handler

MathActionListener actionPerformed
HActionEvent eL

e,
e.getActionCommand

HL HStringL

MathAdjustmentListener adjustmentValueChanged I

AdjustmentEvent eM
e,
e.getAdjustmentType HL,
HIntegerL
e.getValue HL HIntegerL

MathComponentListener componentHidden
HComponentEvent eL

componentShown
HComponentEvent eL

componentResized
HComponentEvent eL

componentMoved
HComponentEvent eL

e

MathContainerListener componentAdded
HContainerEvent eL

componentRemoved
HContainerEvent eL

e

MathFocusListener focusGained
HFocusEvent eL

focusLost HFocusEvent eL

e

MathItemListener itemStateChanged
HItemEvent eL

e,
e.getStateChange

HL HIntegerL

MathKeyListener keyPressed HKeyEvent eL
keyReleased HKeyEvent eL
keyTyped HKeyEvent eL

e,
e.getKeyChar HL,HIntegerL
e.getKeyCode HL HIntegerL

MathMouseListener mouseClicked
HMouseEvent eL

mouseEntered
HMouseEvent eL

mouseExited
HMouseEvent eL

mousePressed
HMouseEvent eL

mouseReleased
HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

J/Link User Guide 55

MathMouseMotionListener mouseMoved HMouseEvent eL
mouseDragged

HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

MathPropertyChangeListeÖ
ner

propertyChanged H
PropertyChangeEvent eL

e

MathTextListener textValueChanged
HTextEvent eL

e

MathVetoableChangeListeÖ
ner

vetoableChange H

PropertyChangeEvent
eL

e (veto the change by returning
False from your handler)

MathWindowListener windowOpened
HWindowEvent eL

windowClosed
HWindowEvent eL

windowClosing
HWindowEvent eL

windowActivated
HWindowEvent eL

windowDeactivated
HWindowEvent eL

windowIconified
HWindowEvent eL

windowDeiconified
HWindowEvent eL

e

Listener classes provided with J/Link.

As an example of how to read this table, take the MathKeyListener class. MathKeyListener

implements the KeyListener interface, which contains the methods keyPressed(), keyReÖ

leased(), and keyTyped(). If you register a MathKeyListener object with a component that

fires KeyEvents, then these three methods will be called in response to the key events they are

named after. When any of these methods are called, they will call into Mathematica and exe-

cute a user-defined function, passing it three arguments: the KeyEvent object itself, followed

by two integers that are the results of the event object’s getKeyChar() and getKeyCode()

methods. All the MathListener classes pass your handler function the event object itself, and a

few, like this one, pass additional integer arguments that are commonly needed values. This

just saves you the overhead of having to call back into Java to get these additional values.

To specify the Mathematica function associated with any of the methods of a MathListener

object, call the object’s setHandler() method. setHandler() takes two strings, the first of

which is the name of the event-handler method (e.g., “actionPerformed” or “keyPressed”),

and the second of which is the Mathematica function that should be called in response. The

Mathematica function can be a name, as in “myButtonFunction” or a pure function (specified as

a string). The reason for supplying the name of the actual Java method in the listener interface

is that many of the listeners have multiple methods. setHandler() returns True if the handler

was set correctly and False otherwise (for example, if the method you named is not spelled

correctly).

56 J/Link User Guide

To specify the Mathematica function associated with any of the methods of a MathListener

object, call the object’s setHandler() method. setHandler() takes two strings, the first of

which is the name of the event-handler method (e.g., “actionPerformed” or “keyPressed”),

and the second of which is the Mathematica function that should be called in response. The

Mathematica function can be a name, as in “myButtonFunction” or a pure function (specified as

a string). The reason for supplying the name of the actual Java method in the listener interface

is that many of the listeners have multiple methods. setHandler() returns True if the handler

was set correctly and False otherwise (for example, if the method you named is not spelled

correctly).

objüsetHandler@"methodName"," funcName"D

set the Mathematica function that will be called when the
MathListener object obj’s event-handler method methodÖ
Name() is called.

Assigning the Mathematica function that will be called in response to an event notification.

The use of these classes will become clear in the simple examples that follow for modal and

modeless windows, and in the more fully worked-out examples in the sections "A Simple Modal

Input Dialog" and "A Piano Keyboard".

You are not required to use the J/Link MathListener classes for creating calls into Mathematica

triggered by user actions. They are provided simply as a convenience. You could write your own

classes to handle events and put calls into Mathematica directly into their code. All the

“MathListener” classes in J/Link are derived from an abstract base class called, appropriately,

MathListener. The code in MathListener takes care of all of the details of interacting with

Mathematica, and it also provides the setHandler() methods that you use to associate events

with Mathematica code. Users who want to write their own classes in MathListener style (for

example, for one of the Swing-specific event-listener interfaces, which J/Link does not provide)

are strongly encouraged to make their classes subclasses of MathListener to inherit all this

functionality. You should examine the source code for one of the concrete classes derived from

MathListener (MathActionListener is probably the simplest one) to see how it is written. You

can use this as a starting point for your own implementation. If you do not make your class a

subclass of MathListener, and instead choose instead to write your own event-handler code

that calls into Mathematica, you must read "Writing Your Own Event Handler Code".

J/Link User Guide 57

Bringing Java Windows to the Foreground

If you are creating a Java window with a Mathematica program, you probably want that window

to pop up in front of the notebook the user is working in, so that its presence becomes appar-

ent. You might expect that the toFront() method of Java’s Window class is what you would

use for this, but this does not work on the Macintosh, and it works slightly differently on differ-

ent Java runtimes on Windows. As a result of these differences, it is difficult to write a Mathemat-

ica program that behaves identically on all platforms and all Java virtual machines with respect

to making Java windows visible in front of all other windows the user might see.

As a result of these unfortunate differences, J/Link provides a Mathematica function, JavaShow,

which performs the proper steps on all configurations. You should use JavaShow@windowD in

place of windowüsetVisible@TrueD, windowüshow@D, or windowütoFront@D. You will see

JavaShow used in all the example programs. The argument to JavaShow must be a Java object

that is an instance of a class that can represent a top-level window. Specifically, it must be of

class java.awt.Window or a subclass. This includes the AWT Frame and Dialog windows, and

also the Swing classes used for top-level windows (JFrame, JWindow, and JDialog).

JavaShow@windowObjD make the specified Java window visible and bring it in front
of all other windows, including notebook windows

Bringing a Java window to the foreground.

Modal Windows

Here is an example of a simple “modal” window. The window contains a button and a text field.

The text field starts out displaying the value 1, and each time the button is clicked the value is

incremented. The com.wolfram.jlink.MathFrame class is used for the enclosing window.

MathFrame is a simple extension to java.awt.Frame that calls dispose() on itself when its

close box is clicked (the standard Frame class does nothing).

frm = JavaNew@"com.wolfram.jlink.MathFrame"D;

button = JavaNew@"java.awt.Button"D;
textField = JavaNew@"java.awt.TextField"D;

frmüsetLayout@JavaNew@"java.awt.GridLayout"DD;
frmüadd@buttonD;
frmüadd@textFieldD;
frmüpack@D;
JavaShow@frmD;

At this point, you should see a small frame window with a button on the left and a text field on

the right. Now label the button and set the starting text for the field.

58 J/Link User Guide

At this point, you should see a small frame window with a button on the left and a text field on

the right. Now label the button and set the starting text for the field.

buttonüsetLabel@"++"D;
textFieldüsetText@"1"D;

Now you want to add behavior to the button that causes it to increment the text field value.

Buttons fire ActionEvents, so you need an instance of MathActionListener.

buttonListener = JavaNew@"com.wolfram.jlink.MathActionListener"D;

It must be registered with the button by calling addActionListener.

buttonüaddActionListener@buttonListenerD;

At this point, if you were to click the ++ button, the actionPerformed() method of your

MathActionListener would be called (do not click the button yet!). You know from the

MathListener table in the previous subsection that the actionPerformed() method will call a

user-defined Mathematica function with two arguments: the ActionEvent object itself and the

integer value that results from the event’s getActionCommand() method.

You have not yet set the user-defined code to be called by the actionPerformed() method.

That is done for all the MathListener classes with the setHandler() method. This method

takes two strings, the first being the name of the method in the event-listener interface, and

the second being the function you want called.

buttonListenerüsetHandler@"actionPerformed", "buttonFunc"D;

Now you need to define buttonFunc. It must be written to take two arguments, but in this

example you are not interested in either argument.

buttonFunc@_, _D :=
Module@8curText, newVal<,

curText = textFieldügetText@D;
newVal = ToExpression@curTextD + 1;
textFieldüsetText@ToString@newValDD

D

You are still not quite ready to try the button. If you click the button now, the Java user inter-

face thread will hang because it will call into Mathematica trying to evaluate buttonFunc and

wait for the result, but the result will never come because the kernel is not waiting for input to

arrive on the Java link. What you need is a way to put the kernel into a state where it is continu-

ously reading from the Java link. This is what makes the window “modal”~the kernel cannot do

anything else until the window is closed. The function that implements this modal state is

DoModal.

J/Link User Guide 59

DoModal@D put the kernel into a state where its attention is solely
directed at the Java link

EndModal@D what the Java program must call to make the DoModal
function return, ending the modal state

Entering and exiting the modal state.

DoModal will not return until the Java program calls back into Mathematica to evaluate

EndModal@D. While DoModal is executing, the kernel is ready to handle callbacks from Java~for

example, from MathListener objects. The way to get the Java side to call EndModal@D is typi-

cally to use a MathListener. For example, if your window had OK and Cancel buttons, these

should dismiss the window, so you would create MathActionListener objects and register

them with these two buttons. These MathActionListener objects would be set to call

EndModal@D in their actionPerformed() methods.

DoModal returns whatever the block of code that calls EndModal@D returns. You would typically

use this return value to determine how the window was closed~for example, whether it was the

OK or Cancel button. You could then take appropriate action. See "A Simple Modal Input

Dialog" for an example of using the return value of DoModal.

In the present example, the only way to close the window is by clicking its close box. Clicking

the close box fires a windowClosing event, so you use a MathWindowListener to receive

notifications.

windowListener = JavaNew@"com.wolfram.jlink.MathWindowListener"D;
frmüaddWindowListener@windowListenerD;

Now you assign the Mathematica function to be called when the close box is clicked. All you

need it to do is call EndModal@D, so you can specify a pure function that ignores its arguments

and does nothing but execute EndModal@D.

windowListenerüsetHandler@"windowClosing", "EndModal@D&"D;

60 J/Link User Guide

The preceding few lines are a fine example of how to use a MathWindowListener to trigger a

call to EndModal@D when a window’s close box is clicked. You would use something similar to

this, except with a MathActionListener, if you wanted to have an explicit Close button. In this

example, though, there is an easier way. Mentioned earlier is that the MathFrame class is just a

normal AWT Frame except that it calls dispose() on itself when its close box is clicked. Actu-

ally it has another useful property~it can also execute EndModal@D when its close box is

clicked. Thus, if you use MathFrame as the top-level window class for your interfaces, you will

not have to manually create a MathWindowListener to terminate the modal loop every time. To

enable this behavior of MathFrame, you need to call its setModal method:

(***
 This is even easier than using the MathWindowListener above.
 We won't call it here, though, because we have already arranged
 for EndModal to be called, and bad things will happen if we try
 to call it twice.

frm@setModal[]

***)

You must not call setModal if you are not using DoModal. This is because after setModal has

been called, the MathFrame will try to call into Mathematica when it is closed (to execute

EndModal), and Mathematica needs to be in a state where it is ready for calls originating in

Java. The same issue exists for any MathListener you create yourself.

Now that everything is ready, you can enter the modal state and use the window.

DoModal@D

When you are done playing with the window, click the close box in the frame, which will trigger

a callback into Mathematica that calls EndModal@D. DoModal then returns, and the kernel is

ready to be used from the front end. DoModal@D returns Null if you click the close box of a

MathFrame.

Here is how the entire example looks when packaged into a single program. (The code for

SimpleModal is also available as SimpleModal.nb in the JLink/Examples/Part1 directory.)

J/Link User Guide 61

SimpleModal[] :=
JavaBlock[

Module[{frm, button, textField, windowListener,
buttonListener, buttonFunc},

(* Create the GUI components. *)
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
textField = JavaNew["java.awt.TextField"];

(* Configure their properties. *)
frm@setLayout[JavaNew["java.awt.GridLayout"]];
frm@add[button];
frm@add[textField];
button@setLabel["++"];
textField@setText["1"];
frm@pack[];

(* Create the listener and set its handler function. *)
buttonListener =

JavaNew["com.wolfram.jlink.MathActionListener"];
buttonListener@setHandler["actionPerformed", ToString[buttonFunc]];
button@addActionListener[buttonListener];

(* Define buttonFunc. *)
buttonFunc[_, _] :=

JavaBlock[
Module[{curText, newVal},

curText = textField@getText[];
newVal = ToExpression[curText] + 1;
textField@setText[ToString[newVal]]

]
];

(* Make the window visible and bring it in front of any
 notebook windows. *)
JavaShow[frm];

(* Tell the frame to end the modal loop when it is closed. *)
frm@setModal[];

(* Enter the modal loop. *)
DoModal[];

]
]

Remember that DoModal will not return until the Java side calls EndModal. You have to be a

little careful when you call DoModal that you have already established a way for the Java side to

trigger a call to EndModal. As explained earlier, you will typically have done this by using a

MathFrame as the frame window and calling its setModal method, or by creating and registering

a MathListener of your own that will call EndModal in response to a user action (such as click-

ing an OK or Cancel button). Once DoModal has begun, the kernel is not responsive to the

front end and thus it is too late to set anything up. If you call DoModal and realize that for some

reason you cannot end it from Java, you can abort it from the front end by selecting Evalua-

tion Interrupt Evaluation in the menu, and then in the resulting dialog, clicking the button

labeled Abort.

There is one subtlety you might notice in the code for SimpleModal that is not directly related

to J/Link. In the line that calls buttonListener@setHandler, you pass the name of the button

function not as the literal string "buttonFunc", but as ToString@buttonFuncD. This is because

buttonFunc is a local name in a Module, and thus its real name is not buttonFunc, but some-

thing like buttonFunc$42. To make sure you capture its true run-time name, you call

ToString on the symbolic name. You could avoid this by simply not making the name buttonÖ

Func local to the Module, but the way you have done it automatically cleans up the definition

for buttonFunc when the Module finishes.

62 J/Link User Guide

There is one subtlety you might notice in the code for SimpleModal that is not directly related

to J/Link. In the line that calls buttonListener@setHandler, you pass the name of the button

function not as the literal string "buttonFunc", but as ToString@buttonFuncD. This is because

buttonFunc is a local name in a Module, and thus its real name is not buttonFunc, but some-

thing like buttonFunc$42. To make sure you capture its true run-time name, you call

ToString on the symbolic name. You could avoid this by simply not making the name buttonÖ

Func local to the Module, but the way you have done it automatically cleans up the definition

for buttonFunc when the Module finishes.

MathFrame and MathJFrame

You encountered the MathFrame class in this section, which is a useful top-level window class

for J/Link programmers because it has three special properties. You have already encountered

two of them: it calls dispose() on itself when it is closed, and it has the setModal() method,

which gives it easy support for use with DoModal. The third property is that it has an

onClose() method that you can use to specify Mathematica code that will be executed when

the window is closed. The onClose() method is used in the Palette example in "Sharing the

Front End: Palette-Type Buttons". J/Link also has a MathJFrame class, which is a subclass of the

Swing JFrame class, and it also has these three special properties. Programmers who want to

create interfaces with Swing components instead of AWT ones can use MathJFrame as their top-

level window class.

Modeless Windows: Sharing the Kernel with Java

The previous subsection demonstrated how to write J/Link programs that display Java windows

and then how to use the DoModal function to cause the kernel to wait until the window is

closed. During the time that DoModal is running, the kernel is able to receive and process

requests for computations that originate from the Java side. The word “modal” is used in this

context to refer to the fact that the kernel is busy servicing the Java link, and thus the note-

book front end cannot use the kernel until DoModal returns.

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

dismissed. Unfortunately, it is too restrictive for a large class of user interface elements. Con-

DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

J/Link User Guide 63

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

sider trying to duplicate the general concept of a front end palette window in Java. You want to

have a window of buttons that, when clicked, cause some computation to occur in Mathematica.

Like a front end palette window, you want this window to be created and remain visible and

active indefinitely. It would not be of much use if every time you wanted to click one of the

buttons you had first to execute DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

What is needed is a way for the kernel to automatically pay attention to input arriving from the

Java link in addition to the notebook front end link. What you really have here is two front ends

vying for the kernel’s attention. J/Link solves this problem by introducing a simple way in which

the kernel can be put into a state where it is simultaneously listening for input on any number

of links. The function that accomplishes this is ShareKernel.

Important Note: In Mathematica 5.1 and later, the kernel is always shared with Java. This

means that the functions ShareKernel and UnshareKernel are not necessary and, in fact, do

nothing at all. If you are writing program that only need to run in Mathematica 5.1 and later,

you never need to call ShareKernel or UnshareKernel (ShareFrontEnd and UnshareFrontEnd

are still useful, however). If your programs need to work on all versions of Mathematica, then

you will need to use ShareKernel and UnshareKernel as described next.

ShareKernel@D begin sharing the kernel with Java

ShareKernel@linkD begin sharing the kernel with link

UnshareKernel@idD unregisters the request for sharing (that is, the call to
ShareKernel) that returned id; kernel sharing will not be
turned off unless no other requests are outstanding

UnshareKernel@linkD end sharing of the kernel with link

UnshareKernel@D end sharing of the kernel with Java

KernelSharedQ@D True if the kernel is currently being shared; False
otherwise

SharingLinks@D a list of the links currently sharing the kernel

Sharing the kernel.

64 J/Link User Guide

ShareKernel takes a LinkObject as an argument and initiates sharing of the kernel between

that link and the current $ParentLink (typically, the notebook front end). If you call

ShareKernel with no arguments, it assumes you mean the link to Java. Most users will call it

with no arguments.

ShareKernel@D;

2 + 2

4

Note that while the kernel is being shared, the input prompt has “(sharing)” prepended to it.

The string that is prepended is specified by the SharingPrompt option to ShareKernel.

Sharing is transparent to the user. Other than the changed input prompt, there is nothing to

suggest that anything different is going on. Input sent from either the front end or a Java

program to the kernel will be evaluated and the result sent back to the program that sent the

input. Each link is the kernel’s $ParentLink during the time that the kernel is computing input

that arrived from that link. In other words, ShareKernel takes care of shuffling the

$ParentLink value back and forth between links as input arrives on each.

It is safe to call ShareKernel if the kernel is already being shared. This means that programs

you write can call it without your having to worry that a user might already have initiated

sharing. When you are finished with the need to share the kernel with Java, you can call

UnshareKernel. This restores the kernel to its normal mode of operation, paying attention only

to the front end.

UnshareKernel@D

When called with no arguments, UnshareKernel shuts down sharing. This is not a desirable

thing in most cases, because it might be that some other Java-based program is running that

requires sharing. If you are writing code for others to use, you certainly cannot shut down

sharing on your users just because your code is done with it. To solve this problem,

ShareKernel returns a token (it is just an integer, but you should not be concerned with its

representation) that reflects a request for sharing functionality. In other words, calling

ShareKernel registers a request for sharing, turns it on if it is not on already, and returns a

token that represents that particular request. When you call UnshareKernel, you pass it the

token to “unregister” that particular request for sharing. Only if there are no other outstanding

requests will sharing actually be turned off.

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

J/Link User Guide 65

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

An example of a nontrivial user interface that uses ShareKernel is presented in "Real-Time

Algebra: A Mini-Application".

Sharing the Front End

One goal of J/Link was to have Java user interface elements be as close as possible to first-

class citizens of the notebook front end environment, in the way that notebooks and palettes

are. The ability to share the kernel mimics one important aspect of this citizenship, hiding the

fact that the Java runtime is a separate program and the kernel is normally only waiting for

input from the front end.

There is one more important thing that palettes can do that would be nice to do from Java, and

that is interact with the front end. You can create a palette button that, when clicked, evaluates

the code Print@"hello"D. You can do this easily with J/Link also, but with one big difference:

when you click the palette button, hello appears in the active notebook, but when you click

the Java button, the “hello” gets sent back to the Java program (which is, after all, the kernel’s

$ParentLink at that moment). Even if you persuaded the kernel to write the TextPacket that

contains “hello” to the front end link instead of the Java link, nothing useful would happen

because the front end is not paying attention to the kernel link when the front end is not wait-

ing for the result of a computation. Poking some output at the front end while it is idle simply

will not work.

J/Link provides the ShareFrontEnd function as the solution to this problem. ShareFrontEnd@D

causes Print output and graphics generated by a Java user-interface element to appear in the

front end. It also lets the Java side call Mathematica functions that manipulate elements of

notebooks and have them work properly in the front end (for example, NotebookRead,

NotebookWrite, SelectionEvaluate, and so on). While sharing is on, the front end behaves

normally, and you can continue to use it for editing, calculations, or whatever. The sharing is

transparent.

66 J/Link User Guide

ShareFrontEnd@D begin sharing the front end with Java

UnshareFrontEnd@idD unregisters the request for sharing (that is, the call to
ShareFrontEnd) that returned id; front end sharing will
not be turned off unless no other requests are outstanding

UnshareFrontEnd@D end sharing of the front end with Java

FrontEndSharedQ@D True if the front end is currently being shared with Java;
False otherwise

Sharing the notebook front end.

ShareFrontEnd currently does not work with a remote kernel; the same machine must be

running the kernel and the front end.

ShareFrontEnd is as close as you currently can come to having Java user interfaces hosted

directly by the notebook front end itself, as if they were special types of notebook windows.

This type of tight integration might be possible in the future.

Note that Print output, graphics, and messages generated by a modal Java window will appear

in the front end without needing to call ShareFrontEnd. This is because $ParentLink remains

the front end link during DoModal (these “side effect” packets always get sent to $ParentLink),

and also because the front end is able to handle various packets arriving from the kernel

because the front end is in the middle of a computation~it is waiting for the result of the code

that called DoModal. ShareFrontEnd is a way to restore a feature that was lost when you

gained the ability to create modeless interfaces via ShareKernel. That is how to think of

ShareFrontEnd~as a step beyond ShareKernel that allows side effect output generated by

computations triggered in Java to appear in the notebook front end. ShareFrontEnd is particu-

larly useful when developing code that needs to use ShareKernel, even if the code does not

need the extra functionality of ShareFrontEnd. This is because Mathematica error messages

generated by computations triggered by Java events get lost with ShareKernel. The messages

will show up in the front end if front end sharing is turned on.

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

turned off. You can force front end sharing to be shut down immediately by calling

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

J/Link User Guide 67

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

ShareFrontEnd requires that the kernel be shared, so it calls ShareKernel internally. Calling

UnshareKernel with no arguments forces kernel sharing to stop immediately, and this turns off

front end sharing as well. Thus, you can use UnshareKernel@D as a quick shortcut to immedi-

ately shut down all sharing.

An example of some simple palette-type buttons that use ShareFrontEnd is presented in

"Sharing the Front End: Palette-Type Buttons".

An important use for ShareFrontEnd is to allow a popup Java user interface to display graphics

containing typeset expressions. When the kernel is asked to produce a graphic containing

typeset expressions, say a plot with PlotLabel -> Sqrt@zD, it crunches out PostScript for the

plot itself, but when it comes time to produce PostScript for the typeset label, it cannot do this.

Instead, it sends a special request back to the front end, asking it for the PostScript representa-

tion. Because dealing with typeset expressions is a skill possessed only by the notebook front

end, when any other interface is driving the kernel, the interface must be careful to instruct the

kernel to not attempt to typeset anything in a graphic (ShareKernel handles this automatically

for you). This works fine, but you lose the ability to get pictures of typeset expressions in your

Java interface.

ShareFrontEnd does two things to overcome this limitation: it fools the kernel into thinking

that the Java runtime is a notebook front end and, therefore, capable of handling the special

“convert to PostScript” requests; and it gives Java the ability to make good on this promise by

forwarding the requests to the front end. "GraphicsDlg: Graphics and Typeset Output in a

Window" describes an example of a Java dialog box that displays typeset expressions using

ShareFrontEnd.

68 J/Link User Guide

Summary of Modal and Modeless Operation

The previous discussion of modal and modeless operation, ShareKernel, and ShareFrontEnd

may have seemed complex. In fact, the principles and uses of these techniques are simple. This

will become clear upon seeing some more examples. Many of the example programs in

"Example Programs" use ShareKernel or ShareFrontEnd. The important thing is to understand

the capabilities they provide so that you can begin to see how to use them in your own

programs.

If you want your user-interface element (typically a window) to tie up the kernel until the user

dismisses it, then you will use the setModal/DoModal/EndModal suite. Because the internal

workings of the modal state are simpler than the modeless state, you should use this style

unless your program needs the features of a modeless window. You will always want to use this

type of window if you need to return a result to a running Mathematica program, such as if you

are creating a dialog box into which the user will enter values and then click OK. "A Simple

Modal Input Dialog" gives an example of this type of dialog.

If you want your window to remain visible and active while the user returns to work in the front

end, you must run your window in a “modeless” fashion. This requires calling ShareKernel to

put the kernel into a state where it is simultaneously receptive to input arriving from either the

notebook front end or Java. At this point the kernel is dividing its attention between two indepen-

dent and essentially equivalent front ends. One drawback (or feature, depending on your point

of view) of this state is that all side effect output like Print output, messages, or plots trig-

gered by Java code is sent to Java instead of the front end (and the standard Java

MathListener classes just throw all this output away). Thus, you could not create a button that

prints something in a notebook window when it is clicked, like you can with a palette button in

the front end. If you want to give your Java program the ability to interact with the front end

the way that notebook and palette windows themselves can, you must instead use

ShareFrontEnd, which you can think of as an extension to ShareKernel.

J/Link User Guide 69

A very common mistake is to create a Java window, wire up a MathListener class that calls

back to Mathematica on some event, and then trigger the event before you have called

DoModal or ShareKernel. This will cause the Java user interface thread to hang. A symptom

that the UI thread is hanging is that the controls in your Java window are visually unresponsive

(for example, buttons will not appear to depress when you click them). If you do inadvertently

get into this state, you can just call ShareKernel to allow the queued-up call(s) from Java to

proceed.

“Manual” Interfaces: The ServiceJava Function

In addition to the modal and modeless types of interfaces just discussed, there is another type

that in some ways is intermediate. Consider the following scenario. You want to create a Mathe-

matica program that puts up a Java window and displays something in it that changes over the

course of the program. So far, this sounds like an example of a “non-interactive” interface,

which was discussed way back at the beginning of this section, the progress bar example being

a classic case. Now, though, you want to add some interactivity to the window, meaning that

you want user actions in the window to trigger calls into Mathematica. Keeping with the

progress bar example, say you want to add an Abort button that stops the program. How do

you manage to get the kernel’s attention directed at the Java side so that Java events can

trigger calls to Mathematica?

The modal type of interface will not work, because in the modal state the kernel is executing

DoModal, not your computation~the kernel is doing nothing but paying attention to Java. The

modeless type of interface will not work either, because the modeless technique causes the

kernel to pay attention to the front end and Java alternately, letting each perform a full computa-

tion in turn. There is no sharing within the context of a single computation.

The obvious answer is the there needs to be a function that allows the kernel to service a single

computation arriving from Java, if there is one waiting. That function is ServiceJava. Calling

ServiceJava in a program will cause the kernel to accept one request for a computation from

the Java side. It performs the computation and then returns control to your program. If there is

no request waiting, ServiceJava returns immediately.

Here is some pseudocode showing the structure of a program that displays a progress bar with

an Abort button and periodically calls ServiceJava to handle user clicks on that button, stop-

ping the computation if requested.

70 J/Link User Guide

... create progress bar ...
progressBar@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener", "(userCancelled =
True)&"]

];
JavaShow[progressBar];
While[i < 100 && !userCancelled,

... compute one iteration ...

... update progress bar ...
ServiceJava[];
i++

];
... destroy progress bar ...

You might recognize that ServiceJava is closely related to DoModal, and although this is not

the actual implementation, you can think of DoModal as being written in terms of ServiceJava

as follows:

(* Not the actual implementation of DoModal, but the principle is correct.
*)
DoModal[] :=

While[!endModal,
ServiceJava[]

]

Seen in this way, DoModal is a special case of the use of ServiceJava, where Mathematica is

doing nothing but servicing requests from Java. Sometimes you need something else to be

going on in Mathematica, but still need to be able to handle requests arriving from Java. That is

when you call ServiceJava yourself. Like DoModal, there is no shifting of $ParentLink when

ServiceJava is called. Thus, side-effect output like graphics, messages, and Print output

triggered by Java computations appear in the notebook, just as if they were hard-coded into

the Mathematica program that called ServiceJava.

The BouncingBalls example program presented in "BouncingBalls: Drawing in a Window" uses

ServiceJava.

J/Link User Guide 71

Using a GUI Builder

The preceding discussion on modal and modeless interfaces featured examples that were cre-

ated entirely with Mathematica code. For complex user interfaces, you might find it more conve-

nient to lay out your windows and wire up events with a drag-and-drop GUI builder like the

ones present in most commercial Java development environments. You are free to write as

much or as little of the code for your interface in native Java. If you want events in your GUI to

trigger calls into Mathematica, then you can use any of the MathListener classes from Java

code just as they are used from Mathematica code. Alternatively, you could write your own Java

code that calls into Mathematica at appropriate times. See the section "Writing Your Own Instal-

lable Java Classes" for information about how to write Java code that calls back into Mathemat-

ica. "GraphicsDlg: Graphics and Typeset Output in a Window" gives a simple example of a

dialog box that was created with a GUI builder and is then invoked and controlled by Mathemat-

ica code.

Drawing and Displaying Mathematica Images in Java
Windows

The MathCanvas and MathGraphicsJPanel classes

J/Link makes it easy to draw into Java windows from Mathematica, and also display Mathemat-

ica graphics and typeset expressions. The MathCanvas and MathGraphicsJPanel classes are

provided for this purpose. You can use these classes in pure Java programs that use the Mathe-

matica kernel, as described in "Writing Java Programs that use Mathematica", but it is also

handy for Java windows that are created and scripted from Mathematica. Note that the

MathGraphicsJPanel class is new in J/Link 2.0.

MathCanvas is a subclass of the AWT Canvas class, and MathGraphicsJPanel is a subclass of

the Swing JPanel class. In terms of their special added Mathematica graphics capabilities, they

are identical. These classes provide two ways to supply the image to be displayed. The first way

is by providing a fragment of Mathematica code whose output will be displayed. The output can

either be a graphics object, or a nongraphics expression that will be typeset. This makes it

72 J/Link User Guide

MathCanvas is a subclass of the AWT Canvas class, and MathGraphicsJPanel is a subclass of

the Swing JPanel class. In terms of their special added Mathematica graphics capabilities, they

are identical. These classes provide two ways to supply the image to be displayed. The first way

is by providing a fragment of Mathematica code whose output will be displayed. The output can

trivial to display Mathematica graphics or typeset expressions in a Java window. The second

way to control the display is to provide a Java Image object that will be painted. This Image will

typically be created by Mathematica code, such as code that creates a bitmap out of raw Mathe-

matica data, or code that draws something using calls to Java’s graphics routines.

Because MathCanvas and MathGraphicsJPanel are Java classes and can be used from Java

programs as well as Mathematica programs, there is full JavaDoc format documentation for

them in the JLink/Documentation/JavaDoc directory. You can browse that documentation for

more details.

Showing Mathematica Graphics and Typeset Expressions

Here is a simple example of displaying a window that shows a Mathematica plot. This example

uses MathCanvas, but the relevant parts would look the same if you used

MathGraphicsJPanel. You will be using this window throughout this section, so do not close it if

you are evaluating the code as you read this section.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
mathCanvas@setMathCommand["Plot[x, {x,0,1}]"];
JavaShow[frame];

As you can see, it is as simple as calling the canvas’ setMathCommand() method. The argu-

ment to setMathCommand() is a string giving the code to be evaluated. This code must return

a graphics expression, not just cause one to be produced. For example,

setMathCommand@"Plot@x,8x,0,1<D;"D will not work because the trailing semicolon causes the

expression to evaluate to Null. The image is automatically rendered at the correct size, and

centered in the canvas if the actual image size produced by Mathematica does not completely

fill the requested area (as is often the case with typeset output).

Calling setMathCommand() again resets the image.

mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

J/Link User Guide 73

If the plotting command depends on variables in your Mathematica session, you can call recomÖ

pute() to cause the graphic to be recomputed and rendered. For example, this displays a slow

animation in the window.

n = 1.0;
mathCanvas@setMathCommand["Plot3D[Sin[n x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];
Do[n += 0.1; mathCanvas@recompute[]; Pause[1], {10}]

Because you supply the expression as a string, remember to escape any quote marks inside the

string with a backslash.

mathCanvas@setMathCommand["Plot[x, {x,0,1}, PlotLabel->\"This is a plot\"]"];

A MathCanvas can also display typeset expressions. The default behavior of MathCanvas is to

expect that the expression supplied in setMathCommand() will evaluate to a graphics object,

which should be rendered. To get it to instead typeset the return value, call the setImÖ

ageType() method, supplying the constant TYPESET.

mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setMathCommand["Integrate[Sqrt[x] Sqrt[1+x], x]"];

To switch back to displaying graphics, call mathCanvasüsetImageType@MathCanvas`GRAPHICSD.

The default format for typeset output is StandardForm. To switch to TraditionalForm, use the

setUsesTraditionalForm() method. You call recompute() here because changing the out-

put type does not force the image to be redrawn.

mathCanvas@setUsesTraditionalForm[True];
mathCanvas@recompute[];

Graphics are rendered using Mathematica’s Display command, which is fast and does not

require the notebook front end to be running. For higher quality, though, particularly for 3D

graphics, an alternative method is available that uses the front end for rendering services. You

can switch to using this technique by calling the setUsesFE() method.

(* First, change back to graphics mode from typeset mode. *)
mathCanvas@setImageType[MathCanvas`GRAPHICS];

mathCanvas@setUsesFE[True];
mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

You might want to compare the resulting plot with setUsesFE@TrueD and setUsesFE@FalseD.

74 J/Link User Guide

An important point about using the front end for rendering is that when the computation to

produce the image is performed, the front end must be in a state where it is receptive to

requests for services from the kernel. There are two times when this is the case: either a cell in

the front end is currently evaluating (as will be the case when you are calling setMathComÖ

mand() or recompute() from a Mathematica program), or ShareFrontEnd has been called.

Looking at it from the other direction, the only time it will not work is if ShareKernel is in use,

but not ShareFrontEnd, and the computation is triggered by an event in Java. The rule is that if

you want to involve the front end for rendering, and you want to call setMathCommand() or

recompute() from Java in response to a user action in a modeless interface, you need to use

ShareFrontEnd; ShareKernel is not enough. Modal and modeless interfaces and

ShareFrontEnd are discussed in the section "Creating Windows and Other User Interface

Elements".

Drawing Using Java’s Graphics Functions

You saw that the setMathCommand() method of the MathCanvas and MathGraphicsJPanel

classes lets you supply a Mathematica expression whose output is to be displayed. You can also

use a MathCanvas or MathGraphicsJPanel to display a Java Image by using the setImage()

method instead of setMathCommand().

Now look at a simple example of drawing into a Java window from Mathematica. You will con-

tinue to use the same window and MathCanvas you have been working with. If this program

used a MathGraphicsJPanel instead, the portions of the code related to drawing would look

exactly the same. To draw into the MathCanvas, you create an offscreen image of the same

dimensions, get a graphics context for drawing onto it, draw, and then use the setImage()

method of MathCanvas to cause the offscreen image to be displayed. Drawing into an offscreen

image and then blitting it to the screen is a standard technique for flicker-free drawing.

offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,
 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
g@drawRect[100, 100, 200, 150];
mathCanvas@setImage[offscreen];

J/Link User Guide 75

Programs that want to draw manually into a Java window from Mathematica will generally all

have this same structure. It takes just a few more lines of code to turn our MathCanvas into a

scribble program. Here is the complete program (this code is also provided as the file Scrib-

ble.nb in the JLink/Examples/Part1 directory).

Scribble[] :=
JavaBlock[

Module[{frame, mathCanvas, offscreen, g, mml, pts},
frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
JavaShow[frame];
(* Now create the offscreen image and the graphics context
 for drawing into it.
*)
offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,

 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
(* Now create the MathMouseMotionListener that will do the drawing
 and set its mouseDragged event handler callback.
*)
mml = JavaNew["com.wolfram.jlink.MathMouseMotionListener"];
mml@setHandler["mouseDragged", "mouseDraggedFunc"];
mathCanvas@addMouseMotionListener[mml];
mouseDraggedFunc[_, x_, y_, _] :=

(g@drawLine[pts[[-1, 1]], pts[[-1, 2]], x, y];
 mathCanvas@setImage[offscreen];
 mathCanvas@repaintNow[];
 AppendTo[pts, {x,y}];);

(* Initialize the pts list and run the program modally. *)
pts = {{0,0}};
frame@setModal[];
DoModal[];
pts

]
]

Run the program, then click and drag the mouse to draw in the window. Close the window to

end the program and the Scribble function will return the list of points drawn.

pts = Scribble[];

If you examine the list of points returned, you will see that they are based on Java’s coordinate

system, which has (0, 0) in the upper left. If you want to plot the points in a Mathematica

graphic, you have to invert the y values. This is demonstrated in the Scribble.nb example

notebook.

76 J/Link User Guide

There is one new MathCanvas method demonstrated in this program, repaintNow(). In a

computation-intensive program like this, where events are being fired on the user interface

thread very quickly, and the handlers for these events take a nontrivial amount of time to

execute, Java will sometimes delay repainting the window. The drawing becomes very chunky,

with no visual effect for a while and then suddenly all the lines drawn in the last few seconds

will appear. Even calling the standard repaint() method after every new point will not ensure

that the window is updated in a timely manner. To solve this problem, the repaintNow()

method is provided, which forces an immediate redraw of the canvas. If your program relies on

smooth visual feedback from user events that fire rapidly, you should call repaintNow() also,

even if it does not seem necessary on your system. There can be very significant differences

between different platforms and different Java runtimes on the responsiveness of the screen

updating mechanism.

The ability to draw in response to events in a MathCanvas or MathGraphicsJPanel opens up

the possibility for some impressive interactive demonstrations, tutorials, and so on. Two of the

larger example programs provided draw into a MathCanvas from Mathematica: BouncingBalls

(in the section "BouncingBalls: Drawing in a Window") and Spirograph (in the section

"Spirograph").

Bitmaps

You have seen how to draw into a MathCanvas or MathGraphicsJPanel by using an offscreen

image. Another type of image that you can create with Mathematica code and display using

setImage() is a bitmap. In this example you will create an indexed-color bitmap out of Mathe-

matica data and display it. You will use an 8-bit color table, meaning that every data point in

the image will be treated as an index into a 256-element list of colors. You could use a larger

color table if desired.

You closed the frame window in the Scribble example, so you must first create a new frame

and canvas for the bitmap.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[450, 450];
frame@layout[];
JavaShow[frame];

Here is the color table. It is an array of {r,g,b} triplets, with each color component being in the

range 0..255. In this example, colors with low indices are mostly blue, and ones with high

indices are mostly red.

J/Link User Guide 77

Here is the color table. It is an array of {r,g,b} triplets, with each color component being in the

range 0..255. In this example, colors with low indices are mostly blue, and ones with high

indices are mostly red.

colors = Table[{i, 0, 255 - i}, {i, 0, 255}];

The data is a 400×400 matrix of integers in the range 0..255 (because they are indices into the

256-element color table). In a real application, this data might be read from a file or computed

in some more sophisticated way. If the range of numbers in the data did not span 0..255, you

would have to scale it into that range, or a larger range if you wanted to use a deeper color

table.

data = Table[Round[255 (0.5 + Sin[x]Cos[y]/2)],
{x, Pi/100., 4Pi, Pi/100.}, {y, Pi/100., 4Pi, Pi/100.}];

Here you create the Java objects that represent the color model and bitmap. You can read the

standard Java documentation on these classes for more information.

colorModel = JavaNew["java.awt.image.IndexColorModel", 8, 256,
Flatten[colors], 0, False];

bitmap = JavaNew["java.awt.image.MemoryImageSource", 400, 400,
 colorModel, Flatten[data], 0, 400];

Now create an Image out of the bitmap and display it.

image = frame@getToolkit[]@createImage[bitmap];
mathCanvas@setImage[image];

The Java Console Window

J/Link provides a convenient means to display the Java “console” window. Any output written to

the standard System.out and System.err streams will be directed to this window. If you are

calling Java code that writes diagnostic information to System.out or System.err, then you

can see this output while your program runs. Like most J/Link features, the console window can

be used easily from either Mathematica or Java programs (its use from Java code is described

in "Writing Java Programs that use Mathematica"). To use it from Mathematica, call the

ShowJavaConsole function.

78 J/Link User Guide

ShowJavaConsole@D display the Java console window and begin capturing
output written to System.out and System.err

ShowJavaConsole@"stream"D display the Java console window and begin capturing
output written to the specified stream, which should be
"stdout" for System.out or "stderr" for System.err

ShowJavaConsoleANoneE stop all capturing of output

Showing the console window.

ShowJavaConsole[]

«JavaObject@com.wolfram.jlink.ui.ConsoleWindowD »

Capturing of output only begins when you call ShowJavaConsole, so when the window first

appears it will not have any content that might have been previously written to System.out or

System.err. You will also note that the J/Link console window displays version information

about the J/Link Java component and the Java runtime itself. Calling ShowJavaConsole when

the window is already open will cause it to come to the foreground.

To demonstrate, you can write some output from Mathematica. If you executed the

ShowJavaConsole@D given earlier, then you will see “Hello from Java” printed in the window.

LoadJavaClass["java.lang.System"];
System`out@println["Hello from Java"]

Although it is convenient to demonstrate writing to the window using Mathematica code like

this, this is typically done from Java code instead. Actually, there is one common circumstance

where it is quite useful to use the Java console window for diagnostic output written from Mathe-

matica code. This is the case where you have a “modeless” Java user interface (as described in

the section "Creating Windows and Other User Interface Elements") and you have not used the

ShareFrontEnd function. Recall that in this circumstance, output from calls to Print in Mathe-

matica will not appear in the notebook front end. If you write to System.out instead, as in the

example, then you will always be able to see the output. You might want to do this in other

circumstances just to avoid cluttering up your notebook with debugging output.

J/Link User Guide 79

Using JavaBeans

JavaBeans is Java’s component architecture. Beans are reusable components that can be manip-

ulated visually in a builder tool. At the code level, a Bean is essentially just a normal Java class

that conforms to a particular design pattern with respect to how its methods are named and

how it supports events and persistence.

JavaBeans has not been mentioned up to this point because there really is not anything special

to be said. Beans are just Java classes, and they can be used and called like any other classes.

It is probably the case that many Java classes you use from Mathematica will be Beans,

whether they advertise themselves to be or not. This is especially true for user interface

components.

Beans are typically designed to be used in a visual builder tool, where the programmer is not

writing code and calling named methods directly. Instead, a Bean exposes “properties” to the

builder tool, which can be examined and set using a property editor window. In a typical simple

example, a Bean might have methods named setColor and getColor, and by virtue of this it

would be said to have a property named “color”. A property editor would have a line showing

the name “color” and an edit field where you could type in a color. It might even have a fancy

editor that puts up a color picker window to let you visually select a desired color.

For the purposes of a visual builder tool or other type of automated manipulation, beans try to

hide the low-level details of actual method names. If you want to call methods in a Bean class

from Mathematica code, you call them by name in the usual way, without any consideration of

the “Bean-ness” of the class.

Note that it would be quite possible to add Mathematica functions to J/Link that would provide

explicit support for Bean properties. For example, a function BeanSetProperty could be writ-

ten that would take a Bean object, a property name as a string, and the value to set the prop-

erty to. Then, instead of writing what is currently required:

beanüsetColor@Color`greenD

you could write:

BeanSetProperty@bean, "color", Color`greenD

The BeanSetProperty function lets you write code that manipulates nebulous things called

properties instead of calling specific methods in the Bean class. If you do not see any particular

advantage in the BeanSetProperty style, then you know why there is no special Bean support

along these lines in J/Link. The advantages of working with properties versus directly calling

methods accrues only when you are using a builder tool and not actually writing code by hand.

80 J/Link User Guide

The BeanSetProperty function lets you write code that manipulates nebulous things called

properties instead of calling specific methods in the Bean class. If you do not see any particular

advantage in the BeanSetProperty style, then you know why there is no special Bean support

along these lines in J/Link. The advantages of working with properties versus directly calling

methods accrues only when you are using a builder tool and not actually writing code by hand.

If you are interested, here are simplistic implementations of BeanSetProperty and BeanGetÖ

Property:

BeanSetProperty[bean_?JavaObjectQ, propName_String, val_] :=
Module[{methName = "set" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[val]]

]

BeanGetProperty[bean_?JavaObjectQ, propName_String] :=
Module[{methName = "get" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[]]

]

To make use of events that a JavaBean fires, you can use one of the standard MathListener

classes, as described in the section "Creating Windows and Other User Interface Elements".

JavaBeans often fire PropertyChangeEvents, and you can arrange for Mathematica code to be

executed in response to these events by using a MathPropertyChangeListener or a

MathVetoableChangeListener.

Hosting Applets

J/Link gives you the ability to run most applets in their own window directly from Mathematica.

Although this may seem immensely useful, given the vast number of applets that have been

created, most applets do not export any useful public methods. They are generally standalone

pieces of functionality, and thus they benefit little from the scriptability that J/Link provides.

Still, there are many applets that may be useful to launch from a Mathematica program.

Note that this section is not about writing applets that use the Mathematica kernel. That topic is

covered in "Writing Applets".

J/Link User Guide 81

AppletViewer@"applet class"D runs the named applet class in its own window. The default
width and height are 300 pixels

AppletViewer@"applet class",paramsD runs the named applet class in its own window, supplying
it the given parameters, which is a list of "name=value"
specifications like those used in an HTML page

Running applets.

J/Link includes an AppletViewer function for running applets. This function takes care of all the

steps of creating the applet instance, providing a frame window to hold it, and starting it run-

ning. The first argument to AppletViewer is the fully qualified name of the applet class. The

second argument is an optional list of parameters in “name=value” format, corresponding to

the parameters supplied to an applet in an HTML page that hosts it. For example, if the

<applet> tag in a web page that hosts an applet looks like this:

 <applet code="SomeApplet.class" width=400 height=300>
<param name=foo value=bar>

 </applet>

you would call AppletViewer like this:

AppletViewer@"SomeApplet", 8"width=400", "height=300", "foo=bar"<D;

You will typically supply at least “WIDTH=” and “HEIGHT=” specifications to control the width

and height of the applet window. If you do not specify these parameters, the default width and

height are 300 pixels.

An excellent example of an applet that is useful to Mathematica users is LiveGraphics3D, writ-

ten by Martin Kraus. LiveGraphics3D is an interactive viewer for Mathematica 3D graphics. It

gives you the ability to rotate and zoom images, view them in stereo, and more. If you want to

try the following example, you will need to get the LiveGraphics3D materials, available from

http://wwwvis.informatik.uni-stuttgart.de/~kraus/LiveGraphics3D/. Make sure you put live.Ö

jar onto your CLASSPATH before trying that example, or use the AddToClassPath feature of

J/Link to make it available.

First, load the PolyhedronOperations ` package and create the graphic to display. The LiveG-

raphics3D documentation gives a more general-purpose function for turning a Mathematica

graphics expression into appropriate input for the LiveGraphics3D applet but, for many exam-

ples, using ToString, InputForm, and N is sufficient.

82 J/Link User Guide

<< PolyhedronOperations`
dodec = ToString@InputForm@

N@Graphics3D@Stellate@Normal@PolyhedronData@"Dodecahedron", "Faces"DDDDDDD;

You specify the image to be displayed via the INPUT parameter, which takes a string giving the

InputForm representation of the graphic.

AppletViewer@"Live", 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

The Live applet has a number of keyboard and mouse controls for manipulating the image. You

can read about them in the LiveGraphics3D documentation. Try Alt+S to switch into a stereo

view.

When you are done with an applet, just click the window’s close box.

If the applet needs to refer to other files, you should be aware that AppletViewer sets the

document base to be the directory specified by the "user.dir" Java system property. This will

normally be Mathematica’s current directory (given by Directory[]) at the time that

InstallJava was called.

Most applets expose no public methods useful for controlling from Mathematica, so there is

nothing to do but start them up with AppletViewer and then let the user close the window

when they are finished. The Live applet is an exception~it provides a full set of methods to

allow the view point, spin, and so on to be modified by Mathematica code. These methods are

in the Live class, so to call them you need an instance of the Live class. The way you used

AppletViewer earlier does not give us any instance of the applet class. The construction and

destruction of the applet instance was hidden within the internals of AppletViewer. You can

also call AppletViewer with an instance of an applet class instead of just the class name. This

lets you manage the lifetime of the applet instance.

applet = JavaNew@"Live"D;
AppletViewer@applet, 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

Now you can call methods on the applet instance. See the LiveGraphics3D documentation for

the full set of methods. This scriptability opens up lots of possibilities, such as programming

“flyby” views of objects, or creating buttons that jump the image into certain orientations or

spins.

appletüsetMagnification@0.5D;

When you are done, you call ReleaseJavaObject to release the applet instance. This can be

done before or after the applet window is closed.

ReleaseJavaObject@appletD

Periodical Tasks

J/Link User Guide 83

Periodical Tasks

The section "Creating Windows and Other User Interface Elements" described the ShareKernel

function and how it allows Java and the notebook front end to share the kernel’s attention. A

side benefit of this functionality is that it becomes easy to provide a means whereby users can

schedule arbitrary Mathematica programs to run at periodical intervals during a session. Say

you have a source that provides continuously updated financial data and you want to have

some variables in Mathematica constantly reflect the current values. You have written a pro-

gram that goes out and reads from the source to get the information, but you have to manually

run this program all the time while you are working. A better solution would be to set up a

periodical task that pulls the data from the source and sets the variables every 15 seconds.

AddPeriodical@expr,secsD cause expr to be evaluated every secs seconds while the
kernel is idle

RemovePeriodical@idD stop scheduling of the periodical represented by id

Periodical@idD return a list 8HoldForm@exprD, secs< showing the expres-
sion and time interval associated with the periodical
represented by id

Periodicals@D return a list of the id numbers of all currently scheduled
periodicals

SetPeriodicalInterval@idD reset the periodical interval for the periodical task repre-
sented by id

$ThisPeriodical holds the id of the currently executing periodical task

Controlling periodical tasks.

You can set up such a task with the AddPeriodical function.

id = AddPeriodical@updateFinancialData@D, 15D;

AddPeriodical returns an integer ID number that you must use to identify the task~for exam-

ple, when it comes time to stop scheduling it by calling RemovePeriodical. AddPeriodical

relies on kernel sharing, so it calls ShareKernel if it has not already been called. There is no

limit on the number of periodicals that can be established.

84 J/Link User Guide

After scheduling that task, updateFinancialData[] will be executed every 15 seconds while

the kernel is idle. Note that periodical tasks are run only when the kernel is not busy~they do

not interrupt other evaluations. If the kernel is in the middle of another evaluation when the

allotted 15 seconds elapses, the task will wait to be executed until immediately after the compu-

tation finishes. Any such delayed periodicals are guaranteed to be executed as soon as the

kernel finishes with the current computation. They cannot be indefinitely delayed if the user is

busy with numerous computations in the front end or in Java. The converse to these facts is

also true~if a periodical is executing when the user evaluates a cell in the front end, the evalua-

tion will not be able to start until all periodicals finish, but it is guaranteed to start immediately

thereafter.

To remove a single periodical task, use RemovePeriodical, supplying the ID number of the

periodical as the argument. To remove all periodical tasks, use

RemovePeriodical@Periodicals@DD. Periodical tasks are all removed if you call

UnshareKernel@D with no arguments, which turns off all kernel sharing. You would then need

to use AddPeriodical again to reestablish periodical tasks.

You can reset the scheduling interval for a periodical task by calling SetPeriodicalInterval,

which is new in J/Link 2.0. This line makes the financial data periodical execute every 10 sec-

onds, instead of 15 as shown earlier.

SetPeriodicalInterval[id, 10]

Sometimes you might want to change the interval for a periodical task or remove it entirely

from within the code of the task itself. $ThisPeriodical is a variable that holds the ID of the

currently executing periodical task. It will only have a value during the execution of a periodical

task. You use $ThisPeriodical from within your periodical task to obtain its ID so that you can

call RemovePeriodical or SetPeriodicalInterval.

Periodical tasks do not necessarily have anything to do with Java, nor do they need to use Java.

Technically, Java does not even need to be running. However, because Java is used by the

internals of ShareKernel to yield the CPU, if Java is not running then setting a periodical task

will cause the kernel to keep the CPU continuously busy. Periodical task functionality is included

in J/Link because it is a simple extension to ShareKernel, and it does have some nice uses in

association with Java.

A final note about periodical tasks is that they do not cause output to appear in the front end.

Look at this attempt.

id = AddPeriodical@Print@"hello"D, 10D;

The programmer expects to get hello printed in his notebook every 10 seconds, but nothing

happens. During the time when periodicals are executed, $ParentLink is not assigned to the

front end (or Java). Results or side effects like Print output, messages, or graphics vanish into

the ether.

J/Link User Guide 85

The programmer expects to get hello printed in his notebook every 10 seconds, but nothing

happens. During the time when periodicals are executed, $ParentLink is not assigned to the

front end (or Java). Results or side effects like Print output, messages, or graphics vanish into

the ether.

Before proceeding, clean up the periodical tasks you created.

RemovePeriodical@Periodicals@DD;

Some Special Number Classes

Preamble

There is a set of special number-related classes in Java that J/Link maps to their Mathematica

numeric representation. Like strings and arrays, objects of these number classes have an

important property: although they are objects in Java, they have a meaningful “by value”

representation in Mathematica, so it is convenient for J/Link to automatically convert them to

numbers as they are returned from Java to Mathematica, and back to objects as they are sent

from Mathematica to Java.

These classes are the so-called “wrapper” classes that represent primitive types (Byte, InteÖ

ger, Long, Double, and so on), BigDecimal and BigInteger, and any class used to represent

complex numbers. The treatment of these classes is described in this section.

The “Wrapper” Classes: Integer, Float, Boolean, and Others

Java has a set of so-called “wrapper” classes that represent primitive types. These classes are

Byte, Character, Short, Integer, Long, Float, Double, and Boolean. The wrapper classes

hold single values of their respective primitive types, and are necessary to allow everything in

Java to be represented as a subclass of Object. This lets various utility methods and data struc-

tures that deal with objects handle primitive types in a straightforward way. It is also necessary

for Java’s reflection capabilities.

If you have a Java method that returns one of these objects, it will arrive in Mathematica as an

integer (for Byte, Character, Short, Integer, and Long), real number (for Float and DouÖ

True or False (for Boolean). Likewise, a Java method that takes one of

these objects as an argument can be called from Mathematica with the appropriate raw Mathe-

matica value. The same rules hold true for arrays of these objects, which are mapped to lists of

values.

86 J/Link User Guide

If you have a Java method that returns one of these objects, it will arrive in Mathematica as an

ble), or the symbols True or False (for Boolean). Likewise, a Java method that takes one of

these objects as an argument can be called from Mathematica with the appropriate raw Mathe-

matica value. The same rules hold true for arrays of these objects, which are mapped to lists of

values.

In the unlikely event that you want to defeat these automatic “pass by value” semantics, you

can use the ReturnAsJavaObject and JavaObjectToExpression functions, discussed in

"References and Values".

Complex Numbers

You have seen that Java number types (e.g., byte, int, double) are returned to Mathematica

as integers and reals, and integers and reals are converted to the appropriate types when sent

as arguments to Java. What about complex numbers? It would be nice to have a Java class

representing complex numbers that mapped directly to Mathematica’s Complex type, so that

automatic conversions would occur as they were passed back and forth between Mathematica

and Java. Java does not have a standard class for complex numbers, so J/Link lets you name

the class that you want to participate in this mapping.

SetComplexClass@"classname"D set the class to be mapped to complex numbers in
Mathematica

GetComplexClass@D return the class currently used for complex numbers

Setting the class for complex numbers.

You can use any class you like as long as it has the following properties:

1. A public constructor that takes two doubles (the real and imaginary parts, in that order)

2. Methods that return the real and imaginary parts, having the following signatures:

public double re();
public double im();

Say that you are doing some computations with complex numbers in Java, and you want to

interact with these methods from Mathematica. You like to use the complex number class

available from netlib. This class is named ORG.netlib.math.complex.Complex and is avail-

able at http://www.netlib.org/java/. You use the SetComplexClass function to specify the

name of the class:

SetComplexClass@"ORG.netlib.math.complex.Complex"D;

Now any method or field that takes an argument of type ORG.netlib.math.complex.Complex

will accept a Mathematica complex number, and any object of class ORG.netlib.math.complexÖ

.Complex returned from a method or field will automatically be converted into a complex

number in Mathematica. The same holds true for arrays of complex numbers.

J/Link User Guide 87

Now any method or field that takes an argument of type ORG.netlib.math.complex.Complex

will accept a Mathematica complex number, and any object of class ORG.netlib.math.complexÖ

.Complex returned from a method or field will automatically be converted into a complex

number in Mathematica. The same holds true for arrays of complex numbers.

Note that you must call SetComplexClass before you load any classes that use complex num-

bers, not merely before you call any methods of the class.

BigInteger and BigDecimal

Java has standard classes for arbitrary-precision floating-point numbers and arbitrary-precision

integers. These classes are java.math.BigDecimal and java.math.BigInteger, respec-

tively. Because Mathematica effortlessly handles such “bignums,” J/Link maps BigInteger to

Mathematica integers and BigDecimal to Mathematica reals. What this means is that any Java

method or field that takes, say, a BigInteger can be called from Mathematica by passing an

integer. Likewise, any method or field that returns a BigDecimal will have the value returned

to Mathematica as a real number.

Ragged Arrays

Java allows arrays that are deeper than one dimension to be “ragged,” or non-rectangular,

meaning that they do not have the same length at every position at the same level. For exam-

ple, {{1,2,3},{4,5},{6,7,8}} is a ragged two-dimensional array. J/Link allows you to send

and receive ragged arrays, but it is not the default behavior. The reason for this is simply

efficiency~the MathLink library has functions that allow very efficient transfer of rectangular

arrays of most primitive types (e.g., byte, int, double, and so on), whereas ragged ones have

to be picked apart tediously with a series of individual calls to get every piece. This all happens

deep inside J/Link, so you do not have to be concerned with the mechanics of array passing,

but it has a huge impact on speed. To maximize speed, J/Link assumes that arrays of primitive

types are rectangular. You can toggle back and forth between allowing and rejecting ragged

arrays by calling the AllowRaggedArrays function with either True or False.

AllowRaggedArraysATrueE allow ragged (i.e., nonrectangular) arrays to be sent to
Java

Ragged array support.

With AllowRaggedArrays@TrueD, sending of arrays deeper than one dimension is greatly

slowed. Here is an example of array behavior and how it is affected. Assume the class Testing

has the following method, which takes a two-dimensional array of ints and simply returns it:

88 J/Link User Guide

With AllowRaggedArrays@TrueD, sending of arrays deeper than one dimension is greatly

slowed. Here is an example of array behavior and how it is affected. Assume the class Testing

has the following method, which takes a two-dimensional array of ints and simply returns it:

public static int[][] intArrayIdentity(int[][] a) {
return a;

}

Look what happens if you call it with a ragged array.

LoadClass@"Testing"D;
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D

Java::argxs1 :
The static method Testing`intArrayIdentity was called with an incorrect

number or type of arguments. The argument was 881,2,3<,84,5<<.
$Failed

An error occurs because the Mathematica definition for the Testing`intArrayIdentity()

function requires that its argument be a two-dimensional rectangular array of integers. The call

never even gets out of Mathematica.

Here you turn on support for ragged arrays, and the call works. This requires modifications in

both the Mathematica-side type checking on method arguments and the Java-side array-read-

ing routines.

AllowRaggedArrays@TrueD
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D
881, 2, 3<, 84, 5<<

It is a good idea to turn off support for ragged arrays as soon as you no longer need it, since it

slows arrays down so much.

AllowRaggedArrays@FalseD

J/Link User Guide 89

Implementing a Java Interface with Mathematica
Code

You have seen how J/Link lets you write programs that use existing Java classes. You have also

seen how you can wire up the behavior of a Java user interface via callbacks to Mathematica via

the MathListener classes. You can think of any of these MathListener classes, such as

MathActionListener, as a class that “proxies” its behavior to arbitrary user-defined Mathemat-

ica code. It is as if you have a Java class that has its implementation written in Mathematica.

This functionality is extremely useful because it greatly extends the set of programs you can

write purely in Mathematica, without resorting to writing our own Java classes.

ImplementJavaInterface@"interfaceName",8"methName"->"mathFunc",…<D

create an instance of a Java class that implements the
named Java interface by calling back to Mathematica
according to the given mappings of Java methods to
Mathematica functions

Implementing a Java interface entirely in Mathematica.

It would be nice to be able to take this behavior and generalize it, so that you could take any

Java interface and implement its methods via callbacks to Mathematica functions, and do it all

without having to write any Java code. The ImplementJavaInterface function, new in J/Link

2.0, lets you do precisely that. This function is easier to understand with a concrete example.

Say you are writing a Mathematica program that uses J/Link to display a Java window with a

Swing menu, and you want to script the behavior of the menu in Mathematica. The Swing

JMenu class fires events to registered MenuListeners, so what you need is a class that imple-

ments MenuListener by calling into Mathematica. A quick glance at the section on MathListen-

ers reveals that J/Link does not provide a MathMenuListener class for you. You could choose to

write your own implementation of such a class, and in fact this would be very easy, even trivial,

since you would make it a subclass of MathListener and inherit virtually all the functionality

you would need. For the sake of this discussion, assume that you choose not to do that, per-

haps because you do not know Java or you do not want to deal with all the extra steps required

for that solution. Instead, you can use ImplementJavaInterface to create such a Java class

with a single line of Mathematica code:

90 J/Link User Guide

mathMenuListener =
ImplementJavaInterface["javax.swing.event.MenuListener",

{"menuSelected" -> "menuSelectedFunc",
 "menuCanceled" -> "menuCanceledFunc",
 "menuDeselected" -> "menuDeselectedFunc"}

];
myMenu@addMenuListener[mathMenuListener];

...

(* Later, define the three Mathematica event-handler functions: *)
menuSelectedFunc[menuEvent_] := ...

menuCanceledFunc[menuEvent_] := ...

menuDeselectedFunc[menuEvent_] := ...

The first argument to ImplementJavaInterface is the Java interface or list of interfaces you

want to implement. The second argument is a list of rules that associate the name of a Java

method from one of the interfaces with the name of a Mathematica function to call to imple-

ment that method. The Mathematica function will be called with the same arguments that the

Java method takes. What ImplementJavaInterface returns is a Java object of a newly created

class that implements the named interface(s). You use it just like any JavaObject obtained by

calling JavaNew or through any other means. It is just as if you had written your own Java class

that implemented the named interface by calling the associated Mathematica functions, and

then called JavaNew to create an instance of that class.

It is not necessary to associate every method in the interface with a Mathematica function. Any

Java methods you leave out of your list of mappings will be given a default Java implementation

that returns null. If this is not an appropriate return value for the method (e.g., if the method

returns an int) and the method gets called at some point an exception will be thrown. Gener-

ally, this exception will propagate to the top of the Java call stack and be ignored, but it is

recommended that you implement all the methods in the Java interface.

The ImplementJavaInterface function makes use of the “dynamic proxy” capability introduced

in Java 1.3. It will not work in Java versions earlier than 1.3. All Java runtimes bundled with

Mathematica 4.2 and later are at Version 1.3 or later. If you have Mathematica 4.0 or 4.1, the

ImplementJavaInterface function is another reason to make sure you have an up-to-date

Java runtime for your system.

At first glance, the ImplementJavaInterface function might seem to give us the capability to

write arbitrary Java classes in the Mathematica language, and to some extent that is true. One

important thing you cannot do is extend, or subclass, an existing Java class. You also cannot

MathListener classes are rendered obsolete by ImplementJavaInterface, and it is true that

their functionality can be duplicated with it. The MathListener classes are still useful for Java

versions earlier than 1.3, but most importantly they are useful for writing pure Java programs

that call Mathematica. Using a class implemented in Mathematica via ImplementJavaInterface

in a Java program that calls Mathematica would be possible, but quite cumbersome. If you want

a dual-purpose class that is as easy to use from Mathematica as from Java, you should write

your own subclass of MathListener. One poor reason for choosing to use

ImplementJavaInterface instead of writing a custom Java class is that you are worried about

complicating your application by requiring it to include its own Java classes in addition to Mathe-

matica code. As explained in "Deploying Applications That Use J/Link", it is extremely easy to

include supporting Java classes in your application. Your users will not require any extra installa-

tion steps nor will they need to modify the Java class path.

J/Link User Guide 91

At first glance, the ImplementJavaInterface function might seem to give us the capability to

write arbitrary Java classes in the Mathematica language, and to some extent that is true. One

add methods that do not exist in the interface you are implementing. Event-handler classes are

a good example of the type of classes for which this facility is useful. You might think that the

MathListener classes are rendered obsolete by ImplementJavaInterface, and it is true that

their functionality can be duplicated with it. The MathListener classes are still useful for Java

versions earlier than 1.3, but most importantly they are useful for writing pure Java programs

that call Mathematica. Using a class implemented in Mathematica via ImplementJavaInterface

in a Java program that calls Mathematica would be possible, but quite cumbersome. If you want

a dual-purpose class that is as easy to use from Mathematica as from Java, you should write

your own subclass of MathListener. One poor reason for choosing to use

ImplementJavaInterface instead of writing a custom Java class is that you are worried about

complicating your application by requiring it to include its own Java classes in addition to Mathe-

matica code. As explained in "Deploying Applications That Use J/Link", it is extremely easy to

include supporting Java classes in your application. Your users will not require any extra installa-

tion steps nor will they need to modify the Java class path.

Writing Your Own Installable Java Classes

Preamble

The previous sections have shown how to load and use existing Java classes. This gives Mathe-

matica programmers immediate access to the entire universe of Java classes. Sometimes,

though, existing Java classes are not enough, and you need to write your own.

J/Link essentially obliterates the boundary between Java and Mathematica, letting you pass

expressions of any type back and forth and use Java objects in Mathematica in a meaningful

way. This means that when writing your own Java classes to call from Mathematica, you usually

do not need to do anything special. You write the code in exactly the same way as you would if

you wanted to use the class only from Java. (One important exception to this rule is that

because it is comparatively slow to call into Java from Mathematica, you might need to design

your classes in a way that will not require an excessive number of method calls from Mathemat-

ica to get the job done. This issue is discussed in detail in "Overhead of Calls to Java".)

In some cases, you might want to exert more direct control over the interaction with Mathemat-

ica. For example, you might want a method to return something different to Mathematica than

what the method itself returns. Or you might want the method to not just return something,

but also trigger a side effect in Mathematica~for example, printing something or displaying a

message under certain conditions. You can even have an extended “dialog” with Mathematica

before your method returns, perhaps invoking multiple computations in Mathematica and read-

ing their results. You might also want to write a class of the MathListener type that calls into

Mathematica as the result of some event triggered in Java.

92 J/Link User Guide

In some cases, you might want to exert more direct control over the interaction with Mathemat-

ica. For example, you might want a method to return something different to Mathematica than

what the method itself returns. Or you might want the method to not just return something,

but also trigger a side effect in Mathematica~for example, printing something or displaying a

message under certain conditions. You can even have an extended “dialog” with Mathematica

before your method returns, perhaps invoking multiple computations in Mathematica and read-

ing their results. You might also want to write a class of the MathListener type that calls into

Mathematica as the result of some event triggered in Java.

If you do not want to do any of these things, then you can happily ignore this section. The

whole point of J/Link is to make unnecessary the need to be concerned about the interaction

with Mathematica through MathLink. Most programmers who want to write Java classes to be

used from Mathematica will just write Java classes, period, without thinking about Mathematica

or J/Link. Those programmers who want more control, or want to know more about the possibili-

ties available with J/Link, read on.

The issues discussed in this section require some knowledge of MathLink programming (or,

more precisely, J/Link programming using the Java methods that use MathLink), which is dis-

cussed in detail in "Writing Java Programs that use Mathematica". The fact that you meet some

of these methods and issues here is a consequence of the false but useful dichotomy, noted in

the Introduction, between using MathLink to write “installable” functions to be called from

Mathematica and using MathLink to write front ends for Mathematica. MathLink is always used

in the same way, it is just that virtually all of it is handled for you in the installable case. This

section is about how to go beyond this default behavior, so you will be making direct J/Link

calls to read and write to the link. Thus you will encounter concepts, classes, and methods in

this section that are not explained until "Writing Java Programs That Use Mathematica".

Some of the discussion in this section will compare and contrast the process of writing an

installable program in C. This is designed to help experienced MathLink programmers unders-

tand how J/Link works, and also to convince you that J/Link is a superior solution to using C,

C++, or FORTRAN.

J/Link User Guide 93

Installable Functions~The Old Way

Writing a so-called “installable” or “template” program in C requires a number of steps. If you

have a file foo.c that contains a function foo, to call it from Mathematica you must first write a

template (.tm) file that contains a template entry describing how you want foo to be called

from Mathematica, what types of arguments it takes, and what it returns. You then pass this

.tm file through a tool called mprep, which writes a file of C code that manages some, possibly

all, of the MathLink-related aspects of the program. You also need to write a simple main rou-

tine, which is always the same. You then compile all of these files, resulting in an executable for

just one platform.

Two big drawbacks of this method are that you need to write a template entry for every single

function you want to call (imagine doing that for a whole function library), and the compiled

program is not portable to other platforms. The biggest drawback, however, is that there is no

automatic support for anything but the simplest types. If you want to do something as basic as

returning a list of integers, you need to write the MathLink calls to do that yourself. And forget

about object-oriented programming, as there is no way to pass “objects” to Mathematica.

Installable Functions in Java

J/Link makes all those steps go away. As you have seen all throughout this tutorial, you can

literally call any method in any class, without any preparation.

It is only in cases where the default behavior of calling a method and receiving its result is not

enough that you need to write specialty Java code. The rest of this section will examine some of

the special techniques that can be used.

94 J/Link User Guide

Setting Up Definitions in Mathematica When Your Class Is Loaded

Template entries in .tm files required by installable MathLink programs written in C have two

features that might appear to be lost in J/Link. The first feature is the ability to specify arbitrary

Mathematica code to be evaluated when the program is first “installed.” This is done by using

the :Evaluate: line in a template entry. The second feature is the ability to specify the way in

which the function is to be called from Mathematica, including the name of the Mathematica

function that maps to the C function, its argument sequence, how those arguments are mapped

to the ones provided to the C function, and possibly some processing to be done on them

before they are sent. This information is specified in the :Pattern: and :Arguments: lines of

a template entry.

These two features are related to each other, because they both rely on the ability to specify

Mathematica code that is loaded when an external program is installed. J/Link gives you this

ability and more, through two special methods called onLoadClass() and onUnloadClass().

When a class is loaded into Mathematica, either directly through LoadJavaClass or indirectly by

calling JavaNew, it is examined to see if it has a method with the following signature:

public static void onLoadClass(KernelLink ml);

If such a method is present, it will be called after all the method and field definitions for the

class are set up in Mathematica. Because a class can only be loaded once in a Java session, this

method will only be called once in the lifetime of a single Java runtime, although it may be

called more than once in the lifetime of a single Mathematica kernel (because the user can

repeatedly launch and quit the Java runtime). The KernelLink that is provided as an argument

to this method is of course the link back to Mathematica.

A typical use for this feature would be to define the text for an error message issued by one of

the methods in the class. Here is an example:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyClass::sun = \"The foo() method can only be called on

Sunday.\"");
ml.discardAnswer();

}

Note that this method throws MathLinkException. Your onLoadClass() method can throw

any exceptions you like (a MathLinkException would be typical). This will not interfere with

the matching of the expected signature for onLoadClass(). If an exception is thrown during

onLoadClass, it will be handled gracefully, meaning that the normal operation of

LoadJavaClass will not be affected. The only exception to this rule is if your code throws an

exception while it is interacting with the link to the kernel, and more specifically, in the period

between the time that it sends a computation to the kernel and the time that it begins to read

the result. In other words, exceptions you throw will not break the LoadJavaClass mechanism,

but it is up to you to make sure that you do not screw up the link’s state by starting something

you do not finish.

J/Link User Guide 95

Note that this method throws MathLinkException. Your onLoadClass() method can throw

any exceptions you like (a MathLinkException would be typical). This will not interfere with

the matching of the expected signature for onLoadClass(). If an exception is thrown during

onLoadClass, it will be handled gracefully, meaning that the normal operation of

LoadJavaClass will not be affected. The only exception to this rule is if your code throws an

exception while it is interacting with the link to the kernel, and more specifically, in the period

between the time that it sends a computation to the kernel and the time that it begins to read

the result. In other words, exceptions you throw will not break the LoadJavaClass mechanism,

but it is up to you to make sure that you do not screw up the link’s state by starting something

you do not finish.

Another reason to use onLoadClass() would be if you wanted to create a Mathematica func-

tion for users to call that “wrapped” a static method call, providing it with a preferred name or

argument sequence. If you have a class named MyClass with the method public static

void myMethod(double[a]), the definition that will be automatically created for it in Mathemat-

ica will require that its argument be a list of real numbers or integers. Say you want to add a

definition named MyMethod, having the traditional Mathematica capitalization, and you also

want this function automatically to use N on its argument so that it will work for anything that

will evaluate to a list of numbers, such as {Pi, 2Pi, 3Pi}. Here is how you would set up such

an additional definition:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyMethod[x_] := myMethod[N[x]]");
ml.discardAnswer();

}

In other words, if you are not happy with the interface to the class that will automatically be

created in Mathematica, you can use onLoadClass() to set up the desired definitions without

changing the Java interface.

The Mathematica context that will be current when onLoadClass() is called is the context in

which all the class’ static methods and fields are defined. That is why in the preceding example

the definition was made for MyMethod and not MyClass`MyMethod. This is important since you

cannot know the correct context in your Java code because it is determined by the user via the

AllowShortContext option to LoadJavaClass.

It is generally not a good idea to use onLoadClass() to send a lot of code to Mathematica.

This will make the behavior of your class hard for people to understand because the Mathemat-

ica code is hidden, and also inflexible since you would have to recompile it to make changes to

the embedded Mathematica code. If you have a lot of code that needs to accompany a Java

class, it is better to put that code into a Mathematica package file that you or your users load.

That is, rather than having users load a class that dumps a lot of code into Mathematica, you

should have your users load a Mathematica package that loads your class. This will provide the

greatest flexibility for future changes and maintenance.

96 J/Link User Guide

It is generally not a good idea to use onLoadClass() to send a lot of code to Mathematica.

This will make the behavior of your class hard for people to understand because the Mathemat-

ica code is hidden, and also inflexible since you would have to recompile it to make changes to

the embedded Mathematica code. If you have a lot of code that needs to accompany a Java

class, it is better to put that code into a Mathematica package file that you or your users load.

That is, rather than having users load a class that dumps a lot of code into Mathematica, you

should have your users load a Mathematica package that loads your class. This will provide the

greatest flexibility for future changes and maintenance.

Finally, there is no reason why your onLoadClass() method needs to restrict itself to making

J/Link calls. You could perform operations specific to the Java side, for example, writing some

debugging information to the Java console window, opening a file for writing, or whatever else

you desire.

Similar to the handling of the onLoadClass() method, the onUnloadClass() method is called

when a class is unloaded. Every loaded class is unloaded automatically by UninstallJava right

before it quits the Java runtime. You can use onUnloadClass() to remove definitions created

by onLoadClass(), or perform any other clean-up you would like. The signature of onUnloadÖ

Class() must be the following, although it can throw any exceptions:

public static void onUnloadClass(KernelLink ml);

Note that the meaning of loading and unloading classes here refers to being loaded by Mathe-

matica with LoadJavaClass either directly or indirectly. It does not refer to the loading and

unloading of classes internally by the Java runtime. Class loading by the Java runtime occurs

when the class is first used, which may have occurred long before LoadJavaClass was called

from Mathematica.

Manually Returning a Result to Mathematica

The default behavior of a Java method called from Mathematica is to return to Mathematica

exactly what the method itself returns. There are times, however, when you want to return

something else. For example, you might want to return an integer in some circumstances, and

a symbol in others. Or you might want a method to return one thing when it is being called

from Java, and return something different to Mathematica. In these cases, you will need to

manually send a result to Mathematica before the method returns.

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want almost the identical behavior to the standard class java.io.FileInputStream, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the read method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathemati-

ca’s built-in file-reading functions return.

J/Link User Guide 97

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want almost the identical behavior to the standard class java.io.FileInputStream, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the read method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathemati-

ca’s built-in file-reading functions return.

import java.io.*;
import com.wolfram.jlink.*;

public class MyFileReader extends FileInputStream {

<<constructors, other methods deleted>>

public int read() {

int i = super.read();
if (i == -1) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.beginManual();
try {

link.putSymbol("EndOfFile");
} catch (MathLinkException e) {}

}
}
return i;

}
}

If the file has reached the end, i will be -1, and you want to manually return something to

Mathematica. The first thing you need to do is get a KernelLink object that can be used to

communicate with Mathematica. This is obtained by calling the static method

StdLink.getLink(). If you have written installable MathLink programs in C, you will recognize

the choice of names here. A C program has a global variable named stdlink that holds the link

back to Mathematica. J/Link has a StdLink class that has a few methods related to this link

object.

The first thing you do is check whether getLink() returns null. It will never be null if the

method is being called from Mathematica, so you can use this test to determine whether the

method is being called from Mathematica or as part of a normal Java program. In this way, you

can have a method that can be used from Java in the usual way when a Mathematica kernel is

nowhere in sight. The getLink() call works no matter if the method is called directly from

Mathematica, or indirectly as part of a chain of methods triggered by a call from Mathematica.

98 J/Link User Guide

The first thing you do is check whether getLink() returns null. It will never be null if the

method is being called from Mathematica, so you can use this test to determine whether the

method is being called from Mathematica or as part of a normal Java program. In this way, you

can have a method that can be used from Java in the usual way when a Mathematica kernel is

nowhere in sight. The getLink() call works no matter if the method is called directly from

Mathematica, or indirectly as part of a chain of methods triggered by a call from Mathematica.

Once you have verified that a link back to the kernel exists, the first thing to do is inform J/Link

that you will be sending the result back to Mathematica yourself, so it should not try automati-

cally to send the method’s return value. This is accomplished by calling the beginManual()

method on the KernelLink object.

You must call beginManual() before you send any part of a result back to Mathematica. If you

fail to do this, the link will get out of sync and the next J/Link call you make from Mathematica

will probably hang. It is safe to call beginManual() more than once, so you do not have to

worry that your method might be called from another method that has already called

beginManual().

Returning to the example program, the next thing after beginManual() is to make the

required “put”-type calls to send the result back to Mathematica (in this case, just a single

putSymbol()). As always, these calls can throw a MathLinkException, so you need to wrap

them in a try/catch block. The catch handler is empty, since there really is not anything to

do in the unlikely event of a MathLink error. The internal J/Link code that wraps all method calls

will handle the cleanup and recovery from any MathLink error that might have occurred calling

putSymbol(). You do not need to do anything for MathLinkExceptions that occur while you

are putting a result manually. The method call will return $Failed to Mathematica

automatically.

Installable programs written in C can also manually send results back. This is indicated by using

the Manual keyword in the function’s template entry. Thus for C programs the manual/auto-

matic decision must be made at compile time, whereas with J/Link it is a runtime switch. You

can have it both ways with J/Link~a normal automatic return in some circumstances and a

manual return in others, as the preceding example demonstrates.

J/Link User Guide 99

Requesting Evaluations by Mathematica

So far, you have seen only cases where a Java method has a very simple interaction with

Mathematica. It is called and returns a result, either automatically or manually. There are many

circumstances, however, where you might want to have a more complex interaction with Mathe-

matica. You might want a message to appear in Mathematica, or some Print output, or you

might want to have Mathematica evaluate something and return the answer to you. This is a

completely separate issue from what you want to return to Mathematica at the end of your

method~you can request evaluations from the body of a method whether it returns its final

result manually or not.

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into Java, the Java code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a Java method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the Java side. Thus you would

expect to encounter essentially all the same issues that are discussed in "Writing Java Programs

That Use Mathematica", and you would need to understand the full J/Link Java-side API.

The full treatment of the MathLink and KernelLink interfaces is presented in "Writing Java

Programs That Use Mathematica". This section discusses a few special methods in KernelLink

that are specifically for use by “installed” methods. You have already seen one, the beginManÖ

ual() method. Now you will treat the message(), print(), and evaluate() methods.

The task of issuing a Mathematica message from a Java method and triggering some Print

output are so commonly done that the KernelLink interface has special methods for these

operations. The method message() performs all the steps of issuing a Mathematica message. It

comes in two signatures:

public void message(String symtag, String arg);
public void message(String symtag, String[] args);

100 J/Link User Guide

The first form is for when you just have a single string argument to be slotted into the message

text, and the second form is for if the message text needs two or more arguments. You can

pass null as the second argument if the message text needs no arguments.

The print() method performs all the steps necessary to invoke Mathematica’s Print function:

public void print(String s);

Here is an example method that uses both. Assume that the following messages are defined in

Mathematica (this could be from loading a package or during this class’ onLoadClass()

method):

Foo::arg = "The `1` argument to foo must be greater than or equal to 0."

Here is the Java code:

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.print("inside foo");
if (x < 0)

link.message("Foo::arg", "first");
if (y < 0)

link.message("Foo::arg", "second");
}
return Math.sqrt(x) * Math.sqrt(y);

}

Note that print() and message() send the required code to Mathematica and also read the

result from the link (it will always be the symbol Null). They do not throw MathLinkExcepÖ

tion so you do not have to wrap them in try/catch blocks.

J/Link User Guide 101

Here is what happens when you call foo():

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
foo@1.0, -2.0D

inside foo

Foo::arg : The second argument to foomust be greater than or equal to 0.
Indeterminate

Note that you automatically get Indeterminate returned to Mathematica when a floating-point

result from Java is NaN (“Not-a-Number”).

The methods print() and message() are convenience functions for two special cases of the

more general notion of sending intermediate evaluations to Mathematica before your method

returns a result. The general means of doing this is to wrap whatever you send to Mathematica

in EvaluatePacket, which is a signal to the kernel that this is not the final result, but rather

something that it should evaluate and send the result back to Java. You can explicitly send the

EvaluatePacket head, or you can use one of the methods in KernelLink that use

EvaluatePacket for you. These methods are:

void evaluate HString sL throws MathLinkException;
String evaluateToInputForm HString s, int pageWidthL;
String evaluateToOutputForm HString s, int pageWidthL;
byte@D evaluateToImage HString s, int width, int heightL;
byte@D evaluateToTypeset HString s, int pageWidth, boolean useStdFormL;

These methods are discussed in "Writing Java Programs that use Mathematica" (actually, they

also come in several more flavors with other argument sequences). Here is a simple example:

102 J/Link User Guide

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

try {
link.evaluate("2+2");
// Wait for, and then read, the answer.
link.waitForAnswer();
int sum1 = link.getInteger();

// evaluateToOutputForm makes the result come back as a
// string formatted in OutputForm, and all in one step
// (no waitForAnswer call needed).
String s = link.evaluateToOutputForm("3+3");
int sum2 = Integer.parseInt(s);

// If you want, put the whole evaluation piece by piece,
// including the EvaluatePacket head.
link.putFunction("EvaluatePacket");
link.putFunction("Plus", 2);
link.put(4);
link.put(4);
link.waitForAnswer();
int sum3 = link.getInteger();

} catch (MathLinkException e) {
// The only type of mathlink error we are likely to get
// is from a "get" function when what we are trying to
// get is not the type of expression that is waiting. We
// just clear the error state, throw away the packet we
// are reading, and let the method finish normally.
link.clearError();
link.newPacket();

}
}
return Math.sqrt(x) * Math.sqrt(y);

}

J/Link User Guide 103

Throwing Exceptions

Any exceptions that your method throws will be handled gracefully by J/Link, resulting in the

printing of a message in Mathematica describing the exception. This was discussed in "How

Exceptions Are Handled". If you are sending computations to Mathematica as described in the

previous section, you need to make sure that an exception does not interrupt your code unex-

pectedly. In other words, if you start a transaction with Mathematica, make sure you complete

it or you will leave the link out of sync and future calls to Java will probably hang.

Making a Method Interruptible

If you are writing a method that may take a while to complete, you should consider making it

interruptible from Mathematica. In C MathLink programs, a global variable named MLAbort is

provided for this purpose. In J/Link programs, you call the wasInterrupted() method in the

KernelLink interface:

public boolean wasInterrupted();

Here is an example method that performs a long computation, checking every 100 iterations

whether the user tried to abort it (using the Interrupt Evaluation or Abort Evaluation com-

mands in the Evaluation menu).

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted())

return 0; // Return value will not be seen by Mathematica.
}
return 42;

}

This method returns 0 if it detects an attempt by the user to abort, but this value will never be

seen by Mathematica. This is because J/Link causes a method or constructor call that is aborted

to return Abort[], whether or not you detect the abort in your code. Therefore, if you detect

an abort and want to honor the user’s request, just return some value right away. When J/Link

Abort@D, the user’s entire computation is aborted, just as if the Abort@D was embed-

ded in Mathematica code. This means that you do not have to be concerned with any details of

propagating the abort back to Mathematica~all you have to do is return prematurely if you

detect an abort request, and the rest is handled for you.

104 J/Link User Guide

This method returns 0 if it detects an attempt by the user to abort, but this value will never be

seen by Mathematica. This is because J/Link causes a method or constructor call that is aborted

to return Abort[], whether or not you detect the abort in your code. Therefore, if you detect

returns Abort@D, the user’s entire computation is aborted, just as if the Abort@D was embed-

ded in Mathematica code. This means that you do not have to be concerned with any details of

propagating the abort back to Mathematica~all you have to do is return prematurely if you

detect an abort request, and the rest is handled for you.

J/Link makes no distinction between an interrupt request and an abort request; they each

cause wasInterrupted() to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (Alt+. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(Alt+, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a Java method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect

for Java methods, which is to cause wasInterrupted() to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the

Java runtime to quit. If you call a Java method that is not interruptible, killing the Java runtime

in this way is the only way to make the method call terminate (you can also kill the Java run-

time using process control features of your operating system).

Sometimes you might want a Java method to detect an abort and do something other than

cause the entire Mathematica computation to abort. For example, you might want a loop to

stop and return its results up to that point. Note that this is not generally recommended. Users

expect a program to abort and return $Aborted when they issue an abort request. In some

cases, however, especially if the code is not intended for use by a large community, you might

find it useful to use an abort as a “message” to communicate some information to your Java

code instead of just having the computation aborted. This idea is similar to Mathematica’s

CheckAbort function, which allows you to detect an abort and absorb it so that it does not

propagate further and abort the entire computation. To “absorb” the abort in your Java code so

that J/Link does not return Abort@D, simply call the clearInterrupt() method:

public void clearInterrupt();

J/Link User Guide 105

Here is an example:

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted()) {

link.clearInterrupt();
return resultSoFar; // This is the value that will be returned

to Mathematica
}

}
...
return 42;

}

Writing Your Own Event Handler Code

"Handling Events with Mathematica Code: The “MathListener” Classes" introduced the topic of

triggering calls into Mathematica as a response to events fired in Java, such as clicking a but-

ton. A set of classes derived from MathListener is provided by J/Link for this purpose. You are

not required to use the provided MathListener classes, of course. You can write your own

classes to handle events and put calls into Mathematica directly into their code. All the event

handler classes in J/Link are derived from the abstract base class MathListener, which takes

care of all the details of interacting with Mathematica, and also provides the setHandler()

methods that you use to associate events with Mathematica code. Users who want to write their

own MathListener-style classes (for example, for one of the Swing-specific event listener

interfaces, which J/Link does not provide) are strongly encouraged to make their classes sub-

classes of MathListener to inherit all this functionality. You should examine the source code for

MathListener, and also one of the concrete classes derived from it (MathActionListener is

probably the simplest one) to see how it is written. You can use this as a starting point for your

own implementation.

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

entirely in Mathematica code. ImplementJavaInterface is described in more detail in

MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

106 J/Link User Guide

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

"Implementing a Java Interface with Mathematica Code", but a common use for it would be to

create event-handler classes that implement a “Listener”-type interface for which J/Link does

not have a built-in MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

If you are going to write a Java class, and you choose not to derive your class from

MathListener, there are two very important rules that must be adhered to when writing event-

handler code that calls into Mathematica. To be more precise, these rules apply whenever you

are writing code that needs to call into Mathematica at a point when Mathematica is not cur-

rently calling into Java. That may sound confusing, but it is really very simple. "Requesting

Evaluations by Mathematica" showed how to request evaluations by Mathematica from within a

Java method. In this case, Mathematica has called your Java method, and while Mathematica is

waiting for the result, your code calls back to perform some computation. This works fine as

described in that earlier section, because at the point the code calls back into Mathematica,

Mathematica is in the middle of a call to Java. This is a true “callback”~Mathematica has called

Java, and during the handling of this call, Java calls back to Mathematica. In contrast, consider

the case where some Java code executes in response to a button click. When the button click

event fires, Mathematica is probably not in the middle of a call to Java.

Special considerations are necessary in the latter case because there are two threads in the

Java runtime that are using MathLink. The first one is created and used by the internals of

J/Link to handle standard calls into Java originating in Mathematica as described throughout

this tutorial. The second one is the Java user interface thread (sometimes called the AWT

thread), which is the one on which your event handler code will be called. You need to make

sure that your use of the link back to the kernel on the user interface thread does not interfere

with J/Link’s internal thread.

J/Link User Guide 107

The following code shows an idealized version of the actionPerformed() method in the

MathActionListener class. The actual code in MathActionListener is different, because this

work is farmed out to the parent class, MathListener, but this example shows the correct flow

of operations. This is the code that is executed when the associated object’s action occurs (like

a button click).

public void actionPerformed(ActionEvent e) {
KernelLink ml = StdLink.getLink();
StdLink.requestTransaction();
synchronized (ml) {

try {
// Send the code to perform the user's requested operation.
ml.putFunction("EvaluatePacket", 1);
... code to put rest of expression to evaluate goes here ...
ml.endPacket();
ml.discardAnswer();

} catch (MathLinkException exc) {
...

}
}

}

The first rule to note in this code is that the complete transaction with Mathematica, which

includes sending the code to evaluate and completely reading the result, is wrapped in a synÖ

chronized(ml) block. This is how you ensure that the user interface thread has exclusive

access to the link for the entire transaction. The second rule is that the synchronized(ml)

statement must be preceded by a call to StdLink.requestTransaction(). This call will block

until the kernel is at a point where it is ready to accommodate evaluations originating in Java.

The call must occur before the synchronized(ml) block begins, and once you call it you must

make sure that you send something to Mathematica. In other words, when requestTransacÖ

tion() returns, the kernel will be blocking in an attempt to read from the Java link. The kernel

will be stuck in this state until you send it something, so you must protect against a Java excep-

tion being thrown after you call requestTransaction() but before you send anything. Typi-

cally you will do this simply by calling requestTransaction() immediately before the synchroÖ

nized(ml) block begins and you start sending something.

108 J/Link User Guide

It was just said that StdLink.requestTransaction() will block until the kernel is ready to

accept evaluations originating in Java. To be specific, it will block until one of the following

conditions occurs:

† Mathematica executes DoModal

† Mathematica executes ServiceJava

† Kernel sharing has been turned on via ShareKernel or ShareFrontEnd, and the kernel is
not busy with another computation

† Mathematica is already in the middle of a call to Java

† Java is not being used from Mathematica (InstallJava has not been called)

These conditions should make sense given the discussion about creating user interface ele-

ments in the section "Creating Windows and Other User Interface Elements". DoModal,

ShareKernel, and ServiceJava are the three ways in which you direct the kernel’s attention to

the Java link so that it can detect incoming request for computations.

If you make the common mistake of inadvertently triggering a call to Mathematica from Java

before you have called DoModal or ShareKernel, the Java user interface thread will hang. This

can be easily remedied by calling DoModal, ShareKernel, or ServiceJava afterwards

(ServiceJava may need to be called more than once, if more than one event callback is

queued up).

If the rule about when it is necessary to use StdLink.requestTransaction() and synchroÖ

nized(ml) is confusing, you will be happy to learn that it is fine to use these constructs in any

code that calls Mathematica. In code that does not need them, they are pointless, but harm-

less, and will not cause the calling thread to block. If you are writing a Java method that needs

to call Mathematica and there is any chance that it might be called from the user interface

thread, add the StdLink.requestTransaction() and synchronized(ml).

J/Link User Guide 109

Debugging Your Java Classes

You can use your favorite debugger to debug Java code that is called from Mathematica. The

only issue is that you typically have to launch a Java program inside the debugger to do this.

The Java program that you need to launch is the one that is normally launched for you when

you call InstallJava. The class that contains J/Link’s main() method is com.wolfram.jlinkÖ

.Install. Thus, the command line to start J/Link that is executed internally by InstallJava is

typically

java -classpath /path/to/JLink.jar com.wolfram.jlink.Install

There may be additions or modifications to this depending on the options to InstallJava, and

also some extra MathLink-specific arguments are tacked on at the end. To use a debugger, you

just have to launch Java with the appropriate command-line arguments that allow you to estab-

lish the link to Mathematica manually.

If you use a development environment that has an integrated debugger, then the debugger

probably has a setting for the main class to use (the class whose main() method will be

invoked) and a setting for command-line arguments. For example, in WebGain Visual Café, you

can set these values in the Project panel of the Project/Options dialog. Set the main class to

be com.wolfram.jlink.Install, and the arguments to be something like this:

(On Windows:)
-linkmode listen -linkname foo

(On Unix/Linux:)
-linkmode listen -linkprotocol tcp -linkname 1234

Then start the debugging session. You should see the J/Link copyright notice printed and then

Java will wait for Mathematica to connect. To do this, go to your Mathematica session, make

sure the JLink.m package has been read in, and execute:

(* On Windows: *)
ReinstallJava[LinkConnect["foo"]]

(* On Unix: *)
ReinstallJava[LinkConnect["1234", LinkProtocol -> "TCP"]]

This works because ReinstallJava can take a LinkObject as its argument, in which case it

will not try to launch Java itself. This allows you to manually establish the MathLink connection

between Java and Mathematica, then feed that link to ReinstallJava and let it do the rest of

the work of preparing the Mathematica and Java sides for interacting with each other.

If you like to use a command-line debugger like jdb, you can do the following:

110 J/Link User Guide

If you like to use a command-line debugger like jdb, you can do the following:

C:\>jdb
Initializing jdb...
> run com.wolfram.jlink.Install -linkmode listen -linkname foo
running ...
main[1] J/Link (tm)
Copyright (C) 1999-2000, Wolfram Research, Inc. All Rights Reserved.
www.wolfram.com
Version 1.1

Current thread "main" died. Execution continuing...
>

The message about the main thread dying is normal. Now jdb is ready for commands. First,

though, you have to execute in your Mathematica session the LinkConnect and ReinstallJava

lines shown earlier. This example was for Windows, so Unix users will have to adjust the run

line to reflect the proper arguments:

> run com.wolfram.jlink.Install -linkmode listen -linkprotocol tcp
-linkname 1234

Deploying Applications that use J/Link

This section discusses some issues relevant to developers who are creating add-ons for Mathe-

matica that use J/Link.

J/Link uses its own custom class loader that allows it to find classes in a set of locations beyond

the startup class path. As described in "Dynamically Modifying the Class Path", users can grow

this set of extra locations to search for classes by calling the AddToClassPath function. One of

the motivations for having a custom class loader was to make it easy for application developers

to distribute applications that have parts of their implementation in Java. If you structure your

application directory properly, your users will be able to install it simply by copying it into any

standard location for Mathematica applications. J/Link will be able to find your Java classes

immediately, without users having to perform any classpath-related operations or even restart

Java.

If your Mathematica application uses J/Link and includes its own Java components, you should

create a Java subdirectory in your application directory. You can place any jar files that your

application needs into this Java subdirectory. If you have loose class files (not bundled into a

jar file), they should go into an appropriately nested subdirectory of the Java directory.

“Appropriately nested” means that if your class is in the Java package com.somecompany.math,

then its class file goes into the com/somecompany/math subdirectory of the Java directory. If

the class is not in any package, it can go directly into the Java directory. J/Link can also find

native libraries and resources your application needs. Native libraries must be in a subdirectory

of your Java/Libraries directory that is named after the $SystemID of the platform on which it is

installed. Here is an example directory structure for an application that uses J/Link:

J/Link User Guide 111

If your Mathematica application uses J/Link and includes its own Java components, you should

create a Java subdirectory in your application directory. You can place any jar files that your

application needs into this Java subdirectory. If you have loose class files (not bundled into a

jar file), they should go into an appropriately nested subdirectory of the Java directory.

“Appropriately nested” means that if your class is in the Java package com.somecompany.math,

then its class file goes into the com/somecompany/math subdirectory of the Java directory. If

the class is not in any package, it can go directly into the Java directory. J/Link can also find

native libraries and resources your application needs. Native libraries must be in a subdirectory

of your Java/Libraries directory that is named after the $SystemID of the platform on which it is

installed. Here is an example directory structure for an application that uses J/Link:

MyApp/
... other files and directories used by the application ...
Java/

MyAppClasses.jar
MyImage.gif
Libraries/

Windows/
MyNativeLibrary.dll

PowerMac/
MyNativeLibrary

Darwin/
libMyNativeLibrary.jnilib

Linux/
libMyNativeLibrary.so

... and so on for other Unix platforms

Your application directory must be placed into one of the standard locations for Mathematica

applications. These locations are listed as follows. In this notation, $InstallationDirectory/Ad-

dOns/Applications means “The AddOns/Applications subdirectory of the directory whose value is

given by the Mathematica variable $InstallationDirectory.”

 $UserAddOnsDirectory/Applications (Mathematica 4.2 and later only)

$AddOnsDirectory/Applications (Mathematica 4.2 and later only)

$InstallationDirectory/AddOns/Applications

$InstallationDirectory/AddOns/ExtraPackages

Coding Tips

112 J/Link User Guide

Coding Tips

Here are a few tips on producing high-quality applications. These suggestions are guided by

mistakes that developers frequently make.

Call InstallJava in the body of a function or functions, not when your package is read

in. It is best to avoid side effects during the reading of a package. Users expect reading in a

package to be fast and to do nothing but load definitions. If you launch Java at this time, and it

fails, it could cause a mysterious hang in the loading process. It is better to call InstallJava in

the code of one or more of your functions. You probably do not need to call InstallJava in

every single function that uses Java. Most applications have a few “major” functions that users

are likely to use almost exclusively, or at least at the start of their session. If your application

does not have this property, then provide an initialization function that your users must call

first, and call InstallJava inside it.

Call InstallJava with no arguments. You cannot know what options your users need for

Java on their systems, so do not override what they may have set up. It is the user’s responsibil-

ity to make sure that they call SetOptions to customize the options for InstallJava as neces-

sary. Typically this would be done in their init.m file.

Make sure you use JavaBlock and/or ReleaseJavaObject to avoid leaking object refer-

ences. You cannot know how others will use your code, so you need to be careful to avoid

cluttering up their sessions with a potentially large number of useless objects. Sometimes you

need to create an object that persists beyond the lifetime of a single Mathematica function, like

a viewer window. In such cases, use a MathFrame or MathJFrame as your top-level window and

use its onClose() method to specify Mathematica code that releases all outstanding objects

and unregisters kernel or front end sharing you may have used. If this is not possible, provide a

cleanup function that users can call manually. Use LoadedJavaObjects to look at the list of

objects referenced in Mathematica before and after your functions run; it should not grow in

length.

If you use ShareKernel or ShareFrontEnd, make sure you save the return values from

these functions and pass them as arguments to UnshareKernel and UnshareFrontEnd.

Do not call UnshareFrontEnd or UnshareKernel with no arguments, as this will shut down

sharing even if other applications are using it.

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

file is read in, and storing the results in private variables for the lifetime of your package. This

is problematic if Java is restarted. Never store JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

J/Link User Guide 113

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

file is read in, and storing the results in private variables for the lifetime of your package. This

is problematic if Java is restarted. Never store JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

SomeFunction[] :=
Module[{...},

If[!JavaObjectQ[$myCachedExpensiveJavaObject],
InstallJava[];
$myCachedExpensiveJavaObject = JavaNew[...];

];
... use $myCachedExpensiveJavaObject ...

]

Do not call UninstallJava or ReinstallJava in your application. You need to coexist

politely with other applications that may be using Java. Do not assume that when your package

is done with Java, the user is done with it as well. Only users should ever call UninstallJava,

and they should probably never call it either. There is no cost to leaving Java running. Likewise,

users will rarely call ReinstallJava unless they are doing active Java development and need to

reload modified versions of their classes.

114 J/Link User Guide

Example Programs

Introduction

This section will work through some example programs. These examples are intended to demon-

strate a wide variety of techniques and subtleties. Discussions include some nuances in the

implementations and touch on most of the major issues in J/Link programming.

This will take a relatively rigorous approach, and in particular it will be careful to avoid leaking

references. As discussed in the section "JavaBlock", JavaBlock and ReleaseJavaObject are the

tools in this fight, but if you find yourself becoming the least bit confused about the subject,

just ignore it completely. For many casual, personal uses of J/Link, you can forget about

memory management issues, and just let Java objects pile up.

J/Link includes a number of notebooks with sample programs, including most of the programs

developed in this section. These notebooks can be found in the <Mathematica dir>/System-

Files/Links/JLink/Examples/Part1 directory.

A Beep Function

Here is a very simple example. Mathematica does not have a Beep function to provide simple

alerts. But Java has a beep() method and, by virtue of that, Mathematica has one too.

Beep@D :=
H
LoadJavaClass@"java.awt.Toolkit"D;
Toolkit`getDefaultToolkit@Dübeep@D

L

You will notice a short delay the first time Beep[] is executed. This is due to the

LoadJavaClass call, which only takes measurable time the first time it is called for any given

class.

Beep@D

J/Link User Guide 115

This is a perfectly good beep function, and many users will not need to go beyond this. If you

are writing code for others to use, however, you will probably want to embellish this code a

little bit. Here is a more professional version of the same function.

BetterBeep[]:=
JavaBlock[

InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
Toolkit`getDefaultToolkit[]@beep[];

]

Note that the first thing you do is call InstallJava. It is a good habit to call InstallJava in

functions that use J/Link, at least if you are writing code for others to use. If InstallJava has

already been called, subsequent calls will do nothing and return very quickly. The whole pro-

gram is wrapped in JavaBlock. As discussed in the section "JavaBlock", JavaBlock automates

the process of releasing references to objects returned to Mathematica. The getDefaultÖ

Toolkit() method returns a Toolkit object, so you want to release the JavaObject that gets

created in Mathematica. The getDefaultToolkit() method returns a reference to the same

Toolkit object every time it is called, so even if you do not call JavaBlock, you will only “leak”

one object in an entire session. You could also write Beep using an explicit call to

ReleaseJavaObject.

(* Alternative version *)
BetterBeep2[]:=

Module[{toolkit},
InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
toolkit = Toolkit`getDefaultToolkit[];
toolkit@beep[];
ReleaseJavaObject[toolkit]

]

The advantage to using JavaBlock is that you do not have to think about what, if any, methods

might return objects, and you do not have to assign them to variables.

Formatting Dates

Here is an example of a computation performed in Java. Java provides a number of powerful

date- and calendar-oriented classes. Say you want to create a nicely formatted string showing

the time and date. In this first step you create a new Java Date object representing the current

date and time.

date = JavaNew@"java.util.Date"D

«JavaObject@java.util.DateD »

Next you load the DateFormat class and create a formatter capable of formatting dates.

116 J/Link User Guide

Next you load the DateFormat class and create a formatter capable of formatting dates.

LoadJavaClass@"java.text.DateFormat"D;
dateFormatter = DateFormat`getInstance@D
«JavaObject@java.text.SimpleDateFormatD »

Now you call the format() method, passing the Date object as its argument.

dateFormatterüformat@dateD

10ê9ê00 4:56 AM

There are many different ways in which dates and times can be formatted, including respecting

a user’s locale. Java also has a useful number-formatting class, an example of which was given

in "An Optimization Example".

A Progress Bar

A simple example of a popup user interface for a Mathematica program is a progress bar. This

is an example of a “non-interactive” user interface, as defined in "Interactive and Non-Interac-

tive Interfaces", because it does not need to call back to Mathematica or return a result to

Mathematica. The implementation uses the Swing user interface classes, because Swing has a

built-in class for progress bars. (You cannot run this example unless you have Swing installed.

It comes as a standard part of Java 1.2 or later, but you can get it separately for Java 1.1.x.

Most Java development tools that are still at Version 1.1.x come with Swing.) The complete

code for this example is also provided in the file ProgressBar.nb in the JLink/Examples/Part1

directory.

The code is commented to point out the general structure. There are several classes and meth-

ods used in this code that may be unfamiliar to you. Just keep in mind that this is completely

standard Java code translated into Mathematica using the J/Link conventions. It is line-for-line

identical to a Java program that does the same thing.

This code is presented as a complete program, but this does not suggest that it should be

developed that way. The interactive nature of J/Link lets you tinker with Java objects a line at a

time, experimenting until you get things just how you want them. Of course, this is how Mathe-

matica programs are typically written, and J/Link lets you do the same with Java objects and

methods.

You can create a function ShowProgressBar that prepares and displays a progress bar dialog.

The bar will be used to show percentage completion of a computation. You can supply the initial

percent completed or use the default value of zero. ShowProgressBar returns the JProgressÖ

Bar object because the bar needs to be updated later by calling setValue(). Note that

because you return the bar object from the JavaBlock, it is not released like all other new Java

objects created within this JavaBlock. This is a new behavior of JavaBlock in J/Link 2.0. If

what is returned from a JavaBlock is precisely a single Java object (and not, for example, a list

of objects), then this object is not released. JavaBlock is discussed in the section "JavaBlock".

J/Link User Guide 117

You can create a function ShowProgressBar that prepares and displays a progress bar dialog.

The bar will be used to show percentage completion of a computation. You can supply the initial

percent completed or use the default value of zero. ShowProgressBar returns the JProgressÖ

Bar object because the bar needs to be updated later by calling setValue(). Note that

because you return the bar object from the JavaBlock, it is not released like all other new Java

objects created within this JavaBlock. This is a new behavior of JavaBlock in J/Link 2.0. If

what is returned from a JavaBlock is precisely a single Java object (and not, for example, a list

of objects), then this object is not released. JavaBlock is discussed in the section "JavaBlock".

ShowProgressBar[title_String:"Computation Progress",
 caption_String:"Percent complete:",
 percent_Integer:0
] :=

JavaBlock[
Module[{frame, panel, label, bar},

InstallJava[];
bar = JavaNew["javax.swing.JProgressBar"];
frame = JavaNew["javax.swing.JFrame", title];
frame@setSize[300, 110];
frame@setResizable[False];
frame@setLocation[400, 400];
panel = JavaNew["javax.swing.JPanel"];
panel@setLayout[Null];
frame@getContentPane[]@add[panel];
label = JavaNew["javax.swing.JLabel", caption];
label@setBounds[20, 10, 260, 20];
panel@add[label];
bar@setBounds[20, 40, 260, 30];
bar@setMinimum[0];
bar@setMaximum[100];
bar@setValue[percent];
panel@add[bar];
JavaShow[frame];
bar

]
]

You also need a function to close the progress dialog and clean up after it. Only two things need

to be done. First, the dispose() method must be called on the top-level frame window that

contains the bar. Second, if you want to avoid leaking object references, you need to call

ReleaseJavaObject on the bar object because it is the only object reference that escaped the

JavaBlock in ShowProgressBar. You need to call dispose() on the JFrame object you cre-

ated in ShowProgressBar, but you did not save a reference to it. The SwingUtilities class

has a handy method windowForComponent() that will retrieve this frame, given the bar object.

DestroyProgressBar[bar_?JavaObjectQ] :=
JavaBlock[

LoadJavaClass["javax.swing.SwingUtilities"];
SwingUtilities`windowForComponent[bar]@dispose[];
ReleaseJavaObject[bar]

]

The bar dialog has a close box in it, so a user can dismiss it prematurely if desired. This would

take care of disposing the dialog, but you would still need to release the bar object. DestroyProÖ

gressBar (and the bar’s setValue() method) is safe to call whether or not the user closed the

dialog.

118 J/Link User Guide

The bar dialog has a close box in it, so a user can dismiss it prematurely if desired. This would

take care of disposing the dialog, but you would still need to release the bar object. DestroyProÖ

gressBar (and the bar’s setValue() method) is safe to call whether or not the user closed the

dialog.

Here is how you would use the progress bar in a computation. The call to ShowProgressBar

displays the bar dialog and returns a reference to the bar object. Then, while the computation is

running, you periodically call the setValue() method to update the bar’s appearance. When

the computation is done, you call DestroyProgressBar.

bar = ShowProgressBar[];
n = 0;
While[n <= 5,

bar@setValue[n/5 * 100];
Pause[1]; (* This simulates the time-consuming computation. *)
n++

];
DestroyProgressBar[bar];

An easy way to test whether your code leaks object references is to call LoadedJavaObjects@D

before and after the computation. If the list of objects gets longer, then you have forgotten to

use ReleaseJavaObject or improperly used JavaBlock.

It can take several seconds to load all the Swing classes used in this example. This means that

the first time ShowProgressBar is called, there will be a significant delay. You could avoid this

delay by using LoadJavaClass ahead of time to explicitly load the classes that appear in

JavaNew statements.

The dialog appears onscreen with its upper left at the coordinates (400, 400). It is left as an

exercise to the reader to make it centered on the screen. (Hint: the java.awt.Toolkit class

has a getScreenSize() method).

Finally, because the progress bar uses the Swing classes, you can play with the look-and-feel

options that Swing provides. Specifically, you can change the theme at runtime. The progress

bar window is not very complicated, so it changes very little in going from one look-and-feel

theme to another, but this demonstrates how to do it. The effect is much more dramatic for

more complex windows.

First, create a new progress bar window.

bar = ShowProgressBar@D;

Now load some classes from which you need to call static methods.

LoadJavaClass@"javax.swing.UIManager"D;
LoadJavaClass@"javax.swing.SwingUtilities"D;

The default look and feel is the “metal” theme. You can change it to the native style look for

your platform as follows (it helps to be able to see the window when doing this).

J/Link User Guide 119

The default look and feel is the “metal” theme. You can change it to the native style look for

your platform as follows (it helps to be able to see the window when doing this).

JavaBlock[
UIManager`setLookAndFeel[UIManager`getSystemLookAndFeelClassName[]];
frame = SwingUtilities`windowForComponent[bar];
SwingUtilities`updateComponentTreeUI[frame]

]

Clean up.

DestroyProgressBar@barD

A Simple Modal Input Dialog

You saw one example of a simple modal dialog in "Modal Windows". Presented here is another

one~a basic dialog that prompts the user to enter an angle, with a choice of whether it is being

specified in degrees or radians. This will demonstrate a dialog that returns a value to a running

Mathematica program when it is dismissed, much like Mathematica’s built-in Input function,

which requests a string from the user before returning. Dialogs like this one are not “modal” in

the traditional sense that they must be closed before other Java windows can be used, but

rather they are modal with respect to the kernel, which is kept busy until they are dismissed

(that is, until DoModal@D returns). The section "Creating Windows and Other User Interface

Elements" discusses modal and modeless Java windows in detail.

The code is rather straightforward and warrants little in the way of commentary. In creating the

window and the controls within it, it exactly mirrors the Java code you would use if you were

writing the program in Java. One technique it demonstrates is determining whether the OK or

Cancel button was clicked to dismiss the dialog. This is done by having the

MathActionListener objects assigned to the two buttons return different things in addition to

calling EndModal@D. Recall that DoModal@D returns whatever the code that calls EndModal@D

returns, so here you have the OK button execute (EndModal[]; True)&, a pure function that

ignores its arguments, calls EndModal@D, and returns True, whereas the Cancel button exe-

cutes (EndModal[]; False)&. Thus, DoModal@D returns True if the OK button was clicked, or

False if the Cancel button was clicked. It will return Null if the window’s close box was clicked

(this behavior comes from the MathFrame itself).

It may take several seconds to display the dialog the first time GetAngle[] is called. This is

due to the one-time cost of loading the several large AWT classes required. Subsequent invoca-

tions of GetAngle[] will be much quicker.

The complete code for this example is also provided in the file ModalInputDialog.nb in the

JLink/Examples/Part1 directory.

120 J/Link User Guide

The complete code for this example is also provided in the file ModalInputDialog.nb in the

JLink/Examples/Part1 directory.

GetAngle[] :=
JavaBlock[

Module[{frm, inputField, cbGroup, degBox, radBox,
label, okButton, cancelButton, wasOKButton, angle},

InstallJava[]; (* In case the user has not called it already. *)

frm = JavaNew["com.wolfram.jlink.MathFrame"];
label = JavaNew["java.awt.Label", "Enter an angle:"];
inputField = JavaNew["java.awt.TextField"];
cbGroup = JavaNew["java.awt.CheckboxGroup"];
degBox = JavaNew["java.awt.Checkbox", "degrees", cbGroup, True];
radBox = JavaNew["java.awt.Checkbox", "radians", cbGroup, False];
okButton = JavaNew["java.awt.Button", "OK"];
cancelButton = JavaNew["java.awt.Button", "Cancel"];

frm@setLayout[Null];
frm@add[label];
frm@add[inputField];
frm@add[degBox];
frm@add[radBox];
frm@add[okButton];
frm@add[cancelButton];

frm@setBounds[200, 200, 200, 160];
label@setBounds[20, 30, 150, 20];
inputField@setBounds[20, 70, 60, 28];
degBox@setBounds[100, 60, 80, 20];
radBox@setBounds[100, 80, 80, 20];
okButton@setBounds[40, 120, 50, 20];
cancelButton@setBounds[100, 120, 50, 20];
frm@setResizable[False];

okButton@addActionListener[
JavaNew["com.wolfram.jlink.MathActionListener",

"(EndModal[]; True)&"]
];
cancelButton@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener",
"(EndModal[]; False)&"]

];

(* Now make the window visible and bring it to the foreground. *)
JavaShow[frm];

frm@setModal[];
wasOKButton = DoModal[];
(* Even though the window may have been closed, it is perfectly
 OK to extract values from the controls in the window.
*)
If[TrueQ[wasOKButton],

angle = ToExpression[inputField@getText[]];
If[angle =!= Null && degBox@getState[], angle *= Pi/180],

(* else *)
(* We will get here if the Cancel button was clicked
 (wasOKButton will be False), or the dialog was closed

J/Link User Guide 121

GetAngle[] :=
JavaBlock[

Module[{frm, inputField, cbGroup, degBox, radBox,
label, okButton, cancelButton, wasOKButton, angle},

InstallJava[]; (* In case the user has not called it already. *)

frm = JavaNew["com.wolfram.jlink.MathFrame"];
label = JavaNew["java.awt.Label", "Enter an angle:"];
inputField = JavaNew["java.awt.TextField"];
cbGroup = JavaNew["java.awt.CheckboxGroup"];
degBox = JavaNew["java.awt.Checkbox", "degrees", cbGroup, True];
radBox = JavaNew["java.awt.Checkbox", "radians", cbGroup, False];
okButton = JavaNew["java.awt.Button", "OK"];
cancelButton = JavaNew["java.awt.Button", "Cancel"];

frm@setLayout[Null];
frm@add[label];
frm@add[inputField];
frm@add[degBox];
frm@add[radBox];
frm@add[okButton];
frm@add[cancelButton];

frm@setBounds[200, 200, 200, 160];
label@setBounds[20, 30, 150, 20];
inputField@setBounds[20, 70, 60, 28];
degBox@setBounds[100, 60, 80, 20];
radBox@setBounds[100, 80, 80, 20];
okButton@setBounds[40, 120, 50, 20];
cancelButton@setBounds[100, 120, 50, 20];
frm@setResizable[False];

okButton@addActionListener[
JavaNew["com.wolfram.jlink.MathActionListener",

"(EndModal[]; True)&"]
];
cancelButton@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener",
"(EndModal[]; False)&"]

];

(* Now make the window visible and bring it to the foreground. *)
JavaShow[frm];

frm@setModal[];

 by clicking in its close box (wasOKButton will be Null).
*)
angle = $Failed

];
(* If the cancel or OK buttons were clicked, frm is still
 visible, so we dispose it here.
*)
frm@dispose[];
angle

]
]

Now invoke it.

GetAngle@D

p

A File Chooser Dialog Box

A useful feature for Mathematica programs is to be able to produce a file chooser dialog, such

as the typical Open or Save dialog boxes. You could use such a dialog box to prompt a user for

an input file or a file into which to write data. This is easily accomplished in a cross-platform

way with Java, specifically with the JFileChooser class in the standard Swing library. The code

for such a dialog box is provided in the file FileChooserDialog.nb in the JLink/Examples/Part1

directory.

Mathematica 4.0 introduced a new “experimental” function called FileBrowse[] that displays a

file browser in the front end. Although this function is usable, it has several shortcomings com-

pared to the Java technique presented next. One of the limitations is that it requires that the

front end be in use. Another is that it is not customizable, so you always get a Save file as:

dialog box and the concomitant behavior, which is not appropriate for an Open-type dialog box.

The JFileChooser class used here allows very sophisticated customization, including setting

the initial directory, masking out files based on their names or properties, controlling the title

and text on the various buttons, supplying functions to validate the choice before the dialog box

is allowed to be dismissed, allowing for multiple file selection, and allowing directories to be

selected instead of files.

Although this example is a short program, the code has some unfortunate complexity (meaning

“ugliness”) in it related to making this special type of dialog window come to the foreground on

all platforms. For this reason, the code is not presented here. Instead, some topics in the pro-

gram code will be mentioned; you can read the full code and its associated comments in the

example file if you are interested in the implementation details.

The FileChooserDialog function takes three string arguments. The first is the title of the

dialog box (for example, Select a data file to import), the second is the text to appear on

what is essentially the OK button (typically this will be Open or Save), and the third is the

directory in which to start. You can also supply no arguments and get a default Open dialog box

that starts in the kernel’s current directory.

122 J/Link User Guide

The FileChooserDialog function takes three string arguments. The first is the title of the

dialog box (for example, Select a data file to import), the second is the text to appear on

what is essentially the OK button (typically this will be Open or Save), and the third is the

directory in which to start. You can also supply no arguments and get a default Open dialog box

that starts in the kernel’s current directory.

Although this is a “modal” dialog box, there is no need to use DoModal, because the showDiaÖ

log() method will not return until the user dismisses the dialog box. Recall that DoModal is a

way to force Mathematica to stall until the dialog box or other window is dismissed. Here, you

get this behavior for free from showDialog(). The other thing that DoModal does is put the

kernel into a loop where it is ready to receive input from Java, so you can script some of the

functionality of the dialog via callbacks to Mathematica. The file chooser dialog box does not

need to use Mathematica in any way until it returns the selected file, so you have no need for

this other aspect that DoModal provides.

A second point of interest is in the name of the constant that showDialog() returns to indicate

that the user clicked the Save or Open button instead of the Cancel button. The name of this

constant in Java is JFileChooser.APPROVE_OPTION. Java names map to Mathematica

symbols, so they must be translated if they contain characters that are not legal in Mathemat-

ica symbols, such as the underscore. Underscores are converted to a “U” when they appear in

symbols, so the Mathematica name of this constant is JFileChooser`APPROVEUOPTION. See

"Underscores in Java Names" for more information.

Sharing the Front End: Palette-Type Buttons

As discussed in the section "Creating Windows and Other User Interface Elements", one of the

goals of J/Link is to allow Java user interface elements to be as close as possible to first-class

members of the notebook front end environment in the way notebook and palette windows are.

One of the ways this is accomplished is with the ShareKernel function, which allows Java

windows to share the kernel’s attention with notebook windows. Such Java windows are

referred to as “modeless,” not in the traditional sense of allowing other Java windows to remain

active, but modeless with respect to the kernel, meaning that the kernel is not kept busy while

they are open.

Beyond the ability to have Java windows share the kernel with the front end, it would be nice to

allow actions in Java to cause effects in notebook windows, such as printing something, display-

ing a graph, or any of the notebook-manipulation commands like NotebookApply,

NotebookPrint, SelectionEvaluate, SelectionMove, and so on. A good example of this is

palette buttons. A palette button can cause the current selection to be replaced by something

else and the resulting expression to be evaluated in place.

J/Link User Guide 123

Beyond the ability to have Java windows share the kernel with the front end, it would be nice to

allow actions in Java to cause effects in notebook windows, such as printing something, display-

ing a graph, or any of the notebook-manipulation commands like NotebookApply,

NotebookPrint, SelectionEvaluate, SelectionMove, and so on. A good example of this is

palette buttons. A palette button can cause the current selection to be replaced by something

else and the resulting expression to be evaluated in place.

The ShareFrontEnd function lets actions in Java modeless windows trigger events in a note-

book window just like can be done from palette buttons or Mathematica code you evaluate

manually in a notebook. Remember that you get automatically the ability to interact with the

front end when you use a modal dialog (i.e., when DoModal is running). When Java is being run

in a modal way, the kernel’s $ParentLink always points at the front end, so all side effect

outputs get sent to the front end automatically. A modal window would not be acceptable for

the palette example here because the palette needs to be an unobtrusive enhancement to the

Mathematica environment~it cannot lock up the kernel while it is alive. ShareKernel allows

Java windows to call Mathematica without tying up the kernel, and ShareFrontEnd is an exten-

sion to ShareKernel (it calls ShareKernel internally) that allows such “modeless” Java windows

to interact with the front end. ShareFrontEnd is discussed in more detail in "Sharing the Front

End".

In the PrintButton example that follows, a simple palette-type button is developed in Java

that prints its label at the current cursor position in the active notebook. Because of current

limitations with ShareFrontEnd, this example will not work with a remote kernel; the same

machine must be running the kernel and the front end.

124 J/Link User Guide

PrintButton[label_String] :=
JavaBlock[

Module[{frm, button, listener, tok},
InstallJava[];
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
frm@add[button];
frm@pack[];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener",

 "printButtonFunc"];
button@addActionListener[listener];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm]

]
]

printButtonFunc[event_, _] :=
JavaBlock[

NotebookApply[SelectedNotebook[], event@getSource[]@getLabel[]];
(* We need to explicitly release the event object, since it was
 sent to Mathematica before the JavaBlock was entered. *)
ReleaseJavaObject[event]

]

Now invoke the PrintButton function to create and display the palette. Click the button to see

the button’s label (foo in this example) inserted at the current cursor location. When you are

done, click the window’s close box.

PrintButton@"foo"D

The code is mostly straightforward. As usual, you use the MathFrame class for the frame win-

dow because it closes and disposes of itself when its close box is clicked. You create a

MathActionListener that calls buttonFunc and you assign it to the button. From the table in

the section Handling Events with Mathematica Code: The “MathListener” Classes, you know that

buttonFunc will be called with two arguments, the first of which is the ActionEvent object.

From this object you can obtain the button that was clicked and then its label, which you insert

at the current cursor location using the standard NotebookApply function. One subtlety is that

you need to specify SelectedNotebook@D as the target for notebook operations like

NotebookApply, NotebookWrite, NotebookPrint, and so on, which take a notebook as an

argument. Because of implementation details of ShareFrontEnd, the notebook given by

EvaluationNotebook@D is not the correct target (after all, there is no evaluation currently in

progress in the front end when the button is clicked).

J/Link User Guide 125

The important thing to note in PrintButton is the use of ShareFrontEnd and

UnshareFrontEnd. As discussed earlier, ShareFrontEnd puts Java into a state where it forwards

everything other than the result of a computation to the front end, and puts the front end into a

state where it is able to receive it. This is why the Print output triggered by clicking the Java

button, which would normally be sent to Java (and just discarded there), appears in the front

end. Front end sharing (and also kernel sharing) should be turned off when they are no longer

needed, but if you are writing code for others to use you cannot just blindly shut sharing down~

the user could have other Java windows open that need sharing. To handle this issue,

ShareFrontEnd (and ShareKernel) works on a register/unregister principle. Every time you call

ShareFrontEnd, it returns a token that represents a request for front end sharing. If front end

sharing is not on, it will be turned on. When a program no longer needs front end sharing, it

should call UnshareFrontEnd, passing the token from ShareFrontEnd as the argument. Only

when all requests for sharing have been unregistered in this way will sharing actually be turned

off.

The onClose() method of the MathFrame class lets you specify Mathematica code to be exe-

cuted when the frame is closed. This code is executed after all event listeners have been noti-

fied, so it is a safe place to turn off sharing. In the onClose() code, you call UnshareFrontEnd

with the token returned by ShareFrontEnd. Using the onClose() method in this way allows us

to avoid writing a cleanup function that users would have to call manually after they were

finished with the palette. It is not a problem to leave front end sharing turned on, but it is

desirable to have your program alter the user’s session as little as possible.

Now expand this example to include more buttons that perform different operations. The com-

plete code for this example is provided in the file Palette.nb in the JLink/Examples/Part1

directory.

126 J/Link User Guide

The first thing you do is separate the code that manages the frame containing the buttons from

the code that produces a button. In this way you will have a reusable palette frame that can

hold any number of different buttons. The ShowPalette function here takes a list of buttons,

arranges them vertically in a frame window, calls ShareFrontEnd, and displays the frame in

front of the user’s notebook window.

ShowPalette[buttons:{__?JavaObjectQ}] :=
JavaBlock[

Module[{frm, tok},
frm = JavaNew["com.wolfram.jlink.MathFrame"];
frm@setLayout[JavaNew["java.awt.GridLayout", 0, 1]];
frm@add[#]& /@ buttons;
ReleaseJavaObject[buttons];
frm@pack[];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm];

]
]

Note that you do not return anything from the ShowPalette function~specifically, you do not

return the frame object itself. This is because you do not need to refer to the frame ever again.

It is destroyed automatically when its close box is clicked (remember, this is a feature of the

MathFrame class). Because you do not need to keep references to any of the Java objects you

create, the entire body of ShowPalette can be wrapped in JavaBlock.

Now create a reusable PaletteButton function that creates a button. You have to pass in only

two things: the label text you want on the button and the function (as a string) you want to

have invoked when the button is clicked. This is sufficient to allow completely arbitrary button

behavior, as the entire functionality of the button is tied up in the button function you pass in

as the second argument.

PaletteButton[label_String, buttonFunc_String] :=
JavaBlock[

Module[{button, listener},
button = JavaNew["java.awt.Button"];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener", buttonFunc];
button@addActionListener[listener];
button

]
]

You will use the PaletteButton function to create four buttons. The first is just the print button

just defined, the behavior of which is specified by printButtonFunc.

btn1 = PaletteButton@"foo", "printButtonFunc"D;

The second will duplicate the functionality of the buttons in the standard AlgebraicManipula-

tion front end palette. These buttons wrap a function (e.g., Expand) around the current selec-

tion and evaluate the resulting expression in place. Here is how you create the button and

define the button function for that operation.

J/Link User Guide 127

The second will duplicate the functionality of the buttons in the standard AlgebraicManipula-

tion front end palette. These buttons wrap a function (e.g., Expand) around the current selec-

tion and evaluate the resulting expression in place. Here is how you create the button and

define the button function for that operation.

btn2 = PaletteButton["Expand[É]", "applyButtonFunc"];

applyButtonFunc[event_, _] :=
JavaBlock[

With[{nb = SelectedNotebook[]},
NotebookApply[nb, event@getSource[]@getLabel[], All];
ReleaseJavaObject[event];
SelectionEvaluate[nb]

];
]

The third button will create a plot. All you have to do is call a plotting function~the work of

directing the graphics output to a new cell in the frontmost notebook is handled internally by

J/Link as a result of having front end sharing turned on via ShareFrontEnd.

btn3 = PaletteButton@"Create Plot", "plotButtonFunc"D;

plotButtonFunc@event_, _D :=
H

Plot@x, 8x, 0, 1<D;
ReleaseJavaObject@eventD;

L

The final button demonstrates another method for causing text to be inserted at the current

cursor location. The first example of this, printButtonFunc, uses NotebookApply. You can

also just call Print~as with graphics, Print output is automatically routed to the frontmost

notebook window by J/Link when front end sharing is on. This quick-and-easy Print method

works fine for many situations when you want something to appear in a notebook window, but

using NotebookApply is a more rigorous technique. You will see some differences in the effects

of these two buttons if you put the insertion point into a StandardForm cell and try them.

btn4 = PaletteButton@"foo", "printButtonFunc2"D;

printButtonFunc2@event_, _D :=
JavaBlock@

Print@eventügetSource@DügetLabel@DD;
ReleaseJavaObject@eventD;

D

128 J/Link User Guide

Now you are finally ready to create the palette and show it.

ShowPalette@8btn1, btn2, btn3, btn4<D

In closing, it must be noted that although this example has demonstrated some useful tech-

niques, it is not a particularly valuable way to use ShareFrontEnd. In creating a simple palette

of buttons, you have done nothing that the front end cannot do all by itself. The real uses you

will find for ShareFrontEnd will presumably involve aspects that cannot be duplicated within the

front end, such as more sophisticated dialog boxes or other user interface elements.

Real-Time Algebra: A Mini-Application

This example will put together everything you have learned about modal and modeless Java

user interfaces. You will implement the same “mini-application” (essentially just a dialog box) in

both modal and modeless flavors. The application is inspired by the classic MathLink example

program RealTimeAlgebra, originally written for the NeXT computer by Theodore Gray and then

done in HyperCard by Doug Stein and John Bonadies. The original RealTimeAlgebra provides an

input window into which the user types an expression that depends on certain parameters, an

output window that displays the result of the computation, and some sliders that are used to

vary the values of the parameters. The output window updates as the sliders are moved, hence

the name RealTimeAlgebra. Our implementation of RealTimeAlgebra will be very simplistic, with

only a single slider to modify the value of one parameter.

The complete code for this example is provided in the file RealTimeAlgebra.nb in the JLink/Exam-

ples/Part1 directory.

Here is the function that creates and displays the window.

J/Link User Guide 129

CreateWindow[] :=
Module[{frame, slider, listener},

InstallJava[];
(* inText and outText are globals, because we need to refer to
 them by name in the scrollFunc. This also means we must
 create them outside the JavaBlock below.
*)
inText = JavaNew["java.awt.TextArea", "Expand[(x+1)^a]", 8, 40];
outText = JavaNew["java.awt.TextArea", 8, 40];
(* This frame could be created inside the JavaBlock, because it is returned
 from the JavaBlock and therefore will not be released, but it makes
 our intentions more clear to create it outside.
*)
frame = JavaNew["com.wolfram.jlink.MathFrame", "RealTimeAlgebra"];
JavaBlock[

frame@setLayout[JavaNew["java.awt.BorderLayout"]];
(* Note that we can refer to the Scrollbar`HORIZONTAL constant within the JavaNew
 command that first loads the Scrollbar class. Its value will not need to be
 resolved until that class has been loaded and all necessary definitions created.
*)
slider = JavaNew["java.awt.Scrollbar", Scrollbar`HORIZONTAL, 0, 1, 0, 20];
frame@add[slider, ReturnAsJavaObject[BorderLayout`NORTH]];
frame@add[outText, ReturnAsJavaObject[BorderLayout`CENTER]];
frame@add[inText, ReturnAsJavaObject[BorderLayout`SOUTH]];
frame@pack[];
(* Use a fixed-width font for the output window to preserve
 formatting of multi-line expressions. *)
outText@setFont[JavaNew["java.awt.Font", "Courier", Font`PLAIN, 12]];
listener = JavaNew["com.wolfram.jlink.MathAdjustmentListener"];
listener@setHandler["adjustmentValueChanged", "sliderFunc"];
slider@addAdjustmentListener[listener];
frame@setLocation[200, 200];
JavaShow[frame];

];
frame

]

(* This is what will be called in response to moving the slider position: *)

sliderFunc[evt_, type_, scrollPos_] :=
outText@setText[

Block[{a = scrollPos}, ToString[ToExpression[inText@getText[]]]]
]

The sliderFunc function is called by the MathAdjustmentListener whenever the slider’s

position changes. It gets the text in the inputText box, evaluates it in an environment where

a has the value of the slider position (the range for this is 0..20, as established in the JavaNew

call that creates the slider), and puts the resulting string into the outText box. It then calls

ReleaseJavaObject to release the first argument, which is the AdjustmentEvent object itself.

This is the only object passed in as an argument (the other two arguments are integers). If you

are wondering how you determine the argument sequence for sliderFunc, you get it from the

MathListener table in the section Handling Events with Mathematica Code: The “MathListener”

Classes. Note that you need to refer by name to the input and output text boxes in sliderÖ

Func, so you cannot make their names local variables in the Module of CreateWindow, and of

course they cannot be created inside that function’s JavaBlock.

There is one interesting thing in the code that deserves a remark. Look at the lines where you

add the three components to the frame. What is the ReturnAsJavaObject doing there? The

method being called here is in the Frame class, and has the following signature:

130 J/Link User Guide

There is one interesting thing in the code that deserves a remark. Look at the lines where you

add the three components to the frame. What is the ReturnAsJavaObject doing there? The

method being called here is in the Frame class, and has the following signature:

void add(Component comp, Object constraints);

The second argument, constraints, is typed only as Object. The value you pass in depends

on the layout manager in use, but typically it is a string, as is the case here

(BorderLayout`NORTH, for example, is just the string “NORTH”). The problem is that J/Link

creates a definition for this signature of add that expects a JavaObject for the second argu-

ment, and Mathematica strings do not satisfy JavaObjectQ, although they are converted to

Java string objects when sent. This means that you can only pass strings to methods that

expect an argument of type String. In the rare cases where a Java method is typed to take an

Object and you want to pass a string from Mathematica, you must first create a Java String

object with the value you want, and pass that object instead of the raw Mathematica string. You

have encountered this issue several times before, and you have used MakeJavaObject as the

trick to get the raw string turned into a reference to a Java String object. MakeJavaObject[BoÖ

rderLayout`NORTH] would work fine here, but it is instructive to use a different technique (it

also saves a call into Java). BorderLayout`NORTH calls into Java to get the value of the Border Ö

Layout.NORTH static field, but in the process of returning this string object to Mathematica, it

gets converted to a raw Mathematica string. You need the object reference, not the raw string,

so you wrap the access in ReturnAsJavaObject, which causes the string, which is normally

returned by value, to be returned in the form of a reference.

Getting back to the RealTimeAlgebra dialog box, you are now ready to run it as a modal

window. You write a special modal version that uses CreateWindow internally.

RealTimeAlgebraModal[] :=
JavaBlock[

(* In the modal case, we can wrap the whole thing in JavaBlock
 and be sure that all the objects will get released, including
 the inText and outText ones needed during event handling.
*)
Module[{frm},

frm = CreateWindow[];
frm@setModal[];
DoModal[];

]
]

J/Link User Guide 131

Note that the whole function is wrapped in JavaBlock. This is an easy way to make sure that all

object references created in Mathematica while the dialog is running are treated as temporary

and released when DoModal finishes. This saves you having to properly use JavaBlock and

ReleaseJavaObject in all the handler functions used for your MathListener objects (you will

notice that these calls are absent from the sliderFunc function).

Now run the dialog. The RealTimeAlgebraModal function will not return until you close the

RealTimeAlgebra window, which is what you mean when you call this a “modal” interface.

RealTimeAlgebraModal@D

It may take several seconds before the window appears the first time. As always, this is the

one-time cost of loading all the necessary classes. Play around by dragging the slider, and try

changing the text in the input box, for example, to N@Pi, 2 aD.

Recall that while Mathematica is evaluating DoModal@D, any Print output, messages, graphics,

or any other output or commands other than the result of computations triggered from Java will

be sent to the front end. To see this in action, try putting Print@aD in the input text box (you

will want to arrange windows on your screen so that you can see the notebook window while

you are dragging the slider). Next, try Plot@Sin@a xD, 8x, 0, 4 Pi<D.

Quit RealTimeAlgebra by clicking the window’s close box. In addition to closing and disposing of

the window, this causes EndModal@D to be executed in Mathematica, which then causes

DoModal to return. The disposing of the window is due to using the MathFrame class for the

window, and executing EndModal@D is the result of calling the setModal() method of

MathFrame, as discussed in "Modal Windows".

Now implement RealTimeAlgebra as a modeless window. The CreateWindow function can be

used unmodified. The only difference is how you make Mathematica able to service the computa-

tions triggered by dragging the slider. For a modal window, you use DoModal to force Mathemat-

ica to pay attention exclusively to the Java link. The drawback to this is that you cannot use the

kernel from the notebook front end until DoModal ends. To allow the notebook front end and

Java to share the kernel’s attention, you use ShareKernel.

132 J/Link User Guide

RealTimeAlgebraModeless[] :=
Module[{frm, token},

frm = CreateWindow[];

token = ShareKernel[];

(* We use the MathFrame onClose method to specify code to
 be executed when the frame is closed.The use here is
 typical--we clean up the object references that need to
 persist throughout the lifetime of the window (otherwise
 we would leak these references),and we call UnshareKernel
 to unregister this application's request for kernel sharing.
*)
frm@onClose[

"ReleaseJavaObject[inText, outText]; UnshareKernel[" <> ToString[token] <> "];"
];

ReleaseJavaObject[frm]
]

Now run it.

RealTimeAlgebraModeless@D

RealTimeAlgebraModeless returns immediately after the window is displayed, leaving the front

end and the RealTimeAlgebra window able to use the kernel for computations.

You still need a little bit of polish on the modeless version, however. First, to avoid leaking

object references, you must change sliderFunc. With the modal version, you did not bother to

use JavaBlock or ReleaseJavaObject in sliderFunc because you had DoModal wrapped in

JavaBlock. Every call to sliderFunc, or any other MathListener handler function, occurs

entirely within the scope of DoModal, so you can handle all object releasing at this level. With a

modeless interface, you no longer have a single function call that spans the lifetime of the

window. Thus, you put memory-management functions in our handler functions. Here is the

new sliderFunc.

sliderFunc@evt_, type_, scrollPos_D :=
JavaBlock@

outTextüsetText@

Block@8a = scrollPos<, ToString@To Expression@inTextügetText@DDDD
D;
ReleaseJavaObject@evtD

D

The JavaBlock here is unnecessary because the code it wraps creates no new object refer-

ences. Out of habit, though, you wrap these handlers in JavaBlock. You need to explicitly call

ReleaseJavaObject on evt, which is the AdjustmentEvent object, because its reference is

created in Mathematica before sliderFunc is entered, so it will not be released by the

JavaBlock. The type and scrollPos arguments are integers, not objects.

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

J/Link User Guide 133

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

ShareFrontEnd@D;

Now if you set the input text to, say, Print@aD or Plot@a x, 8x, 0, a<D, you will see the text

and graphics appearing in the front end.

When you are finished, quit RealTimeAlgebra by clicking its close box. Then turn off front end

sharing that was turned on in the previous input.

UnshareFrontEnd@D

A modal interface is simpler than a modeless one in terms of how it uses Mathematica, and is

therefore the preferred method unless you specifically need the modeless attribute.

ShareKernel and ShareFrontEnd are complex functions that put the kernel into an unusual

state. They work fine, but do not use them unnecessarily.

GraphicsDlg: Graphics and Typeset Output in a Window

It is useful to be able to display Mathematica graphics and typeset expressions in your Java

user interface, and this is easy to do using J/Link’s MathCanvas class. This example demon-

strates a simple dialog box that allows the user to type in a Mathematica expression and see

the output in the form of a picture. If the expression is a plotting or other graphics function, the

resulting image is displayed. If the expression is not a graphic, then it is typeset in

TraditionalForm and displayed as a picture. The example is first presented in modal form and

then in modeless form using ShareKernel and ShareFrontEnd.

134 J/Link User Guide

This example also demonstrates a trivial example of using Java code that was created by a

drag-and-drop GUI builder of the type present in most Java development environments. For

layout of simple windows, it is easy enough to do everything from Mathematica. This method

was chosen for all the examples in this tutorial, writing no Java code and instead scripting the

creation and layout of controls in windows with Mathematica calls into Java. This has the advan-

tage of not requiring any Java classes to be written and compiled. For more complex windows,

however, you will probably find it much easier to create the controls, arrange them in position,

set their properties in a GUI builder, and let it generate Java code for you. You might also want

to write some additional Java code by hand.

If you choose this route, the question becomes, “How do I connect the Java code thus gener-

ated with Mathematica?” Any public fields or methods can be called directly from Mathematica,

but your GUI builder may not have made public all the ones you need to use. You could make

these fields and methods public or add some new public methods that expose them. The latter

approach is probably preferable since it does not involve modifying the code that the GUI

builder wrote, which could confuse the builder or cause it to overwrite your changes in future

modifications.

The complete code for this example is provided in the JLink/Examples/Part1/GraphicsDlg direc-

tory. Some of the code is in Java.

This example uses the GUI builder in the WebGain Visual Café Java development environment.

The builder was used to create a frame window with three controls. The frame window was

made to be a subclass of MathFrame because you want to inherit the setModal() method. In

the top left is an AWT TextArea that serves as the input box for the expression. To its right is

an Evaluate button. Occupying the rest of the window is a MathCanvas.

J/Link User Guide 135

Up to this point, no code has been written by hand at all~everything has been done automati-

cally as components were dropped into the frame and their properties set. All that is left to do

is to wire up the button so that when it is clicked the input text is taken and supplied as to the

MathCanvas via its setMathCommand() method. You could write that code in Java, using Visual

Café’s Interaction Wizard to wire up this event (similar facilities exist in other Java GUI

builders). You would have to write some Java code by hand, as the code’s logic is more com-

plex than can be handled by graphical tools for creating event handlers.

Rather than doing that, move to Mathematica to script the rest of the behavior because it is

easier and more flexible. You will need to access the TextArea, Button, and MathCanvas

objects from Mathematica, but the GUI builder made these nonpublic fields of the frame class.

Thus, you need to add three public methods that return these objects to the frame class.

public Button getEvalButton() {return evalButton;}
public TextArea getInputTextArea() {return inputTextArea;}
public MathCanvas getMathCanvas() {return mathCanvas;}

That is all you need to do to the Java code created by the GUI builder.

The GUI builder created a subclass of MathFrame that is named GraphicsDlg. It also gave it a

main() method that does nothing but create an instance of the frame and make it visible. You

will not bother with the main() method, choosing instead to do those two steps manually, since

you need a reference to the frame.

Needed before the code is run is a demonstration of one more feature of J/Link~the ability to

add directories to the class search path dynamically. You need to load the Java classes for this

example, but they are not on the Java class path. With J/Link, you can add the directory in

which the classes reside to the search path by calling AddToClassPath. This will work exactly as

written in Mathematica 4.2 and later. You will need to modify the path if you have an earlier

version of Mathematica.

classDir = ToFileName[{$TopDirectory, "SystemFiles", "Links", "JLink",
"Examples", "Part1", "GraphicsDlg"}];

InstallJava[];
AddToClassPath[classDir];

136 J/Link User Guide

Here is the first implementation of the Mathematica code to create and run the graphics dialog.

This runs the dialog in a modal loop.

DoGraphicsDialogModal[] :=
JavaBlock[

Module[{frm, btn, listener},
InstallJava[];
(* We named the MathFrame subclass GUI builder created "MyFrame". *)
frm = JavaNew["GraphicsDlg"];
(* Here we call one of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
btn = frm@getEvalButton[];
listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];
JavaShow[frm];
frm@setModal[];
DoModal[]

]
]

btnFunc[event_, _] :=
JavaBlock[

Module[{frm, expr, textArea, inputText, mathCanvas},
frm = event@getSource[]@getParent[];
(* Here we call two of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
textArea = frm@getInputTextArea[];
mathCanvas = frm@getMathCanvas[];

inputText = textArea@getText[];
(* We have to evaluate the expression ahead of time to determine
 whether it is a graphics object or not, so we can decide
 whether it display it as a plot or as a typeset result.
*)
expr = Block[{$DisplayFunction = Identity}, ToExpression[inputText]];
If[MatchQ[expr, _Graphics | _Graphics3D | _SurfaceGraphics |

DensityGraphics | _ContourGraphics],
mathCanvas@setImageType[MathCanvas`GRAPHICS],

(* else *)
mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setUsesTraditionalForm[True]

];
mathCanvas@setMathCommand[ToString[expr, InputForm]];
ReleaseJavaObject[event]

]
]

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

representation. The front end is used to run this example, but it is really because you are

DoModal@D), and therefore

it is receptive to requests from the kernel for various services. As far as the front end is con-

cerned, the code for DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

J/Link User Guide 137

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

running the Java dialog “modally” that everything works the way it does. All the while the

dialog is up, the front end is waiting for a result from a computation (DoModal@D), and therefore

it is receptive to requests from the kernel for various services. As far as the front end is con-

cerned, the code for DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

Now run the dialog.

DoGraphicsDialogModal[]

What if you are not happy with the restriction of running the dialog modally? Now you want to

have the dialog remain open and active while not interfering with normal use of the kernel from

the front end. As discussed in "Modal Windows" and "Real-Time Algebra: A Mini-Application",

you get a lot of useful behavior regarding the front end for free when you run your Java user

interface modally. One of these features is that the front end is kept receptive to the various

sorts of requests the kernel can send to it (such as for typesetting services). You know you can

run a Java user interface in a “modeless” way by using ShareKernel, but then you give up the

ability to have the kernel use the front end during computations initiated by actions in Java.

Luckily, the ShareFrontEnd function exists to restore these features for modeless windows.

Re-implement the graphics dialog in modeless form.

DoGraphicsDialogModeless[] :=
JavaBlock[

Module[{frm, btn, listener, tok},
 InstallJava[];
 frm = JavaNew["GraphicsDlg"];
 btn = frm@getEvalButton[];

listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];

 tok = ShareFrontEnd[];
 frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
 JavaShow[frm]
]
]

The code shown is exactly the same as DoGraphicsDialogModal except for the last few lines.

You call ShareFrontEnd here instead of setModal and DoModal. That is the only difference~the

rest of the code (including btnFunc) is exactly the same. Notice also that you use the

onClose() method of MathCanvas to execute code that unregisters the request for front end

sharing when the window is closed.

Run the modeless version. Note how you can continue to perform computations in the front end

while the window is active.

DoGraphicsDialogModeless[]

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

138 J/Link User Guide

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

BouncingBalls: Drawing in a Window

This example demonstrates drawing in Java windows using the Java graphics API directly from

Mathematica. It also demonstrates the use of the ServiceJava function to periodically allow

event handler callbacks into Mathematica from Java. The issues surrounding ServiceJava and

how it compares to DoModal and ShareKernel are discussed in greater detail in “Manual” Inter-

faces: The ServiceJava Function.

The full code is a little too long to include here in its entirety, but it is available in the sample

file BouncingBalls.nb in the JLink/Examples/Part1 directory. Here is an excerpt that demon-

strates the use of ServiceJava.

...
mwl = JavaNew["com.wolfram.jlink.MathWindowListener"];
mwl@setHandler["windowClosing", "(keepOn = False)&"];
mathCanvas@addWindowListener[mwl];
keepOn = True;
While[keepOn,

g@setColor[bkgndColor];
g@fillRect[0, 0, 300, 300];
drawBall[g, #]& /@ balls;
mathCanvas@setImage[offscreen];
balls = recomputePosition /@ balls;
ServiceJava[]

];
...

A MathWindowListener is used to set keepOn = False when the window is closed, which will

cause the loop to terminate. While the window is up, mouse clicks will cause new balls to be

created, appended to the balls list, and set in motion. This is done with a MathMouseListener

(not shown in the code). Thus, Mathematica needs to be able to handle calls originating from

user actions in Java. As discussed in the section "Creating Windows and Other User Interface

Elements", there are three ways to enable Mathematica to do this: DoModal (modal interfaces),

ShareKernel or ShareFrontEnd (modeless interfaces), and ServiceJava (manual interfaces). A

modal loop via DoModal would not be appropriate here because the kernel needs to be comput-

ing something at the same time it is servicing calls from Java (it is computing the new positions

of the balls and drawing them). ShareKernel would not help because that is a way to give Java

access to the kernel between computations triggered from the front end, not during such

computations.

J/Link User Guide 139

A MathWindowListener is used to set keepOn = False when the window is closed, which will

cause the loop to terminate. While the window is up, mouse clicks will cause new balls to be

created, appended to the balls list, and set in motion. This is done with a MathMouseListener

(not shown in the code). Thus, Mathematica needs to be able to handle calls originating from

user actions in Java. As discussed in the section "Creating Windows and Other User Interface

Elements", there are three ways to enable Mathematica to do this: DoModal (modal interfaces),

ShareKernel or ShareFrontEnd (modeless interfaces), and ServiceJava (manual interfaces). A

modal loop via DoModal would not be appropriate here because the kernel needs to be comput-

ing something at the same time it is servicing calls from Java (it is computing the new positions

of the balls and drawing them). ShareKernel would not help because that is a way to give Java

access to the kernel between computations triggered from the front end, not during such

computations.

You need to periodically point the kernel’s attention at Java to service requests if any are pend-

ing, then let the kernel get back to its other work. The function that does this is ServiceJava,

and the code above is typical in that it has a loop that calls ServiceJava every time through.

The calls from Java that ServiceJava will handle are the ones from mouse clicks to create new

balls and when the window is closed.

Spirograph

This example is just a little fun to create an interesting, nontrivial application~an implementa-

tion of a simple Spirograph-type drawing program. It is run as a modal window, and it demon-

strates drawing into a Java window from Mathematica, along with a number of MathListener

objects for various event callbacks. It uses the Java Graphics2D API, so it will not run on

systems that have only a Java 1.1.x runtime.

The code for this example can be found in the file Spirograph.nb in the JLink/Examples/Part1

directory.

One of the things you will notice is that on a reasonably fast machine, the speed is perfectly

acceptable. There is nothing to suggest that the entire functionality of the application is scripted

from Mathematica. It is very responsive despite the fact that a large number of callbacks to

Mathematica are triggered. For example, the cursor is changed as you float the mouse over

various regions of the window (it changes to a resize cursor in some places), so there is a

constant flow of callbacks to Mathematica as you move the mouse. This example demonstrates

the feasibility of writing a sophisticated application entirely in Mathematica.

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

140 J/Link User Guide

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

Modal programs like this are best developed using ShareFrontEnd, then made modal only when

they are complete. Making it modeless while it is being developed is necessary to be able to

build and debug it interactively, because while it is running you can continue to use the front

end to modify the code, make new definitions, add debugging statements, and so on. Using

ShareFrontEnd instead of ShareKernel for modeless operation lets Mathematica error and

warning messages generated by event callbacks, and Print statement inserted for debugging,

show up in the notebook window. Only when everything is working as desired do you add the

DoModal@D call to turn it into a modal window.

A Piano Keyboard

With the inclusion of the Java Sound API in Java 1.3 and later, it becomes possible to write Java

programs that do sophisticated things with sound, such as playing MIDI instruments. The

Piano.nb example in the JLink/Examples/Part1 directory displays a keyboard and lets you play it

by clicking the mouse. A popup menu at the top lists the available MIDI instruments. This

example was created precisely because it is so far outside the limitations of traditional Mathemat-

ica programming. Using J/Link, you can actually write a short and completely portable program,

entirely in the Mathematica language, that displays a MIDI keyboard and lets you play it! With

just a little more work, the code could be modified to record a sequence played and then return

it to Mathematica, where you could manipulate it by transposing, altering the tempo, and so on.

J/Link User Guide 141

J/Link Basics

Calling Java from Mathematica

Preamble

J/Link provides Mathematica users with the ability to interact with arbitrary Java classes directly

from Mathematica. You can create objects and call methods directly in the Mathematica lan-

guage. You do not need to write any Java code, or prepare in any way the Java classes you

want to use. You also do not need to know anything about MathLink. In effect, all of Java

becomes a transparent extension to Mathematica, almost as if every existing and future Java

class were written in the Mathematica language itself.

This facility is called “installable Java” because it generalizes the ability that Mathematica has

always had to plug in extensions written in other languages through the Install function. You

will see later how J/Link vastly simplifies this procedure for Java compared to languages like C

or C++. In fact, J/Link makes the procedure go away completely, which is why Java becomes a

transparent extension to Mathematica.

Although Java is often referred to as an interpreted language, this is really a misnomer. To use

Java you must write a complete program, compile it, and then execute it (some environments

exist that let you interactively execute lines of Java code, but these are special tools, and simi-

lar tools exist for traditional languages like C). Mathematica users have the luxury of working in

a true interpreted, interactive environment that lets them experiment with functions and build

and test programs a line at a time. J/Link brings this same productive environment to Java

programmers. You could say that Mathematica becomes a scripting language for Java.

To Mathematica users, then, the “installable Java” feature of J/Link opens up the expanding

universe of Java classes as an extension to Mathematica; for Java users, it allows the extraordi-

narily powerful and versatile Mathematica environment to be used as a shell for interactively

developing, experimenting with, and testing Java classes.

Loading the J/Link Package

The first step is to load the J/Link package file.

Needs@"JLink`"D

Launching the Java Runtime

142 J/Link User Guide

Launching the Java Runtime

InstallJava

The next step is to launch the Java runtime and “install” it into Mathematica. The function for

this is InstallJava.

InstallJava@D launch the Java runtime and prepare it for use from
Mathematica

ReinstallJava@D quit and restart the Java runtime if it is already running

JavaLink@D give the LinkObject that is being used to communicate
with the Java runtime

Launching the Java runtime.

InstallJava@D

LinkObjectAd:\jdk122\bin\java, 5, 2E

InstallJava can be called more than once in a session. On every call after the first, it does

nothing. Thus, it is safe to call InstallJava in any program you write, without considering

whether the user has already called it.

InstallJava creates a command line that is used to launch the Java runtime (typically called

"java") and specify some initial arguments for it. In rare cases you will need to control what is

on this command line, so InstallJava takes a number of options for this purpose. Most users

will not need to use these options, and in fact you should avoid them. Programmers should not

assume that they have the ability to control the launch of the Java runtime, as it might already

be running. If for some reason you absolutely must apply options to control the launch of the

Java runtime, use ReinstallJava instead of InstallJava.

ClassPath->None use the default class path of your Java runtime

ClassPath->"dirs" use the specified directories and jar files

CommandLine->"cmd" use the specified command line to launch the Java run-
time, instead of “java”

Options for InstallJava .

J/Link User Guide 143

Controlling the Command Used to Launch Java

An important option to InstallJava and ReinstallJava is CommandLine. This specifies the

first part of the command line used to launch Java. One use for this option is if you have more

than one Java runtime installed on your system, and you want to invoke a specific one:

ReinstallJava@CommandLine Ø "d:\\full\\path\\to\\java.exe"D

By default, InstallJava will launch the Java runtime that is bundled with Mathematica 4.2 and

later. If you have an earlier version of Mathematica, the default command line that will be used

is java on most systems. If the java executable is not on your system path, you can use

InstallJava to point at it. Another use for this option is to specify arguments to Java that are

not covered by other options. Here is an example that specifies verbose garbage collection and

defines a property named foo to have the value bar.

ReinstallJava@CommandLine Ø "êpathêtoêjava -verbosegc -Dfoo=bar"D

Overriding the Class Path

The class path is the set of directories in which the Java runtime looks for classes. When you

launch a Java program from your system’s command line, the class path used by Java includes

some default locations and any locations specified in the CLASSPATH environment variable, if it

exists. If you use the -classpath command-line option to specify a set of locations, however,

then the CLASSPATH environment variable is ignored. The ClassPath option to InstallJava

and ReinstallJava works the same way. If you leave it at the default value, Automatic, then

J/Link will include the contents of the CLASSPATH environment variable in its class search path.

If you set it to None or a string, then the contents of CLASSPATH are not used. If you set it to

be a string, use the same syntax that you would use for setting the CLASSPATH environment

variable, which is different for Windows and Unix:

ReinstallJava@ClassPath Ø "c:\\my\\java\\dir;d:\\MyJavaStuff.jar"D H* Windows *L

ReinstallJava@ClassPath Ø "êmyêjavaêdir:êhomeêmeêMyJavaStuff.jar"D
H* UnixêLinux *L

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

you dynamically add new search locations while the Java runtime is running. This means that

using the ClassPath option to configure the class path when Java first launches is not very

important. One setting for the ClassPath option that is sometimes useful is None, to prevent

144 J/Link User Guide

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

you dynamically add new search locations while the Java runtime is running. This means that

using the ClassPath option to configure the class path when Java first launches is not very

J/Link from finding any classes from the contents of CLASSPATH. You might want to do this if

you had an experimental version of some class in a development directory and you wanted to

make sure that J/Link used that version in preference to an older one that was present on your

CLASSPATH. "The Java Class Path" presents a complete treatment of the subject of how J/Link

searches for classes, and how to add locations to this search path.

Loading Classes

LoadJavaClass

LoadJavaClass@"classname"D load the specified class into Java and Mathematica

LoadClass@"classname"D deprecated name from earlier versions of J/Link; use
LoadJavaClass instead

Loading classes.

To use a Java class in Mathematica, it must first be loaded into the Java runtime and certain

definitions must be set up in Mathematica. This is accomplished with the LoadJavaClass func-

tion. LoadJavaClass takes a string specifying the fully qualified name of the class (i.e., the full

hierarchical name with all the periods):

urlClass = LoadJavaClass@"java.net.URL"D

JavaClass@java.net.URLD

The return value is an expression with head JavaClass. This JavaClass expression can be used

in many places in J/Link, so you might want to assign it to a variable as done here. Virtually

everywhere in J/Link where a class needs to be specified as an argument, you can use either a

JavaClass expression, the fully qualified class name as a string, or an object of the class. Note

that you cannot create a valid JavaClass expression by simply typing it in~it must be returned

by LoadJavaClass.

When a class has been loaded, you can call static methods in the class, create objects of the

class, and invoke methods and access fields of these objects. You can use any public construc-

tors, methods, or fields of a class.

J/Link User Guide 145

StaticsVisible->True make static methods and fields accessible by just their
names, not in a special context

AllowShortContext->False make static methods and fields accessible only in their fully
qualified class context

UseTypeChecking->False suppress the type checking that is normally inserted in
definitions for calls into Java

Options for LoadJavaClass.

"The Java Class Path" discusses the details of how and where J/Link finds classes. J/Link will be

able to find classes on the class path, in the special Java extensions directory, and in a set of

extra directories that users can control even while J/Link is running.

When to Call LoadJavaClass

It is often the case that you do not need to explicitly load a class with LoadJavaClass. As

described later, when you create a Java object with JavaNew, you can supply the class name as

a string. If the class has not already been loaded, LoadJavaClass will be called internally by

JavaNew. In fact, anytime a Java object is returned to Mathematica its class is loaded automati-

cally if necessary. This would seem to imply that there is little reason to use LoadJavaClass.

There are a number of reasons why you would want or need to use LoadJavaClass explicitly:

† You need to call a static method of a class and you will not create, or have not yet created,
an object of that class. A class must be loaded before any of its static methods can be
called.

† You need to use one of the options to LoadJavaClass. When LoadJavaClass is called
internally by JavaNew, it is called with the default option settings.

† You want to see errors associated with loading a class reported at a well-defined time.

† You want to control where your users experience the initial delay associated with loading a
class. Loading a class can take several seconds if it or one of its parent classes is very large
(although it rarely takes that long). You might want to avoid a mysterious delay in a func-
tion that users expect to be very quick.

† You want to hang on to the JavaClass expression returned by LoadJavaClass to use it in
other functions. Although all functions that take a JavaClass can also take a class name
string, you might prefer to use a named JavaClass variable for readability purposes. It is
also slightly faster than using a string, but this will not be perceptible unless you are using
it many times in a loop.

† You feel that it makes your code more self-documenting.

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

146 J/Link User Guide

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

Developers writing code for a wide audience should always call LoadJavaClass on any classes

they need in every function that needs them. It is not suitable to call LoadJavaClass in the

body of your package code when it is read in, as the user may quit and restart the Java runtime

(i.e., UninstallJava and InstallJava) after your package was read. To be safe, every user-

level function that uses J/Link should call InstallJava and LoadJavaClass (if LoadJavaClass

is necessary; see the following). Both calls execute very quickly if they are not needed.

As mentioned already, loading a class can take several seconds in some cases. When a class is

loaded, all of its superclasses are loaded in succession, walking up the inheritance hierarchy.

Because a given class is only actually loaded once, if you load another class that shares some of

the same superclasses as a previously loaded class, these superclasses will not have to be

loaded again. This means that loading the second class will be much quicker than the first if any

of the shared superclasses were large. An example of this is loading classes in the java.awt

package. The class java.awt.Component is very large, so the first time you load a class that

inherits from it, say java.awt.Button, there will be a noticeable delay. Subsequent loading of

other classes derived from Component will be much quicker.

Contexts and Visibility of Static Members

LoadJavaClass has two options that let you control the naming and visibility of static methods

and fields. To understand these options, you need to understand the problems they help to

solve. This explanation gets a bit ahead since how to call Java methods has not been discussed.

When a class is loaded, definitions are created in Mathematica that allow you to call methods

and access fields of objects of that class. Static members are treated quite differently from

nonstatic ones. None of these issues arise for nonstatic members, so only static members are

discussed in this section. Say you have a class named com.foobar.MyClass that contains a

static method named foo. When you load this class, a definition must be set up for foo so that

it can be called by name, something like foo@argsD. The question becomes: In what context do

you want the symbol foo defined, and do you want this context to be visible (i.e., on

$ContextPath)?

J/Link always creates a definition for foo in a context that mirrors its fully qualified classname:

com`foobar`MyClass`foo. This is done to avoid conflicting with symbols named foo that might

be present in other contexts. However, you might find it clumsy to have to call foo by typing

the full context name every time, as in com`foobar`MyClass`foo@argsD. The option

AllowShortContext -> True (this is the default setting) causes J/Link to also make definitions

for foo accessible in a shortened context, one that consists of just the class name without the

hierarchical package name prefix. In the example, this means that you could call foo as simply

MyClass`foo@argsD. If you need to avoid use of the short context because there is already a

context of the same name in your Mathematica session, you can use

AllowShortContext -> False. This forces all names to be put only in the “deep” context. Note

that even with AllowShortContext -> True, names for statics are also put into the deep con-

text, so you can always use the deep context to refer to a symbol if you desire.

J/Link User Guide 147

J/Link always creates a definition for foo in a context that mirrors its fully qualified classname:

com`foobar`MyClass`foo. This is done to avoid conflicting with symbols named foo that might

be present in other contexts. However, you might find it clumsy to have to call foo by typing

the full context name every time, as in com`foobar`MyClass`foo@argsD. The option

AllowShortContext -> True (this is the default setting) causes J/Link to also make definitions

for foo accessible in a shortened context, one that consists of just the class name without the

hierarchical package name prefix. In the example, this means that you could call foo as simply

MyClass`foo@argsD. If you need to avoid use of the short context because there is already a

context of the same name in your Mathematica session, you can use

AllowShortContext -> False. This forces all names to be put only in the “deep” context. Note

that even with AllowShortContext -> True, names for statics are also put into the deep con-

text, so you can always use the deep context to refer to a symbol if you desire.

AllowShortContext, then, lets you control the context where the symbol names are defined.

The other option, StaticsVisible, controls whether this context is made visible (put on

$ContextPath) or not. The default is StaticsVisible -> False, so you have to use a context

name when referring to a symbol, as in MyClass`foo@argsD. With StaticsVisible -> True,

MyClass` will be put on $ContextPath, so you could just write foo@argsD. Having the default be

True would be a bit dangerous~every time you load a class a potentially large number of

names would suddenly be created and made visible in your Mathematica session, opening up

the possibility for all sorts of “shadowing” problems if symbols of the same names were already

present. This problem is particularly acute with Java, because method and field names in Java

typically begin with a lowercase letter, which is also the convention for user-defined symbols in

Mathematica. Some Java classes define static methods and fields with names like x, y, width,

and so on, so shadowing errors are very likely to occur (see "Contexts" for a discussion of

contexts and shadowing problems).

For these reasons StaticsVisible -> True is recommended only for classes that you have

written, or ones whose contents you are familiar with. In such cases, it can save you some

typing, make your code more readable, and prevent the all-too-easy bug of forgetting to type

the package prefix. A classic example would be implementing the venerable “addtwo” MathLink

example program. In Java, it might look like this:

public class AddTwo {
public static int addtwo(int i, int j) {return i + j;}

}

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`addtwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious addtÖ

wo[3, 4].

148 J/Link User Guide

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`addtwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious addtÖ

wo[3, 4].

Be reminded that these options are only for static methods and fields. As discussed later, non-

statics are handled in a way that makes context and visibility issues go away completely.

Inner Classes

Inner classes are public classes defined inside another public class. For example, the class

javax.swing.Box has an inner class named Filler. When you refer to the Filler class in a

Java program, you typically use the outer class name, followed by a period, then the inner class

name:

Box.Filler f = new Box.Filler(…);

You can use inner classes with J/Link, but you need to use the true internal name of the class,

which has a $, not a period, separating the outer and inner class names:

filler = JavaNew@"java.swing.Box$Filler", …D

If you look at the class files produced by the Java compiler, you will see these $-separated class

names for inner classes.

Conversion of Types Between Java and Mathematica

Before you encounter the operations of creating Java objects and calling methods, you should

examine the mapping of types between Mathematica and Java. When a Java method returns a

result to Mathematica, the result is automatically converted into a Mathematica expression. For

example, Java integer types (e.g., byte, short, int, and so on), are converted into Mathematica

integers, and Java real number types (float, double) are converted into Mathematica reals. The

following table shows the complete set of conversions. These conversions work both ways~for

example, when a Mathematica integer is sent to a Java method that requires a byte value, the

integer is automatically converted to a Java byte.

J/Link User Guide 149

Java type Mathematica type

byte , char , short , int , long Integer

Byte , Character , Short , Integer , Long , BigInteger

Integer

float , double Real

Float , Double , BigDecimal Real

boolean True or False

String String

array List

controlled by user (see "Complex
Numbers")

Complex

Object JavaObject

Expr any expression

null Null

Corresponding types in Java and Mathematica.

Java arrays are mapped to Mathematica lists of the appropriate depth. Thus, when you call a

method that takes a double[], you might pass it 81.0, 2.0, N@PiD, 1.23<. Similarly, a

method that returns a two-deep array of integers (i.e., int[][]) might return to Mathematica

the expression 881, 2, 3<, 85, 3, 1<<.

In most cases, J/Link will let you supply a Mathematica integer to a method that is typed to

take a real type (float or double). Similarly, a method that takes a double[] could be

passed a list of mixed integers and reals. The only times when you cannot do this are the rare

cases where a method has two signatures that differ only in a real versus integer type at the

same argument slot. For example, consider a class with these methods:

public void foo(byte b, Object obj);
public void foo(float f, Object obj);
public void bar(float f, Object obj);

J/Link would create two Mathematica definitions for the method foo~one that required an

integer for the first argument and invoked the first signature, and one that required a real

number for the first argument and invoked the second signature. The definition created for the

method bar would accept an integer or a real for the first argument. In other words, J/Link will

automatically convert integers to reals, except in cases where such conversion makes it ambigu-

ous as to which signature of a given method to invoke. This is not strictly true, though, as

J/Link does not try as hard as it possibly could to determine whether real versus integer ambigu-

N function to convert all integers to reals explicitly.

150 J/Link User Guide

J/Link would create two Mathematica definitions for the method foo~one that required an

integer for the first argument and invoked the first signature, and one that required a real

number for the first argument and invoked the second signature. The definition created for the

method bar would accept an integer or a real for the first argument. In other words, J/Link will

ous as to which signature of a given method to invoke. This is not strictly true, though, as

J/Link does not try as hard as it possibly could to determine whether real versus integer ambigu-

ity is a problem at every argument position. The presence of ambiguity at one position will

cause J/Link to give up and require exact type matching at all argument positions. This is start-

ing to sound confusing, but you will find that in most cases J/Link allows you to pass integers or

lists with integers to methods that take reals or arrays of reals, respectively, as arguments. In

cases where it does not, the call will fail with an error message, and you will have to use Mathe-

matica’s N function to convert all integers to reals explicitly.

Creating Objects

To instantiate Java objects, use the JavaNew function. The first argument to JavaNew is the

object’s class, specified either as a JavaClass expression returned from LoadJavaClass or as a

string giving the fully qualified class name (i.e., having the full package prefix with all the

periods). If you wish to supply any arguments to the object’s constructor, they follow as a

sequence after the class.

JavaNew@cls,arg1,…D construct a new object of the specified class and return it
to Mathematica

JavaNew@"classname",arg1,…D construct a new object of the specified class and return it
to Mathematica

Constructing Java objects.

For example, this will create a new Frame.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

The return value from JavaNew is a strange expression that looks like it has the head

JavaObject, except that it is enclosed in angle brackets. The angle brackets are used to indi-

cate that the form in which the expression is displayed is quite different from its internal repre-

sentation. These expressions will be referred to as JavaObject expressions. JavaObject expres-

sions are displayed in a way that shows their class name, but you should consider them

opaque, meaning that you cannot pick them apart or peer into their insides. You can only use

them in J/Link functions that take JavaObject expressions. For example, if obj is a JavaObject,

you cannot use First@objD to get its class name. Instead, there is a J/Link function,

ClassName@objD, for this purpose.

JavaNew invokes a Java constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of JavaObject expressions~as references to Java objects very much like object

references in the Java language itself. What is returned to Mathematica is not large no matter

what type of object you are constructing. In particular, the object’s data (that is, its fields) are

not sent back to Mathematica. The actual object remains on the Java side, and Mathematica

gets a reference to it.

J/Link User Guide 151

JavaNew invokes a Java constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of JavaObject expressions~as references to Java objects very much like object

references in the Java language itself. What is returned to Mathematica is not large no matter

what type of object you are constructing. In particular, the object’s data (that is, its fields) are

not sent back to Mathematica. The actual object remains on the Java side, and Mathematica

gets a reference to it.

The Frame class has a second constructor, which takes a title in the form of a string. Here is
how you would call that constructor.
frm = JavaNew@"java.awt.Frame", "My Example Frame"D

«JavaObject@java.awt.FrameD »

Note that simply constructing a Frame does not cause it to appear. That requires a separate

step (calling the frame’s show or setVisible methods will work, but as you will see later,

J/Link provides a special function, JavaShow, to make Java windows appear and come to the

foreground).

The previous examples specified the class by giving its name as a string. You can also use a
JavaClass expression, which is a special expression returned by LoadJavaClass that identi-
fies a class in a particularly efficient manner. When you specify the class name as a string, the
class is loaded if it has not already been.
frameClass = LoadJavaClass@"java.awt.Frame"D;
frm = JavaNew@frameClass, "My Example Frame"D;

JavaNew is not the only way to get a reference to a Java object in Mathematica. Many methods

and fields return objects, and when you call such a method, a JavaObject expression is cre-

ated. Such objects can be used in the same way as ones you explicitly construct with JavaNew.

At this point, you may be wondering about things like reference counts and how objects

returned to Mathematica get cleaned up. These issues are discussed in "Object References in

Mathematica".

J/Link has two other functions for creating Java objects, called MakeJavaObject and

MakeJavaExpr. These specialized functions are described in the section "MakeJavaObject and

MakeJavaExpr".

152 J/Link User Guide

Calling Methods and Accessing Fields

Syntax

The Mathematica syntax for calling Java methods and accessing fields is very similar to Java

syntax. The following box compares the Mathematica and Java ways of calling constructors,

methods, fields, static methods, and static fields. You can see that Mathematica programs that

use Java are written in almost exactly the same way as Java programs, except Mathematica

uses @D instead of () for arguments, and Mathematica uses ü instead of Java’s . (dot) as the

“member access” operator.

An exception is that for static methods, Mathematica uses the context mark ` in place of Java’s

dot. This parallels Java usage also, as Java’s use of the dot in this circumstance is really as a

scope resolution operator (like :: in C++). Although Mathematica does not use this terminol-

ogy, its scope resolution operator is the context mark. Java’s hierarchical package names map

directly to Mathematica’s hierarchical contexts.

constructors

Java: MyClass obj=new MyClass HargsL;

Mathematica: obj=JavaNew@"MyClass",argsD;

methods

Java: obj.methodName HargsL;

Mathematica: objümethodName@argsD

fields

Java: obj.fieldName=1;
value=obj.fieldName;

Mathematica: objüfieldName=1;
value=objüfieldName;

static methods

Java: MyClass.staticMethod HargsL;

Mathematica: MyClass`staticMethod@argsD;

static fields

Java: MyClass.staticField=1;
value=MyClass.staticField;

Mathematica: MyClass`staticField=1;
value=MyClass`staticField;

Java and Mathematica syntax comparison.

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: füx is equivalent to the more commonly used f@xD. J/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method:

J/Link User Guide 153

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: füx is equivalent to the more commonly used f@xD. J/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method:

H* These are equivalent *L
objümethod@argsD;
obj@method@argsDD;

The first form preserves the natural mapping of Java’s syntax to Mathematica’s, and it will be

used exclusively in this tutorial.

When you call methods or fields and get results back, J/Link automatically converts arguments

and results to and from their Mathematica representations according to the table in "Conversion

of Types between Java and Mathematica".

Method calls can be chained in Mathematica just like in Java. For example, if meth1 returns a

Java object, you could write in Java obj.meth1().meth2(). In Mathematica, this becomes

objümeth1@Dümeth2@D. Note that there is an apparent problem here: Mathematica’s ü operator

groups to the right, whereas Java’s dot groups to the left. In other words,

obj.meth1().meth2() in Java is really (obj.meth1()).meth2() whereas

objümeth1@Dümeth2@D in Mathematica would normally be objüHmeth1@Dümeth2@DL. I say

“normally” because J/Link automatically causes chained calls to group to the left like Java. It

does this by defining rules for JavaObject expressions, not by altering the properties of the ü

operator, so the global behavior of ü is not affected. This chaining behavior only applies to

method calls, not fields. You cannot do this:

H* These are incorrect. You cannot chain calls after a field access. *L
x = objüfieldümethod@argsD;
x = objüfield1üfield2;

You would have to split these up into two lines. For example, the second line above would

become:

temp = objüfield1;
x = tempüfield2;

In Java, like other object-oriented languages, method and field names are scoped by the object

on which they are called. In other words, when you write obj.meth(), Java knows that you are

calling the method named meth that resides in obj’s class, even though there may be other

methods named meth in other classes. J/Link preserves this scoping for Mathematica symbols

objümeth@D, there is no conflict with any other symbols named meth in the system~the

symbol meth used by Mathematica in the evaluation of this call is the one set up by J/Link for

this class. Here is an example using a field. First, you create a Point object.

154 J/Link User Guide

In Java, like other object-oriented languages, method and field names are scoped by the object

on which they are called. In other words, when you write obj.meth(), Java knows that you are

calling the method named meth that resides in obj’s class, even though there may be other

so that there is never a conflict with existing symbols of the same name. When you write

objümeth@D, there is no conflict with any other symbols named meth in the system~the

symbol meth used by Mathematica in the evaluation of this call is the one set up by J/Link for

this class. Here is an example using a field. First, you create a Point object.

pt = JavaNew@"java.awt.Point"D

«JavaObject@java.awt.PointD »

The Point class has fields named x and y, which hold its coordinates. A user’s session is also

likely to have symbols named x or y in it, however. You set up a definition for x that will tell

you when it is evaluated.

x := Print@"gotcha"D

Now set a value for the field named x (this would be written as pt.x = 42 in Java).

ptüx = 42;

You will notice that “gotcha” was not printed. There is no conflict between the symbol x in the

Global` context that has the Print definition and the symbol x that is used during the evalua-

tion of this line of code. J/Link protects the names of methods and fields on the right-hand side

of ü so that they do not conflict with, or rely on, any definitions that might exist for these

symbols in visible contexts. Here is a method example that demonstrates this issue differently.

frm = JavaNew@"java.awt.Frame"D;
frmüshow@D

Even though a new symbol show is being created here, the show that is used by J/Link is the

one that resides down in the java`awt`Frame context, which has the necessary definitions set

up for it.

In summary, for nonstatic methods and fields, you never have to worry about name conflicts

and shadowing, no matter what context you are in or what the $ContextPath is at the

moment. This is not true for static members, however. Static methods and fields are called by

their full name, without an object reference, so there is no object out front to scope the name.

Here is a simple example of a static method call that invokes the Java garbage collector. You

need to call LoadJavaClass before you call a static method to make sure the class has been

loaded.

LoadJavaClass@"java.lang.Runtime"D;
Runtime`gc@D;

The name scoping issue is not usually a problem with statics, because they are defined in their

own contexts (Runtime` in this example). These contexts are usually not on $ContextPath, so

you do not have to worry that there is a symbol of the same name in the Global` context or in

a package that has been read. There is more discussion of this issue in the section on

LoadJavaClass, because LoadJavaClass takes options that determine the contexts in which

static methods are defined and whether or not they are put on $ContextPath. If there is

already a context named Runtime` in your session, and it has its own symbol gc, you can

always avoid a conflict by using the fully hierarchical context name that corresponds to the full

class name for a static member.

J/Link User Guide 155

The name scoping issue is not usually a problem with statics, because they are defined in their

own contexts (Runtime` in this example). These contexts are usually not on $ContextPath, so

you do not have to worry that there is a symbol of the same name in the Global` context or in

a package that has been read. There is more discussion of this issue in the section on

LoadJavaClass, because LoadJavaClass takes options that determine the contexts in which

static methods are defined and whether or not they are put on $ContextPath. If there is

already a context named Runtime` in your session, and it has its own symbol gc, you can

always avoid a conflict by using the fully hierarchical context name that corresponds to the full

class name for a static member.

java`lang`Runtime`gc@D;

Finally, just as in Java, you can call a static method on an object if you like. In this case, since

there is an object out front, you get the name scoping. Here you call a static method of the

Runtime class that returns the current Runtime object (you cannot create a Runtime object with

JavaNew, as Runtime has no constructors). You then invoke the (static) method gc on the

object, and you can use gc without any context prefix.

runtime = Runtime`getRuntime@D;
runtimeügc@D;

Underscores in Java Names

Java names can have characters in them that are not legal in Mathematica symbols. The only

common one is the underscore. J/Link maps underscores in class, method, and field names to

"U". Note that this mapping is only used where it is necessary~when names are used in

symbolic form, not as strings. For example, assume you have a class named com.acme.MyÖ

_Class. When you refer to this class name as a string, you use the underscore.

LoadJavaClass@"com.acme.My_Class"D;
JavaNew@"com.acme.My_Class"D;

But when you call a static method in such a class, the hierarchical context name is symbolic, so

you must convert the underscore to U.

com`acme`MyUClass`staticMethod@D;
MyUClass`staticMethod@D;

156 J/Link User Guide

The same rule applies to method and field names. Many Java field names have underscores in

them, for example java.awt.Frame.TOP_ALIGNMENT. To refer to this method in code, use the

U.

LoadJavaClass@"java.awt.Frame"D;
Frame`TOPUALIGNMENT
0.

In cases where you supply a string, leave the underscore.

Fields@"java.awt.Frame", "*_ALIGNMENT"D

static final float BOTTOM_ALIGNMENT
static final float CENTER_ALIGNMENT
static final float LEFT_ALIGNMENT
static final float RIGHT_ALIGNMENT
static final float TOP_ALIGNMENT

Getting Information about Classes and Objects

J/Link has some useful functions that show you the constructors, methods, and fields available

for a given class or object.

Constructors@clsD return a table of the public constructors and their
arguments

Constructors@objD constructors for this object’s class

Methods@clsD return a table of the public methods and their arguments

Methods@cls,"pat"D show only methods whose names match the string pattern
pat

Methods@objD show methods for this object’s class

Fields@clsD return a table of the public fields

Fields@cls,"pat"D show only fields whose names match the string pattern pat

Fields@objD show fields for this object’s class

ClassName@clsD return, as a string, the name of the class represented by cls

ClassName@objD return, as a string, the name of this object’s class

GetClass@objD return the JavaClass representing this object’s class

ParentClass@objD return the JavaClass representing this object’s parent
class

InstanceOf@obj,clsD return True if this object is an instance of cls, False
otherwise

JavaObjectQ@exprD return True if expr is a valid reference to a Java object,
False otherwise

Getting information about classes and objects.

You can give an object or a class to Constructors, Methods, and Fields. The class can be

specified either by its full name as a string, or as a JavaClass expression:

J/Link User Guide 157

You can give an object or a class to Constructors, Methods, and Fields. The class can be

specified either by its full name as a string, or as a JavaClass expression:

urlClass = LoadJavaClass@"java.net.URL"D;
urlObject = JavaNew@"java.net.URL", "http:êêwww.wolfram.com"D;
H* The next three lines are equivalent *L
Methods@urlClassD
Methods@urlObjectD
Methods@"java.net.URL"D

The declarations returned by these functions have been simplified by removing the Java key-

words public, final (removed only for methods, not fields), synchronized, native,

volatile, and transient. The declarations will always be public, and the other modifiers are

probably not relevant for use via J/Link.

Methods and Fields take one option, Inherited, which specifies whether to include members

inherited from superclasses and interfaces or show only members declared in the class itself.

The default is Inherited -> True.

Inherited->False show only members that are declared in the class itself,
not inherited from superclasses or interfaces

Option for Methods and Fields.

There are additional functions that give information about objects and classes. These functions

are ClassName, GetClass, ParentClass, InstanceOf, and JavaObjectQ. They are self-explana-

tory, for the most part. The InstanceOf function mimics the Java language’s instanceof opera-

tor. JavaObjectQ is useful for writing patterns that match only valid Java objects:

Stringify@obj_?JavaObjectQD := obj@toString@DD

JavaObjectQ returns True if and only if its argument is a valid reference to a Java object or if it

is the symbol Null, which maps to Java’s null object.

Quitting or Restarting Java

When you are finished with using Java in a Mathematica session, you can quit the Java runtime

by calling UninstallJava@D.

UninstallJava@D quit the Java runtime

ReinstallJava@D restart the Java runtime

Quitting the Java runtime.

In addition to quitting Java, UninstallJava clears out the many symbols and definitions cre-

ated in Mathematica when you load classes. All outstanding JavaObject expressions will

become invalid when Java is quit. They will no longer satisfy JavaObjectQ, and they will show

up as raw symbols like JLink`Objects`JavaObject12345678 instead of

<< JavaObject[classname] >>.

158 J/Link User Guide

In addition to quitting Java, UninstallJava clears out the many symbols and definitions cre-

ated in Mathematica when you load classes. All outstanding JavaObject expressions will

become invalid when Java is quit. They will no longer satisfy JavaObjectQ, and they will show

up as raw symbols like JLink`Objects`JavaObject12345678 instead of

<< JavaObject[classname] >>.

Most users will have no reason to call UninstallJava. You should think of the Java runtime as

an integral part of the Mathematica system~start it up, and then just leave it running. All code

that uses J/Link shares the same Java runtime, and there may be packages that you are using

that make use of Java without you even knowing it. Shutting down Java might compromise

their functionality. Developers writing packages should never call UninstallJava in their pack-

ages. You cannot assume that when your application is done with J/Link, your users are done

with it as well.

About the only common reason to need to stop and restart Java is when you are actively devel-

oping Java classes that you want to call from Mathematica. Once a class is loaded into the Java

runtime, it cannot be unloaded. If you want to modify and recompile your class, you need to

restart Java to reload the modified version. Even in this circumstance, though, you will not be

calling UninstallJava. Instead, you will call ReinstallJava, which simply calls

UninstallJava followed by InstallJava again.

Version Information

J/Link provides three symbols that supply version information. These symbols provide the same

type of information as their counterparts in Mathematica itself, except that they are in the

JLink`Information` context, which is not on $ContextPath, so you must specify them by

their full names.

JLink`Information`$Version a string giving full version information

JLink`Information`$VersionNumÖ
ber

a real number giving the current version number

JLink`Information`$ReleaseNumÖ
ber

an integer giving the release number (the last digit in a full
x.x.x version specification)

ShowJavaConsole@D the console window will show version information for the
Java runtime and the J/Link Java component

J/Link version information.

J/Link User Guide 159

JLink`Information`$Version

JêLink Version 4.0.1

JLink`Information`$VersionNumber

4.

JLink`Information`$ReleaseNumber

1

The ShowJavaConsole@D function, described in "The Java Console Window", will also display

some useful version information. It shows the version of the Java runtime being used and the

version of the portion of J/Link that is written in Java. The version of the J/Link Java component

should match the version of the J/Link Mathematica component.

Controlling the Class Path: How J/Link Finds Classes

The Java Class Path

The class path tells the Java runtime, compiler, and other tools where to find third-party and

user-defined classes~classes that are not Java “extensions” or part of the Java platform itself.

The class path has always been a source of confusion among Java users and programmers.

Java can find classes that are part of the standard Java platform (so-called “bootstrap” classes),

classes that use the so-called “extensions” mechanism, and classes on the class path, which is

controlled by the CLASSPATH environment variable or by command-line options when Java is

launched. J/Link can load and use any classes that the Java runtime can find through these

normal mechanisms. In addition, J/Link can find classes, resources, and native libraries that are

in a set of extra locations, beyond what is specified on the class path at startup. This set of

extra locations can be added to while Java is running.

J/Link provides two ways to alter the search path Java uses to find classes. The first way is via

the ClassPath option to ReinstallJava. The second way, which is superior to modifying the

class path at startup, is to add new directories and jar files to the special set of extra locations

that J/Link searches. These two methods will be described in the next two subsections.

160 J/Link User Guide

Overriding the Startup Class Path

For a class to be accessible via the standard Java class path, one of the following must apply:

† It is inside a .zip or .jar file that is itself named on the class path.

† It is a loose class file that is in an appropriately nested directory beneath a directory that is
on the class path.

“Appropriately nested” means that the class file must be in a directory whose hierarchy mirrors

the full package name of the class. For example, assume that the directory c:\MyClasses is on

the class path. If you have a class that is not in a package (there is no package statement at

the beginning of the code), its class file should be put directly into c:\MyClasses. If you have a

class that is in the package com.acme.stuff, its class file would need to be in the directory

c:\MyClasses\com\acme\stuff. Note that jar and zip files must be explicitly named on the class

path~you cannot just toss them into a directory that is itself named on the class path. Direc-

tory issues are not relevant for jar and zip files, meaning that regardless of how hierarchically

organized the classes inside a jar file are, you simply name the jar file itself on the class path

and all the classes inside it can be found.

If you want to specify paths for classes that are not part of the standard Java platform or exten-

sions, you can use the ClassPath option to ReinstallJava. The value that you supply for the

ClassPath option is a string that names the desired directories and zip or jar files. This string is

platform-dependent; the paths are specified in the native style for your platform, and the

separator character is a colon on Unix and a semicolon on Windows. Here are typical

specifications:

ReinstallJava@ClassPath Ø "c:\\MyJavaDir\\MyPackage.jar;c:\\MyJavaDir"D
H* Windows *L

ReinstallJava@ClassPath Ø "~êMyJavaDirêMyPackage.jar:~êMyJavaDir"D
H* Unix *L

The default setting for ClassPath is Automatic, which means to use the value of the CLASSÖ

PATH environment variable. If you set ClassPath to something else, then J/Link will ignore the

CLASSPATH environment variable~it will not be able to find those classes. In other words, if you

use a ClassPath specification, you lose the CLASSPATH environment variable. This is similar to

the behavior of the -classpath command-line option to the Java runtime and compiler, if you

are familiar with those tools.

It is recommended that users avoid the ClassPath option. If you need the dynamic control that

the ClassPath option provides, you should use the more powerful and convenient

AddToClassPath mechanism, described in the next section. The most common reason for using

the ClassPath option is if you want to specifically prevent the contents of the CLASSPATH

environment variable from being used. To do this, set ClassPath -> None.

J/Link User Guide 161

It is recommended that users avoid the ClassPath option. If you need the dynamic control that

the ClassPath option provides, you should use the more powerful and convenient

AddToClassPath mechanism, described in the next section. The most common reason for using

the ClassPath option is if you want to specifically prevent the contents of the CLASSPATH

environment variable from being used. To do this, set ClassPath -> None.

Dynamically Modifying the Class Path

One thing that is inconvenient about the standard Java class path is that it cannot be changed

after the Java runtime has been launched. J/Link has its own class loader that searches in a set

of special locations beyond the standard Java class path. This gives J/Link an extremely power-

ful and flexible means of finding classes. To add locations to this extra set, use the

AddToClassPath function.

AddToClassPath@"location",…D add the specified directories or jar files to J/Link’s class
search path

Adding classes to the search path.

After Java has been started, you can call AddToClassPath whenever you wish, and it will take

effect immediately. One convenient feature of this extra class search path is that if you add a

directory, then any jar or zip files in that directory will be searched. This means that you do not

have to name jar files individually, as you need to do with the standard Java class path. For

loose class files, the nesting rules are the same as for the class path, meaning that if a class is

in the package com.acme.stuff, and you called AddToClassPath@"d:\\myClasses"D, then

you would need to put the class file into d:\MyClasses\com\acme\stuff.

Changes to the search path that you make with AddToClassPath only apply to the current Java

session. If you quit and restart java, you will need to call AddToClassPath again.

In addition to the locations you add yourself with AddToClassPath, J/Link automatically

includes any Java subdirectories of any directories in the standard Mathematica application

locations ($UserBaseDirectory/AddOns/Applications, $BaseDirectory/AddOns/Applications,

< Mathematica dir >/AddOns/Applications, and < Mathematica dir >/AddOns/ExtraPackages). This

feature is designed to provide extremely easy deployment for developers who create applica-

tions for Mathematica that use Java and J/Link for part of their implementation. This is

described in "Deploying Applications that use J/Link" in more detail, but even casual Java pro-

162 J/Link User Guide

In addition to the locations you add yourself with AddToClassPath, J/Link automatically

includes any Java subdirectories of any directories in the standard Mathematica application

locations ($UserBaseDirectory/AddOns/Applications, $BaseDirectory/AddOns/Applications,

< Mathematica dir >/AddOns/Applications, and < Mathematica dir >/AddOns/ExtraPackages). This

feature is designed to provide extremely easy deployment for developers who create applica-

tions for Mathematica that use Java and J/Link for part of their implementation. This is

grammers who are writing classes to use with J/Link can take advantage of it. Just create a

subdirectory of AddOns/Applications, say MyStuff, create a Java subdirectory within it, and toss

class or jar files into it. J/Link will be able to find and use them. Of course, loose class files have

to be placed into an appropriately nested subdirectory of the Java directory, corresponding to

their package names (if any), as described.

The AddToClassPath function was introduced in J/Link 2.0. Previous versions of J/Link had a

variable called $ExtraClassPath that specified a list of extra locations. You could add to this

list like this:

AppendTo@$ExtraClassPath, "d:\\MyClasses"D;

$ExtraClassPath was deprecated in J/Link 2.0, but it still works. One advantage of

$ExtraClassPath over using AddToClassPath is that changes made to $ExtraClassPath

persist across a restart of the Java runtime.

Examining the Class Path

The JavaClassPath function returns the set of directories and jar files in which J/Link will

search for classes. This includes all locations added with AddToClassPath or $ExtraClassPath,

as well as Java subdirectories of application directories in any of the standard Mathematica

application locations. It does not display the jar files that make up the standard Java platform

itself, or jar files in the Java extensions directory. Those classes can always be found by Java

programs.

JavaClassPath@D gives the complete set of directories and jar files in which
J/Link will search for classes

Inspecting the class search path.

Using J/Link’s Class Loader Directly

As stated earlier, J/Link uses its own class loader to allow it to find classes and other resources

in a dynamic set of locations beyond the startup class path. Essentially all the classes that you

load using J/Link that are not part of the Java platform itself will be loaded by this class loader.

One consequence of this is that calling Java’s Class.forName() method from Mathematica will

often not work.

J/Link User Guide 163

LoadJavaClass@"java.lang.Class"D;
cls = Class`forName@"some.class.that.only.JLink.can.find"D

Java::excptn : A Java exception occurred: java.lang.ClassNotFoundException:
some.class.that.only.JLink.can.find
at java.net.URLClassLoader$1.runHUnknown SourceL
at java.security.AccessController.doPrivilegedHNative MethodL
at java.net.URLClassLoader.findClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at sun.misc.Launcher$AppClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassInternalHUnknown SourceL
at java.lang.Class.forName0HNative MethodL
at java.lang.Class.forNameHUnknown SourceL
at

sun.reflect.NativeMethodAccessorImpl.invoke0HNative MethodL
at sun.reflect.NativeMethodAccessorImpl.invokeHUnknown SourceL
at

sun.reflect.DelegatingMethodAccessorImpl.invokeHUnknown SourceL.
$Failed

The problem is that Class.forName() finds classes using a default class loader, not the J/Link

class loader, and this default class loader does not know about the special directories in which

J/Link looks for classes (in fact, it does not even know about the startup class path, because of

details of how J/Link launches Java). If you are translating Java code into Mathematica, or if

you just want to get a Class object for a given class, watch out for this problem. The fix is to

force J/Link’s class loader to be used. One way to do this is to use the three-argument form of

Class.forName(), which allows you to specify the class loader to be used:

LoadJavaClass@"com.wolfram.jlink.JLinkClassLoader"D;
cls = Class`forName@"some.class.that.only.JLink.can.find",

True, JLinkClassLoader`getInstance@DD

An easier way is to use the static classFromName method of JLinkClassLoader:

cls = JLinkClassLoader`classFromName@"some.class.that.only.JLink.can.find"D

You should think of this classFromName HL method as being the replacement for Class.forÖ

Name(). When you find yourself wanting to obtain a Class object from a class name given as a

string, remember to use JLinkClassLoader.classFromName HL.

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

164 J/Link User Guide

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

 // Java code
 Class cls = Class.forName("SomeClassThatImplementsInterfaceX");
 X obj = (X) cls.newInstance();

If you are translating code like this into a Mathematica program, this operation can be per-

formed simply by calling JavaNew:

obj = JavaNew@"SomeClassThatImplementsInterfaceX"D

The point here is that for a very common usage of Class.forName(), you do not have to

translate it line-by-line into Mathematica~you can duplicate the functionality by calling JavaNew.

Performance Issues

Overhead of Calls to Java

The speed of Java programs is highly dependent on the Java runtime. On certain types of

programs, for example, ones that spend most of their time in a tight number-crunching loop,

the speed of Java can approach that of compiled, optimized C.

Java is a good choice for computationally intensive programs. Your mileage may vary, but do

not rule out Java for any type of program before you have done some simple speed testing. For

less demanding programs, where every ounce of speed is not necessary, the simplicity of using

J/Link instead of programming traditional MathLink “installable” programs with C makes Java an

obvious choice.

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

method calls per second, and considerably more if they are static methods, which require less

preprocessing in Mathematica. On some operating systems the results will be less. You should

keep in mind that there is a more or less fixed cost of a call into Java regardless of what the call

J/Link User Guide 165

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

method calls per second, and considerably more if they are static methods, which require less

preprocessing in Mathematica. On some operating systems the results will be less. You should

does, and on slow machines this cost could be as much as .001 seconds. Many Java methods

will execute in considerably less time than this, so the total time for the call is often dominated

by the fixed turnaround time of a J/Link call, not the speed of Java itself.

For most uses, the overhead of a call into Java is not a concern, but if you have a loop that calls

into Java 500,000 times, you will have a problem (unless your program takes so long that the

J/Link cost is negligible, in which case you have an even bigger problem!). If your Mathematica

program is structured in a way that requires a great many calls into Java, you may need to

refactor it to do more on the Java side and thus reduce the number of times you need to cross

the Java-Mathematica boundary. This will probably involve writing some Java code, which

unfortunately defeats the J/Link premise of being able to use Mathematica to script the function-

ality of an arbitrary Java program. There are uses of Java that just cannot be feasibly scripted

in this way, and for these you will need to write more of the functionality in Java and less in

Mathematica.

Speeding Up Sending Large Arrays

You can send and receive arrays of most “primitive” Java types (e.g., byte, short, int, float,

double) nearly as fast as in a C-language program. The set of types that can be passed quickly

corresponds to the set of types for which the MathLink C API has single functions to put arrays.

The Java types long (these are 64 bits), boolean, and String do not have fast MathLink

functions, and so sending or receiving these types is much slower. Try to avoid using extremely

large arrays of these types (say, more than 100,000 elements) if possible.

A setting that has a big effect on the speed of moving multidimensional arrays is the one used

to control whether “ragged” arrays are allowed. As discussed in "Ragged Arrays", the default

behavior of J/Link is to require that all arrays be fully rectangular. But Java does not require

that arrays conform to this restriction, and if you want to send or receive ragged arrays, you

can call AllowRaggedArrays@TrueD in your Mathematica session. This causes J/Link to switch

to a much slower method for reading and writing arrays. Avoid using this setting unless you

need it, and switch it off as soon as you no longer require it.

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

500, this test can take a significant amount of time, probably similar to the time it takes to

$RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

166 J/Link User Guide

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

actually transfer the array to Java. If you want to avoid the time taken by this testing of array

arguments, you can set the variable $RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

You probably do not want to leave $RelaxedTypeChecking set to True for a long time, and if

you are writing code for others to use you certainly do not want to alter its value in their ses-

sion. $RelaxedTypeChecking is intended to be used in a Block construct, where it is given the

value of True for a short period:

Block@8$RelaxedTypeChecking = True<, obj@meth@someLargeArrayDDD

$RelaxedTypeChecking only has an effect for arrays, which are the only types for which the

pattern test that J/Link creates is expensive relative to the actual call into Java.

Another optimization to speed up J/Link programs is to use ReturnAsJavaObject to avoid

unnecessary passing of large arrays or strings back and forth between Mathematica and Java.

ReturnAsJavaObject is discussed in the section "ReturnAsJavaObject".

An Optimization Example

Next examine a simple example of steps you might take to improve the speed of a J/Link pro-

gram. Java has a powerful DecimalFormat class you can use to format Mathematica numbers

in a desired way for output to a file. Here you create a DecimalFormat object that will format

numbers to exactly four decimal places.

fmt = JavaNew@"java.text.DecimalFormat", "Ò.0000"D;

To use the fmt object, you call its format() method, supplying the number you want

formatted.

fmtüformat@12.34D

12.3400

This returns a string with the requested format. Now suppose you want to use this ability to

format a list of 20000 numbers before writing them to a file.

data = Table@Random@D, 840000<D;

Map@fmtüformat@ÒD &, dataD;

The Map call, which invokes the format method 40000 times, takes 46 seconds on a certain PC

(this is wall clock time, not the result of the Timing function, which is not accurate for MathLink

programs on most systems). Clearly this is not acceptable. As a first step, you try using

MethodFunction because you are calling the same method many times.

J/Link User Guide 167

The Map call, which invokes the format method 40000 times, takes 46 seconds on a certain PC

(this is wall clock time, not the result of the Timing function, which is not accurate for MathLink

programs on most systems). Clearly this is not acceptable. As a first step, you try using

MethodFunction because you are calling the same method many times.

methodFunc = MethodFunction@fmt, formatD;

Note that you use fmt as the first argument to MethodFunction. The first argument merely

specifies the class; as with virtually all functions in J/Link that take a class specification, you

can use an object of the class if you desire. The MethodFunction that is created can be used on

any object of the DecimalFormat class, not just the fmt object.

Map@methodFunc@fmt, ÒD &, dataD;

Using methodFunc, this now takes 36 seconds. There is a slight speed improvement, much less

than in earlier versions of J/Link. This means you are getting about 1100 calls per second, and

it is still not fast enough to be useful. The only thing to do is to write your own Java method

that takes an array of numbers, formats them all, and returns an array of strings. This will

reduce the number of calls from Mathematica into Java 40000 down to one.

Here is the code for the trivial Java class necessary. Note that there is nothing about this code

that suggests it will be called from Mathematica via J/Link. This is exactly the same code you

would write if you wanted to use this functionality within Java.

public class FormatArray {
public static String[] format(java.text.DecimalFormat fmt,double[] d) {

String[] result=new String[d.length];
for (int i = 0; i < d.length; i++)

result[i] = fmt.format(d[i]);
return result;

}
}

This new version takes less than 2 seconds.

LoadJavaClass@"FormatArray"D;
FormatArray`format@fmt, dataD;

168 J/Link User Guide

Reference Counts and Memory Management

Object References in Mathematica

The earlier treatment of JavaObject expressions avoided discussing deeper issues such as

reference counts and uniqueness. Every time a Java object reference is returned to Mathemat-

ica, either as a result of a method or field or an explicit call to JavaNew, J/Link looks to see if a

reference to this object has been sent previously in this session. If not, it creates a JavaObject

expression in Mathematica and sets up a number of definitions for it. This is a comparatively

time-consuming process. If this object has already been sent to Mathematica, in most cases

J/Link simply creates a JavaObject expression that is identical to the one created previously.

This is a much faster operation.

There are some exceptions to this last rule, meaning that sometimes when an object is

returned to Mathematica a new and different JavaObject expression is created for it, even

though this same object has previously been sent to Mathematica. Specifically, any time an

object’s hashCode HL value has changed since the last time it was seen in Mathematica, the

JavaObject expression created will be different. You do not really need to be concerned with

the details of this, except to remember that SameQ is not a valid way to compare JavaObject

expressions to decide whether they refer to the same object. You must use the SameObjectQ

function.

SameObjectQ@obj1,obj2D return True if the JavaObject expressions obj1 and obj2
refer to the same Java object, False otherwise

Comparing JavaObject expressions.

Here is an example.

pt = JavaNew@"java.awt.Point", 1, 1D

«JavaObject@java.awt.PointD »

The variable pt refers to a Java Point object. Now put it into a container so you can get it back

out later.

vec = JavaNew@"java.util.Vector"D;
vecüadd@ptD;

Now change the value of one of its fields. For a Point object, changing the value of one of its

fields changes its hashCode() value.

ptüx = 2;

Now you compare the JavaObject expression given by pt and the JavaObject expression

created when you ask for the first element of the Vector to be returned to Mathematica. Even

though these are both references to the same Java object, the JavaObject expressions are

different.

J/Link User Guide 169

Now you compare the JavaObject expression given by pt and the JavaObject expression

created when you ask for the first element of the Vector to be returned to Mathematica. Even

though these are both references to the same Java object, the JavaObject expressions are

different.

pt === vecüelementAt@0D

False

Because you cannot use SameQ (===) to decide whether two object references in Mathematica

refer to the same Java object, J/Link provides a function, SameObjectQ, for this purpose.

SameObjectQ@pt, vecüelementAt@0DD

True

You may be wondering why the SameObjectQ function is necessary. Why not just call an

object’s equals() method? It certainly gives the correct result for this example.

ptüequals@vecüelementAt@0DD

True

The problem with this technique is that equals() does not always compare object references.

Any class is free to override equals() to provide any desired behavior for comparing two

objects of that class. Some classes make equals() compare the “contents” of the objects, such

as the String class, which uses it for string comparison. Java provides two distinct equality

operations, the == operator and the equals() method. The == operator always compares

references, returning true if and only if the references point to the same object, but equals()

is often overridden for some other type of comparison. Because there is no method call in Java

that mimics the behavior of the language’s == operator as applied to object references, J/Link

needs a SameObjectQ function that provides that behavior for Mathematica programmers.

In an unusual case where you need to compare object references for equality a very large

number of times, the comparative slowness of SameObjectQ compared to SameQ could become

an issue. The only thing that could cause two JavaObject expressions that refer to the exact

same Java object to be not SameQ is if the hashCode() value of the object changed between

the times that the two JavaObject expressions were created. If you know this has not hap-

pened, then you can safely use SameQ as the test whether they refer to the same object.

170 J/Link User Guide

ReleaseJavaObject

The Java language has a built-in facility called “garbage collection” for freeing up memory

occupied by objects that are no longer in use by a program. Objects become eligible for

garbage collection when no references to them exist anywhere, except perhaps in other objects

that are also unreferenced. When an object is returned to Mathematica, either as a result of a

call to JavaNew or as the return value of a method call or field access, the J/Link code holds a

special reference to the object on the Java side to ensure that it cannot be garbage-collected

while it is in use by Mathematica. If you know that you no longer need to use a given Java

object in your Mathematica session, you can explicitly tell J/Link to release its reference. The

function that does this is ReleaseJavaObject. In addition to releasing the Mathematica-specific

reference in Java, ReleaseJavaObject clears out internal definitions for the object that were

created in Mathematica. Any subsequent attempt to use this object in Mathematica will fail.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

Now tell Java that you no longer need to use this object from Mathematica.

ReleaseJavaObject@frmD

It is now an error to refer to frm.

ReleaseJavaObject@objD let Java know that you are done using obj in Mathematica

ReleaseObject@objD deprecated; replaced by ReleaseJavaObject in J/Link
2.0

JavaBlock@exprD all novel Java objects returned to Mathematica during the
evaluation of expr will be released when expr finishes

BeginJavaBlock@D all novel Java objects returned to Mathematica between
now and the matching EndJavaBlock@D will be released

EndJavaBlock@D release all novel objects seen since the matching
BeginJavaBlock@D

LoadedJavaObjects@D return a list of all objects that are in use in Mathematica

LoadedJavaClasses@D return a list of all classes loaded into Mathematica

J/Link memory management functions.

Calling ReleaseJavaObject will not necessarily cause the object to be garbage-collected. It is

quite possible that other references to it exist in Java. ReleaseJavaObject does not tell Java to

throw the object away, only that it does not need to be kept around solely for Mathematica’s

sake.

An important fact about the references that J/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseJavaObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

J/Link User Guide 171

An important fact about the references that J/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseJavaObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

frm = JavaNew@"java.awt.Frame"D;
b1 = JavaNew@"java.awt.Button"D;

The add() method of the Frame class returns the object added, so b2 refers to the same object

as b1:

b2 = frmüadd@b1D;

If you call ReleaseJavaObject@b1D, it is not the Mathematica symbol b1 that is affected, but

the Java object that b1 refers to. Therefore, using b2 is also an error (or any other way to refer

to this same Button object, such as %).

Calling ReleaseJavaObject is often not necessary in casual use. If you are not making heavy

use of Java in your session then you will usually not need to be concerned about keeping track

of what objects may or may not be needed anymore~you can just let them pile up. There are

special times, though, when memory use in Java will be important, and you may need the extra

control that ReleaseJavaObject provides.

JavaBlock

ReleaseJavaObject is provided mainly for developers who are writing code for others to use.

Because you can never predict how your code will be used, developers should always be sure

that their code cleans up any unnecessary references it creates. Probably the most useful

function for this is JavaBlock.

JavaBlock automates the process of releasing objects encountered during the evaluation of an

expression. Often, a Mathematica program will need to create some Java objects with JavaNew,

operate with them, perhaps causing other objects to be returned to Mathematica as the results

of method calls, and finally return some result such as a number or string. Every Java object

encountered by Mathematica during this operation is needed only during the lifetime of the

program, much like the local variables provided in Mathematica by Block and Module, and in C,

C++, Java, and many other languages by block scoping constructs (e.g., {}). JavaBlock allows

you to mark a block of code as having the property that any new objects returned to Mathemat-

ica during the evaluation are to be treated as temporary, and released when JavaBlock finishes.

It is important to note that the preceding sentence said “new objects”. JavaBlock will not

cause every object encountered during the evaluation to be released, only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that JavaBlock will aggressively release an

object that is not truly temporary to that evaluation.

172 J/Link User Guide

It is important to note that the preceding sentence said “new objects”. JavaBlock will not

cause every object encountered during the evaluation to be released, only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that JavaBlock will aggressively release an

object that is not truly temporary to that evaluation.

It is not enough simply to call ReleaseJavaObject on every object you create with JavaNew,

because many Java method calls return objects. You may not be interested in these return

values, or you may never assign them to a named variable because they may be chained

together with other calls (as in objüreturnsObject@Düfoo@D), but you still need to release

them. Using JavaBlock is an easy way to be sure that all novel objects are released when a

block of code finishes.

JavaBlock@exprD returns whatever expr returns.

Many J/Link Mathematica programs will have the following structure:

MyFunc@args__D :=
JavaBlock@

Module@8locals<,
...

D
D

It is very common to write a function that creates and manipulates a number of JavaObject

expressions, and then returns one of them, the rest being temporary. To facilitate this, if the

return value of a JavaBlock is a single JavaObject, it will not be released.

MyOtherFunc@args__D :=
JavaBlock@

Module@8obj<,
...
obj = JavaNew@"java.awt.Frame"D;
...
Return@objD

H* OK: obj will not be released when JavaBlock finishes. *L
D

D

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

JavaBlock expressions, you must call KeepJavaObject at each level. Alternatively, you can call

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

J/Link User Guide 173

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

MyOtherFunc[args__] :=
Module[{obj1, obj2, obj3},

JavaBlock[
obj1 = JavaNew["java.awt.Frame"];
obj2 = JavaNew["java.awt.Button"];

 obj3 = JavaNew["SomeTemporaryObject"];
 ...
 KeepJavaObject[obj1, obj2];
 {obj1, obj2}
]
]

BeginJavaBlock and EndJavaBlock can be used to provide the same functionality as

JavaBlock across more than one evaluation. EndJavaBlock releases all novel Java objects

returned to Mathematica since the previous matching BeginJavaBlock. These functions are

mainly of use during development, when you might want to set a mark in your session, do

some work, and then release all novel objects returned to Mathematica since that point.

BeginJavaBlock and EndJavaBlock can be nested. Every BeginJavaBlock should have a

matching EndJavaBlock, although it is not a serious error to forget to call EndJavaBlock, even

if you have nested levels of them~you will only fail to release some objects.

LoadedJavaObjects and LoadedJavaClasses

LoadedJavaObjects@D returns a list of all Java objects that are currently referenced in Mathe-

matica. This includes all objects explicitly created with JavaNew and all those that were

returned to Mathematica as the result of a Java method call or field access. It does not include

objects that have been released with ReleaseJavaObject or through JavaBlock.

LoadedJavaObjects is intended mainly for debugging. It is very useful to call it before and after

some function you are working on. If the list grows, your function leaks references, and you

need to examine its use of JavaBlock and/or ReleaseJavaObject.

LoadedJavaClasses@D returns a list of JavaClass expressions representing all classes loaded

into Mathematica. Like LoadedJavaObjects, LoadedJavaClasses is intended mainly for debug-

ging. Note that you do not have to determine if a class has already been loaded before you call

LoadJavaClass. If the class has been loaded, LoadJavaClass does nothing but return the

appropriate JavaClass expression.

174 J/Link User Guide

Exceptions

How Exceptions Are Handled

J/Link handles Java exceptions automatically. If an uncaught exception is thrown during any

call into Java, you will get a message in Mathematica. Here is an example that tries to format a

real number as an integer.

LoadClass@"java.lang.Integer"D;
Integer`parseInt@"1234.5"D

Java::excptn :
A Java exception occurred : java.lang.ArrayIndexOutOfBoundsException.

$Failed

If the exception is thrown before the method returns a result to Mathematica, as in the exam-

ple, the result of the call will be $Failed. As discussed later in "Manually Returning a Result to

Mathematica", it is possible to write your own methods that manually send a result to Mathemat-

ica before they return. In such cases, if an exception is thrown after the result is sent to Mathe-

matica but before the method returns, you will get a warning message reporting the exception,

but the result of the call will be unaffected.

If the Java code was compiled with debugging information included, the Mathematica message

you get as a result of an exception will show the full stack trace to the point where the excep-

tion occurred, with the exact line numbers in each file.

The JavaThrow Function

In some cases, you may want to cause an exception to be thrown in Java. This can be done

with the JavaThrow function. JavaThrow is new in J/Link 2.0 and should be considered experi-

mental. Its behavior might change in future versions.

JavaThrow@exceptionObjD throw the given exception object in Java

Throwing Java exceptions from Mathematica.

You will only want to use JavaThrow in Mathematica code that is itself called from Java. It is

quite common for J/Link programs written in Mathematica to involve both calls from Mathemat-

ica into Java and calls from Java back to Mathematica. Such “callbacks” to Mathematica are

used extensively in Mathematica programs that create Java user interfaces, as described in

J/Link User Guide 175

You will only want to use JavaThrow in Mathematica code that is itself called from Java. It is

quite common for J/Link programs written in Mathematica to involve both calls from Mathemat-

ica into Java and calls from Java back to Mathematica. Such “callbacks” to Mathematica are

detail later in the section "Creating Windows and Other User Interface Elements". For example,

you can associate a Mathematica function to be called when the user clicks a Java button. This

Mathematica function is called directly from Java, and you might want it to behave just like a

Java method, including having the ability to throw Java exceptions.

An example of throwing an exception in a callback from a user interface action like clicking a

button is not very realistic because there is typically nothing in Java to catch such exceptions;

thus they are essentially ignored. A more meaningful example would be a program that

involved a mix of Java and Mathematica code where, for flexibility and ease of development

reasons, you have a Mathematica function being called to implement the “guts” of a Java

method that can throw an exception. As a concrete example, say you are doing XML processing

with Java and Mathematica using the SAX (Simple API for XML) API. SAX processing is based

on a set of handler methods that are called as certain events occur during parsing of the XML

document. Each such method can throw a SAXException to indicate an error and halt the

parsing. You want to implement these handler methods in Mathematica code, and thus you

want a way to throw a SAXException from Mathematica. Here is a hypothetical example of one

such handler method, the startDocument() method, which is invoked by the SAX engine

when document processing starts:

startDocument@D :=
If@! readyToAcceptParsingEvents, JavaThrow@JavaNew@"org.xml.sax.SAXException",

"Mathematica code has not been initialized"DDD

After a call to JavaThrow, the rest of the Mathematica function executes normally, but there is

no result returned to Java.

Returning Objects "by Value" and "by Reference"

References and Values

J/Link provides a mapping between certain Mathematica expressions and their Java counter-

parts. What this means is that these Mathematica expressions are automatically converted to

and from their Java counterparts as they are passed between Mathematica and Java. For exam-

ple, Java integer types (long, short, int, and so on) are converted to Mathematica integers

and Java real types (float and double) are converted to Mathematica real numbers. Another

mapping is that Java objects are converted to JavaObject expressions in Mathematica. These

JavaObject expressions are references to Java objects~they have no meaning in Mathematica

except as they are manipulated by J/Link. However, some Java objects are things that have

meaningful values in Mathematica, and these objects are by default converted to values. Exam-

ples of such objects are strings and arrays.

You could say, then, that Java objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are strings, arrays, complex numbers

(discussed later), BigDecimal and BigInteger (discussed later), and the “wrapper” classes

(e.g., java.lang.Integer). You could say that these exceptional cases are returned “by

value”. The table in "Conversion of Types between Java and Mathematica" shows how these

special Java object types are mapped into Mathematica values.

176 J/Link User Guide

You could say, then, that Java objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are strings, arrays, complex numbers

(discussed later), BigDecimal and BigInteger (discussed later), and the “wrapper” classes

(e.g., java.lang.Integer). You could say that these exceptional cases are returned “by

value”. The table in "Conversion of Types between Java and Mathematica" shows how these

special Java object types are mapped into Mathematica values.

In summary, every Java object that has a meaningful value representation in Mathematica is

converted into this value, simply because that is the most useful behavior. There are times,

however, when you might want to override this default behavior. Probably the most common

reason for doing this is to avoid unnecessary traffic of large expressions over MathLink.

ReturnAsJavaObject@exprD a Java object returned by expr will be in the form of a
reference

ByRef@exprD deprecated; replaced by ReturnAsJavaObject in J/Link
2.0

JavaObjectToExpression@objD give the value of the Java object obj as a Mathematica
expression

Val@objD deprecated; replaced by JavaObjectToExpression in
J/Link 2.0

“By reference” and “by value” control.

ReturnAsJavaObject

Consider the case where you have a static method in class MyClass called arrayAbs() that

takes an array of doubles and returns a new array where each element is the absolute value of

the corresponding element in the argument array. The declaration of this method thus looks

like double@D arrayAbs Hdouble@D aL. This is how you would call such a method from

Mathematica.

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
arrayAbs@81., -2., 3., 4.<D
81., 2., 3., 4.<

The example showed how you probably want the method to work: you pass a Mathematica list

and get back a list. Now assume you have another method named arraySqrt() that acts like

arrayAbs() except that it performs the sqrt() function instead of abs().

arraySqrt@arrayAbs@81., -2., 3., 4.<DD

81., 1.41421, 1.73205, 2.<

In this computation, the original list is sent over MathLink to Java and a Java array is created

with these values. That array is passed as an argument to arrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to Java as the argument for arraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the arrayAbs() method) living on the Java side, ready to be

passed to arraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to Java again as a new array with the same values! For this example,

the cost is negligible, but what if the array has 200,000 elements?

J/Link User Guide 177

In this computation, the original list is sent over MathLink to Java and a Java array is created

with these values. That array is passed as an argument to arrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to Java as the argument for arraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the arrayAbs() method) living on the Java side, ready to be

passed to arraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to Java again as a new array with the same values! For this example,

the cost is negligible, but what if the array has 200,000 elements?

What is needed is a way to let the array data remain in Java and return only a reference to the

array, not the actual data itself. This can be accomplished with the ReturnAsJavaObject

function.

ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DD

«JavaObject@@DD »

Note that the class name of the JavaObject is "[D", which, although a bit cryptic, is the actual

Java class name of a one-dimensional array of doubles. Here is how the computation looks

using ReturnAsJavaObject:

arraySqrt@ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DDD

81., 1.41421, 1.73205, 2.<

Earlier you saw arraySqrt() being called with an argument that was a Mathematica list of

reals. Here it is being called with a reference to a Java object that is a one-dimensional array of

doubles. All methods and fields that take an array can be called from Mathematica with either a

Mathematica list or a reference to a Java array of the appropriate type.

Strings are the other type for which ReturnAsJavaObject is useful. Like arrays, strings have

the two properties that (1) they are represented in Java as objects but also have a meaningful

Mathematica value, and (2) they can be large, so it is useful to be able to avoid passing their

data back and forth unnecessarily. As an example, say your class MyClass has a static method

that appends to a string a digit taken from an external device that you are controlling from

Java. It takes a string and returns a new one, so its signature is

static String appendDigit HString sL. You have a Mathematica variable named

veryLongString that holds a long string, and you want to append to this string 100 times. This

code will cause the string contents to make 100 round trips between Mathematica and Java.

178 J/Link User Guide

Do@veryLongString = appendString@veryLongStringD, 8100<D;

Using ReturnAsJavaObject lets the strings remain on the Java side, and thus it generates

virtually no MathLink traffic.

Do@veryLongString = ReturnAsJavaObject@appendString@veryLongStringDD, 8100<D;

This example is somewhat contrived, since repeatedly appending to a growing string is not a

very efficient style of programming, but it illustrates the issues.

When the Do loop is executed, veryLongString gets assigned values that are not Mathematica

strings, but JavaObject expressions that refer to strings residing in Java. That means that

appendString HL gets called with a Mathematica string the very first iteration, but with a

JavaObject expression thereafter. As is the case with arrays, any Java method or field that

takes a string can be called in Mathematica either with a string or a JavaObject expression

that refers to one. The veryLongString variable started out holding a string, but at the end of

the loop it holds a JavaObject expression.

veryLongString

«JavaObject@java.lang.StringD »

At some point, you probably want an actual Mathematica string, not this string object refer-

ence. How do you get the value back? You will visit this example again later when the

JavaObjectToExpression function is introduced.

In summary, the ReturnAsJavaObject function causes methods and fields that return objects

that would normally be converted into Mathematica values to return references instead. It is an

optimization to avoid unnecessarily passing large amounts of data between Mathematica and

Java, and as such it will be useful primarily for very large arrays and strings. As with all optimiza-

tions, you should not concern yourself with ReturnAsJavaObject unless you have some code

that is running at an unacceptable speed, or you know ahead of time that the code you are

writing will benefit measurably from it. Objects of most Java classes have no meaningful “by

value” representation in Mathematica, and they are always returned “by reference”.

ReturnAsJavaObject will have no effect in these cases.

Finally, note that ReturnAsJavaObject has no effect on methods in which the Java programmer

manually sends the result back to Mathematica (this topic is discussed later in this User Guide).

Manually returning a result bypasses the normal result-handling routines in J/Link, so there is

no chance for the ReturnAsJavaObject request to be accommodated.

J/Link User Guide 179

JavaObjectToExpression

In the previous section, you saw how the ReturnAsJavaObject function can be used to cause

objects normally returned to Mathematica by value to be returned by reference. It is necessary

to have a function that does the reverse~takes a reference and converts it to its value represen-

tation. That function is JavaObjectToExpression.

Returning to the earlier appendString example, you used ReturnAsJavaObject to avoid costly

passing of string data back and forth over MathLink. The result of this was that the

veryLongString variable now held a JavaObject expression, not a literal Mathematica string.

JavaObjectToExpression can be used to get the value of this string object as a Mathematica

string.

JavaObjectToExpression@veryLongStringD

0371180863626445344894922949289892878227919482840897422691222365928516678297006273940532098876Ö
2893368

The majority of Java objects have no meaningful value representation in Mathematica. These

objects can only be represented in Mathematica as JavaObject expressions, and using

JavaObjectToExpression on them has no effect.

The ReturnAsJavaObject function is not the only way to get a JavaObject expression for an

object that is normally returned to Mathematica as a value. The JavaNew function always

returns a reference.

JavaNew@"java.lang.String", "a string"D

«JavaObject@java.lang.StringD »

JavaObjectToExpression@%D

a string

The next section introduces the MakeJavaObject function, which is easier than using JavaNew

to construct Java objects out of Mathematica strings and arrays.

MakeJavaObject and MakeJavaExpr

Preamble

In addition to JavaNew, which calls a class constructor, J/Link provides two convenience func-

tions for creating Java objects from Mathematica expressions. These functions are

MakeJavaObject and MakeJavaExpr. Do not get them confused, despite their similar names.

MakeJavaObject is a commonly used function for constructing objects of some special types.

MakeJavaExpr is an advanced function that creates an object of J/Link’s Expr class representing

an arbitrary Mathematica expression.

180 J/Link User Guide

In addition to JavaNew, which calls a class constructor, J/Link provides two convenience func-

MakeJavaObject and MakeJavaExpr. Do not get them confused, despite their similar names.

MakeJavaObject is a commonly used function for constructing objects of some special types.

MakeJavaExpr is an advanced function that creates an object of J/Link’s Expr class representing

an arbitrary Mathematica expression.

MakeJavaObject

MakeJavaObject@valD construct an object of the appropriate type to represent
the Mathematica expression val (numbers, strings, lists,
and so on)

MakeJavaObject.

When you call a Java method from Mathematica that takes, say, a Java String object, you can

call it with a Mathematica string. The internals of J/Link will construct a Java string that has the

same characters as the Mathematica string, and pass that string to the Java method. Some-

times, however, you want to pass a string to a method that is typed to take Object. You cannot

call such a method from Mathematica with a string as the argument because although J/Link

recognizes that a Mathematica string corresponds to a Java string, it does not recognize that a

Mathematica string corresponds to a Java Object. It does this deliberately, for the sake of

imposing as much type safety as possible on calls into Java. For this example, assume that the

class MyClass has a method with the following signature:

void foo(Object obj);

Assume also that theObj is an object of this class, created with JavaNew. Try to call foo with a

literal string.

theObjüfoo@"this is a string"D

Java::argxs :
Themethod foowas calledwith an incorrect number or type of arguments.

$Failed

It fails for the reason given above. To call a Java method that is typed to take an Object with a

string, you must first explicitly create a Java string object with the appropriate value. You can

do this using JavaNew.

javaStr = JavaNew@"java.lang.String", "this is a string"D

«JavaObject@java.lang.StringD »

J/Link User Guide 181

Now it works, because the argument is a JavaObject expression.

theObjüfoo@javaStrD

To avoid having to call JavaNew to create a Java string object, J/Link provides the

MakeJavaObject function.

javaStr = MakeJavaObject@"this is a string"D;

In the case of a string, MakeJavaObject just calls JavaNew for you. Of course, it would not be of

much use if it could only construct String objects. The same issue arises with other Java

objects that are direct representations of Mathematica values. This includes the “wrapper”

classes like java.lang.Integer, java.lang.Boolean, and so on, and the array classes. If

you want to call a Java method that takes a java.lang.Integer as an argument, you can call

it from Mathematica with a raw integer. But if you want to pass an integer to a method that is

typed to take an Object, you must explicitly create an object of type java.lang.Integer~

J/Link will not construct one automatically from an integer argument. It is simpler to call

MakeJavaObject than JavaNew for this.

MakeJavaObject@42D

«JavaObject@java.lang.IntegerD »

When given an integer argument, MakeJavaObject always constructs a java.lang.Integer,

never a java.lang.Short, java.lang.Long, or other “integer” Java wrapper object. Simi-

larly, if you call MakeJavaObject with a real number, it creates a java.lang.Double, never a

java.lang.Float. If you require an object of one of these other types, you will have to call

JavaNew explicitly.

MakeJavaObject also works for Boolean values.

MakeJavaObject@TrueD

«JavaObject@java.lang.BooleanD »

If MakeJavaObject were only a shortcut for calling JavaNew, it would not be all that useful. It

becomes indispensable, however, for creating objects of an array class. Recall that in Java,

arrays are objects and they belong to a class. These classes have cryptic names, but if you

know them you can create array objects with JavaNew. When creating array objects, the second

argument to JavaNew is a list giving the length in each dimension. Here you create a 2×3 array

of ints.

182 J/Link User Guide

intArray2D = JavaNew@"@@I", 82, 3<D

«JavaObject@@@ID

JavaNew lets us create array objects, but it does not let us supply initial values for the elements

of the array. MakeJavaObject, on the other hand, takes a Mathematica list and converts it into

a Java array object with the same values.

intArray2D = MakeJavaObject@881, 2, 3<, 84, 5, 6<<D

«JavaObject@@@ID »

Thus, MakeJavaObject is particularly useful for creating array objects, because it lets you

supply the initial values for the array elements, and it frees you from having to learn and remem-

ber the names of the Java array classes (@@I for a two-dimensional array of ints, @D for a one-

dimensional array of doubles, and so on). MakeJavaObject can create arrays up to three dimen-

sions deep of integers, doubles, strings, Booleans, and objects.

The JavaObjectToExpression function is discussed in the section "JavaObjectToExpression",

and you can think of MakeJavaObject as being the inverse of JavaObjectToExpression.

MakeJavaObject takes a Mathematica expression that has a corresponding Java object that can

represent its value, and creates that object. It literally “makes it into a Java object”. The

JavaObjectToExpression function goes the other way~it takes a Java object that has a mean-

ingful Mathematica representation and converts it into that expression. It will always be the

case that, for any x that MakeJavaObject can operate on,

JavaObjectToExpression@MakeJavaObject@xDD === x

Remember that MakeJavaObject is not a commonly used function. You do not need to explicitly

construct Java objects from Mathematica strings, arrays, and so on, just to pass them to Java

methods~J/Link does this automatically for you. But even though J/Link will create objects

automatically from certain arguments in most circumstances, it will not do so when an argu-

ment is typed as a generic Object. Then you must create a JavaObject yourself, and

MakeJavaObject is the easiest way to do this.

The code for the SetInternetProxy function discussed in the section SetInternetProxy provides

a concrete example of using MakeJavaObject. To specify proxy information (for users behind

firewalls), you need to set some system properties using the Properties class. This class is a

subclass of Hashtable, so it has a method with the signature

Object put(Object key, Object value);

You should always specify keys and values for Properties in the form of strings. Thus, you

might try this from Mathematica.

J/Link User Guide 183

You should always specify keys and values for Properties in the form of strings. Thus, you

might try this from Mathematica.

LoadJavaClass@"java.lang.System"D;
System`getProperties@Düput@"proxySet", "true"D

Java::argx :
Method named put defined in class java.util.Properties was called with

an incorrect number or type of arguments. The
arguments, shown here in a list, were 8proxySet, true<.

$Failed

For this to work, you need to use MakeJavaObject to create Java String objects:

System`getProperties@Düput@MakeJavaObject@"proxySet"D, MakeJavaObject@"true"DD

MakeJavaExpr

To understand the MakeJavaExpr function, you need to understand the motivation for J/Link’s

Expr class, which is discussed in detail in "Motivation for the Expr Class". Basically, an Expr is a

Java object that can represent an arbitrary Mathematica expression. Its main use is as a conve-

nience for Java programmers who want to examine and operate on Mathematica expressions in

Java. Sometimes it is useful to have a way of creating Expr objects in the Mathematica lan-

guage instead of from Java. MakeJavaExpr is the function that fills this need.

MakeJavaExpr@exprD construct an object of J/Link’s Expr class that represents
the Mathematica expression

MakeJavaExpr.

Note that if you are calling a Java method that is typed to take an Expr, then you do not have

to call MakeJavaExpr to construct an Expr object. J/Link will automatically convert any expres-

sion you supply as the argument to an Expr object, as it does with other automatic conver-

sions. Like MakeJavaObject, MakeJavaExpr is used in cases where you are calling a method

that takes a generic Object, not an Expr, and therefore J/Link will not perform any automatic

conversion for you. In such cases you need to explicitly create an Expr object out of some

Mathematica expression. One reason you might want to do this is to store a Mathematica expres-

sion in Java for retrieval later.

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

184 J/Link User Guide

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

e = MakeJavaExpr@1 + 2 x + x^2D

«JavaObject@com.wolfram.jlink.ExprD »

eülength@D

3

eüpart@3D

x2

eüinsert@x^3, -1D

1 + 2 x + x2 + x3

Note that Expr objects, like Mathematica expressions, are immutable. The above call to insÖ

ert() did not modify e; instead, it returned a new Expr.

JavaObjectToExpression@eD

1 + 2 x + x2

If you are having trouble understanding why you might want to use MakeJavaExpr in a Mathe-

matica program, do not worry. It is an advanced function that few programmers will have any

use for.

Creating Windows and Other User Interface Elements

Preamble

One of the most useful applications for J/Link is to write user interface elements for Mathemat-

ica programs. Examples of such elements would be a progress bar monitoring the completion of

a computation, a window that displays an image or animation, a dialog box that prompts the

user for input or helps them compose a proper call of an unfamiliar function, or a mini-applica-

tion that leads the user through the steps of an analysis. These types of user interfaces are

distinct from what you might write for a Java program that uses Mathematica in the background

in that they “pop up” when the user invokes some Mathematica code. They do not replace the

notebook front end, they just augment it. In this way, they are like an extension of the palettes

and other specialty notebook elements you can create in the front end.

Mathematica with J/Link is an extremely powerful and productive environment for creating user

interfaces. The complexity of user interface code is ideally suited to the interactive line-at-a-

time nature of J/Link development. You can literally build, modify, and experiment with your

user interface while it is running.

J/Link User Guide 185

Mathematica with J/Link is an extremely powerful and productive environment for creating user

interfaces. The complexity of user interface code is ideally suited to the interactive line-at-a-

time nature of J/Link development. You can literally build, modify, and experiment with your

user interface while it is running.

Anyone considering writing user interfaces for Mathematica programs should also look at GUIKit

. GUIKit is built on top of J/Link, and provides an extremely high-level means of creating inter-

faces. Further discussion of GUIKit is beyond the scope of this manual, but be aware that

GUIKit was specifically designed to provide an easier means of creating user interfaces than

writing in “raw” J/Link, as described here.

Interactive and Non-Interactive Interfaces

To write Mathematica programs that create Java windows you need to understand important

distinctions between several types of such user interfaces. These distinctions relate to how they

interact with the Mathematica kernel.

At the highest level of categorization, there is a distinction between “interactive” and “non-

interactive” interfaces. The interactiveness under consideration here is with the Mathematica

kernel, not with the user. What we are calling non-interactive user interfaces have no need to

communicate back to Mathematica, although they typically are controlled by Mathematica. Such

interfaces often accept no user input at all~they are created, manipulated, and destroyed by

Mathematica code. An example of this type is a window that shows a progress bar (a complete

progress bar program is presented in "A Progress Bar"). A progress bar does not return a result

to Mathematica and it does not need to respond to user actions, at least not by interacting with

Mathematica. In other words, the window may go away when its close box is clicked (a user

action), but this is not relevant to Mathematica because it does not return a result or trigger a

call back into Mathematica. A progress bar is completely driven by a Mathematica program. The

flow of information is in one direction only.

Such user interfaces typically have lifetimes that are encompassed by a single Mathematica

program, as is the case with a progress bar. This is not required, however. Hosting an applet in

its own window, as described in "Hosting Applets", is an example where the window lives on

after the code that created it ends execution. The applet window is only dismissed when the

user clicks in its close box. Again, though, the important property is that the applet does not

need to interact with Mathematica.

This type of user interface, which requires no interaction back with Mathematica, poses no

special issues that need to be discussed in this section. A program that creates, runs, and

destroys such an interface is very much like a non-GUI Java computation that is accomplished

with a series of calls into Java. It just happens to produce a visual effect. You can examine the

progress bar code in "A Progress Bar" if you want to see a fully fleshed out example.

186 J/Link User Guide

This type of user interface, which requires no interaction back with Mathematica, poses no

special issues that need to be discussed in this section. A program that creates, runs, and

destroys such an interface is very much like a non-GUI Java computation that is accomplished

with a series of calls into Java. It just happens to produce a visual effect. You can examine the

progress bar code in "A Progress Bar" if you want to see a fully fleshed out example.

The more common “interactive” type of user interface needs to communicate back to Mathemat-

ica. This might be to return a result, like a typical modal input dialog, or to initiate a computa-

tion as a consequence of the user clicking a button. To understand the special problem this

imposes, it is useful to examine some basic considerations about the kernel’s “main loop”,

whereby it acquires input, evaluates it, and sends off any output.

When the Mathematica kernel is being used from the front end, it spends most of its life waiting

for input to arrive on the MathLink that it uses to communicate with the front end. This Math-

Link is given by $ParentLink, and it is $ParentLink that has the kernel’s “attention”. When

input arrives on $ParentLink, it is evaluated, any results are sent back on the link, and the

kernel goes back to waiting for more input on $ParentLink. When J/Link is being used, the

kernel has another MathLink open, the one that connects to the Java runtime. When you exe-

cute some code that calls into Java, the kernel sends something to Java and then blocks waiting

for the return value from Java. During this period when the kernel is waiting for a return value

from Java, the Java link has the kernel’s attention. It is only during this period of time that the

kernel is paying attention to the Java link. A more general way of saying this is that the kernel

is only listening for input arriving from Java when it has been specifically instructed to do so.

The rest of the time it is listening only to $ParentLink, which is typically the notebook front

end.

Consider what happens when the user clicks on a button in your Java window and that button

tries to execute some code that calls into Mathematica. The Java side sends something to

Mathematica and then waits for the result, but the kernel will never get the request because it

is not paying attention to the Java link. It is necessary to use some means to tell the kernel to

look for input arriving on the Java link. J/Link provides three different ways to manage the

kernel’s attention to the Java link, and thereby control its readiness to accept requests for

evaluations initiated by the Java side.

These three ways can be called “modal”, “modeless”, and “manual”. In modal interaction,

characterized by the use of the DoModal Mathematica function, the kernel is pointed at the Java

link until the Java side releases it. The kernel is a complete slave to the Java side, and is unavail-

able for any other computations. In modeless interaction, characterized by the use of the

ShareKernel Mathematica function, the kernel is kept in a state where it is receptive to evalua-

tion requests arriving from either the notebook front end or Java, evenly sharing its attention

between these two programs. Lastly, there is a manual mode, characterized by the use of the

ServiceJava Mathematica function, which in some ways is intermediate between modal and

modeless operation. Here, you manually instruct the kernel to allow single requests from Java

while in the middle of running a larger program. The next few sections are devoted to further

exploration of these types of user interfaces.

J/Link User Guide 187

These three ways can be called “modal”, “modeless”, and “manual”. In modal interaction,

characterized by the use of the DoModal Mathematica function, the kernel is pointed at the Java

link until the Java side releases it. The kernel is a complete slave to the Java side, and is unavail-

able for any other computations. In modeless interaction, characterized by the use of the

ShareKernel Mathematica function, the kernel is kept in a state where it is receptive to evalua-

tion requests arriving from either the notebook front end or Java, evenly sharing its attention

between these two programs. Lastly, there is a manual mode, characterized by the use of the

ServiceJava Mathematica function, which in some ways is intermediate between modal and

modeless operation. Here, you manually instruct the kernel to allow single requests from Java

while in the middle of running a larger program. The next few sections are devoted to further

exploration of these types of user interfaces.

Before continuing, it is important to remember that all these issues about how to prepare the

kernel for computations arriving from Java are only relevant for computations initiated in Java,

typically by user actions like clicking a button. Calls from Java to Mathematica that are part of a

back-and-forth series of calls that involve a call from Mathematica into Java are not a problem.

Any time Mathematica has called into Java, Mathematica is actively listening for results arriving

from Java. This may sound confusing, but that is mostly because it is only in a much later

section that discusses writing your own Java methods to be called from Mathematica; such

methods can call back to Mathematica for computations before they return their result (typical

examples are to print something in the notebook window or display a message). These are true

callbacks into Mathematica, and Mathematica is always ready to handle them. In contrast, calls

to Mathematica that occur as the result of a user action in the Java side are, in effect, a sur-

prise to Mathematica, and it is not normally in a state where it is ready to accept them.

Modal versus Modeless Operation

A common type of user interface element is like a modal dialog: once it is displayed, the Mathe-

matica program hangs waiting for the user to dismiss the window. Typically, this is because the

window returns a result to Mathematica, so it is not meaningful for Mathematica to continue

until the window is closed. An example of such a window is a simple input window that asks the

user for some value, which it returns to Mathematica when the OK button is clicked.

It is important to understand our slightly generalized use of the term “modal” to describe these

windows. They may not be modal in the traditional sense that they must be dismissed before

188 J/Link User Guide

It is important to understand our slightly generalized use of the term “modal” to describe these

anything else can be done in the user interface. Rather, they are modal with respect to the

Mathematica kernel~the kernel cannot do anything else until they are closed. A Java window

that you create might not be modal with respect to other Java windows on the screen (i.e., a

dialog might not have the isModal property set), but it ties up the kernel’s attention until it is

dismissed.

Another type of user interface element is like a modeless dialog: after it is displayed, the Mathe-

matica program that created it will finish, leaving the window visible and usable while the user

continues working in the notebook front end. This sounds a lot like the first type of user inter-

face element described earlier, but these windows are distinguished by the fact that they can

initiate interactions with Mathematica while they are visible. An example would be a window

that lets users load packages into Mathematica by selecting them from a scrolling list. You write

a J/Link program that creates this window, displays it, and returns. The window is left open and

usable until the user clicks in its close box. In the meantime, the user is free to continue work-

ing in the front end, going back to use this Java window whenever it is convenient.

Such a window is almost like another type of notebook or palette window in the front end. You

can have any number of front end or Java windows open at once, and active, meaning that they

can be used to initiate computations in Mathematica. They are each their own little interface

onto the same kernel. What is different about the Java window is that it is much more general

than a notebook window, and, importantly, it lives in a different application layer than the front

end. This last fact makes the Java window in effect a second front end, rather than an exten-

sion of the notebook front end. To accommodate such a second front end, the kernel must be

kept in a special state that allows it to handle requests for evaluations arriving from either the

notebook front end or Java.

Before presenting examples of how to implement modal and modeless windows, it is necessary

to jump ahead a little bit and explain the main mechanism by which Java user interface ele-

ments can communicate with Mathematica.

Handling Events with Mathematica Code: The “MathListener” Classes

User interface elements typically have active components like buttons, scrollbars, menus, and

text fields that need to trigger some action when they are clicked. In the Java event model,

components fire events in response to user actions, and other components indicate their inter-

est in these events by registering as event listeners. In practice, though, components do not

J/Link User Guide 189

User interface elements typically have active components like buttons, scrollbars, menus, and

text fields that need to trigger some action when they are clicked. In the Java event model,

components fire events in response to user actions, and other components indicate their inter-

usually act as event listeners directly. Instead, the programmer writes an adapter class that

implements the desired event-listener interface and calls certain methods in the component in

response to various events. This avoids having to subclass the responding component just to

have it act as an event listener. The only specialty code goes into the adapter class, allowing

the components that fire and respond to events to be generic.

As an example, say you are writing a standard Java program and you have a button that you

want to use to control the appearance of a text area. Clicking the button should toggle between

black text on a white background and white text on a black background. Buttons fire ActionÖ

Events when they are clicked, and a class that wants to receive notifications of clicks must

implement the ActionListener interface, and register with the button by calling its addActionÖ

Listener method. You would write a class, perhaps called MyActionAdapter, that implements

ActionListener. In its actionPerformed() method, which is what will be called when the

button is clicked, you would call the appropriate methods to set the foreground and background

colors of the text area.

If you have ever used a Java GUI builder that lets you create an application by dropping compo-

nents on a form and then wiring them together via events, the code that is being generated for

you consists in large part of adapter classes that manage the logic of calling certain methods in

the target objects when events are fired by the source objects.

What all this is leading up to is simply that the wiring of components in a GUI typically involves

writing a lot of Java code in the form of classes that implement various event-listener inter-

faces. J/Link programmers want to write GUIs that use the standard Java event model, and

they should not have to write Java code to do it. The solution is simple: J/Link provides a com-

plete set of classes that implement the standard event-listener interfaces and whose actions are

to call back into Mathematica to execute user-defined code. This brings all the event-handling

logic down into Mathematica, where it can be scripted like every other part of the program.

Not only does this solution preserve the “pure Mathematica” property of even complex Java

GUIs, it is vastly more flexible than writing a traditional application in Java. When you write in

Java, or use a fancy drag-and-drop GUI builder, you hard-code the event logic. You have to

decide at compile time what every click, scroll, and keystroke will do. But when you use J/Link,

you decide how your program is wired together at run time. You can even change the behavior

on the fly simply by typing a few lines of code.

J/Link provides implementations of all the standard AWT event-listener classes. These classes

are named after the interfaces they implement, with “Math” prepended. Thus, the class that

implements ActionListener is MathActionListener. (Perhaps these classes would be better

named MathXXXAdapter.) The following table shows a summary of all the MathListener

classes, the methods they implement, and the arguments they send to your Mathematica

handler function.

190 J/Link User Guide

J/Link provides implementations of all the standard AWT event-listener classes. These classes

are named after the interfaces they implement, with “Math” prepended. Thus, the class that

implements ActionListener is MathActionListener. (Perhaps these classes would be better

named MathXXXAdapter.) The following table shows a summary of all the MathListener

classes, the methods they implement, and the arguments they send to your Mathematica

handler function.

class methods arguments to Mathematica
handler

MathActionListener actionPerformed
HActionEvent eL

e,
e.getActionCommand

HL HStringL

MathAdjustmentListener adjustmentValueChanged I

AdjustmentEvent eM
e,
e.getAdjustmentType HL,
HIntegerL
e.getValue HL HIntegerL

MathComponentListener componentHidden
HComponentEvent eL

componentShown
HComponentEvent eL

componentResized
HComponentEvent eL

componentMoved
HComponentEvent eL

e

MathContainerListener componentAdded
HContainerEvent eL

componentRemoved
HContainerEvent eL

e

MathFocusListener focusGained
HFocusEvent eL

focusLost HFocusEvent eL

e

MathItemListener itemStateChanged
HItemEvent eL

e,
e.getStateChange

HL HIntegerL

MathKeyListener keyPressed HKeyEvent eL
keyReleased HKeyEvent eL
keyTyped HKeyEvent eL

e,
e.getKeyChar HL,HIntegerL
e.getKeyCode HL HIntegerL

J/Link User Guide 191

MathMouseListener mouseClicked
HMouseEvent eL

mouseEntered
HMouseEvent eL

mouseExited
HMouseEvent eL

mousePressed
HMouseEvent eL

mouseReleased
HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

MathMouseMotionListener mouseMoved HMouseEvent eL
mouseDragged

HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

MathPropertyChangeListeÖ
ner

propertyChanged H
PropertyChangeEvent eL

e

MathTextListener textValueChanged
HTextEvent eL

e

MathVetoableChangeListeÖ
ner

vetoableChange H

PropertyChangeEvent
eL

e (veto the change by returning
False from your handler)

MathWindowListener windowOpened
HWindowEvent eL

windowClosed
HWindowEvent eL

windowClosing
HWindowEvent eL

windowActivated
HWindowEvent eL

windowDeactivated
HWindowEvent eL

windowIconified
HWindowEvent eL

windowDeiconified
HWindowEvent eL

e

Listener classes provided with J/Link.

As an example of how to read this table, take the MathKeyListener class. MathKeyListener

implements the KeyListener interface, which contains the methods keyPressed(), keyReÖ

leased(), and keyTyped(). If you register a MathKeyListener object with a component that

fires KeyEvents, then these three methods will be called in response to the key events they are

named after. When any of these methods are called, they will call into Mathematica and exe-

MathListener classes pass your handler function the event object itself, and a

few, like this one, pass additional integer arguments that are commonly needed values. This

just saves you the overhead of having to call back into Java to get these additional values.

192 J/Link User Guide

As an example of how to read this table, take the MathKeyListener class. MathKeyListener

implements the KeyListener interface, which contains the methods keyPressed(), keyReÖ

leased(), and keyTyped(). If you register a MathKeyListener object with a component that

fires KeyEvents, then these three methods will be called in response to the key events they are

cute a user-defined function, passing it three arguments: the KeyEvent object itself, followed

by two integers that are the results of the event object’s getKeyChar() and getKeyCode()

methods. All the MathListener classes pass your handler function the event object itself, and a

few, like this one, pass additional integer arguments that are commonly needed values. This

just saves you the overhead of having to call back into Java to get these additional values.

To specify the Mathematica function associated with any of the methods of a MathListener

object, call the object’s setHandler() method. setHandler() takes two strings, the first of

which is the name of the event-handler method (e.g., “actionPerformed” or “keyPressed”),

and the second of which is the Mathematica function that should be called in response. The

Mathematica function can be a name, as in “myButtonFunction” or a pure function (specified as

a string). The reason for supplying the name of the actual Java method in the listener interface

is that many of the listeners have multiple methods. setHandler() returns True if the handler

was set correctly and False otherwise (for example, if the method you named is not spelled

correctly).

objüsetHandler@"methodName"," funcName"D

set the Mathematica function that will be called when the
MathListener object obj’s event-handler method methodÖ
Name() is called.

Assigning the Mathematica function that will be called in response to an event notification.

The use of these classes will become clear in the simple examples that follow for modal and

modeless windows, and in the more fully worked-out examples in the sections "A Simple Modal

Input Dialog" and "A Piano Keyboard".

You are not required to use the J/Link MathListener classes for creating calls into Mathematica

triggered by user actions. They are provided simply as a convenience. You could write your own

classes to handle events and put calls into Mathematica directly into their code. All the

“MathListener” classes in J/Link are derived from an abstract base class called, appropriately,

MathListener. The code in MathListener takes care of all of the details of interacting with

Mathematica, and it also provides the setHandler() methods that you use to associate events

with Mathematica code. Users who want to write their own classes in MathListener style (for

example, for one of the Swing-specific event-listener interfaces, which J/Link does not provide)

are strongly encouraged to make their classes subclasses of MathListener to inherit all this

MathListener (MathActionListener is probably the simplest one) to see how it is written. You

can use this as a starting point for your own implementation. If you do not make your class a

subclass of MathListener, and instead choose instead to write your own event-handler code

that calls into Mathematica, you must read "Writing Your Own Event Handler Code".

J/Link User Guide 193

You are not required to use the J/Link MathListener classes for creating calls into Mathematica

triggered by user actions. They are provided simply as a convenience. You could write your own

classes to handle events and put calls into Mathematica directly into their code. All the

“MathListener” classes in J/Link are derived from an abstract base class called, appropriately,

MathListener. The code in MathListener takes care of all of the details of interacting with

Mathematica, and it also provides the setHandler() methods that you use to associate events

with Mathematica code. Users who want to write their own classes in MathListener style (for

example, for one of the Swing-specific event-listener interfaces, which J/Link does not provide)

functionality. You should examine the source code for one of the concrete classes derived from

MathListener (MathActionListener is probably the simplest one) to see how it is written. You

can use this as a starting point for your own implementation. If you do not make your class a

subclass of MathListener, and instead choose instead to write your own event-handler code

that calls into Mathematica, you must read "Writing Your Own Event Handler Code".

Bringing Java Windows to the Foreground

If you are creating a Java window with a Mathematica program, you probably want that window

to pop up in front of the notebook the user is working in, so that its presence becomes appar-

ent. You might expect that the toFront() method of Java’s Window class is what you would

use for this, but this does not work on the Macintosh, and it works slightly differently on differ-

ent Java runtimes on Windows. As a result of these differences, it is difficult to write a Mathemat-

ica program that behaves identically on all platforms and all Java virtual machines with respect

to making Java windows visible in front of all other windows the user might see.

As a result of these unfortunate differences, J/Link provides a Mathematica function, JavaShow,

which performs the proper steps on all configurations. You should use JavaShow@windowD in

place of windowüsetVisible@TrueD, windowüshow@D, or windowütoFront@D. You will see

JavaShow used in all the example programs. The argument to JavaShow must be a Java object

that is an instance of a class that can represent a top-level window. Specifically, it must be of

class java.awt.Window or a subclass. This includes the AWT Frame and Dialog windows, and

also the Swing classes used for top-level windows (JFrame, JWindow, and JDialog).

JavaShow@windowObjD make the specified Java window visible and bring it in front
of all other windows, including notebook windows

Bringing a Java window to the foreground.

Modal Windows

Here is an example of a simple “modal” window. The window contains a button and a text field.

The text field starts out displaying the value 1, and each time the button is clicked the value is

incremented. The com.wolfram.jlink.MathFrame class is used for the enclosing window.

MathFrame is a simple extension to java.awt.Frame that calls dispose() on itself when its

close box is clicked (the standard Frame class does nothing).

194 J/Link User Guide

frm = JavaNew@"com.wolfram.jlink.MathFrame"D;

button = JavaNew@"java.awt.Button"D;
textField = JavaNew@"java.awt.TextField"D;

frmüsetLayout@JavaNew@"java.awt.GridLayout"DD;
frmüadd@buttonD;
frmüadd@textFieldD;
frmüpack@D;
JavaShow@frmD;

At this point, you should see a small frame window with a button on the left and a text field on

the right. Now label the button and set the starting text for the field.

buttonüsetLabel@"++"D;
textFieldüsetText@"1"D;

Now you want to add behavior to the button that causes it to increment the text field value.

Buttons fire ActionEvents, so you need an instance of MathActionListener.

buttonListener = JavaNew@"com.wolfram.jlink.MathActionListener"D;

It must be registered with the button by calling addActionListener.

buttonüaddActionListener@buttonListenerD;

At this point, if you were to click the ++ button, the actionPerformed() method of your

MathActionListener would be called (do not click the button yet!). You know from the

MathListener table in the previous subsection that the actionPerformed() method will call a

user-defined Mathematica function with two arguments: the ActionEvent object itself and the

integer value that results from the event’s getActionCommand() method.

You have not yet set the user-defined code to be called by the actionPerformed() method.

That is done for all the MathListener classes with the setHandler() method. This method

takes two strings, the first being the name of the method in the event-listener interface, and

the second being the function you want called.

buttonListenerüsetHandler@"actionPerformed", "buttonFunc"D;

Now you need to define buttonFunc. It must be written to take two arguments, but in this

example you are not interested in either argument.

buttonFunc@_, _D :=
Module@8curText, newVal<,

curText = textFieldügetText@D;
newVal = ToExpression@curTextD + 1;
textFieldüsetText@ToString@newValDD

D

You are still not quite ready to try the button. If you click the button now, the Java user inter-

face thread will hang because it will call into Mathematica trying to evaluate buttonFunc and

wait for the result, but the result will never come because the kernel is not waiting for input to

arrive on the Java link. What you need is a way to put the kernel into a state where it is continu-

ously reading from the Java link. This is what makes the window “modal”~the kernel cannot do

anything else until the window is closed. The function that implements this modal state is

DoModal.

J/Link User Guide 195

You are still not quite ready to try the button. If you click the button now, the Java user inter-

face thread will hang because it will call into Mathematica trying to evaluate buttonFunc and

wait for the result, but the result will never come because the kernel is not waiting for input to

arrive on the Java link. What you need is a way to put the kernel into a state where it is continu-

ously reading from the Java link. This is what makes the window “modal”~the kernel cannot do

anything else until the window is closed. The function that implements this modal state is

DoModal.

DoModal@D put the kernel into a state where its attention is solely
directed at the Java link

EndModal@D what the Java program must call to make the DoModal
function return, ending the modal state

Entering and exiting the modal state.

DoModal will not return until the Java program calls back into Mathematica to evaluate

EndModal@D. While DoModal is executing, the kernel is ready to handle callbacks from Java~for

example, from MathListener objects. The way to get the Java side to call EndModal@D is typi-

cally to use a MathListener. For example, if your window had OK and Cancel buttons, these

should dismiss the window, so you would create MathActionListener objects and register

them with these two buttons. These MathActionListener objects would be set to call

EndModal@D in their actionPerformed() methods.

DoModal returns whatever the block of code that calls EndModal@D returns. You would typically

use this return value to determine how the window was closed~for example, whether it was the

OK or Cancel button. You could then take appropriate action. See "A Simple Modal Input

Dialog" for an example of using the return value of DoModal.

In the present example, the only way to close the window is by clicking its close box. Clicking

the close box fires a windowClosing event, so you use a MathWindowListener to receive

notifications.

windowListener = JavaNew@"com.wolfram.jlink.MathWindowListener"D;
frmüaddWindowListener@windowListenerD;

Now you assign the Mathematica function to be called when the close box is clicked. All you

need it to do is call EndModal@D, so you can specify a pure function that ignores its arguments

and does nothing but execute EndModal@D.

windowListenerüsetHandler@"windowClosing", "EndModal@D&"D;

The preceding few lines are a fine example of how to use a MathWindowListener to trigger a

call to EndModal@D when a window’s close box is clicked. You would use something similar to

this, except with a MathActionListener, if you wanted to have an explicit Close button. In this

example, though, there is an easier way. Mentioned earlier is that the MathFrame class is just a

normal AWT Frame except that it calls dispose() on itself when its close box is clicked. Actu-

ally it has another useful property~it can also execute EndModal@D when its close box is

clicked. Thus, if you use MathFrame as the top-level window class for your interfaces, you will

not have to manually create a MathWindowListener to terminate the modal loop every time. To

enable this behavior of MathFrame, you need to call its setModal method:

196 J/Link User Guide

The preceding few lines are a fine example of how to use a MathWindowListener to trigger a

call to EndModal@D when a window’s close box is clicked. You would use something similar to

this, except with a MathActionListener, if you wanted to have an explicit Close button. In this

example, though, there is an easier way. Mentioned earlier is that the MathFrame class is just a

normal AWT Frame except that it calls dispose() on itself when its close box is clicked. Actu-

ally it has another useful property~it can also execute EndModal@D when its close box is

clicked. Thus, if you use MathFrame as the top-level window class for your interfaces, you will

not have to manually create a MathWindowListener to terminate the modal loop every time. To

enable this behavior of MathFrame, you need to call its setModal method:

(***
 This is even easier than using the MathWindowListener above.
 We won't call it here, though, because we have already arranged
 for EndModal to be called, and bad things will happen if we try
 to call it twice.

frm@setModal[]

***)

You must not call setModal if you are not using DoModal. This is because after setModal has

been called, the MathFrame will try to call into Mathematica when it is closed (to execute

EndModal), and Mathematica needs to be in a state where it is ready for calls originating in

Java. The same issue exists for any MathListener you create yourself.

Now that everything is ready, you can enter the modal state and use the window.

DoModal@D

When you are done playing with the window, click the close box in the frame, which will trigger

a callback into Mathematica that calls EndModal@D. DoModal then returns, and the kernel is

ready to be used from the front end. DoModal@D returns Null if you click the close box of a

MathFrame.

Here is how the entire example looks when packaged into a single program. (The code for

SimpleModal is also available as SimpleModal.nb in the JLink/Examples/Part1 directory.)

J/Link User Guide 197

SimpleModal[] :=
JavaBlock[

Module[{frm, button, textField, windowListener,
buttonListener, buttonFunc},

(* Create the GUI components. *)
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
textField = JavaNew["java.awt.TextField"];

(* Configure their properties. *)
frm@setLayout[JavaNew["java.awt.GridLayout"]];
frm@add[button];
frm@add[textField];
button@setLabel["++"];
textField@setText["1"];
frm@pack[];

(* Create the listener and set its handler function. *)
buttonListener =

JavaNew["com.wolfram.jlink.MathActionListener"];
buttonListener@setHandler["actionPerformed", ToString[buttonFunc]];
button@addActionListener[buttonListener];

(* Define buttonFunc. *)
buttonFunc[_, _] :=

JavaBlock[
Module[{curText, newVal},

curText = textField@getText[];
newVal = ToExpression[curText] + 1;
textField@setText[ToString[newVal]]

]
];

(* Make the window visible and bring it in front of any
 notebook windows. *)
JavaShow[frm];

(* Tell the frame to end the modal loop when it is closed. *)
frm@setModal[];

(* Enter the modal loop. *)
DoModal[];

]
]

Remember that DoModal will not return until the Java side calls EndModal. You have to be a

little careful when you call DoModal that you have already established a way for the Java side to

trigger a call to EndModal. As explained earlier, you will typically have done this by using a

MathFrame as the frame window and calling its setModal method, or by creating and registering

a MathListener of your own that will call EndModal in response to a user action (such as click-

ing an OK or Cancel button). Once DoModal has begun, the kernel is not responsive to the

front end and thus it is too late to set anything up. If you call DoModal and realize that for some

reason you cannot end it from Java, you can abort it from the front end by selecting Evalua-

tion Interrupt Evaluation in the menu, and then in the resulting dialog, clicking the button

labeled Abort.

There is one subtlety you might notice in the code for SimpleModal that is not directly related

to J/Link. In the line that calls buttonListener@setHandler, you pass the name of the button

function not as the literal string "buttonFunc", but as ToString@buttonFuncD. This is because

buttonFunc is a local name in a Module, and thus its real name is not buttonFunc, but some-

thing like buttonFunc$42. To make sure you capture its true run-time name, you call

ToString on the symbolic name. You could avoid this by simply not making the name buttonÖ

Func local to the Module, but the way you have done it automatically cleans up the definition

for buttonFunc when the Module finishes.

198 J/Link User Guide

There is one subtlety you might notice in the code for SimpleModal that is not directly related

to J/Link. In the line that calls buttonListener@setHandler, you pass the name of the button

function not as the literal string "buttonFunc", but as ToString@buttonFuncD. This is because

buttonFunc is a local name in a Module, and thus its real name is not buttonFunc, but some-

thing like buttonFunc$42. To make sure you capture its true run-time name, you call

ToString on the symbolic name. You could avoid this by simply not making the name buttonÖ

Func local to the Module, but the way you have done it automatically cleans up the definition

for buttonFunc when the Module finishes.

MathFrame and MathJFrame

You encountered the MathFrame class in this section, which is a useful top-level window class

for J/Link programmers because it has three special properties. You have already encountered

two of them: it calls dispose() on itself when it is closed, and it has the setModal() method,

which gives it easy support for use with DoModal. The third property is that it has an

onClose() method that you can use to specify Mathematica code that will be executed when

the window is closed. The onClose() method is used in the Palette example in "Sharing the

Front End: Palette-Type Buttons". J/Link also has a MathJFrame class, which is a subclass of the

Swing JFrame class, and it also has these three special properties. Programmers who want to

create interfaces with Swing components instead of AWT ones can use MathJFrame as their top-

level window class.

Modeless Windows: Sharing the Kernel with Java

The previous subsection demonstrated how to write J/Link programs that display Java windows

and then how to use the DoModal function to cause the kernel to wait until the window is

closed. During the time that DoModal is running, the kernel is able to receive and process

requests for computations that originate from the Java side. The word “modal” is used in this

context to refer to the fact that the kernel is busy servicing the Java link, and thus the note-

book front end cannot use the kernel until DoModal returns.

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

dismissed. Unfortunately, it is too restrictive for a large class of user interface elements. Con-

sider trying to duplicate the general concept of a front end palette window in Java. You want to

have a window of buttons that, when clicked, cause some computation to occur in Mathematica.

DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

J/Link User Guide 199

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

dismissed. Unfortunately, it is too restrictive for a large class of user interface elements. Con-

sider trying to duplicate the general concept of a front end palette window in Java. You want to

Like a front end palette window, you want this window to be created and remain visible and

active indefinitely. It would not be of much use if every time you wanted to click one of the

buttons you had first to execute DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

What is needed is a way for the kernel to automatically pay attention to input arriving from the

Java link in addition to the notebook front end link. What you really have here is two front ends

vying for the kernel’s attention. J/Link solves this problem by introducing a simple way in which

the kernel can be put into a state where it is simultaneously listening for input on any number

of links. The function that accomplishes this is ShareKernel.

Important Note: In Mathematica 5.1 and later, the kernel is always shared with Java. This

means that the functions ShareKernel and UnshareKernel are not necessary and, in fact, do

nothing at all. If you are writing program that only need to run in Mathematica 5.1 and later,

you never need to call ShareKernel or UnshareKernel (ShareFrontEnd and UnshareFrontEnd

are still useful, however). If your programs need to work on all versions of Mathematica, then

you will need to use ShareKernel and UnshareKernel as described next.

ShareKernel@D begin sharing the kernel with Java

ShareKernel@linkD begin sharing the kernel with link

UnshareKernel@idD unregisters the request for sharing (that is, the call to
ShareKernel) that returned id; kernel sharing will not be
turned off unless no other requests are outstanding

UnshareKernel@linkD end sharing of the kernel with link

UnshareKernel@D end sharing of the kernel with Java

KernelSharedQ@D True if the kernel is currently being shared; False
otherwise

SharingLinks@D a list of the links currently sharing the kernel

Sharing the kernel.

200 J/Link User Guide

ShareKernel takes a LinkObject as an argument and initiates sharing of the kernel between

that link and the current $ParentLink (typically, the notebook front end). If you call

ShareKernel with no arguments, it assumes you mean the link to Java. Most users will call it

with no arguments.

ShareKernel@D;

2 + 2

4

Note that while the kernel is being shared, the input prompt has “(sharing)” prepended to it.

The string that is prepended is specified by the SharingPrompt option to ShareKernel.

Sharing is transparent to the user. Other than the changed input prompt, there is nothing to

suggest that anything different is going on. Input sent from either the front end or a Java

program to the kernel will be evaluated and the result sent back to the program that sent the

input. Each link is the kernel’s $ParentLink during the time that the kernel is computing input

that arrived from that link. In other words, ShareKernel takes care of shuffling the

$ParentLink value back and forth between links as input arrives on each.

It is safe to call ShareKernel if the kernel is already being shared. This means that programs

you write can call it without your having to worry that a user might already have initiated

sharing. When you are finished with the need to share the kernel with Java, you can call

UnshareKernel. This restores the kernel to its normal mode of operation, paying attention only

to the front end.

UnshareKernel@D

When called with no arguments, UnshareKernel shuts down sharing. This is not a desirable

thing in most cases, because it might be that some other Java-based program is running that

requires sharing. If you are writing code for others to use, you certainly cannot shut down

sharing on your users just because your code is done with it. To solve this problem,

ShareKernel returns a token (it is just an integer, but you should not be concerned with its

representation) that reflects a request for sharing functionality. In other words, calling

ShareKernel registers a request for sharing, turns it on if it is not on already, and returns a

token that represents that particular request. When you call UnshareKernel, you pass it the

token to “unregister” that particular request for sharing. Only if there are no other outstanding

requests will sharing actually be turned off.

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

J/Link User Guide 201

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

An example of a nontrivial user interface that uses ShareKernel is presented in "Real-Time

Algebra: A Mini-Application".

Sharing the Front End

One goal of J/Link was to have Java user interface elements be as close as possible to first-

class citizens of the notebook front end environment, in the way that notebooks and palettes

are. The ability to share the kernel mimics one important aspect of this citizenship, hiding the

fact that the Java runtime is a separate program and the kernel is normally only waiting for

input from the front end.

There is one more important thing that palettes can do that would be nice to do from Java, and

that is interact with the front end. You can create a palette button that, when clicked, evaluates

the code Print@"hello"D. You can do this easily with J/Link also, but with one big difference:

when you click the palette button, hello appears in the active notebook, but when you click

the Java button, the “hello” gets sent back to the Java program (which is, after all, the kernel’s

$ParentLink at that moment). Even if you persuaded the kernel to write the TextPacket that

contains “hello” to the front end link instead of the Java link, nothing useful would happen

because the front end is not paying attention to the kernel link when the front end is not wait-

ing for the result of a computation. Poking some output at the front end while it is idle simply

will not work.

J/Link provides the ShareFrontEnd function as the solution to this problem. ShareFrontEnd@D

causes Print output and graphics generated by a Java user-interface element to appear in the

front end. It also lets the Java side call Mathematica functions that manipulate elements of

notebooks and have them work properly in the front end (for example, NotebookRead,

NotebookWrite, SelectionEvaluate, and so on). While sharing is on, the front end behaves

normally, and you can continue to use it for editing, calculations, or whatever. The sharing is

transparent.

202 J/Link User Guide

ShareFrontEnd@D begin sharing the front end with Java

UnshareFrontEnd@idD unregisters the request for sharing (that is, the call to
ShareFrontEnd) that returned id; front end sharing will
not be turned off unless no other requests are outstanding

UnshareFrontEnd@D end sharing of the front end with Java

FrontEndSharedQ@D True if the front end is currently being shared with Java;
False otherwise

Sharing the notebook front end.

ShareFrontEnd currently does not work with a remote kernel; the same machine must be

running the kernel and the front end.

ShareFrontEnd is as close as you currently can come to having Java user interfaces hosted

directly by the notebook front end itself, as if they were special types of notebook windows.

This type of tight integration might be possible in the future.

Note that Print output, graphics, and messages generated by a modal Java window will appear

in the front end without needing to call ShareFrontEnd. This is because $ParentLink remains

the front end link during DoModal (these “side effect” packets always get sent to $ParentLink),

and also because the front end is able to handle various packets arriving from the kernel

because the front end is in the middle of a computation~it is waiting for the result of the code

that called DoModal. ShareFrontEnd is a way to restore a feature that was lost when you

gained the ability to create modeless interfaces via ShareKernel. That is how to think of

ShareFrontEnd~as a step beyond ShareKernel that allows side effect output generated by

computations triggered in Java to appear in the notebook front end. ShareFrontEnd is particu-

larly useful when developing code that needs to use ShareKernel, even if the code does not

need the extra functionality of ShareFrontEnd. This is because Mathematica error messages

generated by computations triggered by Java events get lost with ShareKernel. The messages

will show up in the front end if front end sharing is turned on.

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

turned off. You can force front end sharing to be shut down immediately by calling

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

J/Link User Guide 203

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

ShareFrontEnd requires that the kernel be shared, so it calls ShareKernel internally. Calling

UnshareKernel with no arguments forces kernel sharing to stop immediately, and this turns off

front end sharing as well. Thus, you can use UnshareKernel@D as a quick shortcut to immedi-

ately shut down all sharing.

An example of some simple palette-type buttons that use ShareFrontEnd is presented in

"Sharing the Front End: Palette-Type Buttons".

An important use for ShareFrontEnd is to allow a popup Java user interface to display graphics

containing typeset expressions. When the kernel is asked to produce a graphic containing

typeset expressions, say a plot with PlotLabel -> Sqrt@zD, it crunches out PostScript for the

plot itself, but when it comes time to produce PostScript for the typeset label, it cannot do this.

Instead, it sends a special request back to the front end, asking it for the PostScript representa-

tion. Because dealing with typeset expressions is a skill possessed only by the notebook front

end, when any other interface is driving the kernel, the interface must be careful to instruct the

kernel to not attempt to typeset anything in a graphic (ShareKernel handles this automatically

for you). This works fine, but you lose the ability to get pictures of typeset expressions in your

Java interface.

ShareFrontEnd does two things to overcome this limitation: it fools the kernel into thinking

that the Java runtime is a notebook front end and, therefore, capable of handling the special

“convert to PostScript” requests; and it gives Java the ability to make good on this promise by

forwarding the requests to the front end. "GraphicsDlg: Graphics and Typeset Output in a

Window" describes an example of a Java dialog box that displays typeset expressions using

ShareFrontEnd.

204 J/Link User Guide

Summary of Modal and Modeless Operation

The previous discussion of modal and modeless operation, ShareKernel, and ShareFrontEnd

may have seemed complex. In fact, the principles and uses of these techniques are simple. This

will become clear upon seeing some more examples. Many of the example programs in

"Example Programs" use ShareKernel or ShareFrontEnd. The important thing is to understand

the capabilities they provide so that you can begin to see how to use them in your own

programs.

If you want your user-interface element (typically a window) to tie up the kernel until the user

dismisses it, then you will use the setModal/DoModal/EndModal suite. Because the internal

workings of the modal state are simpler than the modeless state, you should use this style

unless your program needs the features of a modeless window. You will always want to use this

type of window if you need to return a result to a running Mathematica program, such as if you

are creating a dialog box into which the user will enter values and then click OK. "A Simple

Modal Input Dialog" gives an example of this type of dialog.

If you want your window to remain visible and active while the user returns to work in the front

end, you must run your window in a “modeless” fashion. This requires calling ShareKernel to

put the kernel into a state where it is simultaneously receptive to input arriving from either the

notebook front end or Java. At this point the kernel is dividing its attention between two indepen-

dent and essentially equivalent front ends. One drawback (or feature, depending on your point

of view) of this state is that all side effect output like Print output, messages, or plots trig-

gered by Java code is sent to Java instead of the front end (and the standard Java

MathListener classes just throw all this output away). Thus, you could not create a button that

prints something in a notebook window when it is clicked, like you can with a palette button in

the front end. If you want to give your Java program the ability to interact with the front end

the way that notebook and palette windows themselves can, you must instead use

ShareFrontEnd, which you can think of as an extension to ShareKernel.

A very common mistake is to create a Java window, wire up a MathListener class that calls

back to Mathematica on some event, and then trigger the event before you have called

DoModal or ShareKernel. This will cause the Java user interface thread to hang. A symptom

that the UI thread is hanging is that the controls in your Java window are visually unresponsive

(for example, buttons will not appear to depress when you click them). If you do inadvertently

get into this state, you can just call ShareKernel to allow the queued-up call(s) from Java to

proceed.

“Manual” Interfaces: The ServiceJava Function

J/Link User Guide 205

“Manual” Interfaces: The ServiceJava Function

In addition to the modal and modeless types of interfaces just discussed, there is another type

that in some ways is intermediate. Consider the following scenario. You want to create a Mathe-

matica program that puts up a Java window and displays something in it that changes over the

course of the program. So far, this sounds like an example of a “non-interactive” interface,

which was discussed way back at the beginning of this section, the progress bar example being

a classic case. Now, though, you want to add some interactivity to the window, meaning that

you want user actions in the window to trigger calls into Mathematica. Keeping with the

progress bar example, say you want to add an Abort button that stops the program. How do

you manage to get the kernel’s attention directed at the Java side so that Java events can

trigger calls to Mathematica?

The modal type of interface will not work, because in the modal state the kernel is executing

DoModal, not your computation~the kernel is doing nothing but paying attention to Java. The

modeless type of interface will not work either, because the modeless technique causes the

kernel to pay attention to the front end and Java alternately, letting each perform a full computa-

tion in turn. There is no sharing within the context of a single computation.

The obvious answer is the there needs to be a function that allows the kernel to service a single

computation arriving from Java, if there is one waiting. That function is ServiceJava. Calling

ServiceJava in a program will cause the kernel to accept one request for a computation from

the Java side. It performs the computation and then returns control to your program. If there is

no request waiting, ServiceJava returns immediately.

Here is some pseudocode showing the structure of a program that displays a progress bar with

an Abort button and periodically calls ServiceJava to handle user clicks on that button, stop-

ping the computation if requested.

206 J/Link User Guide

... create progress bar ...
progressBar@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener", "(userCancelled =
True)&"]

];
JavaShow[progressBar];
While[i < 100 && !userCancelled,

... compute one iteration ...

... update progress bar ...
ServiceJava[];
i++

];
... destroy progress bar ...

You might recognize that ServiceJava is closely related to DoModal, and although this is not

the actual implementation, you can think of DoModal as being written in terms of ServiceJava

as follows:

(* Not the actual implementation of DoModal, but the principle is correct.
*)
DoModal[] :=

While[!endModal,
ServiceJava[]

]

Seen in this way, DoModal is a special case of the use of ServiceJava, where Mathematica is

doing nothing but servicing requests from Java. Sometimes you need something else to be

going on in Mathematica, but still need to be able to handle requests arriving from Java. That is

when you call ServiceJava yourself. Like DoModal, there is no shifting of $ParentLink when

ServiceJava is called. Thus, side-effect output like graphics, messages, and Print output

triggered by Java computations appear in the notebook, just as if they were hard-coded into

the Mathematica program that called ServiceJava.

The BouncingBalls example program presented in "BouncingBalls: Drawing in a Window" uses

ServiceJava.

Using a GUI Builder

The preceding discussion on modal and modeless interfaces featured examples that were cre-

ated entirely with Mathematica code. For complex user interfaces, you might find it more conve-

nient to lay out your windows and wire up events with a drag-and-drop GUI builder like the

MathListener classes from Java

code just as they are used from Mathematica code. Alternatively, you could write your own Java

code that calls into Mathematica at appropriate times. See the section "Writing Your Own Instal-

lable Java Classes" for information about how to write Java code that calls back into Mathemat-

ica. "GraphicsDlg: Graphics and Typeset Output in a Window" gives a simple example of a

dialog box that was created with a GUI builder and is then invoked and controlled by Mathemat-

ica code.

J/Link User Guide 207

The preceding discussion on modal and modeless interfaces featured examples that were cre-

ated entirely with Mathematica code. For complex user interfaces, you might find it more conve-

ones present in most commercial Java development environments. You are free to write as

much or as little of the code for your interface in native Java. If you want events in your GUI to

trigger calls into Mathematica, then you can use any of the MathListener classes from Java

code just as they are used from Mathematica code. Alternatively, you could write your own Java

code that calls into Mathematica at appropriate times. See the section "Writing Your Own Instal-

lable Java Classes" for information about how to write Java code that calls back into Mathemat-

ica. "GraphicsDlg: Graphics and Typeset Output in a Window" gives a simple example of a

dialog box that was created with a GUI builder and is then invoked and controlled by Mathemat-

ica code.

Drawing and Displaying Mathematica Images in Java Windows

The MathCanvas and MathGraphicsJPanel classes

J/Link makes it easy to draw into Java windows from Mathematica, and also display Mathemat-

ica graphics and typeset expressions. The MathCanvas and MathGraphicsJPanel classes are

provided for this purpose. You can use these classes in pure Java programs that use the Mathe-

matica kernel, as described in "Writing Java Programs that use Mathematica", but it is also

handy for Java windows that are created and scripted from Mathematica. Note that the

MathGraphicsJPanel class is new in J/Link 2.0.

MathCanvas is a subclass of the AWT Canvas class, and MathGraphicsJPanel is a subclass of

the Swing JPanel class. In terms of their special added Mathematica graphics capabilities, they

are identical. These classes provide two ways to supply the image to be displayed. The first way

is by providing a fragment of Mathematica code whose output will be displayed. The output can

either be a graphics object, or a nongraphics expression that will be typeset. This makes it

trivial to display Mathematica graphics or typeset expressions in a Java window. The second

way to control the display is to provide a Java Image object that will be painted. This Image will

typically be created by Mathematica code, such as code that creates a bitmap out of raw Mathe-

matica data, or code that draws something using calls to Java’s graphics routines.

Because MathCanvas and MathGraphicsJPanel are Java classes and can be used from Java

programs as well as Mathematica programs, there is full JavaDoc format documentation for

them in the JLink/Documentation/JavaDoc directory. You can browse that documentation for

more details.

208 J/Link User Guide

Showing Mathematica Graphics and Typeset Expressions

Here is a simple example of displaying a window that shows a Mathematica plot. This example

uses MathCanvas, but the relevant parts would look the same if you used

MathGraphicsJPanel. You will be using this window throughout this section, so do not close it if

you are evaluating the code as you read this section.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
mathCanvas@setMathCommand["Plot[x, {x,0,1}]"];
JavaShow[frame];

As you can see, it is as simple as calling the canvas’ setMathCommand() method. The argu-

ment to setMathCommand() is a string giving the code to be evaluated. This code must return

a graphics expression, not just cause one to be produced. For example,

setMathCommand@"Plot@x,8x,0,1<D;"D will not work because the trailing semicolon causes the

expression to evaluate to Null. The image is automatically rendered at the correct size, and

centered in the canvas if the actual image size produced by Mathematica does not completely

fill the requested area (as is often the case with typeset output).

Calling setMathCommand() again resets the image.

mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

If the plotting command depends on variables in your Mathematica session, you can call recomÖ

pute() to cause the graphic to be recomputed and rendered. For example, this displays a slow

animation in the window.

n = 1.0;
mathCanvas@setMathCommand["Plot3D[Sin[n x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];
Do[n += 0.1; mathCanvas@recompute[]; Pause[1], {10}]

Because you supply the expression as a string, remember to escape any quote marks inside the

string with a backslash.

mathCanvas@setMathCommand["Plot[x, {x,0,1}, PlotLabel->\"This is a plot\"]"];

A MathCanvas can also display typeset expressions. The default behavior of MathCanvas is to

expect that the expression supplied in setMathCommand() will evaluate to a graphics object,

which should be rendered. To get it to instead typeset the return value, call the setImÖ

ageType() method, supplying the constant TYPESET.

mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setMathCommand["Integrate[Sqrt[x] Sqrt[1+x], x]"];

To switch back to displaying graphics, call mathCanvasüsetImageType@MathCanvas`GRAPHICSD.

The default format for typeset output is StandardForm. To switch to TraditionalForm, use the

setUsesTraditionalForm() method. You call recompute() here because changing the out-

put type does not force the image to be redrawn.

J/Link User Guide 209

To switch back to displaying graphics, call mathCanvasüsetImageType@MathCanvas`GRAPHICSD.

The default format for typeset output is StandardForm. To switch to TraditionalForm, use the

setUsesTraditionalForm() method. You call recompute() here because changing the out-

put type does not force the image to be redrawn.

mathCanvas@setUsesTraditionalForm[True];
mathCanvas@recompute[];

Graphics are rendered using Mathematica’s Display command, which is fast and does not

require the notebook front end to be running. For higher quality, though, particularly for 3D

graphics, an alternative method is available that uses the front end for rendering services. You

can switch to using this technique by calling the setUsesFE() method.

(* First, change back to graphics mode from typeset mode. *)
mathCanvas@setImageType[MathCanvas`GRAPHICS];

mathCanvas@setUsesFE[True];
mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

You might want to compare the resulting plot with setUsesFE@TrueD and setUsesFE@FalseD.

An important point about using the front end for rendering is that when the computation to

produce the image is performed, the front end must be in a state where it is receptive to

requests for services from the kernel. There are two times when this is the case: either a cell in

the front end is currently evaluating (as will be the case when you are calling setMathComÖ

mand() or recompute() from a Mathematica program), or ShareFrontEnd has been called.

Looking at it from the other direction, the only time it will not work is if ShareKernel is in use,

but not ShareFrontEnd, and the computation is triggered by an event in Java. The rule is that if

you want to involve the front end for rendering, and you want to call setMathCommand() or

recompute() from Java in response to a user action in a modeless interface, you need to use

ShareFrontEnd; ShareKernel is not enough. Modal and modeless interfaces and

ShareFrontEnd are discussed in the section "Creating Windows and Other User Interface

Elements".

Drawing Using Java’s Graphics Functions

You saw that the setMathCommand() method of the MathCanvas and MathGraphicsJPanel

classes lets you supply a Mathematica expression whose output is to be displayed. You can also

use a MathCanvas or MathGraphicsJPanel to display a Java Image by using the setImage()

method instead of setMathCommand().

Now look at a simple example of drawing into a Java window from Mathematica. You will con-

tinue to use the same window and MathCanvas you have been working with. If this program

used a MathGraphicsJPanel instead, the portions of the code related to drawing would look

exactly the same. To draw into the MathCanvas, you create an offscreen image of the same

dimensions, get a graphics context for drawing onto it, draw, and then use the setImage()

method of MathCanvas to cause the offscreen image to be displayed. Drawing into an offscreen

image and then blitting it to the screen is a standard technique for flicker-free drawing.

210 J/Link User Guide

Now look at a simple example of drawing into a Java window from Mathematica. You will con-

tinue to use the same window and MathCanvas you have been working with. If this program

used a MathGraphicsJPanel instead, the portions of the code related to drawing would look

exactly the same. To draw into the MathCanvas, you create an offscreen image of the same

dimensions, get a graphics context for drawing onto it, draw, and then use the setImage()

method of MathCanvas to cause the offscreen image to be displayed. Drawing into an offscreen

image and then blitting it to the screen is a standard technique for flicker-free drawing.

offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,
 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
g@drawRect[100, 100, 200, 150];
mathCanvas@setImage[offscreen];

Programs that want to draw manually into a Java window from Mathematica will generally all

have this same structure. It takes just a few more lines of code to turn our MathCanvas into a

scribble program. Here is the complete program (this code is also provided as the file Scrib-

ble.nb in the JLink/Examples/Part1 directory).

Scribble[] :=
JavaBlock[

Module[{frame, mathCanvas, offscreen, g, mml, pts},
frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
JavaShow[frame];
(* Now create the offscreen image and the graphics context
 for drawing into it.
*)
offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,

 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
(* Now create the MathMouseMotionListener that will do the drawing
 and set its mouseDragged event handler callback.
*)
mml = JavaNew["com.wolfram.jlink.MathMouseMotionListener"];
mml@setHandler["mouseDragged", "mouseDraggedFunc"];
mathCanvas@addMouseMotionListener[mml];
mouseDraggedFunc[_, x_, y_, _] :=

(g@drawLine[pts[[-1, 1]], pts[[-1, 2]], x, y];
 mathCanvas@setImage[offscreen];
 mathCanvas@repaintNow[];
 AppendTo[pts, {x,y}];);

(* Initialize the pts list and run the program modally. *)
pts = {{0,0}};
frame@setModal[];
DoModal[];
pts

]
]

Run the program, then click and drag the mouse to draw in the window. Close the window to

end the program and the Scribble function will return the list of points drawn.

J/Link User Guide 211

Run the program, then click and drag the mouse to draw in the window. Close the window to

end the program and the Scribble function will return the list of points drawn.

pts = Scribble[];

If you examine the list of points returned, you will see that they are based on Java’s coordinate

system, which has (0, 0) in the upper left. If you want to plot the points in a Mathematica

graphic, you have to invert the y values. This is demonstrated in the Scribble.nb example

notebook.

There is one new MathCanvas method demonstrated in this program, repaintNow(). In a

computation-intensive program like this, where events are being fired on the user interface

thread very quickly, and the handlers for these events take a nontrivial amount of time to

execute, Java will sometimes delay repainting the window. The drawing becomes very chunky,

with no visual effect for a while and then suddenly all the lines drawn in the last few seconds

will appear. Even calling the standard repaint() method after every new point will not ensure

that the window is updated in a timely manner. To solve this problem, the repaintNow()

method is provided, which forces an immediate redraw of the canvas. If your program relies on

smooth visual feedback from user events that fire rapidly, you should call repaintNow() also,

even if it does not seem necessary on your system. There can be very significant differences

between different platforms and different Java runtimes on the responsiveness of the screen

updating mechanism.

The ability to draw in response to events in a MathCanvas or MathGraphicsJPanel opens up

the possibility for some impressive interactive demonstrations, tutorials, and so on. Two of the

larger example programs provided draw into a MathCanvas from Mathematica: BouncingBalls

(in the section "BouncingBalls: Drawing in a Window") and Spirograph (in the section

"Spirograph").

Bitmaps

You have seen how to draw into a MathCanvas or MathGraphicsJPanel by using an offscreen

image. Another type of image that you can create with Mathematica code and display using

setImage() is a bitmap. In this example you will create an indexed-color bitmap out of Mathe-

matica data and display it. You will use an 8-bit color table, meaning that every data point in

the image will be treated as an index into a 256-element list of colors. You could use a larger

color table if desired.

You closed the frame window in the Scribble example, so you must first create a new frame

and canvas for the bitmap.

212 J/Link User Guide

You closed the frame window in the Scribble example, so you must first create a new frame

and canvas for the bitmap.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[450, 450];
frame@layout[];
JavaShow[frame];

Here is the color table. It is an array of {r,g,b} triplets, with each color component being in the

range 0..255. In this example, colors with low indices are mostly blue, and ones with high

indices are mostly red.

colors = Table[{i, 0, 255 - i}, {i, 0, 255}];

The data is a 400×400 matrix of integers in the range 0..255 (because they are indices into the

256-element color table). In a real application, this data might be read from a file or computed

in some more sophisticated way. If the range of numbers in the data did not span 0..255, you

would have to scale it into that range, or a larger range if you wanted to use a deeper color

table.

data = Table[Round[255 (0.5 + Sin[x]Cos[y]/2)],
{x, Pi/100., 4Pi, Pi/100.}, {y, Pi/100., 4Pi, Pi/100.}];

Here you create the Java objects that represent the color model and bitmap. You can read the

standard Java documentation on these classes for more information.

colorModel = JavaNew["java.awt.image.IndexColorModel", 8, 256,
Flatten[colors], 0, False];

bitmap = JavaNew["java.awt.image.MemoryImageSource", 400, 400,
 colorModel, Flatten[data], 0, 400];

Now create an Image out of the bitmap and display it.

image = frame@getToolkit[]@createImage[bitmap];
mathCanvas@setImage[image];

The Java Console Window

J/Link provides a convenient means to display the Java “console” window. Any output written to

the standard System.out and System.err streams will be directed to this window. If you are

calling Java code that writes diagnostic information to System.out or System.err, then you

can see this output while your program runs. Like most J/Link features, the console window can

be used easily from either Mathematica or Java programs (its use from Java code is described

in "Writing Java Programs that use Mathematica"). To use it from Mathematica, call the

ShowJavaConsole function.

J/Link User Guide 213

ShowJavaConsole@D display the Java console window and begin capturing
output written to System.out and System.err

ShowJavaConsole@"stream"D display the Java console window and begin capturing
output written to the specified stream, which should be
"stdout" for System.out or "stderr" for System.err

ShowJavaConsoleANoneE stop all capturing of output

Showing the console window.

ShowJavaConsole[]

«JavaObject@com.wolfram.jlink.ui.ConsoleWindowD »

Capturing of output only begins when you call ShowJavaConsole, so when the window first

appears it will not have any content that might have been previously written to System.out or

System.err. You will also note that the J/Link console window displays version information

about the J/Link Java component and the Java runtime itself. Calling ShowJavaConsole when

the window is already open will cause it to come to the foreground.

To demonstrate, you can write some output from Mathematica. If you executed the

ShowJavaConsole@D given earlier, then you will see “Hello from Java” printed in the window.

LoadJavaClass["java.lang.System"];
System`out@println["Hello from Java"]

Although it is convenient to demonstrate writing to the window using Mathematica code like

this, this is typically done from Java code instead. Actually, there is one common circumstance

where it is quite useful to use the Java console window for diagnostic output written from Mathe-

matica code. This is the case where you have a “modeless” Java user interface (as described in

the section "Creating Windows and Other User Interface Elements") and you have not used the

ShareFrontEnd function. Recall that in this circumstance, output from calls to Print in Mathe-

matica will not appear in the notebook front end. If you write to System.out instead, as in the

example, then you will always be able to see the output. You might want to do this in other

circumstances just to avoid cluttering up your notebook with debugging output.

Using JavaBeans

JavaBeans is Java’s component architecture. Beans are reusable components that can be manip-

ulated visually in a builder tool. At the code level, a Bean is essentially just a normal Java class

that conforms to a particular design pattern with respect to how its methods are named and

how it supports events and persistence.

JavaBeans has not been mentioned up to this point because there really is not anything special

to be said. Beans are just Java classes, and they can be used and called like any other classes.

It is probably the case that many Java classes you use from Mathematica will be Beans,

whether they advertise themselves to be or not. This is especially true for user interface

components.

214 J/Link User Guide

JavaBeans has not been mentioned up to this point because there really is not anything special

to be said. Beans are just Java classes, and they can be used and called like any other classes.

It is probably the case that many Java classes you use from Mathematica will be Beans,

whether they advertise themselves to be or not. This is especially true for user interface

components.

Beans are typically designed to be used in a visual builder tool, where the programmer is not

writing code and calling named methods directly. Instead, a Bean exposes “properties” to the

builder tool, which can be examined and set using a property editor window. In a typical simple

example, a Bean might have methods named setColor and getColor, and by virtue of this it

would be said to have a property named “color”. A property editor would have a line showing

the name “color” and an edit field where you could type in a color. It might even have a fancy

editor that puts up a color picker window to let you visually select a desired color.

For the purposes of a visual builder tool or other type of automated manipulation, beans try to

hide the low-level details of actual method names. If you want to call methods in a Bean class

from Mathematica code, you call them by name in the usual way, without any consideration of

the “Bean-ness” of the class.

Note that it would be quite possible to add Mathematica functions to J/Link that would provide

explicit support for Bean properties. For example, a function BeanSetProperty could be writ-

ten that would take a Bean object, a property name as a string, and the value to set the prop-

erty to. Then, instead of writing what is currently required:

beanüsetColor@Color`greenD

you could write:

BeanSetProperty@bean, "color", Color`greenD

The BeanSetProperty function lets you write code that manipulates nebulous things called

properties instead of calling specific methods in the Bean class. If you do not see any particular

advantage in the BeanSetProperty style, then you know why there is no special Bean support

along these lines in J/Link. The advantages of working with properties versus directly calling

methods accrues only when you are using a builder tool and not actually writing code by hand.

If you are interested, here are simplistic implementations of BeanSetProperty and BeanGetÖ

Property:

J/Link User Guide 215

BeanSetProperty[bean_?JavaObjectQ, propName_String, val_] :=
Module[{methName = "set" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[val]]

]

BeanGetProperty[bean_?JavaObjectQ, propName_String] :=
Module[{methName = "get" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[]]

]

To make use of events that a JavaBean fires, you can use one of the standard MathListener

classes, as described in the section "Creating Windows and Other User Interface Elements".

JavaBeans often fire PropertyChangeEvents, and you can arrange for Mathematica code to be

executed in response to these events by using a MathPropertyChangeListener or a

MathVetoableChangeListener.

Hosting Applets

J/Link gives you the ability to run most applets in their own window directly from Mathematica.

Although this may seem immensely useful, given the vast number of applets that have been

created, most applets do not export any useful public methods. They are generally standalone

pieces of functionality, and thus they benefit little from the scriptability that J/Link provides.

Still, there are many applets that may be useful to launch from a Mathematica program.

Note that this section is not about writing applets that use the Mathematica kernel. That topic is

covered in "Writing Applets".

AppletViewer@"applet class"D runs the named applet class in its own window. The default
width and height are 300 pixels

AppletViewer@"applet class",paramsD runs the named applet class in its own window, supplying
it the given parameters, which is a list of "name=value"
specifications like those used in an HTML page

Running applets.

J/Link includes an AppletViewer function for running applets. This function takes care of all the

steps of creating the applet instance, providing a frame window to hold it, and starting it run-

ning. The first argument to AppletViewer is the fully qualified name of the applet class. The

second argument is an optional list of parameters in “name=value” format, corresponding to

the parameters supplied to an applet in an HTML page that hosts it. For example, if the

<applet> tag in a web page that hosts an applet looks like this:

216 J/Link User Guide

 <applet code="SomeApplet.class" width=400 height=300>
<param name=foo value=bar>

 </applet>

you would call AppletViewer like this:

AppletViewer@"SomeApplet", 8"width=400", "height=300", "foo=bar"<D;

You will typically supply at least “WIDTH=” and “HEIGHT=” specifications to control the width

and height of the applet window. If you do not specify these parameters, the default width and

height are 300 pixels.

An excellent example of an applet that is useful to Mathematica users is LiveGraphics3D, writ-

ten by Martin Kraus. LiveGraphics3D is an interactive viewer for Mathematica 3D graphics. It

gives you the ability to rotate and zoom images, view them in stereo, and more. If you want to

try the following example, you will need to get the LiveGraphics3D materials, available from

http://wwwvis.informatik.uni-stuttgart.de/~kraus/LiveGraphics3D/. Make sure you put live.Ö

jar onto your CLASSPATH before trying that example, or use the AddToClassPath feature of

J/Link to make it available.

First, load the PolyhedronOperations ` package and create the graphic to display. The LiveG-

raphics3D documentation gives a more general-purpose function for turning a Mathematica

graphics expression into appropriate input for the LiveGraphics3D applet but, for many exam-

ples, using ToString, InputForm, and N is sufficient.

<< PolyhedronOperations`
dodec = ToString@InputForm@

N@Graphics3D@Stellate@Normal@PolyhedronD ata@"Dodecahedron", "Faces"DDDDDDD;

You specify the image to be displayed via the INPUT parameter, which takes a string giving the

InputForm representation of the graphic.

AppletViewer@"Live", 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

The Live applet has a number of keyboard and mouse controls for manipulating the image. You

can read about them in the LiveGraphics3D documentation. Try Alt+S to switch into a stereo

view.

When you are done with an applet, just click the window’s close box.

If the applet needs to refer to other files, you should be aware that AppletViewer sets the

document base to be the directory specified by the "user.dir" Java system property. This will

normally be Mathematica’s current directory (given by Directory[]) at the time that

InstallJava was called.

J/Link User Guide 217

If the applet needs to refer to other files, you should be aware that AppletViewer sets the

document base to be the directory specified by the "user.dir" Java system property. This will

normally be Mathematica’s current directory (given by Directory[]) at the time that

InstallJava was called.

Most applets expose no public methods useful for controlling from Mathematica, so there is

nothing to do but start them up with AppletViewer and then let the user close the window

when they are finished. The Live applet is an exception~it provides a full set of methods to

allow the view point, spin, and so on to be modified by Mathematica code. These methods are

in the Live class, so to call them you need an instance of the Live class. The way you used

AppletViewer earlier does not give us any instance of the applet class. The construction and

destruction of the applet instance was hidden within the internals of AppletViewer. You can

also call AppletViewer with an instance of an applet class instead of just the class name. This

lets you manage the lifetime of the applet instance.

applet = JavaNew@"Live"D;
AppletViewer@applet, 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

Now you can call methods on the applet instance. See the LiveGraphics3D documentation for

the full set of methods. This scriptability opens up lots of possibilities, such as programming

“flyby” views of objects, or creating buttons that jump the image into certain orientations or

spins.

appletüsetMagnification@0.5D;

When you are done, you call ReleaseJavaObject to release the applet instance. This can be

done before or after the applet window is closed.

ReleaseJavaObject@appletD

Periodical Tasks

The section "Creating Windows and Other User Interface Elements" described the ShareKernel

function and how it allows Java and the notebook front end to share the kernel’s attention. A

side benefit of this functionality is that it becomes easy to provide a means whereby users can

schedule arbitrary Mathematica programs to run at periodical intervals during a session. Say

you have a source that provides continuously updated financial data and you want to have

some variables in Mathematica constantly reflect the current values. You have written a pro-

gram that goes out and reads from the source to get the information, but you have to manually

run this program all the time while you are working. A better solution would be to set up a

periodical task that pulls the data from the source and sets the variables every 15 seconds.

218 J/Link User Guide

AddPeriodical@expr,secsD cause expr to be evaluated every secs seconds while the
kernel is idle

RemovePeriodical@idD stop scheduling of the periodical represented by id

Periodical@idD return a list 8HoldForm@exprD, secs< showing the expres-
sion and time interval associated with the periodical
represented by id

Periodicals@D return a list of the id numbers of all currently scheduled
periodicals

SetPeriodicalInterval@idD reset the periodical interval for the periodical task repre-
sented by id

$ThisPeriodical holds the id of the currently executing periodical task

Controlling periodical tasks.

You can set up such a task with the AddPeriodical function.

id = AddPeriodical@updateFinancialData@D, 15D;

AddPeriodical returns an integer ID number that you must use to identify the task~for exam-

ple, when it comes time to stop scheduling it by calling RemovePeriodical. AddPeriodical

relies on kernel sharing, so it calls ShareKernel if it has not already been called. There is no

limit on the number of periodicals that can be established.

After scheduling that task, updateFinancialData[] will be executed every 15 seconds while

the kernel is idle. Note that periodical tasks are run only when the kernel is not busy~they do

not interrupt other evaluations. If the kernel is in the middle of another evaluation when the

allotted 15 seconds elapses, the task will wait to be executed until immediately after the compu-

tation finishes. Any such delayed periodicals are guaranteed to be executed as soon as the

kernel finishes with the current computation. They cannot be indefinitely delayed if the user is

busy with numerous computations in the front end or in Java. The converse to these facts is

also true~if a periodical is executing when the user evaluates a cell in the front end, the evalua-

tion will not be able to start until all periodicals finish, but it is guaranteed to start immediately

thereafter.

To remove a single periodical task, use RemovePeriodical, supplying the ID number of the

periodical as the argument. To remove all periodical tasks, use

RemovePeriodical@Periodicals@DD. Periodical tasks are all removed if you call

UnshareKernel@D with no arguments, which turns off all kernel sharing. You would then need

to use AddPeriodical again to reestablish periodical tasks.

You can reset the scheduling interval for a periodical task by calling SetPeriodicalInterval,

which is new in J/Link 2.0. This line makes the financial data periodical execute every 10 sec-

onds, instead of 15 as shown earlier.

J/Link User Guide 219

You can reset the scheduling interval for a periodical task by calling SetPeriodicalInterval,

which is new in J/Link 2.0. This line makes the financial data periodical execute every 10 sec-

onds, instead of 15 as shown earlier.

SetPeriodicalInterval[id, 10]

Sometimes you might want to change the interval for a periodical task or remove it entirely

from within the code of the task itself. $ThisPeriodical is a variable that holds the ID of the

currently executing periodical task. It will only have a value during the execution of a periodical

task. You use $ThisPeriodical from within your periodical task to obtain its ID so that you can

call RemovePeriodical or SetPeriodicalInterval.

Periodical tasks do not necessarily have anything to do with Java, nor do they need to use Java.

Technically, Java does not even need to be running. However, because Java is used by the

internals of ShareKernel to yield the CPU, if Java is not running then setting a periodical task

will cause the kernel to keep the CPU continuously busy. Periodical task functionality is included

in J/Link because it is a simple extension to ShareKernel, and it does have some nice uses in

association with Java.

A final note about periodical tasks is that they do not cause output to appear in the front end.

Look at this attempt.

id = AddPeriodical@Print@"hello"D, 10D;

The programmer expects to get hello printed in his notebook every 10 seconds, but nothing

happens. During the time when periodicals are executed, $ParentLink is not assigned to the

front end (or Java). Results or side effects like Print output, messages, or graphics vanish into

the ether.

Before proceeding, clean up the periodical tasks you created.

RemovePeriodical@Periodicals@DD;

Some Special Number Classes

Preamble

There is a set of special number-related classes in Java that J/Link maps to their Mathematica

numeric representation. Like strings and arrays, objects of these number classes have an

important property: although they are objects in Java, they have a meaningful “by value”

220 J/Link User Guide

There is a set of special number-related classes in Java that J/Link maps to their Mathematica

numeric representation. Like strings and arrays, objects of these number classes have an

representation in Mathematica, so it is convenient for J/Link to automatically convert them to

numbers as they are returned from Java to Mathematica, and back to objects as they are sent

from Mathematica to Java.

These classes are the so-called “wrapper” classes that represent primitive types (Byte, InteÖ

ger, Long, Double, and so on), BigDecimal and BigInteger, and any class used to represent

complex numbers. The treatment of these classes is described in this section.

The “Wrapper” Classes: Integer, Float, Boolean, and Others

Java has a set of so-called “wrapper” classes that represent primitive types. These classes are

Byte, Character, Short, Integer, Long, Float, Double, and Boolean. The wrapper classes

hold single values of their respective primitive types, and are necessary to allow everything in

Java to be represented as a subclass of Object. This lets various utility methods and data struc-

tures that deal with objects handle primitive types in a straightforward way. It is also necessary

for Java’s reflection capabilities.

If you have a Java method that returns one of these objects, it will arrive in Mathematica as an

integer (for Byte, Character, Short, Integer, and Long), real number (for Float and DouÖ

ble), or the symbols True or False (for Boolean). Likewise, a Java method that takes one of

these objects as an argument can be called from Mathematica with the appropriate raw Mathe-

matica value. The same rules hold true for arrays of these objects, which are mapped to lists of

values.

In the unlikely event that you want to defeat these automatic “pass by value” semantics, you

can use the ReturnAsJavaObject and JavaObjectToExpression functions, discussed in

"References and Values".

Complex Numbers

You have seen that Java number types (e.g., byte, int, double) are returned to Mathematica

as integers and reals, and integers and reals are converted to the appropriate types when sent

as arguments to Java. What about complex numbers? It would be nice to have a Java class

representing complex numbers that mapped directly to Mathematica’s Complex type, so that

automatic conversions would occur as they were passed back and forth between Mathematica

and Java. Java does not have a standard class for complex numbers, so J/Link lets you name

the class that you want to participate in this mapping.

J/Link User Guide 221

SetComplexClass@"classname"D set the class to be mapped to complex numbers in
Mathematica

GetComplexClass@D return the class currently used for complex numbers

Setting the class for complex numbers.

You can use any class you like as long as it has the following properties:

1. A public constructor that takes two doubles (the real and imaginary parts, in that order)

2. Methods that return the real and imaginary parts, having the following signatures:

public double re();
public double im();

Say that you are doing some computations with complex numbers in Java, and you want to

interact with these methods from Mathematica. You like to use the complex number class

available from netlib. This class is named ORG.netlib.math.complex.Complex and is avail-

able at http://www.netlib.org/java/. You use the SetComplexClass function to specify the

name of the class:

SetComplexClass@"ORG.netlib.math.complex.Complex"D;

Now any method or field that takes an argument of type ORG.netlib.math.complex.Complex

will accept a Mathematica complex number, and any object of class ORG.netlib.math.complexÖ

.Complex returned from a method or field will automatically be converted into a complex

number in Mathematica. The same holds true for arrays of complex numbers.

Note that you must call SetComplexClass before you load any classes that use complex num-

bers, not merely before you call any methods of the class.

BigInteger and BigDecimal

Java has standard classes for arbitrary-precision floating-point numbers and arbitrary-precision

integers. These classes are java.math.BigDecimal and java.math.BigInteger, respec-

tively. Because Mathematica effortlessly handles such “bignums,” J/Link maps BigInteger to

Mathematica integers and BigDecimal to Mathematica reals. What this means is that any Java

method or field that takes, say, a BigInteger can be called from Mathematica by passing an

integer. Likewise, any method or field that returns a BigDecimal will have the value returned

to Mathematica as a real number.

222 J/Link User Guide

Ragged Arrays

Java allows arrays that are deeper than one dimension to be “ragged,” or non-rectangular,

meaning that they do not have the same length at every position at the same level. For exam-

ple, {{1,2,3},{4,5},{6,7,8}} is a ragged two-dimensional array. J/Link allows you to send

and receive ragged arrays, but it is not the default behavior. The reason for this is simply

efficiency~the MathLink library has functions that allow very efficient transfer of rectangular

arrays of most primitive types (e.g., byte, int, double, and so on), whereas ragged ones have

to be picked apart tediously with a series of individual calls to get every piece. This all happens

deep inside J/Link, so you do not have to be concerned with the mechanics of array passing,

but it has a huge impact on speed. To maximize speed, J/Link assumes that arrays of primitive

types are rectangular. You can toggle back and forth between allowing and rejecting ragged

arrays by calling the AllowRaggedArrays function with either True or False.

AllowRaggedArraysATrueE allow ragged (i.e., nonrectangular) arrays to be sent to
Java

Ragged array support.

With AllowRaggedArrays@TrueD, sending of arrays deeper than one dimension is greatly

slowed. Here is an example of array behavior and how it is affected. Assume the class Testing

has the following method, which takes a two-dimensional array of ints and simply returns it:

public static int[][] intArrayIdentity(int[][] a) {
return a;

}

Look what happens if you call it with a ragged array.

LoadClass@"Testing"D;
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D

Java::argxs1 :
The static method Testing`intArrayIdentity was called with an incorrect

number or type of arguments. The argument was 881,2,3<,84,5<<.
$Failed

An error occurs because the Mathematica definition for the Testing`intArrayIdentity()

function requires that its argument be a two-dimensional rectangular array of integers. The call

never even gets out of Mathematica.

Here you turn on support for ragged arrays, and the call works. This requires modifications in

both the Mathematica-side type checking on method arguments and the Java-side array-read-

ing routines.

J/Link User Guide 223

Here you turn on support for ragged arrays, and the call works. This requires modifications in

both the Mathematica-side type checking on method arguments and the Java-side array-read-

ing routines.

AllowRaggedArrays@TrueD
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D
881, 2, 3<, 84, 5<<

It is a good idea to turn off support for ragged arrays as soon as you no longer need it, since it

slows arrays down so much.

AllowRaggedArrays@FalseD

Implementing a Java Interface with Mathematica Code

You have seen how J/Link lets you write programs that use existing Java classes. You have also

seen how you can wire up the behavior of a Java user interface via callbacks to Mathematica via

the MathListener classes. You can think of any of these MathListener classes, such as

MathActionListener, as a class that “proxies” its behavior to arbitrary user-defined Mathemat-

ica code. It is as if you have a Java class that has its implementation written in Mathematica.

This functionality is extremely useful because it greatly extends the set of programs you can

write purely in Mathematica, without resorting to writing our own Java classes.

ImplementJavaInterface@"interfaceName",8"methName"->"mathFunc",…<D

create an instance of a Java class that implements the
named Java interface by calling back to Mathematica
according to the given mappings of Java methods to
Mathematica functions

Implementing a Java interface entirely in Mathematica.

It would be nice to be able to take this behavior and generalize it, so that you could take any

Java interface and implement its methods via callbacks to Mathematica functions, and do it all

without having to write any Java code. The ImplementJavaInterface function, new in J/Link

2.0, lets you do precisely that. This function is easier to understand with a concrete example.

Say you are writing a Mathematica program that uses J/Link to display a Java window with a

Swing menu, and you want to script the behavior of the menu in Mathematica. The Swing

JMenu class fires events to registered MenuListeners, so what you need is a class that imple-

ments MenuListener by calling into Mathematica. A quick glance at the section on MathListen-

MathMenuListener class for you. You could choose to

write your own implementation of such a class, and in fact this would be very easy, even trivial,

since you would make it a subclass of MathListener and inherit virtually all the functionality

you would need. For the sake of this discussion, assume that you choose not to do that, per-

haps because you do not know Java or you do not want to deal with all the extra steps required

for that solution. Instead, you can use ImplementJavaInterface to create such a Java class

with a single line of Mathematica code:

224 J/Link User Guide

It would be nice to be able to take this behavior and generalize it, so that you could take any

Java interface and implement its methods via callbacks to Mathematica functions, and do it all

without having to write any Java code. The ImplementJavaInterface function, new in J/Link

2.0, lets you do precisely that. This function is easier to understand with a concrete example.

Say you are writing a Mathematica program that uses J/Link to display a Java window with a

Swing menu, and you want to script the behavior of the menu in Mathematica. The Swing

JMenu class fires events to registered MenuListeners, so what you need is a class that imple-

ers reveals that J/Link does not provide a MathMenuListener class for you. You could choose to

write your own implementation of such a class, and in fact this would be very easy, even trivial,

since you would make it a subclass of MathListener and inherit virtually all the functionality

you would need. For the sake of this discussion, assume that you choose not to do that, per-

haps because you do not know Java or you do not want to deal with all the extra steps required

for that solution. Instead, you can use ImplementJavaInterface to create such a Java class

with a single line of Mathematica code:

mathMenuListener =
ImplementJavaInterface["javax.swing.event.MenuListener",

{"menuSelected" -> "menuSelectedFunc",
 "menuCanceled" -> "menuCanceledFunc",
 "menuDeselected" -> "menuDeselectedFunc"}

];
myMenu@addMenuListener[mathMenuListener];

...

(* Later, define the three Mathematica event-handler functions: *)
menuSelectedFunc[menuEvent_] := ...

menuCanceledFunc[menuEvent_] := ...

menuDeselectedFunc[menuEvent_] := ...

The first argument to ImplementJavaInterface is the Java interface or list of interfaces you

want to implement. The second argument is a list of rules that associate the name of a Java

method from one of the interfaces with the name of a Mathematica function to call to imple-

ment that method. The Mathematica function will be called with the same arguments that the

Java method takes. What ImplementJavaInterface returns is a Java object of a newly created

class that implements the named interface(s). You use it just like any JavaObject obtained by

calling JavaNew or through any other means. It is just as if you had written your own Java class

that implemented the named interface by calling the associated Mathematica functions, and

then called JavaNew to create an instance of that class.

It is not necessary to associate every method in the interface with a Mathematica function. Any

Java methods you leave out of your list of mappings will be given a default Java implementation

that returns null. If this is not an appropriate return value for the method (e.g., if the method

returns an int) and the method gets called at some point an exception will be thrown. Gener-

ally, this exception will propagate to the top of the Java call stack and be ignored, but it is

recommended that you implement all the methods in the Java interface.

The ImplementJavaInterface function makes use of the “dynamic proxy” capability introduced

in Java 1.3. It will not work in Java versions earlier than 1.3. All Java runtimes bundled with

Mathematica 4.2 and later are at Version 1.3 or later. If you have Mathematica 4.0 or 4.1, the

ImplementJavaInterface function is another reason to make sure you have an up-to-date

Java runtime for your system.

J/Link User Guide 225

The ImplementJavaInterface function makes use of the “dynamic proxy” capability introduced

in Java 1.3. It will not work in Java versions earlier than 1.3. All Java runtimes bundled with

Mathematica 4.2 and later are at Version 1.3 or later. If you have Mathematica 4.0 or 4.1, the

ImplementJavaInterface function is another reason to make sure you have an up-to-date

Java runtime for your system.

At first glance, the ImplementJavaInterface function might seem to give us the capability to

write arbitrary Java classes in the Mathematica language, and to some extent that is true. One

important thing you cannot do is extend, or subclass, an existing Java class. You also cannot

add methods that do not exist in the interface you are implementing. Event-handler classes are

a good example of the type of classes for which this facility is useful. You might think that the

MathListener classes are rendered obsolete by ImplementJavaInterface, and it is true that

their functionality can be duplicated with it. The MathListener classes are still useful for Java

versions earlier than 1.3, but most importantly they are useful for writing pure Java programs

that call Mathematica. Using a class implemented in Mathematica via ImplementJavaInterface

in a Java program that calls Mathematica would be possible, but quite cumbersome. If you want

a dual-purpose class that is as easy to use from Mathematica as from Java, you should write

your own subclass of MathListener. One poor reason for choosing to use

ImplementJavaInterface instead of writing a custom Java class is that you are worried about

complicating your application by requiring it to include its own Java classes in addition to Mathe-

matica code. As explained in "Deploying Applications That Use J/Link", it is extremely easy to

include supporting Java classes in your application. Your users will not require any extra installa-

tion steps nor will they need to modify the Java class path.

Writing Your Own Installable Java Classes

Preamble

The previous sections have shown how to load and use existing Java classes. This gives Mathe-

matica programmers immediate access to the entire universe of Java classes. Sometimes,

though, existing Java classes are not enough, and you need to write your own.

J/Link essentially obliterates the boundary between Java and Mathematica, letting you pass

expressions of any type back and forth and use Java objects in Mathematica in a meaningful

way. This means that when writing your own Java classes to call from Mathematica, you usually

do not need to do anything special. You write the code in exactly the same way as you would if

226 J/Link User Guide

J/Link essentially obliterates the boundary between Java and Mathematica, letting you pass

expressions of any type back and forth and use Java objects in Mathematica in a meaningful

way. This means that when writing your own Java classes to call from Mathematica, you usually

you wanted to use the class only from Java. (One important exception to this rule is that

because it is comparatively slow to call into Java from Mathematica, you might need to design

your classes in a way that will not require an excessive number of method calls from Mathemat-

ica to get the job done. This issue is discussed in detail in "Overhead of Calls to Java".)

In some cases, you might want to exert more direct control over the interaction with Mathemat-

ica. For example, you might want a method to return something different to Mathematica than

what the method itself returns. Or you might want the method to not just return something,

but also trigger a side effect in Mathematica~for example, printing something or displaying a

message under certain conditions. You can even have an extended “dialog” with Mathematica

before your method returns, perhaps invoking multiple computations in Mathematica and read-

ing their results. You might also want to write a class of the MathListener type that calls into

Mathematica as the result of some event triggered in Java.

If you do not want to do any of these things, then you can happily ignore this section. The

whole point of J/Link is to make unnecessary the need to be concerned about the interaction

with Mathematica through MathLink. Most programmers who want to write Java classes to be

used from Mathematica will just write Java classes, period, without thinking about Mathematica

or J/Link. Those programmers who want more control, or want to know more about the possibili-

ties available with J/Link, read on.

The issues discussed in this section require some knowledge of MathLink programming (or,

more precisely, J/Link programming using the Java methods that use MathLink), which is dis-

cussed in detail in "Writing Java Programs that use Mathematica". The fact that you meet some

of these methods and issues here is a consequence of the false but useful dichotomy, noted in

the Introduction, between using MathLink to write “installable” functions to be called from

Mathematica and using MathLink to write front ends for Mathematica. MathLink is always used

in the same way, it is just that virtually all of it is handled for you in the installable case. This

section is about how to go beyond this default behavior, so you will be making direct J/Link

calls to read and write to the link. Thus you will encounter concepts, classes, and methods in

this section that are not explained until "Writing Java Programs That Use Mathematica".

Some of the discussion in this section will compare and contrast the process of writing an

installable program in C. This is designed to help experienced MathLink programmers unders-

tand how J/Link works, and also to convince you that J/Link is a superior solution to using C,

C++, or FORTRAN.

J/Link User Guide 227

Installable Functions~The Old Way

Writing a so-called “installable” or “template” program in C requires a number of steps. If you

have a file foo.c that contains a function foo, to call it from Mathematica you must first write a

template (.tm) file that contains a template entry describing how you want foo to be called

from Mathematica, what types of arguments it takes, and what it returns. You then pass this

.tm file through a tool called mprep, which writes a file of C code that manages some, possibly

all, of the MathLink-related aspects of the program. You also need to write a simple main rou-

tine, which is always the same. You then compile all of these files, resulting in an executable for

just one platform.

Two big drawbacks of this method are that you need to write a template entry for every single

function you want to call (imagine doing that for a whole function library), and the compiled

program is not portable to other platforms. The biggest drawback, however, is that there is no

automatic support for anything but the simplest types. If you want to do something as basic as

returning a list of integers, you need to write the MathLink calls to do that yourself. And forget

about object-oriented programming, as there is no way to pass “objects” to Mathematica.

Installable Functions in Java

J/Link makes all those steps go away. As you have seen all throughout this tutorial, you can

literally call any method in any class, without any preparation.

It is only in cases where the default behavior of calling a method and receiving its result is not

enough that you need to write specialty Java code. The rest of this section will examine some of

the special techniques that can be used.

Setting Up Definitions in Mathematica When Your Class Is Loaded

Template entries in .tm files required by installable MathLink programs written in C have two

features that might appear to be lost in J/Link. The first feature is the ability to specify arbitrary

Mathematica code to be evaluated when the program is first “installed.” This is done by using

the :Evaluate: line in a template entry. The second feature is the ability to specify the way in

which the function is to be called from Mathematica, including the name of the Mathematica

function that maps to the C function, its argument sequence, how those arguments are mapped

to the ones provided to the C function, and possibly some processing to be done on them

before they are sent. This information is specified in the :Pattern: and :Arguments: lines of

a template entry.

These two features are related to each other, because they both rely on the ability to specify

Mathematica code that is loaded when an external program is installed. J/Link gives you this

ability and more, through two special methods called onLoadClass() and onUnloadClass().

When a class is loaded into Mathematica, either directly through LoadJavaClass or indirectly by

calling JavaNew, it is examined to see if it has a method with the following signature:

228 J/Link User Guide

These two features are related to each other, because they both rely on the ability to specify

Mathematica code that is loaded when an external program is installed. J/Link gives you this

ability and more, through two special methods called onLoadClass() and onUnloadClass().

When a class is loaded into Mathematica, either directly through LoadJavaClass or indirectly by

calling JavaNew, it is examined to see if it has a method with the following signature:

public static void onLoadClass(KernelLink ml);

If such a method is present, it will be called after all the method and field definitions for the

class are set up in Mathematica. Because a class can only be loaded once in a Java session, this

method will only be called once in the lifetime of a single Java runtime, although it may be

called more than once in the lifetime of a single Mathematica kernel (because the user can

repeatedly launch and quit the Java runtime). The KernelLink that is provided as an argument

to this method is of course the link back to Mathematica.

A typical use for this feature would be to define the text for an error message issued by one of

the methods in the class. Here is an example:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyClass::sun = \"The foo() method can only be called on

Sunday.\"");
ml.discardAnswer();

}

Note that this method throws MathLinkException. Your onLoadClass() method can throw

any exceptions you like (a MathLinkException would be typical). This will not interfere with

the matching of the expected signature for onLoadClass(). If an exception is thrown during

onLoadClass, it will be handled gracefully, meaning that the normal operation of

LoadJavaClass will not be affected. The only exception to this rule is if your code throws an

exception while it is interacting with the link to the kernel, and more specifically, in the period

between the time that it sends a computation to the kernel and the time that it begins to read

the result. In other words, exceptions you throw will not break the LoadJavaClass mechanism,

but it is up to you to make sure that you do not screw up the link’s state by starting something

you do not finish.

Another reason to use onLoadClass() would be if you wanted to create a Mathematica func-

tion for users to call that “wrapped” a static method call, providing it with a preferred name or

argument sequence. If you have a class named MyClass with the method public static

J/Link User Guide 229

Another reason to use onLoadClass() would be if you wanted to create a Mathematica func-

tion for users to call that “wrapped” a static method call, providing it with a preferred name or

void myMethod(double[a]), the definition that will be automatically created for it in Mathemat-

ica will require that its argument be a list of real numbers or integers. Say you want to add a

definition named MyMethod, having the traditional Mathematica capitalization, and you also

want this function automatically to use N on its argument so that it will work for anything that

will evaluate to a list of numbers, such as {Pi, 2Pi, 3Pi}. Here is how you would set up such

an additional definition:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyMethod[x_] := myMethod[N[x]]");
ml.discardAnswer();

}

In other words, if you are not happy with the interface to the class that will automatically be

created in Mathematica, you can use onLoadClass() to set up the desired definitions without

changing the Java interface.

The Mathematica context that will be current when onLoadClass() is called is the context in

which all the class’ static methods and fields are defined. That is why in the preceding example

the definition was made for MyMethod and not MyClass`MyMethod. This is important since you

cannot know the correct context in your Java code because it is determined by the user via the

AllowShortContext option to LoadJavaClass.

It is generally not a good idea to use onLoadClass() to send a lot of code to Mathematica.

This will make the behavior of your class hard for people to understand because the Mathemat-

ica code is hidden, and also inflexible since you would have to recompile it to make changes to

the embedded Mathematica code. If you have a lot of code that needs to accompany a Java

class, it is better to put that code into a Mathematica package file that you or your users load.

That is, rather than having users load a class that dumps a lot of code into Mathematica, you

should have your users load a Mathematica package that loads your class. This will provide the

greatest flexibility for future changes and maintenance.

Finally, there is no reason why your onLoadClass() method needs to restrict itself to making

J/Link calls. You could perform operations specific to the Java side, for example, writing some

debugging information to the Java console window, opening a file for writing, or whatever else

you desire.

Similar to the handling of the onLoadClass() method, the onUnloadClass() method is called

when a class is unloaded. Every loaded class is unloaded automatically by UninstallJava right

before it quits the Java runtime. You can use onUnloadClass() to remove definitions created

by onLoadClass(), or perform any other clean-up you would like. The signature of onUnloadÖ

Class() must be the following, although it can throw any exceptions:

230 J/Link User Guide

Similar to the handling of the onLoadClass() method, the onUnloadClass() method is called

when a class is unloaded. Every loaded class is unloaded automatically by UninstallJava right

before it quits the Java runtime. You can use onUnloadClass() to remove definitions created

by onLoadClass(), or perform any other clean-up you would like. The signature of onUnloadÖ

Class() must be the following, although it can throw any exceptions:

public static void onUnloadClass(KernelLink ml);

Note that the meaning of loading and unloading classes here refers to being loaded by Mathe-

matica with LoadJavaClass either directly or indirectly. It does not refer to the loading and

unloading of classes internally by the Java runtime. Class loading by the Java runtime occurs

when the class is first used, which may have occurred long before LoadJavaClass was called

from Mathematica.

Manually Returning a Result to Mathematica

The default behavior of a Java method called from Mathematica is to return to Mathematica

exactly what the method itself returns. There are times, however, when you want to return

something else. For example, you might want to return an integer in some circumstances, and

a symbol in others. Or you might want a method to return one thing when it is being called

from Java, and return something different to Mathematica. In these cases, you will need to

manually send a result to Mathematica before the method returns.

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want almost the identical behavior to the standard class java.io.FileInputStream, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the read method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathemati-

ca’s built-in file-reading functions return.

J/Link User Guide 231

import java.io.*;
import com.wolfram.jlink.*;

public class MyFileReader extends FileInputStream {

<<constructors, other methods deleted>>

public int read() {

int i = super.read();
if (i == -1) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.beginManual();
try {

link.putSymbol("EndOfFile");
} catch (MathLinkException e) {}

}
}
return i;

}
}

If the file has reached the end, i will be -1, and you want to manually return something to

Mathematica. The first thing you need to do is get a KernelLink object that can be used to

communicate with Mathematica. This is obtained by calling the static method

StdLink.getLink(). If you have written installable MathLink programs in C, you will recognize

the choice of names here. A C program has a global variable named stdlink that holds the link

back to Mathematica. J/Link has a StdLink class that has a few methods related to this link

object.

The first thing you do is check whether getLink() returns null. It will never be null if the

method is being called from Mathematica, so you can use this test to determine whether the

method is being called from Mathematica or as part of a normal Java program. In this way, you

can have a method that can be used from Java in the usual way when a Mathematica kernel is

nowhere in sight. The getLink() call works no matter if the method is called directly from

Mathematica, or indirectly as part of a chain of methods triggered by a call from Mathematica.

Once you have verified that a link back to the kernel exists, the first thing to do is inform J/Link

that you will be sending the result back to Mathematica yourself, so it should not try automati-

cally to send the method’s return value. This is accomplished by calling the beginManual()

method on the KernelLink object.

232 J/Link User Guide

Once you have verified that a link back to the kernel exists, the first thing to do is inform J/Link

that you will be sending the result back to Mathematica yourself, so it should not try automati-

cally to send the method’s return value. This is accomplished by calling the beginManual()

method on the KernelLink object.

You must call beginManual() before you send any part of a result back to Mathematica. If you

fail to do this, the link will get out of sync and the next J/Link call you make from Mathematica

will probably hang. It is safe to call beginManual() more than once, so you do not have to

worry that your method might be called from another method that has already called

beginManual().

Returning to the example program, the next thing after beginManual() is to make the

required “put”-type calls to send the result back to Mathematica (in this case, just a single

putSymbol()). As always, these calls can throw a MathLinkException, so you need to wrap

them in a try/catch block. The catch handler is empty, since there really is not anything to

do in the unlikely event of a MathLink error. The internal J/Link code that wraps all method calls

will handle the cleanup and recovery from any MathLink error that might have occurred calling

putSymbol(). You do not need to do anything for MathLinkExceptions that occur while you

are putting a result manually. The method call will return $Failed to Mathematica

automatically.

Installable programs written in C can also manually send results back. This is indicated by using

the Manual keyword in the function’s template entry. Thus for C programs the manual/auto-

matic decision must be made at compile time, whereas with J/Link it is a runtime switch. You

can have it both ways with J/Link~a normal automatic return in some circumstances and a

manual return in others, as the preceding example demonstrates.

Requesting Evaluations by Mathematica

So far, you have seen only cases where a Java method has a very simple interaction with

Mathematica. It is called and returns a result, either automatically or manually. There are many

circumstances, however, where you might want to have a more complex interaction with Mathe-

matica. You might want a message to appear in Mathematica, or some Print output, or you

might want to have Mathematica evaluate something and return the answer to you. This is a

completely separate issue from what you want to return to Mathematica at the end of your

method~you can request evaluations from the body of a method whether it returns its final

result manually or not.

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into Java, the Java code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a Java method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the Java side. Thus you would

expect to encounter essentially all the same issues that are discussed in "Writing Java Programs

That Use Mathematica", and you would need to understand the full J/Link Java-side API.

J/Link User Guide 233

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into Java, the Java code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a Java method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the Java side. Thus you would

expect to encounter essentially all the same issues that are discussed in "Writing Java Programs

That Use Mathematica", and you would need to understand the full J/Link Java-side API.

The full treatment of the MathLink and KernelLink interfaces is presented in "Writing Java

Programs That Use Mathematica". This section discusses a few special methods in KernelLink

that are specifically for use by “installed” methods. You have already seen one, the beginManÖ

ual() method. Now you will treat the message(), print(), and evaluate() methods.

The task of issuing a Mathematica message from a Java method and triggering some Print

output are so commonly done that the KernelLink interface has special methods for these

operations. The method message() performs all the steps of issuing a Mathematica message. It

comes in two signatures:

public void message(String symtag, String arg);
public void message(String symtag, String[] args);

The first form is for when you just have a single string argument to be slotted into the message

text, and the second form is for if the message text needs two or more arguments. You can

pass null as the second argument if the message text needs no arguments.

The print() method performs all the steps necessary to invoke Mathematica’s Print function:

public void print(String s);

Here is an example method that uses both. Assume that the following messages are defined in

Mathematica (this could be from loading a package or during this class’ onLoadClass()

method):

Foo::arg = "The `1` argument to foo must be greater than or equal to 0."

234 J/Link User Guide

Here is the Java code:

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.print("inside foo");
if (x < 0)

link.message("Foo::arg", "first");
if (y < 0)

link.message("Foo::arg", "second");
}
return Math.sqrt(x) * Math.sqrt(y);

}

Note that print() and message() send the required code to Mathematica and also read the

result from the link (it will always be the symbol Null). They do not throw MathLinkExcepÖ

tion so you do not have to wrap them in try/catch blocks.

Here is what happens when you call foo():

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
foo@1.0, -2.0D

inside foo

Foo::arg : The second argument to foomust be greater than or equal to 0.
Indeterminate

Note that you automatically get Indeterminate returned to Mathematica when a floating-point

result from Java is NaN (“Not-a-Number”).

The methods print() and message() are convenience functions for two special cases of the

more general notion of sending intermediate evaluations to Mathematica before your method

returns a result. The general means of doing this is to wrap whatever you send to Mathematica

in EvaluatePacket, which is a signal to the kernel that this is not the final result, but rather

something that it should evaluate and send the result back to Java. You can explicitly send the

EvaluatePacket head, or you can use one of the methods in KernelLink that use

EvaluatePacket for you. These methods are:

void evaluate HString sL throws MathLinkException;
String evaluateToInputForm HString s, int pageWidthL;
String evaluateToOutputForm HString s, int pageWidthL;
byte@D evaluateToImage HString s, int width, int heightL;
byte@D evaluateToTypeset HString s, int pageWidth, boolean useStdFormL;

These methods are discussed in "Writing Java Programs that use Mathematica" (actually, they

also come in several more flavors with other argument sequences). Here is a simple example:

J/Link User Guide 235

These methods are discussed in "Writing Java Programs that use Mathematica" (actually, they

also come in several more flavors with other argument sequences). Here is a simple example:

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

try {
link.evaluate("2+2");
// Wait for, and then read, the answer.
link.waitForAnswer();
int sum1 = link.getInteger();

// evaluateToOutputForm makes the result come back as a
// string formatted in OutputForm, and all in one step
// (no waitForAnswer call needed).
String s = link.evaluateToOutputForm("3+3");
int sum2 = Integer.parseInt(s);

// If you want, put the whole evaluation piece by piece,
// including the EvaluatePacket head.
link.putFunction("EvaluatePacket");
link.putFunction("Plus", 2);
link.put(4);
link.put(4);
link.waitForAnswer();
int sum3 = link.getInteger();

} catch (MathLinkException e) {
// The only type of mathlink error we are likely to get
// is from a "get" function when what we are trying to
// get is not the type of expression that is waiting. We
// just clear the error state, throw away the packet we
// are reading, and let the method finish normally.
link.clearError();
link.newPacket();

}
}
return Math.sqrt(x) * Math.sqrt(y);

}

236 J/Link User Guide

Throwing Exceptions

Any exceptions that your method throws will be handled gracefully by J/Link, resulting in the

printing of a message in Mathematica describing the exception. This was discussed in "How

Exceptions Are Handled". If you are sending computations to Mathematica as described in the

previous section, you need to make sure that an exception does not interrupt your code unex-

pectedly. In other words, if you start a transaction with Mathematica, make sure you complete

it or you will leave the link out of sync and future calls to Java will probably hang.

Making a Method Interruptible

If you are writing a method that may take a while to complete, you should consider making it

interruptible from Mathematica. In C MathLink programs, a global variable named MLAbort is

provided for this purpose. In J/Link programs, you call the wasInterrupted() method in the

KernelLink interface:

public boolean wasInterrupted();

Here is an example method that performs a long computation, checking every 100 iterations

whether the user tried to abort it (using the Interrupt Evaluation or Abort Evaluation com-

mands in the Evaluation menu).

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted())

return 0; // Return value will not be seen by Mathematica.
}
return 42;

}

This method returns 0 if it detects an attempt by the user to abort, but this value will never be

seen by Mathematica. This is because J/Link causes a method or constructor call that is aborted

to return Abort[], whether or not you detect the abort in your code. Therefore, if you detect

an abort and want to honor the user’s request, just return some value right away. When J/Link

returns Abort@D, the user’s entire computation is aborted, just as if the Abort@D was embed-

ded in Mathematica code. This means that you do not have to be concerned with any details of

propagating the abort back to Mathematica~all you have to do is return prematurely if you

detect an abort request, and the rest is handled for you.

J/Link makes no distinction between an interrupt request and an abort request; they each

cause wasInterrupted() to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (Alt+. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(Alt+, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a Java method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect

for Java methods, which is to cause wasInterrupted() to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the

Java runtime to quit. If you call a Java method that is not interruptible, killing the Java runtime

in this way is the only way to make the method call terminate (you can also kill the Java run-

time using process control features of your operating system).

J/Link User Guide 237

J/Link makes no distinction between an interrupt request and an abort request; they each

cause wasInterrupted() to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (Alt+. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(Alt+, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a Java method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect

for Java methods, which is to cause wasInterrupted() to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the

Java runtime to quit. If you call a Java method that is not interruptible, killing the Java runtime

in this way is the only way to make the method call terminate (you can also kill the Java run-

time using process control features of your operating system).

Sometimes you might want a Java method to detect an abort and do something other than

cause the entire Mathematica computation to abort. For example, you might want a loop to

stop and return its results up to that point. Note that this is not generally recommended. Users

expect a program to abort and return $Aborted when they issue an abort request. In some

cases, however, especially if the code is not intended for use by a large community, you might

find it useful to use an abort as a “message” to communicate some information to your Java

code instead of just having the computation aborted. This idea is similar to Mathematica’s

CheckAbort function, which allows you to detect an abort and absorb it so that it does not

propagate further and abort the entire computation. To “absorb” the abort in your Java code so

that J/Link does not return Abort@D, simply call the clearInterrupt() method:

public void clearInterrupt();

238 J/Link User Guide

Here is an example:

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted()) {

link.clearInterrupt();
return resultSoFar; // This is the value that will be returned

to Mathematica
}

}
...
return 42;

}

Writing Your Own Event Handler Code

"Handling Events with Mathematica Code: The “MathListener” Classes" introduced the topic of

triggering calls into Mathematica as a response to events fired in Java, such as clicking a but-

ton. A set of classes derived from MathListener is provided by J/Link for this purpose. You are

not required to use the provided MathListener classes, of course. You can write your own

classes to handle events and put calls into Mathematica directly into their code. All the event

handler classes in J/Link are derived from the abstract base class MathListener, which takes

care of all the details of interacting with Mathematica, and also provides the setHandler()

methods that you use to associate events with Mathematica code. Users who want to write their

own MathListener-style classes (for example, for one of the Swing-specific event listener

interfaces, which J/Link does not provide) are strongly encouraged to make their classes sub-

classes of MathListener to inherit all this functionality. You should examine the source code for

MathListener, and also one of the concrete classes derived from it (MathActionListener is

probably the simplest one) to see how it is written. You can use this as a starting point for your

own implementation.

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

entirely in Mathematica code. ImplementJavaInterface is described in more detail in

"Implementing a Java Interface with Mathematica Code", but a common use for it would be to

MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

J/Link User Guide 239

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

entirely in Mathematica code. ImplementJavaInterface is described in more detail in

create event-handler classes that implement a “Listener”-type interface for which J/Link does

not have a built-in MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

If you are going to write a Java class, and you choose not to derive your class from

MathListener, there are two very important rules that must be adhered to when writing event-

handler code that calls into Mathematica. To be more precise, these rules apply whenever you

are writing code that needs to call into Mathematica at a point when Mathematica is not cur-

rently calling into Java. That may sound confusing, but it is really very simple. "Requesting

Evaluations by Mathematica" showed how to request evaluations by Mathematica from within a

Java method. In this case, Mathematica has called your Java method, and while Mathematica is

waiting for the result, your code calls back to perform some computation. This works fine as

described in that earlier section, because at the point the code calls back into Mathematica,

Mathematica is in the middle of a call to Java. This is a true “callback”~Mathematica has called

Java, and during the handling of this call, Java calls back to Mathematica. In contrast, consider

the case where some Java code executes in response to a button click. When the button click

event fires, Mathematica is probably not in the middle of a call to Java.

Special considerations are necessary in the latter case because there are two threads in the

Java runtime that are using MathLink. The first one is created and used by the internals of

J/Link to handle standard calls into Java originating in Mathematica as described throughout

this tutorial. The second one is the Java user interface thread (sometimes called the AWT

thread), which is the one on which your event handler code will be called. You need to make

sure that your use of the link back to the kernel on the user interface thread does not interfere

with J/Link’s internal thread.

The following code shows an idealized version of the actionPerformed() method in the

MathActionListener class. The actual code in MathActionListener is different, because this

work is farmed out to the parent class, MathListener, but this example shows the correct flow

of operations. This is the code that is executed when the associated object’s action occurs (like

a button click).

240 J/Link User Guide

public void actionPerformed(ActionEvent e) {
KernelLink ml = StdLink.getLink();
StdLink.requestTransaction();
synchronized (ml) {

try {
// Send the code to perform the user's requested operation.
ml.putFunction("EvaluatePacket", 1);
... code to put rest of expression to evaluate goes here ...
ml.endPacket();
ml.discardAnswer();

} catch (MathLinkException exc) {
...

}
}

}

The first rule to note in this code is that the complete transaction with Mathematica, which

includes sending the code to evaluate and completely reading the result, is wrapped in a synÖ

chronized(ml) block. This is how you ensure that the user interface thread has exclusive

access to the link for the entire transaction. The second rule is that the synchronized(ml)

statement must be preceded by a call to StdLink.requestTransaction(). This call will block

until the kernel is at a point where it is ready to accommodate evaluations originating in Java.

The call must occur before the synchronized(ml) block begins, and once you call it you must

make sure that you send something to Mathematica. In other words, when requestTransacÖ

tion() returns, the kernel will be blocking in an attempt to read from the Java link. The kernel

will be stuck in this state until you send it something, so you must protect against a Java excep-

tion being thrown after you call requestTransaction() but before you send anything. Typi-

cally you will do this simply by calling requestTransaction() immediately before the synchro Ö

nized(ml) block begins and you start sending something.

It was just said that StdLink.requestTransaction() will block until the kernel is ready to

accept evaluations originating in Java. To be specific, it will block until one of the following

conditions occurs:

† Mathematica executes DoModal

† Mathematica executes ServiceJava

J/Link User Guide 241

† Kernel sharing has been turned on via ShareKernel or ShareFrontEnd, and the kernel is
not busy with another computation

† Mathematica is already in the middle of a call to Java

† Java is not being used from Mathematica (InstallJava has not been called)

These conditions should make sense given the discussion about creating user interface ele-

ments in the section "Creating Windows and Other User Interface Elements". DoModal,

ShareKernel, and ServiceJava are the three ways in which you direct the kernel’s attention to

the Java link so that it can detect incoming request for computations.

If you make the common mistake of inadvertently triggering a call to Mathematica from Java

before you have called DoModal or ShareKernel, the Java user interface thread will hang. This

can be easily remedied by calling DoModal, ShareKernel, or ServiceJava afterwards

(ServiceJava may need to be called more than once, if more than one event callback is

queued up).

If the rule about when it is necessary to use StdLink.requestTransaction() and synchroÖ

nized(ml) is confusing, you will be happy to learn that it is fine to use these constructs in any

code that calls Mathematica. In code that does not need them, they are pointless, but harm-

less, and will not cause the calling thread to block. If you are writing a Java method that needs

to call Mathematica and there is any chance that it might be called from the user interface

thread, add the StdLink.requestTransaction() and synchronized(ml).

Debugging Your Java Classes

You can use your favorite debugger to debug Java code that is called from Mathematica. The

only issue is that you typically have to launch a Java program inside the debugger to do this.

The Java program that you need to launch is the one that is normally launched for you when

you call InstallJava. The class that contains J/Link’s main() method is com.wolfram.jlinkÖ

.Install. Thus, the command line to start J/Link that is executed internally by InstallJava is

typically

java -classpath /path/to/JLink.jar com.wolfram.jlink.Install

There may be additions or modifications to this depending on the options to InstallJava, and

also some extra MathLink-specific arguments are tacked on at the end. To use a debugger, you

just have to launch Java with the appropriate command-line arguments that allow you to estab-

lish the link to Mathematica manually.

If you use a development environment that has an integrated debugger, then the debugger

probably has a setting for the main class to use (the class whose main() method will be

invoked) and a setting for command-line arguments. For example, in WebGain Visual Café, you

can set these values in the Project panel of the Project/Options dialog. Set the main class to

be com.wolfram.jlink.Install, and the arguments to be something like this:

242 J/Link User Guide

If you use a development environment that has an integrated debugger, then the debugger

probably has a setting for the main class to use (the class whose main() method will be

invoked) and a setting for command-line arguments. For example, in WebGain Visual Café, you

can set these values in the Project panel of the Project/Options dialog. Set the main class to

be com.wolfram.jlink.Install, and the arguments to be something like this:

(On Windows:)
-linkmode listen -linkname foo

(On Unix/Linux:)
-linkmode listen -linkprotocol tcp -linkname 1234

Then start the debugging session. You should see the J/Link copyright notice printed and then

Java will wait for Mathematica to connect. To do this, go to your Mathematica session, make

sure the JLink.m package has been read in, and execute:

(* On Windows: *)
ReinstallJava[LinkConnect["foo"]]

(* On Unix: *)
ReinstallJava[LinkConnect["1234", LinkProtocol -> "TCP"]]

This works because ReinstallJava can take a LinkObject as its argument, in which case it

will not try to launch Java itself. This allows you to manually establish the MathLink connection

between Java and Mathematica, then feed that link to ReinstallJava and let it do the rest of

the work of preparing the Mathematica and Java sides for interacting with each other.

If you like to use a command-line debugger like jdb, you can do the following:

C:\>jdb
Initializing jdb...
> run com.wolfram.jlink.Install -linkmode listen -linkname foo
running ...
main[1] J/Link (tm)
Copyright (C) 1999-2000, Wolfram Research, Inc. All Rights Reserved.
www.wolfram.com
Version 1.1

Current thread "main" died. Execution continuing...
>

J/Link User Guide 243

The message about the main thread dying is normal. Now jdb is ready for commands. First,

though, you have to execute in your Mathematica session the LinkConnect and ReinstallJava

lines shown earlier. This example was for Windows, so Unix users will have to adjust the run

line to reflect the proper arguments:

> run com.wolfram.jlink.Install -linkmode listen -linkprotocol tcp
-linkname 1234

Deploying Applications that use J/Link

This section discusses some issues relevant to developers who are creating add-ons for Mathe-

matica that use J/Link.

J/Link uses its own custom class loader that allows it to find classes in a set of locations beyond

the startup class path. As described in "Dynamically Modifying the Class Path", users can grow

this set of extra locations to search for classes by calling the AddToClassPath function. One of

the motivations for having a custom class loader was to make it easy for application developers

to distribute applications that have parts of their implementation in Java. If you structure your

application directory properly, your users will be able to install it simply by copying it into any

standard location for Mathematica applications. J/Link will be able to find your Java classes

immediately, without users having to perform any classpath-related operations or even restart

Java.

If your Mathematica application uses J/Link and includes its own Java components, you should

create a Java subdirectory in your application directory. You can place any jar files that your

application needs into this Java subdirectory. If you have loose class files (not bundled into a

jar file), they should go into an appropriately nested subdirectory of the Java directory.

“Appropriately nested” means that if your class is in the Java package com.somecompany.math,

then its class file goes into the com/somecompany/math subdirectory of the Java directory. If

the class is not in any package, it can go directly into the Java directory. J/Link can also find

native libraries and resources your application needs. Native libraries must be in a subdirectory

of your Java/Libraries directory that is named after the $SystemID of the platform on which it is

installed. Here is an example directory structure for an application that uses J/Link:

244 J/Link User Guide

MyApp/
... other files and directories used by the application ...
Java/

MyAppClasses.jar
MyImage.gif
Libraries/

Windows/
MyNativeLibrary.dll

PowerMac/
MyNativeLibrary

Darwin/
libMyNativeLibrary.jnilib

Linux/
libMyNativeLibrary.so

... and so on for other Unix platforms

Your application directory must be placed into one of the standard locations for Mathematica

applications. These locations are listed as follows. In this notation, $InstallationDirectory/Ad-

dOns/Applications means “The AddOns/Applications subdirectory of the directory whose value is

given by the Mathematica variable $InstallationDirectory.”

 $UserAddOnsDirectory/Applications (Mathematica 4.2 and later only)

$AddOnsDirectory/Applications (Mathematica 4.2 and later only)

$InstallationDirectory/AddOns/Applications

$InstallationDirectory/AddOns/ExtraPackages

Coding Tips

Here are a few tips on producing high-quality applications. These suggestions are guided by

mistakes that developers frequently make.

Call InstallJava in the body of a function or functions, not when your package is read

in. It is best to avoid side effects during the reading of a package. Users expect reading in a

package to be fast and to do nothing but load definitions. If you launch Java at this time, and it

fails, it could cause a mysterious hang in the loading process. It is better to call InstallJava in

the code of one or more of your functions. You probably do not need to call InstallJava in

every single function that uses Java. Most applications have a few “major” functions that users

InstallJava inside it.

J/Link User Guide 245

Call InstallJava in the body of a function or functions, not when your package is read

in. It is best to avoid side effects during the reading of a package. Users expect reading in a

package to be fast and to do nothing but load definitions. If you launch Java at this time, and it

fails, it could cause a mysterious hang in the loading process. It is better to call InstallJava in

the code of one or more of your functions. You probably do not need to call InstallJava in

are likely to use almost exclusively, or at least at the start of their session. If your application

does not have this property, then provide an initialization function that your users must call

first, and call InstallJava inside it.

Call InstallJava with no arguments. You cannot know what options your users need for

Java on their systems, so do not override what they may have set up. It is the user’s responsibil-

ity to make sure that they call SetOptions to customize the options for InstallJava as neces-

sary. Typically this would be done in their init.m file.

Make sure you use JavaBlock and/or ReleaseJavaObject to avoid leaking object refer-

ences. You cannot know how others will use your code, so you need to be careful to avoid

cluttering up their sessions with a potentially large number of useless objects. Sometimes you

need to create an object that persists beyond the lifetime of a single Mathematica function, like

a viewer window. In such cases, use a MathFrame or MathJFrame as your top-level window and

use its onClose() method to specify Mathematica code that releases all outstanding objects

and unregisters kernel or front end sharing you may have used. If this is not possible, provide a

cleanup function that users can call manually. Use LoadedJavaObjects to look at the list of

objects referenced in Mathematica before and after your functions run; it should not grow in

length.

If you use ShareKernel or ShareFrontEnd, make sure you save the return values from

these functions and pass them as arguments to UnshareKernel and UnshareFrontEnd.

Do not call UnshareFrontEnd or UnshareKernel with no arguments, as this will shut down

sharing even if other applications are using it.

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

file is read in, and storing the results in private variables for the lifetime of your package. This

JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

246 J/Link User Guide

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

is problematic if Java is restarted. Never store JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

SomeFunction[] :=
Module[{...},

If[!JavaObjectQ[$myCachedExpensiveJavaObject],
InstallJava[];
$myCachedExpensiveJavaObject = JavaNew[...];

];
... use $myCachedExpensiveJavaObject ...

]

Do not call UninstallJava or ReinstallJava in your application. You need to coexist

politely with other applications that may be using Java. Do not assume that when your package

is done with Java, the user is done with it as well. Only users should ever call UninstallJava,

and they should probably never call it either. There is no cost to leaving Java running. Likewise,

users will rarely call ReinstallJava unless they are doing active Java development and need to

reload modified versions of their classes.

Example Programs

Introduction

This section will work through some example programs. These examples are intended to demon-

strate a wide variety of techniques and subtleties. Discussions include some nuances in the

implementations and touch on most of the major issues in J/Link programming.

This will take a relatively rigorous approach, and in particular it will be careful to avoid leaking

references. As discussed in the section "JavaBlock", JavaBlock and ReleaseJavaObject are the

tools in this fight, but if you find yourself becoming the least bit confused about the subject,

just ignore it completely. For many casual, personal uses of J/Link, you can forget about

memory management issues, and just let Java objects pile up.

J/Link includes a number of notebooks with sample programs, including most of the programs

developed in this section. These notebooks can be found in the <Mathematica dir>/System-

Files/Links/JLink/Examples/Part1 directory.

A Beep Function

J/Link User Guide 247

A Beep Function

Here is a very simple example. Mathematica does not have a Beep function to provide simple

alerts. But Java has a beep() method and, by virtue of that, Mathematica has one too.

Beep@D :=
H
LoadJavaClass@"java.awt.Toolkit"D;
Toolkit`getDefaultToolkit@Dübeep@D

L

You will notice a short delay the first time Beep[] is executed. This is due to the

LoadJavaClass call, which only takes measurable time the first time it is called for any given

class.

Beep@D

This is a perfectly good beep function, and many users will not need to go beyond this. If you

are writing code for others to use, however, you will probably want to embellish this code a

little bit. Here is a more professional version of the same function.

BetterBeep[]:=
JavaBlock[

InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
Toolkit`getDefaultToolkit[]@beep[];

]

Note that the first thing you do is call InstallJava. It is a good habit to call InstallJava in

functions that use J/Link, at least if you are writing code for others to use. If InstallJava has

already been called, subsequent calls will do nothing and return very quickly. The whole pro-

gram is wrapped in JavaBlock. As discussed in the section "JavaBlock", JavaBlock automates

the process of releasing references to objects returned to Mathematica. The getDefaultÖ

Toolkit() method returns a Toolkit object, so you want to release the JavaObject that gets

created in Mathematica. The getDefaultToolkit() method returns a reference to the same

Toolkit object every time it is called, so even if you do not call JavaBlock, you will only “leak”

one object in an entire session. You could also write Beep using an explicit call to

ReleaseJavaObject.

(* Alternative version *)
BetterBeep2[]:=

Module[{toolkit},
InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
toolkit = Toolkit`getDefaultToolkit[];
toolkit@beep[];
ReleaseJavaObject[toolkit]

]

The advantage to using JavaBlock is that you do not have to think about what, if any, methods

might return objects, and you do not have to assign them to variables.

248 J/Link User Guide

The advantage to using JavaBlock is that you do not have to think about what, if any, methods

might return objects, and you do not have to assign them to variables.

Formatting Dates

Here is an example of a computation performed in Java. Java provides a number of powerful

date- and calendar-oriented classes. Say you want to create a nicely formatted string showing

the time and date. In this first step you create a new Java Date object representing the current

date and time.

date = JavaNew@"java.util.Date"D

«JavaObject@java.util.DateD »

Next you load the DateFormat class and create a formatter capable of formatting dates.

LoadJavaClass@"java.text.DateFormat"D;
dateFormatter = DateFormat`getInstance@D
«JavaObject@java.text.SimpleDateFormatD »

Now you call the format() method, passing the Date object as its argument.

dateFormatterüformat@dateD

10ê9ê00 4:56 AM

There are many different ways in which dates and times can be formatted, including respecting

a user’s locale. Java also has a useful number-formatting class, an example of which was given

in "An Optimization Example".

A Progress Bar

A simple example of a popup user interface for a Mathematica program is a progress bar. This

is an example of a “non-interactive” user interface, as defined in "Interactive and Non-Interac-

tive Interfaces", because it does not need to call back to Mathematica or return a result to

Mathematica. The implementation uses the Swing user interface classes, because Swing has a

built-in class for progress bars. (You cannot run this example unless you have Swing installed.

It comes as a standard part of Java 1.2 or later, but you can get it separately for Java 1.1.x.

Most Java development tools that are still at Version 1.1.x come with Swing.) The complete

code for this example is also provided in the file ProgressBar.nb in the JLink/Examples/Part1

directory.

The code is commented to point out the general structure. There are several classes and meth-

ods used in this code that may be unfamiliar to you. Just keep in mind that this is completely

standard Java code translated into Mathematica using the J/Link conventions. It is line-for-line

identical to a Java program that does the same thing.

J/Link User Guide 249

The code is commented to point out the general structure. There are several classes and meth-

ods used in this code that may be unfamiliar to you. Just keep in mind that this is completely

standard Java code translated into Mathematica using the J/Link conventions. It is line-for-line

identical to a Java program that does the same thing.

This code is presented as a complete program, but this does not suggest that it should be

developed that way. The interactive nature of J/Link lets you tinker with Java objects a line at a

time, experimenting until you get things just how you want them. Of course, this is how Mathe-

matica programs are typically written, and J/Link lets you do the same with Java objects and

methods.

You can create a function ShowProgressBar that prepares and displays a progress bar dialog.

The bar will be used to show percentage completion of a computation. You can supply the initial

percent completed or use the default value of zero. ShowProgressBar returns the JProgressÖ

Bar object because the bar needs to be updated later by calling setValue(). Note that

because you return the bar object from the JavaBlock, it is not released like all other new Java

objects created within this JavaBlock. This is a new behavior of JavaBlock in J/Link 2.0. If

what is returned from a JavaBlock is precisely a single Java object (and not, for example, a list

of objects), then this object is not released. JavaBlock is discussed in the section "JavaBlock".

ShowProgressBar[title_String:"Computation Progress",
 caption_String:"Percent complete:",
 percent_Integer:0
] :=

JavaBlock[
Module[{frame, panel, label, bar},

InstallJava[];
bar = JavaNew["javax.swing.JProgressBar"];
frame = JavaNew["javax.swing.JFrame", title];
frame@setSize[300, 110];
frame@setResizable[False];
frame@setLocation[400, 400];
panel = JavaNew["javax.swing.JPanel"];
panel@setLayout[Null];
frame@getContentPane[]@add[panel];
label = JavaNew["javax.swing.JLabel", caption];
label@setBounds[20, 10, 260, 20];
panel@add[label];
bar@setBounds[20, 40, 260, 30];
bar@setMinimum[0];
bar@setMaximum[100];
bar@setValue[percent];
panel@add[bar];
JavaShow[frame];
bar

]
]

You also need a function to close the progress dialog and clean up after it. Only two things need

to be done. First, the dispose() method must be called on the top-level frame window that

contains the bar. Second, if you want to avoid leaking object references, you need to call

ReleaseJavaObject on the bar object because it is the only object reference that escaped the

JavaBlock in ShowProgressBar. You need to call dispose() on the JFrame object you cre-

ated in ShowProgressBar, but you did not save a reference to it. The SwingUtilities class

has a handy method windowForComponent() that will retrieve this frame, given the bar object.

250 J/Link User Guide

You also need a function to close the progress dialog and clean up after it. Only two things need

to be done. First, the dispose() method must be called on the top-level frame window that

contains the bar. Second, if you want to avoid leaking object references, you need to call

ReleaseJavaObject on the bar object because it is the only object reference that escaped the

JavaBlock in ShowProgressBar. You need to call dispose() on the JFrame object you cre-

ated in ShowProgressBar, but you did not save a reference to it. The SwingUtilities class

has a handy method windowForComponent() that will retrieve this frame, given the bar object.

DestroyProgressBar[bar_?JavaObjectQ] :=
JavaBlock[

LoadJavaClass["javax.swing.SwingUtilities"];
SwingUtilities`windowForComponent[bar]@dispose[];
ReleaseJavaObject[bar]

]

The bar dialog has a close box in it, so a user can dismiss it prematurely if desired. This would

take care of disposing the dialog, but you would still need to release the bar object. DestroyProÖ

gressBar (and the bar’s setValue() method) is safe to call whether or not the user closed the

dialog.

Here is how you would use the progress bar in a computation. The call to ShowProgressBar

displays the bar dialog and returns a reference to the bar object. Then, while the computation is

running, you periodically call the setValue() method to update the bar’s appearance. When

the computation is done, you call DestroyProgressBar.

bar = ShowProgressBar[];
n = 0;
While[n <= 5,

bar@setValue[n/5 * 100];
Pause[1]; (* This simulates the time-consuming computation. *)
n++

];
DestroyProgressBar[bar];

An easy way to test whether your code leaks object references is to call LoadedJavaObjects@D

before and after the computation. If the list of objects gets longer, then you have forgotten to

use ReleaseJavaObject or improperly used JavaBlock.

It can take several seconds to load all the Swing classes used in this example. This means that

the first time ShowProgressBar is called, there will be a significant delay. You could avoid this

delay by using LoadJavaClass ahead of time to explicitly load the classes that appear in

JavaNew statements.

The dialog appears onscreen with its upper left at the coordinates (400, 400). It is left as an

exercise to the reader to make it centered on the screen. (Hint: the java.awt.Toolkit class

has a getScreenSize() method).

Finally, because the progress bar uses the Swing classes, you can play with the look-and-feel

options that Swing provides. Specifically, you can change the theme at runtime. The progress

bar window is not very complicated, so it changes very little in going from one look-and-feel

theme to another, but this demonstrates how to do it. The effect is much more dramatic for

more complex windows.

J/Link User Guide 251

Finally, because the progress bar uses the Swing classes, you can play with the look-and-feel

options that Swing provides. Specifically, you can change the theme at runtime. The progress

bar window is not very complicated, so it changes very little in going from one look-and-feel

theme to another, but this demonstrates how to do it. The effect is much more dramatic for

more complex windows.

First, create a new progress bar window.

bar = ShowProgressBar@D;

Now load some classes from which you need to call static methods.

LoadJavaClass@"javax.swing.UIManager"D;
LoadJavaClass@"javax.swing.SwingUtilities"D;

The default look and feel is the “metal” theme. You can change it to the native style look for

your platform as follows (it helps to be able to see the window when doing this).

JavaBlock[
UIManager`setLookAndFeel[UIManager`getSystemLookAndFeelClassName[]];
frame = SwingUtilities`windowForComponent[bar];
SwingUtilities`updateComponentTreeUI[frame]

]

Clean up.

DestroyProgressBar@barD

A Simple Modal Input Dialog

You saw one example of a simple modal dialog in "Modal Windows". Presented here is another

one~a basic dialog that prompts the user to enter an angle, with a choice of whether it is being

specified in degrees or radians. This will demonstrate a dialog that returns a value to a running

Mathematica program when it is dismissed, much like Mathematica’s built-in Input function,

which requests a string from the user before returning. Dialogs like this one are not “modal” in

the traditional sense that they must be closed before other Java windows can be used, but

rather they are modal with respect to the kernel, which is kept busy until they are dismissed

(that is, until DoModal@D returns). The section "Creating Windows and Other User Interface

Elements" discusses modal and modeless Java windows in detail.

The code is rather straightforward and warrants little in the way of commentary. In creating the

window and the controls within it, it exactly mirrors the Java code you would use if you were

writing the program in Java. One technique it demonstrates is determining whether the OK or

MathActionListener objects assigned to the two buttons return different things in addition to

calling EndModal@D. Recall that DoModal@D returns whatever the code that calls EndModal@D

returns, so here you have the OK button execute (EndModal[]; True)&, a pure function that

ignores its arguments, calls EndModal@D, and returns True, whereas the Cancel button exe-

cutes (EndModal[]; False)&. Thus, DoModal@D returns True if the OK button was clicked, or

False if the Cancel button was clicked. It will return Null if the window’s close box was clicked

(this behavior comes from the MathFrame itself).

252 J/Link User Guide

The code is rather straightforward and warrants little in the way of commentary. In creating the

window and the controls within it, it exactly mirrors the Java code you would use if you were

Cancel button was clicked to dismiss the dialog. This is done by having the

MathActionListener objects assigned to the two buttons return different things in addition to

calling EndModal@D. Recall that DoModal@D returns whatever the code that calls EndModal@D

returns, so here you have the OK button execute (EndModal[]; True)&, a pure function that

ignores its arguments, calls EndModal@D, and returns True, whereas the Cancel button exe-

cutes (EndModal[]; False)&. Thus, DoModal@D returns True if the OK button was clicked, or

False if the Cancel button was clicked. It will return Null if the window’s close box was clicked

(this behavior comes from the MathFrame itself).

It may take several seconds to display the dialog the first time GetAngle[] is called. This is

due to the one-time cost of loading the several large AWT classes required. Subsequent invoca-

tions of GetAngle[] will be much quicker.

The complete code for this example is also provided in the file ModalInputDialog.nb in the

JLink/Examples/Part1 directory.

GetAngle[] :=
JavaBlock[

Module[{frm, inputField, cbGroup, degBox, radBox,
label, okButton, cancelButton, wasOKButton, angle},

InstallJava[]; (* In case the user has not called it already. *)

frm = JavaNew["com.wolfram.jlink.MathFrame"];
label = JavaNew["java.awt.Label", "Enter an angle:"];
inputField = JavaNew["java.awt.TextField"];
cbGroup = JavaNew["java.awt.CheckboxGroup"];
degBox = JavaNew["java.awt.Checkbox", "degrees", cbGroup, True];
radBox = JavaNew["java.awt.Checkbox", "radians", cbGroup, False];
okButton = JavaNew["java.awt.Button", "OK"];
cancelButton = JavaNew["java.awt.Button", "Cancel"];

frm@setLayout[Null];
frm@add[label];
frm@add[inputField];
frm@add[degBox];
frm@add[radBox];
frm@add[okButton];
frm@add[cancelButton];

frm@setBounds[200, 200, 200, 160];
label@setBounds[20, 30, 150, 20];
inputField@setBounds[20, 70, 60, 28];
degBox@setBounds[100, 60, 80, 20];
radBox@setBounds[100, 80, 80, 20];
okButton@setBounds[40, 120, 50, 20];
cancelButton@setBounds[100, 120, 50, 20];
frm@setResizable[False];

okButton@addActionListener[
JavaNew["com.wolfram.jlink.MathActionListener",

J/Link User Guide 253

GetAngle[]

"(EndModal[]; True)&"]
];
cancelButton@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener",
"(EndModal[]; False)&"]

];

(* Now make the window visible and bring it to the foreground. *)
JavaShow[frm];

frm@setModal[];
wasOKButton = DoModal[];
(* Even though the window may have been closed, it is perfectly
 OK to extract values from the controls in the window.
*)
If[TrueQ[wasOKButton],

angle = ToExpression[inputField@getText[]];
If[angle =!= Null && degBox@getState[], angle *= Pi/180],

(* else *)
(* We will get here if the Cancel button was clicked
 (wasOKButton will be False), or the dialog was closed
 by clicking in its close box (wasOKButton will be Null).
*)
angle = $Failed

];
(* If the cancel or OK buttons were clicked, frm is still
 visible, so we dispose it here.
*)
frm@dispose[];
angle

]
]

Now invoke it.

GetAngle@D

p

A File Chooser Dialog Box

A useful feature for Mathematica programs is to be able to produce a file chooser dialog, such

as the typical Open or Save dialog boxes. You could use such a dialog box to prompt a user for

an input file or a file into which to write data. This is easily accomplished in a cross-platform

way with Java, specifically with the JFileChooser class in the standard Swing library. The code

for such a dialog box is provided in the file FileChooserDialog.nb in the JLink/Examples/Part1

directory.

Mathematica 4.0 introduced a new “experimental” function called FileBrowse[] that displays a

file browser in the front end. Although this function is usable, it has several shortcomings com-

pared to the Java technique presented next. One of the limitations is that it requires that the

front end be in use. Another is that it is not customizable, so you always get a Save file as:

254 J/Link User Guide

Mathematica 4.0 introduced a new “experimental” function called FileBrowse[] that displays a

file browser in the front end. Although this function is usable, it has several shortcomings com-

pared to the Java technique presented next. One of the limitations is that it requires that the

dialog box and the concomitant behavior, which is not appropriate for an Open-type dialog box.

The JFileChooser class used here allows very sophisticated customization, including setting

the initial directory, masking out files based on their names or properties, controlling the title

and text on the various buttons, supplying functions to validate the choice before the dialog box

is allowed to be dismissed, allowing for multiple file selection, and allowing directories to be

selected instead of files.

Although this example is a short program, the code has some unfortunate complexity (meaning

“ugliness”) in it related to making this special type of dialog window come to the foreground on

all platforms. For this reason, the code is not presented here. Instead, some topics in the pro-

gram code will be mentioned; you can read the full code and its associated comments in the

example file if you are interested in the implementation details.

The FileChooserDialog function takes three string arguments. The first is the title of the

dialog box (for example, Select a data file to import), the second is the text to appear on

what is essentially the OK button (typically this will be Open or Save), and the third is the

directory in which to start. You can also supply no arguments and get a default Open dialog box

that starts in the kernel’s current directory.

Although this is a “modal” dialog box, there is no need to use DoModal, because the showDiaÖ

log() method will not return until the user dismisses the dialog box. Recall that DoModal is a

way to force Mathematica to stall until the dialog box or other window is dismissed. Here, you

get this behavior for free from showDialog(). The other thing that DoModal does is put the

kernel into a loop where it is ready to receive input from Java, so you can script some of the

functionality of the dialog via callbacks to Mathematica. The file chooser dialog box does not

need to use Mathematica in any way until it returns the selected file, so you have no need for

this other aspect that DoModal provides.

A second point of interest is in the name of the constant that showDialog() returns to indicate

that the user clicked the Save or Open button instead of the Cancel button. The name of this

constant in Java is JFileChooser.APPROVE_OPTION. Java names map to Mathematica

symbols, so they must be translated if they contain characters that are not legal in Mathemat-

ica symbols, such as the underscore. Underscores are converted to a “U” when they appear in

symbols, so the Mathematica name of this constant is JFileChooser`APPROVEUOPTION. See

"Underscores in Java Names" for more information.

J/Link User Guide 255

Sharing the Front End: Palette-Type Buttons

As discussed in the section "Creating Windows and Other User Interface Elements", one of the

goals of J/Link is to allow Java user interface elements to be as close as possible to first-class

members of the notebook front end environment in the way notebook and palette windows are.

One of the ways this is accomplished is with the ShareKernel function, which allows Java

windows to share the kernel’s attention with notebook windows. Such Java windows are

referred to as “modeless,” not in the traditional sense of allowing other Java windows to remain

active, but modeless with respect to the kernel, meaning that the kernel is not kept busy while

they are open.

Beyond the ability to have Java windows share the kernel with the front end, it would be nice to

allow actions in Java to cause effects in notebook windows, such as printing something, display-

ing a graph, or any of the notebook-manipulation commands like NotebookApply,

NotebookPrint, SelectionEvaluate, SelectionMove, and so on. A good example of this is

palette buttons. A palette button can cause the current selection to be replaced by something

else and the resulting expression to be evaluated in place.

The ShareFrontEnd function lets actions in Java modeless windows trigger events in a note-

book window just like can be done from palette buttons or Mathematica code you evaluate

manually in a notebook. Remember that you get automatically the ability to interact with the

front end when you use a modal dialog (i.e., when DoModal is running). When Java is being run

in a modal way, the kernel’s $ParentLink always points at the front end, so all side effect

outputs get sent to the front end automatically. A modal window would not be acceptable for

the palette example here because the palette needs to be an unobtrusive enhancement to the

Mathematica environment~it cannot lock up the kernel while it is alive. ShareKernel allows

Java windows to call Mathematica without tying up the kernel, and ShareFrontEnd is an exten-

sion to ShareKernel (it calls ShareKernel internally) that allows such “modeless” Java windows

to interact with the front end. ShareFrontEnd is discussed in more detail in "Sharing the Front

End".

In the PrintButton example that follows, a simple palette-type button is developed in Java

that prints its label at the current cursor position in the active notebook. Because of current

limitations with ShareFrontEnd, this example will not work with a remote kernel; the same

machine must be running the kernel and the front end.

256 J/Link User Guide

PrintButton[label_String] :=
JavaBlock[

Module[{frm, button, listener, tok},
InstallJava[];
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
frm@add[button];
frm@pack[];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener",

 "printButtonFunc"];
button@addActionListener[listener];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm]

]
]

printButtonFunc[event_, _] :=
JavaBlock[

NotebookApply[SelectedNotebook[], event@getSource[]@getLabel[]];
(* We need to explicitly release the event object, since it was
 sent to Mathematica before the JavaBlock was entered. *)
ReleaseJavaObject[event]

]

Now invoke the PrintButton function to create and display the palette. Click the button to see

the button’s label (foo in this example) inserted at the current cursor location. When you are

done, click the window’s close box.

PrintButton@"foo"D

The code is mostly straightforward. As usual, you use the MathFrame class for the frame win-

dow because it closes and disposes of itself when its close box is clicked. You create a

MathActionListener that calls buttonFunc and you assign it to the button. From the table in

the section Handling Events with Mathematica Code: The “MathListener” Classes, you know that

buttonFunc will be called with two arguments, the first of which is the ActionEvent object.

From this object you can obtain the button that was clicked and then its label, which you insert

at the current cursor location using the standard NotebookApply function. One subtlety is that

you need to specify SelectedNotebook@D as the target for notebook operations like

NotebookApply, NotebookWrite, NotebookPrint, and so on, which take a notebook as an

argument. Because of implementation details of ShareFrontEnd, the notebook given by

EvaluationNotebook@D is not the correct target (after all, there is no evaluation currently in

progress in the front end when the button is clicked).

J/Link User Guide 257

The important thing to note in PrintButton is the use of ShareFrontEnd and

UnshareFrontEnd. As discussed earlier, ShareFrontEnd puts Java into a state where it forwards

everything other than the result of a computation to the front end, and puts the front end into a

state where it is able to receive it. This is why the Print output triggered by clicking the Java

button, which would normally be sent to Java (and just discarded there), appears in the front

end. Front end sharing (and also kernel sharing) should be turned off when they are no longer

needed, but if you are writing code for others to use you cannot just blindly shut sharing down~

the user could have other Java windows open that need sharing. To handle this issue,

ShareFrontEnd (and ShareKernel) works on a register/unregister principle. Every time you call

ShareFrontEnd, it returns a token that represents a request for front end sharing. If front end

sharing is not on, it will be turned on. When a program no longer needs front end sharing, it

should call UnshareFrontEnd, passing the token from ShareFrontEnd as the argument. Only

when all requests for sharing have been unregistered in this way will sharing actually be turned

off.

The onClose() method of the MathFrame class lets you specify Mathematica code to be exe-

cuted when the frame is closed. This code is executed after all event listeners have been noti-

fied, so it is a safe place to turn off sharing. In the onClose() code, you call UnshareFrontEnd

with the token returned by ShareFrontEnd. Using the onClose() method in this way allows us

to avoid writing a cleanup function that users would have to call manually after they were

finished with the palette. It is not a problem to leave front end sharing turned on, but it is

desirable to have your program alter the user’s session as little as possible.

Now expand this example to include more buttons that perform different operations. The com-

plete code for this example is provided in the file Palette.nb in the JLink/Examples/Part1

directory.

The first thing you do is separate the code that manages the frame containing the buttons from

the code that produces a button. In this way you will have a reusable palette frame that can

hold any number of different buttons. The ShowPalette function here takes a list of buttons,

arranges them vertically in a frame window, calls ShareFrontEnd, and displays the frame in

front of the user’s notebook window.

258 J/Link User Guide

ShowPalette[buttons:{__?JavaObjectQ}] :=
JavaBlock[

Module[{frm, tok},
frm = JavaNew["com.wolfram.jlink.MathFrame"];
frm@setLayout[JavaNew["java.awt.GridLayout", 0, 1]];
frm@add[#]& /@ buttons;
ReleaseJavaObject[buttons];
frm@pack[];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm];

]
]

Note that you do not return anything from the ShowPalette function~specifically, you do not

return the frame object itself. This is because you do not need to refer to the frame ever again.

It is destroyed automatically when its close box is clicked (remember, this is a feature of the

MathFrame class). Because you do not need to keep references to any of the Java objects you

create, the entire body of ShowPalette can be wrapped in JavaBlock.

Now create a reusable PaletteButton function that creates a button. You have to pass in only

two things: the label text you want on the button and the function (as a string) you want to

have invoked when the button is clicked. This is sufficient to allow completely arbitrary button

behavior, as the entire functionality of the button is tied up in the button function you pass in

as the second argument.

PaletteButton[label_String, buttonFunc_String] :=
JavaBlock[

Module[{button, listener},
button = JavaNew["java.awt.Button"];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener", buttonFunc];
button@addActionListener[listener];
button

]
]

You will use the PaletteButton function to create four buttons. The first is just the print button

just defined, the behavior of which is specified by printButtonFunc.

btn1 = PaletteButton@"foo", "printButtonFunc"D;

J/Link User Guide 259

The second will duplicate the functionality of the buttons in the standard AlgebraicManipula-

tion front end palette. These buttons wrap a function (e.g., Expand) around the current selec-

tion and evaluate the resulting expression in place. Here is how you create the button and

define the button function for that operation.

btn2 = PaletteButton["Expand[É]", "applyButtonFunc"];

applyButtonFunc[event_, _] :=
JavaBlock[

With[{nb = SelectedNotebook[]},
NotebookApply[nb, event@getSource[]@getLabel[], All];
ReleaseJavaObject[event];
SelectionEvaluate[nb]

];
]

The third button will create a plot. All you have to do is call a plotting function~the work of

directing the graphics output to a new cell in the frontmost notebook is handled internally by

J/Link as a result of having front end sharing turned on via ShareFrontEnd.

btn3 = PaletteButton@"Create Plot", "plotButtonFunc"D;

plotButtonFunc@event_, _D :=
H

Plot@x, 8x, 0, 1<D;
ReleaseJavaObject@eventD;

L

The final button demonstrates another method for causing text to be inserted at the current

cursor location. The first example of this, printButtonFunc, uses NotebookApply. You can

also just call Print~as with graphics, Print output is automatically routed to the frontmost

notebook window by J/Link when front end sharing is on. This quick-and-easy Print method

works fine for many situations when you want something to appear in a notebook window, but

using NotebookApply is a more rigorous technique. You will see some differences in the effects

of these two buttons if you put the insertion point into a StandardForm cell and try them.

260 J/Link User Guide

btn4 = PaletteButton@"foo", "printButtonFunc2"D;

printButtonFunc2@event_, _D :=
JavaBlock@

Print@eventügetSource@DügetLabel@DD;
ReleaseJavaObject@eventD;

D

Now you are finally ready to create the palette and show it.

ShowPalette@8btn1, btn2, btn3, btn4<D

In closing, it must be noted that although this example has demonstrated some useful tech-

niques, it is not a particularly valuable way to use ShareFrontEnd. In creating a simple palette

of buttons, you have done nothing that the front end cannot do all by itself. The real uses you

will find for ShareFrontEnd will presumably involve aspects that cannot be duplicated within the

front end, such as more sophisticated dialog boxes or other user interface elements.

Real-Time Algebra: A Mini-Application

This example will put together everything you have learned about modal and modeless Java

user interfaces. You will implement the same “mini-application” (essentially just a dialog box) in

both modal and modeless flavors. The application is inspired by the classic MathLink example

program RealTimeAlgebra, originally written for the NeXT computer by Theodore Gray and then

done in HyperCard by Doug Stein and John Bonadies. The original RealTimeAlgebra provides an

input window into which the user types an expression that depends on certain parameters, an

output window that displays the result of the computation, and some sliders that are used to

vary the values of the parameters. The output window updates as the sliders are moved, hence

the name RealTimeAlgebra. Our implementation of RealTimeAlgebra will be very simplistic, with

only a single slider to modify the value of one parameter.

The complete code for this example is provided in the file RealTimeAlgebra.nb in the JLink/Exam-

ples/Part1 directory.

J/Link User Guide 261

Here is the function that creates and displays the window.

CreateWindow[] :=
Module[{frame, slider, listener},

InstallJava[];
(* inText and outText are globals, because we need to refer to
 them by name in the scrollFunc. This also means we must
 create them outside the JavaBlock below.
*)
inText = JavaNew["java.awt.TextArea", "Expand[(x+1)^a]", 8, 40];
outText = JavaNew["java.awt.TextArea", 8, 40];
(* This frame could be created inside the JavaBlock, because it is returned
 from the JavaBlock and therefore will not be released, but it makes
 our intentions more clear to create it outside.
*)
frame = JavaNew["com.wolfram.jlink.MathFrame", "RealTimeAlgebra"];
JavaBlock[

frame@setLayout[JavaNew["java.awt.BorderLayout"]];
(* Note that we can refer to the Scrollbar`HORIZONTAL constant within the JavaNew
 command that first loads the Scrollbar class. Its value will not need to be
 resolved until that class has been loaded and all necessary definitions created.
*)
slider = JavaNew["java.awt.Scrollbar", Scrollbar`HORIZONTAL, 0, 1, 0, 20];
frame@add[slider, ReturnAsJavaObject[BorderLayout`NORTH]];
frame@add[outText, ReturnAsJavaObject[BorderLayout`CENTER]];
frame@add[inText, ReturnAsJavaObject[BorderLayout`SOUTH]];
frame@pack[];
(* Use a fixed-width font for the output window to preserve
 formatting of multi-line expressions. *)
outText@setFont[JavaNew["java.awt.Font", "Courier", Font`PLAIN, 12]];
listener = JavaNew["com.wolfram.jlink.MathAdjustmentListener"];
listener@setHandler["adjustmentValueChanged", "sliderFunc"];
slider@addAdjustmentListener[listener];
frame@setLocation[200, 200];
JavaShow[frame];

];
frame

]

(* This is what will be called in response to moving the slider position: *)

sliderFunc[evt_, type_, scrollPos_] :=
outText@setText[

Block[{a = scrollPos}, ToString[ToExpression[inText@getText[]]]]
]

The sliderFunc function is called by the MathAdjustmentListener whenever the slider’s

position changes. It gets the text in the inputText box, evaluates it in an environment where

a has the value of the slider position (the range for this is 0..20, as established in the JavaNew

call that creates the slider), and puts the resulting string into the outText box. It then calls

ReleaseJavaObject to release the first argument, which is the AdjustmentEvent object itself.

This is the only object passed in as an argument (the other two arguments are integers). If you

are wondering how you determine the argument sequence for sliderFunc, you get it from the

MathListener table in the section Handling Events with Mathematica Code: The “MathListener”

Module of CreateWindow, and of

course they cannot be created inside that function’s JavaBlock.

262 J/Link User Guide

The sliderFunc function is called by the MathAdjustmentListener whenever the slider’s

position changes. It gets the text in the inputText box, evaluates it in an environment where

a has the value of the slider position (the range for this is 0..20, as established in the JavaNew

call that creates the slider), and puts the resulting string into the outText box. It then calls

ReleaseJavaObject to release the first argument, which is the AdjustmentEvent object itself.

This is the only object passed in as an argument (the other two arguments are integers). If you

are wondering how you determine the argument sequence for sliderFunc, you get it from the

Classes. Note that you need to refer by name to the input and output text boxes in sliderÖ

Func, so you cannot make their names local variables in the Module of CreateWindow, and of

course they cannot be created inside that function’s JavaBlock.

There is one interesting thing in the code that deserves a remark. Look at the lines where you

add the three components to the frame. What is the ReturnAsJavaObject doing there? The

method being called here is in the Frame class, and has the following signature:

void add(Component comp, Object constraints);

The second argument, constraints, is typed only as Object. The value you pass in depends

on the layout manager in use, but typically it is a string, as is the case here

(BorderLayout`NORTH, for example, is just the string “NORTH”). The problem is that J/Link

creates a definition for this signature of add that expects a JavaObject for the second argu-

ment, and Mathematica strings do not satisfy JavaObjectQ, although they are converted to

Java string objects when sent. This means that you can only pass strings to methods that

expect an argument of type String. In the rare cases where a Java method is typed to take an

Object and you want to pass a string from Mathematica, you must first create a Java String

object with the value you want, and pass that object instead of the raw Mathematica string. You

have encountered this issue several times before, and you have used MakeJavaObject as the

trick to get the raw string turned into a reference to a Java String object. MakeJavaObject[BoÖ

rderLayout`NORTH] would work fine here, but it is instructive to use a different technique (it

also saves a call into Java). BorderLayout`NORTH calls into Java to get the value of the Border Ö

Layout.NORTH static field, but in the process of returning this string object to Mathematica, it

gets converted to a raw Mathematica string. You need the object reference, not the raw string,

so you wrap the access in ReturnAsJavaObject, which causes the string, which is normally

returned by value, to be returned in the form of a reference.

Getting back to the RealTimeAlgebra dialog box, you are now ready to run it as a modal

window. You write a special modal version that uses CreateWindow internally.

RealTimeAlgebraModal[] :=
JavaBlock[

(* In the modal case, we can wrap the whole thing in JavaBlock
 and be sure that all the objects will get released, including
 the inText and outText ones needed during event handling.
*)
Module[{frm},

frm = CreateWindow[];
frm@setModal[];
DoModal[];

]
]

Note that the whole function is wrapped in JavaBlock. This is an easy way to make sure that all

object references created in Mathematica while the dialog is running are treated as temporary

and released when DoModal finishes. This saves you having to properly use JavaBlock and

ReleaseJavaObject in all the handler functions used for your MathListener objects (you will

notice that these calls are absent from the sliderFunc function).

J/Link User Guide 263

Note that the whole function is wrapped in JavaBlock. This is an easy way to make sure that all

object references created in Mathematica while the dialog is running are treated as temporary

and released when DoModal finishes. This saves you having to properly use JavaBlock and

ReleaseJavaObject in all the handler functions used for your MathListener objects (you will

notice that these calls are absent from the sliderFunc function).

Now run the dialog. The RealTimeAlgebraModal function will not return until you close the

RealTimeAlgebra window, which is what you mean when you call this a “modal” interface.

RealTimeAlgebraModal@D

It may take several seconds before the window appears the first time. As always, this is the

one-time cost of loading all the necessary classes. Play around by dragging the slider, and try

changing the text in the input box, for example, to N@Pi, 2 aD.

Recall that while Mathematica is evaluating DoModal@D, any Print output, messages, graphics,

or any other output or commands other than the result of computations triggered from Java will

be sent to the front end. To see this in action, try putting Print@aD in the input text box (you

will want to arrange windows on your screen so that you can see the notebook window while

you are dragging the slider). Next, try Plot@Sin@a xD, 8x, 0, 4 Pi<D.

Quit RealTimeAlgebra by clicking the window’s close box. In addition to closing and disposing of

the window, this causes EndModal@D to be executed in Mathematica, which then causes

DoModal to return. The disposing of the window is due to using the MathFrame class for the

window, and executing EndModal@D is the result of calling the setModal() method of

MathFrame, as discussed in "Modal Windows".

Now implement RealTimeAlgebra as a modeless window. The CreateWindow function can be

used unmodified. The only difference is how you make Mathematica able to service the computa-

tions triggered by dragging the slider. For a modal window, you use DoModal to force Mathemat-

ica to pay attention exclusively to the Java link. The drawback to this is that you cannot use the

kernel from the notebook front end until DoModal ends. To allow the notebook front end and

Java to share the kernel’s attention, you use ShareKernel.

264 J/Link User Guide

RealTimeAlgebraModeless[] :=
Module[{frm, token},

frm = CreateWindow[];

token = ShareKernel[];

(* We use the MathFrame onClose method to specify code to
 be executed when the frame is closed.The use here is
 typical--we clean up the object references that need to
 persist throughout the lifetime of the window (otherwise
 we would leak these references),and we call UnshareKernel
 to unregister this application's request for kernel sharing.
*)
frm@onClose[

"ReleaseJavaObject[inText, outText]; UnshareKernel[" <> ToString[token] <> "];"
];

ReleaseJavaObject[frm]
]

Now run it.

RealTimeAlgebraModeless@D

RealTimeAlgebraModeless returns immediately after the window is displayed, leaving the front

end and the RealTimeAlgebra window able to use the kernel for computations.

You still need a little bit of polish on the modeless version, however. First, to avoid leaking

object references, you must change sliderFunc. With the modal version, you did not bother to

use JavaBlock or ReleaseJavaObject in sliderFunc because you had DoModal wrapped in

JavaBlock. Every call to sliderFunc, or any other MathListener handler function, occurs

entirely within the scope of DoModal, so you can handle all object releasing at this level. With a

modeless interface, you no longer have a single function call that spans the lifetime of the

window. Thus, you put memory-management functions in our handler functions. Here is the

new sliderFunc.

sliderFunc@evt_, type_, scrollPos_D :=
JavaBlock@

outTextüsetText@

Block@8a = scrollPos<, ToString@ToExpression@inTextügetText@DDDD
D;
ReleaseJavaObject@evtD

D

The JavaBlock here is unnecessary because the code it wraps creates no new object refer-

ences. Out of habit, though, you wrap these handlers in JavaBlock. You need to explicitly call

ReleaseJavaObject on evt, which is the AdjustmentEvent object, because its reference is

created in Mathematica before sliderFunc is entered, so it will not be released by the

JavaBlock. The type and scrollPos arguments are integers, not objects.

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

J/Link User Guide 265

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

ShareFrontEnd@D;

Now if you set the input text to, say, Print@aD or Plot@a x, 8x, 0, a<D, you will see the text

and graphics appearing in the front end.

When you are finished, quit RealTimeAlgebra by clicking its close box. Then turn off front end

sharing that was turned on in the previous input.

UnshareFrontEnd@D

A modal interface is simpler than a modeless one in terms of how it uses Mathematica, and is

therefore the preferred method unless you specifically need the modeless attribute.

ShareKernel and ShareFrontEnd are complex functions that put the kernel into an unusual

state. They work fine, but do not use them unnecessarily.

GraphicsDlg: Graphics and Typeset Output in a Window

It is useful to be able to display Mathematica graphics and typeset expressions in your Java

user interface, and this is easy to do using J/Link’s MathCanvas class. This example demon-

strates a simple dialog box that allows the user to type in a Mathematica expression and see

the output in the form of a picture. If the expression is a plotting or other graphics function, the

resulting image is displayed. If the expression is not a graphic, then it is typeset in

TraditionalForm and displayed as a picture. The example is first presented in modal form and

then in modeless form using ShareKernel and ShareFrontEnd.

266 J/Link User Guide

This example also demonstrates a trivial example of using Java code that was created by a

drag-and-drop GUI builder of the type present in most Java development environments. For

layout of simple windows, it is easy enough to do everything from Mathematica. This method

was chosen for all the examples in this tutorial, writing no Java code and instead scripting the

creation and layout of controls in windows with Mathematica calls into Java. This has the advan-

tage of not requiring any Java classes to be written and compiled. For more complex windows,

however, you will probably find it much easier to create the controls, arrange them in position,

set their properties in a GUI builder, and let it generate Java code for you. You might also want

to write some additional Java code by hand.

If you choose this route, the question becomes, “How do I connect the Java code thus gener-

ated with Mathematica?” Any public fields or methods can be called directly from Mathematica,

but your GUI builder may not have made public all the ones you need to use. You could make

these fields and methods public or add some new public methods that expose them. The latter

approach is probably preferable since it does not involve modifying the code that the GUI

builder wrote, which could confuse the builder or cause it to overwrite your changes in future

modifications.

The complete code for this example is provided in the JLink/Examples/Part1/GraphicsDlg direc-

tory. Some of the code is in Java.

This example uses the GUI builder in the WebGain Visual Café Java development environment.

The builder was used to create a frame window with three controls. The frame window was

made to be a subclass of MathFrame because you want to inherit the setModal() method. In

the top left is an AWT TextArea that serves as the input box for the expression. To its right is

an Evaluate button. Occupying the rest of the window is a MathCanvas.

J/Link User Guide 267

Up to this point, no code has been written by hand at all~everything has been done automati-

cally as components were dropped into the frame and their properties set. All that is left to do

is to wire up the button so that when it is clicked the input text is taken and supplied as to the

MathCanvas via its setMathCommand() method. You could write that code in Java, using Visual

Café’s Interaction Wizard to wire up this event (similar facilities exist in other Java GUI

builders). You would have to write some Java code by hand, as the code’s logic is more com-

plex than can be handled by graphical tools for creating event handlers.

Rather than doing that, move to Mathematica to script the rest of the behavior because it is

easier and more flexible. You will need to access the TextArea, Button, and MathCanvas

objects from Mathematica, but the GUI builder made these nonpublic fields of the frame class.

Thus, you need to add three public methods that return these objects to the frame class.

public Button getEvalButton() {return evalButton;}
public TextArea getInputTextArea() {return inputTextArea;}
public MathCanvas getMathCanvas() {return mathCanvas;}

That is all you need to do to the Java code created by the GUI builder.

The GUI builder created a subclass of MathFrame that is named GraphicsDlg. It also gave it a

main() method that does nothing but create an instance of the frame and make it visible. You

will not bother with the main() method, choosing instead to do those two steps manually, since

you need a reference to the frame.

Needed before the code is run is a demonstration of one more feature of J/Link~the ability to

add directories to the class search path dynamically. You need to load the Java classes for this

example, but they are not on the Java class path. With J/Link, you can add the directory in

which the classes reside to the search path by calling AddToClassPath. This will work exactly as

written in Mathematica 4.2 and later. You will need to modify the path if you have an earlier

version of Mathematica.

classDir = ToFileName[{$TopDirectory, "SystemFiles", "Links", "JLink",
"Examples", "Part1", "GraphicsDlg"}];

InstallJava[];
AddToClassPath[classDir];

Here is the first implementation of the Mathematica code to create and run the graphics dialog.

This runs the dialog in a modal loop.

268 J/Link User Guide

DoGraphicsDialogModal[] :=
JavaBlock[

Module[{frm, btn, listener},
InstallJava[];
(* We named the MathFrame subclass GUI builder created "MyFrame". *)
frm = JavaNew["GraphicsDlg"];
(* Here we call one of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
btn = frm@getEvalButton[];
listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];
JavaShow[frm];
frm@setModal[];
DoModal[]

]
]

btnFunc[event_, _] :=
JavaBlock[

Module[{frm, expr, textArea, inputText, mathCanvas},
frm = event@getSource[]@getParent[];
(* Here we call two of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
textArea = frm@getInputTextArea[];
mathCanvas = frm@getMathCanvas[];

inputText = textArea@getText[];
(* We have to evaluate the expression ahead of time to determine
 whether it is a graphics object or not, so we can decide
 whether it display it as a plot or as a typeset result.
*)
expr = Block[{$DisplayFunction = Identity}, ToExpression[inputText]];
If[MatchQ[expr, _Graphics | _Graphics3D | _SurfaceGraphics |

DensityGraphics | _ContourGraphics],
mathCanvas@setImageType[MathCanvas`GRAPHICS],

(* else *)
mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setUsesTraditionalForm[True]

];
mathCanvas@setMathCommand[ToString[expr, InputForm]];
ReleaseJavaObject[event]

]
]

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

representation. The front end is used to run this example, but it is really because you are

running the Java dialog “modally” that everything works the way it does. All the while the

dialog is up, the front end is waiting for a result from a computation (DoModal@D), and therefore

it is receptive to requests from the kernel for various services. As far as the front end is con-

DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

J/Link User Guide 269

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

representation. The front end is used to run this example, but it is really because you are

running the Java dialog “modally” that everything works the way it does. All the while the

dialog is up, the front end is waiting for a result from a computation (DoModal@D), and therefore

cerned, the code for DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

Now run the dialog.

DoGraphicsDialogModal[]

What if you are not happy with the restriction of running the dialog modally? Now you want to

have the dialog remain open and active while not interfering with normal use of the kernel from

the front end. As discussed in "Modal Windows" and "Real-Time Algebra: A Mini-Application",

you get a lot of useful behavior regarding the front end for free when you run your Java user

interface modally. One of these features is that the front end is kept receptive to the various

sorts of requests the kernel can send to it (such as for typesetting services). You know you can

run a Java user interface in a “modeless” way by using ShareKernel, but then you give up the

ability to have the kernel use the front end during computations initiated by actions in Java.

Luckily, the ShareFrontEnd function exists to restore these features for modeless windows.

Re-implement the graphics dialog in modeless form.

DoGraphicsDialogModeless[] :=
JavaBlock[

Module[{frm, btn, listener, tok},
 InstallJava[];
 frm = JavaNew["GraphicsDlg"];
 btn = frm@getEvalButton[];

listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];

 tok = ShareFrontEnd[];
 frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
 JavaShow[frm]
]
]

The code shown is exactly the same as DoGraphicsDialogModal except for the last few lines.

You call ShareFrontEnd here instead of setModal and DoModal. That is the only difference~the

rest of the code (including btnFunc) is exactly the same. Notice also that you use the

onClose() method of MathCanvas to execute code that unregisters the request for front end

sharing when the window is closed.

Run the modeless version. Note how you can continue to perform computations in the front end

while the window is active.

DoGraphicsDialogModeless[]

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

270 J/Link User Guide

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

BouncingBalls: Drawing in a Window

This example demonstrates drawing in Java windows using the Java graphics API directly from

Mathematica. It also demonstrates the use of the ServiceJava function to periodically allow

event handler callbacks into Mathematica from Java. The issues surrounding ServiceJava and

how it compares to DoModal and ShareKernel are discussed in greater detail in “Manual” Inter-

faces: The ServiceJava Function.

The full code is a little too long to include here in its entirety, but it is available in the sample

file BouncingBalls.nb in the JLink/Examples/Part1 directory. Here is an excerpt that demon-

strates the use of ServiceJava.

...
mwl = JavaNew["com.wolfram.jlink.MathWindowListener"];
mwl@setHandler["windowClosing", "(keepOn = False)&"];
mathCanvas@addWindowListener[mwl];
keepOn = True;
While[keepOn,

g@setColor[bkgndColor];
g@fillRect[0, 0, 300, 300];
drawBall[g, #]& /@ balls;
mathCanvas@setImage[offscreen];
balls = recomputePosition /@ balls;
ServiceJava[]

];
...

J/Link User Guide 271

A MathWindowListener is used to set keepOn = False when the window is closed, which will

cause the loop to terminate. While the window is up, mouse clicks will cause new balls to be

created, appended to the balls list, and set in motion. This is done with a MathMouseListener

(not shown in the code). Thus, Mathematica needs to be able to handle calls originating from

user actions in Java. As discussed in the section "Creating Windows and Other User Interface

Elements", there are three ways to enable Mathematica to do this: DoModal (modal interfaces),

ShareKernel or ShareFrontEnd (modeless interfaces), and ServiceJava (manual interfaces). A

modal loop via DoModal would not be appropriate here because the kernel needs to be comput-

ing something at the same time it is servicing calls from Java (it is computing the new positions

of the balls and drawing them). ShareKernel would not help because that is a way to give Java

access to the kernel between computations triggered from the front end, not during such

computations.

You need to periodically point the kernel’s attention at Java to service requests if any are pend-

ing, then let the kernel get back to its other work. The function that does this is ServiceJava,

and the code above is typical in that it has a loop that calls ServiceJava every time through.

The calls from Java that ServiceJava will handle are the ones from mouse clicks to create new

balls and when the window is closed.

Spirograph

This example is just a little fun to create an interesting, nontrivial application~an implementa-

tion of a simple Spirograph-type drawing program. It is run as a modal window, and it demon-

strates drawing into a Java window from Mathematica, along with a number of MathListener

objects for various event callbacks. It uses the Java Graphics2D API, so it will not run on

systems that have only a Java 1.1.x runtime.

The code for this example can be found in the file Spirograph.nb in the JLink/Examples/Part1

directory.

One of the things you will notice is that on a reasonably fast machine, the speed is perfectly

acceptable. There is nothing to suggest that the entire functionality of the application is scripted

from Mathematica. It is very responsive despite the fact that a large number of callbacks to

Mathematica are triggered. For example, the cursor is changed as you float the mouse over

various regions of the window (it changes to a resize cursor in some places), so there is a

constant flow of callbacks to Mathematica as you move the mouse. This example demonstrates

the feasibility of writing a sophisticated application entirely in Mathematica.

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

272 J/Link User Guide

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

Modal programs like this are best developed using ShareFrontEnd, then made modal only when

they are complete. Making it modeless while it is being developed is necessary to be able to

build and debug it interactively, because while it is running you can continue to use the front

end to modify the code, make new definitions, add debugging statements, and so on. Using

ShareFrontEnd instead of ShareKernel for modeless operation lets Mathematica error and

warning messages generated by event callbacks, and Print statement inserted for debugging,

show up in the notebook window. Only when everything is working as desired do you add the

DoModal@D call to turn it into a modal window.

A Piano Keyboard

With the inclusion of the Java Sound API in Java 1.3 and later, it becomes possible to write Java

programs that do sophisticated things with sound, such as playing MIDI instruments. The

Piano.nb example in the JLink/Examples/Part1 directory displays a keyboard and lets you play it

by clicking the mouse. A popup menu at the top lists the available MIDI instruments. This

example was created precisely because it is so far outside the limitations of traditional Mathemat -

ica programming. Using J/Link, you can actually write a short and completely portable program,

entirely in the Mathematica language, that displays a MIDI keyboard and lets you play it! With

just a little more work, the code could be modified to record a sequence played and then return

it to Mathematica, where you could manipulate it by transposing, altering the tempo, and so on.

J/Link User Guide 273

Advanced Topics in J/Link

Calling Java from Mathematica

Preamble

J/Link provides Mathematica users with the ability to interact with arbitrary Java classes directly

from Mathematica. You can create objects and call methods directly in the Mathematica lan-

guage. You do not need to write any Java code, or prepare in any way the Java classes you

want to use. You also do not need to know anything about MathLink. In effect, all of Java

becomes a transparent extension to Mathematica, almost as if every existing and future Java

class were written in the Mathematica language itself.

This facility is called “installable Java” because it generalizes the ability that Mathematica has

always had to plug in extensions written in other languages through the Install function. You

will see later how J/Link vastly simplifies this procedure for Java compared to languages like C

or C++. In fact, J/Link makes the procedure go away completely, which is why Java becomes a

transparent extension to Mathematica.

Although Java is often referred to as an interpreted language, this is really a misnomer. To use

Java you must write a complete program, compile it, and then execute it (some environments

exist that let you interactively execute lines of Java code, but these are special tools, and simi-

lar tools exist for traditional languages like C). Mathematica users have the luxury of working in

a true interpreted, interactive environment that lets them experiment with functions and build

and test programs a line at a time. J/Link brings this same productive environment to Java

programmers. You could say that Mathematica becomes a scripting language for Java.

To Mathematica users, then, the “installable Java” feature of J/Link opens up the expanding

universe of Java classes as an extension to Mathematica; for Java users, it allows the extraordi-

narily powerful and versatile Mathematica environment to be used as a shell for interactively

developing, experimenting with, and testing Java classes.

Loading the J/Link Package

The first step is to load the J/Link package file.

Needs@"JLink`"D

Launching the Java Runtime

274 J/Link User Guide

Launching the Java Runtime

InstallJava

The next step is to launch the Java runtime and “install” it into Mathematica. The function for

this is InstallJava.

InstallJava@D launch the Java runtime and prepare it for use from
Mathematica

ReinstallJava@D quit and restart the Java runtime if it is already running

JavaLink@D give the LinkObject that is being used to communicate
with the Java runtime

Launching the Java runtime.

InstallJava@D

LinkObjectAd:\jdk122\bin\java, 5, 2E

InstallJava can be called more than once in a session. On every call after the first, it does

nothing. Thus, it is safe to call InstallJava in any program you write, without considering

whether the user has already called it.

InstallJava creates a command line that is used to launch the Java runtime (typically called

"java") and specify some initial arguments for it. In rare cases you will need to control what is

on this command line, so InstallJava takes a number of options for this purpose. Most users

will not need to use these options, and in fact you should avoid them. Programmers should not

assume that they have the ability to control the launch of the Java runtime, as it might already

be running. If for some reason you absolutely must apply options to control the launch of the

Java runtime, use ReinstallJava instead of InstallJava.

ClassPath->None use the default class path of your Java runtime

ClassPath->"dirs" use the specified directories and jar files

CommandLine->"cmd" use the specified command line to launch the Java run-
time, instead of “java”

Options for InstallJava .

J/Link User Guide 275

Controlling the Command Used to Launch Java

An important option to InstallJava and ReinstallJava is CommandLine. This specifies the

first part of the command line used to launch Java. One use for this option is if you have more

than one Java runtime installed on your system, and you want to invoke a specific one:

ReinstallJava@CommandLine Ø "d:\\full\\path\\to\\java.exe"D

By default, InstallJava will launch the Java runtime that is bundled with Mathematica 4.2 and

later. If you have an earlier version of Mathematica, the default command line that will be used

is java on most systems. If the java executable is not on your system path, you can use

InstallJava to point at it. Another use for this option is to specify arguments to Java that are

not covered by other options. Here is an example that specifies verbose garbage collection and

defines a property named foo to have the value bar.

ReinstallJava@CommandLine Ø "êpathêtoêjava -verbosegc -Dfoo=bar"D

Overriding the Class Path

The class path is the set of directories in which the Java runtime looks for classes. When you

launch a Java program from your system’s command line, the class path used by Java includes

some default locations and any locations specified in the CLASSPATH environment variable, if it

exists. If you use the -classpath command-line option to specify a set of locations, however,

then the CLASSPATH environment variable is ignored. The ClassPath option to InstallJava

and ReinstallJava works the same way. If you leave it at the default value, Automatic, then

J/Link will include the contents of the CLASSPATH environment variable in its class search path.

If you set it to None or a string, then the contents of CLASSPATH are not used. If you set it to

be a string, use the same syntax that you would use for setting the CLASSPATH environment

variable, which is different for Windows and Unix:

ReinstallJava@ClassPath Ø "c:\\my\\java\\dir;d:\\MyJavaStuff.jar"D H* Windows *L

ReinstallJava@ClassPath Ø "êmyêjavaêdir:êhomeêmeêMyJavaStuff.jar"D
H* UnixêLinux *L

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

you dynamically add new search locations while the Java runtime is running. This means that

using the ClassPath option to configure the class path when Java first launches is not very

important. One setting for the ClassPath option that is sometimes useful is None, to prevent

276 J/Link User Guide

J/Link has its own mechanism for controlling the class search path that is very flexible. Not only

does J/Link automatically search for classes in Mathematica application directories, it also lets

you dynamically add new search locations while the Java runtime is running. This means that

using the ClassPath option to configure the class path when Java first launches is not very

J/Link from finding any classes from the contents of CLASSPATH. You might want to do this if

you had an experimental version of some class in a development directory and you wanted to

make sure that J/Link used that version in preference to an older one that was present on your

CLASSPATH. "The Java Class Path" presents a complete treatment of the subject of how J/Link

searches for classes, and how to add locations to this search path.

Loading Classes

LoadJavaClass

LoadJavaClass@"classname"D load the specified class into Java and Mathematica

LoadClass@"classname"D deprecated name from earlier versions of J/Link; use
LoadJavaClass instead

Loading classes.

To use a Java class in Mathematica, it must first be loaded into the Java runtime and certain

definitions must be set up in Mathematica. This is accomplished with the LoadJavaClass func-

tion. LoadJavaClass takes a string specifying the fully qualified name of the class (i.e., the full

hierarchical name with all the periods):

urlClass = LoadJavaClass@"java.net.URL"D

JavaClass@java.net.URLD

The return value is an expression with head JavaClass. This JavaClass expression can be used

in many places in J/Link, so you might want to assign it to a variable as done here. Virtually

everywhere in J/Link where a class needs to be specified as an argument, you can use either a

JavaClass expression, the fully qualified class name as a string, or an object of the class. Note

that you cannot create a valid JavaClass expression by simply typing it in~it must be returned

by LoadJavaClass.

When a class has been loaded, you can call static methods in the class, create objects of the

class, and invoke methods and access fields of these objects. You can use any public construc-

tors, methods, or fields of a class.

J/Link User Guide 277

StaticsVisible->True make static methods and fields accessible by just their
names, not in a special context

AllowShortContext->False make static methods and fields accessible only in their fully
qualified class context

UseTypeChecking->False suppress the type checking that is normally inserted in
definitions for calls into Java

Options for LoadJavaClass.

"The Java Class Path" discusses the details of how and where J/Link finds classes. J/Link will be

able to find classes on the class path, in the special Java extensions directory, and in a set of

extra directories that users can control even while J/Link is running.

When to Call LoadJavaClass

It is often the case that you do not need to explicitly load a class with LoadJavaClass. As

described later, when you create a Java object with JavaNew, you can supply the class name as

a string. If the class has not already been loaded, LoadJavaClass will be called internally by

JavaNew. In fact, anytime a Java object is returned to Mathematica its class is loaded automati-

cally if necessary. This would seem to imply that there is little reason to use LoadJavaClass.

There are a number of reasons why you would want or need to use LoadJavaClass explicitly:

† You need to call a static method of a class and you will not create, or have not yet created,
an object of that class. A class must be loaded before any of its static methods can be
called.

† You need to use one of the options to LoadJavaClass. When LoadJavaClass is called
internally by JavaNew, it is called with the default option settings.

† You want to see errors associated with loading a class reported at a well-defined time.

† You want to control where your users experience the initial delay associated with loading a
class. Loading a class can take several seconds if it or one of its parent classes is very large
(although it rarely takes that long). You might want to avoid a mysterious delay in a func-
tion that users expect to be very quick.

† You want to hang on to the JavaClass expression returned by LoadJavaClass to use it in
other functions. Although all functions that take a JavaClass can also take a class name
string, you might prefer to use a named JavaClass variable for readability purposes. It is
also slightly faster than using a string, but this will not be perceptible unless you are using
it many times in a loop.

† You feel that it makes your code more self-documenting.

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

278 J/Link User Guide

The operation of loading a class in J/Link is only done once in a J/Link session (a session is the

period between InstallJava and UninstallJava). You can call LoadJavaClass on a given

class as many times as you want, and every call after the first one immediately returns the

JavaClass expression without doing any work. This is important, as it means that you never

have to worry whether a class has been loaded already~if you are not sure, call

LoadJavaClass.

Developers writing code for a wide audience should always call LoadJavaClass on any classes

they need in every function that needs them. It is not suitable to call LoadJavaClass in the

body of your package code when it is read in, as the user may quit and restart the Java runtime

(i.e., UninstallJava and InstallJava) after your package was read. To be safe, every user-

level function that uses J/Link should call InstallJava and LoadJavaClass (if LoadJavaClass

is necessary; see the following). Both calls execute very quickly if they are not needed.

As mentioned already, loading a class can take several seconds in some cases. When a class is

loaded, all of its superclasses are loaded in succession, walking up the inheritance hierarchy.

Because a given class is only actually loaded once, if you load another class that shares some of

the same superclasses as a previously loaded class, these superclasses will not have to be

loaded again. This means that loading the second class will be much quicker than the first if any

of the shared superclasses were large. An example of this is loading classes in the java.awt

package. The class java.awt.Component is very large, so the first time you load a class that

inherits from it, say java.awt.Button, there will be a noticeable delay. Subsequent loading of

other classes derived from Component will be much quicker.

Contexts and Visibility of Static Members

LoadJavaClass has two options that let you control the naming and visibility of static methods

and fields. To understand these options, you need to understand the problems they help to

solve. This explanation gets a bit ahead since how to call Java methods has not been discussed.

When a class is loaded, definitions are created in Mathematica that allow you to call methods

and access fields of objects of that class. Static members are treated quite differently from

nonstatic ones. None of these issues arise for nonstatic members, so only static members are

discussed in this section. Say you have a class named com.foobar.MyClass that contains a

static method named foo. When you load this class, a definition must be set up for foo so that

it can be called by name, something like foo@argsD. The question becomes: In what context do

you want the symbol foo defined, and do you want this context to be visible (i.e., on

$ContextPath)?

J/Link always creates a definition for foo in a context that mirrors its fully qualified classname:

com`foobar`MyClass`foo. This is done to avoid conflicting with symbols named foo that might

be present in other contexts. However, you might find it clumsy to have to call foo by typing

the full context name every time, as in com`foobar`MyClass`foo@argsD. The option

AllowShortContext -> True (this is the default setting) causes J/Link to also make definitions

for foo accessible in a shortened context, one that consists of just the class name without the

hierarchical package name prefix. In the example, this means that you could call foo as simply

MyClass`foo@argsD. If you need to avoid use of the short context because there is already a

context of the same name in your Mathematica session, you can use

AllowShortContext -> False. This forces all names to be put only in the “deep” context. Note

that even with AllowShortContext -> True, names for statics are also put into the deep con-

text, so you can always use the deep context to refer to a symbol if you desire.

J/Link User Guide 279

J/Link always creates a definition for foo in a context that mirrors its fully qualified classname:

com`foobar`MyClass`foo. This is done to avoid conflicting with symbols named foo that might

be present in other contexts. However, you might find it clumsy to have to call foo by typing

the full context name every time, as in com`foobar`MyClass`foo@argsD. The option

AllowShortContext -> True (this is the default setting) causes J/Link to also make definitions

for foo accessible in a shortened context, one that consists of just the class name without the

hierarchical package name prefix. In the example, this means that you could call foo as simply

MyClass`foo@argsD. If you need to avoid use of the short context because there is already a

context of the same name in your Mathematica session, you can use

AllowShortContext -> False. This forces all names to be put only in the “deep” context. Note

that even with AllowShortContext -> True, names for statics are also put into the deep con-

text, so you can always use the deep context to refer to a symbol if you desire.

AllowShortContext, then, lets you control the context where the symbol names are defined.

The other option, StaticsVisible, controls whether this context is made visible (put on

$ContextPath) or not. The default is StaticsVisible -> False, so you have to use a context

name when referring to a symbol, as in MyClass`foo@argsD. With StaticsVisible -> True,

MyClass` will be put on $ContextPath, so you could just write foo@argsD. Having the default be

True would be a bit dangerous~every time you load a class a potentially large number of

names would suddenly be created and made visible in your Mathematica session, opening up

the possibility for all sorts of “shadowing” problems if symbols of the same names were already

present. This problem is particularly acute with Java, because method and field names in Java

typically begin with a lowercase letter, which is also the convention for user-defined symbols in

Mathematica. Some Java classes define static methods and fields with names like x, y, width,

and so on, so shadowing errors are very likely to occur (see "Contexts" for a discussion of

contexts and shadowing problems).

For these reasons StaticsVisible -> True is recommended only for classes that you have

written, or ones whose contents you are familiar with. In such cases, it can save you some

typing, make your code more readable, and prevent the all-too-easy bug of forgetting to type

the package prefix. A classic example would be implementing the venerable “addtwo” MathLink

example program. In Java, it might look like this:

public class AddTwo {
public static int addtwo(int i, int j) {return i + j;}

}

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`addtwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious addtÖ

wo[3, 4].

280 J/Link User Guide

With the default StaticsVisible -> False, you would have to call addtwo as

AddTwo`addtwo@3, 4D. Setting StaticsVisible -> True lets you write the more obvious addtÖ

wo[3, 4].

Be reminded that these options are only for static methods and fields. As discussed later, non-

statics are handled in a way that makes context and visibility issues go away completely.

Inner Classes

Inner classes are public classes defined inside another public class. For example, the class

javax.swing.Box has an inner class named Filler. When you refer to the Filler class in a

Java program, you typically use the outer class name, followed by a period, then the inner class

name:

Box.Filler f = new Box.Filler(…);

You can use inner classes with J/Link, but you need to use the true internal name of the class,

which has a $, not a period, separating the outer and inner class names:

filler = JavaNew@"java.swing.Box$Filler", …D

If you look at the class files produced by the Java compiler, you will see these $-separated class

names for inner classes.

Conversion of Types Between Java and Mathematica

Before you encounter the operations of creating Java objects and calling methods, you should

examine the mapping of types between Mathematica and Java. When a Java method returns a

result to Mathematica, the result is automatically converted into a Mathematica expression. For

example, Java integer types (e.g., byte, short, int, and so on), are converted into Mathematica

integers, and Java real number types (float, double) are converted into Mathematica reals. The

following table shows the complete set of conversions. These conversions work both ways~for

example, when a Mathematica integer is sent to a Java method that requires a byte value, the

integer is automatically converted to a Java byte.

J/Link User Guide 281

Java type Mathematica type

byte , char , short , int , long Integer

Byte , Character , Short , Integer , Long , BigInteger

Integer

float , double Real

Float , Double , BigDecimal Real

boolean True or False

String String

array List

controlled by user (see "Complex
Numbers")

Complex

Object JavaObject

Expr any expression

null Null

Corresponding types in Java and Mathematica.

Java arrays are mapped to Mathematica lists of the appropriate depth. Thus, when you call a

method that takes a double[], you might pass it 81.0, 2.0, N@PiD, 1.23<. Similarly, a

method that returns a two-deep array of integers (i.e., int[][]) might return to Mathematica

the expression 881, 2, 3<, 85, 3, 1<<.

In most cases, J/Link will let you supply a Mathematica integer to a method that is typed to

take a real type (float or double). Similarly, a method that takes a double[] could be

passed a list of mixed integers and reals. The only times when you cannot do this are the rare

cases where a method has two signatures that differ only in a real versus integer type at the

same argument slot. For example, consider a class with these methods:

public void foo(byte b, Object obj);
public void foo(float f, Object obj);
public void bar(float f, Object obj);

J/Link would create two Mathematica definitions for the method foo~one that required an

integer for the first argument and invoked the first signature, and one that required a real

number for the first argument and invoked the second signature. The definition created for the

method bar would accept an integer or a real for the first argument. In other words, J/Link will

automatically convert integers to reals, except in cases where such conversion makes it ambigu-

matica’s N function to convert all integers to reals explicitly.

282 J/Link User Guide

J/Link would create two Mathematica definitions for the method foo~one that required an

integer for the first argument and invoked the first signature, and one that required a real

number for the first argument and invoked the second signature. The definition created for the

method bar would accept an integer or a real for the first argument. In other words, J/Link will

ous as to which signature of a given method to invoke. This is not strictly true, though, as

J/Link does not try as hard as it possibly could to determine whether real versus integer ambigu-

ity is a problem at every argument position. The presence of ambiguity at one position will

cause J/Link to give up and require exact type matching at all argument positions. This is start-

ing to sound confusing, but you will find that in most cases J/Link allows you to pass integers or

lists with integers to methods that take reals or arrays of reals, respectively, as arguments. In

cases where it does not, the call will fail with an error message, and you will have to use Mathe-

matica’s N function to convert all integers to reals explicitly.

Creating Objects

To instantiate Java objects, use the JavaNew function. The first argument to JavaNew is the

object’s class, specified either as a JavaClass expression returned from LoadJavaClass or as a

string giving the fully qualified class name (i.e., having the full package prefix with all the

periods). If you wish to supply any arguments to the object’s constructor, they follow as a

sequence after the class.

JavaNew@cls,arg1,…D construct a new object of the specified class and return it
to Mathematica

JavaNew@"classname",arg1,…D construct a new object of the specified class and return it
to Mathematica

Constructing Java objects.

For example, this will create a new Frame.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

The return value from JavaNew is a strange expression that looks like it has the head

JavaObject, except that it is enclosed in angle brackets. The angle brackets are used to indi-

cate that the form in which the expression is displayed is quite different from its internal repre-

sentation. These expressions will be referred to as JavaObject expressions. JavaObject expres-

sions are displayed in a way that shows their class name, but you should consider them

opaque, meaning that you cannot pick them apart or peer into their insides. You can only use

them in J/Link functions that take JavaObject expressions. For example, if obj is a JavaObject,

you cannot use First@objD to get its class name. Instead, there is a J/Link function,

ClassName@objD, for this purpose.

JavaNew invokes a Java constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of JavaObject expressions~as references to Java objects very much like object

references in the Java language itself. What is returned to Mathematica is not large no matter

what type of object you are constructing. In particular, the object’s data (that is, its fields) are

not sent back to Mathematica. The actual object remains on the Java side, and Mathematica

gets a reference to it.

J/Link User Guide 283

JavaNew invokes a Java constructor appropriate for the types of the arguments being passed in,

and then returns to Mathematica what is, in effect, a reference to the object. That is how you

should think of JavaObject expressions~as references to Java objects very much like object

references in the Java language itself. What is returned to Mathematica is not large no matter

what type of object you are constructing. In particular, the object’s data (that is, its fields) are

not sent back to Mathematica. The actual object remains on the Java side, and Mathematica

gets a reference to it.

The Frame class has a second constructor, which takes a title in the form of a string. Here is
how you would call that constructor.
frm = JavaNew@"java.awt.Frame", "My Example Frame"D

«JavaObject@java.awt.FrameD »

Note that simply constructing a Frame does not cause it to appear. That requires a separate

step (calling the frame’s show or setVisible methods will work, but as you will see later,

J/Link provides a special function, JavaShow, to make Java windows appear and come to the

foreground).

The previous examples specified the class by giving its name as a string. You can also use a
JavaClass expression, which is a special expression returned by LoadJavaClass that identi-
fies a class in a particularly efficient manner. When you specify the class name as a string, the
class is loaded if it has not already been.
frameClass = LoadJavaClass@"java.awt.Frame"D;
frm = JavaNew@frameClass, "My Example Frame"D;

JavaNew is not the only way to get a reference to a Java object in Mathematica. Many methods

and fields return objects, and when you call such a method, a JavaObject expression is cre-

ated. Such objects can be used in the same way as ones you explicitly construct with JavaNew.

At this point, you may be wondering about things like reference counts and how objects

returned to Mathematica get cleaned up. These issues are discussed in "Object References in

Mathematica".

J/Link has two other functions for creating Java objects, called MakeJavaObject and

MakeJavaExpr. These specialized functions are described in the section "MakeJavaObject and

MakeJavaExpr".

284 J/Link User Guide

Calling Methods and Accessing Fields

Syntax

The Mathematica syntax for calling Java methods and accessing fields is very similar to Java

syntax. The following box compares the Mathematica and Java ways of calling constructors,

methods, fields, static methods, and static fields. You can see that Mathematica programs that

use Java are written in almost exactly the same way as Java programs, except Mathematica

uses @D instead of () for arguments, and Mathematica uses ü instead of Java’s . (dot) as the

“member access” operator.

An exception is that for static methods, Mathematica uses the context mark ` in place of Java’s

dot. This parallels Java usage also, as Java’s use of the dot in this circumstance is really as a

scope resolution operator (like :: in C++). Although Mathematica does not use this terminol-

ogy, its scope resolution operator is the context mark. Java’s hierarchical package names map

directly to Mathematica’s hierarchical contexts.

constructors

Java: MyClass obj=new MyClass HargsL;

Mathematica: obj=JavaNew@"MyClass",argsD;

methods

Java: obj.methodName HargsL;

Mathematica: objümethodName@argsD

fields

Java: obj.fieldName=1;
value=obj.fieldName;

Mathematica: objüfieldName=1;
value=objüfieldName;

static methods

Java: MyClass.staticMethod HargsL;

Mathematica: MyClass`staticMethod@argsD;

static fields

Java: MyClass.staticField=1;
value=MyClass.staticField;

Mathematica: MyClass`staticField=1;
value=MyClass`staticField;

Java and Mathematica syntax comparison.

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: füx is equivalent to the more commonly used f@xD. J/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method:

J/Link User Guide 285

You may already be familiar with ü as a Mathematica operator for applying a function to an

argument: füx is equivalent to the more commonly used f@xD. J/Link does not usurp ü for

some special operation~it is really just normal function application slightly disguised. This

means that you do not have to use ü at all. The following are equivalent ways of invoking a

method:

H* These are equivalent *L
objümethod@argsD;
obj@method@argsDD;

The first form preserves the natural mapping of Java’s syntax to Mathematica’s, and it will be

used exclusively in this tutorial.

When you call methods or fields and get results back, J/Link automatically converts arguments

and results to and from their Mathematica representations according to the table in "Conversion

of Types between Java and Mathematica".

Method calls can be chained in Mathematica just like in Java. For example, if meth1 returns a

Java object, you could write in Java obj.meth1().meth2(). In Mathematica, this becomes

objümeth1@Dümeth2@D. Note that there is an apparent problem here: Mathematica’s ü operator

groups to the right, whereas Java’s dot groups to the left. In other words,

obj.meth1().meth2() in Java is really (obj.meth1()).meth2() whereas

objümeth1@Dümeth2@D in Mathematica would normally be objüHmeth1@Dümeth2@DL. I say

“normally” because J/Link automatically causes chained calls to group to the left like Java. It

does this by defining rules for JavaObject expressions, not by altering the properties of the ü

operator, so the global behavior of ü is not affected. This chaining behavior only applies to

method calls, not fields. You cannot do this:

H* These are incorrect. You cannot chain calls after a field access. *L
x = objüfieldümethod@argsD;
x = objüfield1üfield2;

You would have to split these up into two lines. For example, the second line above would

become:

temp = objüfield1;
x = tempüfield2;

In Java, like other object-oriented languages, method and field names are scoped by the object

on which they are called. In other words, when you write obj.meth(), Java knows that you are

calling the method named meth that resides in obj’s class, even though there may be other

methods named meth in other classes. J/Link preserves this scoping for Mathematica symbols

objümeth@D, there is no conflict with any other symbols named meth in the system~the

symbol meth used by Mathematica in the evaluation of this call is the one set up by J/Link for

this class. Here is an example using a field. First, you create a Point object.

286 J/Link User Guide

In Java, like other object-oriented languages, method and field names are scoped by the object

on which they are called. In other words, when you write obj.meth(), Java knows that you are

calling the method named meth that resides in obj’s class, even though there may be other

so that there is never a conflict with existing symbols of the same name. When you write

objümeth@D, there is no conflict with any other symbols named meth in the system~the

symbol meth used by Mathematica in the evaluation of this call is the one set up by J/Link for

this class. Here is an example using a field. First, you create a Point object.

pt = JavaNew@"java.awt.Point"D

«JavaObject@java.awt.PointD »

The Point class has fields named x and y, which hold its coordinates. A user’s session is also

likely to have symbols named x or y in it, however. You set up a definition for x that will tell

you when it is evaluated.

x := Print@"gotcha"D

Now set a value for the field named x (this would be written as pt.x = 42 in Java).

ptüx = 42;

You will notice that “gotcha” was not printed. There is no conflict between the symbol x in the

Global` context that has the Print definition and the symbol x that is used during the evalua-

tion of this line of code. J/Link protects the names of methods and fields on the right-hand side

of ü so that they do not conflict with, or rely on, any definitions that might exist for these

symbols in visible contexts. Here is a method example that demonstrates this issue differently.

frm = JavaNew@"java.awt.Frame"D;
frmüshow@D

Even though a new symbol show is being created here, the show that is used by J/Link is the

one that resides down in the java`awt`Frame context, which has the necessary definitions set

up for it.

In summary, for nonstatic methods and fields, you never have to worry about name conflicts

and shadowing, no matter what context you are in or what the $ContextPath is at the

moment. This is not true for static members, however. Static methods and fields are called by

their full name, without an object reference, so there is no object out front to scope the name.

Here is a simple example of a static method call that invokes the Java garbage collector. You

need to call LoadJavaClass before you call a static method to make sure the class has been

loaded.

LoadJavaClass@"java.lang.Runtime"D;
Runtime`gc@D;

The name scoping issue is not usually a problem with statics, because they are defined in their

own contexts (Runtime` in this example). These contexts are usually not on $ContextPath, so

you do not have to worry that there is a symbol of the same name in the Global` context or in

a package that has been read. There is more discussion of this issue in the section on

LoadJavaClass, because LoadJavaClass takes options that determine the contexts in which

static methods are defined and whether or not they are put on $ContextPath. If there is

already a context named Runtime` in your session, and it has its own symbol gc, you can

always avoid a conflict by using the fully hierarchical context name that corresponds to the full

class name for a static member.

J/Link User Guide 287

The name scoping issue is not usually a problem with statics, because they are defined in their

own contexts (Runtime` in this example). These contexts are usually not on $ContextPath, so

you do not have to worry that there is a symbol of the same name in the Global` context or in

a package that has been read. There is more discussion of this issue in the section on

LoadJavaClass, because LoadJavaClass takes options that determine the contexts in which

static methods are defined and whether or not they are put on $ContextPath. If there is

already a context named Runtime` in your session, and it has its own symbol gc, you can

always avoid a conflict by using the fully hierarchical context name that corresponds to the full

class name for a static member.

java`lang`Runtime`gc@D;

Finally, just as in Java, you can call a static method on an object if you like. In this case, since

there is an object out front, you get the name scoping. Here you call a static method of the

Runtime class that returns the current Runtime object (you cannot create a Runtime object with

JavaNew, as Runtime has no constructors). You then invoke the (static) method gc on the

object, and you can use gc without any context prefix.

runtime = Runtime`getRuntime@D;
runtimeügc@D;

Underscores in Java Names

Java names can have characters in them that are not legal in Mathematica symbols. The only

common one is the underscore. J/Link maps underscores in class, method, and field names to

"U". Note that this mapping is only used where it is necessary~when names are used in

symbolic form, not as strings. For example, assume you have a class named com.acme.MyÖ

_Class. When you refer to this class name as a string, you use the underscore.

LoadJavaClass@"com.acme.My_Class"D;
JavaNew@"com.acme.My_Class"D;

But when you call a static method in such a class, the hierarchical context name is symbolic, so

you must convert the underscore to U.

com`acme`MyUClass`staticMethod@D;
MyUClass`staticMethod@D;

The same rule applies to method and field names. Many Java field names have underscores in

them, for example java.awt.Frame.TOP_ALIGNMENT. To refer to this method in code, use the

U.

288 J/Link User Guide

LoadJavaClass@"java.awt.Frame"D;
Frame`TOPUALIGNMENT
0.

In cases where you supply a string, leave the underscore.

Fields@"java.awt.Frame", "*_ALIGNMENT"D

static final float BOTTOM_ALIGNMENT
static final float CENTER_ALIGNMENT
static final float LEFT_ALIGNMENT
static final float RIGHT_ALIGNMENT
static final float TOP_ALIGNMENT

Getting Information about Classes and Objects

J/Link has some useful functions that show you the constructors, methods, and fields available

for a given class or object.

Constructors@clsD return a table of the public constructors and their
arguments

Constructors@objD constructors for this object’s class

Methods@clsD return a table of the public methods and their arguments

Methods@cls,"pat"D show only methods whose names match the string pattern
pat

Methods@objD show methods for this object’s class

Fields@clsD return a table of the public fields

Fields@cls,"pat"D show only fields whose names match the string pattern pat

Fields@objD show fields for this object’s class

ClassName@clsD return, as a string, the name of the class represented by cls

ClassName@objD return, as a string, the name of this object’s class

GetClass@objD return the JavaClass representing this object’s class

ParentClass@objD return the JavaClass representing this object’s parent
class

InstanceOf@obj,clsD return True if this object is an instance of cls, False
otherwise

JavaObjectQ@exprD return True if expr is a valid reference to a Java object,
False otherwise

Getting information about classes and objects.

J/Link User Guide 289

You can give an object or a class to Constructors, Methods, and Fields. The class can be

specified either by its full name as a string, or as a JavaClass expression:

urlClass = LoadJavaClass@"java.net.URL"D;
urlObject = JavaNew@"java.net.URL", "http:êêwww.wolfram.com"D;
H* The next three lines are equivalent *L
Methods@urlClassD
Methods@urlObjectD
Methods@"java.net.URL"D

The declarations returned by these functions have been simplified by removing the Java key-

words public, final (removed only for methods, not fields), synchronized, native,

volatile, and transient. The declarations will always be public, and the other modifiers are

probably not relevant for use via J/Link.

Methods and Fields take one option, Inherited, which specifies whether to include members

inherited from superclasses and interfaces or show only members declared in the class itself.

The default is Inherited -> True.

Inherited->False show only members that are declared in the class itself,
not inherited from superclasses or interfaces

Option for Methods and Fields.

There are additional functions that give information about objects and classes. These functions

are ClassName, GetClass, ParentClass, InstanceOf, and JavaObjectQ. They are self-explana-

tory, for the most part. The InstanceOf function mimics the Java language’s instanceof opera-

tor. JavaObjectQ is useful for writing patterns that match only valid Java objects:

Stringify@obj_?JavaObjectQD := obj@toString@DD

JavaObjectQ returns True if and only if its argument is a valid reference to a Java object or if it

is the symbol Null, which maps to Java’s null object.

Quitting or Restarting Java

When you are finished with using Java in a Mathematica session, you can quit the Java runtime

by calling UninstallJava@D.

UninstallJava@D quit the Java runtime

ReinstallJava@D restart the Java runtime

Quitting the Java runtime.

In addition to quitting Java, UninstallJava clears out the many symbols and definitions cre-

ated in Mathematica when you load classes. All outstanding JavaObject expressions will

become invalid when Java is quit. They will no longer satisfy JavaObjectQ, and they will show

up as raw symbols like JLink`Objects`JavaObject12345678 instead of

<< JavaObject[classname] >>.

290 J/Link User Guide

In addition to quitting Java, UninstallJava clears out the many symbols and definitions cre-

ated in Mathematica when you load classes. All outstanding JavaObject expressions will

become invalid when Java is quit. They will no longer satisfy JavaObjectQ, and they will show

up as raw symbols like JLink`Objects`JavaObject12345678 instead of

<< JavaObject[classname] >>.

Most users will have no reason to call UninstallJava. You should think of the Java runtime as

an integral part of the Mathematica system~start it up, and then just leave it running. All code

that uses J/Link shares the same Java runtime, and there may be packages that you are using

that make use of Java without you even knowing it. Shutting down Java might compromise

their functionality. Developers writing packages should never call UninstallJava in their pack-

ages. You cannot assume that when your application is done with J/Link, your users are done

with it as well.

About the only common reason to need to stop and restart Java is when you are actively devel-

oping Java classes that you want to call from Mathematica. Once a class is loaded into the Java

runtime, it cannot be unloaded. If you want to modify and recompile your class, you need to

restart Java to reload the modified version. Even in this circumstance, though, you will not be

calling UninstallJava. Instead, you will call ReinstallJava, which simply calls

UninstallJava followed by InstallJava again.

Version Information

J/Link provides three symbols that supply version information. These symbols provide the same

type of information as their counterparts in Mathematica itself, except that they are in the

JLink`Information` context, which is not on $ContextPath, so you must specify them by

their full names.

JLink`Information`$Version a string giving full version information

JLink`Information`$VersionNumÖ
ber

a real number giving the current version number

JLink`Information`$ReleaseNumÖ
ber

an integer giving the release number (the last digit in a full
x.x.x version specification)

ShowJavaConsole@D the console window will show version information for the
Java runtime and the J/Link Java component

J/Link version information.

J/Link User Guide 291

JLink`Information`$Version

JêLink Version 4.0.1

JLink`Information`$VersionNumber

4.

JLink`Information`$ReleaseNumber

1

The ShowJavaConsole@D function, described in "The Java Console Window", will also display

some useful version information. It shows the version of the Java runtime being used and the

version of the portion of J/Link that is written in Java. The version of the J/Link Java component

should match the version of the J/Link Mathematica component.

Controlling the Class Path: How J/Link Finds Classes

The Java Class Path

The class path tells the Java runtime, compiler, and other tools where to find third-party and

user-defined classes~classes that are not Java “extensions” or part of the Java platform itself.

The class path has always been a source of confusion among Java users and programmers.

Java can find classes that are part of the standard Java platform (so-called “bootstrap” classes),

classes that use the so-called “extensions” mechanism, and classes on the class path, which is

controlled by the CLASSPATH environment variable or by command-line options when Java is

launched. J/Link can load and use any classes that the Java runtime can find through these

normal mechanisms. In addition, J/Link can find classes, resources, and native libraries that are

in a set of extra locations, beyond what is specified on the class path at startup. This set of

extra locations can be added to while Java is running.

J/Link provides two ways to alter the search path Java uses to find classes. The first way is via

the ClassPath option to ReinstallJava. The second way, which is superior to modifying the

class path at startup, is to add new directories and jar files to the special set of extra locations

that J/Link searches. These two methods will be described in the next two subsections.

292 J/Link User Guide

Overriding the Startup Class Path

For a class to be accessible via the standard Java class path, one of the following must apply:

† It is inside a .zip or .jar file that is itself named on the class path.

† It is a loose class file that is in an appropriately nested directory beneath a directory that is
on the class path.

“Appropriately nested” means that the class file must be in a directory whose hierarchy mirrors

the full package name of the class. For example, assume that the directory c:\MyClasses is on

the class path. If you have a class that is not in a package (there is no package statement at

the beginning of the code), its class file should be put directly into c:\MyClasses. If you have a

class that is in the package com.acme.stuff, its class file would need to be in the directory

c:\MyClasses\com\acme\stuff. Note that jar and zip files must be explicitly named on the class

path~you cannot just toss them into a directory that is itself named on the class path. Direc-

tory issues are not relevant for jar and zip files, meaning that regardless of how hierarchically

organized the classes inside a jar file are, you simply name the jar file itself on the class path

and all the classes inside it can be found.

If you want to specify paths for classes that are not part of the standard Java platform or exten-

sions, you can use the ClassPath option to ReinstallJava. The value that you supply for the

ClassPath option is a string that names the desired directories and zip or jar files. This string is

platform-dependent; the paths are specified in the native style for your platform, and the

separator character is a colon on Unix and a semicolon on Windows. Here are typical

specifications:

ReinstallJava@ClassPath Ø "c:\\MyJavaDir\\MyPackage.jar;c:\\MyJavaDir"D
H* Windows *L

ReinstallJava@ClassPath Ø "~êMyJavaDirêMyPackage.jar:~êMyJavaDir"D
H* Unix *L

The default setting for ClassPath is Automatic, which means to use the value of the CLASSÖ

PATH environment variable. If you set ClassPath to something else, then J/Link will ignore the

CLASSPATH environment variable~it will not be able to find those classes. In other words, if you

use a ClassPath specification, you lose the CLASSPATH environment variable. This is similar to

the behavior of the -classpath command-line option to the Java runtime and compiler, if you

are familiar with those tools.

It is recommended that users avoid the ClassPath option. If you need the dynamic control that

the ClassPath option provides, you should use the more powerful and convenient

AddToClassPath mechanism, described in the next section. The most common reason for using

the ClassPath option is if you want to specifically prevent the contents of the CLASSPATH

environment variable from being used. To do this, set ClassPath -> None.

J/Link User Guide 293

It is recommended that users avoid the ClassPath option. If you need the dynamic control that

the ClassPath option provides, you should use the more powerful and convenient

AddToClassPath mechanism, described in the next section. The most common reason for using

the ClassPath option is if you want to specifically prevent the contents of the CLASSPATH

environment variable from being used. To do this, set ClassPath -> None.

Dynamically Modifying the Class Path

One thing that is inconvenient about the standard Java class path is that it cannot be changed

after the Java runtime has been launched. J/Link has its own class loader that searches in a set

of special locations beyond the standard Java class path. This gives J/Link an extremely power-

ful and flexible means of finding classes. To add locations to this extra set, use the

AddToClassPath function.

AddToClassPath@"location",…D add the specified directories or jar files to J/Link’s class
search path

Adding classes to the search path.

After Java has been started, you can call AddToClassPath whenever you wish, and it will take

effect immediately. One convenient feature of this extra class search path is that if you add a

directory, then any jar or zip files in that directory will be searched. This means that you do not

have to name jar files individually, as you need to do with the standard Java class path. For

loose class files, the nesting rules are the same as for the class path, meaning that if a class is

in the package com.acme.stuff, and you called AddToClassPath@"d:\\myClasses"D, then

you would need to put the class file into d:\MyClasses\com\acme\stuff.

Changes to the search path that you make with AddToClassPath only apply to the current Java

session. If you quit and restart java, you will need to call AddToClassPath again.

In addition to the locations you add yourself with AddToClassPath, J/Link automatically

includes any Java subdirectories of any directories in the standard Mathematica application

locations ($UserBaseDirectory/AddOns/Applications, $BaseDirectory/AddOns/Applications,

< Mathematica dir >/AddOns/Applications, and < Mathematica dir >/AddOns/ExtraPackages). This

feature is designed to provide extremely easy deployment for developers who create applica-

tions for Mathematica that use Java and J/Link for part of their implementation. This is

described in "Deploying Applications that use J/Link" in more detail, but even casual Java pro-

294 J/Link User Guide

In addition to the locations you add yourself with AddToClassPath, J/Link automatically

includes any Java subdirectories of any directories in the standard Mathematica application

locations ($UserBaseDirectory/AddOns/Applications, $BaseDirectory/AddOns/Applications,

< Mathematica dir >/AddOns/Applications, and < Mathematica dir >/AddOns/ExtraPackages). This

feature is designed to provide extremely easy deployment for developers who create applica-

tions for Mathematica that use Java and J/Link for part of their implementation. This is

grammers who are writing classes to use with J/Link can take advantage of it. Just create a

subdirectory of AddOns/Applications, say MyStuff, create a Java subdirectory within it, and toss

class or jar files into it. J/Link will be able to find and use them. Of course, loose class files have

to be placed into an appropriately nested subdirectory of the Java directory, corresponding to

their package names (if any), as described.

The AddToClassPath function was introduced in J/Link 2.0. Previous versions of J/Link had a

variable called $ExtraClassPath that specified a list of extra locations. You could add to this

list like this:

AppendTo@$ExtraClassPath, "d:\\MyClasses"D;

$ExtraClassPath was deprecated in J/Link 2.0, but it still works. One advantage of

$ExtraClassPath over using AddToClassPath is that changes made to $ExtraClassPath

persist across a restart of the Java runtime.

Examining the Class Path

The JavaClassPath function returns the set of directories and jar files in which J/Link will

search for classes. This includes all locations added with AddToClassPath or $ExtraClassPath,

as well as Java subdirectories of application directories in any of the standard Mathematica

application locations. It does not display the jar files that make up the standard Java platform

itself, or jar files in the Java extensions directory. Those classes can always be found by Java

programs.

JavaClassPath@D gives the complete set of directories and jar files in which
J/Link will search for classes

Inspecting the class search path.

Using J/Link’s Class Loader Directly

As stated earlier, J/Link uses its own class loader to allow it to find classes and other resources

in a dynamic set of locations beyond the startup class path. Essentially all the classes that you

load using J/Link that are not part of the Java platform itself will be loaded by this class loader.

One consequence of this is that calling Java’s Class.forName() method from Mathematica will

often not work.

J/Link User Guide 295

LoadJavaClass@"java.lang.Class"D;
cls = Class`forName@"some.class.that.only.JLink.can.find"D

Java::excptn : A Java exception occurred: java.lang.ClassNotFoundException:
some.class.that.only.JLink.can.find
at java.net.URLClassLoader$1.runHUnknown SourceL
at java.security.AccessController.doPrivilegedHNative MethodL
at java.net.URLClassLoader.findClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at sun.misc.Launcher$AppClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassHUnknown SourceL
at java.lang.ClassLoader.loadClassInternalHUnknown SourceL
at java.lang.Class.forName0HNative MethodL
at java.lang.Class.forNameHUnknown SourceL
at

sun.reflect.NativeMethodAccessorImpl.invoke0HNative MethodL
at sun.reflect.NativeMethodAccessorImpl.invokeHUnknown SourceL
at

sun.reflect.DelegatingMethodAccessorImpl.invokeHUnknown SourceL.
$Failed

The problem is that Class.forName() finds classes using a default class loader, not the J/Link

class loader, and this default class loader does not know about the special directories in which

J/Link looks for classes (in fact, it does not even know about the startup class path, because of

details of how J/Link launches Java). If you are translating Java code into Mathematica, or if

you just want to get a Class object for a given class, watch out for this problem. The fix is to

force J/Link’s class loader to be used. One way to do this is to use the three-argument form of

Class.forName(), which allows you to specify the class loader to be used:

LoadJavaClass@"com.wolfram.jlink.JLinkClassLoader"D;
cls = Class`forName@"some.class.that.only.JLink.can.find",

True, JLinkClassLoader`getInstance@DD

An easier way is to use the static classFromName method of JLinkClassLoader:

cls = JLinkClassLoader`classFromName@"some.class.that.only.JLink.can.find"D

You should think of this classFromName HL method as being the replacement for Class.forÖ

Name(). When you find yourself wanting to obtain a Class object from a class name given as a

string, remember to use JLinkClassLoader.classFromName HL.

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

296 J/Link User Guide

Class.forName() is not very commonly found in Java code. One reason it is used is when an

object needs to be created, but its class was not known at compile time. For example, the class

name might come from a preferences file or be determined programmatically in some other

way. Often, the very next line creates an instance of the class, like this:

 // Java code
 Class cls = Class.forName("SomeClassThatImplementsInterfaceX");
 X obj = (X) cls.newInstance();

If you are translating code like this into a Mathematica program, this operation can be per-

formed simply by calling JavaNew:

obj = JavaNew@"SomeClassThatImplementsInterfaceX"D

The point here is that for a very common usage of Class.forName(), you do not have to

translate it line-by-line into Mathematica~you can duplicate the functionality by calling JavaNew.

Performance Issues

Overhead of Calls to Java

The speed of Java programs is highly dependent on the Java runtime. On certain types of

programs, for example, ones that spend most of their time in a tight number-crunching loop,

the speed of Java can approach that of compiled, optimized C.

Java is a good choice for computationally intensive programs. Your mileage may vary, but do

not rule out Java for any type of program before you have done some simple speed testing. For

less demanding programs, where every ounce of speed is not necessary, the simplicity of using

J/Link instead of programming traditional MathLink “installable” programs with C makes Java an

obvious choice.

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

method calls per second, and considerably more if they are static methods, which require less

preprocessing in Mathematica. On some operating systems the results will be less. You should

keep in mind that there is a more or less fixed cost of a call into Java regardless of what the call

J/Link User Guide 297

The speed issues with J/Link are not, for the most part, the speed of Java execution. Rather,

the bottleneck is the rate at which you can perform calls into Java, which is itself limited mainly

by the speed of MathLink and the processing that must be done in Mathematica for each call

into Java. The maximum rate of calls into Java is highly dependent on which operating system

and which Java runtime you use. A fast Windows machine can perform more than 5000 Java

method calls per second, and considerably more if they are static methods, which require less

preprocessing in Mathematica. On some operating systems the results will be less. You should

does, and on slow machines this cost could be as much as .001 seconds. Many Java methods

will execute in considerably less time than this, so the total time for the call is often dominated

by the fixed turnaround time of a J/Link call, not the speed of Java itself.

For most uses, the overhead of a call into Java is not a concern, but if you have a loop that calls

into Java 500,000 times, you will have a problem (unless your program takes so long that the

J/Link cost is negligible, in which case you have an even bigger problem!). If your Mathematica

program is structured in a way that requires a great many calls into Java, you may need to

refactor it to do more on the Java side and thus reduce the number of times you need to cross

the Java-Mathematica boundary. This will probably involve writing some Java code, which

unfortunately defeats the J/Link premise of being able to use Mathematica to script the function-

ality of an arbitrary Java program. There are uses of Java that just cannot be feasibly scripted

in this way, and for these you will need to write more of the functionality in Java and less in

Mathematica.

Speeding Up Sending Large Arrays

You can send and receive arrays of most “primitive” Java types (e.g., byte, short, int, float,

double) nearly as fast as in a C-language program. The set of types that can be passed quickly

corresponds to the set of types for which the MathLink C API has single functions to put arrays.

The Java types long (these are 64 bits), boolean, and String do not have fast MathLink

functions, and so sending or receiving these types is much slower. Try to avoid using extremely

large arrays of these types (say, more than 100,000 elements) if possible.

A setting that has a big effect on the speed of moving multidimensional arrays is the one used

to control whether “ragged” arrays are allowed. As discussed in "Ragged Arrays", the default

behavior of J/Link is to require that all arrays be fully rectangular. But Java does not require

that arrays conform to this restriction, and if you want to send or receive ragged arrays, you

can call AllowRaggedArrays@TrueD in your Mathematica session. This causes J/Link to switch

to a much slower method for reading and writing arrays. Avoid using this setting unless you

need it, and switch it off as soon as you no longer require it.

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

500, this test can take a significant amount of time, probably similar to the time it takes to

$RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

298 J/Link User Guide

When you load a class with a method that takes, say, an int[][], the definition in Mathemat-

ica that J/Link creates for calling this method uses a pattern test that requires its argument to

be a two-dimensional array of integers. If the array is quite large, say on the order of 500 by

actually transfer the array to Java. If you want to avoid the time taken by this testing of array

arguments, you can set the variable $RelaxedTypeChecking to True. If you do this, you are on

your own to ensure that the arrays you send are of the right type and dimensionality. If you

pass a bad array, you will get a MathLink error, but this will not cause any problems for J/Link

(other than that the call will return $Failed).

You probably do not want to leave $RelaxedTypeChecking set to True for a long time, and if

you are writing code for others to use you certainly do not want to alter its value in their ses-

sion. $RelaxedTypeChecking is intended to be used in a Block construct, where it is given the

value of True for a short period:

Block@8$RelaxedTypeChecking = True<, obj@meth@someLargeArrayDDD

$RelaxedTypeChecking only has an effect for arrays, which are the only types for which the

pattern test that J/Link creates is expensive relative to the actual call into Java.

Another optimization to speed up J/Link programs is to use ReturnAsJavaObject to avoid

unnecessary passing of large arrays or strings back and forth between Mathematica and Java.

ReturnAsJavaObject is discussed in the section "ReturnAsJavaObject".

An Optimization Example

Next examine a simple example of steps you might take to improve the speed of a J/Link pro-

gram. Java has a powerful DecimalFormat class you can use to format Mathematica numbers

in a desired way for output to a file. Here you create a DecimalFormat object that will format

numbers to exactly four decimal places.

fmt = JavaNew@"java.text.DecimalFormat", "Ò.0000"D;

To use the fmt object, you call its format() method, supplying the number you want

formatted.

fmtüformat@12.34D

12.3400

This returns a string with the requested format. Now suppose you want to use this ability to

format a list of 20000 numbers before writing them to a file.

data = Table@Random@D, 840000<D;

Map@fmtüformat@ÒD &, dataD;

The Map call, which invokes the format method 40000 times, takes 46 seconds on a certain PC

(this is wall clock time, not the result of the Timing function, which is not accurate for MathLink

programs on most systems). Clearly this is not acceptable. As a first step, you try using

MethodFunction because you are calling the same method many times.

J/Link User Guide 299

The Map call, which invokes the format method 40000 times, takes 46 seconds on a certain PC

(this is wall clock time, not the result of the Timing function, which is not accurate for MathLink

programs on most systems). Clearly this is not acceptable. As a first step, you try using

MethodFunction because you are calling the same method many times.

methodFunc = MethodFunction@fmt, formatD;

Note that you use fmt as the first argument to MethodFunction. The first argument merely

specifies the class; as with virtually all functions in J/Link that take a class specification, you

can use an object of the class if you desire. The MethodFunction that is created can be used on

any object of the DecimalFormat class, not just the fmt object.

Map@methodFunc@fmt, ÒD &, dataD;

Using methodFunc, this now takes 36 seconds. There is a slight speed improvement, much less

than in earlier versions of J/Link. This means you are getting about 1100 calls per second, and

it is still not fast enough to be useful. The only thing to do is to write your own Java method

that takes an array of numbers, formats them all, and returns an array of strings. This will

reduce the number of calls from Mathematica into Java 40000 down to one.

Here is the code for the trivial Java class necessary. Note that there is nothing about this code

that suggests it will be called from Mathematica via J/Link. This is exactly the same code you

would write if you wanted to use this functionality within Java.

public class FormatArray {
public static String[] format(java.text.DecimalFormat fmt,double[] d) {

String[] result=new String[d.length];
for (int i = 0; i < d.length; i++)

result[i] = fmt.format(d[i]);
return result;

}
}

This new version takes less than 2 seconds.

LoadJavaClass@"FormatArray"D;
FormatArray`format@fmt, dataD;

300 J/Link User Guide

Reference Counts and Memory Management

Object References in Mathematica

The earlier treatment of JavaObject expressions avoided discussing deeper issues such as

reference counts and uniqueness. Every time a Java object reference is returned to Mathemat-

ica, either as a result of a method or field or an explicit call to JavaNew, J/Link looks to see if a

reference to this object has been sent previously in this session. If not, it creates a JavaObject

expression in Mathematica and sets up a number of definitions for it. This is a comparatively

time-consuming process. If this object has already been sent to Mathematica, in most cases

J/Link simply creates a JavaObject expression that is identical to the one created previously.

This is a much faster operation.

There are some exceptions to this last rule, meaning that sometimes when an object is

returned to Mathematica a new and different JavaObject expression is created for it, even

though this same object has previously been sent to Mathematica. Specifically, any time an

object’s hashCode HL value has changed since the last time it was seen in Mathematica, the

JavaObject expression created will be different. You do not really need to be concerned with

the details of this, except to remember that SameQ is not a valid way to compare JavaObject

expressions to decide whether they refer to the same object. You must use the SameObjectQ

function.

SameObjectQ@obj1,obj2D return True if the JavaObject expressions obj1 and obj2
refer to the same Java object, False otherwise

Comparing JavaObject expressions.

Here is an example.

pt = JavaNew@"java.awt.Point", 1, 1D

«JavaObject@java.awt.PointD »

The variable pt refers to a Java Point object. Now put it into a container so you can get it back

out later.

vec = JavaNew@"java.util.Vector"D;
vecüadd@ptD;

Now change the value of one of its fields. For a Point object, changing the value of one of its

fields changes its hashCode() value.

ptüx = 2;

Now you compare the JavaObject expression given by pt and the JavaObject expression

created when you ask for the first element of the Vector to be returned to Mathematica. Even

though these are both references to the same Java object, the JavaObject expressions are

different.

J/Link User Guide 301

Now you compare the JavaObject expression given by pt and the JavaObject expression

created when you ask for the first element of the Vector to be returned to Mathematica. Even

though these are both references to the same Java object, the JavaObject expressions are

different.

pt === vecüelementAt@0D

False

Because you cannot use SameQ (===) to decide whether two object references in Mathematica

refer to the same Java object, J/Link provides a function, SameObjectQ, for this purpose.

SameObjectQ@pt, vecüelementAt@0DD

True

You may be wondering why the SameObjectQ function is necessary. Why not just call an

object’s equals() method? It certainly gives the correct result for this example.

ptüequals@vecüelementAt@0DD

True

The problem with this technique is that equals() does not always compare object references.

Any class is free to override equals() to provide any desired behavior for comparing two

objects of that class. Some classes make equals() compare the “contents” of the objects, such

as the String class, which uses it for string comparison. Java provides two distinct equality

operations, the == operator and the equals() method. The == operator always compares

references, returning true if and only if the references point to the same object, but equals()

is often overridden for some other type of comparison. Because there is no method call in Java

that mimics the behavior of the language’s == operator as applied to object references, J/Link

needs a SameObjectQ function that provides that behavior for Mathematica programmers.

In an unusual case where you need to compare object references for equality a very large

number of times, the comparative slowness of SameObjectQ compared to SameQ could become

an issue. The only thing that could cause two JavaObject expressions that refer to the exact

same Java object to be not SameQ is if the hashCode() value of the object changed between

the times that the two JavaObject expressions were created. If you know this has not hap-

pened, then you can safely use SameQ as the test whether they refer to the same object.

302 J/Link User Guide

ReleaseJavaObject

The Java language has a built-in facility called “garbage collection” for freeing up memory

occupied by objects that are no longer in use by a program. Objects become eligible for

garbage collection when no references to them exist anywhere, except perhaps in other objects

that are also unreferenced. When an object is returned to Mathematica, either as a result of a

call to JavaNew or as the return value of a method call or field access, the J/Link code holds a

special reference to the object on the Java side to ensure that it cannot be garbage-collected

while it is in use by Mathematica. If you know that you no longer need to use a given Java

object in your Mathematica session, you can explicitly tell J/Link to release its reference. The

function that does this is ReleaseJavaObject. In addition to releasing the Mathematica-specific

reference in Java, ReleaseJavaObject clears out internal definitions for the object that were

created in Mathematica. Any subsequent attempt to use this object in Mathematica will fail.

frm = JavaNew@"java.awt.Frame"D

«JavaObject@java.awt.FrameD »

Now tell Java that you no longer need to use this object from Mathematica.

ReleaseJavaObject@frmD

It is now an error to refer to frm.

ReleaseJavaObject@objD let Java know that you are done using obj in Mathematica

ReleaseObject@objD deprecated; replaced by ReleaseJavaObject in J/Link
2.0

JavaBlock@exprD all novel Java objects returned to Mathematica during the
evaluation of expr will be released when expr finishes

BeginJavaBlock@D all novel Java objects returned to Mathematica between
now and the matching EndJavaBlock@D will be released

EndJavaBlock@D release all novel objects seen since the matching
BeginJavaBlock@D

LoadedJavaObjects@D return a list of all objects that are in use in Mathematica

LoadedJavaClasses@D return a list of all classes loaded into Mathematica

J/Link memory management functions.

Calling ReleaseJavaObject will not necessarily cause the object to be garbage-collected. It is

quite possible that other references to it exist in Java. ReleaseJavaObject does not tell Java to

throw the object away, only that it does not need to be kept around solely for Mathematica’s

sake.

An important fact about the references that J/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseJavaObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

J/Link User Guide 303

An important fact about the references that J/Link maintains for objects sent to Mathematica is

that only one reference is kept for each object, no matter how many times it is returned to

Mathematica. It is your responsibility to make sure that after you call ReleaseJavaObject, you

never attempt to use that object through any reference that might exist to it in your Mathemat-

ica session.

frm = JavaNew@"java.awt.Frame"D;
b1 = JavaNew@"java.awt.Button"D;

The add() method of the Frame class returns the object added, so b2 refers to the same object

as b1:

b2 = frmüadd@b1D;

If you call ReleaseJavaObject@b1D, it is not the Mathematica symbol b1 that is affected, but

the Java object that b1 refers to. Therefore, using b2 is also an error (or any other way to refer

to this same Button object, such as %).

Calling ReleaseJavaObject is often not necessary in casual use. If you are not making heavy

use of Java in your session then you will usually not need to be concerned about keeping track

of what objects may or may not be needed anymore~you can just let them pile up. There are

special times, though, when memory use in Java will be important, and you may need the extra

control that ReleaseJavaObject provides.

JavaBlock

ReleaseJavaObject is provided mainly for developers who are writing code for others to use.

Because you can never predict how your code will be used, developers should always be sure

that their code cleans up any unnecessary references it creates. Probably the most useful

function for this is JavaBlock.

JavaBlock automates the process of releasing objects encountered during the evaluation of an

expression. Often, a Mathematica program will need to create some Java objects with JavaNew,

operate with them, perhaps causing other objects to be returned to Mathematica as the results

of method calls, and finally return some result such as a number or string. Every Java object

encountered by Mathematica during this operation is needed only during the lifetime of the

program, much like the local variables provided in Mathematica by Block and Module, and in C,

C++, Java, and many other languages by block scoping constructs (e.g., {}). JavaBlock allows

you to mark a block of code as having the property that any new objects returned to Mathemat-

ica during the evaluation are to be treated as temporary, and released when JavaBlock finishes.

It is important to note that the preceding sentence said “new objects”. JavaBlock will not

cause every object encountered during the evaluation to be released, only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that JavaBlock will aggressively release an

object that is not truly temporary to that evaluation.

304 J/Link User Guide

It is important to note that the preceding sentence said “new objects”. JavaBlock will not

cause every object encountered during the evaluation to be released, only those that are being

encountered for the first time. Objects that have already been seen by Mathematica will not be

affected. This means that you do not have to worry that JavaBlock will aggressively release an

object that is not truly temporary to that evaluation.

It is not enough simply to call ReleaseJavaObject on every object you create with JavaNew,

because many Java method calls return objects. You may not be interested in these return

values, or you may never assign them to a named variable because they may be chained

together with other calls (as in objüreturnsObject@Düfoo@D), but you still need to release

them. Using JavaBlock is an easy way to be sure that all novel objects are released when a

block of code finishes.

JavaBlock@exprD returns whatever expr returns.

Many J/Link Mathematica programs will have the following structure:

MyFunc@args__D :=
JavaBlock@

Module@8locals<,
...

D
D

It is very common to write a function that creates and manipulates a number of JavaObject

expressions, and then returns one of them, the rest being temporary. To facilitate this, if the

return value of a JavaBlock is a single JavaObject, it will not be released.

MyOtherFunc@args__D :=
JavaBlock@

Module@8obj<,
...
obj = JavaNew@"java.awt.Frame"D;
...
Return@objD

H* OK: obj will not be released when JavaBlock finishes. *L
D

D

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

JavaBlock expressions, you must call KeepJavaObject at each level. Alternatively, you can call

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

J/Link User Guide 305

New in J/Link 2.1 is the KeepJavaObject function, which allows you to specify an object or

sequence of objects that should not be released when the JavaBlock ends. Calling

KeepJavaObject on a single object or sequence of objects means they will not be released

when the first enclosing JavaBlock ends. If there is an outer enclosing JavaBlock, the objects

will be freed when it ends, however, so if you want the objects to escape a nested set of

KeepJavaObject@obj, ManualD, where the Manual argument tells J/Link that the object should

not be released by any enclosing JavaBlock expressions. The only way such object will be

released is if you manually call ReleaseJavaObject on it. Here is an example that uses

KeepJavaObject to allow you to return a list of two objects without them being released:

MyOtherFunc[args__] :=
Module[{obj1, obj2, obj3},

JavaBlock[
obj1 = JavaNew["java.awt.Frame"];
obj2 = JavaNew["java.awt.Button"];

 obj3 = JavaNew["SomeTemporaryObject"];
 ...
 KeepJavaObject[obj1, obj2];
 {obj1, obj2}
]
]

BeginJavaBlock and EndJavaBlock can be used to provide the same functionality as

JavaBlock across more than one evaluation. EndJavaBlock releases all novel Java objects

returned to Mathematica since the previous matching BeginJavaBlock. These functions are

mainly of use during development, when you might want to set a mark in your session, do

some work, and then release all novel objects returned to Mathematica since that point.

BeginJavaBlock and EndJavaBlock can be nested. Every BeginJavaBlock should have a

matching EndJavaBlock, although it is not a serious error to forget to call EndJavaBlock, even

if you have nested levels of them~you will only fail to release some objects.

LoadedJavaObjects and LoadedJavaClasses

LoadedJavaObjects@D returns a list of all Java objects that are currently referenced in Mathe-

matica. This includes all objects explicitly created with JavaNew and all those that were

returned to Mathematica as the result of a Java method call or field access. It does not include

objects that have been released with ReleaseJavaObject or through JavaBlock.

LoadedJavaObjects is intended mainly for debugging. It is very useful to call it before and after

some function you are working on. If the list grows, your function leaks references, and you

need to examine its use of JavaBlock and/or ReleaseJavaObject.

LoadedJavaClasses@D returns a list of JavaClass expressions representing all classes loaded

into Mathematica. Like LoadedJavaObjects, LoadedJavaClasses is intended mainly for debug-

ging. Note that you do not have to determine if a class has already been loaded before you call

LoadJavaClass. If the class has been loaded, LoadJavaClass does nothing but return the

appropriate JavaClass expression.

306 J/Link User Guide

Exceptions

How Exceptions Are Handled

J/Link handles Java exceptions automatically. If an uncaught exception is thrown during any

call into Java, you will get a message in Mathematica. Here is an example that tries to format a

real number as an integer.

LoadClass@"java.lang.Integer"D;
Integer`parseInt@"1234.5"D

Java::excptn :
A Java exception occurred : java.lang.ArrayIndexOutOfBoundsException.

$Failed

If the exception is thrown before the method returns a result to Mathematica, as in the exam-

ple, the result of the call will be $Failed. As discussed later in "Manually Returning a Result to

Mathematica", it is possible to write your own methods that manually send a result to Mathemat-

ica before they return. In such cases, if an exception is thrown after the result is sent to Mathe-

matica but before the method returns, you will get a warning message reporting the exception,

but the result of the call will be unaffected.

If the Java code was compiled with debugging information included, the Mathematica message

you get as a result of an exception will show the full stack trace to the point where the excep-

tion occurred, with the exact line numbers in each file.

The JavaThrow Function

In some cases, you may want to cause an exception to be thrown in Java. This can be done

with the JavaThrow function. JavaThrow is new in J/Link 2.0 and should be considered experi-

mental. Its behavior might change in future versions.

JavaThrow@exceptionObjD throw the given exception object in Java

Throwing Java exceptions from Mathematica.

You will only want to use JavaThrow in Mathematica code that is itself called from Java. It is

quite common for J/Link programs written in Mathematica to involve both calls from Mathemat-

ica into Java and calls from Java back to Mathematica. Such “callbacks” to Mathematica are

used extensively in Mathematica programs that create Java user interfaces, as described in

J/Link User Guide 307

You will only want to use JavaThrow in Mathematica code that is itself called from Java. It is

quite common for J/Link programs written in Mathematica to involve both calls from Mathemat-

ica into Java and calls from Java back to Mathematica. Such “callbacks” to Mathematica are

detail later in the section "Creating Windows and Other User Interface Elements". For example,

you can associate a Mathematica function to be called when the user clicks a Java button. This

Mathematica function is called directly from Java, and you might want it to behave just like a

Java method, including having the ability to throw Java exceptions.

An example of throwing an exception in a callback from a user interface action like clicking a

button is not very realistic because there is typically nothing in Java to catch such exceptions;

thus they are essentially ignored. A more meaningful example would be a program that

involved a mix of Java and Mathematica code where, for flexibility and ease of development

reasons, you have a Mathematica function being called to implement the “guts” of a Java

method that can throw an exception. As a concrete example, say you are doing XML processing

with Java and Mathematica using the SAX (Simple API for XML) API. SAX processing is based

on a set of handler methods that are called as certain events occur during parsing of the XML

document. Each such method can throw a SAXException to indicate an error and halt the

parsing. You want to implement these handler methods in Mathematica code, and thus you

want a way to throw a SAXException from Mathematica. Here is a hypothetical example of one

such handler method, the startDocument() method, which is invoked by the SAX engine

when document processing starts:

startDocument@D :=
If@! readyToAcceptParsingEvents, JavaThrow@JavaNew@"org.xml.sax.SAXException",

"Mathematica code has not been initialized"DDD

After a call to JavaThrow, the rest of the Mathematica function executes normally, but there is

no result returned to Java.

Returning Objects “by Value” and “by Reference”

References and Values

J/Link provides a mapping between certain Mathematica expressions and their Java counter-

parts. What this means is that these Mathematica expressions are automatically converted to

and from their Java counterparts as they are passed between Mathematica and Java. For exam-

ple, Java integer types (long, short, int, and so on) are converted to Mathematica integers

and Java real types (float and double) are converted to Mathematica real numbers. Another

mapping is that Java objects are converted to JavaObject expressions in Mathematica. These

JavaObject expressions are references to Java objects~they have no meaning in Mathematica

except as they are manipulated by J/Link. However, some Java objects are things that have

meaningful values in Mathematica, and these objects are by default converted to values. Exam-

ples of such objects are strings and arrays.

You could say, then, that Java objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are strings, arrays, complex numbers

(discussed later), BigDecimal and BigInteger (discussed later), and the “wrapper” classes

(e.g., java.lang.Integer). You could say that these exceptional cases are returned “by

value”. The table in "Conversion of Types between Java and Mathematica" shows how these

special Java object types are mapped into Mathematica values.

308 J/Link User Guide

You could say, then, that Java objects are by default returned to Mathematica “by reference”,

except for a few special cases. These special cases are strings, arrays, complex numbers

(discussed later), BigDecimal and BigInteger (discussed later), and the “wrapper” classes

(e.g., java.lang.Integer). You could say that these exceptional cases are returned “by

value”. The table in "Conversion of Types between Java and Mathematica" shows how these

special Java object types are mapped into Mathematica values.

In summary, every Java object that has a meaningful value representation in Mathematica is

converted into this value, simply because that is the most useful behavior. There are times,

however, when you might want to override this default behavior. Probably the most common

reason for doing this is to avoid unnecessary traffic of large expressions over MathLink.

ReturnAsJavaObject@exprD a Java object returned by expr will be in the form of a
reference

ByRef@exprD deprecated; replaced by ReturnAsJavaObject in J/Link
2.0

JavaObjectToExpression@objD give the value of the Java object obj as a Mathematica
expression

Val@objD deprecated; replaced by JavaObjectToExpression in
J/Link 2.0

“By reference” and “by value” control.

ReturnAsJavaObject

Consider the case where you have a static method in class MyClass called arrayAbs() that

takes an array of doubles and returns a new array where each element is the absolute value of

the corresponding element in the argument array. The declaration of this method thus looks

like double@D arrayAbs Hdouble@D aL. This is how you would call such a method from

Mathematica.

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
arrayAbs@81., -2., 3., 4.<D
81., 2., 3., 4.<

The example showed how you probably want the method to work: you pass a Mathematica list

and get back a list. Now assume you have another method named arraySqrt() that acts like

arrayAbs() except that it performs the sqrt() function instead of abs().

arraySqrt@arrayAbs@81., -2., 3., 4.<DD

81., 1.41421, 1.73205, 2.<

In this computation, the original list is sent over MathLink to Java and a Java array is created

with these values. That array is passed as an argument to arrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to Java as the argument for arraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the arrayAbs() method) living on the Java side, ready to be

passed to arraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to Java again as a new array with the same values! For this example,

the cost is negligible, but what if the array has 200,000 elements?

J/Link User Guide 309

In this computation, the original list is sent over MathLink to Java and a Java array is created

with these values. That array is passed as an argument to arrayAbs(), which itself creates and

returns another array. This array is then sent back to Mathematica via MathLink to create a list,

which is then promptly sent back to Java as the argument for arraySqrt(). You can see that it

was a waste of time to send the array data back to Mathematica~you had a perfectly good

array (the one returned by the arrayAbs() method) living on the Java side, ready to be

passed to arraySqrt(), but instead you sent its contents back to Mathematica only to have it

immediately come back to Java again as a new array with the same values! For this example,

the cost is negligible, but what if the array has 200,000 elements?

What is needed is a way to let the array data remain in Java and return only a reference to the

array, not the actual data itself. This can be accomplished with the ReturnAsJavaObject

function.

ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DD

«JavaObject@@DD »

Note that the class name of the JavaObject is "[D", which, although a bit cryptic, is the actual

Java class name of a one-dimensional array of doubles. Here is how the computation looks

using ReturnAsJavaObject:

arraySqrt@ReturnAsJavaObject@arrayAbs@81., -2., 3., 4.<DDD

81., 1.41421, 1.73205, 2.<

Earlier you saw arraySqrt() being called with an argument that was a Mathematica list of

reals. Here it is being called with a reference to a Java object that is a one-dimensional array of

doubles. All methods and fields that take an array can be called from Mathematica with either a

Mathematica list or a reference to a Java array of the appropriate type.

Strings are the other type for which ReturnAsJavaObject is useful. Like arrays, strings have

the two properties that (1) they are represented in Java as objects but also have a meaningful

Mathematica value, and (2) they can be large, so it is useful to be able to avoid passing their

data back and forth unnecessarily. As an example, say your class MyClass has a static method

that appends to a string a digit taken from an external device that you are controlling from

Java. It takes a string and returns a new one, so its signature is

static String appendDigit HString sL. You have a Mathematica variable named

veryLongString that holds a long string, and you want to append to this string 100 times. This

code will cause the string contents to make 100 round trips between Mathematica and Java.

310 J/Link User Guide

Do@veryLongString = appendString@veryLongStringD, 8100<D;

Using ReturnAsJavaObject lets the strings remain on the Java side, and thus it generates

virtually no MathLink traffic.

Do@veryLongString = ReturnAsJavaObject@appendString@veryLongStringDD, 8100<D;

This example is somewhat contrived, since repeatedly appending to a growing string is not a

very efficient style of programming, but it illustrates the issues.

When the Do loop is executed, veryLongString gets assigned values that are not Mathematica

strings, but JavaObject expressions that refer to strings residing in Java. That means that

appendString HL gets called with a Mathematica string the very first iteration, but with a

JavaObject expression thereafter. As is the case with arrays, any Java method or field that

takes a string can be called in Mathematica either with a string or a JavaObject expression

that refers to one. The veryLongString variable started out holding a string, but at the end of

the loop it holds a JavaObject expression.

veryLongString

«JavaObject@java.lang.StringD »

At some point, you probably want an actual Mathematica string, not this string object refer-

ence. How do you get the value back? You will visit this example again later when the

JavaObjectToExpression function is introduced.

In summary, the ReturnAsJavaObject function causes methods and fields that return objects

that would normally be converted into Mathematica values to return references instead. It is an

optimization to avoid unnecessarily passing large amounts of data between Mathematica and

Java, and as such it will be useful primarily for very large arrays and strings. As with all optimiza-

tions, you should not concern yourself with ReturnAsJavaObject unless you have some code

that is running at an unacceptable speed, or you know ahead of time that the code you are

writing will benefit measurably from it. Objects of most Java classes have no meaningful “by

value” representation in Mathematica, and they are always returned “by reference”.

ReturnAsJavaObject will have no effect in these cases.

Finally, note that ReturnAsJavaObject has no effect on methods in which the Java programmer

manually sends the result back to Mathematica (this topic is discussed later in this User Guide).

Manually returning a result bypasses the normal result-handling routines in J/Link, so there is

no chance for the ReturnAsJavaObject request to be accommodated.

J/Link User Guide 311

JavaObjectToExpression

In the previous section, you saw how the ReturnAsJavaObject function can be used to cause

objects normally returned to Mathematica by value to be returned by reference. It is necessary

to have a function that does the reverse~takes a reference and converts it to its value represen-

tation. That function is JavaObjectToExpression.

Returning to the earlier appendString example, you used ReturnAsJavaObject to avoid costly

passing of string data back and forth over MathLink. The result of this was that the

veryLongString variable now held a JavaObject expression, not a literal Mathematica string.

JavaObjectToExpression can be used to get the value of this string object as a Mathematica

string.

JavaObjectToExpression@veryLongStringD

0371180863626445344894922949289892878227919482840897422691222365928516678297006273940532098876Ö
2893368

The majority of Java objects have no meaningful value representation in Mathematica. These

objects can only be represented in Mathematica as JavaObject expressions, and using

JavaObjectToExpression on them has no effect.

The ReturnAsJavaObject function is not the only way to get a JavaObject expression for an

object that is normally returned to Mathematica as a value. The JavaNew function always

returns a reference.

JavaNew@"java.lang.String", "a string"D

«JavaObject@java.lang.StringD »

JavaObjectToExpression@%D

a string

The next section introduces the MakeJavaObject function, which is easier than using JavaNew

to construct Java objects out of Mathematica strings and arrays.

MakeJavaObject and MakeJavaExpr

Preamble

In addition to JavaNew, which calls a class constructor, J/Link provides two convenience func-

tions for creating Java objects from Mathematica expressions. These functions are

MakeJavaObject and MakeJavaExpr. Do not get them confused, despite their similar names.

MakeJavaObject is a commonly used function for constructing objects of some special types.

MakeJavaExpr is an advanced function that creates an object of J/Link’s Expr class representing

an arbitrary Mathematica expression.

312 J/Link User Guide

In addition to JavaNew, which calls a class constructor, J/Link provides two convenience func-

MakeJavaObject and MakeJavaExpr. Do not get them confused, despite their similar names.

MakeJavaObject is a commonly used function for constructing objects of some special types.

MakeJavaExpr is an advanced function that creates an object of J/Link’s Expr class representing

an arbitrary Mathematica expression.

MakeJavaObject

MakeJavaObject@valD construct an object of the appropriate type to represent
the Mathematica expression val (numbers, strings, lists,
and so on)

MakeJavaObject.

When you call a Java method from Mathematica that takes, say, a Java String object, you can

call it with a Mathematica string. The internals of J/Link will construct a Java string that has the

same characters as the Mathematica string, and pass that string to the Java method. Some-

times, however, you want to pass a string to a method that is typed to take Object. You cannot

call such a method from Mathematica with a string as the argument because although J/Link

recognizes that a Mathematica string corresponds to a Java string, it does not recognize that a

Mathematica string corresponds to a Java Object. It does this deliberately, for the sake of

imposing as much type safety as possible on calls into Java. For this example, assume that the

class MyClass has a method with the following signature:

void foo(Object obj);

Assume also that theObj is an object of this class, created with JavaNew. Try to call foo with a

literal string.

theObjüfoo@"this is a string"D

Java::argxs :
Themethod foowas calledwith an incorrect number or type of arguments.

$Failed

It fails for the reason given above. To call a Java method that is typed to take an Object with a

string, you must first explicitly create a Java string object with the appropriate value. You can

do this using JavaNew.

javaStr = JavaNew@"java.lang.String", "this is a string"D

«JavaObject@java.lang.StringD »

J/Link User Guide 313

Now it works, because the argument is a JavaObject expression.

theObjüfoo@javaStrD

To avoid having to call JavaNew to create a Java string object, J/Link provides the

MakeJavaObject function.

javaStr = MakeJavaObject@"this is a string"D;

In the case of a string, MakeJavaObject just calls JavaNew for you. Of course, it would not be of

much use if it could only construct String objects. The same issue arises with other Java

objects that are direct representations of Mathematica values. This includes the “wrapper”

classes like java.lang.Integer, java.lang.Boolean, and so on, and the array classes. If

you want to call a Java method that takes a java.lang.Integer as an argument, you can call

it from Mathematica with a raw integer. But if you want to pass an integer to a method that is

typed to take an Object, you must explicitly create an object of type java.lang.Integer~

J/Link will not construct one automatically from an integer argument. It is simpler to call

MakeJavaObject than JavaNew for this.

MakeJavaObject@42D

«JavaObject@java.lang.IntegerD »

When given an integer argument, MakeJavaObject always constructs a java.lang.Integer,

never a java.lang.Short, java.lang.Long, or other “integer” Java wrapper object. Simi-

larly, if you call MakeJavaObject with a real number, it creates a java.lang.Double, never a

java.lang.Float. If you require an object of one of these other types, you will have to call

JavaNew explicitly.

MakeJavaObject also works for Boolean values.

MakeJavaObject@TrueD

«JavaObject@java.lang.BooleanD »

If MakeJavaObject were only a shortcut for calling JavaNew, it would not be all that useful. It

becomes indispensable, however, for creating objects of an array class. Recall that in Java,

arrays are objects and they belong to a class. These classes have cryptic names, but if you

know them you can create array objects with JavaNew. When creating array objects, the second

argument to JavaNew is a list giving the length in each dimension. Here you create a 2×3 array

of ints.

314 J/Link User Guide

intArray2D = JavaNew@"@@I", 82, 3<D

«JavaObject@@@ID »

JavaNew lets us create array objects, but it does not let us supply initial values for the elements

of the array. MakeJavaObject, on the other hand, takes a Mathematica list and converts it into

a Java array object with the same values.

intArray2D = MakeJavaObject@881, 2, 3<, 84, 5, 6<<D

«JavaObject@@@ID »

Thus, MakeJavaObject is particularly useful for creating array objects, because it lets you

supply the initial values for the array elements, and it frees you from having to learn and remem-

ber the names of the Java array classes (@@I for a two-dimensional array of ints, @D for a one-

dimensional array of doubles, and so on). MakeJavaObject can create arrays up to three dimen-

sions deep of integers, doubles, strings, Booleans, and objects.

The JavaObjectToExpression function is discussed in the section "JavaObjectToExpression",

and you can think of MakeJavaObject as being the inverse of JavaObjectToExpression.

MakeJavaObject takes a Mathematica expression that has a corresponding Java object that can

represent its value, and creates that object. It literally “makes it into a Java object”. The

JavaObjectToExpression function goes the other way~it takes a Java object that has a mean-

ingful Mathematica representation and converts it into that expression. It will always be the

case that, for any x that MakeJavaObject can operate on,

JavaObjectToExpression@MakeJavaObject@xDD === x

Remember that MakeJavaObject is not a commonly used function. You do not need to explicitly

construct Java objects from Mathematica strings, arrays, and so on, just to pass them to Java

methods~J/Link does this automatically for you. But even though J/Link will create objects

automatically from certain arguments in most circumstances, it will not do so when an argu-

ment is typed as a generic Object. Then you must create a JavaObject yourself, and

MakeJavaObject is the easiest way to do this.

The code for the SetInternetProxy function discussed in the section SetInternetProxy provides

a concrete example of using MakeJavaObject. To specify proxy information (for users behind

firewalls), you need to set some system properties using the Properties class. This class is a

subclass of Hashtable, so it has a method with the signature

Object put(Object key, Object value);

You should always specify keys and values for Properties in the form of strings. Thus, you

might try this from Mathematica.

J/Link User Guide 315

You should always specify keys and values for Properties in the form of strings. Thus, you

might try this from Mathematica.

LoadJavaClass@"java.lang.System"D;
System`getProperties@Düput@"proxySet", "true"D

Java::argx :
Method named put defined in class java.util.Properties was called with

an incorrect number or type of arguments. The
arguments, shown here in a list, were 8proxySet, true<.

$Failed

For this to work, you need to use MakeJavaObject to create Java String objects:

System`getProperties@Düput@MakeJavaObject@"proxySet"D, MakeJavaObject@"true"DD

MakeJavaExpr

To understand the MakeJavaExpr function, you need to understand the motivation for J/Link’s

Expr class, which is discussed in detail in "Motivation for the Expr Class". Basically, an Expr is a

Java object that can represent an arbitrary Mathematica expression. Its main use is as a conve-

nience for Java programmers who want to examine and operate on Mathematica expressions in

Java. Sometimes it is useful to have a way of creating Expr objects in the Mathematica lan-

guage instead of from Java. MakeJavaExpr is the function that fills this need.

MakeJavaExpr@exprD construct an object of J/Link’s Expr class that represents
the Mathematica expression

MakeJavaExpr.

Note that if you are calling a Java method that is typed to take an Expr, then you do not have

to call MakeJavaExpr to construct an Expr object. J/Link will automatically convert any expres-

sion you supply as the argument to an Expr object, as it does with other automatic conver-

sions. Like MakeJavaObject, MakeJavaExpr is used in cases where you are calling a method

that takes a generic Object, not an Expr, and therefore J/Link will not perform any automatic

conversion for you. In such cases you need to explicitly create an Expr object out of some

Mathematica expression. One reason you might want to do this is to store a Mathematica expres-

sion in Java for retrieval later.

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

316 J/Link User Guide

Here is a simple example of MakeJavaExpr. This demonstrates a few methods from the Expr

class, which has a number of Mathematica-like methods for examining, modifying, and extract-

ing portions of expressions. Of course, this is a highly contrived example~if you wanted to

know the length of an expression you would just call Mathematica’s Length@D function. The

Expr methods demonstrated here are typically called from Java, not Mathematica.

e = MakeJavaExpr@1 + 2 x + x^2D

«JavaObject@com.wolfram.jlink.ExprD »

eülength@D

3

eüpart@3D

x2

eüinsert@x^3, -1D

1 + 2 x + x2 + x3

Note that Expr objects, like Mathematica expressions, are immutable. The above call to insÖ

ert() did not modify e; instead, it returned a new Expr.

JavaObjectToExpression@eD

1 + 2 x + x2

If you are having trouble understanding why you might want to use MakeJavaExpr in a Mathe-

matica program, do not worry. It is an advanced function that few programmers will have any

use for.

Creating Windows and Other User Interface Elements

Preamble

One of the most useful applications for J/Link is to write user interface elements for Mathemat-

ica programs. Examples of such elements would be a progress bar monitoring the completion of

a computation, a window that displays an image or animation, a dialog box that prompts the

user for input or helps them compose a proper call of an unfamiliar function, or a mini-applica-

tion that leads the user through the steps of an analysis. These types of user interfaces are

distinct from what you might write for a Java program that uses Mathematica in the background

in that they “pop up” when the user invokes some Mathematica code. They do not replace the

notebook front end, they just augment it. In this way, they are like an extension of the palettes

and other specialty notebook elements you can create in the front end.

Mathematica with J/Link is an extremely powerful and productive environment for creating user

interfaces. The complexity of user interface code is ideally suited to the interactive line-at-a-

time nature of J/Link development. You can literally build, modify, and experiment with your

user interface while it is running.

J/Link User Guide 317

Mathematica with J/Link is an extremely powerful and productive environment for creating user

interfaces. The complexity of user interface code is ideally suited to the interactive line-at-a-

time nature of J/Link development. You can literally build, modify, and experiment with your

user interface while it is running.

Anyone considering writing user interfaces for Mathematica programs should also look at GUIKit

. GUIKit is built on top of J/Link, and provides an extremely high-level means of creating inter-

faces. Further discussion of GUIKit is beyond the scope of this manual, but be aware that

GUIKit was specifically designed to provide an easier means of creating user interfaces than

writing in “raw” J/Link, as described here.

Interactive and Non-Interactive Interfaces

To write Mathematica programs that create Java windows you need to understand important

distinctions between several types of such user interfaces. These distinctions relate to how they

interact with the Mathematica kernel.

At the highest level of categorization, there is a distinction between “interactive” and “non-

interactive” interfaces. The interactiveness under consideration here is with the Mathematica

kernel, not with the user. What we are calling non-interactive user interfaces have no need to

communicate back to Mathematica, although they typically are controlled by Mathematica. Such

interfaces often accept no user input at all~they are created, manipulated, and destroyed by

Mathematica code. An example of this type is a window that shows a progress bar (a complete

progress bar program is presented in "A Progress Bar"). A progress bar does not return a result

to Mathematica and it does not need to respond to user actions, at least not by interacting with

Mathematica. In other words, the window may go away when its close box is clicked (a user

action), but this is not relevant to Mathematica because it does not return a result or trigger a

call back into Mathematica. A progress bar is completely driven by a Mathematica program. The

flow of information is in one direction only.

Such user interfaces typically have lifetimes that are encompassed by a single Mathematica

program, as is the case with a progress bar. This is not required, however. Hosting an applet in

its own window, as described in "Hosting Applets", is an example where the window lives on

after the code that created it ends execution. The applet window is only dismissed when the

user clicks in its close box. Again, though, the important property is that the applet does not

need to interact with Mathematica.

This type of user interface, which requires no interaction back with Mathematica, poses no

special issues that need to be discussed in this section. A program that creates, runs, and

destroys such an interface is very much like a non-GUI Java computation that is accomplished

with a series of calls into Java. It just happens to produce a visual effect. You can examine the

progress bar code in "A Progress Bar" if you want to see a fully fleshed out example.

318 J/Link User Guide

This type of user interface, which requires no interaction back with Mathematica, poses no

special issues that need to be discussed in this section. A program that creates, runs, and

destroys such an interface is very much like a non-GUI Java computation that is accomplished

with a series of calls into Java. It just happens to produce a visual effect. You can examine the

progress bar code in "A Progress Bar" if you want to see a fully fleshed out example.

The more common “interactive” type of user interface needs to communicate back to Mathemat-

ica. This might be to return a result, like a typical modal input dialog, or to initiate a computa-

tion as a consequence of the user clicking a button. To understand the special problem this

imposes, it is useful to examine some basic considerations about the kernel’s “main loop”,

whereby it acquires input, evaluates it, and sends off any output.

When the Mathematica kernel is being used from the front end, it spends most of its life waiting

for input to arrive on the MathLink that it uses to communicate with the front end. This Math-

Link is given by $ParentLink, and it is $ParentLink that has the kernel’s “attention”. When

input arrives on $ParentLink, it is evaluated, any results are sent back on the link, and the

kernel goes back to waiting for more input on $ParentLink. When J/Link is being used, the

kernel has another MathLink open, the one that connects to the Java runtime. When you exe-

cute some code that calls into Java, the kernel sends something to Java and then blocks waiting

for the return value from Java. During this period when the kernel is waiting for a return value

from Java, the Java link has the kernel’s attention. It is only during this period of time that the

kernel is paying attention to the Java link. A more general way of saying this is that the kernel

is only listening for input arriving from Java when it has been specifically instructed to do so.

The rest of the time it is listening only to $ParentLink, which is typically the notebook front

end.

Consider what happens when the user clicks on a button in your Java window and that button

tries to execute some code that calls into Mathematica. The Java side sends something to

Mathematica and then waits for the result, but the kernel will never get the request because it

is not paying attention to the Java link. It is necessary to use some means to tell the kernel to

look for input arriving on the Java link. J/Link provides three different ways to manage the

kernel’s attention to the Java link, and thereby control its readiness to accept requests for

evaluations initiated by the Java side.

These three ways can be called “modal”, “modeless”, and “manual”. In modal interaction,

characterized by the use of the DoModal Mathematica function, the kernel is pointed at the Java

link until the Java side releases it. The kernel is a complete slave to the Java side, and is unavail-

able for any other computations. In modeless interaction, characterized by the use of the

ShareKernel Mathematica function, the kernel is kept in a state where it is receptive to evalua-

tion requests arriving from either the notebook front end or Java, evenly sharing its attention

between these two programs. Lastly, there is a manual mode, characterized by the use of the

ServiceJava Mathematica function, which in some ways is intermediate between modal and

modeless operation. Here, you manually instruct the kernel to allow single requests from Java

while in the middle of running a larger program. The next few sections are devoted to further

exploration of these types of user interfaces.

J/Link User Guide 319

These three ways can be called “modal”, “modeless”, and “manual”. In modal interaction,

characterized by the use of the DoModal Mathematica function, the kernel is pointed at the Java

link until the Java side releases it. The kernel is a complete slave to the Java side, and is unavail-

able for any other computations. In modeless interaction, characterized by the use of the

ShareKernel Mathematica function, the kernel is kept in a state where it is receptive to evalua-

tion requests arriving from either the notebook front end or Java, evenly sharing its attention

between these two programs. Lastly, there is a manual mode, characterized by the use of the

ServiceJava Mathematica function, which in some ways is intermediate between modal and

modeless operation. Here, you manually instruct the kernel to allow single requests from Java

while in the middle of running a larger program. The next few sections are devoted to further

exploration of these types of user interfaces.

Before continuing, it is important to remember that all these issues about how to prepare the

kernel for computations arriving from Java are only relevant for computations initiated in Java,

typically by user actions like clicking a button. Calls from Java to Mathematica that are part of a

back-and-forth series of calls that involve a call from Mathematica into Java are not a problem.

Any time Mathematica has called into Java, Mathematica is actively listening for results arriving

from Java. This may sound confusing, but that is mostly because it is only in a much later

section that discusses writing your own Java methods to be called from Mathematica; such

methods can call back to Mathematica for computations before they return their result (typical

examples are to print something in the notebook window or display a message). These are true

callbacks into Mathematica, and Mathematica is always ready to handle them. In contrast, calls

to Mathematica that occur as the result of a user action in the Java side are, in effect, a sur-

prise to Mathematica, and it is not normally in a state where it is ready to accept them.

Modal versus Modeless Operation

A common type of user interface element is like a modal dialog: once it is displayed, the Mathe-

matica program hangs waiting for the user to dismiss the window. Typically, this is because the

window returns a result to Mathematica, so it is not meaningful for Mathematica to continue

until the window is closed. An example of such a window is a simple input window that asks the

user for some value, which it returns to Mathematica when the OK button is clicked.

It is important to understand our slightly generalized use of the term “modal” to describe these

windows. They may not be modal in the traditional sense that they must be dismissed before

320 J/Link User Guide

It is important to understand our slightly generalized use of the term “modal” to describe these

anything else can be done in the user interface. Rather, they are modal with respect to the

Mathematica kernel~the kernel cannot do anything else until they are closed. A Java window

that you create might not be modal with respect to other Java windows on the screen (i.e., a

dialog might not have the isModal property set), but it ties up the kernel’s attention until it is

dismissed.

Another type of user interface element is like a modeless dialog: after it is displayed, the Mathe-

matica program that created it will finish, leaving the window visible and usable while the user

continues working in the notebook front end. This sounds a lot like the first type of user inter-

face element described earlier, but these windows are distinguished by the fact that they can

initiate interactions with Mathematica while they are visible. An example would be a window

that lets users load packages into Mathematica by selecting them from a scrolling list. You write

a J/Link program that creates this window, displays it, and returns. The window is left open and

usable until the user clicks in its close box. In the meantime, the user is free to continue work-

ing in the front end, going back to use this Java window whenever it is convenient.

Such a window is almost like another type of notebook or palette window in the front end. You

can have any number of front end or Java windows open at once, and active, meaning that they

can be used to initiate computations in Mathematica. They are each their own little interface

onto the same kernel. What is different about the Java window is that it is much more general

than a notebook window, and, importantly, it lives in a different application layer than the front

end. This last fact makes the Java window in effect a second front end, rather than an exten-

sion of the notebook front end. To accommodate such a second front end, the kernel must be

kept in a special state that allows it to handle requests for evaluations arriving from either the

notebook front end or Java.

Before presenting examples of how to implement modal and modeless windows, it is necessary

to jump ahead a little bit and explain the main mechanism by which Java user interface ele-

ments can communicate with Mathematica.

Handling Events with Mathematica Code: The “MathListener” Classes

User interface elements typically have active components like buttons, scrollbars, menus, and

text fields that need to trigger some action when they are clicked. In the Java event model,

components fire events in response to user actions, and other components indicate their inter-

est in these events by registering as event listeners. In practice, though, components do not

J/Link User Guide 321

User interface elements typically have active components like buttons, scrollbars, menus, and

text fields that need to trigger some action when they are clicked. In the Java event model,

components fire events in response to user actions, and other components indicate their inter-

usually act as event listeners directly. Instead, the programmer writes an adapter class that

implements the desired event-listener interface and calls certain methods in the component in

response to various events. This avoids having to subclass the responding component just to

have it act as an event listener. The only specialty code goes into the adapter class, allowing

the components that fire and respond to events to be generic.

As an example, say you are writing a standard Java program and you have a button that you

want to use to control the appearance of a text area. Clicking the button should toggle between

black text on a white background and white text on a black background. Buttons fire ActionÖ

Events when they are clicked, and a class that wants to receive notifications of clicks must

implement the ActionListener interface, and register with the button by calling its addActionÖ

Listener method. You would write a class, perhaps called MyActionAdapter, that implements

ActionListener. In its actionPerformed() method, which is what will be called when the

button is clicked, you would call the appropriate methods to set the foreground and background

colors of the text area.

If you have ever used a Java GUI builder that lets you create an application by dropping compo-

nents on a form and then wiring them together via events, the code that is being generated for

you consists in large part of adapter classes that manage the logic of calling certain methods in

the target objects when events are fired by the source objects.

What all this is leading up to is simply that the wiring of components in a GUI typically involves

writing a lot of Java code in the form of classes that implement various event-listener inter-

faces. J/Link programmers want to write GUIs that use the standard Java event model, and

they should not have to write Java code to do it. The solution is simple: J/Link provides a com-

plete set of classes that implement the standard event-listener interfaces and whose actions are

to call back into Mathematica to execute user-defined code. This brings all the event-handling

logic down into Mathematica, where it can be scripted like every other part of the program.

Not only does this solution preserve the “pure Mathematica” property of even complex Java

GUIs, it is vastly more flexible than writing a traditional application in Java. When you write in

Java, or use a fancy drag-and-drop GUI builder, you hard-code the event logic. You have to

decide at compile time what every click, scroll, and keystroke will do. But when you use J/Link,

you decide how your program is wired together at run time. You can even change the behavior

on the fly simply by typing a few lines of code.

J/Link provides implementations of all the standard AWT event-listener classes. These classes

are named after the interfaces they implement, with “Math” prepended. Thus, the class that

implements ActionListener is MathActionListener. (Perhaps these classes would be better

named MathXXXAdapter.) The following table shows a summary of all the MathListener

classes, the methods they implement, and the arguments they send to your Mathematica

handler function.

322 J/Link User Guide

J/Link provides implementations of all the standard AWT event-listener classes. These classes

are named after the interfaces they implement, with “Math” prepended. Thus, the class that

implements ActionListener is MathActionListener. (Perhaps these classes would be better

named MathXXXAdapter.) The following table shows a summary of all the MathListener

classes, the methods they implement, and the arguments they send to your Mathematica

handler function.

class methods arguments to Mathematica
handler

MathActionListener actionPerformed
HActionEvent eL

e,
e.getActionCommand

HL HStringL

MathAdjustmentListener adjustmentValueChanged I

AdjustmentEvent eM
e,
e.getAdjustmentType HL,
HIntegerL
e.getValue HL HIntegerL

MathComponentListener componentHidden
HComponentEvent eL

componentShown
HComponentEvent eL

componentResized
HComponentEvent eL

componentMoved
HComponentEvent eL

e

MathContainerListener componentAdded
HContainerEvent eL

componentRemoved
HContainerEvent eL

e

MathFocusListener focusGained
HFocusEvent eL

focusLost HFocusEvent eL

e

MathItemListener itemStateChanged
HItemEvent eL

e,
e.getStateChange

HL HIntegerL

MathKeyListener keyPressed HKeyEvent eL
keyReleased HKeyEvent eL
keyTyped HKeyEvent eL

e,
e.getKeyChar HL,HIntegerL
e.getKeyCode HL HIntegerL

J/Link User Guide 323

MathMouseListener mouseClicked
HMouseEvent eL

mouseEntered
HMouseEvent eL

mouseExited
HMouseEvent eL

mousePressed
HMouseEvent eL

mouseReleased
HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

MathMouseMotionListener mouseMoved HMouseEvent eL
mouseDragged

HMouseEvent eL

e,
e.getX HL, HIntegerL
e.getY HL, HIntegerL
e.getClickCount

HL HIntegerL

MathPropertyChangeListeÖ
ner

propertyChanged H
PropertyChangeEvent eL

e

MathTextListener textValueChanged
HTextEvent eL

e

MathVetoableChangeListeÖ
ner

vetoableChange H

PropertyChangeEvent
eL

e (veto the change by returning
False from your handler)

MathWindowListener windowOpened
HWindowEvent eL

windowClosed
HWindowEvent eL

windowClosing
HWindowEvent eL

windowActivated
HWindowEvent eL

windowDeactivated
HWindowEvent eL

windowIconified
HWindowEvent eL

windowDeiconified
HWindowEvent eL

e

Listener classes provided with J/Link.

As an example of how to read this table, take the MathKeyListener class. MathKeyListener

implements the KeyListener interface, which contains the methods keyPressed(), keyReÖ

leased(), and keyTyped(). If you register a MathKeyListener object with a component that

fires KeyEvents, then these three methods will be called in response to the key events they are

named after. When any of these methods are called, they will call into Mathematica and exe-

MathListener classes pass your handler function the event object itself, and a

few, like this one, pass additional integer arguments that are commonly needed values. This

just saves you the overhead of having to call back into Java to get these additional values.

324 J/Link User Guide

As an example of how to read this table, take the MathKeyListener class. MathKeyListener

implements the KeyListener interface, which contains the methods keyPressed(), keyReÖ

leased(), and keyTyped(). If you register a MathKeyListener object with a component that

fires KeyEvents, then these three methods will be called in response to the key events they are

cute a user-defined function, passing it three arguments: the KeyEvent object itself, followed

by two integers that are the results of the event object’s getKeyChar() and getKeyCode()

methods. All the MathListener classes pass your handler function the event object itself, and a

few, like this one, pass additional integer arguments that are commonly needed values. This

just saves you the overhead of having to call back into Java to get these additional values.

To specify the Mathematica function associated with any of the methods of a MathListener

object, call the object’s setHandler() method. setHandler() takes two strings, the first of

which is the name of the event-handler method (e.g., “actionPerformed” or “keyPressed”),

and the second of which is the Mathematica function that should be called in response. The

Mathematica function can be a name, as in “myButtonFunction” or a pure function (specified as

a string). The reason for supplying the name of the actual Java method in the listener interface

is that many of the listeners have multiple methods. setHandler() returns True if the handler

was set correctly and False otherwise (for example, if the method you named is not spelled

correctly).

objüsetHandler@"methodName"," funcName"D

set the Mathematica function that will be called when the
MathListener object obj’s event-handler method methodÖ
Name() is called.

Assigning the Mathematica function that will be called in response to an event notification.

The use of these classes will become clear in the simple examples that follow for modal and

modeless windows, and in the more fully worked-out examples in the sections "A Simple Modal

Input Dialog" and "A Piano Keyboard".

You are not required to use the J/Link MathListener classes for creating calls into Mathematica

triggered by user actions. They are provided simply as a convenience. You could write your own

classes to handle events and put calls into Mathematica directly into their code. All the

“MathListener” classes in J/Link are derived from an abstract base class called, appropriately,

MathListener. The code in MathListener takes care of all of the details of interacting with

Mathematica, and it also provides the setHandler() methods that you use to associate events

with Mathematica code. Users who want to write their own classes in MathListener style (for

example, for one of the Swing-specific event-listener interfaces, which J/Link does not provide)

are strongly encouraged to make their classes subclasses of MathListener to inherit all this

MathListener (MathActionListener is probably the simplest one) to see how it is written. You

can use this as a starting point for your own implementation. If you do not make your class a

subclass of MathListener, and instead choose instead to write your own event-handler code

that calls into Mathematica, you must read "Writing Your Own Event Handler Code".

J/Link User Guide 325

You are not required to use the J/Link MathListener classes for creating calls into Mathematica

triggered by user actions. They are provided simply as a convenience. You could write your own

classes to handle events and put calls into Mathematica directly into their code. All the

“MathListener” classes in J/Link are derived from an abstract base class called, appropriately,

MathListener. The code in MathListener takes care of all of the details of interacting with

Mathematica, and it also provides the setHandler() methods that you use to associate events

with Mathematica code. Users who want to write their own classes in MathListener style (for

example, for one of the Swing-specific event-listener interfaces, which J/Link does not provide)

functionality. You should examine the source code for one of the concrete classes derived from

MathListener (MathActionListener is probably the simplest one) to see how it is written. You

can use this as a starting point for your own implementation. If you do not make your class a

subclass of MathListener, and instead choose instead to write your own event-handler code

that calls into Mathematica, you must read "Writing Your Own Event Handler Code".

Bringing Java Windows to the Foreground

If you are creating a Java window with a Mathematica program, you probably want that window

to pop up in front of the notebook the user is working in, so that its presence becomes appar-

ent. You might expect that the toFront() method of Java’s Window class is what you would

use for this, but this does not work on the Macintosh, and it works slightly differently on differ-

ent Java runtimes on Windows. As a result of these differences, it is difficult to write a Mathemat-

ica program that behaves identically on all platforms and all Java virtual machines with respect

to making Java windows visible in front of all other windows the user might see.

As a result of these unfortunate differences, J/Link provides a Mathematica function, JavaShow,

which performs the proper steps on all configurations. You should use JavaShow@windowD in

place of windowüsetVisible@TrueD, windowüshow@D, or windowütoFront@D. You will see

JavaShow used in all the example programs. The argument to JavaShow must be a Java object

that is an instance of a class that can represent a top-level window. Specifically, it must be of

class java.awt.Window or a subclass. This includes the AWT Frame and Dialog windows, and

also the Swing classes used for top-level windows (JFrame, JWindow, and JDialog).

JavaShow@windowObjD make the specified Java window visible and bring it in front
of all other windows, including notebook windows

Bringing a Java window to the foreground.

Modal Windows

Here is an example of a simple “modal” window. The window contains a button and a text field.

The text field starts out displaying the value 1, and each time the button is clicked the value is

incremented. The com.wolfram.jlink.MathFrame class is used for the enclosing window.

MathFrame is a simple extension to java.awt.Frame that calls dispose() on itself when its

close box is clicked (the standard Frame class does nothing).

326 J/Link User Guide

frm = JavaNew@"com.wolfram.jlink.MathFrame"D;

button = JavaNew@"java.awt.Button"D;
textField = JavaNew@"java.awt.TextField"D;

frmüsetLayout@JavaNew@"java.awt.GridLayout"DD;
frmüadd@buttonD;
frmüadd@textFieldD;
frmüpack@D;
JavaShow@frmD;

At this point, you should see a small frame window with a button on the left and a text field on

the right. Now label the button and set the starting text for the field.

buttonüsetLabel@"++"D;
textFieldüsetText@"1"D;

Now you want to add behavior to the button that causes it to increment the text field value.

Buttons fire ActionEvents, so you need an instance of MathActionListener.

buttonListener = JavaNew@"com.wolfram.jlink.MathActionListener"D;

It must be registered with the button by calling addActionListener.

buttonüaddActionListener@buttonListenerD;

At this point, if you were to click the ++ button, the actionPerformed() method of your

MathActionListener would be called (do not click the button yet!). You know from the

MathListener table in the previous subsection that the actionPerformed() method will call a

user-defined Mathematica function with two arguments: the ActionEvent object itself and the

integer value that results from the event’s getActionCommand() method.

You have not yet set the user-defined code to be called by the actionPerformed() method.

That is done for all the MathListener classes with the setHandler() method. This method

takes two strings, the first being the name of the method in the event-listener interface, and

the second being the function you want called.

buttonListenerüsetHandler@"actionPerformed", "buttonFunc"D;

Now you need to define buttonFunc. It must be written to take two arguments, but in this

example you are not interested in either argument.

buttonFunc@_, _D :=
Module@8curText, newVal<,

curText = textFieldügetText@D;
newVal = ToExpression@curTextD + 1;
textFieldüsetText@ToString@newValDD

D

You are still not quite ready to try the button. If you click the button now, the Java user inter-

face thread will hang because it will call into Mathematica trying to evaluate buttonFunc and

wait for the result, but the result will never come because the kernel is not waiting for input to

arrive on the Java link. What you need is a way to put the kernel into a state where it is continu-

ously reading from the Java link. This is what makes the window “modal”~the kernel cannot do

anything else until the window is closed. The function that implements this modal state is

DoModal.

J/Link User Guide 327

You are still not quite ready to try the button. If you click the button now, the Java user inter-

face thread will hang because it will call into Mathematica trying to evaluate buttonFunc and

wait for the result, but the result will never come because the kernel is not waiting for input to

arrive on the Java link. What you need is a way to put the kernel into a state where it is continu-

ously reading from the Java link. This is what makes the window “modal”~the kernel cannot do

anything else until the window is closed. The function that implements this modal state is

DoModal.

DoModal@D put the kernel into a state where its attention is solely
directed at the Java link

EndModal@D what the Java program must call to make the DoModal
function return, ending the modal state

Entering and exiting the modal state.

DoModal will not return until the Java program calls back into Mathematica to evaluate

EndModal@D. While DoModal is executing, the kernel is ready to handle callbacks from Java~for

example, from MathListener objects. The way to get the Java side to call EndModal@D is typi-

cally to use a MathListener. For example, if your window had OK and Cancel buttons, these

should dismiss the window, so you would create MathActionListener objects and register

them with these two buttons. These MathActionListener objects would be set to call

EndModal@D in their actionPerformed() methods.

DoModal returns whatever the block of code that calls EndModal@D returns. You would typically

use this return value to determine how the window was closed~for example, whether it was the

OK or Cancel button. You could then take appropriate action. See "A Simple Modal Input

Dialog" for an example of using the return value of DoModal.

In the present example, the only way to close the window is by clicking its close box. Clicking

the close box fires a windowClosing event, so you use a MathWindowListener to receive

notifications.

windowListener = JavaNew@"com.wolfram.jlink.MathWindowListener"D;
frmüaddWindowListener@windowListenerD;

Now you assign the Mathematica function to be called when the close box is clicked. All you

need it to do is call EndModal@D, so you can specify a pure function that ignores its arguments

and does nothing but execute EndModal@D.

windowListenerüsetHandler@"windowClosing", "EndModal@D&"D;

The preceding few lines are a fine example of how to use a MathWindowListener to trigger a

call to EndModal@D when a window’s close box is clicked. You would use something similar to

this, except with a MathActionListener, if you wanted to have an explicit Close button. In this

example, though, there is an easier way. Mentioned earlier is that the MathFrame class is just a

normal AWT Frame except that it calls dispose() on itself when its close box is clicked. Actu-

ally it has another useful property~it can also execute EndModal@D when its close box is

clicked. Thus, if you use MathFrame as the top-level window class for your interfaces, you will

not have to manually create a MathWindowListener to terminate the modal loop every time. To

enable this behavior of MathFrame, you need to call its setModal method:

328 J/Link User Guide

The preceding few lines are a fine example of how to use a MathWindowListener to trigger a

call to EndModal@D when a window’s close box is clicked. You would use something similar to

this, except with a MathActionListener, if you wanted to have an explicit Close button. In this

example, though, there is an easier way. Mentioned earlier is that the MathFrame class is just a

normal AWT Frame except that it calls dispose() on itself when its close box is clicked. Actu-

ally it has another useful property~it can also execute EndModal@D when its close box is

clicked. Thus, if you use MathFrame as the top-level window class for your interfaces, you will

not have to manually create a MathWindowListener to terminate the modal loop every time. To

enable this behavior of MathFrame, you need to call its setModal method:

(***
 This is even easier than using the MathWindowListener above.
 We won't call it here, though, because we have already arranged
 for EndModal to be called, and bad things will happen if we try
 to call it twice.

frm@setModal[]

***)

You must not call setModal if you are not using DoModal. This is because after setModal has

been called, the MathFrame will try to call into Mathematica when it is closed (to execute

EndModal), and Mathematica needs to be in a state where it is ready for calls originating in

Java. The same issue exists for any MathListener you create yourself.

Now that everything is ready, you can enter the modal state and use the window.

DoModal@D

When you are done playing with the window, click the close box in the frame, which will trigger

a callback into Mathematica that calls EndModal@D. DoModal then returns, and the kernel is

ready to be used from the front end. DoModal@D returns Null if you click the close box of a

MathFrame.

J/Link User Guide 329

Here is how the entire example looks when packaged into a single program. (The code for

SimpleModal is also available as SimpleModal.nb in the JLink/Examples/Part1 directory.)

SimpleModal[] :=
JavaBlock[

Module[{frm, button, textField, windowListener,
buttonListener, buttonFunc},

(* Create the GUI components. *)
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
textField = JavaNew["java.awt.TextField"];

(* Configure their properties. *)
frm@setLayout[JavaNew["java.awt.GridLayout"]];
frm@add[button];
frm@add[textField];
button@setLabel["++"];
textField@setText["1"];
frm@pack[];

(* Create the listener and set its handler function. *)
buttonListener =

JavaNew["com.wolfram.jlink.MathActionListener"];
buttonListener@setHandler["actionPerformed", ToString[buttonFunc]];
button@addActionListener[buttonListener];

(* Define buttonFunc. *)
buttonFunc[_, _] :=

JavaBlock[
Module[{curText, newVal},

curText = textField@getText[];
newVal = ToExpression[curText] + 1;
textField@setText[ToString[newVal]]

]
];

(* Make the window visible and bring it in front of any
 notebook windows. *)
JavaShow[frm];

(* Tell the frame to end the modal loop when it is closed. *)
frm@setModal[];

(* Enter the modal loop. *)
DoModal[];

]
]

Remember that DoModal will not return until the Java side calls EndModal. You have to be a

little careful when you call DoModal that you have already established a way for the Java side to

trigger a call to EndModal. As explained earlier, you will typically have done this by using a

MathFrame as the frame window and calling its setModal method, or by creating and registering

a MathListener of your own that will call EndModal in response to a user action (such as click-

ing an OK or Cancel button). Once DoModal has begun, the kernel is not responsive to the

DoModal and realize that for some

reason you cannot end it from Java, you can abort it from the front end by selecting Evalua-

tion Interrupt Evaluation in the menu, and then in the resulting dialog, clicking the button

labeled Abort.

330 J/Link User Guide

Remember that DoModal will not return until the Java side calls EndModal. You have to be a

little careful when you call DoModal that you have already established a way for the Java side to

trigger a call to EndModal. As explained earlier, you will typically have done this by using a

MathFrame as the frame window and calling its setModal method, or by creating and registering

a MathListener of your own that will call EndModal in response to a user action (such as click-

front end and thus it is too late to set anything up. If you call DoModal and realize that for some

reason you cannot end it from Java, you can abort it from the front end by selecting Evalua-

tion Interrupt Evaluation in the menu, and then in the resulting dialog, clicking the button

labeled Abort.

There is one subtlety you might notice in the code for SimpleModal that is not directly related

to J/Link. In the line that calls buttonListener@setHandler, you pass the name of the button

function not as the literal string "buttonFunc", but as ToString@buttonFuncD. This is because

buttonFunc is a local name in a Module, and thus its real name is not buttonFunc, but some-

thing like buttonFunc$42. To make sure you capture its true run-time name, you call

ToString on the symbolic name. You could avoid this by simply not making the name buttonÖ

Func local to the Module, but the way you have done it automatically cleans up the definition

for buttonFunc when the Module finishes.

MathFrame and MathJFrame

You encountered the MathFrame class in this section, which is a useful top-level window class

for J/Link programmers because it has three special properties. You have already encountered

two of them: it calls dispose() on itself when it is closed, and it has the setModal() method,

which gives it easy support for use with DoModal. The third property is that it has an

onClose() method that you can use to specify Mathematica code that will be executed when

the window is closed. The onClose() method is used in the Palette example in "Sharing the

Front End: Palette-Type Buttons". J/Link also has a MathJFrame class, which is a subclass of the

Swing JFrame class, and it also has these three special properties. Programmers who want to

create interfaces with Swing components instead of AWT ones can use MathJFrame as their top-

level window class.

Modeless Windows: Sharing the Kernel with Java

The previous subsection demonstrated how to write J/Link programs that display Java windows

and then how to use the DoModal function to cause the kernel to wait until the window is

closed. During the time that DoModal is running, the kernel is able to receive and process

requests for computations that originate from the Java side. The word “modal” is used in this

context to refer to the fact that the kernel is busy servicing the Java link, and thus the note-

book front end cannot use the kernel until DoModal returns.

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

dismissed. Unfortunately, it is too restrictive for a large class of user interface elements. Con-

sider trying to duplicate the general concept of a front end palette window in Java. You want to

have a window of buttons that, when clicked, cause some computation to occur in Mathematica.

Like a front end palette window, you want this window to be created and remain visible and

active indefinitely. It would not be of much use if every time you wanted to click one of the

buttons you had first to execute DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

J/Link User Guide 331

This arrangement works fine for many types of Java windows, and it is required for those that

return a result to Mathematica, because the kernel cannot sensibly proceed until the window is

dismissed. Unfortunately, it is too restrictive for a large class of user interface elements. Con-

sider trying to duplicate the general concept of a front end palette window in Java. You want to

have a window of buttons that, when clicked, cause some computation to occur in Mathematica.

Like a front end palette window, you want this window to be created and remain visible and

active indefinitely. It would not be of much use if every time you wanted to click one of the

buttons you had first to execute DoModal@D (and you would also have to arrange for each

button to call EndModal@D as part of the computation it triggers). You want to be able to go

back and forth between notebook windows in the front end and our Java window without need-

ing manually to switch the kernel into and out of some special state each time.

What is needed is a way for the kernel to automatically pay attention to input arriving from the

Java link in addition to the notebook front end link. What you really have here is two front ends

vying for the kernel’s attention. J/Link solves this problem by introducing a simple way in which

the kernel can be put into a state where it is simultaneously listening for input on any number

of links. The function that accomplishes this is ShareKernel.

Important Note: In Mathematica 5.1 and later, the kernel is always shared with Java. This

means that the functions ShareKernel and UnshareKernel are not necessary and, in fact, do

nothing at all. If you are writing program that only need to run in Mathematica 5.1 and later,

you never need to call ShareKernel or UnshareKernel (ShareFrontEnd and UnshareFrontEnd

are still useful, however). If your programs need to work on all versions of Mathematica, then

you will need to use ShareKernel and UnshareKernel as described next.

ShareKernel@D begin sharing the kernel with Java

ShareKernel@linkD begin sharing the kernel with link

UnshareKernel@idD unregisters the request for sharing (that is, the call to
ShareKernel) that returned id; kernel sharing will not be
turned off unless no other requests are outstanding

UnshareKernel@linkD end sharing of the kernel with link

UnshareKernel@D end sharing of the kernel with Java

KernelSharedQ@D True if the kernel is currently being shared; False
otherwise

SharingLinks@D a list of the links currently sharing the kernel

Sharing the kernel.

ShareKernel takes a LinkObject as an argument and initiates sharing of the kernel between

that link and the current $ParentLink (typically, the notebook front end). If you call

ShareKernel with no arguments, it assumes you mean the link to Java. Most users will call it

with no arguments.

332 J/Link User Guide

ShareKernel takes a LinkObject as an argument and initiates sharing of the kernel between

that link and the current $ParentLink (typically, the notebook front end). If you call

ShareKernel with no arguments, it assumes you mean the link to Java. Most users will call it

with no arguments.

ShareKernel@D;

2 + 2

4

Note that while the kernel is being shared, the input prompt has “(sharing)” prepended to it.

The string that is prepended is specified by the SharingPrompt option to ShareKernel.

Sharing is transparent to the user. Other than the changed input prompt, there is nothing to

suggest that anything different is going on. Input sent from either the front end or a Java

program to the kernel will be evaluated and the result sent back to the program that sent the

input. Each link is the kernel’s $ParentLink during the time that the kernel is computing input

that arrived from that link. In other words, ShareKernel takes care of shuffling the

$ParentLink value back and forth between links as input arrives on each.

It is safe to call ShareKernel if the kernel is already being shared. This means that programs

you write can call it without your having to worry that a user might already have initiated

sharing. When you are finished with the need to share the kernel with Java, you can call

UnshareKernel. This restores the kernel to its normal mode of operation, paying attention only

to the front end.

UnshareKernel@D

When called with no arguments, UnshareKernel shuts down sharing. This is not a desirable

thing in most cases, because it might be that some other Java-based program is running that

requires sharing. If you are writing code for others to use, you certainly cannot shut down

sharing on your users just because your code is done with it. To solve this problem,

ShareKernel returns a token (it is just an integer, but you should not be concerned with its

representation) that reflects a request for sharing functionality. In other words, calling

ShareKernel registers a request for sharing, turns it on if it is not on already, and returns a

token that represents that particular request. When you call UnshareKernel, you pass it the

token to “unregister” that particular request for sharing. Only if there are no other outstanding

requests will sharing actually be turned off.

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

J/Link User Guide 333

A quirk of ShareKernel is that you cannot call ShareKernel and UnshareKernel in the same

cell. Doing so will cause the kernel to hang. Of course, there is no reason to ever do this, as

kernel sharing is only relevant when it spans multiple evaluations (more precisely, the evalua-

tion of multiple cells). There would be no point to turning sharing on and off within the scope of

a single computation.

An example of a nontrivial user interface that uses ShareKernel is presented in "Real-Time

Algebra: A Mini-Application".

Sharing the Front End

One goal of J/Link was to have Java user interface elements be as close as possible to first-

class citizens of the notebook front end environment, in the way that notebooks and palettes

are. The ability to share the kernel mimics one important aspect of this citizenship, hiding the

fact that the Java runtime is a separate program and the kernel is normally only waiting for

input from the front end.

There is one more important thing that palettes can do that would be nice to do from Java, and

that is interact with the front end. You can create a palette button that, when clicked, evaluates

the code Print@"hello"D. You can do this easily with J/Link also, but with one big difference:

when you click the palette button, hello appears in the active notebook, but when you click

the Java button, the “hello” gets sent back to the Java program (which is, after all, the kernel’s

$ParentLink at that moment). Even if you persuaded the kernel to write the TextPacket that

contains “hello” to the front end link instead of the Java link, nothing useful would happen

because the front end is not paying attention to the kernel link when the front end is not wait-

ing for the result of a computation. Poking some output at the front end while it is idle simply

will not work.

J/Link provides the ShareFrontEnd function as the solution to this problem. ShareFrontEnd@D

causes Print output and graphics generated by a Java user-interface element to appear in the

front end. It also lets the Java side call Mathematica functions that manipulate elements of

notebooks and have them work properly in the front end (for example, NotebookRead,

NotebookWrite, SelectionEvaluate, and so on). While sharing is on, the front end behaves

normally, and you can continue to use it for editing, calculations, or whatever. The sharing is

transparent.

334 J/Link User Guide

ShareFrontEnd@D begin sharing the front end with Java

UnshareFrontEnd@idD unregisters the request for sharing (that is, the call to
ShareFrontEnd) that returned id; front end sharing will
not be turned off unless no other requests are outstanding

UnshareFrontEnd@D end sharing of the front end with Java

FrontEndSharedQ@D True if the front end is currently being shared with Java;
False otherwise

Sharing the notebook front end.

ShareFrontEnd currently does not work with a remote kernel; the same machine must be

running the kernel and the front end.

ShareFrontEnd is as close as you currently can come to having Java user interfaces hosted

directly by the notebook front end itself, as if they were special types of notebook windows.

This type of tight integration might be possible in the future.

Note that Print output, graphics, and messages generated by a modal Java window will appear

in the front end without needing to call ShareFrontEnd. This is because $ParentLink remains

the front end link during DoModal (these “side effect” packets always get sent to $ParentLink),

and also because the front end is able to handle various packets arriving from the kernel

because the front end is in the middle of a computation~it is waiting for the result of the code

that called DoModal. ShareFrontEnd is a way to restore a feature that was lost when you

gained the ability to create modeless interfaces via ShareKernel. That is how to think of

ShareFrontEnd~as a step beyond ShareKernel that allows side effect output generated by

computations triggered in Java to appear in the notebook front end. ShareFrontEnd is particu-

larly useful when developing code that needs to use ShareKernel, even if the code does not

need the extra functionality of ShareFrontEnd. This is because Mathematica error messages

generated by computations triggered by Java events get lost with ShareKernel. The messages

will show up in the front end if front end sharing is turned on.

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

turned off. You can force front end sharing to be shut down immediately by calling

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

J/Link User Guide 335

When you are done with the need to share the front end, call UnshareFrontEnd. Like the

ShareKernel/UnshareKernel pair of functions, ShareFrontEnd returns a token that you should

pass to UnshareFrontEnd to unregister the request for front end sharing. Only when all calls to

ShareFrontEnd have been unregistered by calls to UnshareFrontEnd will front end sharing be

UnshareFrontEnd with no arguments, but although this is convenient when you are developing

code of your own, it should never be called in code that is intended for others to use. Just

because your code is done with front end sharing does not mean that your users are done with

it. Instead, save the token returned from ShareFrontEnd and pass it to UnshareFrontEnd.

ShareFrontEnd requires that the kernel be shared, so it calls ShareKernel internally. Calling

UnshareKernel with no arguments forces kernel sharing to stop immediately, and this turns off

front end sharing as well. Thus, you can use UnshareKernel@D as a quick shortcut to immedi-

ately shut down all sharing.

An example of some simple palette-type buttons that use ShareFrontEnd is presented in

"Sharing the Front End: Palette-Type Buttons".

An important use for ShareFrontEnd is to allow a popup Java user interface to display graphics

containing typeset expressions. When the kernel is asked to produce a graphic containing

typeset expressions, say a plot with PlotLabel -> Sqrt@zD, it crunches out PostScript for the

plot itself, but when it comes time to produce PostScript for the typeset label, it cannot do this.

Instead, it sends a special request back to the front end, asking it for the PostScript representa-

tion. Because dealing with typeset expressions is a skill possessed only by the notebook front

end, when any other interface is driving the kernel, the interface must be careful to instruct the

kernel to not attempt to typeset anything in a graphic (ShareKernel handles this automatically

for you). This works fine, but you lose the ability to get pictures of typeset expressions in your

Java interface.

ShareFrontEnd does two things to overcome this limitation: it fools the kernel into thinking

that the Java runtime is a notebook front end and, therefore, capable of handling the special

“convert to PostScript” requests; and it gives Java the ability to make good on this promise by

forwarding the requests to the front end. "GraphicsDlg: Graphics and Typeset Output in a

Window" describes an example of a Java dialog box that displays typeset expressions using

ShareFrontEnd.

336 J/Link User Guide

Summary of Modal and Modeless Operation

The previous discussion of modal and modeless operation, ShareKernel, and ShareFrontEnd

may have seemed complex. In fact, the principles and uses of these techniques are simple. This

will become clear upon seeing some more examples. Many of the example programs in

"Example Programs" use ShareKernel or ShareFrontEnd. The important thing is to understand

the capabilities they provide so that you can begin to see how to use them in your own

programs.

If you want your user-interface element (typically a window) to tie up the kernel until the user

dismisses it, then you will use the setModal/DoModal/EndModal suite. Because the internal

workings of the modal state are simpler than the modeless state, you should use this style

unless your program needs the features of a modeless window. You will always want to use this

type of window if you need to return a result to a running Mathematica program, such as if you

are creating a dialog box into which the user will enter values and then click OK. "A Simple

Modal Input Dialog" gives an example of this type of dialog.

If you want your window to remain visible and active while the user returns to work in the front

end, you must run your window in a “modeless” fashion. This requires calling ShareKernel to

put the kernel into a state where it is simultaneously receptive to input arriving from either the

notebook front end or Java. At this point the kernel is dividing its attention between two indepen-

dent and essentially equivalent front ends. One drawback (or feature, depending on your point

of view) of this state is that all side effect output like Print output, messages, or plots trig-

gered by Java code is sent to Java instead of the front end (and the standard Java

MathListener classes just throw all this output away). Thus, you could not create a button that

prints something in a notebook window when it is clicked, like you can with a palette button in

the front end. If you want to give your Java program the ability to interact with the front end

the way that notebook and palette windows themselves can, you must instead use

ShareFrontEnd, which you can think of as an extension to ShareKernel.

A very common mistake is to create a Java window, wire up a MathListener class that calls

back to Mathematica on some event, and then trigger the event before you have called

DoModal or ShareKernel. This will cause the Java user interface thread to hang. A symptom

that the UI thread is hanging is that the controls in your Java window are visually unresponsive

(for example, buttons will not appear to depress when you click them). If you do inadvertently

get into this state, you can just call ShareKernel to allow the queued-up call(s) from Java to

proceed.

“Manual” Interfaces: The ServiceJava Function

J/Link User Guide 337

“Manual” Interfaces: The ServiceJava Function

In addition to the modal and modeless types of interfaces just discussed, there is another type

that in some ways is intermediate. Consider the following scenario. You want to create a Mathe-

matica program that puts up a Java window and displays something in it that changes over the

course of the program. So far, this sounds like an example of a “non-interactive” interface,

which was discussed way back at the beginning of this section, the progress bar example being

a classic case. Now, though, you want to add some interactivity to the window, meaning that

you want user actions in the window to trigger calls into Mathematica. Keeping with the

progress bar example, say you want to add an Abort button that stops the program. How do

you manage to get the kernel’s attention directed at the Java side so that Java events can

trigger calls to Mathematica?

The modal type of interface will not work, because in the modal state the kernel is executing

DoModal, not your computation~the kernel is doing nothing but paying attention to Java. The

modeless type of interface will not work either, because the modeless technique causes the

kernel to pay attention to the front end and Java alternately, letting each perform a full computa-

tion in turn. There is no sharing within the context of a single computation.

The obvious answer is the there needs to be a function that allows the kernel to service a single

computation arriving from Java, if there is one waiting. That function is ServiceJava. Calling

ServiceJava in a program will cause the kernel to accept one request for a computation from

the Java side. It performs the computation and then returns control to your program. If there is

no request waiting, ServiceJava returns immediately.

Here is some pseudocode showing the structure of a program that displays a progress bar with

an Abort button and periodically calls ServiceJava to handle user clicks on that button, stop-

ping the computation if requested.

338 J/Link User Guide

... create progress bar ...
progressBar@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener", "(userCancelled =
True)&"]

];
JavaShow[progressBar];
While[i < 100 && !userCancelled,

... compute one iteration ...

... update progress bar ...
ServiceJava[];
i++

];
... destroy progress bar ...

You might recognize that ServiceJava is closely related to DoModal, and although this is not

the actual implementation, you can think of DoModal as being written in terms of ServiceJava

as follows:

(* Not the actual implementation of DoModal, but the principle is correct.
*)
DoModal[] :=

While[!endModal,
ServiceJava[]

]

Seen in this way, DoModal is a special case of the use of ServiceJava, where Mathematica is

doing nothing but servicing requests from Java. Sometimes you need something else to be

going on in Mathematica, but still need to be able to handle requests arriving from Java. That is

when you call ServiceJava yourself. Like DoModal, there is no shifting of $ParentLink when

ServiceJava is called. Thus, side-effect output like graphics, messages, and Print output

triggered by Java computations appear in the notebook, just as if they were hard-coded into

the Mathematica program that called ServiceJava.

The BouncingBalls example program presented in "BouncingBalls: Drawing in a Window" uses

ServiceJava.

Using a GUI Builder

The preceding discussion on modal and modeless interfaces featured examples that were cre-

ated entirely with Mathematica code. For complex user interfaces, you might find it more conve-

nient to lay out your windows and wire up events with a drag-and-drop GUI builder like the

MathListener classes from Java

code just as they are used from Mathematica code. Alternatively, you could write your own Java

code that calls into Mathematica at appropriate times. See the section "Writing Your Own Instal-

lable Java Classes" for information about how to write Java code that calls back into Mathemat-

ica. "GraphicsDlg: Graphics and Typeset Output in a Window" gives a simple example of a

dialog box that was created with a GUI builder and is then invoked and controlled by Mathemat-

ica code.

J/Link User Guide 339

The preceding discussion on modal and modeless interfaces featured examples that were cre-

ated entirely with Mathematica code. For complex user interfaces, you might find it more conve-

ones present in most commercial Java development environments. You are free to write as

much or as little of the code for your interface in native Java. If you want events in your GUI to

trigger calls into Mathematica, then you can use any of the MathListener classes from Java

code just as they are used from Mathematica code. Alternatively, you could write your own Java

code that calls into Mathematica at appropriate times. See the section "Writing Your Own Instal-

lable Java Classes" for information about how to write Java code that calls back into Mathemat-

ica. "GraphicsDlg: Graphics and Typeset Output in a Window" gives a simple example of a

dialog box that was created with a GUI builder and is then invoked and controlled by Mathemat-

ica code.

Drawing and Displaying Mathematica Images in Java Windows

The MathCanvas and MathGraphicsJPanel classes

J/Link makes it easy to draw into Java windows from Mathematica, and also display Mathemat-

ica graphics and typeset expressions. The MathCanvas and MathGraphicsJPanel classes are

provided for this purpose. You can use these classes in pure Java programs that use the Mathe-

matica kernel, as described in "Writing Java Programs that use Mathematica", but it is also

handy for Java windows that are created and scripted from Mathematica. Note that the

MathGraphicsJPanel class is new in J/Link 2.0.

MathCanvas is a subclass of the AWT Canvas class, and MathGraphicsJPanel is a subclass of

the Swing JPanel class. In terms of their special added Mathematica graphics capabilities, they

are identical. These classes provide two ways to supply the image to be displayed. The first way

is by providing a fragment of Mathematica code whose output will be displayed. The output can

either be a graphics object, or a nongraphics expression that will be typeset. This makes it

trivial to display Mathematica graphics or typeset expressions in a Java window. The second

way to control the display is to provide a Java Image object that will be painted. This Image will

typically be created by Mathematica code, such as code that creates a bitmap out of raw Mathe-

matica data, or code that draws something using calls to Java’s graphics routines.

Because MathCanvas and MathGraphicsJPanel are Java classes and can be used from Java

programs as well as Mathematica programs, there is full JavaDoc format documentation for

them in the JLink/Documentation/JavaDoc directory. You can browse that documentation for

more details.

340 J/Link User Guide

Showing Mathematica Graphics and Typeset Expressions

Here is a simple example of displaying a window that shows a Mathematica plot. This example

uses MathCanvas, but the relevant parts would look the same if you used

MathGraphicsJPanel. You will be using this window throughout this section, so do not close it if

you are evaluating the code as you read this section.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
mathCanvas@setMathCommand["Plot[x, {x,0,1}]"];
JavaShow[frame];

As you can see, it is as simple as calling the canvas’ setMathCommand() method. The argu-

ment to setMathCommand() is a string giving the code to be evaluated. This code must return

a graphics expression, not just cause one to be produced. For example,

setMathCommand@"Plot@x,8x,0,1<D;"D will not work because the trailing semicolon causes the

expression to evaluate to Null. The image is automatically rendered at the correct size, and

centered in the canvas if the actual image size produced by Mathematica does not completely

fill the requested area (as is often the case with typeset output).

Calling setMathCommand() again resets the image.

mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

If the plotting command depends on variables in your Mathematica session, you can call recomÖ

pute() to cause the graphic to be recomputed and rendered. For example, this displays a slow

animation in the window.

n = 1.0;
mathCanvas@setMathCommand["Plot3D[Sin[n x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];
Do[n += 0.1; mathCanvas@recompute[]; Pause[1], {10}]

Because you supply the expression as a string, remember to escape any quote marks inside the

string with a backslash.

mathCanvas@setMathCommand["Plot[x, {x,0,1}, PlotLabel->\"This is a plot\"]"];

A MathCanvas can also display typeset expressions. The default behavior of MathCanvas is to

expect that the expression supplied in setMathCommand() will evaluate to a graphics object,

which should be rendered. To get it to instead typeset the return value, call the setImÖ

ageType() method, supplying the constant TYPESET.

mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setMathCommand["Integrate[Sqrt[x] Sqrt[1+x], x]"];

To switch back to displaying graphics, call mathCanvasüsetImageType@MathCanvas`GRAPHICSD.

The default format for typeset output is StandardForm. To switch to TraditionalForm, use the

setUsesTraditionalForm() method. You call recompute() here because changing the out-

put type does not force the image to be redrawn.

J/Link User Guide 341

To switch back to displaying graphics, call mathCanvasüsetImageType@MathCanvas`GRAPHICSD.

The default format for typeset output is StandardForm. To switch to TraditionalForm, use the

setUsesTraditionalForm() method. You call recompute() here because changing the out-

put type does not force the image to be redrawn.

mathCanvas@setUsesTraditionalForm[True];
mathCanvas@recompute[];

Graphics are rendered using Mathematica’s Display command, which is fast and does not

require the notebook front end to be running. For higher quality, though, particularly for 3D

graphics, an alternative method is available that uses the front end for rendering services. You

can switch to using this technique by calling the setUsesFE() method.

(* First, change back to graphics mode from typeset mode. *)
mathCanvas@setImageType[MathCanvas`GRAPHICS];

mathCanvas@setUsesFE[True];
mathCanvas@setMathCommand["Plot3D[Sin[x Cos[y]], {x,0,2Pi}, {y,0,2Pi}]"];

You might want to compare the resulting plot with setUsesFE@TrueD and setUsesFE@FalseD.

An important point about using the front end for rendering is that when the computation to

produce the image is performed, the front end must be in a state where it is receptive to

requests for services from the kernel. There are two times when this is the case: either a cell in

the front end is currently evaluating (as will be the case when you are calling setMathComÖ

mand() or recompute() from a Mathematica program), or ShareFrontEnd has been called.

Looking at it from the other direction, the only time it will not work is if ShareKernel is in use,

but not ShareFrontEnd, and the computation is triggered by an event in Java. The rule is that if

you want to involve the front end for rendering, and you want to call setMathCommand() or

recompute() from Java in response to a user action in a modeless interface, you need to use

ShareFrontEnd; ShareKernel is not enough. Modal and modeless interfaces and

ShareFrontEnd are discussed in the section "Creating Windows and Other User Interface

Elements".

Drawing Using Java’s Graphics Functions

You saw that the setMathCommand() method of the MathCanvas and MathGraphicsJPanel

classes lets you supply a Mathematica expression whose output is to be displayed. You can also

use a MathCanvas or MathGraphicsJPanel to display a Java Image by using the setImage()

method instead of setMathCommand().

Now look at a simple example of drawing into a Java window from Mathematica. You will con-

tinue to use the same window and MathCanvas you have been working with. If this program

used a MathGraphicsJPanel instead, the portions of the code related to drawing would look

exactly the same. To draw into the MathCanvas, you create an offscreen image of the same

dimensions, get a graphics context for drawing onto it, draw, and then use the setImage()

method of MathCanvas to cause the offscreen image to be displayed. Drawing into an offscreen

image and then blitting it to the screen is a standard technique for flicker-free drawing.

342 J/Link User Guide

Now look at a simple example of drawing into a Java window from Mathematica. You will con-

tinue to use the same window and MathCanvas you have been working with. If this program

used a MathGraphicsJPanel instead, the portions of the code related to drawing would look

exactly the same. To draw into the MathCanvas, you create an offscreen image of the same

dimensions, get a graphics context for drawing onto it, draw, and then use the setImage()

method of MathCanvas to cause the offscreen image to be displayed. Drawing into an offscreen

image and then blitting it to the screen is a standard technique for flicker-free drawing.

offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,
 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
g@drawRect[100, 100, 200, 150];
mathCanvas@setImage[offscreen];

Programs that want to draw manually into a Java window from Mathematica will generally all

have this same structure. It takes just a few more lines of code to turn our MathCanvas into a

scribble program. Here is the complete program (this code is also provided as the file Scrib-

ble.nb in the JLink/Examples/Part1 directory).

Scribble[] :=
JavaBlock[

Module[{frame, mathCanvas, offscreen, g, mml, pts},
frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[400, 400];
frame@layout[];
JavaShow[frame];
(* Now create the offscreen image and the graphics context
 for drawing into it.
*)
offscreen = mathCanvas@createImage[mathCanvas@getSize[]@width,

 mathCanvas@getSize[]@height];
g = offscreen@getGraphics[];
(* Now create the MathMouseMotionListener that will do the drawing
 and set its mouseDragged event handler callback.
*)
mml = JavaNew["com.wolfram.jlink.MathMouseMotionListener"];
mml@setHandler["mouseDragged", "mouseDraggedFunc"];
mathCanvas@addMouseMotionListener[mml];
mouseDraggedFunc[_, x_, y_, _] :=

(g@drawLine[pts[[-1, 1]], pts[[-1, 2]], x, y];
 mathCanvas@setImage[offscreen];
 mathCanvas@repaintNow[];
 AppendTo[pts, {x,y}];);

(* Initialize the pts list and run the program modally. *)
pts = {{0,0}};
frame@setModal[];
DoModal[];
pts

]
]

Run the program, then click and drag the mouse to draw in the window. Close the window to

end the program and the Scribble function will return the list of points drawn.

J/Link User Guide 343

Run the program, then click and drag the mouse to draw in the window. Close the window to

end the program and the Scribble function will return the list of points drawn.

pts = Scribble[];

If you examine the list of points returned, you will see that they are based on Java’s coordinate

system, which has (0, 0) in the upper left. If you want to plot the points in a Mathematica

graphic, you have to invert the y values. This is demonstrated in the Scribble.nb example

notebook.

There is one new MathCanvas method demonstrated in this program, repaintNow(). In a

computation-intensive program like this, where events are being fired on the user interface

thread very quickly, and the handlers for these events take a nontrivial amount of time to

execute, Java will sometimes delay repainting the window. The drawing becomes very chunky,

with no visual effect for a while and then suddenly all the lines drawn in the last few seconds

will appear. Even calling the standard repaint() method after every new point will not ensure

that the window is updated in a timely manner. To solve this problem, the repaintNow()

method is provided, which forces an immediate redraw of the canvas. If your program relies on

smooth visual feedback from user events that fire rapidly, you should call repaintNow() also,

even if it does not seem necessary on your system. There can be very significant differences

between different platforms and different Java runtimes on the responsiveness of the screen

updating mechanism.

The ability to draw in response to events in a MathCanvas or MathGraphicsJPanel opens up

the possibility for some impressive interactive demonstrations, tutorials, and so on. Two of the

larger example programs provided draw into a MathCanvas from Mathematica: BouncingBalls

(in the section "BouncingBalls: Drawing in a Window") and Spirograph (in the section

"Spirograph").

Bitmaps

You have seen how to draw into a MathCanvas or MathGraphicsJPanel by using an offscreen

image. Another type of image that you can create with Mathematica code and display using

setImage() is a bitmap. In this example you will create an indexed-color bitmap out of Mathe-

matica data and display it. You will use an 8-bit color table, meaning that every data point in

the image will be treated as an index into a 256-element list of colors. You could use a larger

color table if desired.

You closed the frame window in the Scribble example, so you must first create a new frame

and canvas for the bitmap.

344 J/Link User Guide

You closed the frame window in the Scribble example, so you must first create a new frame

and canvas for the bitmap.

frame = JavaNew["com.wolfram.jlink.MathFrame"];
frame@setLayout[JavaNew["java.awt.BorderLayout"]];
mathCanvas = JavaNew["com.wolfram.jlink.MathCanvas"];
frame@add["Center", mathCanvas];
frame@setSize[450, 450];
frame@layout[];
JavaShow[frame];

Here is the color table. It is an array of {r,g,b} triplets, with each color component being in the

range 0..255. In this example, colors with low indices are mostly blue, and ones with high

indices are mostly red.

colors = Table[{i, 0, 255 - i}, {i, 0, 255}];

The data is a 400×400 matrix of integers in the range 0..255 (because they are indices into the

256-element color table). In a real application, this data might be read from a file or computed

in some more sophisticated way. If the range of numbers in the data did not span 0..255, you

would have to scale it into that range, or a larger range if you wanted to use a deeper color

table.

data = Table[Round[255 (0.5 + Sin[x]Cos[y]/2)],
{x, Pi/100., 4Pi, Pi/100.}, {y, Pi/100., 4Pi, Pi/100.}];

Here you create the Java objects that represent the color model and bitmap. You can read the

standard Java documentation on these classes for more information.

colorModel = JavaNew["java.awt.image.IndexColorModel", 8, 256,
Flatten[colors], 0, False];

bitmap = JavaNew["java.awt.image.MemoryImageSource", 400, 400,
 colorModel, Flatten[data], 0, 400];

Now create an Image out of the bitmap and display it.

image = frame@getToolkit[]@createImage[bitmap];
mathCanvas@setImage[image];

The Java Console Window

J/Link provides a convenient means to display the Java “console” window. Any output written to

the standard System.out and System.err streams will be directed to this window. If you are

calling Java code that writes diagnostic information to System.out or System.err, then you

can see this output while your program runs. Like most J/Link features, the console window can

be used easily from either Mathematica or Java programs (its use from Java code is described

in "Writing Java Programs that use Mathematica"). To use it from Mathematica, call the

ShowJavaConsole function.

J/Link User Guide 345

ShowJavaConsole@D display the Java console window and begin capturing
output written to System.out and System.err

ShowJavaConsole@"stream"D display the Java console window and begin capturing
output written to the specified stream, which should be
"stdout" for System.out or "stderr" for System.err

ShowJavaConsoleANoneE stop all capturing of output

Showing the console window.

ShowJavaConsole[]

«JavaObject@com.wolfram.jlink.ui.ConsoleWindowD »

Capturing of output only begins when you call ShowJavaConsole, so when the window first

appears it will not have any content that might have been previously written to System.out or

System.err. You will also note that the J/Link console window displays version information

about the J/Link Java component and the Java runtime itself. Calling ShowJavaConsole when

the window is already open will cause it to come to the foreground.

To demonstrate, you can write some output from Mathematica. If you executed the

ShowJavaConsole@D given earlier, then you will see “Hello from Java” printed in the window.

LoadJavaClass["java.lang.System"];
System`out@println["Hello from Java"]

Although it is convenient to demonstrate writing to the window using Mathematica code like

this, this is typically done from Java code instead. Actually, there is one common circumstance

where it is quite useful to use the Java console window for diagnostic output written from Mathe-

matica code. This is the case where you have a “modeless” Java user interface (as described in

the section "Creating Windows and Other User Interface Elements") and you have not used the

ShareFrontEnd function. Recall that in this circumstance, output from calls to Print in Mathe-

matica will not appear in the notebook front end. If you write to System.out instead, as in the

example, then you will always be able to see the output. You might want to do this in other

circumstances just to avoid cluttering up your notebook with debugging output.

Using JavaBeans

JavaBeans is Java’s component architecture. Beans are reusable components that can be manip-

ulated visually in a builder tool. At the code level, a Bean is essentially just a normal Java class

that conforms to a particular design pattern with respect to how its methods are named and

how it supports events and persistence.

JavaBeans has not been mentioned up to this point because there really is not anything special

to be said. Beans are just Java classes, and they can be used and called like any other classes.

It is probably the case that many Java classes you use from Mathematica will be Beans,

whether they advertise themselves to be or not. This is especially true for user interface

components.

346 J/Link User Guide

JavaBeans has not been mentioned up to this point because there really is not anything special

to be said. Beans are just Java classes, and they can be used and called like any other classes.

It is probably the case that many Java classes you use from Mathematica will be Beans,

whether they advertise themselves to be or not. This is especially true for user interface

components.

Beans are typically designed to be used in a visual builder tool, where the programmer is not

writing code and calling named methods directly. Instead, a Bean exposes “properties” to the

builder tool, which can be examined and set using a property editor window. In a typical simple

example, a Bean might have methods named setColor and getColor, and by virtue of this it

would be said to have a property named “color”. A property editor would have a line showing

the name “color” and an edit field where you could type in a color. It might even have a fancy

editor that puts up a color picker window to let you visually select a desired color.

For the purposes of a visual builder tool or other type of automated manipulation, beans try to

hide the low-level details of actual method names. If you want to call methods in a Bean class

from Mathematica code, you call them by name in the usual way, without any consideration of

the “Bean-ness” of the class.

Note that it would be quite possible to add Mathematica functions to J/Link that would provide

explicit support for Bean properties. For example, a function BeanSetProperty could be writ-

ten that would take a Bean object, a property name as a string, and the value to set the prop-

erty to. Then, instead of writing what is currently required:

beanüsetColor@Color`greenD

you could write:

BeanSetProperty@bean, "color", Color`greenD

The BeanSetProperty function lets you write code that manipulates nebulous things called

properties instead of calling specific methods in the Bean class. If you do not see any particular

advantage in the BeanSetProperty style, then you know why there is no special Bean support

along these lines in J/Link. The advantages of working with properties versus directly calling

methods accrues only when you are using a builder tool and not actually writing code by hand.

J/Link User Guide 347

If you are interested, here are simplistic implementations of BeanSetProperty and BeanGetÖ

Property:

BeanSetProperty[bean_?JavaObjectQ, propName_String, val_] :=
Module[{methName = "set" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[val]]

]

BeanGetProperty[bean_?JavaObjectQ, propName_String] :=
Module[{methName = "get" <> ToUpperCase[StringTake[propName, 1]] <>

StringDrop[propName, 1]},
Through[(bean @@ ToHeldExpression[methName])[]]

]

To make use of events that a JavaBean fires, you can use one of the standard MathListener

classes, as described in the section "Creating Windows and Other User Interface Elements".

JavaBeans often fire PropertyChangeEvents, and you can arrange for Mathematica code to be

executed in response to these events by using a MathPropertyChangeListener or a

MathVetoableChangeListener.

Hosting Applets

J/Link gives you the ability to run most applets in their own window directly from Mathematica.

Although this may seem immensely useful, given the vast number of applets that have been

created, most applets do not export any useful public methods. They are generally standalone

pieces of functionality, and thus they benefit little from the scriptability that J/Link provides.

Still, there are many applets that may be useful to launch from a Mathematica program.

Note that this section is not about writing applets that use the Mathematica kernel. That topic is

covered in "Writing Applets".

AppletViewer@"applet class"D runs the named applet class in its own window. The default
width and height are 300 pixels

AppletViewer@"applet class",paramsD runs the named applet class in its own window, supplying
it the given parameters, which is a list of "name=value"
specifications like those used in an HTML page

Running applets.

J/Link includes an AppletViewer function for running applets. This function takes care of all the

steps of creating the applet instance, providing a frame window to hold it, and starting it run-

ning. The first argument to AppletViewer is the fully qualified name of the applet class. The

348 J/Link User Guide

J/Link includes an AppletViewer function for running applets. This function takes care of all the

steps of creating the applet instance, providing a frame window to hold it, and starting it run-

second argument is an optional list of parameters in “name=value” format, corresponding to

the parameters supplied to an applet in an HTML page that hosts it. For example, if the

<applet> tag in a web page that hosts an applet looks like this:

 <applet code="SomeApplet.class" width=400 height=300>
<param name=foo value=bar>

 </applet>

you would call AppletViewer like this:

AppletViewer@"SomeApplet", 8"width=400", "height=300", "foo=bar"<D;

You will typically supply at least “WIDTH=” and “HEIGHT=” specifications to control the width

and height of the applet window. If you do not specify these parameters, the default width and

height are 300 pixels.

An excellent example of an applet that is useful to Mathematica users is LiveGraphics3D, writ-

ten by Martin Kraus. LiveGraphics3D is an interactive viewer for Mathematica 3D graphics. It

gives you the ability to rotate and zoom images, view them in stereo, and more. If you want to

try the following example, you will need to get the LiveGraphics3D materials, available from

http://wwwvis.informatik.uni-stuttgart.de/~kraus/LiveGraphics3D/. Make sure you put live.Ö

jar onto your CLASSPATH before trying that example, or use the AddToClassPath feature of

J/Link to make it available.

First, load the PolyhedronOperations ` package and create the graphic to display. The LiveG-

raphics3D documentation gives a more general-purpose function for turning a Mathematica

graphics expression into appropriate input for the LiveGraphics3D applet but, for many exam-

ples, using ToString, InputForm, and N is sufficient.

<< PolyhedronOperations`
dodec = ToString@InputForm@

N@Graphics3D@Stellate@Normal@PolyhedronData@"Dodecahedron", "Faces"DDDDDDD;

You specify the image to be displayed via the INPUT parameter, which takes a string giving the

InputForm representation of the graphic.

AppletViewer@"Live", 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

The Live applet has a number of keyboard and mouse controls for manipulating the image. You

can read about them in the LiveGraphics3D documentation. Try Alt+S to switch into a stereo

view.

When you are done with an applet, just click the window’s close box.

If the applet needs to refer to other files, you should be aware that AppletViewer sets the

document base to be the directory specified by the "user.dir" Java system property. This will

normally be Mathematica’s current directory (given by Directory[]) at the time that

InstallJava was called.

J/Link User Guide 349

If the applet needs to refer to other files, you should be aware that AppletViewer sets the

document base to be the directory specified by the "user.dir" Java system property. This will

normally be Mathematica’s current directory (given by Directory[]) at the time that

InstallJava was called.

Most applets expose no public methods useful for controlling from Mathematica, so there is

nothing to do but start them up with AppletViewer and then let the user close the window

when they are finished. The Live applet is an exception~it provides a full set of methods to

allow the view point, spin, and so on to be modified by Mathematica code. These methods are

in the Live class, so to call them you need an instance of the Live class. The way you used

AppletViewer earlier does not give us any instance of the applet class. The construction and

destruction of the applet instance was hidden within the internals of AppletViewer. You can

also call AppletViewer with an instance of an applet class instead of just the class name. This

lets you manage the lifetime of the applet instance.

applet = JavaNew@"Live"D;
AppletViewer@applet, 8"INPUT=" <> dodec, "WIDTH=400", "HEIGHT=400"<D;

Now you can call methods on the applet instance. See the LiveGraphics3D documentation for

the full set of methods. This scriptability opens up lots of possibilities, such as programming

“flyby” views of objects, or creating buttons that jump the image into certain orientations or

spins.

appletüsetMagnification@0.5D;

When you are done, you call ReleaseJavaObject to release the applet instance. This can be

done before or after the applet window is closed.

ReleaseJavaObject@appletD

Periodical Tasks

The section "Creating Windows and Other User Interface Elements" described the ShareKernel

function and how it allows Java and the notebook front end to share the kernel’s attention. A

side benefit of this functionality is that it becomes easy to provide a means whereby users can

schedule arbitrary Mathematica programs to run at periodical intervals during a session. Say

you have a source that provides continuously updated financial data and you want to have

some variables in Mathematica constantly reflect the current values. You have written a pro-

gram that goes out and reads from the source to get the information, but you have to manually

run this program all the time while you are working. A better solution would be to set up a

periodical task that pulls the data from the source and sets the variables every 15 seconds.

350 J/Link User Guide

AddPeriodical@expr,secsD cause expr to be evaluated every secs seconds while the
kernel is idle

RemovePeriodical@idD stop scheduling of the periodical represented by id

Periodical@idD return a list 8HoldForm@exprD, secs< showing the expres-
sion and time interval associated with the periodical
represented by id

Periodicals@D return a list of the id numbers of all currently scheduled
periodicals

SetPeriodicalInterval@idD reset the periodical interval for the periodical task repre-
sented by id

$ThisPeriodical holds the id of the currently executing periodical task

Controlling periodical tasks.

You can set up such a task with the AddPeriodical function.

id = AddPeriodical@updateFinancialData@D, 15D;

AddPeriodical returns an integer ID number that you must use to identify the task~for exam-

ple, when it comes time to stop scheduling it by calling RemovePeriodical. AddPeriodical

relies on kernel sharing, so it calls ShareKernel if it has not already been called. There is no

limit on the number of periodicals that can be established.

After scheduling that task, updateFinancialData[] will be executed every 15 seconds while

the kernel is idle. Note that periodical tasks are run only when the kernel is not busy~they do

not interrupt other evaluations. If the kernel is in the middle of another evaluation when the

allotted 15 seconds elapses, the task will wait to be executed until immediately after the compu-

tation finishes. Any such delayed periodicals are guaranteed to be executed as soon as the

kernel finishes with the current computation. They cannot be indefinitely delayed if the user is

busy with numerous computations in the front end or in Java. The converse to these facts is

also true~if a periodical is executing when the user evaluates a cell in the front end, the evalua-

tion will not be able to start until all periodicals finish, but it is guaranteed to start immediately

thereafter.

To remove a single periodical task, use RemovePeriodical, supplying the ID number of the

periodical as the argument. To remove all periodical tasks, use

RemovePeriodical@Periodicals@DD. Periodical tasks are all removed if you call

UnshareKernel@D with no arguments, which turns off all kernel sharing. You would then need

to use AddPeriodical again to reestablish periodical tasks.

You can reset the scheduling interval for a periodical task by calling SetPeriodicalInterval,

which is new in J/Link 2.0. This line makes the financial data periodical execute every 10 sec-

onds, instead of 15 as shown earlier.

J/Link User Guide 351

You can reset the scheduling interval for a periodical task by calling SetPeriodicalInterval,

which is new in J/Link 2.0. This line makes the financial data periodical execute every 10 sec-

onds, instead of 15 as shown earlier.

SetPeriodicalInterval[id, 10]

Sometimes you might want to change the interval for a periodical task or remove it entirely

from within the code of the task itself. $ThisPeriodical is a variable that holds the ID of the

currently executing periodical task. It will only have a value during the execution of a periodical

task. You use $ThisPeriodical from within your periodical task to obtain its ID so that you can

call RemovePeriodical or SetPeriodicalInterval.

Periodical tasks do not necessarily have anything to do with Java, nor do they need to use Java.

Technically, Java does not even need to be running. However, because Java is used by the

internals of ShareKernel to yield the CPU, if Java is not running then setting a periodical task

will cause the kernel to keep the CPU continuously busy. Periodical task functionality is included

in J/Link because it is a simple extension to ShareKernel, and it does have some nice uses in

association with Java.

A final note about periodical tasks is that they do not cause output to appear in the front end.

Look at this attempt.

id = AddPeriodical@Print@"hello"D, 10D;

The programmer expects to get hello printed in his notebook every 10 seconds, but nothing

happens. During the time when periodicals are executed, $ParentLink is not assigned to the

front end (or Java). Results or side effects like Print output, messages, or graphics vanish into

the ether.

Before proceeding, clean up the periodical tasks you created.

RemovePeriodical@Periodicals@DD;

Some Special Number Classes

Preamble

There is a set of special number-related classes in Java that J/Link maps to their Mathematica

numeric representation. Like strings and arrays, objects of these number classes have an

important property: although they are objects in Java, they have a meaningful “by value”

352 J/Link User Guide

There is a set of special number-related classes in Java that J/Link maps to their Mathematica

numeric representation. Like strings and arrays, objects of these number classes have an

representation in Mathematica, so it is convenient for J/Link to automatically convert them to

numbers as they are returned from Java to Mathematica, and back to objects as they are sent

from Mathematica to Java.

These classes are the so-called “wrapper” classes that represent primitive types (Byte, InteÖ

ger, Long, Double, and so on), BigDecimal and BigInteger, and any class used to represent

complex numbers. The treatment of these classes is described in this section.

The “Wrapper” Classes: Integer, Float, Boolean, and Others

Java has a set of so-called “wrapper” classes that represent primitive types. These classes are

Byte, Character, Short, Integer, Long, Float, Double, and Boolean. The wrapper classes

hold single values of their respective primitive types, and are necessary to allow everything in

Java to be represented as a subclass of Object. This lets various utility methods and data struc-

tures that deal with objects handle primitive types in a straightforward way. It is also necessary

for Java’s reflection capabilities.

If you have a Java method that returns one of these objects, it will arrive in Mathematica as an

integer (for Byte, Character, Short, Integer, and Long), real number (for Float and DouÖ

ble), or the symbols True or False (for Boolean). Likewise, a Java method that takes one of

these objects as an argument can be called from Mathematica with the appropriate raw Mathe-

matica value. The same rules hold true for arrays of these objects, which are mapped to lists of

values.

In the unlikely event that you want to defeat these automatic “pass by value” semantics, you

can use the ReturnAsJavaObject and JavaObjectToExpression functions, discussed in

"References and Values".

Complex Numbers

You have seen that Java number types (e.g., byte, int, double) are returned to Mathematica

as integers and reals, and integers and reals are converted to the appropriate types when sent

as arguments to Java. What about complex numbers? It would be nice to have a Java class

representing complex numbers that mapped directly to Mathematica’s Complex type, so that

automatic conversions would occur as they were passed back and forth between Mathematica

and Java. Java does not have a standard class for complex numbers, so J/Link lets you name

the class that you want to participate in this mapping.

J/Link User Guide 353

SetComplexClass@"classname"D set the class to be mapped to complex numbers in
Mathematica

GetComplexClass@D return the class currently used for complex numbers

Setting the class for complex numbers.

You can use any class you like as long as it has the following properties:

1. A public constructor that takes two doubles (the real and imaginary parts, in that order)

2. Methods that return the real and imaginary parts, having the following signatures:

public double re();
public double im();

Say that you are doing some computations with complex numbers in Java, and you want to

interact with these methods from Mathematica. You like to use the complex number class

available from netlib. This class is named ORG.netlib.math.complex.Complex and is avail-

able at http://www.netlib.org/java/. You use the SetComplexClass function to specify the

name of the class:

SetComplexClass@"ORG.netlib.math.complex.Complex"D;

Now any method or field that takes an argument of type ORG.netlib.math.complex.Complex

will accept a Mathematica complex number, and any object of class ORG.netlib.math.complexÖ

.Complex returned from a method or field will automatically be converted into a complex

number in Mathematica. The same holds true for arrays of complex numbers.

Note that you must call SetComplexClass before you load any classes that use complex num-

bers, not merely before you call any methods of the class.

BigInteger and BigDecimal

Java has standard classes for arbitrary-precision floating-point numbers and arbitrary-precision

integers. These classes are java.math.BigDecimal and java.math.BigInteger, respec-

tively. Because Mathematica effortlessly handles such “bignums,” J/Link maps BigInteger to

Mathematica integers and BigDecimal to Mathematica reals. What this means is that any Java

method or field that takes, say, a BigInteger can be called from Mathematica by passing an

integer. Likewise, any method or field that returns a BigDecimal will have the value returned

to Mathematica as a real number.

354 J/Link User Guide

Ragged Arrays

Java allows arrays that are deeper than one dimension to be “ragged,” or non-rectangular,

meaning that they do not have the same length at every position at the same level. For exam-

ple, {{1,2,3},{4,5},{6,7,8}} is a ragged two-dimensional array. J/Link allows you to send

and receive ragged arrays, but it is not the default behavior. The reason for this is simply

efficiency~the MathLink library has functions that allow very efficient transfer of rectangular

arrays of most primitive types (e.g., byte, int, double, and so on), whereas ragged ones have

to be picked apart tediously with a series of individual calls to get every piece. This all happens

deep inside J/Link, so you do not have to be concerned with the mechanics of array passing,

but it has a huge impact on speed. To maximize speed, J/Link assumes that arrays of primitive

types are rectangular. You can toggle back and forth between allowing and rejecting ragged

arrays by calling the AllowRaggedArrays function with either True or False.

AllowRaggedArraysATrueE allow ragged (i.e., nonrectangular) arrays to be sent to
Java

Ragged array support.

With AllowRaggedArrays@TrueD, sending of arrays deeper than one dimension is greatly

slowed. Here is an example of array behavior and how it is affected. Assume the class Testing

has the following method, which takes a two-dimensional array of ints and simply returns it:

public static int[][] intArrayIdentity(int[][] a) {
return a;

}

Look what happens if you call it with a ragged array.

LoadClass@"Testing"D;
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D

Java::argxs1 :
The static method Testing`intArrayIdentity was called with an incorrect

number or type of arguments. The argument was 881,2,3<,84,5<<.
$Failed

An error occurs because the Mathematica definition for the Testing`intArrayIdentity()

function requires that its argument be a two-dimensional rectangular array of integers. The call

never even gets out of Mathematica.

Here you turn on support for ragged arrays, and the call works. This requires modifications in

both the Mathematica-side type checking on method arguments and the Java-side array-read-

ing routines.

J/Link User Guide 355

Here you turn on support for ragged arrays, and the call works. This requires modifications in

both the Mathematica-side type checking on method arguments and the Java-side array-read-

ing routines.

AllowRaggedArrays@TrueD
Testing`intArrayIdentity@881, 2, 3<, 84, 5<<D
881, 2, 3<, 84, 5<<

It is a good idea to turn off support for ragged arrays as soon as you no longer need it, since it

slows arrays down so much.

AllowRaggedArrays@FalseD

Implementing a Java Interface with Mathematica Code

You have seen how J/Link lets you write programs that use existing Java classes. You have also

seen how you can wire up the behavior of a Java user interface via callbacks to Mathematica via

the MathListener classes. You can think of any of these MathListener classes, such as

MathActionListener, as a class that “proxies” its behavior to arbitrary user-defined Mathemat-

ica code. It is as if you have a Java class that has its implementation written in Mathematica.

This functionality is extremely useful because it greatly extends the set of programs you can

write purely in Mathematica, without resorting to writing our own Java classes.

ImplementJavaInterface@"interfaceName",8"methName"->"mathFunc",…<D

create an instance of a Java class that implements the
named Java interface by calling back to Mathematica
according to the given mappings of Java methods to
Mathematica functions

Implementing a Java interface entirely in Mathematica.

It would be nice to be able to take this behavior and generalize it, so that you could take any

Java interface and implement its methods via callbacks to Mathematica functions, and do it all

without having to write any Java code. The ImplementJavaInterface function, new in J/Link

2.0, lets you do precisely that. This function is easier to understand with a concrete example.

Say you are writing a Mathematica program that uses J/Link to display a Java window with a

Swing menu, and you want to script the behavior of the menu in Mathematica. The Swing

JMenu class fires events to registered MenuListeners, so what you need is a class that imple-

ments MenuListener by calling into Mathematica. A quick glance at the section on MathListen-

MathMenuListener class for you. You could choose to

write your own implementation of such a class, and in fact this would be very easy, even trivial,

since you would make it a subclass of MathListener and inherit virtually all the functionality

you would need. For the sake of this discussion, assume that you choose not to do that, per-

haps because you do not know Java or you do not want to deal with all the extra steps required

for that solution. Instead, you can use ImplementJavaInterface to create such a Java class

with a single line of Mathematica code:

356 J/Link User Guide

It would be nice to be able to take this behavior and generalize it, so that you could take any

Java interface and implement its methods via callbacks to Mathematica functions, and do it all

without having to write any Java code. The ImplementJavaInterface function, new in J/Link

2.0, lets you do precisely that. This function is easier to understand with a concrete example.

Say you are writing a Mathematica program that uses J/Link to display a Java window with a

Swing menu, and you want to script the behavior of the menu in Mathematica. The Swing

JMenu class fires events to registered MenuListeners, so what you need is a class that imple-

ers reveals that J/Link does not provide a MathMenuListener class for you. You could choose to

write your own implementation of such a class, and in fact this would be very easy, even trivial,

since you would make it a subclass of MathListener and inherit virtually all the functionality

you would need. For the sake of this discussion, assume that you choose not to do that, per-

haps because you do not know Java or you do not want to deal with all the extra steps required

for that solution. Instead, you can use ImplementJavaInterface to create such a Java class

with a single line of Mathematica code:

mathMenuListener =
ImplementJavaInterface["javax.swing.event.MenuListener",

{"menuSelected" -> "menuSelectedFunc",
 "menuCanceled" -> "menuCanceledFunc",
 "menuDeselected" -> "menuDeselectedFunc"}

];
myMenu@addMenuListener[mathMenuListener];

...

(* Later, define the three Mathematica event-handler functions: *)
menuSelectedFunc[menuEvent_] := ...

menuCanceledFunc[menuEvent_] := ...

menuDeselectedFunc[menuEvent_] := ...

The first argument to ImplementJavaInterface is the Java interface or list of interfaces you

want to implement. The second argument is a list of rules that associate the name of a Java

method from one of the interfaces with the name of a Mathematica function to call to imple-

ment that method. The Mathematica function will be called with the same arguments that the

Java method takes. What ImplementJavaInterface returns is a Java object of a newly created

class that implements the named interface(s). You use it just like any JavaObject obtained by

calling JavaNew or through any other means. It is just as if you had written your own Java class

that implemented the named interface by calling the associated Mathematica functions, and

then called JavaNew to create an instance of that class.

It is not necessary to associate every method in the interface with a Mathematica function. Any

Java methods you leave out of your list of mappings will be given a default Java implementation

that returns null. If this is not an appropriate return value for the method (e.g., if the method

returns an int) and the method gets called at some point an exception will be thrown. Gener-

ally, this exception will propagate to the top of the Java call stack and be ignored, but it is

recommended that you implement all the methods in the Java interface.

The ImplementJavaInterface function makes use of the “dynamic proxy” capability introduced

in Java 1.3. It will not work in Java versions earlier than 1.3. All Java runtimes bundled with

Mathematica 4.2 and later are at Version 1.3 or later. If you have Mathematica 4.0 or 4.1, the

ImplementJavaInterface function is another reason to make sure you have an up-to-date

Java runtime for your system.

J/Link User Guide 357

The ImplementJavaInterface function makes use of the “dynamic proxy” capability introduced

in Java 1.3. It will not work in Java versions earlier than 1.3. All Java runtimes bundled with

Mathematica 4.2 and later are at Version 1.3 or later. If you have Mathematica 4.0 or 4.1, the

ImplementJavaInterface function is another reason to make sure you have an up-to-date

Java runtime for your system.

At first glance, the ImplementJavaInterface function might seem to give us the capability to

write arbitrary Java classes in the Mathematica language, and to some extent that is true. One

important thing you cannot do is extend, or subclass, an existing Java class. You also cannot

add methods that do not exist in the interface you are implementing. Event-handler classes are

a good example of the type of classes for which this facility is useful. You might think that the

MathListener classes are rendered obsolete by ImplementJavaInterface, and it is true that

their functionality can be duplicated with it. The MathListener classes are still useful for Java

versions earlier than 1.3, but most importantly they are useful for writing pure Java programs

that call Mathematica. Using a class implemented in Mathematica via ImplementJavaInterface

in a Java program that calls Mathematica would be possible, but quite cumbersome. If you want

a dual-purpose class that is as easy to use from Mathematica as from Java, you should write

your own subclass of MathListener. One poor reason for choosing to use

ImplementJavaInterface instead of writing a custom Java class is that you are worried about

complicating your application by requiring it to include its own Java classes in addition to Mathe-

matica code. As explained in "Deploying Applications That Use J/Link", it is extremely easy to

include supporting Java classes in your application. Your users will not require any extra installa-

tion steps nor will they need to modify the Java class path.

Writing Your Own Installable Java Classes

Preamble

The previous sections have shown how to load and use existing Java classes. This gives Mathe-

matica programmers immediate access to the entire universe of Java classes. Sometimes,

though, existing Java classes are not enough, and you need to write your own.

J/Link essentially obliterates the boundary between Java and Mathematica, letting you pass

expressions of any type back and forth and use Java objects in Mathematica in a meaningful

way. This means that when writing your own Java classes to call from Mathematica, you usually

do not need to do anything special. You write the code in exactly the same way as you would if

358 J/Link User Guide

J/Link essentially obliterates the boundary between Java and Mathematica, letting you pass

expressions of any type back and forth and use Java objects in Mathematica in a meaningful

way. This means that when writing your own Java classes to call from Mathematica, you usually

you wanted to use the class only from Java. (One important exception to this rule is that

because it is comparatively slow to call into Java from Mathematica, you might need to design

your classes in a way that will not require an excessive number of method calls from Mathemat-

ica to get the job done. This issue is discussed in detail in "Overhead of Calls to Java".)

In some cases, you might want to exert more direct control over the interaction with Mathemat-

ica. For example, you might want a method to return something different to Mathematica than

what the method itself returns. Or you might want the method to not just return something,

but also trigger a side effect in Mathematica~for example, printing something or displaying a

message under certain conditions. You can even have an extended “dialog” with Mathematica

before your method returns, perhaps invoking multiple computations in Mathematica and read-

ing their results. You might also want to write a class of the MathListener type that calls into

Mathematica as the result of some event triggered in Java.

If you do not want to do any of these things, then you can happily ignore this section. The

whole point of J/Link is to make unnecessary the need to be concerned about the interaction

with Mathematica through MathLink. Most programmers who want to write Java classes to be

used from Mathematica will just write Java classes, period, without thinking about Mathematica

or J/Link. Those programmers who want more control, or want to know more about the possibili-

ties available with J/Link, read on.

The issues discussed in this section require some knowledge of MathLink programming (or,

more precisely, J/Link programming using the Java methods that use MathLink), which is dis-

cussed in detail in "Writing Java Programs that use Mathematica". The fact that you meet some

of these methods and issues here is a consequence of the false but useful dichotomy, noted in

the Introduction, between using MathLink to write “installable” functions to be called from

Mathematica and using MathLink to write front ends for Mathematica. MathLink is always used

in the same way, it is just that virtually all of it is handled for you in the installable case. This

section is about how to go beyond this default behavior, so you will be making direct J/Link

calls to read and write to the link. Thus you will encounter concepts, classes, and methods in

this section that are not explained until "Writing Java Programs That Use Mathematica".

Some of the discussion in this section will compare and contrast the process of writing an

installable program in C. This is designed to help experienced MathLink programmers unders-

tand how J/Link works, and also to convince you that J/Link is a superior solution to using C,

C++, or FORTRAN.

J/Link User Guide 359

Installable Functions~The Old Way

Writing a so-called “installable” or “template” program in C requires a number of steps. If you

have a file foo.c that contains a function foo, to call it from Mathematica you must first write a

template (.tm) file that contains a template entry describing how you want foo to be called

from Mathematica, what types of arguments it takes, and what it returns. You then pass this

.tm file through a tool called mprep, which writes a file of C code that manages some, possibly

all, of the MathLink-related aspects of the program. You also need to write a simple main rou-

tine, which is always the same. You then compile all of these files, resulting in an executable for

just one platform.

Two big drawbacks of this method are that you need to write a template entry for every single

function you want to call (imagine doing that for a whole function library), and the compiled

program is not portable to other platforms. The biggest drawback, however, is that there is no

automatic support for anything but the simplest types. If you want to do something as basic as

returning a list of integers, you need to write the MathLink calls to do that yourself. And forget

about object-oriented programming, as there is no way to pass “objects” to Mathematica.

Installable Functions in Java

J/Link makes all those steps go away. As you have seen all throughout this tutorial, you can

literally call any method in any class, without any preparation.

It is only in cases where the default behavior of calling a method and receiving its result is not

enough that you need to write specialty Java code. The rest of this section will examine some of

the special techniques that can be used.

Setting Up Definitions in Mathematica When Your Class Is Loaded

Template entries in .tm files required by installable MathLink programs written in C have two

features that might appear to be lost in J/Link. The first feature is the ability to specify arbitrary

Mathematica code to be evaluated when the program is first “installed.” This is done by using

the :Evaluate: line in a template entry. The second feature is the ability to specify the way in

which the function is to be called from Mathematica, including the name of the Mathematica

function that maps to the C function, its argument sequence, how those arguments are mapped

to the ones provided to the C function, and possibly some processing to be done on them

before they are sent. This information is specified in the :Pattern: and :Arguments: lines of

a template entry.

These two features are related to each other, because they both rely on the ability to specify

Mathematica code that is loaded when an external program is installed. J/Link gives you this

ability and more, through two special methods called onLoadClass() and onUnloadClass().

When a class is loaded into Mathematica, either directly through LoadJavaClass or indirectly by

calling JavaNew, it is examined to see if it has a method with the following signature:

360 J/Link User Guide

These two features are related to each other, because they both rely on the ability to specify

Mathematica code that is loaded when an external program is installed. J/Link gives you this

ability and more, through two special methods called onLoadClass() and onUnloadClass().

When a class is loaded into Mathematica, either directly through LoadJavaClass or indirectly by

calling JavaNew, it is examined to see if it has a method with the following signature:

public static void onLoadClass(KernelLink ml);

If such a method is present, it will be called after all the method and field definitions for the

class are set up in Mathematica. Because a class can only be loaded once in a Java session, this

method will only be called once in the lifetime of a single Java runtime, although it may be

called more than once in the lifetime of a single Mathematica kernel (because the user can

repeatedly launch and quit the Java runtime). The KernelLink that is provided as an argument

to this method is of course the link back to Mathematica.

A typical use for this feature would be to define the text for an error message issued by one of

the methods in the class. Here is an example:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyClass::sun = \"The foo() method can only be called on

Sunday.\"");
ml.discardAnswer();

}

Note that this method throws MathLinkException. Your onLoadClass() method can throw

any exceptions you like (a MathLinkException would be typical). This will not interfere with

the matching of the expected signature for onLoadClass(). If an exception is thrown during

onLoadClass, it will be handled gracefully, meaning that the normal operation of

LoadJavaClass will not be affected. The only exception to this rule is if your code throws an

exception while it is interacting with the link to the kernel, and more specifically, in the period

between the time that it sends a computation to the kernel and the time that it begins to read

the result. In other words, exceptions you throw will not break the LoadJavaClass mechanism,

but it is up to you to make sure that you do not screw up the link’s state by starting something

you do not finish.

Another reason to use onLoadClass() would be if you wanted to create a Mathematica func-

tion for users to call that “wrapped” a static method call, providing it with a preferred name or

argument sequence. If you have a class named MyClass with the method public static

J/Link User Guide 361

Another reason to use onLoadClass() would be if you wanted to create a Mathematica func-

tion for users to call that “wrapped” a static method call, providing it with a preferred name or

void myMethod(double[a]), the definition that will be automatically created for it in Mathemat-

ica will require that its argument be a list of real numbers or integers. Say you want to add a

definition named MyMethod, having the traditional Mathematica capitalization, and you also

want this function automatically to use N on its argument so that it will work for anything that

will evaluate to a list of numbers, such as {Pi, 2Pi, 3Pi}. Here is how you would set up such

an additional definition:

public static void onLoadClass(KernelLink ml) throwsMathLinkException {
ml.evaluate("MyMethod[x_] := myMethod[N[x]]");
ml.discardAnswer();

}

In other words, if you are not happy with the interface to the class that will automatically be

created in Mathematica, you can use onLoadClass() to set up the desired definitions without

changing the Java interface.

The Mathematica context that will be current when onLoadClass() is called is the context in

which all the class’ static methods and fields are defined. That is why in the preceding example

the definition was made for MyMethod and not MyClass`MyMethod. This is important since you

cannot know the correct context in your Java code because it is determined by the user via the

AllowShortContext option to LoadJavaClass.

It is generally not a good idea to use onLoadClass() to send a lot of code to Mathematica.

This will make the behavior of your class hard for people to understand because the Mathemat-

ica code is hidden, and also inflexible since you would have to recompile it to make changes to

the embedded Mathematica code. If you have a lot of code that needs to accompany a Java

class, it is better to put that code into a Mathematica package file that you or your users load.

That is, rather than having users load a class that dumps a lot of code into Mathematica, you

should have your users load a Mathematica package that loads your class. This will provide the

greatest flexibility for future changes and maintenance.

Finally, there is no reason why your onLoadClass() method needs to restrict itself to making

J/Link calls. You could perform operations specific to the Java side, for example, writing some

debugging information to the Java console window, opening a file for writing, or whatever else

you desire.

Similar to the handling of the onLoadClass() method, the onUnloadClass() method is called

when a class is unloaded. Every loaded class is unloaded automatically by UninstallJava right

before it quits the Java runtime. You can use onUnloadClass() to remove definitions created

by onLoadClass(), or perform any other clean-up you would like. The signature of onUnloadÖ

Class() must be the following, although it can throw any exceptions:

362 J/Link User Guide

Similar to the handling of the onLoadClass() method, the onUnloadClass() method is called

when a class is unloaded. Every loaded class is unloaded automatically by UninstallJava right

before it quits the Java runtime. You can use onUnloadClass() to remove definitions created

by onLoadClass(), or perform any other clean-up you would like. The signature of onUnloadÖ

Class() must be the following, although it can throw any exceptions:

public static void onUnloadClass(KernelLink ml);

Note that the meaning of loading and unloading classes here refers to being loaded by Mathe-

matica with LoadJavaClass either directly or indirectly. It does not refer to the loading and

unloading of classes internally by the Java runtime. Class loading by the Java runtime occurs

when the class is first used, which may have occurred long before LoadJavaClass was called

from Mathematica.

Manually Returning a Result to Mathematica

The default behavior of a Java method called from Mathematica is to return to Mathematica

exactly what the method itself returns. There are times, however, when you want to return

something else. For example, you might want to return an integer in some circumstances, and

a symbol in others. Or you might want a method to return one thing when it is being called

from Java, and return something different to Mathematica. In these cases, you will need to

manually send a result to Mathematica before the method returns.

Say you are writing a file-reading class that you want to call from Mathematica. Because you

want almost the identical behavior to the standard class java.io.FileInputStream, your

class will be a subclass of it. The only changes you want to make are to provide some more

Mathematica-like behavior. One example is that you want the read method to return not -1

when it reaches the end of the file, but rather the symbol EndOfFile, which is what Mathemati-

ca’s built-in file-reading functions return.

J/Link User Guide 363

import java.io.*;
import com.wolfram.jlink.*;

public class MyFileReader extends FileInputStream {

<<constructors, other methods deleted>>

public int read() {

int i = super.read();
if (i == -1) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.beginManual();
try {

link.putSymbol("EndOfFile");
} catch (MathLinkException e) {}

}
}
return i;

}
}

If the file has reached the end, i will be -1, and you want to manually return something to

Mathematica. The first thing you need to do is get a KernelLink object that can be used to

communicate with Mathematica. This is obtained by calling the static method

StdLink.getLink(). If you have written installable MathLink programs in C, you will recognize

the choice of names here. A C program has a global variable named stdlink that holds the link

back to Mathematica. J/Link has a StdLink class that has a few methods related to this link

object.

The first thing you do is check whether getLink() returns null. It will never be null if the

method is being called from Mathematica, so you can use this test to determine whether the

method is being called from Mathematica or as part of a normal Java program. In this way, you

can have a method that can be used from Java in the usual way when a Mathematica kernel is

nowhere in sight. The getLink() call works no matter if the method is called directly from

Mathematica, or indirectly as part of a chain of methods triggered by a call from Mathematica.

Once you have verified that a link back to the kernel exists, the first thing to do is inform J/Link

that you will be sending the result back to Mathematica yourself, so it should not try automati-

cally to send the method’s return value. This is accomplished by calling the beginManual()

method on the KernelLink object.

364 J/Link User Guide

Once you have verified that a link back to the kernel exists, the first thing to do is inform J/Link

that you will be sending the result back to Mathematica yourself, so it should not try automati-

cally to send the method’s return value. This is accomplished by calling the beginManual()

method on the KernelLink object.

You must call beginManual() before you send any part of a result back to Mathematica. If you

fail to do this, the link will get out of sync and the next J/Link call you make from Mathematica

will probably hang. It is safe to call beginManual() more than once, so you do not have to

worry that your method might be called from another method that has already called

beginManual().

Returning to the example program, the next thing after beginManual() is to make the

required “put”-type calls to send the result back to Mathematica (in this case, just a single

putSymbol()). As always, these calls can throw a MathLinkException, so you need to wrap

them in a try/catch block. The catch handler is empty, since there really is not anything to

do in the unlikely event of a MathLink error. The internal J/Link code that wraps all method calls

will handle the cleanup and recovery from any MathLink error that might have occurred calling

putSymbol(). You do not need to do anything for MathLinkExceptions that occur while you

are putting a result manually. The method call will return $Failed to Mathematica

automatically.

Installable programs written in C can also manually send results back. This is indicated by using

the Manual keyword in the function’s template entry. Thus for C programs the manual/auto-

matic decision must be made at compile time, whereas with J/Link it is a runtime switch. You

can have it both ways with J/Link~a normal automatic return in some circumstances and a

manual return in others, as the preceding example demonstrates.

Requesting Evaluations by Mathematica

So far, you have seen only cases where a Java method has a very simple interaction with

Mathematica. It is called and returns a result, either automatically or manually. There are many

circumstances, however, where you might want to have a more complex interaction with Mathe-

matica. You might want a message to appear in Mathematica, or some Print output, or you

might want to have Mathematica evaluate something and return the answer to you. This is a

completely separate issue from what you want to return to Mathematica at the end of your

method~you can request evaluations from the body of a method whether it returns its final

result manually or not.

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into Java, the Java code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a Java method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the Java side. Thus you would

expect to encounter essentially all the same issues that are discussed in "Writing Java Programs

That Use Mathematica", and you would need to understand the full J/Link Java-side API.

J/Link User Guide 365

In some sense, when you perform this type of interaction with Mathematica you are turning the

tables on Mathematica, reversing the “master” and “slave” roles for a moment. When Mathemat-

ica calls into Java, the Java code is acting as the slave, performing a computation and returning

control to Mathematica. In the middle of a Java method, however, you can call back into Mathe-

matica, temporarily turning it into a computational server for the Java side. Thus you would

expect to encounter essentially all the same issues that are discussed in "Writing Java Programs

That Use Mathematica", and you would need to understand the full J/Link Java-side API.

The full treatment of the MathLink and KernelLink interfaces is presented in "Writing Java

Programs That Use Mathematica". This section discusses a few special methods in KernelLink

that are specifically for use by “installed” methods. You have already seen one, the beginManÖ

ual() method. Now you will treat the message(), print(), and evaluate() methods.

The task of issuing a Mathematica message from a Java method and triggering some Print

output are so commonly done that the KernelLink interface has special methods for these

operations. The method message() performs all the steps of issuing a Mathematica message. It

comes in two signatures:

public void message(String symtag, String arg);
public void message(String symtag, String[] args);

The first form is for when you just have a single string argument to be slotted into the message

text, and the second form is for if the message text needs two or more arguments. You can

pass null as the second argument if the message text needs no arguments.

The print() method performs all the steps necessary to invoke Mathematica’s Print function:

public void print(String s);

Here is an example method that uses both. Assume that the following messages are defined in

Mathematica (this could be from loading a package or during this class’ onLoadClass()

method):

Foo::arg = "The `1` argument to foo must be greater than or equal to 0."

366 J/Link User Guide

Here is the Java code:

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

link.print("inside foo");
if (x < 0)

link.message("Foo::arg", "first");
if (y < 0)

link.message("Foo::arg", "second");
}
return Math.sqrt(x) * Math.sqrt(y);

}

Note that print() and message() send the required code to Mathematica and also read the

result from the link (it will always be the symbol Null). They do not throw MathLinkExcepÖ

tion so you do not have to wrap them in try/catch blocks.

Here is what happens when you call foo():

LoadJavaClass@"MyClass", StaticsVisible Ø TrueD;
foo@1.0, -2.0D

inside foo

Foo::arg : The second argument to foomust be greater than or equal to 0.
Indeterminate

Note that you automatically get Indeterminate returned to Mathematica when a floating-point

result from Java is NaN (“Not-a-Number”).

The methods print() and message() are convenience functions for two special cases of the

more general notion of sending intermediate evaluations to Mathematica before your method

returns a result. The general means of doing this is to wrap whatever you send to Mathematica

in EvaluatePacket, which is a signal to the kernel that this is not the final result, but rather

something that it should evaluate and send the result back to Java. You can explicitly send the

EvaluatePacket head, or you can use one of the methods in KernelLink that use

EvaluatePacket for you. These methods are:

void evaluate HString sL throws MathLinkException;
String evaluateToInputForm HString s, int pageWidthL;
String evaluateToOutputForm HString s, int pageWidthL;
byte@D evaluateToImage HString s, int width, int heightL;
byte@D evaluateToTypeset HString s, int pageWidth, boolean useStdFormL;

These methods are discussed in "Writing Java Programs that use Mathematica" (actually, they

also come in several more flavors with other argument sequences). Here is a simple example:

J/Link User Guide 367

These methods are discussed in "Writing Java Programs that use Mathematica" (actually, they

also come in several more flavors with other argument sequences). Here is a simple example:

public static double foo(double x, double y) {

KernelLink link = StdLink.getLink();
if (link != null) {

try {
link.evaluate("2+2");
// Wait for, and then read, the answer.
link.waitForAnswer();
int sum1 = link.getInteger();

// evaluateToOutputForm makes the result come back as a
// string formatted in OutputForm, and all in one step
// (no waitForAnswer call needed).
String s = link.evaluateToOutputForm("3+3");
int sum2 = Integer.parseInt(s);

// If you want, put the whole evaluation piece by piece,
// including the EvaluatePacket head.
link.putFunction("EvaluatePacket");
link.putFunction("Plus", 2);
link.put(4);
link.put(4);
link.waitForAnswer();
int sum3 = link.getInteger();

} catch (MathLinkException e) {
// The only type of mathlink error we are likely to get
// is from a "get" function when what we are trying to
// get is not the type of expression that is waiting. We
// just clear the error state, throw away the packet we
// are reading, and let the method finish normally.
link.clearError();
link.newPacket();

}
}
return Math.sqrt(x) * Math.sqrt(y);

}

368 J/Link User Guide

Throwing Exceptions

Any exceptions that your method throws will be handled gracefully by J/Link, resulting in the

printing of a message in Mathematica describing the exception. This was discussed in "How

Exceptions Are Handled". If you are sending computations to Mathematica as described in the

previous section, you need to make sure that an exception does not interrupt your code unex-

pectedly. In other words, if you start a transaction with Mathematica, make sure you complete

it or you will leave the link out of sync and future calls to Java will probably hang.

Making a Method Interruptible

If you are writing a method that may take a while to complete, you should consider making it

interruptible from Mathematica. In C MathLink programs, a global variable named MLAbort is

provided for this purpose. In J/Link programs, you call the wasInterrupted() method in the

KernelLink interface:

public boolean wasInterrupted();

Here is an example method that performs a long computation, checking every 100 iterations

whether the user tried to abort it (using the Interrupt Evaluation or Abort Evaluation com-

mands in the Evaluation menu).

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted())

return 0; // Return value will not be seen by Mathematica.
}
return 42;

}

This method returns 0 if it detects an attempt by the user to abort, but this value will never be

seen by Mathematica. This is because J/Link causes a method or constructor call that is aborted

to return Abort[], whether or not you detect the abort in your code. Therefore, if you detect

an abort and want to honor the user’s request, just return some value right away. When J/Link

returns Abort@D, the user’s entire computation is aborted, just as if the Abort@D was embed-

ded in Mathematica code. This means that you do not have to be concerned with any details of

propagating the abort back to Mathematica~all you have to do is return prematurely if you

detect an abort request, and the rest is handled for you.

J/Link makes no distinction between an interrupt request and an abort request; they each

cause wasInterrupted() to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (Alt+. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(Alt+, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a Java method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect

for Java methods, which is to cause wasInterrupted() to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the

Java runtime to quit. If you call a Java method that is not interruptible, killing the Java runtime

in this way is the only way to make the method call terminate (you can also kill the Java run-

time using process control features of your operating system).

J/Link User Guide 369

J/Link makes no distinction between an interrupt request and an abort request; they each

cause wasInterrupted() to return true. Recall that Mathematica has separate commands for

interrupting and aborting computations. The “Abort” operation (Alt+. on Windows) causes the

entire computation to end as soon as possible and return $Aborted. The “Interrupt” operation

(Alt+, on Windows) brings up a dialog box with further choices. If this Interrupt dialog box is

triggered when a Java method is executing, it has a different set of buttons than when normal

Mathematica code is executing. One of the options is Send Abort to Linked Program and

another is Send Interrupt to Linked Program. Both of these choices have the same effect

for Java methods, which is to cause wasInterrupted() to return true and the call to return

Abort@D when it completes. The third button is Kill Linked Program, which will cause the

Java runtime to quit. If you call a Java method that is not interruptible, killing the Java runtime

in this way is the only way to make the method call terminate (you can also kill the Java run-

time using process control features of your operating system).

Sometimes you might want a Java method to detect an abort and do something other than

cause the entire Mathematica computation to abort. For example, you might want a loop to

stop and return its results up to that point. Note that this is not generally recommended. Users

expect a program to abort and return $Aborted when they issue an abort request. In some

cases, however, especially if the code is not intended for use by a large community, you might

find it useful to use an abort as a “message” to communicate some information to your Java

code instead of just having the computation aborted. This idea is similar to Mathematica’s

CheckAbort function, which allows you to detect an abort and absorb it so that it does not

propagate further and abort the entire computation. To “absorb” the abort in your Java code so

that J/Link does not return Abort@D, simply call the clearInterrupt() method:

public void clearInterrupt();

370 J/Link User Guide

Here is an example:

public int foo() {

KernelLink link = StdLink.getLink();
for (int i = 0; i < 10000, i++) {

... perform one step ...
if (i % 100 == 0 && link.wasInterrupted()) {

link.clearInterrupt();
return resultSoFar; // This is the value that will be returned

to Mathematica
}

}
...
return 42;

}

Writing Your Own Event Handler Code

"Handling Events with Mathematica Code: The “MathListener” Classes" introduced the topic of

triggering calls into Mathematica as a response to events fired in Java, such as clicking a but-

ton. A set of classes derived from MathListener is provided by J/Link for this purpose. You are

not required to use the provided MathListener classes, of course. You can write your own

classes to handle events and put calls into Mathematica directly into their code. All the event

handler classes in J/Link are derived from the abstract base class MathListener, which takes

care of all the details of interacting with Mathematica, and also provides the setHandler()

methods that you use to associate events with Mathematica code. Users who want to write their

own MathListener-style classes (for example, for one of the Swing-specific event listener

interfaces, which J/Link does not provide) are strongly encouraged to make their classes sub-

classes of MathListener to inherit all this functionality. You should examine the source code for

MathListener, and also one of the concrete classes derived from it (MathActionListener is

probably the simplest one) to see how it is written. You can use this as a starting point for your

own implementation.

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

entirely in Mathematica code. ImplementJavaInterface is described in more detail in

"Implementing a Java Interface with Mathematica Code", but a common use for it would be to

MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

J/Link User Guide 371

There is a new feature of J/Link 2.0 that should be pointed out in this context. This is the

ImplementJavaInterface Mathematica function, which lets you implement any Java interface

entirely in Mathematica code. ImplementJavaInterface is described in more detail in

create event-handler classes that implement a “Listener”-type interface for which J/Link does

not have a built-in MathListener. This is discussed in more detail in "Implementing a Java

Interface with Mathematica Code", and if you choose this technique, then you do not have to

worry about any of the issues in this section because they are handled for you.

If you are going to write a Java class, and you choose not to derive your class from

MathListener, there are two very important rules that must be adhered to when writing event-

handler code that calls into Mathematica. To be more precise, these rules apply whenever you

are writing code that needs to call into Mathematica at a point when Mathematica is not cur-

rently calling into Java. That may sound confusing, but it is really very simple. "Requesting

Evaluations by Mathematica" showed how to request evaluations by Mathematica from within a

Java method. In this case, Mathematica has called your Java method, and while Mathematica is

waiting for the result, your code calls back to perform some computation. This works fine as

described in that earlier section, because at the point the code calls back into Mathematica,

Mathematica is in the middle of a call to Java. This is a true “callback”~Mathematica has called

Java, and during the handling of this call, Java calls back to Mathematica. In contrast, consider

the case where some Java code executes in response to a button click. When the button click

event fires, Mathematica is probably not in the middle of a call to Java.

Special considerations are necessary in the latter case because there are two threads in the

Java runtime that are using MathLink. The first one is created and used by the internals of

J/Link to handle standard calls into Java originating in Mathematica as described throughout

this tutorial. The second one is the Java user interface thread (sometimes called the AWT

thread), which is the one on which your event handler code will be called. You need to make

sure that your use of the link back to the kernel on the user interface thread does not interfere

with J/Link’s internal thread.

372 J/Link User Guide

The following code shows an idealized version of the actionPerformed() method in the

MathActionListener class. The actual code in MathActionListener is different, because this

work is farmed out to the parent class, MathListener, but this example shows the correct flow

of operations. This is the code that is executed when the associated object’s action occurs (like

a button click).

public void actionPerformed(ActionEvent e) {
KernelLink ml = StdLink.getLink();
StdLink.requestTransaction();
synchronized (ml) {

try {
// Send the code to perform the user's requested operation.
ml.putFunction("EvaluatePacket", 1);
... code to put rest of expression to evaluate goes here ...
ml.endPacket();
ml.discardAnswer();

} catch (MathLinkException exc) {
...

}
}

}

The first rule to note in this code is that the complete transaction with Mathematica, which

includes sending the code to evaluate and completely reading the result, is wrapped in a synÖ

chronized(ml) block. This is how you ensure that the user interface thread has exclusive

access to the link for the entire transaction. The second rule is that the synchronized(ml)

statement must be preceded by a call to StdLink.requestTransaction(). This call will block

until the kernel is at a point where it is ready to accommodate evaluations originating in Java.

The call must occur before the synchronized(ml) block begins, and once you call it you must

make sure that you send something to Mathematica. In other words, when requestTransacÖ

tion() returns, the kernel will be blocking in an attempt to read from the Java link. The kernel

will be stuck in this state until you send it something, so you must protect against a Java excep-

tion being thrown after you call requestTransaction() but before you send anything. Typi-

cally you will do this simply by calling requestTransaction() immediately before the synchro Ö

nized(ml) block begins and you start sending something.

J/Link User Guide 373

It was just said that StdLink.requestTransaction() will block until the kernel is ready to

accept evaluations originating in Java. To be specific, it will block until one of the following

conditions occurs:

† Mathematica executes DoModal

† Mathematica executes ServiceJava

† Kernel sharing has been turned on via ShareKernel or ShareFrontEnd, and the kernel is
not busy with another computation

† Mathematica is already in the middle of a call to Java

† Java is not being used from Mathematica (InstallJava has not been called)

These conditions should make sense given the discussion about creating user interface ele-

ments in the section "Creating Windows and Other User Interface Elements". DoModal,

ShareKernel, and ServiceJava are the three ways in which you direct the kernel’s attention to

the Java link so that it can detect incoming request for computations.

If you make the common mistake of inadvertently triggering a call to Mathematica from Java

before you have called DoModal or ShareKernel, the Java user interface thread will hang. This

can be easily remedied by calling DoModal, ShareKernel, or ServiceJava afterwards

(ServiceJava may need to be called more than once, if more than one event callback is

queued up).

If the rule about when it is necessary to use StdLink.requestTransaction() and synchroÖ

nized(ml) is confusing, you will be happy to learn that it is fine to use these constructs in any

code that calls Mathematica. In code that does not need them, they are pointless, but harm-

less, and will not cause the calling thread to block. If you are writing a Java method that needs

to call Mathematica and there is any chance that it might be called from the user interface

thread, add the StdLink.requestTransaction() and synchronized(ml).

Debugging Your Java Classes

You can use your favorite debugger to debug Java code that is called from Mathematica. The

only issue is that you typically have to launch a Java program inside the debugger to do this.

The Java program that you need to launch is the one that is normally launched for you when

you call InstallJava. The class that contains J/Link’s main() method is com.wolfram.jlinkÖ

.Install. Thus, the command line to start J/Link that is executed internally by InstallJava is

typically

374 J/Link User Guide

java -classpath /path/to/JLink.jar com.wolfram.jlink.Install

There may be additions or modifications to this depending on the options to InstallJava, and

also some extra MathLink-specific arguments are tacked on at the end. To use a debugger, you

just have to launch Java with the appropriate command-line arguments that allow you to estab-

lish the link to Mathematica manually.

If you use a development environment that has an integrated debugger, then the debugger

probably has a setting for the main class to use (the class whose main() method will be

invoked) and a setting for command-line arguments. For example, in WebGain Visual Café, you

can set these values in the Project panel of the Project/Options dialog. Set the main class to

be com.wolfram.jlink.Install, and the arguments to be something like this:

(On Windows:)
-linkmode listen -linkname foo

(On Unix/Linux:)
-linkmode listen -linkprotocol tcp -linkname 1234

Then start the debugging session. You should see the J/Link copyright notice printed and then

Java will wait for Mathematica to connect. To do this, go to your Mathematica session, make

sure the JLink.m package has been read in, and execute:

(* On Windows: *)
ReinstallJava[LinkConnect["foo"]]

(* On Unix: *)
ReinstallJava[LinkConnect["1234", LinkProtocol -> "TCP"]]

This works because ReinstallJava can take a LinkObject as its argument, in which case it

will not try to launch Java itself. This allows you to manually establish the MathLink connection

between Java and Mathematica, then feed that link to ReinstallJava and let it do the rest of

the work of preparing the Mathematica and Java sides for interacting with each other.

J/Link User Guide 375

If you like to use a command-line debugger like jdb, you can do the following:

C:\>jdb
Initializing jdb...
> run com.wolfram.jlink.Install -linkmode listen -linkname foo
running ...
main[1] J/Link (tm)
Copyright (C) 1999-2000, Wolfram Research, Inc. All Rights Reserved.
www.wolfram.com
Version 1.1

Current thread "main" died. Execution continuing...
>

The message about the main thread dying is normal. Now jdb is ready for commands. First,

though, you have to execute in your Mathematica session the LinkConnect and ReinstallJava

lines shown earlier. This example was for Windows, so Unix users will have to adjust the run

line to reflect the proper arguments:

> run com.wolfram.jlink.Install -linkmode listen -linkprotocol tcp
-linkname 1234

Deploying Applications that use J/Link

This section discusses some issues relevant to developers who are creating add-ons for Mathe-

matica that use J/Link.

J/Link uses its own custom class loader that allows it to find classes in a set of locations beyond

the startup class path. As described in "Dynamically Modifying the Class Path", users can grow

this set of extra locations to search for classes by calling the AddToClassPath function. One of

the motivations for having a custom class loader was to make it easy for application developers

to distribute applications that have parts of their implementation in Java. If you structure your

application directory properly, your users will be able to install it simply by copying it into any

standard location for Mathematica applications. J/Link will be able to find your Java classes

immediately, without users having to perform any classpath-related operations or even restart

Java.

If your Mathematica application uses J/Link and includes its own Java components, you should

create a Java subdirectory in your application directory. You can place any jar files that your

application needs into this Java subdirectory. If you have loose class files (not bundled into a

$SystemID of the platform on which it is

installed. Here is an example directory structure for an application that uses J/Link:

376 J/Link User Guide

If your Mathematica application uses J/Link and includes its own Java components, you should

create a Java subdirectory in your application directory. You can place any jar files that your

jar file), they should go into an appropriately nested subdirectory of the Java directory.

“Appropriately nested” means that if your class is in the Java package com.somecompany.math,

then its class file goes into the com/somecompany/math subdirectory of the Java directory. If

the class is not in any package, it can go directly into the Java directory. J/Link can also find

native libraries and resources your application needs. Native libraries must be in a subdirectory

of your Java/Libraries directory that is named after the $SystemID of the platform on which it is

installed. Here is an example directory structure for an application that uses J/Link:

MyApp/
... other files and directories used by the application ...
Java/

MyAppClasses.jar
MyImage.gif
Libraries/

Windows/
MyNativeLibrary.dll

PowerMac/
MyNativeLibrary

Darwin/
libMyNativeLibrary.jnilib

Linux/
libMyNativeLibrary.so

... and so on for other Unix platforms

Your application directory must be placed into one of the standard locations for Mathematica

applications. These locations are listed as follows. In this notation, $InstallationDirectory/Ad-

dOns/Applications means “The AddOns/Applications subdirectory of the directory whose value is

given by the Mathematica variable $InstallationDirectory.”

 $UserAddOnsDirectory/Applications (Mathematica 4.2 and later only)

$AddOnsDirectory/Applications (Mathematica 4.2 and later only)

$InstallationDirectory/AddOns/Applications

$InstallationDirectory/AddOns/ExtraPackages

J/Link User Guide 377

Coding Tips

Here are a few tips on producing high-quality applications. These suggestions are guided by

mistakes that developers frequently make.

Call InstallJava in the body of a function or functions, not when your package is read

in. It is best to avoid side effects during the reading of a package. Users expect reading in a

package to be fast and to do nothing but load definitions. If you launch Java at this time, and it

fails, it could cause a mysterious hang in the loading process. It is better to call InstallJava in

the code of one or more of your functions. You probably do not need to call InstallJava in

every single function that uses Java. Most applications have a few “major” functions that users

are likely to use almost exclusively, or at least at the start of their session. If your application

does not have this property, then provide an initialization function that your users must call

first, and call InstallJava inside it.

Call InstallJava with no arguments. You cannot know what options your users need for

Java on their systems, so do not override what they may have set up. It is the user’s responsibil-

ity to make sure that they call SetOptions to customize the options for InstallJava as neces-

sary. Typically this would be done in their init.m file.

Make sure you use JavaBlock and/or ReleaseJavaObject to avoid leaking object refer-

ences. You cannot know how others will use your code, so you need to be careful to avoid

cluttering up their sessions with a potentially large number of useless objects. Sometimes you

need to create an object that persists beyond the lifetime of a single Mathematica function, like

a viewer window. In such cases, use a MathFrame or MathJFrame as your top-level window and

use its onClose() method to specify Mathematica code that releases all outstanding objects

and unregisters kernel or front end sharing you may have used. If this is not possible, provide a

cleanup function that users can call manually. Use LoadedJavaObjects to look at the list of

objects referenced in Mathematica before and after your functions run; it should not grow in

length.

If you use ShareKernel or ShareFrontEnd, make sure you save the return values from

these functions and pass them as arguments to UnshareKernel and UnshareFrontEnd.

Do not call UnshareFrontEnd or UnshareKernel with no arguments, as this will shut down

sharing even if other applications are using it.

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

file is read in, and storing the results in private variables for the lifetime of your package. This

is problematic if Java is restarted. Never store JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

378 J/Link User Guide

Do not assume that the Java runtime will not be restarted during the lifetime of your

application. Although users are strongly discouraged to call UninstallJava or

ReinstallJava, it happens. It is unavoidable that some applications will fail if the Java runtime

is shut down at an inopportune time (e.g., when they have a Java window displayed), but there

are steps you can take to increase the robustness of your application in the face of Java shut-

downs and restarts. One step was already given as the first tip listed~call InstallJava at the

start of your “major” functions. Another step is to avoid caching JavaClass or JavaObject

expressions unnecessarily, as these will become invalid if Java restarts. An example of this is

calling InstallJava and then LoadJavaClass and JavaNew several times when your package

file is read in, and storing the results in private variables for the lifetime of your package. This

is problematic if Java is restarted. Never store JavaClass expressions~call LoadJavaClass

whenever there is any doubt about whether a class has been loaded into the current Java

runtime. Calling LoadJavaClass is very inexpensive if the class has already been loaded. If you

have a JavaObject that is very expensive to create and therefore you feel it necessary to cache

it over a long period of time in a user’s session, consider using the following idiom to test

whether it is still valid whenever it is used. The JavaObjectQ test will fail if Java has been shut

down or restarted since the object was last created, so you can then restart Java and create

and store a new instance of the object.

SomeFunction[] :=
Module[{...},

If[!JavaObjectQ[$myCachedExpensiveJavaObject],
InstallJava[];
$myCachedExpensiveJavaObject = JavaNew[...];

];
... use $myCachedExpensiveJavaObject ...

]

Do not call UninstallJava or ReinstallJava in your application. You need to coexist

politely with other applications that may be using Java. Do not assume that when your package

is done with Java, the user is done with it as well. Only users should ever call UninstallJava,

and they should probably never call it either. There is no cost to leaving Java running. Likewise,

users will rarely call ReinstallJava unless they are doing active Java development and need to

reload modified versions of their classes.

J/Link User Guide 379

Example Programs

Introduction

This section will work through some example programs. These examples are intended to demon-

strate a wide variety of techniques and subtleties. Discussions include some nuances in the

implementations and touch on most of the major issues in J/Link programming.

This will take a relatively rigorous approach, and in particular it will be careful to avoid leaking

references. As discussed in the section "JavaBlock", JavaBlock and ReleaseJavaObject are the

tools in this fight, but if you find yourself becoming the least bit confused about the subject,

just ignore it completely. For many casual, personal uses of J/Link, you can forget about

memory management issues, and just let Java objects pile up.

J/Link includes a number of notebooks with sample programs, including most of the programs

developed in this section. These notebooks can be found in the <Mathematica dir>/System-

Files/Links/JLink/Examples/Part1 directory.

A Beep Function

Here is a very simple example. Mathematica does not have a Beep function to provide simple

alerts. But Java has a beep() method and, by virtue of that, Mathematica has one too.

Beep@D :=
H
LoadJavaClass@"java.awt.Toolkit"D;
Toolkit`getDefaultToolkit@Dübeep@D

L

You will notice a short delay the first time Beep[] is executed. This is due to the

LoadJavaClass call, which only takes measurable time the first time it is called for any given

class.

Beep@D

This is a perfectly good beep function, and many users will not need to go beyond this. If you

are writing code for others to use, however, you will probably want to embellish this code a

little bit. Here is a more professional version of the same function.

BetterBeep[]:=
JavaBlock[

InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
Toolkit`getDefaultToolkit[]@beep[];

]

Note that the first thing you do is call InstallJava. It is a good habit to call InstallJava in

functions that use J/Link, at least if you are writing code for others to use. If InstallJava has

already been called, subsequent calls will do nothing and return very quickly. The whole pro-

gram is wrapped in JavaBlock. As discussed in the section "JavaBlock", JavaBlock automates

the process of releasing references to objects returned to Mathematica. The getDefaultÖ

Toolkit() method returns a Toolkit object, so you want to release the JavaObject that gets

created in Mathematica. The getDefaultToolkit() method returns a reference to the same

Toolkit object every time it is called, so even if you do not call JavaBlock, you will only “leak”

one object in an entire session. You could also write Beep using an explicit call to

ReleaseJavaObject.

380 J/Link User Guide

Note that the first thing you do is call InstallJava. It is a good habit to call InstallJava in

functions that use J/Link, at least if you are writing code for others to use. If InstallJava has

already been called, subsequent calls will do nothing and return very quickly. The whole pro-

gram is wrapped in JavaBlock. As discussed in the section "JavaBlock", JavaBlock automates

the process of releasing references to objects returned to Mathematica. The getDefaultÖ

Toolkit() method returns a Toolkit object, so you want to release the JavaObject that gets

created in Mathematica. The getDefaultToolkit() method returns a reference to the same

Toolkit object every time it is called, so even if you do not call JavaBlock, you will only “leak”

one object in an entire session. You could also write Beep using an explicit call to

ReleaseJavaObject.

(* Alternative version *)
BetterBeep2[]:=

Module[{toolkit},
InstallJava[];
LoadJavaClass["java.awt.Toolkit"];
toolkit = Toolkit`getDefaultToolkit[];
toolkit@beep[];
ReleaseJavaObject[toolkit]

]

The advantage to using JavaBlock is that you do not have to think about what, if any, methods

might return objects, and you do not have to assign them to variables.

Formatting Dates

Here is an example of a computation performed in Java. Java provides a number of powerful

date- and calendar-oriented classes. Say you want to create a nicely formatted string showing

the time and date. In this first step you create a new Java Date object representing the current

date and time.

date = JavaNew@"java.util.Date"D

«JavaObject@java.util.DateD »

Next you load the DateFormat class and create a formatter capable of formatting dates.

LoadJavaClass@"java.text.DateFormat"D;
dateFormatter = DateFormat`getInstance@D
«JavaObject@java.text.SimpleDateFormatD »

Now you call the format() method, passing the Date object as its argument.

dateFormatterüformat@dateD

10ê9ê00 4:56 AM

There are many different ways in which dates and times can be formatted, including respecting

a user’s locale. Java also has a useful number-formatting class, an example of which was given

in "An Optimization Example".

J/Link User Guide 381

There are many different ways in which dates and times can be formatted, including respecting

a user’s locale. Java also has a useful number-formatting class, an example of which was given

in "An Optimization Example".

A Progress Bar

A simple example of a popup user interface for a Mathematica program is a progress bar. This

is an example of a “non-interactive” user interface, as defined in "Interactive and Non-Interac-

tive Interfaces", because it does not need to call back to Mathematica or return a result to

Mathematica. The implementation uses the Swing user interface classes, because Swing has a

built-in class for progress bars. (You cannot run this example unless you have Swing installed.

It comes as a standard part of Java 1.2 or later, but you can get it separately for Java 1.1.x.

Most Java development tools that are still at Version 1.1.x come with Swing.) The complete

code for this example is also provided in the file ProgressBar.nb in the JLink/Examples/Part1

directory.

The code is commented to point out the general structure. There are several classes and meth-

ods used in this code that may be unfamiliar to you. Just keep in mind that this is completely

standard Java code translated into Mathematica using the J/Link conventions. It is line-for-line

identical to a Java program that does the same thing.

This code is presented as a complete program, but this does not suggest that it should be

developed that way. The interactive nature of J/Link lets you tinker with Java objects a line at a

time, experimenting until you get things just how you want them. Of course, this is how Mathe-

matica programs are typically written, and J/Link lets you do the same with Java objects and

methods.

You can create a function ShowProgressBar that prepares and displays a progress bar dialog.

The bar will be used to show percentage completion of a computation. You can supply the initial

percent completed or use the default value of zero. ShowProgressBar returns the JProgressÖ

Bar object because the bar needs to be updated later by calling setValue(). Note that

because you return the bar object from the JavaBlock, it is not released like all other new Java

objects created within this JavaBlock. This is a new behavior of JavaBlock in J/Link 2.0. If

what is returned from a JavaBlock is precisely a single Java object (and not, for example, a list

of objects), then this object is not released. JavaBlock is discussed in the section "JavaBlock".

382 J/Link User Guide

ShowProgressBar[title_String:"Computation Progress",
 caption_String:"Percent complete:",
 percent_Integer:0
] :=

JavaBlock[
Module[{frame, panel, label, bar},

InstallJava[];
bar = JavaNew["javax.swing.JProgressBar"];
frame = JavaNew["javax.swing.JFrame", title];
frame@setSize[300, 110];
frame@setResizable[False];
frame@setLocation[400, 400];
panel = JavaNew["javax.swing.JPanel"];
panel@setLayout[Null];
frame@getContentPane[]@add[panel];
label = JavaNew["javax.swing.JLabel", caption];
label@setBounds[20, 10, 260, 20];
panel@add[label];
bar@setBounds[20, 40, 260, 30];
bar@setMinimum[0];
bar@setMaximum[100];
bar@setValue[percent];
panel@add[bar];
JavaShow[frame];
bar

]
]

You also need a function to close the progress dialog and clean up after it. Only two things need

to be done. First, the dispose() method must be called on the top-level frame window that

contains the bar. Second, if you want to avoid leaking object references, you need to call

ReleaseJavaObject on the bar object because it is the only object reference that escaped the

JavaBlock in ShowProgressBar. You need to call dispose() on the JFrame object you cre-

ated in ShowProgressBar, but you did not save a reference to it. The SwingUtilities class

has a handy method windowForComponent() that will retrieve this frame, given the bar object.

DestroyProgressBar[bar_?JavaObjectQ] :=
JavaBlock[

LoadJavaClass["javax.swing.SwingUtilities"];
SwingUtilities`windowForComponent[bar]@dispose[];
ReleaseJavaObject[bar]

]

The bar dialog has a close box in it, so a user can dismiss it prematurely if desired. This would

take care of disposing the dialog, but you would still need to release the bar object. DestroyProÖ

gressBar (and the bar’s setValue() method) is safe to call whether or not the user closed the

dialog.

Here is how you would use the progress bar in a computation. The call to ShowProgressBar

displays the bar dialog and returns a reference to the bar object. Then, while the computation is

running, you periodically call the setValue() method to update the bar’s appearance. When

the computation is done, you call DestroyProgressBar.

J/Link User Guide 383

bar = ShowProgressBar[];
n = 0;
While[n <= 5,

bar@setValue[n/5 * 100];
Pause[1]; (* This simulates the time-consuming computation. *)
n++

];
DestroyProgressBar[bar];

An easy way to test whether your code leaks object references is to call LoadedJavaObjects@D

before and after the computation. If the list of objects gets longer, then you have forgotten to

use ReleaseJavaObject or improperly used JavaBlock.

It can take several seconds to load all the Swing classes used in this example. This means that

the first time ShowProgressBar is called, there will be a significant delay. You could avoid this

delay by using LoadJavaClass ahead of time to explicitly load the classes that appear in

JavaNew statements.

The dialog appears onscreen with its upper left at the coordinates (400, 400). It is left as an

exercise to the reader to make it centered on the screen. (Hint: the java.awt.Toolkit class

has a getScreenSize() method).

Finally, because the progress bar uses the Swing classes, you can play with the look-and-feel

options that Swing provides. Specifically, you can change the theme at runtime. The progress

bar window is not very complicated, so it changes very little in going from one look-and-feel

theme to another, but this demonstrates how to do it. The effect is much more dramatic for

more complex windows.

First, create a new progress bar window.

bar = ShowProgressBar@D;

Now load some classes from which you need to call static methods.

LoadJavaClass@"javax.swing.UIManager"D;
LoadJavaClass@"javax.swing.SwingUtilities"D;

The default look and feel is the “metal” theme. You can change it to the native style look for

your platform as follows (it helps to be able to see the window when doing this).

JavaBlock[
UIManager`setLookAndFeel[UIManager`getSystemLookAndFeelClassName[]];
frame = SwingUtilities`windowForComponent[bar];
SwingUtilities`updateComponentTreeUI[frame]

]

Clean up.

DestroyProgressBar@barD

A Simple Modal Input Dialog

384 J/Link User Guide

A Simple Modal Input Dialog

You saw one example of a simple modal dialog in "Modal Windows". Presented here is another

one~a basic dialog that prompts the user to enter an angle, with a choice of whether it is being

specified in degrees or radians. This will demonstrate a dialog that returns a value to a running

Mathematica program when it is dismissed, much like Mathematica’s built-in Input function,

which requests a string from the user before returning. Dialogs like this one are not “modal” in

the traditional sense that they must be closed before other Java windows can be used, but

rather they are modal with respect to the kernel, which is kept busy until they are dismissed

(that is, until DoModal@D returns). The section "Creating Windows and Other User Interface

Elements" discusses modal and modeless Java windows in detail.

The code is rather straightforward and warrants little in the way of commentary. In creating the

window and the controls within it, it exactly mirrors the Java code you would use if you were

writing the program in Java. One technique it demonstrates is determining whether the OK or

Cancel button was clicked to dismiss the dialog. This is done by having the

MathActionListener objects assigned to the two buttons return different things in addition to

calling EndModal@D. Recall that DoModal@D returns whatever the code that calls EndModal@D

returns, so here you have the OK button execute (EndModal[]; True)&, a pure function that

ignores its arguments, calls EndModal@D, and returns True, whereas the Cancel button exe-

cutes (EndModal[]; False)&. Thus, DoModal@D returns True if the OK button was clicked, or

False if the Cancel button was clicked. It will return Null if the window’s close box was clicked

(this behavior comes from the MathFrame itself).

It may take several seconds to display the dialog the first time GetAngle[] is called. This is

due to the one-time cost of loading the several large AWT classes required. Subsequent invoca-

tions of GetAngle[] will be much quicker.

The complete code for this example is also provided in the file ModalInputDialog.nb in the

JLink/Examples/Part1 directory.

GetAngle[] :=
JavaBlock[

Module[{frm, inputField, cbGroup, degBox, radBox,
label, okButton, cancelButton, wasOKButton, angle},

InstallJava[]; (* In case the user has not called it already. *)

frm = JavaNew["com.wolfram.jlink.MathFrame"];
label = JavaNew["java.awt.Label", "Enter an angle:"];

J/Link User Guide 385

GetAngle[]

inputField = JavaNew["java.awt.TextField"];
cbGroup = JavaNew["java.awt.CheckboxGroup"];
degBox = JavaNew["java.awt.Checkbox", "degrees", cbGroup, True];
radBox = JavaNew["java.awt.Checkbox", "radians", cbGroup, False];
okButton = JavaNew["java.awt.Button", "OK"];
cancelButton = JavaNew["java.awt.Button", "Cancel"];

frm@setLayout[Null];
frm@add[label];
frm@add[inputField];
frm@add[degBox];
frm@add[radBox];
frm@add[okButton];
frm@add[cancelButton];

frm@setBounds[200, 200, 200, 160];
label@setBounds[20, 30, 150, 20];
inputField@setBounds[20, 70, 60, 28];
degBox@setBounds[100, 60, 80, 20];
radBox@setBounds[100, 80, 80, 20];
okButton@setBounds[40, 120, 50, 20];
cancelButton@setBounds[100, 120, 50, 20];
frm@setResizable[False];

okButton@addActionListener[
JavaNew["com.wolfram.jlink.MathActionListener",

"(EndModal[]; True)&"]
];
cancelButton@addActionListener[

JavaNew["com.wolfram.jlink.MathActionListener",
"(EndModal[]; False)&"]

];

(* Now make the window visible and bring it to the foreground. *)
JavaShow[frm];

frm@setModal[];
wasOKButton = DoModal[];
(* Even though the window may have been closed, it is perfectly
 OK to extract values from the controls in the window.
*)
If[TrueQ[wasOKButton],

angle = ToExpression[inputField@getText[]];
If[angle =!= Null && degBox@getState[], angle *= Pi/180],

(* else *)
(* We will get here if the Cancel button was clicked
 (wasOKButton will be False), or the dialog was closed
 by clicking in its close box (wasOKButton will be Null).
*)
angle = $Failed

];
(* If the cancel or OK buttons were clicked, frm is still
 visible, so we dispose it here.
*)
frm@dispose[];
angle

]
]

386 J/Link User Guide

Now invoke it.

GetAngle@D

p

A File Chooser Dialog Box

A useful feature for Mathematica programs is to be able to produce a file chooser dialog, such

as the typical Open or Save dialog boxes. You could use such a dialog box to prompt a user for

an input file or a file into which to write data. This is easily accomplished in a cross-platform

way with Java, specifically with the JFileChooser class in the standard Swing library. The code

for such a dialog box is provided in the file FileChooserDialog.nb in the JLink/Examples/Part1

directory.

Mathematica 4.0 introduced a new “experimental” function called FileBrowse[] that displays a

file browser in the front end. Although this function is usable, it has several shortcomings com-

pared to the Java technique presented next. One of the limitations is that it requires that the

front end be in use. Another is that it is not customizable, so you always get a Save file as:

dialog box and the concomitant behavior, which is not appropriate for an Open-type dialog box.

The JFileChooser class used here allows very sophisticated customization, including setting

the initial directory, masking out files based on their names or properties, controlling the title

and text on the various buttons, supplying functions to validate the choice before the dialog box

is allowed to be dismissed, allowing for multiple file selection, and allowing directories to be

selected instead of files.

Although this example is a short program, the code has some unfortunate complexity (meaning

“ugliness”) in it related to making this special type of dialog window come to the foreground on

all platforms. For this reason, the code is not presented here. Instead, some topics in the pro-

gram code will be mentioned; you can read the full code and its associated comments in the

example file if you are interested in the implementation details.

The FileChooserDialog function takes three string arguments. The first is the title of the

dialog box (for example, Select a data file to import), the second is the text to appear on

what is essentially the OK button (typically this will be Open or Save), and the third is the

directory in which to start. You can also supply no arguments and get a default Open dialog box

that starts in the kernel’s current directory.

Although this is a “modal” dialog box, there is no need to use DoModal, because the showDiaÖ

log() method will not return until the user dismisses the dialog box. Recall that DoModal is a

way to force Mathematica to stall until the dialog box or other window is dismissed. Here, you

get this behavior for free from showDialog(). The other thing that DoModal does is put the

kernel into a loop where it is ready to receive input from Java, so you can script some of the

functionality of the dialog via callbacks to Mathematica. The file chooser dialog box does not

need to use Mathematica in any way until it returns the selected file, so you have no need for

this other aspect that DoModal provides.

J/Link User Guide 387

Although this is a “modal” dialog box, there is no need to use DoModal, because the showDiaÖ

log() method will not return until the user dismisses the dialog box. Recall that DoModal is a

way to force Mathematica to stall until the dialog box or other window is dismissed. Here, you

get this behavior for free from showDialog(). The other thing that DoModal does is put the

kernel into a loop where it is ready to receive input from Java, so you can script some of the

functionality of the dialog via callbacks to Mathematica. The file chooser dialog box does not

need to use Mathematica in any way until it returns the selected file, so you have no need for

this other aspect that DoModal provides.

A second point of interest is in the name of the constant that showDialog() returns to indicate

that the user clicked the Save or Open button instead of the Cancel button. The name of this

constant in Java is JFileChooser.APPROVE_OPTION. Java names map to Mathematica

symbols, so they must be translated if they contain characters that are not legal in Mathemat-

ica symbols, such as the underscore. Underscores are converted to a “U” when they appear in

symbols, so the Mathematica name of this constant is JFileChooser`APPROVEUOPTION. See

"Underscores in Java Names" for more information.

Sharing the Front End: Palette-Type Buttons

As discussed in the section "Creating Windows and Other User Interface Elements", one of the

goals of J/Link is to allow Java user interface elements to be as close as possible to first-class

members of the notebook front end environment in the way notebook and palette windows are.

One of the ways this is accomplished is with the ShareKernel function, which allows Java

windows to share the kernel’s attention with notebook windows. Such Java windows are

referred to as “modeless,” not in the traditional sense of allowing other Java windows to remain

active, but modeless with respect to the kernel, meaning that the kernel is not kept busy while

they are open.

Beyond the ability to have Java windows share the kernel with the front end, it would be nice to

allow actions in Java to cause effects in notebook windows, such as printing something, display-

ing a graph, or any of the notebook-manipulation commands like NotebookApply,

NotebookPrint, SelectionEvaluate, SelectionMove, and so on. A good example of this is

palette buttons. A palette button can cause the current selection to be replaced by something

else and the resulting expression to be evaluated in place.

The ShareFrontEnd function lets actions in Java modeless windows trigger events in a note-

book window just like can be done from palette buttons or Mathematica code you evaluate

manually in a notebook. Remember that you get automatically the ability to interact with the

front end when you use a modal dialog (i.e., when DoModal is running). When Java is being run

in a modal way, the kernel’s $ParentLink always points at the front end, so all side effect

outputs get sent to the front end automatically. A modal window would not be acceptable for

the palette example here because the palette needs to be an unobtrusive enhancement to the

Mathematica environment~it cannot lock up the kernel while it is alive. ShareKernel allows

Java windows to call Mathematica without tying up the kernel, and ShareFrontEnd is an exten-

sion to ShareKernel (it calls ShareKernel internally) that allows such “modeless” Java windows

to interact with the front end. ShareFrontEnd is discussed in more detail in "Sharing the Front

End".

388 J/Link User Guide

The ShareFrontEnd function lets actions in Java modeless windows trigger events in a note-

book window just like can be done from palette buttons or Mathematica code you evaluate

manually in a notebook. Remember that you get automatically the ability to interact with the

front end when you use a modal dialog (i.e., when DoModal is running). When Java is being run

in a modal way, the kernel’s $ParentLink always points at the front end, so all side effect

outputs get sent to the front end automatically. A modal window would not be acceptable for

the palette example here because the palette needs to be an unobtrusive enhancement to the

Mathematica environment~it cannot lock up the kernel while it is alive. ShareKernel allows

Java windows to call Mathematica without tying up the kernel, and ShareFrontEnd is an exten-

sion to ShareKernel (it calls ShareKernel internally) that allows such “modeless” Java windows

to interact with the front end. ShareFrontEnd is discussed in more detail in "Sharing the Front

End".

In the PrintButton example that follows, a simple palette-type button is developed in Java

that prints its label at the current cursor position in the active notebook. Because of current

limitations with ShareFrontEnd, this example will not work with a remote kernel; the same

machine must be running the kernel and the front end.

PrintButton[label_String] :=
JavaBlock[

Module[{frm, button, listener, tok},
InstallJava[];
frm = JavaNew["com.wolfram.jlink.MathFrame"];
button = JavaNew["java.awt.Button"];
frm@add[button];
frm@pack[];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener",

 "printButtonFunc"];
button@addActionListener[listener];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm]

]
]

printButtonFunc[event_, _] :=
JavaBlock[

NotebookApply[SelectedNotebook[], event@getSource[]@getLabel[]];
(* We need to explicitly release the event object, since it was
 sent to Mathematica before the JavaBlock was entered. *)
ReleaseJavaObject[event]

]

Now invoke the PrintButton function to create and display the palette. Click the button to see

the button’s label (foo in this example) inserted at the current cursor location. When you are

done, click the window’s close box.

PrintButton@"foo"D

The code is mostly straightforward. As usual, you use the MathFrame class for the frame win-

dow because it closes and disposes of itself when its close box is clicked. You create a

MathActionListener that calls buttonFunc and you assign it to the button. From the table in

the section Handling Events with Mathematica Code: The “MathListener” Classes, you know that

buttonFunc will be called with two arguments, the first of which is the ActionEvent object.

From this object you can obtain the button that was clicked and then its label, which you insert

at the current cursor location using the standard NotebookApply function. One subtlety is that

you need to specify SelectedNotebook@D as the target for notebook operations like

NotebookApply, NotebookWrite, NotebookPrint, and so on, which take a notebook as an

argument. Because of implementation details of ShareFrontEnd, the notebook given by

EvaluationNotebook@D is not the correct target (after all, there is no evaluation currently in

progress in the front end when the button is clicked).

J/Link User Guide 389

The code is mostly straightforward. As usual, you use the MathFrame class for the frame win-

dow because it closes and disposes of itself when its close box is clicked. You create a

MathActionListener that calls buttonFunc and you assign it to the button. From the table in

the section Handling Events with Mathematica Code: The “MathListener” Classes, you know that

buttonFunc will be called with two arguments, the first of which is the ActionEvent object.

From this object you can obtain the button that was clicked and then its label, which you insert

at the current cursor location using the standard NotebookApply function. One subtlety is that

you need to specify SelectedNotebook@D as the target for notebook operations like

NotebookApply, NotebookWrite, NotebookPrint, and so on, which take a notebook as an

argument. Because of implementation details of ShareFrontEnd, the notebook given by

EvaluationNotebook@D is not the correct target (after all, there is no evaluation currently in

progress in the front end when the button is clicked).

The important thing to note in PrintButton is the use of ShareFrontEnd and

UnshareFrontEnd. As discussed earlier, ShareFrontEnd puts Java into a state where it forwards

everything other than the result of a computation to the front end, and puts the front end into a

state where it is able to receive it. This is why the Print output triggered by clicking the Java

button, which would normally be sent to Java (and just discarded there), appears in the front

end. Front end sharing (and also kernel sharing) should be turned off when they are no longer

needed, but if you are writing code for others to use you cannot just blindly shut sharing down~

the user could have other Java windows open that need sharing. To handle this issue,

ShareFrontEnd (and ShareKernel) works on a register/unregister principle. Every time you call

ShareFrontEnd, it returns a token that represents a request for front end sharing. If front end

sharing is not on, it will be turned on. When a program no longer needs front end sharing, it

should call UnshareFrontEnd, passing the token from ShareFrontEnd as the argument. Only

when all requests for sharing have been unregistered in this way will sharing actually be turned

off.

The onClose() method of the MathFrame class lets you specify Mathematica code to be exe-

cuted when the frame is closed. This code is executed after all event listeners have been noti-

fied, so it is a safe place to turn off sharing. In the onClose() code, you call UnshareFrontEnd

with the token returned by ShareFrontEnd. Using the onClose() method in this way allows us

to avoid writing a cleanup function that users would have to call manually after they were

finished with the palette. It is not a problem to leave front end sharing turned on, but it is

desirable to have your program alter the user’s session as little as possible.

Now expand this example to include more buttons that perform different operations. The com-

plete code for this example is provided in the file Palette.nb in the JLink/Examples/Part1

directory.

390 J/Link User Guide

Now expand this example to include more buttons that perform different operations. The com-

plete code for this example is provided in the file Palette.nb in the JLink/Examples/Part1

directory.

The first thing you do is separate the code that manages the frame containing the buttons from

the code that produces a button. In this way you will have a reusable palette frame that can

hold any number of different buttons. The ShowPalette function here takes a list of buttons,

arranges them vertically in a frame window, calls ShareFrontEnd, and displays the frame in

front of the user’s notebook window.

ShowPalette[buttons:{__?JavaObjectQ}] :=
JavaBlock[

Module[{frm, tok},
frm = JavaNew["com.wolfram.jlink.MathFrame"];
frm@setLayout[JavaNew["java.awt.GridLayout", 0, 1]];
frm@add[#]& /@ buttons;
ReleaseJavaObject[buttons];
frm@pack[];
tok = ShareFrontEnd[];
frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
JavaShow[frm];

]
]

Note that you do not return anything from the ShowPalette function~specifically, you do not

return the frame object itself. This is because you do not need to refer to the frame ever again.

It is destroyed automatically when its close box is clicked (remember, this is a feature of the

MathFrame class). Because you do not need to keep references to any of the Java objects you

create, the entire body of ShowPalette can be wrapped in JavaBlock.

Now create a reusable PaletteButton function that creates a button. You have to pass in only

two things: the label text you want on the button and the function (as a string) you want to

have invoked when the button is clicked. This is sufficient to allow completely arbitrary button

behavior, as the entire functionality of the button is tied up in the button function you pass in

as the second argument.

PaletteButton[label_String, buttonFunc_String] :=
JavaBlock[

Module[{button, listener},
button = JavaNew["java.awt.Button"];
button@setLabel[label];
listener = JavaNew["com.wolfram.jlink.MathActionListener", buttonFunc];
button@addActionListener[listener];
button

]
]

J/Link User Guide 391

You will use the PaletteButton function to create four buttons. The first is just the print button

just defined, the behavior of which is specified by printButtonFunc.

btn1 = PaletteButton@"foo", "printButtonFunc"D;

The second will duplicate the functionality of the buttons in the standard AlgebraicManipula-

tion front end palette. These buttons wrap a function (e.g., Expand) around the current selec-

tion and evaluate the resulting expression in place. Here is how you create the button and

define the button function for that operation.

btn2 = PaletteButton["Expand[É]", "applyButtonFunc"];

applyButtonFunc[event_, _] :=
JavaBlock[

With[{nb = SelectedNotebook[]},
NotebookApply[nb, event@getSource[]@getLabel[], All];
ReleaseJavaObject[event];
SelectionEvaluate[nb]

];
]

The third button will create a plot. All you have to do is call a plotting function~the work of

directing the graphics output to a new cell in the frontmost notebook is handled internally by

J/Link as a result of having front end sharing turned on via ShareFrontEnd.

btn3 = PaletteButton@"Create Plot", "plotButtonFunc"D;

plotButtonFunc@event_, _D :=
H

Plot@x, 8x, 0, 1<D;
ReleaseJavaObject@eventD;

L

The final button demonstrates another method for causing text to be inserted at the current

cursor location. The first example of this, printButtonFunc, uses NotebookApply. You can

also just call Print~as with graphics, Print output is automatically routed to the frontmost

notebook window by J/Link when front end sharing is on. This quick-and-easy Print method

works fine for many situations when you want something to appear in a notebook window, but

using NotebookApply is a more rigorous technique. You will see some differences in the effects

of these two buttons if you put the insertion point into a StandardForm cell and try them.

btn4 = PaletteButton@"foo", "printButtonFunc2"D;

printButtonFunc2@event_, _D :=
JavaBlock@

Print@eventügetSource@DügetLabel@DD;
ReleaseJavaObject@eventD;

D

392 J/Link User Guide

Now you are finally ready to create the palette and show it.

ShowPalette@8btn1, btn2, btn3, btn4<D

In closing, it must be noted that although this example has demonstrated some useful tech-

niques, it is not a particularly valuable way to use ShareFrontEnd. In creating a simple palette

of buttons, you have done nothing that the front end cannot do all by itself. The real uses you

will find for ShareFrontEnd will presumably involve aspects that cannot be duplicated within the

front end, such as more sophisticated dialog boxes or other user interface elements.

Real-Time Algebra: A Mini-Application

This example will put together everything you have learned about modal and modeless Java

user interfaces. You will implement the same “mini-application” (essentially just a dialog box) in

both modal and modeless flavors. The application is inspired by the classic MathLink example

program RealTimeAlgebra, originally written for the NeXT computer by Theodore Gray and then

done in HyperCard by Doug Stein and John Bonadies. The original RealTimeAlgebra provides an

input window into which the user types an expression that depends on certain parameters, an

output window that displays the result of the computation, and some sliders that are used to

vary the values of the parameters. The output window updates as the sliders are moved, hence

the name RealTimeAlgebra. Our implementation of RealTimeAlgebra will be very simplistic, with

only a single slider to modify the value of one parameter.

The complete code for this example is provided in the file RealTimeAlgebra.nb in the JLink/Exam-

ples/Part1 directory.

J/Link User Guide 393

Here is the function that creates and displays the window.

CreateWindow[] :=
Module[{frame, slider, listener},

InstallJava[];
(* inText and outText are globals, because we need to refer to
 them by name in the scrollFunc. This also means we must
 create them outside the JavaBlock below.
*)
inText = JavaNew["java.awt.TextArea", "Expand[(x+1)^a]", 8, 40];
outText = JavaNew["java.awt.TextArea", 8, 40];
(* This frame could be created inside the JavaBlock, because it is returned
 from the JavaBlock and therefore will not be released, but it makes
 our intentions more clear to create it outside.
*)
frame = JavaNew["com.wolfram.jlink.MathFrame", "RealTimeAlgebra"];
JavaBlock[

frame@setLayout[JavaNew["java.awt.BorderLayout"]];
(* Note that we can refer to the Scrollbar`HORIZONTAL constant within the JavaNew
 command that first loads the Scrollbar class. Its value will not need to be
 resolved until that class has been loaded and all necessary definitions created.
*)
slider = JavaNew["java.awt.Scrollbar", Scrollbar`HORIZONTAL, 0, 1, 0, 20];
frame@add[slider, ReturnAsJavaObject[BorderLayout`NORTH]];
frame@add[outText, ReturnAsJavaObject[BorderLayout`CENTER]];
frame@add[inText, ReturnAsJavaObject[BorderLayout`SOUTH]];
frame@pack[];
(* Use a fixed-width font for the output window to preserve
 formatting of multi-line expressions. *)
outText@setFont[JavaNew["java.awt.Font", "Courier", Font`PLAIN, 12]];
listener = JavaNew["com.wolfram.jlink.MathAdjustmentListener"];
listener@setHandler["adjustmentValueChanged", "sliderFunc"];
slider@addAdjustmentListener[listener];
frame@setLocation[200, 200];
JavaShow[frame];

];
frame

]

(* This is what will be called in response to moving the slider position: *)

sliderFunc[evt_, type_, scrollPos_] :=
outText@setText[

Block[{a = scrollPos}, ToString[ToExpression[inText@getText[]]]]
]

The sliderFunc function is called by the MathAdjustmentListener whenever the slider’s

position changes. It gets the text in the inputText box, evaluates it in an environment where

a has the value of the slider position (the range for this is 0..20, as established in the JavaNew

call that creates the slider), and puts the resulting string into the outText box. It then calls

ReleaseJavaObject to release the first argument, which is the AdjustmentEvent object itself.

This is the only object passed in as an argument (the other two arguments are integers). If you

are wondering how you determine the argument sequence for sliderFunc, you get it from the

MathListener table in the section Handling Events with Mathematica Code: The “MathListener”

Module of CreateWindow, and of

course they cannot be created inside that function’s JavaBlock.

394 J/Link User Guide

The sliderFunc function is called by the MathAdjustmentListener whenever the slider’s

position changes. It gets the text in the inputText box, evaluates it in an environment where

a has the value of the slider position (the range for this is 0..20, as established in the JavaNew

call that creates the slider), and puts the resulting string into the outText box. It then calls

ReleaseJavaObject to release the first argument, which is the AdjustmentEvent object itself.

This is the only object passed in as an argument (the other two arguments are integers). If you

are wondering how you determine the argument sequence for sliderFunc, you get it from the

Classes. Note that you need to refer by name to the input and output text boxes in sliderÖ

Func, so you cannot make their names local variables in the Module of CreateWindow, and of

course they cannot be created inside that function’s JavaBlock.

There is one interesting thing in the code that deserves a remark. Look at the lines where you

add the three components to the frame. What is the ReturnAsJavaObject doing there? The

method being called here is in the Frame class, and has the following signature:

void add(Component comp, Object constraints);

The second argument, constraints, is typed only as Object. The value you pass in depends

on the layout manager in use, but typically it is a string, as is the case here

(BorderLayout`NORTH, for example, is just the string “NORTH”). The problem is that J/Link

creates a definition for this signature of add that expects a JavaObject for the second argu-

ment, and Mathematica strings do not satisfy JavaObjectQ, although they are converted to

Java string objects when sent. This means that you can only pass strings to methods that

expect an argument of type String. In the rare cases where a Java method is typed to take an

Object and you want to pass a string from Mathematica, you must first create a Java String

object with the value you want, and pass that object instead of the raw Mathematica string. You

have encountered this issue several times before, and you have used MakeJavaObject as the

trick to get the raw string turned into a reference to a Java String object. MakeJavaObject[BoÖ

rderLayout`NORTH] would work fine here, but it is instructive to use a different technique (it

also saves a call into Java). BorderLayout`NORTH calls into Java to get the value of the BorderÖ

Layout.NORTH static field, but in the process of returning this string object to Mathematica, it

gets converted to a raw Mathematica string. You need the object reference, not the raw string,

so you wrap the access in ReturnAsJavaObject, which causes the string, which is normally

returned by value, to be returned in the form of a reference.

Getting back to the RealTimeAlgebra dialog box, you are now ready to run it as a modal

window. You write a special modal version that uses CreateWindow internally.

RealTimeAlgebraModal[] :=
JavaBlock[

(* In the modal case, we can wrap the whole thing in JavaBlock
 and be sure that all the objects will get released, including
 the inText and outText ones needed during event handling.
*)
Module[{frm},

frm = CreateWindow[];
frm@setModal[];
DoModal[];

]
]

Note that the whole function is wrapped in JavaBlock. This is an easy way to make sure that all

object references created in Mathematica while the dialog is running are treated as temporary

and released when DoModal finishes. This saves you having to properly use JavaBlock and

ReleaseJavaObject in all the handler functions used for your MathListener objects (you will

notice that these calls are absent from the sliderFunc function).

J/Link User Guide 395

Note that the whole function is wrapped in JavaBlock. This is an easy way to make sure that all

object references created in Mathematica while the dialog is running are treated as temporary

and released when DoModal finishes. This saves you having to properly use JavaBlock and

ReleaseJavaObject in all the handler functions used for your MathListener objects (you will

notice that these calls are absent from the sliderFunc function).

Now run the dialog. The RealTimeAlgebraModal function will not return until you close the

RealTimeAlgebra window, which is what you mean when you call this a “modal” interface.

RealTimeAlgebraModal@D

It may take several seconds before the window appears the first time. As always, this is the

one-time cost of loading all the necessary classes. Play around by dragging the slider, and try

changing the text in the input box, for example, to N@Pi, 2 aD.

Recall that while Mathematica is evaluating DoModal@D, any Print output, messages, graphics,

or any other output or commands other than the result of computations triggered from Java will

be sent to the front end. To see this in action, try putting Print@aD in the input text box (you

will want to arrange windows on your screen so that you can see the notebook window while

you are dragging the slider). Next, try Plot@Sin@a xD, 8x, 0, 4 Pi<D.

Quit RealTimeAlgebra by clicking the window’s close box. In addition to closing and disposing of

the window, this causes EndModal@D to be executed in Mathematica, which then causes

DoModal to return. The disposing of the window is due to using the MathFrame class for the

window, and executing EndModal@D is the result of calling the setModal() method of

MathFrame, as discussed in "Modal Windows".

Now implement RealTimeAlgebra as a modeless window. The CreateWindow function can be

used unmodified. The only difference is how you make Mathematica able to service the computa-

tions triggered by dragging the slider. For a modal window, you use DoModal to force Mathemat-

ica to pay attention exclusively to the Java link. The drawback to this is that you cannot use the

kernel from the notebook front end until DoModal ends. To allow the notebook front end and

Java to share the kernel’s attention, you use ShareKernel.

396 J/Link User Guide

RealTimeAlgebraModeless[] :=
Module[{frm, token},

frm = CreateWindow[];

token = ShareKernel[];

(* We use the MathFrame onClose method to specify code to
 be executed when the frame is closed.The use here is
 typical--we clean up the object references that need to
 persist throughout the lifetime of the window (otherwise
 we would leak these references),and we call UnshareKernel
 to unregister this application's request for kernel sharing.
*)
frm@onClose[

"ReleaseJavaObject[inText, outText]; UnshareKernel[" <> ToString[token] <> "];"
];

ReleaseJavaObject[frm]
]

Now run it.

RealTimeAlgebraModeless@D

RealTimeAlgebraModeless returns immediately after the window is displayed, leaving the front

end and the RealTimeAlgebra window able to use the kernel for computations.

You still need a little bit of polish on the modeless version, however. First, to avoid leaking

object references, you must change sliderFunc. With the modal version, you did not bother to

use JavaBlock or ReleaseJavaObject in sliderFunc because you had DoModal wrapped in

JavaBlock. Every call to sliderFunc, or any other MathListener handler function, occurs

entirely within the scope of DoModal, so you can handle all object releasing at this level. With a

modeless interface, you no longer have a single function call that spans the lifetime of the

window. Thus, you put memory-management functions in our handler functions. Here is the

new sliderFunc.

sliderFunc@evt_, type_, scrollPos_D :=
JavaBlock@

outTextüsetText@

Block@8a = scrollPos<, ToString@ToExpression@inTextügetText@DDDD
D;
ReleaseJavaObject@evtD

D

The JavaBlock here is unnecessary because the code it wraps creates no new object refer-

ences. Out of habit, though, you wrap these handlers in JavaBlock. You need to explicitly call

ReleaseJavaObject on evt, which is the AdjustmentEvent object, because its reference is

created in Mathematica before sliderFunc is entered, so it will not be released by the

JavaBlock. The type and scrollPos arguments are integers, not objects.

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

J/Link User Guide 397

Try setting the input text to Print@aD. Notice that nothing appears in the front end when you

move the slider, in contrast to the modal case. With a modeless interface, the Java link is the

kernel’s $ParentLink during the times when the kernel is servicing a request initiated from the

Java side. Thus, the output from Print and graphics goes to Java, not the notebook front end.

(The Java side ignores this output, in case you are wondering.) To get this output sent to the

front end instead, use ShareFrontEnd.

ShareFrontEnd@D;

Now if you set the input text to, say, Print@aD or Plot@a x, 8x, 0, a<D, you will see the text

and graphics appearing in the front end.

When you are finished, quit RealTimeAlgebra by clicking its close box. Then turn off front end

sharing that was turned on in the previous input.

UnshareFrontEnd@D

A modal interface is simpler than a modeless one in terms of how it uses Mathematica, and is

therefore the preferred method unless you specifically need the modeless attribute.

ShareKernel and ShareFrontEnd are complex functions that put the kernel into an unusual

state. They work fine, but do not use them unnecessarily.

GraphicsDlg: Graphics and Typeset Output in a Window

It is useful to be able to display Mathematica graphics and typeset expressions in your Java

user interface, and this is easy to do using J/Link’s MathCanvas class. This example demon-

strates a simple dialog box that allows the user to type in a Mathematica expression and see

the output in the form of a picture. If the expression is a plotting or other graphics function, the

resulting image is displayed. If the expression is not a graphic, then it is typeset in

TraditionalForm and displayed as a picture. The example is first presented in modal form and

then in modeless form using ShareKernel and ShareFrontEnd.

This example also demonstrates a trivial example of using Java code that was created by a

drag-and-drop GUI builder of the type present in most Java development environments. For

layout of simple windows, it is easy enough to do everything from Mathematica. This method

was chosen for all the examples in this tutorial, writing no Java code and instead scripting the

creation and layout of controls in windows with Mathematica calls into Java. This has the advan-

tage of not requiring any Java classes to be written and compiled. For more complex windows,

398 J/Link User Guide

This example also demonstrates a trivial example of using Java code that was created by a

drag-and-drop GUI builder of the type present in most Java development environments. For

layout of simple windows, it is easy enough to do everything from Mathematica. This method

was chosen for all the examples in this tutorial, writing no Java code and instead scripting the

creation and layout of controls in windows with Mathematica calls into Java. This has the advan-

however, you will probably find it much easier to create the controls, arrange them in position,

set their properties in a GUI builder, and let it generate Java code for you. You might also want

to write some additional Java code by hand.

If you choose this route, the question becomes, “How do I connect the Java code thus gener-

ated with Mathematica?” Any public fields or methods can be called directly from Mathematica,

but your GUI builder may not have made public all the ones you need to use. You could make

these fields and methods public or add some new public methods that expose them. The latter

approach is probably preferable since it does not involve modifying the code that the GUI

builder wrote, which could confuse the builder or cause it to overwrite your changes in future

modifications.

The complete code for this example is provided in the JLink/Examples/Part1/GraphicsDlg direc-

tory. Some of the code is in Java.

This example uses the GUI builder in the WebGain Visual Café Java development environment.

The builder was used to create a frame window with three controls. The frame window was

made to be a subclass of MathFrame because you want to inherit the setModal() method. In

the top left is an AWT TextArea that serves as the input box for the expression. To its right is

an Evaluate button. Occupying the rest of the window is a MathCanvas.

Up to this point, no code has been written by hand at all~everything has been done automati-

cally as components were dropped into the frame and their properties set. All that is left to do

is to wire up the button so that when it is clicked the input text is taken and supplied as to the

MathCanvas via its setMathCommand() method. You could write that code in Java, using Visual

Café’s Interaction Wizard to wire up this event (similar facilities exist in other Java GUI

builders). You would have to write some Java code by hand, as the code’s logic is more com-

plex than can be handled by graphical tools for creating event handlers.

J/Link User Guide 399

Rather than doing that, move to Mathematica to script the rest of the behavior because it is

easier and more flexible. You will need to access the TextArea, Button, and MathCanvas

objects from Mathematica, but the GUI builder made these nonpublic fields of the frame class.

Thus, you need to add three public methods that return these objects to the frame class.

public Button getEvalButton() {return evalButton;}
public TextArea getInputTextArea() {return inputTextArea;}
public MathCanvas getMathCanvas() {return mathCanvas;}

That is all you need to do to the Java code created by the GUI builder.

The GUI builder created a subclass of MathFrame that is named GraphicsDlg. It also gave it a

main() method that does nothing but create an instance of the frame and make it visible. You

will not bother with the main() method, choosing instead to do those two steps manually, since

you need a reference to the frame.

Needed before the code is run is a demonstration of one more feature of J/Link~the ability to

add directories to the class search path dynamically. You need to load the Java classes for this

example, but they are not on the Java class path. With J/Link, you can add the directory in

which the classes reside to the search path by calling AddToClassPath. This will work exactly as

written in Mathematica 4.2 and later. You will need to modify the path if you have an earlier

version of Mathematica.

classDir = ToFileName[{$TopDirectory, "SystemFiles", "Links", "JLink",
"Examples", "Part1", "GraphicsDlg"}];

InstallJava[];
AddToClassPath[classDir];

Here is the first implementation of the Mathematica code to create and run the graphics dialog.

This runs the dialog in a modal loop.

400 J/Link User Guide

DoGraphicsDialogModal[] :=
JavaBlock[

Module[{frm, btn, listener},
InstallJava[];
(* We named the MathFrame subclass GUI builder created "MyFrame". *)
frm = JavaNew["GraphicsDlg"];
(* Here we call one of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
btn = frm@getEvalButton[];
listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];
JavaShow[frm];
frm@setModal[];
DoModal[]

]
]

btnFunc[event_, _] :=
JavaBlock[

Module[{frm, expr, textArea, inputText, mathCanvas},
frm = event@getSource[]@getParent[];
(* Here we call two of the accessor methods we had to add
 by hand to the GraphicsDlg class.
*)
textArea = frm@getInputTextArea[];
mathCanvas = frm@getMathCanvas[];

inputText = textArea@getText[];
(* We have to evaluate the expression ahead of time to determine
 whether it is a graphics object or not, so we can decide
 whether it display it as a plot or as a typeset result.
*)
expr = Block[{$DisplayFunction = Identity}, ToExpression[inputText]];
If[MatchQ[expr, _Graphics | _Graphics3D | _SurfaceGraphics |

DensityGraphics | _ContourGraphics],
mathCanvas@setImageType[MathCanvas`GRAPHICS],

(* else *)
mathCanvas@setImageType[MathCanvas`TYPESET];
mathCanvas@setUsesTraditionalForm[True]

];
mathCanvas@setMathCommand[ToString[expr, InputForm]];
ReleaseJavaObject[event]

]
]

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

representation. The front end is used to run this example, but it is really because you are

running the Java dialog “modally” that everything works the way it does. All the while the

dialog is up, the front end is waiting for a result from a computation (DoModal@D), and therefore

it is receptive to requests from the kernel for various services. As far as the front end is con-

DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

J/Link User Guide 401

As mentioned in the section "Creating Windows and Other User Interface Elements" only the

notebook front end can perform the feat of taking a typeset (i.e., “box”) expression and creat-

ing a graphical representation of it. Thus, the MathCanvas can render typeset expressions

provided that it has a front end available to farm out the chore of creating the appropriate

representation. The front end is used to run this example, but it is really because you are

running the Java dialog “modally” that everything works the way it does. All the while the

dialog is up, the front end is waiting for a result from a computation (DoModal@D), and therefore

cerned, the code for DoModal invoked the request for typesetting, even though it was actually

triggered by clicking a Java button.

Now run the dialog.

DoGraphicsDialogModal[]

What if you are not happy with the restriction of running the dialog modally? Now you want to

have the dialog remain open and active while not interfering with normal use of the kernel from

the front end. As discussed in "Modal Windows" and "Real-Time Algebra: A Mini-Application",

you get a lot of useful behavior regarding the front end for free when you run your Java user

interface modally. One of these features is that the front end is kept receptive to the various

sorts of requests the kernel can send to it (such as for typesetting services). You know you can

run a Java user interface in a “modeless” way by using ShareKernel, but then you give up the

ability to have the kernel use the front end during computations initiated by actions in Java.

Luckily, the ShareFrontEnd function exists to restore these features for modeless windows.

Re-implement the graphics dialog in modeless form.

DoGraphicsDialogModeless[] :=
JavaBlock[

Module[{frm, btn, listener, tok},
 InstallJava[];
 frm = JavaNew["GraphicsDlg"];
 btn = frm@getEvalButton[];

listener = JavaNew["com.wolfram.jlink.MathActionListener"];
listener@setHandler["actionPerformed", "btnFunc"];
btn@addActionListener[listener];

 tok = ShareFrontEnd[];
 frm@onClose["UnshareFrontEnd[" <> ToString[tok] <> "]"];
 JavaShow[frm]
]
]

The code shown is exactly the same as DoGraphicsDialogModal except for the last few lines.

You call ShareFrontEnd here instead of setModal and DoModal. That is the only difference~the

rest of the code (including btnFunc) is exactly the same. Notice also that you use the

onClose() method of MathCanvas to execute code that unregisters the request for front end

sharing when the window is closed.

Run the modeless version. Note how you can continue to perform computations in the front end

while the window is active.

DoGraphicsDialogModeless[]

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

402 J/Link User Guide

This new version functions exactly like the modeless version except that it does not leave the

front end hanging in the middle of a computation. It is interesting to contrast what happens if

you turn off front end sharing (but you need to leave kernel sharing on or the Java dialog will

break completely). You can do this by replacing ShareFrontEnd and UnshareFrontEnd in

DoGraphicsDialogModeless with ShareKernel and UnshareKernel. Now if you use the dialog

you will find that it fails to render typeset expressions, producing just a blank window, but it

still renders graphics normally (unless they have some typeset elements in them, such as a plot

label). All the functionality is kept intact except for the ability of the kernel to make use of the

front end for typesetting services.

BouncingBalls: Drawing in a Window

This example demonstrates drawing in Java windows using the Java graphics API directly from

Mathematica. It also demonstrates the use of the ServiceJava function to periodically allow

event handler callbacks into Mathematica from Java. The issues surrounding ServiceJava and

how it compares to DoModal and ShareKernel are discussed in greater detail in “Manual” Inter-

faces: The ServiceJava Function.

The full code is a little too long to include here in its entirety, but it is available in the sample

file BouncingBalls.nb in the JLink/Examples/Part1 directory. Here is an excerpt that demon-

strates the use of ServiceJava.

...
mwl = JavaNew["com.wolfram.jlink.MathWindowListener"];
mwl@setHandler["windowClosing", "(keepOn = False)&"];
mathCanvas@addWindowListener[mwl];
keepOn = True;
While[keepOn,

g@setColor[bkgndColor];
g@fillRect[0, 0, 300, 300];
drawBall[g, #]& /@ balls;
mathCanvas@setImage[offscreen];
balls = recomputePosition /@ balls;
ServiceJava[]

];
...

A MathWindowListener is used to set keepOn = False when the window is closed, which will

cause the loop to terminate. While the window is up, mouse clicks will cause new balls to be

MathMouseListener

(not shown in the code). Thus, Mathematica needs to be able to handle calls originating from

user actions in Java. As discussed in the section "Creating Windows and Other User Interface

Elements", there are three ways to enable Mathematica to do this: DoModal (modal interfaces),

ShareKernel or ShareFrontEnd (modeless interfaces), and ServiceJava (manual interfaces). A

modal loop via DoModal would not be appropriate here because the kernel needs to be comput-

ing something at the same time it is servicing calls from Java (it is computing the new positions

of the balls and drawing them). ShareKernel would not help because that is a way to give Java

access to the kernel between computations triggered from the front end, not during such

computations.

J/Link User Guide 403

A MathWindowListener is used to set keepOn = False when the window is closed, which will

created, appended to the balls list, and set in motion. This is done with a MathMouseListener

(not shown in the code). Thus, Mathematica needs to be able to handle calls originating from

user actions in Java. As discussed in the section "Creating Windows and Other User Interface

Elements", there are three ways to enable Mathematica to do this: DoModal (modal interfaces),

ShareKernel or ShareFrontEnd (modeless interfaces), and ServiceJava (manual interfaces). A

modal loop via DoModal would not be appropriate here because the kernel needs to be comput-

ing something at the same time it is servicing calls from Java (it is computing the new positions

of the balls and drawing them). ShareKernel would not help because that is a way to give Java

access to the kernel between computations triggered from the front end, not during such

computations.

You need to periodically point the kernel’s attention at Java to service requests if any are pend-

ing, then let the kernel get back to its other work. The function that does this is ServiceJava,

and the code above is typical in that it has a loop that calls ServiceJava every time through.

The calls from Java that ServiceJava will handle are the ones from mouse clicks to create new

balls and when the window is closed.

Spirograph

This example is just a little fun to create an interesting, nontrivial application~an implementa-

tion of a simple Spirograph-type drawing program. It is run as a modal window, and it demon-

strates drawing into a Java window from Mathematica, along with a number of MathListener

objects for various event callbacks. It uses the Java Graphics2D API, so it will not run on

systems that have only a Java 1.1.x runtime.

The code for this example can be found in the file Spirograph.nb in the JLink/Examples/Part1

directory.

One of the things you will notice is that on a reasonably fast machine, the speed is perfectly

acceptable. There is nothing to suggest that the entire functionality of the application is scripted

from Mathematica. It is very responsive despite the fact that a large number of callbacks to

Mathematica are triggered. For example, the cursor is changed as you float the mouse over

various regions of the window (it changes to a resize cursor in some places), so there is a

constant flow of callbacks to Mathematica as you move the mouse. This example demonstrates

the feasibility of writing a sophisticated application entirely in Mathematica.

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

404 J/Link User Guide

This application was written in Mathematica, but it could also have been written entirely in Java,

or a combination of Java and Mathematica. An advantage of doing it in Mathematica is that you

generally can be much more productive. Spirograph would have taken at least twice as long to

write in Java. It is invaluable to be able to write and test the program a line at a time, and to

debug and modify it while it is running. Even if you intend to eventually port the code to pure

Java, it can be very useful to begin writing it in Mathematica, just to take advantage of the

scripting mode of development.

Modal programs like this are best developed using ShareFrontEnd, then made modal only when

they are complete. Making it modeless while it is being developed is necessary to be able to

build and debug it interactively, because while it is running you can continue to use the front

end to modify the code, make new definitions, add debugging statements, and so on. Using

ShareFrontEnd instead of ShareKernel for modeless operation lets Mathematica error and

warning messages generated by event callbacks, and Print statement inserted for debugging,

show up in the notebook window. Only when everything is working as desired do you add the

DoModal@D call to turn it into a modal window.

A Piano Keyboard

With the inclusion of the Java Sound API in Java 1.3 and later, it becomes possible to write Java

programs that do sophisticated things with sound, such as playing MIDI instruments. The

Piano.nb example in the JLink/Examples/Part1 directory displays a keyboard and lets you play it

by clicking the mouse. A popup menu at the top lists the available MIDI instruments. This

example was created precisely because it is so far outside the limitations of traditional Mathemat-

ica programming. Using J/Link, you can actually write a short and completely portable program,

entirely in the Mathematica language, that displays a MIDI keyboard and lets you play it! With

just a little more work, the code could be modified to record a sequence played and then return

it to Mathematica, where you could manipulate it by transposing, altering the tempo, and so on.

J/Link User Guide 405

Writing Java Programs That Use Mathematica

Introduction

The first part of this User Guide describes using J/Link to allow you to call from Mathematica

into Java, thereby extending the Mathematica environment to include the functionality in all

existing and future Java classes. This part shows you how to use J/Link in the opposite direc-

tion, as a means to write Java programs that use the Mathematica kernel as a computational

engine.

J/Link uses MathLink, Wolfram Research’s protocol for sending data and commands between

programs. Many of the concepts and techniques in J/Link programming are the same as those

for programming with the MathLink C-language API. The J/Link documentation is not intended

to be an encyclopedic compendium of everything you need to know to write Java programs that

use MathLink. Programmers may have to rely a little on the general documentation of MathLink

programming. Many of the functions J/Link provides have C-language counterparts that are

identical or nearly so.

If you have not read "Calling Java from Mathematica", you should at least skim it at some

point. Your Java “front end” can use the same techniques for calling Java methods from Mathe-

matica code and passing Java objects as arguments that programmers use when running the

kernel from the notebook front end. This allows you to have a very high-level interface between

Java and Mathematica. When you are writing MathLink programs in C, you have to think about

passing and returning simple things like strings and integers. With J/Link you can pass Java

objects back and forth between Java and Mathematica. J/Link truly obliterates the boundary

between Java and Mathematica.

Although Java is quite useful as a web-related development language, such as for writing

applets or servlets, it is by no means restricted to this domain, and this User Guide does not

address the specifics of these types of programs. Addressed are generic issues in J/Link program-

ming, leaving the application of these concepts in specific types of programs up to the reader.

In other words, if you are looking for a worked-out example program showing how a suite of

servlets running on a web or application server can allow remote Java clients to share a cluster

of Mathematica kernels, you will not find it here. But J/Link is just the sort of tool you will need

if you embark on such a project.

This half of the User Guide is organized as follows. "What Is MathLink?" is a very brief introduc-

tion to MathLink. The section "Preamble" introduces the most important J/Link interfaces and

classes. "Sample Program" presents a simple example program. "Creating Links with MathLink-

Factory" shows how to launch Mathematica and create links. "The MathLink Interface" and "The

KernelLink Interface" give a listing of methods in the large and all-important MathLink and

KernelLink interfaces. The methods are grouped by function, and there is some commentary

mixed in. This treatment does not replace the actual JavaDoc help files for J/Link, found in the

JLink/Documentation/JavaDoc directory. The JavaDoc files are the main method-by-method

reference for J/Link, and they include all the classes and interfaces that programmers will use.

The remaining sections of this User Guide present discussions of a number of important topics

in J/Link programming, including how to handle exceptions and get graphics and typeset output.

406 J/Link User Guide

This half of the User Guide is organized as follows. "What Is MathLink?" is a very brief introduc-

tion to MathLink. The section "Preamble" introduces the most important J/Link interfaces and

classes. "Sample Program" presents a simple example program. "Creating Links with MathLink-

Factory" shows how to launch Mathematica and create links. "The MathLink Interface" and "The

KernelLink Interface" give a listing of methods in the large and all-important MathLink and

KernelLink interfaces. The methods are grouped by function, and there is some commentary

mixed in. This treatment does not replace the actual JavaDoc help files for J/Link, found in the

JLink/Documentation/JavaDoc directory. The JavaDoc files are the main method-by-method

reference for J/Link, and they include all the classes and interfaces that programmers will use.

The remaining sections of this User Guide present discussions of a number of important topics

in J/Link programming, including how to handle exceptions and get graphics and typeset output.

When you are reading this text, or programming in Java or Mathematica, remember that the

entire source code for J/Link is provided. If you want to see how anything works (or why it does

not), you can always consult the source code directly.

What Is MathLink?

MathLink is a platform-independent protocol for communicating between programs. In more

concrete terms, it is a means to send and receive Mathematica expressions. MathLink is the

means by which the notebook front end and kernel communicate with each other. It is also

used by a large number of commercial and freeware applications and utilities that link Mathemat-

ica and other programs or languages.

MathLink is implemented as a library of C-language functions. Using it from another language

(such as Java) typically requires writing some type of “glue” code that translates between the

data types and calling conventions of that language and C. At the core of J/Link is just such a

translation layer~a library built using Java’s JNI (Java Native Interface) specification.

Throughout this part of the User Guide, the term MathLink will be used in two ways~as a

generic term for the capability Mathematica has to communicate with other programs, and as

the name for one specific J/Link interface. It will always be written in the special font used for

Java names when the interface name is being used.

J/Link User Guide 407

Overview of the Main J/Link Interfaces and Classes

Preamble

The J/Link classes are written in an object-oriented style intended to maximize their extensibil-

ity in the future without requiring users’ code to change. This requires a clean separation

between interface and implementation. This is accomplished by exposing the main link function-

ality through interfaces, not classes. The names of the concrete classes that implement these

interfaces will hardly be mentioned because programmers do not need to know or care what

they are. Rather, you will use objects that belong to one of the interface types. You do not need

to know what the actual classes are because you will never create an instance directly; instead,

you use a “factory method” to create an instance of a link class. This will become clear further

on.

MathLink and KernelLink

The two most important link interfaces you need to know about are MathLink and KernelLink.

The MathLink interface is essentially a port of the MathLink C API into Java. Most of the

method names will be familiar to experienced MathLink programmers. KernelLink extends

MathLink and adds some important high-level convenience methods that are only meaningful if

the other side of the link is a Mathematica kernel (for example, the method waitForAnswer(),

which assumes the other side of the link will respond with a defined series of packets).

The basic idea is that the MathLink interface encompasses all the operations that can be per-

formed on a link without making any assumptions about what program is on the other side of

the link. KernelLink adds the assumption that the other side is a Mathematica kernel. In the

future, other interfaces could be added that also extend MathLink and encapsulate other conven-

tions for communicating over a link.

KernelLink is the most important interface, as most programmers will work exclusively with

KernelLink. Of course, since KernelLink extends MathLink, many of the methods you will use

on your KernelLink objects are declared and documented in the MathLink interface.

The most important class that implements MathLink is NativeLink, so named because it uses

native methods to call into Wolfram Research’s MathLink library. In the future, other classes

could be added that do not rely on native methods~for example, one that uses RMI to communi-

cate across a network. As discussed above, most programmers do not need to be concerned

about what these classes are, because they will never type a link class name in their code.

MathLinkFactory

408 J/Link User Guide

MathLinkFactory

MathLinkFactory is the class that you use to create link objects. It contains the static methods

createMathLink(), createKernelLink(), and createLoopbackLink(), which take various

argument sequences. These are the equivalents of calling MLOpen in a C program. The

MathLinkFactory methods are discussed in detail in "Creating Links with MathLinkFactory".

MathLinkException

MathLinkException is the exception class that is thrown by many of the methods in MathLink

and KernelLink. The J/Link API uses exceptions to indicate errors, rather than function return

values like the MathLink C API. In C, you write code that checks the return values like this:

// C code
if (!MLPutInteger(link, 42)) {

// was error; print message and clean up.
}

In J/Link, you wrap MathLink calls in a try block and catch MathLinkException.

Expr

The Expr class provides a direct representation of Mathematica expressions in Java. Expr has a

number of methods that provide information about the structure of the expression and that let

you extract components. These methods have names and behaviors that will be familiar to

Mathematica programmers~for example, length(), part(), numberQ(), vectorQ(), take(),

delete(), and so on. When reading from a link, instead of using the low-level MathLink inter-

face methods for discovering the structure and properties of the incoming expression, you can

just read an entire expression from the link using getExpr(), and then use Expr methods to

inspect it or decompose it. For writing to a link, Expr objects can be used as arguments to

some of the most important KernelLink methods. The Expr class is discussed in detail in

"Motivation for the Expr Class".

PacketListener

A central component of a standard C MathLink program is a packet-reading loop, which typically

consists of calling the MathLink API functions MLNextPacket and MLNewPacket until a desired

packet is encountered. J/Link programs will typically not include such a loop~instead, you call

the KernelLink methods waitForAnswer() or discardAnswer(), which hide the packet loop

Print output or messages generated by a computation.

These outputs are side effects of a computation and not the “answer”, and they are normally

discarded by waitForAnswer().

J/Link User Guide 409

A central component of a standard C MathLink program is a packet-reading loop, which typically

consists of calling the MathLink API functions MLNextPacket and MLNewPacket until a desired

packet is encountered. J/Link programs will typically not include such a loop~instead, you call

within them. Not only is this a convenience to avoid having to put the same boilerplate code

into every program, it is necessary since in some circumstances programmers cannot write a

correct packet because special packets may arrive that J/Link needs to handle internally. It is

therefore necessary to hide the details of the packet loop from programmers. In some cases,

though, programmers will want to observe and/or operate on the incoming flow of packets. A

typical example would be to display Print output or messages generated by a computation.

These outputs are side effects of a computation and not the “answer”, and they are normally

discarded by waitForAnswer().

To accommodate this need, KernelLink objects fire a PacketArrivedEvent for each packet

that is encountered while running an internal packet loop. You can register your interest in

receiving notifications of these packets by creating a class that implements the

PacketListener interface and registering an object of this class with the KernelLink object.

The PacketListener interface has only one method, packetArrived(), which will be called for

each packet. Your packetArrived() method can consume or ignore the packet without affect-

ing the internal packet loop in any way. Very advanced programmers can optionally indicate

that the internal packet loop should not see the packet.

The PacketListener interface is discussed in greater detail in "Using the PacketListener

Interface".

High-Level User Interface Classes

J/Link includes several classes that are useful for creating programs that have user interfaces.

The MathCanvas and MathGraphicsJPanel classes provide an easy way to display Mathematica

graphics and typeset expressions. These classes are often used from Mathematica code, as

described in "The MathCanvas and MathGraphicsJPanel Classes", but they are just as useful in

Java programs. They are discussed in "MathCanvas and MathGraphicsJPanel". The various

“MathListener” classes ("Handling Events with Mathematica Code: The 'MathListener' Classes")

can be be used from Java code to trigger evaluations in Mathematica when user interface

actions occur.

New in J/Link 2.0 are the classes in the com.wolfram.jlink.ui package. These classes provide

some very high-level user interface elements. There is the ConsoleWindow class, which gives

you a console output window (this is the class used to implement the Mathematica function

ShowJavaConsole, discussed in "The Java Console Window"). The InterruptDialog class gives

MathSessionPane class

provides an In/Out Mathematica session window complete with a full set of editing functions

including cut/copy/paste/undo/redo, support for graphics, syntax coloring, and customizable

font styles. The auxiliary classes SyntaxTokenizer and BracketMatcher are used by

MathSessionPane but can also be used separately to provide these services in your own pro-

grams. All these classes are discussed in the section "Some Special User Interface Classes:

Introduction".

410 J/Link User Guide

New in J/Link 2.0 are the classes in the com.wolfram.jlink.ui package. These classes provide

some very high-level user interface elements. There is the ConsoleWindow class, which gives

you a console output window (this is the class used to implement the Mathematica function

you an Interrupt Evaluation dialog similar to the one you see in the notebook front end when

you choose Interrupt Evaluation from the Evaluation menu. The MathSessionPane class

provides an In/Out Mathematica session window complete with a full set of editing functions

including cut/copy/paste/undo/redo, support for graphics, syntax coloring, and customizable

font styles. The auxiliary classes SyntaxTokenizer and BracketMatcher are used by

MathSessionPane but can also be used separately to provide these services in your own pro-

grams. All these classes are discussed in the section "Some Special User Interface Classes:

Introduction".

Sample Program

Here is a basic Java program that launches the Mathematica kernel, uses it for some computa-

tions, and then shuts it down. This program is provided in source code and compiled form in the

JLink/Examples/Part2 directory. The usual MathLink arguments including the path to the kernel

are given on the command line you use to launch the program, and some typical examples are

given below. You will have to adjust the Mathematica kernel path for your system. If you have

your CLASSPATH environment variable set to include JLink.jar, then you can leave off the

-classpath specification in these command lines. It is assumed that these commands are

executed from the JLink/Examples/Part2 directory.

(Windows)
java -classpath .;..\..\JLink.jar SampleProgram -linkmode launch -linkname
"c:\program files\wolfram research\mathematica\6.0\mathkernel.exe"

(Unix)
java -classpath .:../../JLink.jar SampleProgram -linkmode launch -linkname
'math -mathlink'

(Mac OS X from a terminal window)
java -classpath .:../../JLink.jar SampleProgram -linkmode launch -linkname
'"/Applications/Mathematica.app/Contents/MacOS/MathKernel" -mathlink'

J/Link User Guide 411

Here is the code from SampleProgram.java. This program demonstrates launching the kernel

with MathLinkFactory.createKernelLink(), and several different ways to send computa-

tions to Mathematica and read the result.

import com.wolfram.jlink.*;

public class SampleProgram {

public static void main(String[] argv) {

KernelLink ml = null;

try {
ml = MathLinkFactory.createKernelLink(argv);

} catch (MathLinkException e) {
System.out.println("Fatal error opening link: " +

e.getMessage());
return;

}

try {
// Get rid of the initial InputNamePacket the kernel will send
// when it is launched.
ml.discardAnswer();

ml.evaluate("<<MyPackage.m");
ml.discardAnswer();

ml.evaluate("2+2");
ml.waitForAnswer();

int result = ml.getInteger();
System.out.println("2 + 2 = " + result);

// Here's how to send the same input, but not as a string:
ml.putFunction("EvaluatePacket", 1);
ml.putFunction("Plus", 2);
ml.put(3);
ml.put(3);
ml.endPacket();
ml.waitForAnswer();
result = ml.getInteger();

412 J/Link User Guide

 " +

 will send

System.out.println("3 + 3 = " + result);

// If you want the result back as a string, use
evaluateToInputForm

// or evaluateToOutputForm. The second arg for either is the
// requested page width for formatting the string. Pass 0 for
// PageWidth->Infinity. These methods get the result in one
// step--no need to call waitForAnswer.
String strResult = ml.evaluateToOutputForm("4+4", 0);
System.out.println("4 + 4 = " + strResult);

} catch (MathLinkException e) {
System.out.println("MathLinkException occurred: " +

e.getMessage());
} finally {

ml.close();
}

}
}

Creating Links with MathLinkFactory

To isolate clients of the J/Link classes from implementation details it is required that clients

never explicitly name a link class in their code. This means that programs will never call new to

create an instance of a link class. Instead, a so-called “factory method” is supplied that creates

an appropriate instance for you, based on the arguments you pass in. This factory method

takes the place of calling MLOpen in a C program.

The method that creates a KernelLink is a static method called createKernelLink() in the

MathLinkFactory class:

public static KernelLink createKernelLink(String cmdLine) throws
MathLinkException

public static KernelLink createKernelLink(String[] argv) throws
MathLinkException

. . . plus a few more of limited usefulness

There are also two functions called createMathLink() that take the same arguments but

create a MathLink instead of a KernelLink. Very few programmers will need to use creÖ

ateMathLink() because the only reason to do so is if you are connecting to a program other

than the Mathematica kernel. See the JavaDoc files for a complete listing of the methods.

The second signature of createKernelLink() is convenient if you are using the command-line

parameters that your program was launched with, which are, of course, provided to your

main() function as an array of strings. An example of this use can be found in the sample

program in the section "Sample Program". Other times it will be convenient to specify the

parameters as a single string, for example:

J/Link User Guide 413

The second signature of createKernelLink() is convenient if you are using the command-line

parameters that your program was launched with, which are, of course, provided to your

main() function as an array of strings. An example of this use can be found in the sample

program in the section "Sample Program". Other times it will be convenient to specify the

parameters as a single string, for example:

KernelLink ml = MathLinkFactory.createKernelLink("-linkmode launch
-linkname 'c:\\program files\\wolfram
research\\mathematica\\6.0\\mathkernel'");

Note that the linkname argument is wrapped in single quotation marks ('). This is because

MathLink parses this string as a complete command line, and wrapping it in single quotation

marks is an easy way to force it to be seen as just a filename. Also note that it is required to

type two backslashes to indicate a Windows directory separator character when you are typing

a literal string in your Java code because Java, like C and Mathematica, treats the \ as a meta-

character that quotes the character following.

Here are some typical arguments for createKernelLink() on various platforms when given as

a single string. Note the use of quote characters (' and "):

// Typical launch on Windows
KernelLink ml = MathLinkFactory.createKernelLink("-linkmode launch
-linkname 'c:\\program files\\wolfram
research\\mathematica\\mathkernel.exe'");

// Typical launch on Unix
KernelLink ml = MathLinkFactory.createKernelLink("-linkmode launch
-linkname 'math -mathlink'");

// Typical launch on Mac OS X
KernelLink ml = MathLinkFactory.createKernelLink("-linkmode launch
-linkname '\"/Applications/Mathematica.app/Contents/MacOS/MathKernel\"
-mathlink'");

// Typical "listen" link on any platform:
KernelLink ml = MathLinkFactory.createKernelLink("-linkmode listen
-linkname 1234 -linkprotocol tcp");

// Windows can use the default protocol for listen/connect links:
KernelLink ml = MathLinkFactory.createKernelLink("-linkmode listen
-linkname foo");

414 J/Link User Guide

Here are typical arguments for createKernelLink() when given as an array of strings:

// Typical launch on Windows:
String[] argv = {"-linkmode", "launch", "-linkname", "c:\\program
files\\wolfram research\\mathematica\\6.0\\mathkernel"};

// Typical launch on UNIX:
String[] argv = {"-linkmode", "launch", "-linkname", "math -mathlink"};

// Typical launch on Mac OS X:
String[] argv = {"-linkmode", "launch", "-linkname",
"\"/Applications/Mathematica.app/Contents/MacOS/MathKernel\" -mathlink"};

// Typical "listen" link on any platform:
String[] argv = {"-linkmode", "listen", "-linkname", "1234", "-
linkprotocol", "tcp"};

// Windows can use the default protocol for listen/connect links:
String[] argv = {"-linkmode", "listen", "-linkname", "foo"};

The arguments for createKernelLink() and createMathLink() (e.g., -linkmode,

-linkprotocol, and so on) are identical to those used for MLOpen in the MathLink C API. Consult

the MathLink documentation for more information.

The createKernelLink() and createMathLink() methods will always return a link object

that is not null or throw a MathLinkException. You do not need to test whether the returned

link is null. Because these methods throw a MathLinkException on failure, you need to wrap

the call in a try block:

KernelLink ml = null;
try {

ml = MathLinkFactory.createKernelLink("-linkmode launch -linkname
'c:\\program files\\wolfram research\\mathematica\\6.0\\mathkernel'");
} catch (MathLinkException e) {

// This is equivalent to MLOpen returning NULL in a C program.
System.out.println(e.getMessage());
System.exit(1);

}

The fact that createKernelLink() succeeds does not mean that the link is connected and

functioning properly. There are a lot of things that could be wrong. For example, if you launch a

program that knows nothing about MathLink, createKernelLink() will still succeed. There is a

J/Link User Guide 415

The fact that createKernelLink() succeeds does not mean that the link is connected and

functioning properly. There are a lot of things that could be wrong. For example, if you launch a

difference between creating a link (which involves setting up your side) and connecting one

(which verifies that the other side is alive and well).

If a link has not been connected yet, MathLink will automatically try to connect it the first time

you try to read or write something. Alternatively, you can call the connect() method to explic-

itly connect the link after creating it. If the link cannot be connected, then the attempt to con-

nect, whether made explicitly by you or internally by MathLink, will fail or even hang indefi-

nitely. It can hang because the attempt to connect will block until the connection succeeds or

until it detects a fatal problem with the link. In some cases, neither will happen~for example, if

you mistakenly launch a program that is not MathLink-aware. Dealing with blocking in J/Link

methods is discussed more thoroughly later, but in the case of connecting the link you have an

easy solution. The connect() method has a second signature that takes a long argument

specifying the number of milliseconds to wait before abandoning the attempt to connect: conÖ

nect(long timeoutMillis). You do not need to explicitly call connect() on a link~it will be

connected for you the first time you try to read something. You can use a call to connect() to

catch failures at a well-defined place, or if you want to use the automatic time out feature. Here

is a code fragment that demonstrates how to implement a time out in connect().

KernelLink ml = null;
try {

ml = MathLinkFactory.createKernelLink("-linkmode launch -linkname
'c:\\program files\\wolfram research\\mathematica\\6.0\\mathkernel'");
} catch (MathLinkException e) {

System.out.println("Link could not be created: " + e.getMessage());
return; // Or whatever is appropriate.

}

try {
connect(10000); // Wait at most 10 seconds

} catch (MathLinkException e) {
// If the timeout expires, a MathLinkException will be thrown.
System.out.println("Failure to connect link: " + e.getMessage());
ml.close();
return; // Or whatever is appropriate.

}

When you are finished with a link, call its close() method. Although the finalizer for a link

object will close the link, you cannot guarantee that the finalizer will be called in a timely fash-

ion, or even at all, so you should always manually close a link when you are done.

416 J/Link User Guide

Using Listen and Connect Modes

You can use the listen and connect linkmodes, instead of launch, if you want to connect to an

already-running program. Using listen and connect linkmodes in J/Link works in the same way

as with C MathLink programs. See the MathLink Tutorial

(http://library.wolfram.com/infocenter/TechNotes/174/) or "MathLink and External Program

Communication" for more information.

Using a Remote Kernel

To attach a remote Mathematica kernel to a J/Link program, open the link using the listen/con-

nect style. On the remote Unix machine, launch Mathematica and have it listen on a link by

executing the following on a command line.

math -mathlink -linkmode listen -linkname 1234 -linkprotocol tcpip

Note the use of the TCPIP MathLink protocol. The TCPIP protocol is an improved version of the

TCP protocol that is only supported in Mathematica 5.0 and later. If you are launching Mathemat-

ica 4.x, use tcp as the protocol name instead of tcpip (also in the following line).

Then in your Java program:

KernelLink ml = MathLinkFactory.createKernelLink("-linkmode connect
-linkprotocol tcpip -linkname 1234@remotemachinename");

The drawback to the listen/connect technique is that you must manually log into the remote

machine and launch Mathematica. You can have the Java program automatically launch Mathe-

matica on the remote machine by using an rsh or ssh client program. Unix machines have rsh

and ssh built in, and Mathematica ships with the winrsh client program for Windows. Here is

an example of using winrsh to launch and connect to Mathematica on a remote Unix machine.

KernelLink ml = MathLinkFactory.createKernelLink("-linkmode listen
-linkprotocol tcpip -linkname 1234");
Runtime.exec("c:\\program files\\wolfram
research\\mathematica\\6.0\\systemfiles\\frontend\\binaries\\windows\\winrs
h -m -q -h -l YourUsername -'math -mathlink -linkmode connect
-linkprotocol tcpip -linkname 1234@localmachinename'");

J/Link User Guide 417

The MathLink Interface

MathLink is the low-level interface that is the root of all link objects in J/Link. The methods in

MathLink correspond roughly to a subset of those in the C-language MathLink API. Most pro-

grammers will deal instead with objects of type KernelLink, a higher-level interface that

extends MathLink and incorporates the assumption that the program on the other side of the

link is a Mathematica kernel.

There will not be much said here about most of these methods, as they behave like their C API

counterparts in most respects. The JavaDoc help files are the main method-by-method documen-

tation for all the J/Link classes and interfaces. They can be found in the JLink/Documentation/

JavaDoc directory. This section is provided mainly for those who want to skim a traditional

printed listing.

These are all public methods (the public has been left off to keep lines short).

Managing Links

void close();

void connect() throws MathLinkException;

// Wait at most timeoutMillis for the connect to occur, then throw a
MathLinkException
void connect(long timeoutMillis) throws MathLinkException;

//A synonym for connect. This is the newer name.
void activate() throws MathLinkException;

Packet Functions

//Does not throw exception because it will often be needed in a catch
block.
void newPacket();

int nextPacket() throws MathLinkException;

void endPacket() throws MathLinkException;

418 J/Link User Guide

Error Handling

int error();

boolean clearError();

String errorMessage();

void setError(int err);

Link State

boolean ready() throws MathLinkException;

Putting

Putting expressions on the link is a bit different in Java than C because Java lets you overload

functions. Thus, there is no need to have methods with names like the C functions

MLPutInteger and MLPutDouble; it suffices to have a single function named put() that has

different definitions for each argument type. The only exceptions to this are the few cases

where the argument needs to be interpreted in a special way. For example, there are three

“put” methods that take a single string argument: put() (equivalent to the C-language func-

tion MLPutUCS2String), putSymbol() (equivalent to MLPutUCS2Symbol), and putÖ

ByteString() (equivalent to MLPutByteString).

For numeric types, there are the following methods (there is no need to provide a put()

method for byte, char, and short types, as these can be automatically promoted to int):

void put(int i) throws MathLinkException;

void put(long i) throws MathLinkException;

void put(double d) throws MathLinkException;

For strings and symbols:

void put(String s) throws MathLinkException;

void putByteString(byte[] b) throws MathLinkException;

void putSymbol(String s) throws MathLinkException;

All the J/Link methods that put or get strings use Unicode, which is the native format for Java

strings.

For Booleans, a Java true is sent as the Mathematica symbol True, and False for Java false:

J/Link User Guide 419

For Booleans, a Java true is sent as the Mathematica symbol True, and False for Java false:

void put(boolean b) throws MathLinkException;

There is also a put() method for arbitrary Java objects. In the default implementation, this

does not do anything very useful for most objects (what it does is send obj.toString()). A

handful of objects, however, have a meaningful representation to Mathematica. These are

arrays, strings, Expr objects (discussed elsewhere), and instances of the so-called “wrapper”

classes (Integer, Double, Character, and so on), which hold single numeric values. Arrays

are sent as lists, strings are sent as Mathematica strings, and the wrapper classes are sent as

their numeric value. (The last case is for complex numbers, which will be discussed later.)

void put(Object obj) throws MathLinkException;

There is a special method for arrays that lets you specify the heads of the array in each dimen-

sion. The heads are passed as an array of strings. Note that unlike the C counterparts

(MLPutInteger32Array, MLPutReal64Array, and so on), you do not have to specify the depth

or dimensions because they can be inferred from the array itself:

void put(Object array, String[] heads) throws MathLinkException;

For putting Mathematica functions:

void putFunction(String f, int argCount) throws MathLinkException;

For transferring expressions from one link to another (the ‘this’ link is the destination):

void transferExpression(MathLink source) throws MathLinkException;

void transferToEndOfLoopbackLink(LoopbackLink source) throws
MathLinkException;

Low-level “textual interface”:

void putNext(int type) throws MathLinkException;

void putArgCount(int argCount) throws MathLinkException;

void putSize(int size) throws MathLinkException;

int bytesToPut() throws MathLinkException;

void putData(byte[] data) throws MathLinkException;

void putData(byte[] data, int len) throws MathLinkException;

Flushing:

420 J/Link User Guide

Flushing:

void flush();

Getting

Because you cannot overload methods on the basis of return type, there is no catchall get()

method for reading from the link, as is the case with the put() method. Instead, there are

separate methods for each data type. Notice that unlike their counterparts in the C API, these

methods return the actual data that was read, not an error code (exceptions are used for

errors, as with all the methods).

int getInteger() throws MathLinkException;

long getLongInteger() throws MathLinkException;

double getDouble() throws MathLinkException;

String getString() throws MathLinkException;

byte[] getByteString(int missing) throws MathLinkException;

String getSymbol() throws MathLinkException;

boolean getBoolean() throws MathLinkException;

Arrays of the nine basic types (boolean, byte, char, short, int, long, float, double,

String), as well as complex numbers, can be read with a set of methods of the form getXXXArÖ

rayN(), where XXX is the data type and N specifies the depth of the array. For each type there

are two methods like the following examples for int. There is no way to get the heads of the

array using these functions (it will typically be “List” at every level). If you need to get the

heads as well, you should use getExpr() to read the expression as an Expr and then examine

it using the Expr methods.

int[] getIntArray1() throws MathLinkException;

int[][] getIntArray2() throws MathLinkException;

... and others for all the eight primitive types and String and the
complex class

Note that you do not have to know exactly how deep the array is to use these functions. If you

call, say, getFloatArray1(), and what is actually on the link is a matrix of reals, then the

data will be flattened into the requested depth (a one-dimensional array in this case). Unfortu-

nately, if you do this you cannot determine what the original depth of the data was. If you call a

function that expects an array of depth greater than the actual depth of the array on the link, it

will throw a MathLinkException.

J/Link User Guide 421

Note that you do not have to know exactly how deep the array is to use these functions. If you

call, say, getFloatArray1(), and what is actually on the link is a matrix of reals, then the

data will be flattened into the requested depth (a one-dimensional array in this case). Unfortu-

nately, if you do this you cannot determine what the original depth of the data was. If you call a

function that expects an array of depth greater than the actual depth of the array on the link, it

will throw a MathLinkException.

If you need to read an array of depth greater than 2 (but a maximum of 5) , you can use the

getArray() method. The getXXXArrayN() methods already discussed are just convenience

methods that use getArray() internally. The type argument must be one of TYPE_BOOLEAN,

TYPE_BYTE, TYPE_CHAR, TYPE_SHORT, TYPE_INT, TYPE_LONG, TYPE_FLOAT, TYPE_DOUBLE,

TYPE_STRING, TYPE_EXPR, TYPE_BIGINTEGER, TYPE_BIGDECIMAL, or TYPE_COMPLEX.

Object getArray(int type, int depth) throws MathLinkException;

// New in J/Link 2.0:
Object getArray(int type, int depth, String[] heads) throws
MathLinkException;

New in J/Link 2.0 is getArray(int type, int depth, String[] heads). It reads an array

and also tells you the heads at each level. See the JavaDocs for more information.

Unlike the C MathLink API, there are no methods for “disowning” strings or arrays because this

is not necessary. When you read a string or array off the link, your program gets its own copy

of the data, so you can write into it if you desire (although Java strings are immutable).

The getFunction() method needs to return two things: the head and the argument count.

Thus, there is a special class called MLFunction that encapsulates both these pieces of informa-

tion, and this is what getFunction() returns. The MLFunction class is documented later.

MLFunction getFunction() throws MathLinkException;

// Returns the function's argument count. Throws MathLinkException if the
function
// is not the specified one.
int checkFunction(String f) throws MathLinkException;

//Throws an exception if the incoming function does not have this head and
arg count.
void checkFunctionWithArgCount(String f, int argCount) throws
MathLinkException;

These methods support the low-level interface for reading from a link.

422 J/Link User Guide

These methods support the low-level interface for reading from a link.

int getNext() throws MathLinkException;

int getType() throws MathLinkException;

int getArgCount() throws MathLinkException;

int bytesToGet() throws MathLinkException;

byte[] getData(int len) throws MathLinkException;

Reading Expr objects:

public Expr getExpr() throws MathLinkException;

// Gets an expression off the link, then resets the link to the state
// prior to reading the expr. You can "peek" ahead without consuming
anything
// off the link.
public Expr peekExpr() throws MathLinkException;

Messages

The messages referred to by the following functions are not Mathematica warning messages,

but a low-level type of MathLink communication used mainly to send interrupt and abort

requests. The getMessage() and messageReady() methods no longer function in J/Link 2.0

and later. You must use setMessageHandler() if you want to receive messages from Mathe-

matica.

int getMessage() throws MathLinkException;

void putMessage(int msg) throws MathLinkException;

boolean messageReady() throws MathLinkException;

Marks

long createMark() throws MathLinkException;

//Next two don't throw, since they are often used in cleanup operations in
catch handlers.

void seekMark(long mark);

void destroyMark(long mark);

Complex Class

J/Link User Guide 423

Complex Class

The setComplexClass() method lets you assign the class that will be mapped to complex

numbers in Mathematica. “Mapped” means that the put(Object) method will send a Mathemat -

ica complex number when you call it with an object of your complex class, and getComplex()

will return an instance of this class. For further discussion about this subject and the restrictions

on the classes that can be used as the complex class, see "Complex Numbers".

public boolean setComplexClass(Class cls);

public Class getComplexClass();

public Object getComplex() throws MathLinkException;

Yield and Message Handlers

The setYieldFunction() and addMessageHandler() methods take a class, an object, and a

method name as a string. The class is the class that contains the named method, and the

object is the object of that class on which to call the method. Pass null for the object if it is a

static method. The signature of the method you use in setYieldFunction() must be V(Z); for

addMessageHandler() it must be II(V). See "Threads, Blocking, and Yielding" for more informa -

tion and examples.

public boolean setYieldFunction(Class cls, Object obj, String methName);

public boolean addMessageHandler(Class cls, Object obj, String methName);

public boolean removeMessageHandler(String methName);

Constants

The MathLink class also includes the full set of user-level constants from MathLink.h. They

have exactly the same names in Java as in C. In addition, there are some J/Link-specific

constants.

static int ILLEGALPKT;
static int CALLPKT;
static int EVALUATEPKT;
static int RETURNPKT;
static int INPUTNAMEPKT;
static int ENTERTEXTPKT;

424 J/Link User Guide

static int ENTEREXPRPKT;
static int OUTPUTNAMEPKT;
static int RETURNTEXTPKT;
static int RETURNEXPRPKT;
static int DISPLAYPKT;
static int DISPLAYENDPKT;
static int MESSAGEPKT;
static int TEXTPKT;
static int INPUTPKT;
static int INPUTSTRPKT;
static int MENUPKT;
static int SYNTAXPKT;
static int SUSPENDPKT;
static int RESUMEPKT;
static int BEGINDLGPKT;
static int ENDDLGPKT;
static int FIRSTUSERPKT;
static int LASTUSERPKT;

//These next two are unique to J/Link.
static int FEPKT;
static int EXPRESSIONPKT;

static int MLTERMINATEMESSAGE;
static int MLINTERRUPTMESSAGE;
static int MLABORTMESSAGE;

static int MLTKFUNC;
static int MLTKSTR;
static int MLTKSYM;
static int MLTKREAL;
static int MLTKINT;
static int MLTKERR;

//Constants for use in getArray()
static int TYPE_BOOLEAN;
static int TYPE_BYTE;
static int TYPE_CHAR;
static int TYPE_SHORT;
static int TYPE_INT;
static int TYPE_LONG;
static int TYPE_FLOAT;

J/Link User Guide 425

static int ILLEGALPKT;
static int CALLPKT;
static int EVALUATEPKT;
static int RETURNPKT;
static int INPUTNAMEPKT;
static int ENTERTEXTPKT;
static int ENTEREXPRPKT;
static int OUTPUTNAMEPKT;
static int RETURNTEXTPKT;
static int RETURNEXPRPKT;
static int DISPLAYPKT;
static int DISPLAYENDPKT;
static int MESSAGEPKT;
static int TEXTPKT;
static int INPUTPKT;
static int INPUTSTRPKT;
static int MENUPKT;
static int SYNTAXPKT;
static int SUSPENDPKT;
static int RESUMEPKT;
static int BEGINDLGPKT;
static int ENDDLGPKT;
static int FIRSTUSERPKT;
static int LASTUSERPKT;

//These next two are unique to J/Link.
static int FEPKT;
static int EXPRESSIONPKT;

static int MLTERMINATEMESSAGE;
static int MLINTERRUPTMESSAGE;
static int MLABORTMESSAGE;

static int MLTKFUNC;
static int MLTKSTR;
static int MLTKSYM;
static int MLTKREAL;
static int MLTKINT;
static int MLTKERR;

//Constants for use in getArray()
static int TYPE_BOOLEAN;
static int TYPE_BYTE;
static int TYPE_CHAR;
static int TYPE_SHORT;
static int TYPE_INT;
static int TYPE_LONG;
static
static int TYPE_DOUBLE;
static int TYPE_STRING;
static int TYPE_BIGINTEGER;
static int TYPE_BIGDECIMAL;
static int TYPE_EXPR;
static int TYPE_COMPLEX;

The KernelLink Interface

KernelLink is the interface that you will probably use for the links in your programs. These are

all public methods, as is always the case with a Java interface. This section provides only a brief

summary of the KernelLink methods; it is intended mainly for those who want to skim a

traditional printed listing. The JavaDoc help files are the main method-by-method documenta-

tion for all the J/Link classes and interfaces. They can be found in the JLink/Documentation/

JavaDoc directory.

Evaluate

The evaluate() method encapsulates the steps needed to put an expression to Mathematica

as a string or Expr and get the answer back as an expression. Internally, it uses an

EvaluatePacket for sending the expression. The answer comes back in a ReturnPacket, alt-

hough the waitForAnswer() method opens up the ReturnPacket~all you have to do is read

out its contents. You should always use waitForAnswer() or discardAnswer() instead of

spinning your own packet loop waiting for a ReturnPacket. See "The MathLink 'Packet Loop'".

void evaluate(String s) throws MathLinkException;

void evaluate(Expr e) throws MathLinkException;

Waiting for the Result

Call waitForAnswer() right after evaluate() (or if you manually send calculations wrapped in

EvaluatePacket). It will read packets off the link until it encounters a ReturnPacket, which will

hold the result. See "The MathLink 'Packet Loop'".

void waitForAnswer() throws MathLinkException;

The discardAnswer() method just throws away all the results from the calculation, so the link

will be ready for the next calculation. As you may have guessed, it is nothing more than waitÖ

ForAnswer() followed by newPacket().

void discardAnswer() throws MathLinkException;

426 J/Link User Guide

The “evaluateTo” Methods

The next set of methods are extensions of evaluate() that perform the put and the reading of

the result. You do not call waitForAnswer() and then read the result yourself. They also do

not throw MathLinkException~if there is an error, they clean up for you and return null. The

“evaluateTo” in their names indicates that the methods perform the entire process themselves.

evaluateToInputForm() returns a string formatted in InputForm at the specified page width.

Specify 0 for the page width to get Infinity. evaluateToOutputForm() is exactly like evaluÖ

ateToInputForm() except that it returns a string formatted in OutputForm. OutputForm

results are more attractive for display to the user, but InputForm is required if you want to

pass the string back to Mathematica to be used in further computations. The evaluateToImÖ

age() method will return a byte[] of GIF data if you give it an expression that returns a

graphic, for example, a Plot command. Pass 0 for the dpi, int, and width arguments if you

want their Automatic settings in Mathematica. evaluateToTypeset() returns a byte[] of GIF

data of the result of the computation, typeset in either StandardForm or TraditionalForm.

These methods are discussed in detail in evaluateToImage() and evaluateToTypeset()

String evaluateToInputForm(String s, int pageWidth);
String evaluateToInputForm(Expr e, int pageWidth);

String evaluateToOutputForm(String s, int pageWidth);
String evaluateToOutputForm(Expr e, int pageWidth);

byte[] evaluateToImage(String s, int width, int height);
byte[] evaluateToImage(Expr e, int width, int height);
byte[] evaluateToImage(String s, int width, int height, int dpi, boolean
useFrontEnd);
byte[] evaluateToImage(Expr e, int width, int height, int dpi, boolean
useFrontEnd);

byte[] evaluateToTypeset(String s, int pageWidth, boolean useStdForm);
byte[] evaluateToTypeset(Expr e, int pageWidth, boolean useStdForm);

// Returns the exception that caused the most recent "evaluateTo" method
to return null
Throwable getLastError();

J/Link User Guide 427

Sending Java Object References

If you want to send Java objects “by reference” to Mathematica so that Mathematica code can

call back into your Java runtime via the “installable Java” facility described in "Calling Java from

Mathematica", you must first call the enableObjectReferences() method. This is described in

"Sending Object References to Mathematica".

void enableObjectReferences() throws MathLinkException;

Like the MathLink interface, KernelLink has a put() method that sends objects. The

MathLink version of this method only sends objects “by value”. The KernelLink version

behaves just like the MathLink version for those objects that can be sent by value. In addition,

though, it sends all other objects by reference. You must have called enableObjectReferÖ

ences() before calling put() on an object that will be sent by reference. See "Sending Object

References to Mathematica".

void put(Object obj) throws MathLinkException;

The next methods are for putting and getting objects by reference (you must have called

enableObjectReferences() to use these methods).

public void putReference(Object obj) throws MathLinkException;

Object getObject() throws MathLinkException;

// These two methods from the MathLink interface are enhanced to return
MLTKOBJECT if a Java
// object reference is waiting to be read.
int getNext() throws MathLinkException;
int getType() throws MathLinkException;

Interrupting, Aborting, and Abandoning Evaluations

These methods are for aborting and interrupting evaluations. They are discussed in "Aborting

and Interrupting Computations".

void abortEvaluation();
void interruptEvaluation()
void abandonEvaluation();

void terminateKernel();

428 J/Link User Guide

Support for PacketListeners

These methods support the registering and notification of PacketListener objects. They are

discussed in "Using the PacketListener Interface".

void addPacketListener(PacketListener listener);
void removePacketListener(PacketListener listener);

boolean notifyPacketListeners(int pkt);

The handlePacket() Method (Advanced Users Only)

The handlePacket() method is for very advanced users who are writing their own packet loop

instead of calling waitForAnswer(), discardAnswer(), or any of the “evaluateTo” methods.

See the JavaDocs for more information.

void handlePacket(int pkt) throws MathLinkException;

Methods Valid Only for “StdLinks”

Finally, there are some methods that are meaningful only in methods that are themselves

called from Mathematica via the “installable Java” functionality described in "Calling Java from

Mathematica". These methods are documented in "Writing Your Own Installable Java Classes".

You will not use them if you are writing a program that uses Mathematica as a computational

engine.

public void print(String s);
public void message(String symtag, String[] args);
public void message(String symtag, String arg);
public void beginManual();

public boolean wasInterrupted();
public void clearInterrupt();

Sending Computations and Reading Results

 MathLink Packets

Communication with the Mathematica kernel generally takes place in the form of “packets”. A

MathLink packet is just a Mathematica function, albeit one from a set that is recognized and

treated specially by MathLink. When you send something to Mathematica to be evaluated, you

wrap it in a packet that tells Mathematica that this is a request for something to be computed,

Print output, and

graphics, will also arrive wrapped in a packet. The type of packet tells you about the contents.

J/Link User Guide 429

Communication with the Mathematica kernel generally takes place in the form of “packets”. A

MathLink packet is just a Mathematica function, albeit one from a set that is recognized and

treated specially by MathLink. When you send something to Mathematica to be evaluated, you

and also tells something about how it is to be computed. All output you receive from Mathemat-

ica, including the result and any other side effect output like messages, Print output, and

graphics, will also arrive wrapped in a packet. The type of packet tells you about the contents.

A MathLink program typically sends a computation to Mathematica wrapped in a special packet,

and then reads a succession of packets arriving from the kernel until the one containing the

result of the computation arrives. Along the way, packets that do not contain the result can be

either discarded without bothering to examine them or they can be “opened” and operated on.

Such nonresult packets include TextPacket expressions containing Print output,

MessagePacket expressions containing Mathematica warning messages, DisplayPacket expres-

sions containing PostScript, and several other types.

You can look at existing MathLink documentation for information on the various packet types

for sending things to Mathematica and for what Mathematica sends back. In particular, you

should look at MathLink Tutorial (http://library.wolfram.com/infocenter/TechNotes/174/). For

most uses, J/Link hides all the details of packet types and how to send and receive them. You

only need to read about packet types if you want to do something beyond what the built-in

behavior of J/Link provides. This can be useful for many programs.

The MathLink “Packet Loop”

In a C MathLink program, a typical code fragment for sending a computation to Mathematica

and throwing away the result might look like this:

// C code
MLPutFunction(ml, "EvaluatePacket", 1);
MLPutFunction(ml, "ToExpression", 1);
MLPutString(ml, "Needs[\"MyPackage`\"]");
MLEndPacket(ml);
while (MLNextPacket(ml) != RETURNPKT)

MLNewPacket(ml);
MLNewPacket();

After sending the computation (wrapped in an EvaluatePacket), the code enters a while loop

that reads and discards packets until it encounters the ReturnPacket, which will contain the

result (which will be the symbol Null here). Then it calls MLNewPacket once again to discard

the ReturnPacket.

430 J/Link User Guide

A MathLink program will typically do this same basic operation many times, so J/Link hides it

within some higher-level methods in the KernelLink interface. Here is the J/Link equivalent:

ml.evaluate("Needs[\"MyPackage`\"]");
ml.discardAnswer();

The discardAnswer() method discards all packets generated by the computation until it

encounters the one containing the result, and then discards that one too. There is a related

method, waitForAnswer(), that discards everything up until the result is encountered. When

waitForAnswer() returns, the ReturnPacket has been opened and you are ready to read out

its contents. You can probably guess that discardAnswer() is just waitForAnswer() followed

by newPacket().

Not only is it a convenience to hide the packet loop within waitForAnswer() and discardAnÖ

swer(), it is necessary in some circumstances, since special packets may arrive that J/Link

needs to handle internally. Although J/Link has nextPacket() and newPacket() methods,

programmers should not write nextPacket()/newPacket() loops like the one in the last C

code fragment. Stick to calling waitForAnswer(), discardAnswer(), or using the

“evaluateTo” methods discussed in the next section. If you really need to know about all the

packets that arrive in your program, use the PacketListener interface, discussed later.

Sending an Evaluation

J/Link provides three main ways to send an expression to Mathematica for evaluation. All three

techniques are demonstrated in the sample program in the section "Sample Program".

Ë If you do not care about the result of the evaluation, or if you want the result to arrive in

a form other than a string or image, you can use the evaluate() method.

Ë You can send the expression “manually” like in a traditional C MathLink program, by

putting the EvaluatePacket head followed by the parts of the expression using low-level

methods from the MathLink interface.

Ë If you want the result back as a string or image, you can use the “evaluateTo” methods,

which provide a very high-level and convenient interface.

The “evaluateTo” methods are recommended for their convenience, if you want the result back

in one of the formats that that they provide. These methods are discussed in "The 'evaluateTo'

Methods". If the expression you want evaluated is in the form of a string or Expr (the Expr

class is discussed in "Motivation for the Expr Class"), or can be easily converted into one, then

you will want to use the evaluate() method. If none of these convenience methods are appro-

priate, you can put the expression piece by piece similar to a traditional C MathLink program.

You do this by sending pieces in a structure that mirrors the FullForm of the expression. Here

is a comparison of using these three techniques for sending the computation

NIntegrate@x2 + y2, 8x, -1, 1<, 8y, -1, 1<D:

J/Link User Guide 431

The “evaluateTo” methods are recommended for their convenience, if you want the result back

in one of the formats that that they provide. These methods are discussed in "The 'evaluateTo'

class is discussed in "Motivation for the Expr Class"), or can be easily converted into one, then

you will want to use the evaluate() method. If none of these convenience methods are appro-

priate, you can put the expression piece by piece similar to a traditional C MathLink program.

You do this by sending pieces in a structure that mirrors the FullForm of the expression. Here

is a comparison of using these three techniques for sending the computation

NIntegrate@x2 + y2, 8x, -1, 1<, 8y, -1, 1<D:

String strResult = ml.evaluateToInputForm("NIntegrate[x^2 + y^2, {x,-1,1},
{y,-1,1}]");

ml.evaluate("NIntegrate[x^2 + y^2, {x,-1,1}, {y,-1,1}]");
ml.waitForAnswer();
double doubleResult1 = ml.getDouble();

// It is convenient to use indentation to indicate the structure
ml.putFunction("EvaluatePacket", 1);
 ml.putFunction("NIntegrate", 3);
 ml.putFunction("Plus", 2);
 ml.putFunction("Power", 2);
 ml.putSymbol("x");
 ml.put(2);
 ml.putFunction("Power", 2);
 ml.putSymbol("y");
 ml.put(2);
 ml.putFunction("List", 3);
 ml.putSymbol("x");
 ml.put(-1);
 ml.put(1);
 ml.putFunction("List", 3);
 ml.putSymbol("y");
 ml.put(-1);
 ml.put(1);
ml.endPacket();
ml.waitForAnswer();
double doubleResult2 = ml.getDouble();

Reading the Result

Before diving into reading expressions from a link, keep in mind that if you just want the result

back as a string or an image, then you are better off using one of the “evaluateTo” methods

described in the next section. These methods send a computation and return the answer as a

string or image, so you do not have to read it off the link yourself. Also, if you are not inter-

ested in the result, you will use discardAnswer() and thus not have to bother reading it.

J/Link provides a number of methods for reading expressions from a link. Many of these meth-

ods are essentially identical to functions in the MathLink C API, so to some extent you can learn

how to use them by reading standard MathLink documentation. You should also consult the

J/Link JavaDoc files for more information. The reading methods generally begin with “get.”

Examples are getInteger(), getString(), getFunction(), and getDoubleArray2(). There

are also two type-testing methods that will tell you the type of the next thing waiting to be read

off the link. These methods are getType() and getNext().

432 J/Link User Guide

J/Link provides a number of methods for reading expressions from a link. Many of these meth-

ods are essentially identical to functions in the MathLink C API, so to some extent you can learn

how to use them by reading standard MathLink documentation. You should also consult the

J/Link JavaDoc files for more information. The reading methods generally begin with “get.”

Examples are getInteger(), getString(), getFunction(), and getDoubleArray2(). There

are also two type-testing methods that will tell you the type of the next thing waiting to be read

off the link. These methods are getType() and getNext().

As stated earlier, one method you will generally not call is nextPacket(). When waitForAnÖ

swer() returns, nextPacket() has already been called internally on the ReturnPacket that

holds the answer, so this final packet has already been “opened” and you can start reading its

contents right away.

The vast majority of MathLinkException ocurrences in J/Link programs are caused by

trying to read the incoming expression in a manner that is not appropriate for its

type. A typical example is calling a Mathematica function that you expect to return an integer,

but you call it with incorrect arguments and therefore it returns unevaluated. You call getInteÖ

ger() to read an integer, but what is waiting on the link is a function like foo[badArgument].

There are several general ways for dealing with problems like this. The first technique is to

avoid the exception by using getNext() to determine the type of the expression waiting. For

example:

ml.evaluate("SomeFunction[]");
ml.waitForAnswer();
int result;
int type = ml.getNext();
if (type == MathLink.MLTKINT) {

result = ml.getInteger();
} else {

// What you do here is up to you.
System.out.println("Unexpected result: " + ml.getExpr().toString());
// Throw away the packet contents.
ml.newPacket();

}

J/Link User Guide 433

A related technique is to read the result as an Expr and examine it using the Expr methods.

The Expr class is discussed in "Motivation for the Expr Class".

ml.evaluate("SomeFunction[]");
ml.waitForAnswer();
int result;
Expr e = ml.getExpr();
if (e.integerQ()) {

result = e.asInt();
} else {

// What you do here is up to you.
System.out.println("Unexpected result: " + e.toString());

}

A final technique is to just go ahead and read the expression in the form that you expect, but

catch and handle any MathLinkException. (Remember that the entire code fragment that

follows must be wrapped in a try/catch block for MathLinkException objects, but you are

only seeing an inner try/catch block for MathLinkException objects known to be thrown

during the read.)

ml.evaluate("SomeFunction[]");
ml.waitForAnswer();
int result;
try {

result = ml.getInteger();
} catch (MathLinkException e) {

ml.clearError();
System.out.println("Unexpected result: " + ml.getExpr().toString());
ml.newPacket(); // Not strictly necessary because of the getExpr()

above
}

Another tip for avoiding bugs in code that reads from a link is to use the newPacket() method

liberally. A second very common cause of MathLinkException occurences is forgetting

to read the entire contents of a packet before going on to the next computation. The

newPacket() method causes the currently opened packet to be discarded. Another way of

saying this is that it throws away all unread parts of the expression that is currently being read.

It is a clean-up method that ensures that there are no remnants left over from the last packet

when you go on to the next evaluation. Consider the following code:

434 J/Link User Guide

ml.evaluate("SomeFunction[]");
ml.waitForAnswer();
int result;
try {

result = ml.getInteger();
} catch (MathLinkException e) {

ml.clearError();
System.out.println("Unexpected result");
// Oops. Forgot to call newPacket() to throw away the contents.

}

// Boom. The next line causes a MathLinkException if the previous
getInteger()
// call failed, because nextPacket() will be called before the previous
packet
// was emptied.
ml.evaluate("AnotherFunction[]");
ml.discardAnswer();

This code will cause a MathLinkException to be thrown at the indicated point if the previous

call to getInteger() had failed because the programmer forgot to either finish reading the

result or call newPacket(). Here is an even simpler example of this error:

ml.evaluate("SomeFunction[]");
ml.waitForAnswer();
// Oops. Forgot to read or throw away the result.
// Probably meant to call discardAnswer() instead of
// waitForAnswer().

ml.evaluate("AnotherFunction[]");
ml.discardAnswer(); // MathLinkException here!

The “evaluateTo” Methods

J/Link provides another set of convenience methods that hide the packet loop within them.

These methods perform the entire procedure of sending something to Mathematica and return-

ing the result in one form or another. They have names that begin with “evaluateTo” to indicate

that they actually return the result, rather than merely send it, as with the evaluate() method.

J/Link User Guide 435

String evaluateToInputForm(String s,int pageWidth);
String evaluateToInputForm(Expr e,int pageWidth);

String evaluateToOutputForm(String s,int pageWidth);
String evaluateToOutputForm(Expr e,int pageWidth);

byte[] evaluateToImage(String s, int width, int height);
byte[] evaluateToImage(Expr e, int width, int height);
byte[] evaluateToImage(String s, int width, int height, int dpi, boolean
useFE);
byte[] evaluateToImage(Expr e, int width, int height, int dpi, boolean
useFE);

byte[] evaluateToTypeset(String s, int width, boolean useStdForm);
byte[] evaluateToTypeset(Expr e, int width, boolean useStdForm);

Only evaluateToInputForm() and evaluateToOutputForm() are discussed in this section,

deferring consideration of evaluateToImage() and evaluateToTypeset() until the section

"evaluateToImage() and evaluateToTypeset()", Graphics and Typeset Output. The evaluateÖ

ToInputForm() and evaluateToOutputForm() methods encapsulate the very common need

of sending some code as a string and getting the result back as a formatted string. They differ

only in whether the string is formatted in InputForm or OutputForm. OutputForm is good when

you want to display the string to the user, and InputForm is good if you need to send the

expression back to Mathematica or if you need to save it to file or splice it into another expres-

sion. These methods take a pageWidth argument to specify how many character widths you

want the maximum line length to be. Pass in 0 for a page width of infinity.

The evaluateTo methods do not throw a MathLinkException. Instead, they return null to

indicate that a problem occurred. This is not very likely unless there is a serious problem, such

as if the kernel has unexpectedly quit. In the event that null is returned from one of these

methods, you can call getLastError() to get the Throwable object that represents the excep-

tion thrown to cause the unexpected result. Generally, it will be a MathLinkException, but

there are some other rare cases (like an OutOfMemoryError if an image was returned that

would have been too big to handle).

// Give the (caught) exception that prevented a normal return from the
last
// call to an "evaluateTo" method.
Throwable getLastError();

All the evaluateTo methods take the input to evaluate in the form of a string or an Expr.

Although a full discussion of the Expr class is deferred until "Motivation for the Expr Class", a

brief discussion is provided here on how and why you might want to send the input as an Expr.

It is often convenient to specify Mathematica input as a string, particularly if it is taken directly

from a user, such as the contents of a text field. There are times, though, when it is difficult or

unwieldy to work with strings. This is particularly true if the expression to evaluate is built up

programmatically, or if it is being read off one link to be written onto the link to the kernel. One

way to deal with this circumstance is to forgo the convenience of using, say, evaluateToOutÖ

putForm() and instead hand-code the entire operation of sending the input so that the answer

will come back formatted in OutputForm. You would have to send the EvaluatePacket head

and use the ToString function to get the output as a string:

436 J/Link User Guide

All the evaluateTo methods take the input to evaluate in the form of a string or an Expr.

Although a full discussion of the Expr class is deferred until "Motivation for the Expr Class", a

brief discussion is provided here on how and why you might want to send the input as an Expr.

It is often convenient to specify Mathematica input as a string, particularly if it is taken directly

from a user, such as the contents of a text field. There are times, though, when it is difficult or

unwieldy to work with strings. This is particularly true if the expression to evaluate is built up

programmatically, or if it is being read off one link to be written onto the link to the kernel. One

way to deal with this circumstance is to forgo the convenience of using, say, evaluateToOutÖ

putForm() and instead hand-code the entire operation of sending the input so that the answer

will come back formatted in OutputForm. You would have to send the EvaluatePacket head

and use the ToString function to get the output as a string:

// This duplicates the following:
// String output = ml.evaluateToOutputForm("Integrate[5 x^n a^x, x]", 0);

// As an expression, we send ToString[Integrate[5 x^n a^x, x], PageWidth-
>Infinity]
ml.putFunction("EvaluatePacket", 1);
 ml.putFunction("ToString", 2);

ml.putFunction("Integrate", 2);
 ml.putFunction("Times", 3);
 ml.put(5);
 ml.putFunction("Power", 2);
 ml.putSymbol("x");
 ml.putSymbol("n");
 ml.putFunction("Power", 2);
 ml.putSymbol("a");
 ml.putSymbol("x");
 ml.putSymbol("x");
 ml.putFunction("Rule", 2);
 ml.putSymbol("PageWidth");
 ml.putSymbol("x");

ml.endPacket();
ml.waitForAnswer();
String output = ml.getString();

This version is considerably more verbose, but most of the code comes from the deliberate

decision to send the expression piece-by-piece, not as a single string. There are a few extra

lines that ensure that the answer comes back as a properly formatted string and that read the

J/Link User Guide 437

This version is considerably more verbose, but most of the code comes from the deliberate

decision to send the expression piece-by-piece, not as a single string. There are a few extra

result from the link. It is no great loss to have to do it all by hand. But what if you wanted to do

the equivalent with evaluateToTypeset()? Most programmers would have no idea how to

perform all the work to get the answer in the desired form. If all the evaluateTo methods took

only strings, then J/Link programmers would have to either compose all their input as strings or

figure out the difficult steps that are already handled for them by the internals of the various

evaluateTo methods.

The solution to this is to allow Expr arguments as an alternative to strings. Although Expr has a

set of constructors, the easiest way to create a complicated one is to build the expression on a

loopback link and read it off the link as an Expr. You can then pass that Expr to the desired

evaluateTo method:

LoopbackLink loop = MathLinkFactory.createLoopbackLink();

// Create the expression EvaluatePacket[Integrate[5 x^n a^x, x]] on the
loopback link
loop.putFunction("Integrate", 2);

loop.putFunction("Times", 3);
loop.put(5);
loop.putFunction("Power", 2);

loop.putSymbol("x");
loop.putSymbol("n");

loop.putFunction("Power", 2);
loop.putSymbol("a");
loop.putSymbol("x");

 loop.putSymbol("x");
loop.endPacket();

// Now read the Expr off the loopback link
Expr e = loop.getExpr();
// We are done with the loopback link now.
loop.close();
String result = ml.evaluateToOutputForm(e, 0);
e.dispose();

In this way, you can build expressions manually with a series of “put” calls and still have the

convenience of using the high-level evaluateTo methods.

438 J/Link User Guide

Using the PacketListener Interface

A central component of a standard C MathLink program is a packet-reading loop, which typically

consists of calling the MathLink API functions MLNextPacket and MLNewPacket until a desired

packet is encountered. J/Link programs will typically not include such a loop~instead, you call

the KernelLink methods waitForAnswer(), discardAnswer(), or one of the “evaluateTo”

methods, which hide the packet loop within them. In some cases, though, programmers will

want to observe and/or operate on the incoming flow of packets. A typical example would be to

display Print output or messages generated by a computation. These outputs are side effects

of a computation and not part of the “answer”, and they are normally discarded by J/Link’s

internal packet loop.

To accommodate this need, KernelLink objects fire a PacketArrivedEvent when the internal

packet loop reads a packet (that is, right after nextPacket() has been called). You can regis-

ter your interest in receiving notifications when packets arrive by creating a class that imple-

ments the PacketListener interface and registering it with the KernelLink object. This event

notification is done according to the standard Java design pattern for events and event listen-

ers. You create a class that implements PacketListener, and then call the KernelLink method

addPacketListener() to register this object to receive notifications.

The PacketListener interface contains only one method, packetArrived():

public boolean packetArrived(PacketArrivedEvent evt) throws
MathLinkException;

Your PacketListener object will have its packetArrived() method called for every incoming

packet. At the time packetArrived() is called, the packet has been opened with

nextPacket(). Your code can begin reading the packet contents. The argument to packetArÖ

rived() is a PacketArrivedEvent, from which you can extract the link and the packet type

(see the example that follows).

The really nice thing about your packetArrived() implementation is that you can consume or

ignore the packet without affecting the internal packet loop in any way. You do not need to be

concerned about interfering with any other PacketListener or J/Link’s own internal handling of

packets. You can read all, some, or none of the contents of any packet.

The packetArrived() method returns a Boolean to indicate whether you want to prevent

J/Link’s internal code from seeing the packet. This very advanced option lets you completely

J/Link User Guide 439

The packetArrived() method returns a Boolean to indicate whether you want to prevent

override J/Link’s own handling of packets. At this time, the internals of J/Link’s packet handling

are undocumented, so programmers will have no use for the override ability. Your packetArÖ

rived() method should always return true.

Here is a sample packetArrived() implementation that looks only for TextPacket expres-

sions, printing their contents to the System.out stream.

public boolean packetArrived(PacketArrivedEvent evt) throws
MathLinkException {

if (evt.getPktType() == MathLink.TEXTPKT) {
KernelLink ml = (KernelLink) evt.getSource();
System.out.println(ml.getString());

}
return true;

}

This design pattern of using an event listener that gets a callback for every packet received

allows your program to be very flexible in its handling of packets. You do not have to signifi-

cantly change your program to implement different policies, such as ignoring nonresult packets,

printing them to the System.out stream, writing them to a file, displaying them in a window,

and so on. Just slot in different PacketListener objects with different behavior, and leave all

the program logic unchanged. You can use as many PacketListener objects as you want.

The PacketPrinter Class for Debugging

J/Link provides one implementation of the PacketListener interface that is designed to

simplify debugging J/Link programs. The PacketPrinter class prints out the contents of each

packet on a stream you specify. Here is the constructor:

public PacketPrinter(PrintStream strm);

Here is a code fragment showing a typical use:

PacketListener stdoutPrinter = new PacketPrinter(System.out);
ml.addPacketListener(stdoutPrinter);
...
String result = ml.evaluateToOutputForm("Integrate[x^n a^x, x]", 72);

It is especially useful to see Mathematica messages that were generated during the computa-

tion. Using a PacketPrinter to see exactly what Mathematica is sending back is an extremely

useful debugging technique. It is no exaggeration to say that the vast majority of problems

440 J/Link User Guide

It is especially useful to see Mathematica messages that were generated during the computa-

tion. Using a PacketPrinter to see exactly what Mathematica is sending back is an extremely

with J/Link programs can be identified simply by adding one line of code that creates

and installs a PacketPrinter. When you are satisfied that your program is behaving as

expected, just take out the addPacketListener() line. No other code changes are required.

Using EnterTextPacket

As noted earlier, when you send something to Mathematica to be evaluated, you wrap it in a

packet. Mathematica supports three different packets for sending computations, but the two

that are most important are EvaluatePacket and EnterTextPacket. EvaluatePacket has been

used manually in a few code fragments, and they are used internally by the evaluate() and

evaluateTo methods. When Mathematica receives something wrapped in EvaluatePacket, it

evaluates it and sends the result back in a ReturnPacket. Side effects like Print output and

PostScript for graphics are sent in their own packets prior to the ReturnPacket. In contrast,

when Mathematica receives something in an EnterTextPacket, it runs its full “main loop”,

which includes, among other things, generating In and Out prompts, applying the $Pre,

$PrePrint and $Post functions, and keeping an input and output history. This is how the

notebook front end uses the kernel. You might want to look at the more detailed discussion of

the properties of these packets in MathLink Tutorial, available on MathSource.

If you are using the kernel as a computational engine, you probably want to use

EvaluatePacket. Use EnterTextPacket instead when you want to present your users with an

interactive “session” where previous outputs can be retrieved by number or %. An example is if

you are providing functionality similar to the notebook front end, or the kernel’s standalone

“terminal” interface. The use of EnterTextPacket as the wrapper packet for computations is

not as well supported in J/Link, since it will be used much more rarely. You cannot use the

evaluateTo methods, since they use EvaluatePacket.

The packet sequence you get in return from an EnterTextPacket computation will not always

have a ReturnTextPacket in it. If the computation returns Null, or if there is a syntax error,

no ReturnTextPacket will be sent. The final packet that will always be sent is

InputNamePacket, containing the input prompt to use for the next computation. This means

that the waitForAnswer() method must accommodate two situations: for most computations,

the answer will be in a ReturnTextPacket, but for some computations, there will be no answer

at all. Therefore waitForAnswer() returns when either a ReturnTextPacket or an

InputNamePacket is encountered. This is why waitForAnswer() returns an int~this is the

InputNamePacket that will come afterward. You can

read the prompt string with getString() (it will be something like “In[1]:=”). If the original

waitForAnswer() returns MathLink.INPUTNAMEPKT, then there was no result to display, and

you can just call getString() to read the input prompt string. In the first case, where a

ReturnTextPacket does come, instead of calling waitForAnswer() a second time to read off

the subsequent InputNamePacket, you could simply call nextPacket(), because the

InputNamePacket will always immediately follow the ReturnTextPacket. Although it might look

a little weird, calling waitForAnswer() has the advantage of triggering notification of all regis-

tered PacketListener objects, which would not happen if you manually read a packet with

nextPacket(). In other words, it is better to let all packets be read by J/Link’s internal loop.

J/Link User Guide 441

The packet sequence you get in return from an EnterTextPacket computation will not always

have a ReturnTextPacket in it. If the computation returns Null, or if there is a syntax error,

no ReturnTextPacket will be sent. The final packet that will always be sent is

InputNamePacket, containing the input prompt to use for the next computation. This means

that the waitForAnswer() method must accommodate two situations: for most computations,

the answer will be in a ReturnTextPacket, but for some computations, there will be no answer

at all. Therefore waitForAnswer() returns when either a ReturnTextPacket or an

packet type that caused waitForAnswer() to return. If your call to waitForAnswer() returns

MathLink.RETURNTEXTPKT, then you can read the answer (it will be a string), and then you

call waitForAnswer() again to receive the InputNamePacket that will come afterward. You can

read the prompt string with getString() (it will be something like “In[1]:=”). If the original

waitForAnswer() returns MathLink.INPUTNAMEPKT, then there was no result to display, and

you can just call getString() to read the input prompt string. In the first case, where a

ReturnTextPacket does come, instead of calling waitForAnswer() a second time to read off

the subsequent InputNamePacket, you could simply call nextPacket(), because the

InputNamePacket will always immediately follow the ReturnTextPacket. Although it might look

a little weird, calling waitForAnswer() has the advantage of triggering notification of all regis-

tered PacketListener objects, which would not happen if you manually read a packet with

nextPacket(). In other words, it is better to let all packets be read by J/Link’s internal loop.

Here is an example:

String inputString = getStringFromUser();
ml.putFunction("EnterTextPacket", 1);
ml.put(inputString);
String result = null;
int pkt = ml.waitForAnswer();
if (pkt == MathLink.RETURNTEXTPKT) {

// Mathematica computation returned a non-Null result, so a
RETURNTEXTPKT

// was generated. Read its contents (a string).
result = ml.getString();
// Now call waitForAnswer() again, which will return after opening the
// InputNamePacket that will always follow. It is essentially
// nothing more than a call to nextPacket() in this circumstance:
ml.waitForAnswer();

}
// At this point, a call to waitForAnswer() has returned
MathLink.INPUTNAMEPKT,
// so we just read out the contents, which is the next input prompt.
String nextPrompt = ml.getString();

You will probably want to use a PacketListener when you are using EnterTextPacket,

because you probably want to show your users the full stream of output arriving from Mathemat-

ica, which might include messages and Print output. Your PacketListener implementation

could write the incoming packets to your input/output session window. In fact, if you have such

PacketListener, you might want to let it handle all output, including the ReturnTextPacket

containing the result and the InputNamePacket containing the next prompt. Then you would

just call discardAnswer() in your main program and let your PacketListener handle

everything.

442 J/Link User Guide

You will probably want to use a PacketListener when you are using EnterTextPacket,

because you probably want to show your users the full stream of output arriving from Mathemat-

ica, which might include messages and Print output. Your PacketListener implementation

a PacketListener, you might want to let it handle all output, including the ReturnTextPacket

containing the result and the InputNamePacket containing the next prompt. Then you would

just call discardAnswer() in your main program and let your PacketListener handle

everything.

Handling MathLinkExceptions

Most of the MathLink and KernelLink methods throw a MathLinkException if a MathLink error

occurs. This is in contrast to the MathLink C API, where functions return an error code. The

methods that do not throw a MathLinkException are generally ones that will often need to be

used within a catch block handling a MathLinkException that had already been thrown. If

these methods threw their own exceptions, then you would need to nest another try/catch

block within the catch block.

A well-formed J/Link program will typically not throw a MathLinkException except in the case

of fatal MathLink errors, such as the kernel unexpectedly quitting. What is meant by “well-

formed” is that you do not make any overt mistakes when putting or getting expressions, such

as specifying an argument count of three in a putFunction() call but only sending two, or

calling nextPacket() before you have finished reading the contents of the current packet. The

J/Link API helps you avoid such mistakes by providing high-level functions like waitForAnÖ

swer() and evaluateToOutputForm() that hide the low-level interaction with the link, but in

all but the most trivial J/Link programs it is still possible to make such errors. Just remember

that the vast majority of MathLinkException objects thrown represent logic errors in the code

of the program, not user errors or runtime anomalies. They are just bugs to which the program-

mer needs to be alerted so that they can be fixed.

In a small, well-formed J/Link program, you may be able to put a lot of J/Link calls, perhaps

even the entire program, within a single try/catch block because there is no need to know

exactly what the program was doing when the error occurred~all you are going to do is print a

message and exit. The example program in the section "Sample Program" has this structure.

Many J/Link programs will need to be a little more refined in their treatment of

MathLinkException objects than just quitting. No matter what type of program you are writ-

ing, it is strongly recommended that while you are developing the program, you use try/catch

blocks in a fine-grained way (that is, only wrapping small, meaningful units of code in each

try/catch block), and always put code in your catch block that prints a message or alerts you

J/Link User Guide 443

In a small, well-formed J/Link program, you may be able to put a lot of J/Link calls, perhaps

even the entire program, within a single try/catch block because there is no need to know

exactly what the program was doing when the error occurred~all you are going to do is print a

message and exit. The example program in the section "Sample Program" has this structure.

Many J/Link programs will need to be a little more refined in their treatment of

MathLinkException objects than just quitting. No matter what type of program you are writ-

ing, it is strongly recommended that while you are developing the program, you use try/catch

blocks in a fine-grained way (that is, only wrapping small, meaningful units of code in each

in some way. Many hours of debugging have been wasted because programmers did not realize

a MathLink error had occurred, or they incorrectly identified the region of code where it

happened.

Here is a sample of how to handle a MathLinkException in the case where you want to try to

recover. The first thing is to call clearError(), as other MathLink calls will fail until the error

state is cleared. If clearError() returns false then there is nothing to do but close the link.

An example of the type of error that clearError() will fix is the very common mistake of

calling nextPacket() before the current packet has been completely read. After clearÖ

Error() is called, the link is reset to the state it was in before the offending nextPacket().

You can then read the rest of the current packet or call newPacket() to throw it away. Another

example of a class of errors where clearError() will work is calling an incorrect “get” method

for the type of data waiting on the link~for example, calling getFunction() when an integer is

waiting. After calling clearError(), you can read the integer.

try {
...

} catch (MathLinkException e) {
System.err.println(e.toString());
if (ml.clearError() != true) {

System.err.println("MathLinkException was unrecoverable; closing
link.");

ml.close();
return; // Or whatever cleanup is appropriate

}
// How you respond after clearError is up to you.

}

What you do in your catch block after calling clearError() will depend on what you were

doing when the exception was thrown. About the only useful general guideline provided here is

that if you are reading from the link when the exception is thrown, call newPacket() to aban-

don the rest of the packet. At least then you will know that you are ready to read a fresh

packet, even if you have lost the contents of the previous packet.

MathLinkException has a few useful methods that will tell you about the cause of the excep-

tion. The getErrCode() method will give you the internal MathLink error code, which can be

looked up in the MathLink documentation. It is probably more useful to get the internal

message associated with the error, which is given by getMessage(). The toString() method

gives you all this information, and will be the most useful output for debugging.

444 J/Link User Guide

// Some useful MathLinkException methods.
public int getErrCode();
public String getMessage();
public String toString();
public Throwable getCause();

Some MathLinkException exceptions might not be “native” MathLink errors, but rather special

exceptions thrown by implementations of the various link interfaces. J/Link follows the standard

“exception chaining” idiom by allowing link implementations to catch these exceptions inter-

nally, wrap them in a MathLinkException, and re-throw them. As an example, consider a

KernelLink implementation built on top of Java Remote Method Invocation (RMI). Methods

called via RMI can throw a RemoteException, so such a link implementation might choose to

catch internally every RemoteException and wrap it in a MathLinkException. If it did not do

this, and instead all its methods could throw a RemoteException in addition to

MathLinkException, all client code that used it would have to be modified. What all this means

is that if you catch a MathLinkException, it might be “wrapping” another exception, instead of

representing an internal MathLink problem. You can use the getCause() method on the

MathLinkException instance to retrieve the wrapped exception that was the actual cause of

the problem. The getCause() method will return null in the typical case where the

MathLinkException is not wrapping another type of exception.

Graphics and Typeset Output

Preamble

Many developers who are writing Java programs that use Mathematica will want to produce

Mathematica graphics and typeset expressions. This is a relatively complex subject, although

J/Link has some very high-level methods designed to make obtaining and displaying these

images very simple. If you want to display Mathematica images in a Java window, you can use

the MathCanvas or MathGraphicsJPanel components, discussed in the next section. If you

want a little more control over the process, or if you want to do something with the image data

other than display it (like write it to a file or stream), you should read the section on the evaluÖ

ateToImage() and evaluateToTypeset() methods.

MathCanvas and MathGraphicsJPanel

The MathCanvas and MathGraphicsJPanel classes were discussed in "The MathCanvas and

MathGraphicsJPanel Classes" because they are often used from Mathematica programs. They

MathCanvas is a subclass of the

AWT Canvas class, and MathGraphicsJPanel is a sublcass of the Swing JPanel class. They are

conceptually identical and have the same set of extra methods for dealing with Mathematica

graphics. You use MathCanvas when you want an AWT component and MathGraphicsJPanel

when you want a Swing component.

J/Link User Guide 445

The MathCanvas and MathGraphicsJPanel classes were discussed in "The MathCanvas and

are just as useful in Java programs. Each is a simple graphical component (a JavaBean, in fact),

that can display Mathematica graphics and typeset expressions. MathCanvas is a subclass of the

AWT Canvas class, and MathGraphicsJPanel is a sublcass of the Swing JPanel class. They are

conceptually identical and have the same set of extra methods for dealing with Mathematica

graphics. You use MathCanvas when you want an AWT component and MathGraphicsJPanel

when you want a Swing component.

Programmers who want to see how they work are strongly encouraged to examine the source

code. The most important methods from these classes are as follows:

public void setMathCommand(String cmd);
public void setImageType(int type);
public void setUsesFE(boolean useFE);
public void setUsesTraditionalForm(boolean useTradForm);

public void setImage(Image im);

public void recompute();

public void repaintNow();

For brevity, the discussion that follows will refer only to MathCanvas; everything said applies

equally to MathGraphicsJPanel. Use setMathCommand() to specify arbitrary Mathematica code

that will be evaluated and have its result displayed. If you are using your MathCanvas to display

Mathematica graphics, the result of the computation must be a graphics object (that is, an

expression with head Graphics, Graphics3D, and so on). It is not enough that the command

produces a graphic~it must return a graphic. Thus, setMathCommand("Plot[x,{x,0,1}]")

will work, but setMathCommand("Plot[x,{x,0,1}];") will not because the trailing semicolon

causes the expression to evaluate to Null. If you are using the MathCanvas to display typeset

output, then the result of executing the code supplied in setMathCommand() can be anything.

Its typeset form will be displayed. Within the code that you specify via setMathCommand(),

quotation marks and other characters that have special meanings inside Java strings must be

escaped by preceding them with a backslash, as in setMathCommanÖ

d("Plot[x,{x,0,1},PlotLabel->\"A Plot\"]").

The setImageType() method is what toggles between displaying a graphic and displaying a

typeset expression. Call setImageType(MathCanvas.GRAPHICS) or setImageType(MathCanÖ

vas.TYPESET) to toggle between the two modes.

J/Link can create images of Mathematica graphics in two ways, either by using only the kernel

or by using the kernel along with some extra services from the front end. The front end gener-

ally can do a better job, but there are some tradeoffs involved. If you want to use the front

end, call setUsesFE(true). When you call setUsesFE(true), the front end may be launched,

or an already running copy may be used. The exact behavior depends on what operating

system and version of Mathematica you have. In Mathematica 6.0 and later, all graphics output

requires the front end, so the setUsesFE() mehod has no effect~it is always true.

446 J/Link User Guide

J/Link can create images of Mathematica graphics in two ways, either by using only the kernel

or by using the kernel along with some extra services from the front end. The front end gener-

ally can do a better job, but there are some tradeoffs involved. If you want to use the front

end, call setUsesFE(true). When you call setUsesFE(true), the front end may be launched,

or an already running copy may be used. The exact behavior depends on what operating

system and version of Mathematica you have. In Mathematica 6.0 and later, all graphics output

requires the front end, so the setUsesFE() mehod has no effect~it is always true.

For typeset output, the default is StandardForm. To change to TraditionalForm call setUsesÖ

TraditionalForm(true). When generating typeset output (that is, if you have called setImÖ

ageType(MathCanvas.TYPESET)), the front end is always involved in generating typeset

output, so make sure you understand the issues discussed in Using the Front End as a Service.

When you call setMathCommand(), the command is executed immediately and the resulting

image is cached and used every time the window is repainted. Sometimes the code in your

math command depends on variables that will change. To force the command to be recomputed

and the new image displayed, call recompute().

The repaintNow() method is like a “smart” version of the JComponent method paintImmediÖ

ately(), and you use it in the same circumstances as paintImmediately(). It knows about

the image that needs to be drawn and it will block until all the pixels are ready. You can use

this method to force an immediate redraw when you want the image to be updated instantly in

response to some user action like dragging a slider that controls a variable upon which the plot

depends. If you call the standard method repaint() instead, Java might not get around to

repainting the image until many frames have gone by, and the plot will appear to jump from

one value to another, rather than being redrawn for every change in the variable’s value.

The preceding discussion described how you can easily get display Mathematica output in a

MathCanvas simply by supplying some code to setMathCommand(). Another way to get an

image displayed in a MathCanvas is to create a Java Image object yourself and call the setImÖ

age() method. You might want to do this is if your image is a bitmap created with some Mathe-

matica data, or if you have drawn into an offscreen image using the Java graphics API. The

setImage() method was created mainly for use from Mathematica code, and it is somewhat

less important for Java programmers because you already have other ways to draw into your

own components. It can still be useful in Java programs, though, since it can save you from

MathCanvas is really just a useful AWT component~it has nothing

directly to do with Mathematica.

J/Link User Guide 447

The preceding discussion described how you can easily get display Mathematica output in a

MathCanvas simply by supplying some code to setMathCommand(). Another way to get an

image displayed in a MathCanvas is to create a Java Image object yourself and call the setImÖ

age() method. You might want to do this is if your image is a bitmap created with some Mathe-

matica data, or if you have drawn into an offscreen image using the Java graphics API. The

setImage() method was created mainly for use from Mathematica code, and it is somewhat

less important for Java programmers because you already have other ways to draw into your

having to write your own subclass of an AWT component just to override its paint() method,

which is the usual technique for drawing your own content in components. When used with the

setImage() method, a MathCanvas is really just a useful AWT component~it has nothing

directly to do with Mathematica.

The next section presents a sample program that uses a MathCanvas to display graphics and

typeset output.

A Sample Program That Displays Graphics and Typeset Results

Here is the code for a simple program that presents a window that displays Mathematica graph-

ics and typeset output. It is an example of how to use the MathCanvas class. The code and

compiled class files for this program are available in the JLink/Examples/Part2/GraphicsApp

directory. Launch the program with the pathname to the kernel executable as an argument

(note the use of the quote marks " and '):

(Windows)
java -classpath GraphicsApp.jar;..\..\..\JLink.jar GraphicsApp "c:\program
files\wolfram research\mathematica\6.0\mathkernel"

(Unix)
java -classpath GraphicsApp.jar:../../../JLink.jar GraphicsApp 'math
-mathlink'

(Mac OSX command line)
java -classpath GraphicsApp.jar:../../../JLink.jar GraphicsApp
'"/Applications/Mathematica.app/Contents/MacOS/MathKernel" -mathlink'

Here is the code.

import com.wolfram.jlink.*;
import java.awt.*;
import java.awt.event.*;

public class GraphicsApp extends Frame {

static GraphicsApp app;
static KernelLink ml;

MathCanvas mathCanvas;
TextArea inputTextArea;

inputTextArea.setBounds(10, 270, 210, 60);
evalButton.setBounds(230, 290, 60, 30);
graphicsButton.setBounds(20, 340, 160, 20);
typesetButton.setBounds(20, 365, 160, 20);
useFEButton.setBounds(180, 340, 100, 20);

addWindowListener(new WnAdptr());
setBackground(Color.lightGray);
setResizable(false);

// Although this code would automatically be called in
// evaluateToImage or evaluateToTypeset, it can cause the
// front end window to come in front of this Java window.
// Thus, it is best to get it out of the way at the start
// and call toFront to put this window back in front.
// KernelLink.PACKAGE_CONTEXT is just "JLink`", but it is
// preferable to use this symbolic constant instead of
// hard-coding the package context.
ml.evaluateToInputForm("Needs[\"" + KernelLink.PACKAGE_CONTEXT +

"\"]", 0);
ml.evaluateToInputForm("ConnectToFrontEnd[]", 0);

setVisible(true);
toFront();

}

class BnAdptr implements ActionListener {

public void actionPerformed(ActionEvent e) {
mathCanvas.setImageType(

graphicsButton.getState() ? MathCanvas.GRAPHICS :
MathCanvas.TYPESET);

mathCanvas.setUsesFE(useFEButton.getState());
mathCanvas.setMathCommand(inputTextArea.getText());

}
}

class WnAdptr extends WindowAdapter {
public void windowClosing(WindowEvent event) {

if (ml != null) {
// Because we used the front end, it is important
// to call CloseFrontEnd[] before closing the link.
// Counterintuitively, this is not because we want
// to force the front end to quit, but because we
// _don't_ want to do this if the user has begun
// working in the front end session we started.
// CloseFrontEnd knows how to politely disengage
// from the front end if necessary. The need for
// this will go away in future releases of
// Mathematica.
ml.evaluateToInputForm("CloseFrontEnd[]", 0);
ml.close();

}
dispose();
System.exit(0);

}
}

}

448 J/Link User Guide

Button evalButton;
Checkbox useFEButton;
Checkbox graphicsButton;
Checkbox typesetButton;

public static void main(String[] argv) {

try {
String[] mlArgs = {"-linkmode", "launch", "-linkname",

argv[0]};
ml = MathLinkFactory.createKernelLink(mlArgs);
ml.discardAnswer();

} catch (MathLinkException e) {
System.out.println("An error occurred connecting to the

kernel.");
if (ml != null)

ml.close();
return;

}
app = new GraphicsApp();

}

public GraphicsApp() {

setLayout(null);
setTitle("Graphics App");
mathCanvas = new MathCanvas(ml);
add(mathCanvas);
mathCanvas.setBackground(Color.white);
inputTextArea = new TextArea("", 2, 40,

TextArea.SCROLLBARS_VERTICAL_ONLY);
add(inputTextArea);
evalButton = new Button("Evaluate");
add(evalButton);
evalButton.addActionListener(new BnAdptr());
useFEButton = new Checkbox("Use front end", false);
CheckboxGroup cg = new CheckboxGroup();
graphicsButton = new Checkbox("Show graphics output", true, cg);
typesetButton = new Checkbox("Show typeset result", false, cg);
add(useFEButton);
add(graphicsButton);
add(typesetButton);

// this will go away in future releases of
// Mathematica.
ml.evaluateToInputForm("CloseFrontEnd[]", 0);
ml.close();

}
dispose();
System.exit(0);

}
}

}

J/Link User Guide 449

import
import
import

public

}

setSize(300, 400);
setLocation(100,100);
mathCanvas.setBounds(10, 25, 280, 240);
inputTextArea.setBounds(10, 270, 210, 60);
evalButton.setBounds(230, 290, 60, 30);
graphicsButton.setBounds(20, 340, 160, 20);
typesetButton.setBounds(20, 365, 160, 20);
useFEButton.setBounds(180, 340, 100, 20);

addWindowListener(new WnAdptr());
setBackground(Color.lightGray);
setResizable(false);

// Although this code would automatically be called in
// evaluateToImage or evaluateToTypeset, it can cause the
// front end window to come in front of this Java window.
// Thus, it is best to get it out of the way at the start
// and call toFront to put this window back in front.
// KernelLink.PACKAGE_CONTEXT is just "JLink`", but it is
// preferable to use this symbolic constant instead of
// hard-coding the package context.
ml.evaluateToInputForm("Needs[\"" + KernelLink.PACKAGE_CONTEXT +

"\"]", 0);
ml.evaluateToInputForm("ConnectToFrontEnd[]", 0);

setVisible(true);
toFront();

}

class BnAdptr implements ActionListener {

public void actionPerformed(ActionEvent e) {
mathCanvas.setImageType(

graphicsButton.getState() ? MathCanvas.GRAPHICS :
MathCanvas.TYPESET);

mathCanvas.setUsesFE(useFEButton.getState());
mathCanvas.setMathCommand(inputTextArea.getText());

}
}

class WnAdptr extends WindowAdapter {

450 J/Link User Guide

import com.wolfram.jlink.*;
import java.awt.*;
import java.awt.event.*;

public class GraphicsApp extends Frame {

static GraphicsApp app;
static KernelLink ml;

MathCanvas mathCanvas;
TextArea inputTextArea;
Button evalButton;
Checkbox useFEButton;
Checkbox graphicsButton;
Checkbox typesetButton;

public static void main(String[] argv) {

try {
String[] mlArgs = {"-linkmode", "launch", "-linkname",

argv[0]};
ml = MathLinkFactory.createKernelLink(mlArgs);
ml.discardAnswer();

} catch (MathLinkException e) {
System.out.println("An error occurred connecting to the

kernel.");
if (ml != null)

ml.close();
return;

}
app = new GraphicsApp();

}

public GraphicsApp() {

public void windowClosing(WindowEvent event) {
if (ml != null) {

// Because we used the front end, it is important
// to call CloseFrontEnd[] before closing the link.
// Counterintuitively, this is not because we want
// to force the front end to quit, but because we
// _don't_ want to do this if the user has begun
// working in the front end session we started.
// CloseFrontEnd knows how to politely disengage
// from the front end if necessary. The need for
// this will go away in future releases of
// Mathematica.
ml.evaluateToInputForm("CloseFrontEnd[]", 0);
ml.close();

}
dispose();
System.exit(0);

}
}

}

evaluateToImage() and evaluateToTypeset()

If the MathCanvas or MathGraphicsJPanel classes described in the preceding two sections are

not suitable for your needs, you can manually produce images of Mathematica graphics and

typeset expressions using the evaluateToImage() and evaluateToTypeset() methods in the

KernelLink interface.

There are multiple signatures for each. For evaluateToImage(), one set takes a simpler argu-

ment list and uses default values for the less commonly used arguments. Here are graphics and

typesetting methods from the KernelLink interface:

byte@D evaluateToImage HString s, int width, int heightL;
byte@D evaluateToImage HExpr e, int width, int heightL;
byte@D evaluateToImage HString s, int width, int height,

int dpi, boolean useFrontEndL;
byte@D evaluateToImage HExpr e, int width, int height,

int dpi, boolean useFrontEndL;

byte@D evaluateToTypeset HString s, int pageWidth, boolean useStdFormL;
byte@D evaluateToTypeset HExpr e, int pageWidth, boolean useStdFormL;

The evaluateToImage() method takes the input as a string or Expr, and a width and height of

the resulting graphic in pixels. The extended versions let you specify a dots-per-inch value, and

whether to use the notebook front end or not (as discussed later). The short versions use the

values of 0 for the dpi and false for whether to use the front end. Specifying 0 for dpi causes

Mathematica to use its default value. The image will be sized to fit within a box of width x

height, without changing its aspect ratio. In other words, the image might not have exactly

these dimensions, but it will never be larger in either dimension and it will never be stretched in

one dimension to make it fit better. Pass 0 for the width and height to get their Automatic

values. If the input does not evaluate to a graphics expression, then null is returned. It is not

enough that the computation causes a plot to be generated~the return value of the computa-

tion must have head Graphics (or Graphics3D, etc.). If the useFrontEnd argument is true,

evaluateToImage() will launch the notebook front end if it is not already running. Note that

the useFrontEnd argument is irrelevant when using Mathematica 5.1 and later~the front end

is always used for graphics.

J/Link User Guide 451

The evaluateToImage() method takes the input as a string or Expr, and a width and height of

the resulting graphic in pixels. The extended versions let you specify a dots-per-inch value, and

whether to use the notebook front end or not (as discussed later). The short versions use the

values of 0 for the dpi and false for whether to use the front end. Specifying 0 for dpi causes

Mathematica to use its default value. The image will be sized to fit within a box of width x

height, without changing its aspect ratio. In other words, the image might not have exactly

these dimensions, but it will never be larger in either dimension and it will never be stretched in

one dimension to make it fit better. Pass 0 for the width and height to get their Automatic

values. If the input does not evaluate to a graphics expression, then null is returned. It is not

enough that the computation causes a plot to be generated~the return value of the computa-

tion must have head Graphics (or Graphics3D, etc.). If the useFrontEnd argument is true,

evaluateToImage() will launch the notebook front end if it is not already running. Note that

the useFrontEnd argument is irrelevant when using Mathematica 5.1 and later~the front end

is always used for graphics.

The evaluateToTypeset() method takes the input as a string or Expr, a page width to wrap

the output to before it is typeset, and a flag specifying whether to use StandardForm or

TraditionalForm. The units for the page width is pixels (use 0 for a page width of infinity). The

evaluateToTypeset() method requires the services of the notebook front end, which will be

launched if it is not already running.

The result of both of these methods is a byte array of GIF data. The GIF format is wellsuited to

most Mathematica graphics, but for some 3D graphics the color usage is not ideal. If you want

to change to using JPEG format, you can set $DefaultImageFormat to "JPEG" in the kernel:

// Specifies JPEG format for subsequent calls to evaluateToImage()
// and evaluateToTypeset().
ml.evaluateToOutputForm("$DefaultImageFormat = \"JPEG\"", 0);

452 J/Link User Guide

These methods are like evaluateToInputForm() and evaluateToOutputForm() in that they

perform the computation and return the result in a single step. Together, all these methods are

referred to as the “evaluateTo” methods. They all return null in the unlikely event that a

MathLinkException occurred.

The MathCanvas and MathGraphicsJPanel classes use these methods internally, so their

source code is a good place to look for examples of calling the methods. The MathCanvas code

demonstrates how to take the byte array of GIF or JPEG data and turn it into a Java Image for

display.

The following Typesetter sample program is another example. It takes a Mathematica expres-

sion supplied on the command line, calls evaluateToTypeset(), and writes the image data

out to a GIF file. You would invoke it from the command line like this:

(Windows)
java Typesetter "c:\program files\wolfram
research\mathematica\6.0\mathkernel" "Sqrt[z]" test.gif

(Unix)
java Typesetter 'math -mathlink' "Sqrt[z]" test.gif

(Mac OSX command line)
java Typesetter '"/Applications/Mathematica.app/Contents/MacOS/MathKernel"
-mathlink' "Sqrt[z]" test.gif

The first argument is the command line to launch the Mathematica kernel, the second argument

is the expression to typeset, and the third argument is the filename to create. This program is

not intended to be particularly useful~it is just a simple demonstration.

J/Link User Guide 453

import com.wolfram.jlink.*;
import java.io.*;

public class Typesetter {

public static void main(String[] argv) throws MathLinkException {

KernelLink ml;
try {

String[] mlArgs = {"-linkmode", "launch", "-linkname",
argv[0]};

ml = MathLinkFactory.createKernelLink(mlArgs);
ml.discardAnswer();

} catch (MathLinkException e) {
System.err.println("FATAL ERROR: link creation failed.");
return;

}
byte[] gifData = ml.evaluateToTypeset(argv[1], 0, false);
try {

FileOutputStream s = new FileOutputStream(new File(argv[2]));
s.write(gifData);
s.close();

} catch (IOException e) {}
// ALWAYS execute CloseFrontEnd[] before killing the kernel if you

used
// evaluateToTypeset(), or evaluateToImage() with the useFE

parameter
// set to true:
ml.evaluateToOutputForm("CloseFrontEnd[]", 0);
ml.close();

}
}

It is very important to note that you execute CloseFrontEnd@D before closing the link to the

kernel. This is essential to prevent the front end from quitting in circumstances where it should

not~specifically, if an already-running copy was used and the user has open documents.

Aborting and Interrupting Computations

J/Link provides two ways in which you can interrupt or abort computations. The first technique

uses the low-level putMessage() function to send the desired MathLink message. The second

and preferred technique is to use a new set of KernelLink methods introduced in J/Link 2.0.

These are listed as follows:

454 J/Link User Guide

void abortEvaluation();
void interruptEvaluation()
void abandonEvaluation();
void terminateKernel();

The abortEvaluation() method will send an abort request to Mathematica, identical to what

happens in the notebook front end when you select Evaluation Abort Evaluation. Mathemat-

ica responds to this command by terminating the current evaluation and returning the symbol

$Aborted. Be aware that sometimes the kernel is in a state where it cannot respond immedi-

ately to interrupts or aborts.

The interruptEvaluation() method will send an interrupt request to Mathematica, identical

to what happens in the notebook front end when you select Evaluation Interrupt Evalua-

tion. Mathematica responds to this command by interrupting the current evaluation and send-

ing back a special packet that contains choices for what to do next. The choices can depend on

what the kernel is doing at the moment, but in most cases they include aborting, continuing, or

entering a dialog. It is not likely that you will want to have to deal with this list of choices on

your own, so you might choose instead to call abortEvaluation() and just stop the computa-

tion. If you are developing an interactive front end, however, you might decide that you want

your users to see the same types of choices that the notebook front end provides. If this is the

case, then you can use the new InterruptDialog class, which provides a dialog box very

similar to the front end’s Interrupt Evaluation dialog. The InterruptDialog class is dis-

cussed in a later section.

The abandonEvaluation() method does exactly what its name suggests~it causes any com-

mand that is currently waiting for something to arrive on the link to back out immediately and

throw a MathLinkException. This MathLinkException is recoverable (meaning that clearÖ

Error() will return true), so in theory you could call waitForAnswer() again later and get

the result when it arrives. In practice, however, you should generally not use this method

unless you plan to close the link. You should think of abandonEvaluation() method is an

“emergency exit” function that lets your program back out of waiting for a result no matter

what state the kernel is in. Remember that the abortEvaluation() method simply sends an

abort request to Mathematica, and thus it requires some cooperation from the kernel; there is

no guarantee that the current evaluation will abort in a timely manner, if ever. If you call

close() right after abandonEvaluation(), the kernel will typically not die, because it is still

busy with a computation. You should call terminateKernel() before close() to ensure that

the kernel shuts down. A code fragment that follows demonstrates this.

The terminateKernel() method will send a terminate request to Mathematica. It does this by

sending the low-level MathLink message MLTERMINATEMESSAGE. This is the strongest step you

can take to tell the kernel to shut down, short of killing the kernel process with operating

system commands. In “normal” operation of the kernel, when you call close() on the link, the

kernel will quit. In some cases, however, generally only if the kernel is currently busy comput-

ing, it will not quit. In such cases you can generally force the kernel to quit immediately by

calling terminateKernel(). You should always call close() immediately afterward. In a

server environment, where a Java program that starts and stops Mathematica kernels needs to

run unattended for a very long period of time with the highest reliability possible, you might

consider always calling terminateKernel() before close(), if there is any chance that

close() needs to be called while the kernel is still busy. In some rare circumstances (generally

only if something has gone wrong with Mathematica), even calling terminateKernel() will not

force the kernel to quit, and you might need to use facilities of your operating system (perhaps

invoked via Java’s Runtime.exec() method) to kill the kernel process.

J/Link User Guide 455

The terminateKernel() method will send a terminate request to Mathematica. It does this by

sending the low-level MathLink message MLTERMINATEMESSAGE. This is the strongest step you

can take to tell the kernel to shut down, short of killing the kernel process with operating

system commands. In “normal” operation of the kernel, when you call close() on the link, the

kernel will quit. In some cases, however, generally only if the kernel is currently busy comput-

ing, it will not quit. In such cases you can generally force the kernel to quit immediately by

calling terminateKernel(). You should always call close() immediately afterward. In a

server environment, where a Java program that starts and stops Mathematica kernels needs to

run unattended for a very long period of time with the highest reliability possible, you might

consider always calling terminateKernel() before close(), if there is any chance that

close() needs to be called while the kernel is still busy. In some rare circumstances (generally

only if something has gone wrong with Mathematica), even calling terminateKernel() will not

force the kernel to quit, and you might need to use facilities of your operating system (perhaps

invoked via Java’s Runtime.exec() method) to kill the kernel process.

If you want to be able to abort, interrupt, or abandon computations, your program will need to

have at least two threads. The thread on which the computation is called will probably look like

all the sample programs you have seen. You would call one of the “evaluateTo” methods, or

perhaps evaluate() followed by waitForAnswer(). This thread will block, waiting for the

result. On a separate thread, such as the user interface thread, you could periodically check for

some event, like a time out period elapsing. Or, you could use an event listener to be notified

when the Esc key was pressed. Whichever way you want to detect the abort request, all you

need to do is call putMessage(MathLink.MLABORTMESSAGE). If the kernel receives the

message before it finishes, and it is doing something that can be aborted, the computation will

end and return the symbol $Aborted. You typically will not need to do anything special in the

computation thread. You wait for the answer as usual; it might come back as $Aborted instead

of the final result, that is all. Here are some typical code fragments that demonstrate aborting a

computation:

// On thread 1
ml.evaluate("Do[2+2, {20000000}]");
ml.waitForAnswer();
// If user aborted, the result will be the symbol $Aborted.

// On thread 2
if (userPressedEscKey() || timeoutElapsed())

ml.abortEvaluation();

Here is some code that demonstrates how to abandon a computation and force an immediate

shutdown of the kernel:

456 J/Link User Guide

Here is some code that demonstrates how to abandon a computation and force an immediate

shutdown of the kernel:

// On thread 1
try {

ml.evaluate("While[True]");
ml.discardAnswer();

} catch (MathLinkException e) {
// We will get here when abandonEvaluation() is called on the other

thread.
System.err.println("MathLinkException occurred: " + e.toString());
if (!ml.clearError()) {

// clearError() will always fail when abandonEvaluation() was
called.

ml.terminateKernel();
ml.close();

}
}

// On thread 2
if (timeoutElapsedAndReallyNeedToShutdownKernel())

ml.abandonEvaluation();

The discussion so far has focused on the high-level interface for interrupting and aborting

computations. The alternative is to use the low-level method putMessage() and pass one of

the constants MathLink.MLINTERRUPTMESSAGE, MathLink.MLABORTMESSAGE, or MathLink.MLÖ

TERMINATEMESSAGE. There is no reason to do this, however, as interruptEvaluation(),

abortEvaluation(), and terminateKernel() are just one-line methods that put the appropri-

ate message. The “messages” referred to in the MathLink method putMessage() are not

related to the familiar Mathematica error and warning messages. Instead, they are a special

type of communication between two MathLink programs. This communication takes place on a

different channel from the normal flow of expressions, which is why you can call putMessage()

while the kernel is in the middle of a computation and not reading from the link.

There are several other MathLink methods with “message” in their names. These are

messageReady(), getMessage(), addMessageHandler(), and removeMessageHandler().

These methods are only useful if you want to be able to detect messages the kernel sends to

you. J/Link programmers will rarely want to do this, so they are not discussed in detail. Please

note that messageReady() and getMessage() no longer function in J/Link 2.0 and later.

J/Link User Guide 457

There are several other MathLink methods with “message” in their names. These are

messageReady(), getMessage(), addMessageHandler(), and removeMessageHandler().

These methods are only useful if you want to be able to detect messages the kernel sends to

you. J/Link programmers will rarely want to do this, so they are not discussed in detail. Please

If you want to be able to receive messages from Mathematica, you must use addMessageHanÖ

dler() and removeMessageHandler(). There is more information in the JavaDocs for these

methods.

Using Marks

MathLink allows you to set a “mark” in a link, so that you can read more data and then seek

back to the mark, restoring the link to the state it was in before you read the data. Thus, marks

let you read data off a link and not have the data consumed, so you can read it again later.

There are three mark-related methods in the MathLink interface:

// In the MathLink interface:
long createMark() throws MathLinkException;
void seekMark(long mark);
void destroyMark(long mark);

One common reason to use a mark is if you want to examine an incoming expression and

branch to different code depending on some property of the expression. You want the code that

actually handles the expression to see the entire expression, but you will need to read at least a

little bit of the expression to decide how it must be handled (perhaps just calling getFuncÖ

tion() to see the head). Here is a code fragment demonstrating this technique:

String head = null;
long mark = ml.createMark();
try {

head = ml.getFunction().name;
ml.seekMark(mark);

} finally {
ml.destroyMark(mark);

}
if (head.equals("foo"))

handleFoo(ml);
else if (head.equals("bar"))

handleBar(ml);

Because you seek back to the mark after calling getFunction(), the link will be reset to the

beginning of the expression when the handleFoo() and handleBar() methods are entered.

Note the use of a try/finally block to ensure that the mark is always destroyed, whether or

not an exception of any kind is thrown after it is created. You should always use marks in this

way. Right after calling createMark(), start a try block whose finally clause calls destroyÖ

MathLinkException). If a mark is created and

not destroyed, a memory leak will result because incoming data will pile up on the link, never

to be freed.

458 J/Link User Guide

Because you seek back to the mark after calling getFunction(), the link will be reset to the

beginning of the expression when the handleFoo() and handleBar() methods are entered.

Note the use of a try/finally block to ensure that the mark is always destroyed, whether or

not an exception of any kind is thrown after it is created. You should always use marks in this

Mark(). It is important that no other code intervenes between createMark() and the try

block, especially MathLink calls (which can throw MathLinkException). If a mark is created and

not destroyed, a memory leak will result because incoming data will pile up on the link, never

to be freed.

Another common use for marks is to allow you to read an expression one way, and if a

MathLinkException is thrown, go back and try reading it a different way. For example, you

might be expecting a list of real numbers to be waiting on the link. You can set a mark and then

call getDoubleArray1(). If the data on the link cannot be coerced to a list of reals, getDouÖ

bleArray1() will throw a MathLinkException. You can then seek back to the mark and try a

different method of reading the data.

double[] data = null;
long mark = ml.createMark();
ty {

data = ml.getDoubleArray1();
} catch (MathLinkException e) {

ml.clearError();
ml.seekMark(mark);
// Here, try a different way of reading the data:
switch (ml.getNext()) {

...
}

} finally {
ml.destroyMark(mark);

}

Much of the functionality of marks is subsumed by the Expr class, described in "Motivation for

the Expr Class". Expr objects allow you to easily examine an expression over and over in differ-

ent ways, and with the peekExpr() method you can look at the upcoming expression without

consuming it off the link.

J/Link User Guide 459

Using Loopback Links

In addition to the MathLink and KernelLink interfaces, there is one other link interface:

LoopbackLink. Loopback links are a feature of MathLink that allow a program to conveniently

store Mathematica expressions. Say you want to read an expression off a link, keep it around

for awhile, and then write it back onto the same or a different link. How would you do this? If

you read it with the standard reading functions (getFunction(), getInteger(), and so on),

you will have broken the expression down into its atomic components, of which there might be

very many. Then you will have to reconstruct it later with the corresponding series of “put”

methods. What you really need is a temporary place to transfer the expression in its entirety,

where it can be read later or transferred again to a different link. A loopback link serves this

purpose.

Before proceeding to examine loopback links, please note that J/Link’s Expr class is used for

the same sorts of things that a loopback link is used for. Expr objects use loopback links inter-

nally, and are a much richer extension of the functionality that loopback links provide. You

should consider using Expr objects instead of loopback links in your programs.

If a MathLink is like a pipe, then a loopback link is a pipe that bends around to point back at

you. You manage both ends of the link, writing into one “end” and reading out the other, in

FIFO order. To create a loopback link in J/Link, use the MathLinkFactory method createLoopÖ

backLink():

// In class MathLinkFactory:
public static LoopbackLink createLoopbackLink() throws MathLinkException;

The LoopbackLink interface extends the MathLink interface, so all the MathLink methods can

be used on loopback links. LoopbackLink adds no methods beyond those in the MathLink

interface. Why have a separate interface then? It can be useful to have a separate type for this

kind of MathLink, because it has different behavior than a normal one-sided MathLink. Further-

more, there is one method in the MathLink interface (transferToEndOfLoopbackLink()) that

requires, as an argument, a loopback link. Thus, it provides a small measure of type safety

within J/Link and your own programs to have a separate LoopbackLink type.

You will probably use the MathLink method transferExpression(), or its variant transferÖ

ToEndOfLoopbackLink(), in conjunction with loopback links. You will need transferExpresÖ

sion() either to move an expression from another link onto a loopback link or to move an

expression you have manually placed on a loopback link onto another link. Here are the declara-

tions of these two methods:

460 J/Link User Guide

// In the MathLink interface
void transferExpression(MathLink source) throws MathLinkException;
void transferToEndOfLoopbackLink(LoopbackLink source) throws
MathLinkException;

Note that the source link is the argument and the destination is the this link. The transferExÖ

pression() method reads one expression from the source link and puts it on the destination

link, and the transferToEndOfLoopbackLink() method moves all the expressions on the

source link (which must be a LoopbackLink) to the destination link.

Already mentioned is a common case where loopback links are convenient~temporary storage

of an expression for later writing to a different link. This is done more simply using an Expr

object, however ("Motivation for the Expr Class"). Another use for loopback links is to allow you

to begin sending an expression before you know how long it will be. Recall that the putFuncÖ

tion() method requires you to specify the number of arguments (i.e., the length). There are

times, though, when you do not know ahead of time how long the expression will be. Consider

the following code fragment. You need to send a list of random numbers to Mathematica, the

length of which depends on a test whose outcome cannot be known at compile time. You can

create a loopback link and push the numbers onto it as they are generated, counting them as

you go. When the loop finishes, you know how many were generated, so you call putFuncÖ

tion() and then just “pour out” the contents of the loopback link onto the destination link. In

this example, it would be easy to store the accumulating numbers in a Java array or Vector

rather than a loopback link. But if you were sending complicated expressions it might not be so

easy to store them in native Java structures. It is often easier just to write them on a link as

you go, and leave the storage issues up to the internals of MathLink.

// Here we demonstrate sending an expression (a list of reals)
// whose length is unknown at the start.
try {

...
LoopbackLink loop = MathLinkFactory.createLoopbackLink();
int count = 0;
while (someTest) {

loop.put(Math.random());
count++;

}
ml.putFunction("List", count);
ml.transferToEndOfLoopbackLink(loop);
loop.close();
...

} catch (MathLinkException e) {}

Using Expr Objects

J/Link User Guide 461

Using Expr Objects

Motivation for the Expr Class

The Expr class provides a direct representation of Mathematica expressions in Java. You can

guess that this will be useful, since everything in Mathematica is an expression and MathLink is

all about communicating Mathematica expressions between programs.

You have several ways of handling Mathematica expressions in a MathLink program. First, you

can send and/or receive them as strings. This is often convenient, particularly if you are taking

input typed by a user, or displaying results to the user. Many of the KernelLink methods can

take input as a string and return the result as a string. A second way of handling Mathematica

expressions is to put them on the link or read them off the link a piece at a time with a series of

“put” or “get” calls. A third way is to store them on a loopback link and shuttle them around

between links. Each of these methods has advantages and disadvantages.

Loopback links were described in the previous section, but it is worthwhile to summarize them

here, as it provides some of the background to understanding the motivation for the Expr class.

Basically, a loopback link provides a means to store a Mathematica expression without having

tediously to read it off the link, disassembling it into its component atoms in the process. Loop-

back links, then, let you store expressions for later reading or just dumping onto another link. If

you eventually want to read and examine the expression, however, you are still stuck with the

difficult task of dissecting an arbitrary expression off a link with the correct sequence of “get”

calls. This is where the Expr class comes in. Like a loopback link, an Expr object stores an

arbitrary Mathematica expression. The Expr class goes further, though, and provides a set of

methods for examining the structure of the expression, extracting parts of it, and building new

ones. The names and operation of these methods will be familiar to Mathematica programmers:

head(), length(), dimensions(), part(), stringQ(), vectorQ(), matrixQ(), insert(),

delete(), and many others.

The advantage of an Expr over a loopback link, then, is that you are not restricted to using the

low-level MathLink API for examining an expression. Consider the task of receiving an arbitrary

expression from Mathematica and determining if its element at position [[2, 3]] (in Mathemat-

ica notation) is a vector (a list with no sublists). This can be done with an Expr object as

follows:

462 J/Link User Guide

ml.evaluate("some code");
ml.waitForAnswer();
Expr e = ml.getExpr();
Expr part23 = e.part(new int[] {2, 3});
boolean isVector = part23.vectorQ();

This task would be much more difficult with the MathLink API. The Expr class provides a mini-

mal Mathematica-like functional interface for examining and dissecting expressions.

Methods in the MathLink Interface for Reading and Writing Exprs

There are three methods in the MathLink interface for dealing with Expr objects. This is in

addition to the numerous methods in the Expr class itself, which deal with composing and

decomposing Expr objects. The getExpr() and peekExpr() methods read an expression off a

link, but peekExpr() resets the link to the beginning of the expression~it “peeks” ahead at the

upcoming expression without consuming it. This is quite useful for debugging. The put()

method will send an Expr object as its corresponding Mathematica expression.

// In the MathLink interface:
Expr getExpr() throws MathLinkException;
Expr peekExpr() throws MathLinkException;
void put(Object obj) throws MathLinkException;

Exprs as Replacements for Loopback Links

One way to use Expr is as a simple replacement for a loopback link. You can use the MathLink

method getExpr() to read any type of expression off a link and store it in the resulting Expr

object. To write the expression onto a link, use the put() method. Compare the following two

code fragments:

J/Link User Guide 463

// Old way, using a loopback link
LoopbackLink loop = MathLinkFactory.createLoopbackLink();
// Read expr off of link and store it on loopback
loop.transferExpression(ml);
...
// Later, write the expr back on the link
ml.transferExpression(loop);
loop.close();

// New way, using an Expr
Expr e = ml.getExpr();
...
// Later, write the expression back on the link
ml.put(e);
e.dispose();

Note the call to dispose() at the end. The dispose() method tells an Expr object to release

certain resources that it might be using internally. You should generally use dispose() on an

Expr when you are finished with it. The dispose() method is discussed in more detail in

"Disposing of Exprs".

Exprs as a Means to Get String Representations of Expressions

A particularly useful method in the Expr class is toString(), which produces a string represen-

tation of the expression similar to InputForm (without involving the kernel, of course). This is

particularly handy for debugging purposes, when you want a quick way to see what is arriving

on the link. In "The PacketPrinter Class for Debugging" it was mentioned that J/Link has a class

PacketPrinter that implements the PacketListener interface and can be used to easily print

out the contents of packets as they arrive in your program, without modifying your program.

Following is the packetArrived() method of that class, which uses an Expr object and its

toString() method to get the printable text representation of an arbitrary expression.

public boolean packetArrived(PacketArrivedEvent evt) throws
MathLinkException {

KernelLink ml = (KernelLink) evt.getSource();
Expr e = ml.getExpr();
strm.println("Packet type was " + pktToName(evt.getPktType()) +

". Contents follows.");
strm.println(e.toString());
e.dispose();
return true;

}

Whether you use the PacketPrinter class or not, this technique is useful to see what expres-

sions are being passed around. This is often used in conjunction with the MathLink peekÖ

Expr() method, which reads an expression off the link but then resets the link so that the

expression is not consumed. In this way, you can look at expressions arriving on links without

interfering with the rest of the link-reading code in your program. The PacketPrinter code

shown does not use peekExpr(), but it has the same effect since the resetting of the link is

handled elsewhere.

464 J/Link User Guide

Whether you use the PacketPrinter class or not, this technique is useful to see what expres-

sions are being passed around. This is often used in conjunction with the MathLink peekÖ

Expr() method, which reads an expression off the link but then resets the link so that the

expression is not consumed. In this way, you can look at expressions arriving on links without

interfering with the rest of the link-reading code in your program. The PacketPrinter code

shown does not use peekExpr(), but it has the same effect since the resetting of the link is

handled elsewhere.

Exprs as Arguments to KernelLink Methods

The KernelLink methods evaluate(), evaluateToInputForm(), evaluateToOutputForm(),

evaluateToImage(), and evaluateToTypeset() take the Mathematica expression to evalu-

ate as either a string or an Expr. "The 'evaluateTo' Methods" discusses why and how you would

use an Expr object to provide the input instead of a string. This examines one trivial example

comparing how you would send 2+2 to Mathematica as both a string and as an Expr. In the

Expr case you build the expression on a loopback link and then read the Expr off this link. For

all but the simplest expressions, this is generally easier than trying to use the Expr

constructors.

// Send input as a string:
String result = MathLink.evaluateToOutputForm("2+2", 0);

// Send input as an Expr:
LoopbackLink loop = MathLinkFactory.createLoopbackLink();
// Create the expression 2+2 on the loopback link
loop.putFunction("Plus", 2);

loop.put(2);
loop.put(2);

loop.endPacket();
// Now read the Expr off the loopback link
Expr e = loop.getExpr();
// We are done with the loopback link now.
loop.close();
String result = ml.evaluateToOutputForm(e, 0);
e.dispose();

J/Link User Guide 465

Examining and Manipulating Exprs

Like expressions in Mathematica, Expr objects are immutable, meaning that they cannot be

modified once they have been created. Operations that might appear to modify an Expr, like

the insert() method, actually copy the original , modify this copy, and then return a new

immutable object. One consequence of being immutable is that the Expr class is thread-safe~

multiple threads can operate on the same Expr without worrying about synchronization.

The Expr class provides a minimal Mathematica-like API for examination and manipulation. The

functions are generally named after their Mathematica counterparts, and they operate in the

same way. This section will only provide a brief review of the Expr API. Consult the JavaDocs

(found in the JLink/Documentation/JavaDoc directory) for more information about these

methods.

Here are some methods for learning about the structure of an Expr:

public Expr head();
public Expr[] args();
public int length();
public int[] dimensions();

There are a number of methods whose names end in “Q”, following the same naming pattern as

in Mathematica for functions that return true or false. This is not the complete list:

// A sampling of the "Q" methods
public boolean atomQ();
public boolean stringQ();
public boolean integerQ();
public boolean numberQ();
public boolean trueQ();
public boolean listQ();
public boolean vectorQ();
public boolean matrixQ();

There are several methods for taking apart and building up an Expr. Like in Mathematica, part

numbers and indices are 1-based. You can also supply negative numbers to count backward

from the end. Many Expr methods throw an IllegalArgumentException if they are called

with invalid input, such as a part index larger than the length of the Expr. These exceptions

parallel the Mathematica error messages you would get if you made the same error in Mathemat-

ica code.

466 J/Link User Guide

public Expr part(int index);
public Expr part(int[] indices);
public Expr take(int n);
public Expr delete(int n);
public Expr insert(Expr e, int n);

Here is some very simple code that demonstrates a few Expr operations.

ml.evaluate("Expand[(x + y)^4]");
ml.waitForAnswer();
Expr e1 = ml.getExpr();

System.out.println("e1 is: " + e1.toString());
System.out.println("the length is: " + e1.length());
System.out.println("the head is: " + e1.head().toString());
System.out.println("part [[2]] is: " + e1.part(2));
System.out.println("part [[-1]] is: " + e1.part(-1));
System.out.println("part [[2, 2]] is: " + e1.part(new int[]{2, 2}));
System.out.println("drop the last element: " + e1.delete(-1).toString());
System.out.println("e1 is unmodified: " + e1.toString());
Expr e2 = e1.insert(new Expr(new double[] {1.0, 2.0, 3.0}), 1);
System.out.println("e2 is: " + e2.toString());

That code prints the following:

e1 is:
Plus[Power[x,3],Times[3,Power[x,2],y],Times[3,x,Power[y,2]],Power[y,3]]
the length is: 4
the head is: Plus
part [[2]] is: Times[3,Power[x,2],y]
part [[-1]] is: Power[y,3]
part [[2, 2]] is: Power[x,2]
drop the last element:
Plus[Power[x,3],Times[3,Power[x,2],y],Times[3,x,Power[y,2]]]
e1 is unmodified:
Plus[Power[x,3],Times[3,Power[x,2],y],Times[3,x,Power[y,2]],Power[y,3]]
e2 is:
Plus[{1.0,2.0,3.0},Power[x,3],Times[3,Power[x,2],y],Times[3,x,Power[y,2]],P
ower[y,3]]

J/Link User Guide 467

Disposing of Exprs

You have seen the dispose() method used frequently in this discussion of the Expr class. An

Expr object might make use of a loopback MathLink internally, and any time a Java class holds

such a non-Java resource it is important to provide programmers with a dispose() method

that causes the resource be released. Although the finalizer for the Expr class will call disÖ

pose(), you cannot rely on the finalizer ever being called. Although it is good style to always

call dispose() on an Expr when you are finished using it, you should know that many of the

operations you can perform on an Expr will cause it to be “unwound” off its internal loopback

link and cause that link to be closed. After this happens, the dispose() method is unneces-

sary. Calling the toString() method is an example of an operation that makes dispose()

unnecessary, and in fact virtually any operation that queries the structure of an Expr or

extracts a part will have this effect. This is useful to know since it allows shorthand code like

this:

System.out.println("the result was " + ml.getExpr().toString());

instead of the more verbose:

Expr e = ml.getExpr();
System.out.println("the result was " + e.toString());
e.dispose();

You should get in the habit of calling dispose() explicitly on Expr objects. In cases where it is

inconvenient to store an Expr in a named variable, and you know that the Expr does not need

to be disposed, then you can skip calling it.

Because extracting any piece of an existing expression will make dispose() unnecessary, you

do not have to worry about calling dispose() on Expr objects that are obtained as parts of

another one:

Expr e = ml.getExpr();
// The moment that head() or part() are called on e below, you know that
neither
// e, e2, nor e3 need to be disposed.
Expr e2 = e.head();
Expr e3 = e.part(1);

You cannot reliably use an Expr object after dispose() has been called on it. You have already

seen that dispose() is often unnecessary because many Expr objects have already had their

Expr, dispose() will have no effect at all and there

would be no problem continuing to use the Expr after dispose() had been called. That being

said, it is horrible style to ever try to use an Expr after calling dispose(). A call to dispose()

should always be an unambiguous indicator that you have no further use for the given Expr or

any part of it.

468 J/Link User Guide

You cannot reliably use an Expr object after dispose() has been called on it. You have already

internal loopback links closed. For such an Expr, dispose() will have no effect at all and there

would be no problem continuing to use the Expr after dispose() had been called. That being

said, it is horrible style to ever try to use an Expr after calling dispose(). A call to dispose()

should always be an unambiguous indicator that you have no further use for the given Expr or

any part of it.

Threads, Blocking, and Yielding

The classes that implement the MathLink and KernelLink interfaces are not thread-safe. This

means that if you write a J/Link program in which one link object is used by more than one

thread, you need to pay careful attention to concurrency issues. The relevant methods in the

link implementation classes are synchronized, so at the individual method level there is no

chance that two threads can try to use the link at the same time. However, this is not enough

to guarantee thread safety because interactions with the link typically involve an entire transac-

tion, encompassing a multistep write and read of the result. This entire transaction must be

guarded. This is done by using synchronized blocks to ensure that the threads do not inter-

fere with each other’s use of the link.

The “evaluateTo” methods are synchronized, and they encapsulate an entire transaction

within one call, so if you use only these methods you will have no concerns. On the other hand,

if you use evaluate() and waitForAnswer(), or any other technique that splits up a single

transaction across multiple method calls, you should wrap the transaction in a synchronized

block, as follows:

synchronized (ml) {
ml.evaluate("2+2");
ml.waitForAnswer();
int result = ml.getInteger();

}

Synchronization is only an issue if you have multiple threads using the same link.

J/Link functions that read from a link will block until data arrives on that link. For example,

when you call evaluateToOutputForm(), it will not return until Mathematica has computed

and returned the result. This might be a problem if the thread on which evaluateToOutputÖ

Form() was called needs to stay active~for example, if it is the AWT thread, which processes

user interface events.

How to handle blocking is a general programming problem, and there are a number of solu-

tions. The Java environment is multithreaded, and thus an obvious solution is simply to make

J/Link calls on a thread that does not need to be continuously responsive to other events in the

system.

J/Link User Guide 469

How to handle blocking is a general programming problem, and there are a number of solu-

tions. The Java environment is multithreaded, and thus an obvious solution is simply to make

J/Link calls on a thread that does not need to be continuously responsive to other events in the

system.

MathLink has the notion of a “yield function,” which is a function you can designate to be called

from the internals of MathLink while MathLink is blocking, waiting for input to arrive from the

other side. A primary use for yield functions was to solve the blocking problem on operating

systems that did not have threads, or for programming languages that did not have portable

threading libraries. The way this would typically work is that your single-threaded program

would install a yield function that ran its main event loop, so that the program could process

user interface events even while it was waiting for MathLink data.

With Java, this motivation goes away. Rather than using a yield function to allow your pro-

gram’s only thread to still handle events while blocking, you simply start a separate thread

from the user interface thread and let it happily block inside J/Link calls. Despite the limited

usefulness of yield functions in Java programs, J/Link provides the ability to use them anyway.

// From the MathLink interface
public boolean setYieldFunction(Class cls, Object obj, String methName);

The setYieldFunction() method in the MathLink interface takes three arguments that iden-

tify the function to be called. These arguments are designed to accommodate static and non-

static methods, so only two of the three need to be specified. For a static method, supply the

method’s Class and its name, leaving the second argument null. For a nonstatic method,

supply the object on which you want the method called and the method’s name, leaving the

Class argument null. The function must be public, take no arguments, and return a boolean,

for example:

public boolean myYielder();

The function you specify will be called periodically while J/Link is blocking in a call that tries to

read from the link. The return value is used to indicate whether J/Link should back out of the

read call and return right away. Backing out of a read call will cause a MathLinkException to

be thrown by the method that is reading from the link. This MathLinkException is recoverable

(meaning that clearError() will return true), so you could call waitForAnswer() again later

and get the result when it arrives if you want. Return false from the yield function to indicate

470 J/Link User Guide

The function you specify will be called periodically while J/Link is blocking in a call that tries to

read from the link. The return value is used to indicate whether J/Link should back out of the

read call and return right away. Backing out of a read call will cause a MathLinkException to

be thrown by the method that is reading from the link. This MathLinkException is recoverable

(meaning that clearError() will return true), so you could call waitForAnswer() again later

that no action should be taken (thus false is the normal return value for a yield function), and

return true to indicate that J/Link should back out of the reading call. To turn off the yield

function, call setYieldFunction(null, null, null).

Very few J/Link programmers will have any need for yield functions. They are a solution to a

problem that is better handled in Java by using multiple threads. About the only reasonable

motivation for using a yield function is to be able to back out of a computation that is taking too

long and either resists attempts to abort it, or you know you want to close the link anyway.

This can also be done by calling abandonEvaluation() on a separate thread. The abanÖ

donEvaluation() method is described in "Aborting and Interrupting Computations". Note that

abandonEvaluation() uses a yield function internally, so calling it will wipe out any yield

function you might have installed on your own.

Sending Object References to Mathematica

The first part of this User Guide describes how to use J/Link to allow Mathematica code to

launch a Java runtime, load Java classes and directly execute Java methods. What this means

for you, the reader of this tutorial, who is probably writing his or her own program to launch

and communicate with the Mathematica kernel, is that you can have a very high-level interac-

tion with Mathematica. You can send your own objects to Mathematica and use them in Mathe-

matica code, but you have to take a special step to enable this type of interaction.

Consider what happens if you have written a Java front end to the Mathematica kernel and a

user of your program calls a Mathematica function that uses the “installable Java” features of

J/Link and thus calls InstallJava in Mathematica. InstallJava launches a separate Java

runtime and proceeds to direct all J/Link traffic to that Java runtime. The kernel is blissfully

unconcerned whether the front end that is driving it is the notebook front end or your Java

program~it does the same thing in each case. This is fine and it is what many J/Link program-

mers will want. You do not have to worry about doing anything special if some Mathematica

code happens to invoke the “installable Java” features of J/Link, because a separate Java run-

time will be used.

But what if you want to make use of the ability that J/Link gives Mathematica code to interact

with Java objects? You might want to send Java object references to Mathematica and operate

on them with Mathematica code. Mathematica “operates” on Java objects by calling into Java,

so any callbacks for such objects must be directed to your Java runtime. A further detail of

InstallJava and specify the link to your Java runtime, and you must do this

before any function is executed that itself calls InstallJava. Actually, a number of steps need

to be taken to enable J/Link callbacks into your Java environment, so J/Link includes a special

method in the KernelLink interface, enableObjectReferences(), that takes care of every-

thing for you.

J/Link User Guide 471

But what if you want to make use of the ability that J/Link gives Mathematica code to interact

with Java objects? You might want to send Java object references to Mathematica and operate

on them with Mathematica code. Mathematica “operates” on Java objects by calling into Java,

J/Link is that it only supports one active Java runtime for all installable Java uses. What this all

adds up to is that if you want to pass references to your own objects into Mathematica, then

you must call InstallJava and specify the link to your Java runtime, and you must do this

before any function is executed that itself calls InstallJava. Actually, a number of steps need

to be taken to enable J/Link callbacks into your Java environment, so J/Link includes a special

method in the KernelLink interface, enableObjectReferences(), that takes care of every-

thing for you.

public void enableObjectReferences() throws MathLinkException;

// For sending object references:
public void put(Object obj) throws MathLinkException;
public void putReference(Object obj) throws MathLinkException;

After calling enableObjectReferences(), you can use the KernelLink interface’s put() or

putReference() methods to send Java objects to Mathematica, and they will arrive as

JavaObject expressions that can be used in Mathematica code as described throughout "Calling

Java from Mathematica". Recall that the difference between the put() and putReference()

methods is that put() sends objects that have meaningful “value” representations in Mathemat-

ica (like arrays and strings) by value, and all others by reference. The putReference()

method sends everything as a reference. If you want to use enableObjectReferences(), call

it early on in your program, before you call putReference(). It requires that the JLink.m file

be present in the expected location, which means that J/Link must be installed in the standard

way on the machine that is running the kernel.

Once you have called enableObjectReferences(), not only can you send Java objects to

Mathematica, you can also read Java object references that Mathematica sends back to Java.

The getObject() method is used for this purpose. If a valid JavaObject expression is waiting

on the link, getObject() will return the object that it refers to.

public Object getObject() throws MathLinkException;

If you call enableObjectReferences() in your program, it is imperative that you do not try to

write your own packet loop. Instead, you must use the KernelLink methods that encapsulate

the reading and handling of packets until a result is received. These methods are waitForAnÖ

swer(), discardAnswer(), evaluateToInputForm(), evaluateToOutputForm(), evaluateÖ

ToImage(), and evaluateToTypeset(). If you want to see all the incoming packets yourself,

use a PacketListener object in conjunction with one of these methods. This is discussed in

"Using the PacketListener Interface".

It is worthwhile to examine in more detail the question of why you would want to use enableObÖ

jectReferences(). Traditionally, MathLink programmers have worked with the C API, which

limits the types of data that can be passed back and forth between C and Mathematica to

Mathematica expressions. Since Mathematica expressions are not generally meaningful in a C

program, this translates basically to numbers, strings, and arrays of these things. The native

structures that are meaningful in your C or C++ program (structs, objects, functions, and so

on) are not meaningful in Mathematica. As a result, programmers tend to use a simplistic one-

way communication with Mathematica, decomposing the native data structures and objects into

simple components like numbers and strings. Program logic and behavior is coded entirely in C

or C++, with Mathematica used solely for mathematical computations.

472 J/Link User Guide

It is worthwhile to examine in more detail the question of why you would want to use enableObÖ

jectReferences(). Traditionally, MathLink programmers have worked with the C API, which

limits the types of data that can be passed back and forth between C and Mathematica to

Mathematica expressions. Since Mathematica expressions are not generally meaningful in a C

program, this translates basically to numbers, strings, and arrays of these things. The native

structures that are meaningful in your C or C++ program (structs, objects, functions, and so

on) are not meaningful in Mathematica. As a result, programmers tend to use a simplistic one-

way communication with Mathematica, decomposing the native data structures and objects into

simple components like numbers and strings. Program logic and behavior is coded entirely in C

or C++, with Mathematica used solely for mathematical computations.

In contrast, J/Link allows Java and Mathematica code to collaborate in a high-level way. You

can easily code algorithms and other program behavior in Mathematica if it is easier for you. As

an example, say you are writing a Java servlet that needs to use the Mathematica kernel in

some way. Your servlet’s doGet() method will be called with HttpServletRequest and

HttpServletResponse objects as arguments. One approach would be to extract the informa-

tion you need out of these objects, package it up in some way for Mathematica, and send the

desired computation for evaluation. But another approach would be simply to send the

HttpServletRequest and HttpServletResponse objects themselves to Mathematica. You

can then use the features and syntax described in "Calling Java from Mathematica" to code the

behavior of the servlet in Mathematica, rather than in Java. Of course, these are just two

extremes of a continuum. At one end you have the servlet behavior hard-coded into a compiled

Java class file, and you make use of Mathematica in a limited way, using a very narrow pipeline

(narrow in the logical sense, passing only simple things like numbers, strings, or arrays). At the

other end of the continuum you have a completely generic servlet that does nothing but for-

ward all the work into Mathematica. The behavior of the servlet is written completely in Mathe-

matica. You can use this approach even if you do not need Mathematica as a mathematics

engine~you might just find it easier to develop and debug your servlet logic in the Mathematica

language. You can draw the line between Java and Mathematica anywhere you like along the

continuum, doing whatever amount of work you prefer in each language.

J/Link User Guide 473

In case you are wondering what such a generic servlet might look like, here is the doGet()

method:

// ml.enableObjectReferences() must have been called prior, for example
// in the servlet's init method.
public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

try {
ml.putFunction("EvaluatePacket", 1);
ml.putFunction("DoGet", 2);
// We could also use plain 'put' here, as these objects would be

put
// by reference anyway.
ml.putReference(req);
ml.putReference(res);
ml.endPacket();
ml.discardAnswer();

} catch (MathLinkException e) {}
}

This would be accompanied by a Mathematica function DoGet that takes the two Java object

arguments and implements the servlet behavior. The syntax is explained in "Calling Java from

Mathematica":

doGet[req_, resp_] :=
 JavaBlock[

Module[{outStream},
outStream = resp@getOutputStream[];
outStream@print["<HTML> <BODY>"];
outStream@print["Hello World"];
outStream@print["</BODY> </HTML>"];

]
]

]

Some Special User Interface Classes

Introduction

J/Link has several classes that provide some very high-level user interface components for your

Java programs. They are discussed individually in the next subsections. These classes are in the

new com.wolfram.jlink.ui package, so do not forget to import that package if you want to use

the classes.

474 J/Link User Guide

ConsoleWindow

The ConsoleWindow class gives you a top-level frame window that displays output printed to

the System.out and/or System.err streams. It has no input facilities. This is the class used to

implement the Mathematica function ShowJavaConsole, discussed in "The Java Console Win-

dow". This class is quite useful for debugging Java programs that do not have a convenient

place for console output. An example is a servlet~rather than digging around in your servlet

container’s log files after every run, you can just display a ConsoleWindow and see debugging

output as it happens.

This class is a singleton, meaning that there is only ever one instance in existence. It has no

public constructors. You call the static getInstance() method to acquire the sole

ConsoleWindow object. Here is a code fragment that demonstrates how to use ConsoleWindow.

You can find more information on this class in its JavaDoc page.

// Don't forget to import it (a different package than the rest of
J/Link):
// import com.wolfram.jlink.ui.ConsoleWindow;

ConsoleWindow cw = ConsoleWindow.getInstance();
cw.setLocation(100, 100);
cw.setSize(450, 400);
cw.show();
// Sepcify that we want to capture System.out and System.err.
cw.setCapture(ConsoleWindow.STDOUT | ConsoleWindow.STDERR);
System.out.println("hello world from stdout");
System.err.println("hello world from stderr");

MathSessionPane

The MathSessionPane class provides an In/Out Mathematica session window complete with a

full set of editing functions including cut/copy/paste/undo/redo, support for graphics, syntax

coloring, and customizable font styles. It is a bit like the Mathematica kernel’s “terminal” inter-

face, but much more sophisticated. You can easily drop it into any Java program that needs a

full command-line interface to Mathematica. The class is a Java Bean and will work nicely in a

GUI builder environment. It has a very large number of properties that allow its look and behav-

ior to be customized.

The best way to familiarize yourself with the features of MathSessionPane is to run the SimpleÖ

FrontEnd example program, found in the JLink/Examples/Part2/SimpleFrontEnd directory.

SimpleFrontEnd is little more than a frame and menu bar that host a MathSessionPane.

Essentially all the features you see are built into MathSessionPane, including the keyboard

commands and the properties settable via the Options menu.To run this example, go to the

SimpleFrontEnd directory and execute the following command line:

J/Link User Guide 475

The best way to familiarize yourself with the features of MathSessionPane is to run the SimpleÖ

FrontEnd example program, found in the JLink/Examples/Part2/SimpleFrontEnd directory.

SimpleFrontEnd is little more than a frame and menu bar that host a MathSessionPane.

Essentially all the features you see are built into MathSessionPane, including the keyboard

commands and the properties settable via the Options menu.To run this example, go to the

SimpleFrontEnd directory and execute the following command line:

(Windows)
java -classpath SimpleFrontEnd.jar;..\..\..\JLink.jar SimpleFrontEnd

(Linux, Unix, Mac OS X):
java -classpath SimpleFrontEnd.jar:../../../JLink.jar SimpleFrontEnd

The application window will appear and you will be prompted to enter a path to a kernel to

launch. Once Mathematica is running, try various computations, including plots. Experiment

with the numerous settings and commands on the menus. One feature of MathSessionPane not

exposed via the SimpleFrontEnd menu bar is a highly customizable syntax coloring capability.

The default behavior is to color built-in Mathematica symbols, but you can get as fancy as you

like, such as specifying that symbols from a certain list should always appear in red, and

symbols from a certain package should always appear in blue.

The methods and properties of MathSessionPane are described in greater detail in the

JavaDocs, which are found in the JLink/Documentation/JavaDoc directory.

BracketMatcher and SyntaxTokenizer

The auxiliary classes BracketMatcher and SyntaxTokenizer are used by MathSessionPane but

can also be used separately to provide these services in your own programs. An example of the

sort of program that would find these classes useful is a text-editor component that needs to

have special features for Mathematica programmers.

These classes are described in greater detail in their JavaDoc pages. The JavaDocs for J/Link

are found in the JLink/Documentation/JavaDoc directory. You can also look to see how they are

used in the source code for the MathSessionPane class (MathSessionPane.java).

The BracketMatcher class locates matching bracket pairs (any of (), {}, [], and (**)) in Mathe-

matica code. It ignores brackets within strings and within Mathematica comments, and it can

accommodate nested comments. It searches in the typical way~expanding the current selec-

MathSessionPane and experiment with its bracket-matching feature.

476 J/Link User Guide

The BracketMatcher class locates matching bracket pairs (any of (), {}, [], and (**)) in Mathe-

matica code. It ignores brackets within strings and within Mathematica comments, and it can

tion left and right to find the first enclosing matching brackets. To see its behavior in action,

simply run the SimpleFrontEnd sample program discussed in the previous section on

MathSessionPane and experiment with its bracket-matching feature.

SyntaxTokenizer is a utility class that can break up Mathematica code into 4 syntax classes:

strings, comments, symbols, and normal (meaning everything else). You can use it to imple-

ment syntax coloring or a code analysis tool that can extract all comments or symbols from a

file of Mathematica code.

InterruptDialog

The InterruptDialog class gives you an Interrupt Evaluation dialog box similar to the one

you see in the notebook front end when you choose Interrupt Evaluation from the Evalua-

tion menu. The dialog box that appears has choices for aborting, quitting the kernel, and so on,

depending on what the kernel is doing at the time.

The InterruptDialog constructor takes a Dialog or Frame instance that will be the parent

window of the dialog box. What you supply for this argument will typically be the main top-level

window in your application. InterruptDialog implements the PacketListener interface, and

you use it like any other PacketListener:

// Don't forget to import it (a different package than the rest of
J/Link):
// import com.wolfram.jlink.ui.InterruptDialog;

ml.addPacketListener(new InterruptDialog(myParentFrame));

After the line of code is executed, whenever you interrupt a computation (by sending an MLINÖ

TERRUPTMESSAGE or, more commonly, by calling the KernelLink interruptEvaluation()

method), a modal dialog box will appear with choices for how to proceed.

The SimpleFrontEnd sample program discussed in the section "MathSessionPane" makes use

of an InterruptDialog. To see it in action, launch that sample program and execute the follow-

ing Mathematica statement:

While@TrueD

Then select Interrupt Evaluation from the Evaluation menu. The Interrupt Evaluation

dialog box will appear and you can click the Abort Command Being Evaluated button to stop

the computation. To use an InterruptDialog in your own program, your user interface must

KernelLink interÖ

ruptEvaluation() method.

J/Link User Guide 477

Then select Interrupt Evaluation from the Evaluation menu. The Interrupt Evaluation

dialog box will appear and you can click the Abort Command Being Evaluated button to stop

provide a means for users to send an interrupt request, such as an Interrupt button or special

key combination. In response to this action, your program would call the KernelLink interÖ

ruptEvaluation() method.

That a behavior as complex as a complete Interrupt Evaluation dialog box can be plugged

into a Java program with only a single line of code is a testament to the versatility of the

PacketListener interface, described in "Using the PacketListener Interface". The

InterruptDialog class works by monitoring the incoming flow of packets from the kernel and

detecting the special type of MenuPacket that the kernel sends after an interrupt request.

Anytime you have some application logic that needs to know about packets that arrive from

Mathematica, you should implement it as a PacketListener.

Writing Applets

This User Guide has presented a lot of information about how to use J/Link to enable MathLink

functionality in Java programs, whether those Java programs are applications, JavaBeans,

servlets, applets, or anything else. If you want to write an applet that makes use of a local

Mathematica kernel, you have some special considerations because you will need to escape the

Java security “sandbox” within which the browser runs applets.

The only thing that J/Link needs special browser security permission for is to load the J/Link

native library. The only reason the native library is required, or even exists at all, is to perform

the translation between Java calls in the NativeLink class and Wolfram Research’s platform-

dependent MathLink library. NativeLink is the class that implements the MathLink interface in

terms of native methods. Currently, every time you call MathLinkFactory.createMathLink()

or MathLinkFactory.createKernelLink(), an instance of the NativeLink class is created,

so the J/Link native library must be loaded. In other words, the only thing in J/Link that needs

the native library is the NativeLink class, but currently all MathLink or KernelLink objects

use a NativeLink object. You cannot do anything with J/Link without requiring the native

library to be loaded.

Different browsers have different requirements for allowing applets to load native libraries. In

many cases, the applet must be “signed”, and the browser must have certain settings enabled.

Note that letting Java applets launch local kernels is an extreme breach of security, since Mathe-

matica can read sensitive files, delete files, and so on. It is probably not a very good idea in

general for users to allow applets to blast such an enormous hole in their browser’s security

478 J/Link User Guide

Different browsers have different requirements for allowing applets to load native libraries. In

many cases, the applet must be “signed”, and the browser must have certain settings enabled.

Note that letting Java applets launch local kernels is an extreme breach of security, since Mathe-

matica can read sensitive files, delete files, and so on. It is probably not a very good idea in

sandbox. A better choice is to have Java applets use a kernel residing on the server. In this

scenario, the browser’s Java runtime does not need to load any local native libraries, so there

are no security issues to overcome. This requires significant support on both the client and

server side. This support is not part of J/Link itself, but it is a good example of the sort of

programs J/Link can be used to create.

J/Link User Guide 479

