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Global Aspects of Mathematica Sessions

The Main Loop

In  any interactive  session,  Mathematica  effectively  operates  in  a  loop.  It  waits  for  your  input,

processes the input, prints the result, then goes back to waiting for input again. As part of this

“main loop”, Mathematica maintains and uses various global objects. You will often find it useful

to work with these objects. 

You  should  realize,  however,  that  if  you  use  Mathematica  through  a  special  front  end,  your

front end may set up its own main loop, and what is said here may not apply. 

In@nD the expression on the nth input line

InString@nD the textual form of the nth input line

% n  or Out@nD the expression on the nth output line

Out@8n1,n2,…<D a list of output expressions

%% … %  (n times) or Out@-nD the expression on the nth previous output line

MessageList@nD a list of messages produced while processing the nth line

$Line the current line number (resettable)

Input and output expressions. 

In  a  standard  interactive  session,  there  is  a  sequence  of  input  and  output  lines.  Mathematica

stores the values of the expressions on these lines in In@nD and Out@nD. 

As  indicated  by  the  usual  In@nD :=  prompt,  the  input  expressions  are  stored  with  delayed

assignments. This means that whenever you ask for In@nD, the input expression will always be

reevaluated in your current environment. 



This assigns a value to x. 

In[1]:= x = 7

Out[1]= 7

Now the value for x is used. 

In[2]:= x - x^2 + 5 x - 1

Out[2]= -8

This removes the value assigned to x. 

In[3]:= x =.

This is reevaluated in your current environment, where there is no value assigned to x. 

In[4]:= In@2D

Out[4]= -1 + 6 x - x2

This gives the textual form of the second input line, appropriate for editing or other textual 
manipulation. 

In[5]:= InString@2D êê InputForm

Out[5]//InputForm= "\\(x - \\(x^2\\) + \\(5 x\\) - 1\\)"

$HistoryLength the number of previous lines of input and output to keep

Specifying the length of session history to keep. 

Mathematica by default stores all your input and output lines for the duration of the session. In

a very long session, this may take up a large amount of computer memory. You can neverthe-

less get rid of the input and output lines by explicitly clearing the values of In  and Out, using

Unprotect@In, OutD, followed by Clear@In, OutD. You can also tell Mathematica to keep only

a limited number of lines of history by setting the global variable $HistoryLength.

Note that at any point in a session, you can reset the line number counter $Line, so that, for

example, new lines are numbered so as to overwrite previous ones. 
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$PreRead a function applied to each input string before being fed to 
Mathematica

$Pre a function applied to each input expression before 
evaluation

$Post a function applied to each expression after evaluation

$PrePrint a function applied after Out@nD is assigned, but before the 
result is printed

$SyntaxHandler a function applied to any input line that yields a syntax 
error

Global functions used in the main loop. 

Mathematica  provides  a  variety  of  “hooks”  that  allow  you  to  insert  functions  to  be  applied  to

expressions at various stages in the main loop. Thus, for example, any function you assign as

the  value  of  the  global  variable  $Pre  will  automatically  be  applied  before  evaluation  to  any

expression you give as input. 

For  a  particular  input  line,  the  standard  main  loop  begins  by  getting  a  text  string  of  input.

Particularly if you need to deal with special characters, you may want to modify this text string

before  it  is  further  processed by Mathematica.  You can do this  by  assigning a  function as  the

value of  the global  variable $PreRead.  This function will  be applied to the text string, and the

result will be used as the actual input string for the particular input line. 

This tells Mathematica to replace listHead by 8…< in every input string. 

In[6]:= $PreRead = HReplaceAll@Ò, "listHead" ß "List"D &L

Out[6]= Ò1 ê. listHead ß List &

You can now enter lists as listHead expressions.

In[7]:= listHead@a, b, cD

Out[7]= 8a, b, c<

You can remove the value for $PreRead like this, at least so long as your definition for 
$PreRead does not modify this very input string. 

In[8]:= $PreRead =.

Once Mathematica has successfully read an input expression, it then evaluates this expression.

Before doing the evaluation, Mathematica applies any function you have specified as the value

of $Pre, and after the evaluation, it applies any function specified as the value of $Post. Note

that  unless  the  $Pre  function  holds  its  arguments  unevaluated,  the  function  will  have  exactly

the same effect as $Post. 
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Once Mathematica has successfully read an input expression, it then evaluates this expression.

Before doing the evaluation, Mathematica applies any function you have specified as the value

of $Pre, and after the evaluation, it applies any function specified as the value of $Post. Note

that  unless  the  $Pre  function  holds  its  arguments  unevaluated,  the  function  will  have  exactly

the same effect as $Post. 

$Post  allows  you  to  specify  arbitrary  “postprocessing”  to  be  done  on  results  obtained  from

Mathematica. Thus, for example, to make Mathematica get a numerical approximation to every

result it generates, all you need do is to set $Post = N. 

This tells Mathematica to apply N to every result it generates. 

In[9]:= $Post = N

Out[9]= N

Now Mathematica gets a numerical approximation to anything you type in. 

In[10]:= Sqrt@7D

Out[10]= 2.64575

This removes the postprocessing function you specified. 

In[11]:= $Post =.

As  soon  as  Mathematica  has  generated  a  result,  and  applied  any  $Post  function  you  have

specified,  it  takes  the  result,  and  assigns  it  as  the  value  of  Out@$LineD.  The  next  step  is  for

Mathematica  to  print  the  result.  However,  before  doing  this,  it  applies  any  function  you  have

specified as the value of $PrePrint. 

This tells Mathematica to shorten all output to two lines. 

In[12]:= $PrePrint = Short@Ò, 2D &;

Only a two-line version of the output is now shown. 

In[13]:= Expand@Hx + yL^40D

Out[13]= x40 + 40 x39 y + 780 x38 y2 + 9880 x37 y3 + 91390 x36 y4 +

658008 x35 y5 + á30à + 91390 x4 y36 + 9880 x3 y37 + 780 x2 y38 + 40 x y39 + y40

This removes the value you assigned to $PrePrint. 

In[14]:= $PrePrint =.

There are various kinds of output generated in a typical Mathematica session. In general, each

kind  of  output  is  sent  to  a  definite  output  channel,  as  discussed  in  "Streams  and  Low-Level

Input and Output". Associated with each output channel, there is a global variable which gives a

list of the output streams to be included in that output channel. 
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There are various kinds of output generated in a typical Mathematica session. In general, each

kind  of  output  is  sent  to  a  definite  output  channel,  as  discussed  in  "Streams  and  Low-Level

Input and Output". Associated with each output channel, there is a global variable which gives a

list of the output streams to be included in that output channel. 

$Output standard output and text generated by Print

$Echo an echo of each input line (as stored in InString@nD)

$Urgent input prompts and other urgent output

$Messages standard messages and output generated by Message

Output channels in a standard Mathematica session. 

By modifying the list of streams in a given output channel, you can redirect or copy particular

kinds  of  Mathematica  output.  Thus,  for  example,  by  opening  an  output  stream  to  a  file,  and

including that stream in the $Echo  list, you can get each piece of input you give to Mathematica

saved in a file. 

Streams@D list of all open streams

Streams@"name"D list of all open streams with the specified name

$Input the name of the current input stream

Open streams in a Mathematica session. 

The  function  Streams  shows  you  all  the  input,  output  and  other  streams  that  are  open  at  a

particular  point  in  a  Mathematica  session.  The  variable  $Input  gives  the  name of  the  current

stream from which Mathematica  input is being taken at a particular point. $Input  is reset, for

example, during the execution of a Get command. 

$MessagePrePrint a function to be applied to expressions that are given in 
messages

$Language list of default languages to use for messages

Parameters for messages. 

There  are  various  global  parameters  which  determine  the  form  of  messages  generated  by

Mathematica. 

As  discussed  in  "Messages",  typical  messages  include  a  sequence  of  expressions  which  are

combined with the text of the message through StringForm.  $MessagePrePrint  gives a func-

tion to be applied to the expressions before they are printed. The default for $MessagePrePrint

uses Short for text formatting and a combination of Short and Shallow for typesetting. 
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As  discussed  in  "Messages",  typical  messages  include  a  sequence  of  expressions  which  are

combined with the text of the message through StringForm.  $MessagePrePrint  gives a func-

tion to be applied to the expressions before they are printed. The default for $MessagePrePrint

uses Short for text formatting and a combination of Short and Shallow for typesetting. 

As  discussed  in  "International  Messages",  Mathematica  allows  you  to  specify  the  language  in

which you want messages to be produced. In a particular Mathematica session, you can assign

a list of language names as the value of $Language. 

Exit@D  or Quit@D terminate your Mathematica session

$Epilog a global variable to be evaluated before termination

Terminating Mathematica sessions. 

Mathematica  will  continue in  its  main loop until  you explicitly  tell  it  to  exit.  Most  Mathematica

interfaces  provide  special  ways  to  do  this.  Nevertheless,  you  can  always  do  it  by  explicitly

calling Exit or Quit. 

Mathematica allows you to give a value to the global variable $Epilog  to specify operations to

perform just before Mathematica actually exits. In this way, you can for example make Mathe-

matica always save certain objects before exiting. 

$IgnoreEOF whether to ignore the end-of-file character

A global variable that determines the treatment of end-of-file characters. 

As  discussed  in  "Special  Characters:  Strings  and  Characters",  Mathematica  usually  does  not

treat  special  characters  in  a  special  way.  There  is  one  potential  exception,  however.  With  the

default setting $IgnoreEOF = False, Mathematica recognizes end-of-file characters. If Mathemat -

ica  receives  an  end-of-file  character  as  the  only  thing  on  a  particular  input  line  in  a  standard

interactive Mathematica session, then it will exit the session. 

Exactly how you enter an end-of-file character depends on the computer system you are using.

Under Unix, for example, you typically press Ctrl+D. 

Note that if you use Mathematica in a “batch mode”, with all its input coming from a file, then it

will automatically exit when it reaches the end of the file, regardless of the value of $IgnoreEOF.
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Dialogs

Within a standard interactive session, you can create "subsessions" or dialogs using the Mathe-

matica  command  Dialog.  Dialogs  are  often  useful  if  you  want  to  interact  with  Mathematica

while  it  is  in  the  middle  of  doing  a  calculation.  As  mentioned  in  "Tracing  Evaluation",

TraceDialog  for  example  automatically  calls  Dialog  at  specified  points  in  the evaluation of  a

particular expression. In addition, if  you interrupt Mathematica  during a computation, you can

typically "inspect" its state using a dialog. 

Dialog@D initiate a Mathematica dialog

Dialog@exprD initiate a dialog with expr as the current value of %

Return@D return from a dialog, taking the current value of % as the 
return value

Return@exprD return from a dialog, taking expr as the return value

Initiating and returning from dialogs. 

This initiates a dialog. 

In[1]:= Dialog@D

You can do computations in a dialog just as you would in any Mathematica session. 

In[2]:= 2^41

Out[2]= 2199023255552

You can use Return to exit from a dialog. 

In[3]:= Return@D

Out[3]= 2199023255552

When you exit a dialog, you can return a value for the dialog using Return@exprD. If you do not

want to return a value, and you have set $IgnoreEOF = False, then you can also exit a dialog

simply by giving an end-of-file character, at least on systems with text-based interfaces. 

To evaluate this expression, Mathematica initiates a dialog. 

In[4]:= 1 + Dialog@D^2
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The value a + b returned from the dialog is now inserted in the original expression. 

In[5]:= Return@a + bD

Out[5]= 1 + Ha + bL2

In  starting  a  dialog,  you  will  often  find  it  useful  to  have  some “initial  expression”.  If  you  use

Dialog@exprD, then Mathematica will start a dialog, using expr as the initial expression, accessi-

ble for example as the value of %. 

This first starts a dialog with initial expression a^2. 

In[6]:= Map@Dialog, 8a^2, b + c<D

Out[6]= a2

% is the initial expression in the dialog. 

In[7]:= %^2 + 1

Out[7]= 1 + a4

This returns a value from the first dialog, and starts the second dialog, with initial expression 
b + c. 

In[8]:= Return@%D

Out[8]= b + c

This returns a value from the second dialog. The final result is the original expression, with 
values from the two dialogs inserted. 

In[9]:= Return@444D

Out[9]= 91 + a4, 444=

Dialog  effectively  works  by  running  a  subsidiary  version  of  the  standard  Mathematica  main

loop.  Each  dialog  you  start  effectively  "inherits"  various  values  from  the  overall  main  loop.

Some of the values are, however, local to the dialog, so their original values are restored when

you exit the dialog.

Thus, for example, dialogs inherit the current line number $Line  when they start. This means

that the lines in a dialog have numbers that follow the sequence used in the main loop. Never-

theless,  the  value  of  $Line  is  local  to  the  dialog.  As  a  result,  when  you  exit  the  dialog,  the

value of $Line reverts to what it was in the main loop. 

If you start a dialog on line 10 of your Mathematica session, then the first line of the dialog will

be  labeled  In[11].  Successive  lines  of  the  dialog  will  be  labeled  In[12],  In[13]  and  so  on.

Then, when you exit the dialog, the next line in your main loop will be labeled In[11]. At this

point, you can still refer to results generated within the dialog as Out[11], Out[12] and so on.

These results will be overwritten, however, when you reach lines In[12], In[13], and so on in

the main loop. 
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If you start a dialog on line 10 of your Mathematica session, then the first line of the dialog will

be  labeled  In[11].  Successive  lines  of  the  dialog  will  be  labeled  In[12],  In[13]  and  so  on.

Then, when you exit the dialog, the next line in your main loop will be labeled In[11]. At this

point, you can still refer to results generated within the dialog as Out[11], Out[12] and so on.

These results will be overwritten, however, when you reach lines In[12], In[13], and so on in

the main loop. 

In a standard Mathematica session, you can tell whether you are in a dialog by seeing whether

your input and output lines are indented. If you call a dialog from within a dialog, you will get

two levels  of  indentation.  In general,  the indentation you get  inside d  nested dialogs is  deter-

mined  by  the  output  form  of  the  object  DialogIndent@dD.  By  defining  the  format  for  this

object, you can specify how dialogs should be indicated in your Mathematica session. 

DialogSymbols:>9x,y,…= symbols whose values should be treated as local to the 
dialog

DialogSymbols:>8x=x0,y=y0,…<

symbols with initial values

DialogProlog:>expr an expression to evaluate before starting the dialog

Options for Dialog. 

Whatever  setting  you  give  for  DialogSymbols,  Dialog  will  always  treat  the  values  of  $Line,

$Epilog and $MessageList as local. Note that if you give a value for $Epilog, it will automati-

cally be evaluated when you exit the dialog. 

When you call Dialog, its first step is to localize the values of variables. Then it evaluates any

expression you have set for the option DialogProlog. If you have given an explicit argument to

the Dialog function, this is then evaluated next. Finally, the actual dialog is started. 

When you exit the dialog, you can explicitly specify the return value using Return@exprD. If you

do not do this, the return value will be taken to be the last value generated in the dialog. 
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Date and Time Functions

DateList@D give the current local date and time in the form 
8year, month, day, hour, minute, second<

DateListATimeZone->zE give the current date and time in time zone z

$TimeZone give the time zone assumed by your computer system

Finding the date and time. 

This gives the current date and time. 

In[1]:= DateList@D

Out[1]= 82005, 3, 31, 19, 21, 29.566769<

The  Mathematica  DateList  function  returns  whatever  your  computer  system  gives  as  the

current date and time. It assumes that any corrections for daylight saving time and so on have

already  been  done  by  your  computer  system.  In  addition,  it  assumes  that  your  computer

system has been set for the appropriate time zone. 

The variable $TimeZone  returns the current time zone assumed by your computer system. The

time  zone  is  given  as  the  number  of  hours  which  must  be  added  to  Greenwich  Mean  Time

(GMT)  to  obtain  the  correct  local  time.  Thus,  for  example,  U.S.  Eastern  Standard  Time  (EST)

corresponds to time zone -5. Note that daylight saving time corrections must be included in the

time zone, so U.S. Eastern Daylight Time (EDT) corresponds to time zone -4. 

This gives the current time zone assumed by your computer system. 

In[2]:= $TimeZone

Out[2]= -6.

This gives the current date and time in time zone +9, the time zone for Japan. 

In[3]:= DateList@TimeZone -> 9D

Out[3]= 82005, 4, 1, 10, 21, 29.579505<
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AbsoluteTime@D total number of seconds since the beginning of January 1, 
1900

SessionTime@D total number of seconds elapsed since the beginning of 
your current Mathematica session

TimeUsed@D total number of seconds of CPU time used in your current 
Mathematica session

$TimeUnit the minimum time interval recorded on your computer 
system

Time functions. 

You  should  realize  that  on  any  computer  system,  there  is  a  certain  “granularity”  in  the  times

that can be measured. This granularity is given as the value of the global variable $TimeUnit.

Typically it is either about 1
100

 or 1
1000

 of a second. 

Pause@nD pause for at least n seconds

Pausing during a calculation. 

This gives various time functions. 

In[4]:= 8AbsoluteTime@D, SessionTime@D, TimeUsed@D<

Out[4]= 93.321285689607146µ109, 6.125768, 2.24=

This pauses for 10 seconds, then reevaluates the time functions. Note that TimeUsed@D is not 
affected by the pause. 

In[5]:= Pause@10D; 8AbsoluteTime@D, SessionTime@D, TimeUsed@D<

Out[5]= 93.321285699616089µ109, 16.134709, 2.24=

AbsoluteTime@dateD convert from date to absolute time

DateList@timeD convert from absolute time to date

Converting between dates and absolute times. 

This sets d to be the current date. 

In[6]:= d = DateList@D

Out[6]= 82005, 3, 31, 19, 21, 39.625914<
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This adds one month to the current date. 

In[7]:= DateList@D + 80, 1, 0, 0, 0, 0<

Out[7]= 82005, 4, 31, 19, 21, 39.629234<

This gives the number of seconds in the additional month. 

In[8]:= AbsoluteTime@%D - AbsoluteTime@dD

Out[8]= 2.678400003320µ106

DateList@"string"D convert a date string to a date list

DateList@
8"string",8"e1","e2",…<<D

give the date list obtained by extracting elements "ei" 
from "string"

Converting from different date formats.

You  can  use  DateList@"string"D  to  convert  a  date  string  into  a  date  list,  as  long  as  the  date

format is sufficiently unambiguous.

This attempts to interpret the string as a date.

In[9]:= DateList@"June 23, 1988 - 3:55 pm"D

Out[9]= 81988, 6, 23, 15, 55, 0.<

For more control of the conversion, you can specify the order and type of date elements appear-

ing in the string. The elements can be strings like "Year", "Quarter", "Month", "MonthName",

"Day", "DayName", "Hour", "AMPM", "Minute", or "Second".

This extracts a date using the specified elements.

In[10]:= DateList@8"3ê5ê2001", 8"Month", "Day", "Year"<<D

Out[10]= 82001, 3, 5, 0, 0, 0<

If the date element delimiters contain letters or digits, these must also be specified as part of

the date elements.

This extracts a date containing a letter as a separator.

In[11]:= DateList@8"Jun Y1988", 8"MonthName", " Y", "Year"<<D

Out[11]= 81988, 6, 1, 0, 0, 0<
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DateString@D give a string representing current local date and time

DateString@datespec, elemsD give elements elems of date and time given by datespec

Converting to different date formats.

DateString  is  used to  give a  nice  string representation of  a  date and time.  The exact  output

format  can  be  specified  from  a  long  list  of  date  elements,  such  as  "DateTime",  "DayName",

"HourShort", etc.

This gives the current date and time in the default format.

In[12]:= DateString@D

Out[12]= Fri 15 Dec 2006 13:27:47

This specifies a format for the given date.

In[13]:= DateString@81988, 6, 23, 15, 55, 0<, 8"MonthName", " ", "DayShort", ", ",
"Year", " - ", "Hour12Short", ":", "Minute", " ", "AMPMLowerCase"<D

Out[13]= June 23, 1988 - 3:55 pm

DatePattern@elemsD string pattern matching a date with the given elements

Extracting dates from a string.

You  can  use  DatePattern@elemsD  as  a  string  pattern  in  string  matching  functions.  The  date

elements are the same as used in DateList,  although the default date element delimiters are

restricted  to  the  ê,  -,  :  or  .  characters.  Other  delimiters  can  be  given  explicitly  in  the  list  of

date elements.

This extracts dates of the given format from a string.

In[14]:= StringCases@"abc 12ê5ê2005 def 1ê15ê2002 ghi",
x : DatePattern@8"Month", "Day", "Year"<D ß DateList@xDD

DateList::ambig : Warning: the interpretation of the string 12ê5ê2005 as a date is ambiguous. à

Out[14]= 882005, 12, 5, 0, 0, 0.<, 82002, 1, 15, 0, 0, 0.<<

This extracts dates with explicit delimiters.

In[15]:= StringCases@"abc Mar 2002 def Aug 2005 ghi",
x : DatePattern@8"MonthName", " ", "Year"<D ß DateList@xDD

Out[15]= 882002, 3, 1, 0, 0, 0.<, 82005, 8, 1, 0, 0, 0.<<
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DateListPlot@listD generate a plot from a list of data with date coordinates

DateListPlot@list,datespecD generate a plot from a list of data with dates specified by 
datespec

DateListLogPlot@listD generate a linear-log plot from a list of data with date 
coordinates

DateListLogPlot@list,datespecD generate a linear-log plot from a list of data with dates 
specified by datespec

Plotting data with date coordinates.

DateListPlot  can be used to plot data with date or time horizontal coordinates. Dates can be

lists,  strings,  or  absolute  times  as  with  DateList,  DateString,  and  AbsoluteTime.  A  date

specification  datespec  can  be  given  to  associate  dates  with  data  given  as  8y1, y2, …<.

DateListLogPlot allows you to plot the data with a logarithmic vertical scale.

This gathers some financial time series data.

In[16]:= fd = FinancialData@"GE", 881980<, 82005<<D;

This plots the financial data.

In[17]:= DateListPlot@fdD

Out[17]=

This plots the same data on a logarithmic scale.

In[18]:= DateListLogPlot@fdD

Out[18]=
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This plots monthly data which does not contain explicit dates.

In[19]:= DateListPlot@81, 2, 4, 5, 7, 6, 10, 8, 12, 10, 15<, 882008<, Automatic, "Month"<D

Out[19]=

Timing@exprD evaluate expr, and return a list of the CPU time needed, 
together with the result obtained

AbsoluteTiming@exprD evaluate expr, giving the absolute time taken

Timing Mathematica operations. 

Timing allows you to measure the CPU time associated with the evaluation of a single Mathemat -

ica  expression.  Timing  corresponds  to  the  increase  in  TimeUsed.  Note  that  only  CPU  time

associated  with  the  actual  evaluation  of  the  expression  within  the  Mathematica  kernel  is

included.  The  time needed  to  format  the  expression  for  output,  and  any  time associated  with

external programs, is not included. 

AbsoluteTiming  allows  you  to  measure  absolute  total  elapsed  time.  You  should  realize,  how-

ever,  that  the  time  reported  for  a  particular  calculation  by  both  AbsoluteTiming  and  Timing

depends on many factors. 

First, the time depends in detail on the computer system you are using. It depends not only on

instruction  times,  but  also  on  memory  caching,  as  well  as  on  the  details  of  the  optimization

done in compiling the parts of the internal code of Mathematica used in the calculation. 

The time also depends on the precise state  of  your  Mathematica  session when the calculation

was done. Many of the internal optimizations used by Mathematica depend on details of preced-

ing  calculations.  For  example,  Mathematica  often  uses  previous  results  it  has  obtained,  and

avoids  unnecessarily  reevaluating  expressions.  In  addition,  some  Mathematica  functions  build

internal  tables when they are first  called in  a particular  way,  so that  if  they are called in  that

way again,  they run much faster.  For all  of  these kinds of  reasons,  it  is  often the case that  a

particular calculation may not take the same amount of time if you run it at different points in

the same Mathematica session. 
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This gives the CPU time needed for the calculation. The semicolon causes the result of the 
calculation to be given as Null. 

In[20]:= Timing@100000!;D

Out[20]= 80.49 Second, Null<

Now Mathematica has built internal tables for factorial functions, and the calculation takes no 
measurable CPU time. 

In[21]:= Timing@100000!;D

Out[21]= 80. Second, Null<

However, some absolute time does elapse. 

In[22]:= AbsoluteTiming@100000!;D

Out[22]= 80.000102 Second, Null<

Note  that  the  results  you  get  from  Timing  are  only  accurate  to  the  timing  granularity

$TimeUnit of your computer system. Thus, for example, a timing reported as 0 could in fact be

as much as $TimeUnit. 

TimeConstrained@expr,tD try to evaluate expr, aborting the calculation after t seconds

TimeConstrained@expr,t, failexprD

return failexpr if the time constraint is not met

Time-constrained calculation. 

When you use Mathematica  interactively,  it  is  quite common to try doing a calculation,  but to

abort  the calculation if  it  seems to be taking too long. You can emulate this behavior inside a

program by using TimeConstrained. TimeConstrained tries to evaluate a particular expression

for a specified amount of time. If it does not succeed, then it aborts the evaluation, and returns

either $Aborted, or an expression you specify. 

You can use TimeConstrained, for example, to have Mathematica try a particular approach to a

problem for  a certain amount of  time,  and then to switch to another approach if  the first  one

has  not  yet  succeeded.  You  should  realize  however  that  TimeConstrained  may  overrun  the

time you specify if Mathematica cannot be interrupted during a particular part of a calculation.

In addition, you should realize that because different computer systems run at different speeds,

programs that use TimeConstrained will often give different results on different systems.

Memory Management
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Memory Management

MemoryInUse@D number of bytes of memory currently being used by 
Mathematica

MaxMemoryUsed@D maximum number of bytes of memory used by Mathemat -
ica in this session

Finding memory usage. 

Particularly for symbolic computations, memory is usually the primary resource which limits the

size of computations you can do. If a computation runs slowly, you can always potentially let it

run longer.  But if  the computation generates intermediate expressions which simply cannot fit

in the memory of your computer system, then you cannot proceed with the computation. 

Mathematica  is  careful  about  the way it  uses memory.  Every time an intermediate expression

you have generated is no longer needed, Mathematica  immediately reclaims the memory allo-

cated to  it.  This  means that  at  any point  in  a  session,  Mathematica  stores  only  those expres-

sions that are actually needed; it does not keep unnecessary objects which have to be "garbage

collected" later. 

This gives the number of bytes of memory currently being used by Mathematica. 

In[1]:= MemoryInUse@D

Out[1]= 947712

This generates a 10000-element list. 

In[2]:= Range@10 000D êê Short

Out[2]= 81, 2, 3, 4, 5, 6, 7, 8, á9985à, 9994, 9995, 9996, 9997, 9998, 9999, 10000<

Additional memory is needed to store the list. 

In[3]:= MemoryInUse@D

Out[3]= 989616

This list is kept because it is the value of Out@2D. If you clear Out@2D, the list is no longer 
needed. 

In[4]:= Unprotect@OutD; Out@2D =.
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The memory in use goes down again. 

In[5]:= MemoryInUse@D

Out[5]= 954408

This shows the maximum memory needed at any point in the session. 

In[6]:= MaxMemoryUsed@D

Out[6]= 1467536

One issue that often comes up is exactly how much memory Mathematica can actually use on a

particular computer system. Usually there is a certain amount of memory available for all pro-

cesses  running  on  the  computer  at  a  particular  time.  Sometimes  this  amount  of  memory  is

equal  to  the  physical  number  of  bytes  of  RAM  in  the  computer.  Often,  it  includes  a  certain

amount of "virtual memory", obtained by swapping data on and off a mass storage device. 

When  Mathematica  runs,  it  needs  space  both  for  data  and  for  code.  The  complete  code  of

Mathematica  is typically several megabytes in size. For any particular calculation, only a small

fraction of this code is usually used. However, in trying to work out the total amount of space

available for Mathematica data, you should not forget what is needed for Mathematica code. In

addition, you must include the space that is  taken up by other processes running in the com-

puter. If there are fewer jobs running, you will usually find that your job can use more memory. 

It  is  also worth realizing that  the time needed to do a calculation can depend very greatly  on

how much physical  memory you have. Although virtual  memory allows you in principle to use

large  amounts  of  memory  space,  it  is  usually  hundreds  or  even  thousands  of  times  slower  to

access than physical memory. As a result, if your calculation becomes so large that it needs to

make use of virtual memory, it may run much more slowly. 

MemoryConstrained@expr,bD try to evaluate expr, aborting if more than b additional 
bytes of memory are requested

MemoryConstrained@expr,b, failexprD return failexpr if the memory constraint is not met

Memory-constrained computation. 

MemoryConstrained  works  much like  TimeConstrained.  If  more  than the  specified  amount  of

memory  is  requested,  MemoryConstrained  attempts  to  abort  your  computation.  As  with

TimeConstrained, there may be some overshoot in the actual amount of memory used before

the computation is aborted. 
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ByteCount@exprD the maximum number of bytes of memory needed to store 
expr

LeafCount@exprD the number of terminal nodes in the expression tree for 
expr

Finding the size of expressions. 

Although you may find ByteCount  useful in estimating how large an expression of a particular

kind you can handle, you should realize that the specific results given by ByteCount  can differ

substantially from one version of Mathematica to another. 

Another important point is that ByteCount  always gives you the maximum amount of memory

needed  to  store  a  particular  expression.  Often  Mathematica  will  actually  use  a  much  smaller

amount of memory to store the expression. The main issue is how many of the subexpressions

in the expression can be shared. 

In an expression like f@1 + x, 1 + xD, the two subexpressions 1 + x are identical, but they may or

may not  actually  be stored in  the same piece of  computer  memory.  ByteCount  gives  you the

number of  bytes needed to store expressions with the assumption that no subexpressions are

shared. You should realize that the sharing of subexpressions is often destroyed as soon as you

use an operation like the ê. operator. 

Nevertheless,  you  can  explicitly  tell  Mathematica  to  share  subexpressions  using  the  function

Share. In this way, you can significantly reduce the actual amount of memory needed to store

a particular expression. 

Share@exprD share common subexpressions in the storage of expr

Share@D share common subexpressions throughout memory

Optimizing memory usage. 

On most computer systems, the memory used by a running program is divided into two parts:

memory explicitly allocated by the program, and "stack space". Every time an internal routine is

called in the program, a certain amount of stack space is used to store parameters associated

with  the  call.  On  many  computer  systems,  the  maximum amount  of  stack  space  that  can  be

used by a program must be specified in advance. If the specified stack space limit is exceeded,

the program usually just exits. 

In Mathematica, one of the primary uses of stack space is in handling the calling of one Mathe-

matica  function  by  another.  All  such  calls  are  explicitly  recorded  in  the  Mathematica  Stack

discussed in "The Evaluation Stack". You can control the size of this stack by setting the global

parameter $RecursionLimit.  You should be sure that this parameter is set small  enough that

you do not run out of stack space on your particular computer system. 
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In Mathematica, one of the primary uses of stack space is in handling the calling of one Mathe-

matica  function  by  another.  All  such  calls  are  explicitly  recorded  in  the  Mathematica  Stack

discussed in "The Evaluation Stack". You can control the size of this stack by setting the global

parameter $RecursionLimit.  You should be sure that this parameter is set small  enough that

you do not run out of stack space on your particular computer system. 

Global System Information

In order to write the most general Mathematica programs you will sometimes need to find out

global information about the setup under which your program is being run.

Thus,  for  example,  to  tell  whether  your  program  should  be  calling  functions  like

NotebookWrite, you need to find out whether the program is being run in a Mathematica ses-

sion  that  is  using  the  notebook  front  end.  You  can  do  this  by  testing  the  global  variable

$Notebooks. 

$Notebooks whether a notebook front end is being used

Determining whether a notebook front end is being used. 

Mathematica  is usually used interactively, but it  can also operate in a batch mode~say taking

input  from  a  file  and  writing  output  to  a  file.  In  such  a  case,  a  program  cannot  for  example

expect to get interactive input from the user. 

$BatchInput whether input is being given in batch mode

$BatchOutput whether output should be given in batch mode, without 
labeling, etc.

Variables specifying batch mode operation. 

The Mathematica  kernel  is  a process that runs under the operating system on your computer.

Within Mathematica there are several global variables that allow you to find the characteristics

of this process and its environment. 
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$CommandLine the original command line used to invoke the Mathematica 
kernel

$ParentLink the MathLink LinkObject specifying the program that 
invoked the kernel (or Null if the kernel was invoked 
directly)

$ProcessID the ID assigned to the Mathematica kernel process by the 
operating system

$ParentProcessID the ID of the process that invoked the Mathematica kernel

$UserName the login name of the user running the Mathematica kernel

Environment@"var"D the value of a variable defined by the operating system

Variables associated with the Mathematica kernel process. 

If you have a variable such as x in a particular Mathematica session, you may or may not want

that variable to be the same as an x in another Mathematica session. In order to make it possi-

ble  to  maintain  distinct  objects  in  different  sessions,  Mathematica  supports  the  variable

$SessionID, which uses information such as starting time, process ID and machine ID to try to

give  a  different  value  for  every  single  Mathematica  session,  whether  it  is  run  on  the  same

computer or a different one. 

$SessionID a number set up to be different for every Mathematica 
session

A unique number different for every Mathematica session. 

Mathematica provides various global variables that allow you to tell which version of the kernel

you  are  running.  This  is  important  if  you  write  programs  that  make  use  of  features  that  are,

say, new in Version 6. You can then check $VersionNumber to find out if these features will be

available. 

$Version a string giving the complete version of Mathematica in use

$VersionNumber the Mathematica kernel version number (e.g. 6.0)

$ReleaseNumber the release number for your version of the Mathematica 
kernel on your particular computer system

$CreationDate the date, in DateList format, on which your particular 
Mathematica release was created

Variables specifying the version of Mathematica used. 

Mathematica  itself  is  set  up  to  be  as  independent  of  the  details  of  the  particular  computer

system on which it is run as possible. However, if you want to access external aspects of your

computer system, then you will often need to find out its characteristics. 
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Mathematica  itself  is  set  up  to  be  as  independent  of  the  details  of  the  particular  computer

system on which it is run as possible. However, if you want to access external aspects of your

computer system, then you will often need to find out its characteristics. 

$System a full string describing the computer system in use

$SystemID a short string specifying the computer system in use

$ProcessorType the architecture of the processor in your computer system

$MachineType the general type of your computer system

$ByteOrdering the native byte ordering convention on your computer 
system

$OperatingSystem the basic operating system in use

$SystemCharacterEncoding the default raw character encoding used by your operating 
system

Variables specifying the characteristics of your computer system. 

Mathematica uses the values of $SystemID  to label directories that contain versions of files for

different computer systems, as discussed in "Reading and Writing Mathematica Files: Files and

Streams" and "Portability of MathLink Programs". Computer systems for which $SystemID is the

same will normally be binary compatible. 

$OperatingSystem  has values such as "Windows" or "Unix". By testing $OperatingSystem  you

can determine whether a particular external program is likely to be available on your computer

system. 

This gives some characteristics of the computer system on which the input is evaluated. 

In[1]:= 8$System, $ProcessorType, $OperatingSystem<

Out[1]= 8Linux x86 H32-bitL, x86, Unix<

$MachineAddresses the list of current IP addresses

$MachineName the name of the computer on which Mathematica is running

$MachineDomains the current network domains for the computer

$MachineID the unique ID assigned by Mathematica to the computer

Variables identifying the computer on which Mathematica is running. 
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$LicenseID the ID for the license under which Mathematica is running

$LicenseExpirationDate the date on which the license expires

$NetworkLicense whether this is a network license

$LicenseServer the full name of the machine serving the license

$LicenseProcesses the number of Mathematica processes currently being run 
under the license

$MaxLicenseProcesses the maximum number of processes provided by the license

$PasswordFile password file used when the kernel was started

Variables associated with license management. 

Mathematica Sessions

Command-Line Options and Environment Variables

-pwfile Mathematica password file

-pwpath path to search for a Mathematica password file

-run Mathematica input to run (kernel only)

-initfile Mathematica initialization file

-initpath path to search for initialization files

-noinit do not run initialization files

-mathlink communicate only via MathLink

Typical command-line options for Mathematica executables. 

If the Mathematica  front end is called with a notebook file as a command-line argument, then

this  notebook  will  be  made  the  initial  selected  notebook.  Otherwise,  a  new  notebook  will  be

created for this purpose. 

Mathematica  kernels  and front  ends  can also  take  additional  command-line  options  specific  to

particular window environments. 
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MATHINIT command-line environment for the Mathematica front end

MATHKERNELINIT command-line environment for the Mathematica kernel

MATHEMATICA_BASE setting for $BaseDirectory

MATHEMATICA_USERBASE setting for $UserBaseDirectory

Environment variables. 

Mathematica will read the values of operating system environment variables, and will use these

values in addition to any command-line options explicitly given.

Initialization

On startup, the Mathematica kernel does the following: 

† Performs license management operations.

† Runs Mathematica commands specified in any -run options passed to the kernel executable.

† Runs  the  Mathematica  commands  in  the  systemwide  initialization  file
$BaseDirectory ê Kernel ê init.m.

† Runs  the  Mathematica  commands  in  the  user-specific  initialization  file
$UserBaseDirectory ê Kernel ê init.m.

† Loads init.m and Kernel ê init.m files in Autoload directories.

† Begins running the main loop.

The Main Loop

All Mathematica sessions repeatedly execute the following main loop: 

† Read in input.

† Apply $PreRead function, if defined, to the input string.

† Print syntax warnings if necessary.
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† Apply $SyntaxHandler function if there is a syntax error.

† Assign InString@nD.

† Apply $Pre function, if defined, to the input expression.

† Assign In@nD.

† Evaluate expression.

† Apply $Post function, if defined.

† Assign Out@nD, stripping off any formatting wrappers.

† Apply $PrePrint function, if defined.

† Assign MessageList@nD and clear $MessageList.

† Print expression, if it is not Null.

† Increment $Line.

† Clear any pending aborts.

Note that if you call Mathematica via MathLink from within an external program, then you must

effectively create your own main loop, which will usually differ from the one described above. 

Messages

During a Mathematica session messages can be generated either by explicit calls to Message, or

in the course of executing other built-in functions. 

f::name::lang a message in a specific language

f::name a message in a default language

General::name a general message with a given name

Message names. 
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If no language is specified for a particular message, text for the message is sought in each of

the languages specified by $Language. If f::name is not defined, a definition for General::name

is  sought.  If  still  no message is  found, any value defined for $NewMessage  is  applied to f  and

"name". 

Quiet@exprD evaluates expr while preventing messages from being printed during the evaluation.

Off@messageD prevents a specified message from ever being printed. Check  allows you to deter-

mine  whether  particular  messages  were  generated  during  the  evaluation  of  an  expression.

$MessageList  and  MessageList@nD  record  all  the  messages  that  were  generated  during  the

evaluation of a particular line in a Mathematica session. 

Messages  are  specified  as  strings  to  be  used  as  the  first  argument  of  StringForm.

$MessagePrePrint is applied to each expression to be spliced into the string. 

Termination

Exit@D  or Quit@D terminate Mathematica

$Epilog symbol to evaluate before Mathematica exits

$IgnoreEOF whether to exit an interactive Mathematica session when 
an end-of-file character is received

end.m file to read when Mathematica terminates

Mathematica termination. 

There  are  several  ways  to  end  a  Mathematica  session.  If  you  are  using  Mathematica  interac-

tively, typing Exit@D or Quit@D on an input line will always terminate Mathematica. 

If  you are taking input for  Mathematica  from a file,  Mathematica  will  exit  when it  reaches the

end of the file. If you are using Mathematica interactively, it will still exit if it receives an end-of-

file  character  (typically  Ctrl+d).  You  can  stop  Mathematica  from  doing  this  by  setting

$IgnoreEOF = True.
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Network License Management

single-machine license a process must always run on a specific machine

network license a process can run on any machine on a network

Single-machine and network licenses. 

Copies of Mathematica can be set up with either single-machine or network licenses. A network

license is indicated by a line in the mathpass file starting with ! name, where name is the name of

the server machine for the network license. 

Network  licenses  are  controlled  by  the  Mathematica  license  management  program  mathlm,

which  is  run  on  the  server  machine.  This  program must  be  running  whenever  a  Mathematica

with  a  network  license  is  being  used.  Typically  you  will  want  to  set  up  your  system  so  that

mathlm is started whenever the system boots.

† Type . î mathlm directly on the command line

† Add mathlm as a Windows service

Ways to start the network license manager under Microsoft Windows. 

† Type . ê mathlm directly on the Unix command line

† Add a line to start mathlm in your central system startup script

Ways to start the network license manager on Macintosh and Unix systems. 

When mathlm is not started directly from a command line, it normally sets itself up as a back-

ground process, and continues running until it is explicitly terminated. Note that if one mathlm

process is running, any other mathlm processes you try to start will automatically exit immedi-

ately. 
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-logfile file write a log of license server actions to file

-loglevel n how verbose to make log entries (1 to 4)

-logformat string use a log format specified by string

-language name language to use for messages (default English)

-pwfile file use the specified mathpass file (default . ê mathpass)

-timeout n suspend authorization on stopped Mathematica jobs after n 
hours

-restrict file use the specified restriction file

-mathid print the MathID for the license server, and exit

-foreground run mathlm in the foreground, logging to stdout

-install install mathlm as a Windows service (Microsoft Windows 
only)

-uninstall uninstall mathlm as a Windows service (Microsoft Windows 
only)

Some command-line options for mathlm. 

For more detailed information on mathlm, see "System Administration for Network Licenses".

monitorlm a program to monitor network license activity

monitorlm name monitor activity for license server name

Monitoring network license activity. 

If monitorlm is run in an environment where a web browser can be started, it will automatically

generate HTML output in the browser. Otherwise it will generate plain text. 

-file file write output to a file

-format spec use the specified format (text, html or cgi)

-template file use the specified file as a template for the output

Some command-line options for monitorlm. 
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The Internals of Mathematica
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Why You Do Not Usually Need to Know about 
Internals

Most of the documentation provided for Mathematica is concerned with explaining what Mathe-

matica  does,  not  how  it  does  it.  But  the  purpose  of  this  is  to  say  at  least  a  little  about  how

Mathematica does what it does. "Some Notes on Internal Implementation" gives more details. 

You should realize at the outset that while knowing about the internals of Mathematica may be

of  intellectual  interest,  it  is  usually  much  less  important  in  practice  than  you  might  at  first

suppose. 

Indeed,  one  of  the  main  points  of  Mathematica  is  that  it  provides  an  environment  where  you

can  perform  mathematical  and  other  operations  without  having  to  think  in  detail  about  how

these operations are actually carried out inside your computer. 

Thus,  for  example,  if  you want  to  factor  the  polynomial  x15 - 1,  you can do  this  just  by  giving

Mathematica  the command Factor@x^15 - 1D; you do not have to know the fairly complicated

details of how such a factorization is actually carried out by the internal code of Mathematica. 

Indeed, in almost all practical uses of Mathematica, issues about how Mathematica works inside

turn out to be largely irrelevant. For most purposes it suffices to view Mathematica simply as an

abstract system which performs certain specified mathematical and other operations. 

You might think that knowing how Mathematica works inside would be necessary in determining

what  answers  it  will  give.  But  this  is  only  very  rarely  the  case.  For  the  vast  majority  of  the

computations that Mathematica  does are completely specified by the definitions of mathemati-

cal or other operations. 

Thus, for example, 3^40 will always be 12 157 665 459 056 928 801, regardless of how Mathemat-

ica internally computes this result. 



There are some situations, however, where several different answers are all equally consistent

with  the  formal  mathematical  definitions.  Thus,  for  example,  in  computing  symbolic  integrals,

there are often several different expressions which all yield the same derivative. Which of these

expressions  is  actually  generated  by  Integrate  can  then  depend  on  how  Integrate  works

inside. 

Here is the answer generated by Integrate. 

In[1]:= Integrate@1 ê x + 1 ê x^2, xD

Out[1]= -
1

x
+ Log@xD

This is an equivalent expression that might have been generated if Integrate worked differ-
ently inside. 

In[2]:= Together@%D

Out[2]=
-1 + x Log@xD

x

In  numerical  computations,  a  similar  phenomenon occurs.  Thus,  for  example,  FindRoot  gives

you a root of a function. But if there are several roots, which root is actually returned depends

on the details of how FindRoot works inside. 

This finds a particular root of cos HxL + sin HxL. 

In[3]:= FindRoot@Cos@xD + Sin@xD, 8x, 10.5<D

Out[3]= 8x Ø 14.9226<

With a different starting point, a different root is found. Which root is found with each starting 
point depends in detail on the internal algorithm used. 

In[4]:= FindRoot@Cos@xD + Sin@xD, 8x, 10.8<D

Out[4]= 8x Ø 11.781<

The dependence on the details of internal algorithms can be more significant if you push approxi -

mate numerical computations to the limits of their validity. 
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Thus, for example, if you give NIntegrate a pathological integrand, whether it yields a meaning-

ful answer or not can depend on the details of the internal algorithm that it uses. 

NIntegrate knows that this result is unreliable, and can depend on the details of the internal 
algorithm, so it prints warning messages. 

In[5]:= NIntegrate@Sin@1 ê xD, 8x, 0, 1<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.0053386<. NIntegrate obtained 0.5038782627066661` and
0.0011134563535424439` for the integral and error estimates. à

Out[5]= 0.503878

Traditional numerical computation systems have tended to follow the idea that all computations

should yield results that at least nominally have the same precision. A consequence of this idea

is  that  it  is  not  sufficient  just  to  look at  a  result  to  know whether  it  is  accurate;  you typically

also have to analyze the internal algorithm by which the result was found. This fact has tended

to  make  people  believe  that  it  is  always  important  to  know  internal  algorithms  for  numerical

computations. 

But  with  the  approach  that  Mathematica  takes,  this  is  rarely  the  case.  For  Mathematica  can

usually  use  its  arbitrary-precision  numerical  computation  capabilities  to  give  results  where

every digit that is generated follows the exact mathematical specification of the operation being

performed. 

Even though this is an approximate numerical computation, every digit is determined by the 
mathematical definition for p. 

In[6]:= N@Pi, 30D

Out[6]= 3.14159265358979323846264338328

Once again, every digit here is determined by the mathematical definition for sin HxL. 

In[7]:= N@Sin@10^50D, 20D

Out[7]= -0.78967249342931008271
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If you use machine-precision numbers, Mathematica cannot give a reliable result, and the 
answer depends on the details of the internal algorithm used. 

In[8]:= Sin@10.^50D

Out[8]= 0.669369

It is a general characteristic that whenever the results you get can be affected by the details of

internal  algorithms, you should not depend on these results.  For if  nothing else, different ver-

sions  of  Mathematica  may  exhibit  differences  in  these  results,  either  because  the  algorithms

operate  slightly  differently  on  different  computer  systems,  or  because  fundamentally  different

algorithms are used in versions released at different times. 

This is the result for sin I1050M on one type of computer. 

In[9]:= Sin@10.^50D

Out[9]= 0.669369

Here is the same calculation on another type of computer. 

In[10]:= Sin@10.^50D

Out[10]= 0.669369

And here is the result obtained in Mathematica Version 1. 

In[11]:= Sin@10.^50D

Out[11]= 0.669369

Particularly in more advanced applications of Mathematica, it may sometimes seem worthwhile

to try to analyze internal algorithms in order to predict which way of doing a given computation

will  be the most efficient. And there are indeed occasionally major improvements that you will

be able to make in specific computations as a result of such analyses.

But most often the analyses will  not be worthwhile. For the internals of Mathematica are quite

complicated, and even given a basic description of the algorithm used for a particular purpose,

it is usually extremely difficult to reach a reliable conclusion about how the detailed implementa-

tion of this algorithm will actually behave in particular circumstances. 

A typical problem is that Mathematica  has many internal optimizations, and the efficiency of a

computation  can  be  greatly  affected  by  whether  the  details  of  the  computation  do  or  do  not

allow a given internal optimization to be used. 

Basic Internal Architecture
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Basic Internal Architecture

numbers sequences of binary digits

strings sequences of character code bytes or byte pairs

symbols pointers to the central table of symbols

general expressions sequences of pointers to the head and elements

Internal representations used by Mathematica. 

When  you  type  input  into  Mathematica,  a  data  structure  is  created  in  the  memory  of  your

computer to represent the expression you have entered. 

In  general,  different  pieces  of  your  expression  will  be  stored  at  different  places  in  memory.

Thus,  for  example,  for  a  list  such  as  82, x, y + z<  the  “backbone”  of  the  list  will  be  stored  at

one place, while each of the actual elements will be stored at a different place. 

The  backbone  of  the  list  then  consists  just  of  three  “pointers”  that  specify  the  addresses  in

computer memory at which the actual expressions that form the elements of the list are to be

found.  These  expressions  then  in  turn  contain  pointers  to  their  subexpressions.  The  chain  of

pointers ends when one reaches an object such as a number or a string, which is stored directly

as a pattern of bits in computer memory. 

Crucial to the operation of Mathematica is the notion of symbols such as x. Whenever x appears

in an expression, Mathematica represents it by a pointer. But the pointer is always to the same

place in computer memory~an entry in a central table of all symbols defined in your Mathemat-

ica session.

This table is a repository of all information about each symbol. It contains a pointer to a string

giving the symbol’s name, as well as pointers to expressions which give rules for evaluating the

symbol. 

† Recycle memory as soon as the data in it is no longer referenced.

The basic principle of Mathematica memory management. 

Every piece of memory used by Mathematica maintains a count of how many pointers currently

point to it. When this count drops to zero, Mathematica knows that the piece of memory is no

longer being referenced, and immediately makes the piece of memory available for something

new. 

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory

that  Mathematica  uses  is  actually  storing  data  that  you  need  to  access  in  your  Mathematica

session. 
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This strategy essentially ensures that no memory is ever wasted, and that any piece of memory

that  Mathematica  uses  is  actually  storing  data  that  you  need  to  access  in  your  Mathematica

session. 

† Create an expression corresponding to the input you have given.

† Process the expression using all rules known for the objects in it.

† Generate output corresponding to the resulting expression.

The basic actions of Mathematica. 

At the heart of  Mathematica  is  a conceptually simple procedure known as the evaluator  which

takes every function that appears in an expression and evaluates that function. 

When the function is one of the thousand or so that are built into Mathematica, what the evalua-

tor does is to execute directly internal code in the Mathematica system. This code is set up to

perform  the  operations  corresponding  to  the  function,  and  then  to  build  a  new  expression

representing the result. 

† The built-in functions of Mathematica support universal computation.

The basic feature that makes Mathematica a self-contained system. 

A crucial feature of the built-in functions in Mathematica is that they support universal computa-

tion.  What this  means is  that out of  these functions you can construct  programs that perform

absolutely any kinds of operations that are possible for a computer. 

As  it  turns  out,  small  subsets  of  Mathematica’s  built-in  functions  would  be  quite  sufficient  to

support universal computation. But having the whole collection of functions makes it in practice

easier to construct the programs one needs. 

The  underlying  point,  however,  is  that  because  Mathematica  supports  universal  computation

you never have to modify its built-in functions: all you have to do to perform a particular task is

to combine these functions in an appropriate way. 

Universal  computation  is  the  basis  for  all  standard  computer  languages.  But  many  of  these

languages rely on the idea of compilation. If you use C or Fortran, for example, you first write

your program, then you compile it to generate machine code that can actually be executed on

your computer.

Mathematica does not require you to go through the compilation step: once you have input an

expression, the functions in the expression can immediately be executed. 

Often Mathematica will  preprocess expressions that you enter, arranging things so that subse-

quent execution will be as efficient as possible. But such preprocessing never affects the results

that are generated, and can rarely be seen explicitly. 
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Often Mathematica will  preprocess expressions that you enter, arranging things so that subse-

quent execution will be as efficient as possible. But such preprocessing never affects the results

that are generated, and can rarely be seen explicitly. 

The Algorithms of Mathematica

The built-in functions of Mathematica implement a very large number of algorithms from com-

puter science and mathematics. Some of these algorithms are fairly old, but the vast majority

had to be created or at least modified specifically for Mathematica. Most of the more mathemati-

cal algorithms in Mathematica ultimately carry out operations which at least at some time in the

past were performed by hand. In almost all  cases, however, the algorithms use methods very

different from those common in hand calculation. 

Symbolic integration provides an example. In hand calculation, symbolic integration is typically

done by a large number of tricks involving changes of variables and the like. 

But in Mathematica symbolic integration is performed by a fairly small number of very system-

atic  procedures.  For  indefinite  integration,  the  idea  of  these  procedures  is  to  find  the  most

general form of the integral, then to differentiate this and try to match up undetermined coeffi-

cients. 

Often this procedure produces at an intermediate stage immensely complicated algebraic expres-

sions, and sometimes very sophisticated kinds of mathematical functions. But the great advan-

tage of  the procedure is  that it  is  completely systematic,  and its  operation requires no special

cleverness of the kind that only a human could be expected to provide. 

In  having Mathematica  do integrals,  therefore,  one can be confident  that  it  will  systematically

get results, but one cannot expect that the way these results are derived will have much at all

to do with the way they would be derived by hand. 

The same is  true with most  of  the mathematical  algorithms in  Mathematica.  One striking fea-

ture is  that even for operations that are simple to describe,  the systematic algorithms to per-

form  these  operations  in  Mathematica  involve  fairly  advanced  mathematical  or  computational

ideas. 

Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by find-

ing the null space of a matrix obtained by reducing high powers of x modulo the prime and the

original polynomial. Then factorization over the integers is achieved by “lifting” modulo succes-

sive powers of the prime using a collection of intricate theorems in algebra and analysis.
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Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by find-

ing the null space of a matrix obtained by reducing high powers of x modulo the prime and the

original polynomial. Then factorization over the integers is achieved by “lifting” modulo succes-

sive powers of the prime using a collection of intricate theorems in algebra and analysis.

The  use  of  powerful  systematic  algorithms  is  important  in  making  the  built-in  functions  in

Mathematica  able  to  handle  difficult  and  general  cases.  But  for  easy  cases  that  may  be  fairly

common in practice it is often possible to use simpler and more efficient algorithms. 

As  a  result,  built-in  functions  in  Mathematica  often  have  large  numbers  of  extra  pieces  that

handle various kinds of special cases. These extra pieces can contribute greatly to the complex-

ity of the internal code, often taking what would otherwise be a five-page algorithm and making

it hundreds of pages long. 

Most  of  the  algorithms  in  Mathematica,  including  all  their  special  cases,  were  explicitly  con-

structed by hand. But some algorithms were instead effectively created automatically by com-

puter. 

Many of the algorithms used for machine-precision numerical evaluation of mathematical func-

tions  are  examples.  The  main  parts  of  such  algorithms  are  formulas  which  are  as  short  as

possible but which yield the best numerical approximations. 

Most  such  formulas  used  in  Mathematica  were  actually  derived  by  Mathematica  itself.  Often

many  months  of  computation  were  required,  but  the  result  was  a  short  formula  that  can  be

used to evaluate functions in an optimal way. 

The Software Engineering of Mathematica

Mathematica  is  one  of  the  more  complex  software  systems  ever  constructed.  It  is  built  from

several million lines of source code, written in C/C++, Java and Mathematica. 

The C code in Mathematica is actually written in a custom extension of C which supports certain

memory  management  and  object-oriented  features.  The  Mathematica  code  is  optimized  using

Share and DumpSave. 

In  the Mathematica  kernel  the breakdown of  different  parts  of  the code is  roughly  as  follows:

language and system: 30%; numerical computation: 20%; algebraic computation: 20%; graph-

ics and kernel output: 30%. 

Most  of  this  code  is  fairly  dense  and  algorithmic:  those  parts  that  are  in  effect  simple  proce-

dures or tables use minimal code since they tend to be written at a higher level~often directly

in Mathematica. 
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Most  of  this  code  is  fairly  dense  and  algorithmic:  those  parts  that  are  in  effect  simple  proce-

dures or tables use minimal code since they tend to be written at a higher level~often directly

in Mathematica. 

The  source  code  for  the  kernel,  save  a  fraction  of  a  percent,  is  identical  for  all  computer

systems on which Mathematica runs. 

For the front end, however, a significant amount of specialized code is needed to support each

different  type  of  user  interface  environment.  The  front  end  contains  about  700,000  lines  of

system-independent  C++  source  code,  of  which  roughly  200,000  lines  are  concerned  with

expression formatting. Then there are between 50,000 and 100,000 lines of specific code cus-

tomized for each user interface environment. 

Mathematica uses a client-server model of computing. The front end and kernel are connected

via  MathLink~the  same  system  as  is  used  to  communicate  with  other  programs.  MathLink

supports  multiple  transport  layers,  including  one  based  upon  TCP/IP  and  one  using  shared

memory.

The  front  end  and  kernel  are  connected  via  three  independent  MathLink  connections.  One  is

used for user-initiated evaluations. A second is  used by the front end to resolve the values of

Dynamic  expressions. The third is used by the kernel to notify the front end of Dynamic  objects

which should be invalidated.

Within the C code portion of the Mathematica kernel, modularity and consistency are achieved

by having different parts communicate primarily by exchanging complete Mathematica  expres-

sions. 

But it should be noted that even though different parts of the system are quite independent at

the level of source code, they have many algorithmic interdependencies. Thus, for example, it

is common for numerical functions to make extensive use of algebraic algorithms, or for graph-

ics code to use fairly advanced mathematical algorithms embodied in quite different Mathemat-

ica functions. 

Since the beginning of its development in 1986, the effort spent directly on creating the source

code for Mathematica is about a thousand developer-years. In addition, a comparable or some-

what larger effort has been spent on testing and verification. 

The  source  code  of  Mathematica  has  changed  greatly  since  Version  1  was  released.  The  total

number of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2,

600,000 in Version 3, 800,000 in Version 4, 1.5 million in Version 5 and 2.5 million in Version

6. In addition, at every stage existing code has been revised~so that Version 6 has only a few

percent of its code in common with Version 1. 
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The  source  code  of  Mathematica  has  changed  greatly  since  Version  1  was  released.  The  total

number of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2,

600,000 in Version 3, 800,000 in Version 4, 1.5 million in Version 5 and 2.5 million in Version

6. In addition, at every stage existing code has been revised~so that Version 6 has only a few

percent of its code in common with Version 1. 

Despite  these  changes  in  internal  code,  however,  the  user-level  design  of  Mathematica  has

remained  compatible  from  Version  1  on.  Much  functionality  has  been  added,  but  programs

created for Mathematica Version 1 will almost always run absolutely unchanged under Version 6.

Testing and Verification

Every version of Mathematica is subjected to a large amount of testing before it is released. The

vast majority of this testing is done by an automated system that is written in Mathematica. 

The  automated  system  feeds  millions  of  pieces  of  input  to  Mathematica,  and  checks  that  the

output obtained from them is correct. Often there is some subtlety in doing such checking: one

must account for different behavior of randomized algorithms and for such issues as differences

in machine-precision arithmetic on different computers. 

The test inputs used by the automated system are obtained in several ways: 

† For  every  Mathematica  function,  inputs  are  devised  that  exercise  both  common  and
extreme cases.

† Inputs are devised to exercise each feature of the internal code.

† All  the  examples  in  Mathematica's  documentation  system are  used,  as  well  as  those  from
many books about Mathematica.

† Tests  are  constructed  from  mathematical  benchmarks  and  test  sets  from  numerous
websites.

† Standard numerical tables are optically scanned for test inputs.

† Formulas from standard mathematical tables are entered.

† Exercises from textbooks are entered.

† For pairs of functions such as Integrate and D or Factor and Expand, random expressions
are generated and tested.

When  tests  are  run,  the  automated  testing  system  checks  not  only  the  results,  but  also  side

effects such as messages, as well as memory usage and speed. 

There is also a special instrumented version of Mathematica which is set up to perform internal

consistency tests. This version of Mathematica runs at a small fraction of the speed of the real

Mathematica,  but  at  every  step  it  checks  internal  memory consistency,  interruptibility,  and so

on. 
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There is also a special instrumented version of Mathematica which is set up to perform internal

consistency tests. This version of Mathematica runs at a small fraction of the speed of the real

Mathematica,  but  at  every  step  it  checks  internal  memory consistency,  interruptibility,  and so

on. 

The instrumented version of Mathematica also records which pieces of Mathematica source code

have been accessed, allowing one to confirm that all of the various internal functions in Mathe-

matica have been exercised by the tests given. 

All  standard Mathematica  tests  are  routinely  run on current  versions of  Mathematica,  on each

different computer system. Depending on the speed of the computer system, these tests take

from a few hours to a few days of computer time. 

Even with all this testing, however, it is inevitable in a system as complex as Mathematica that

errors will remain. 

The standards of correctness for Mathematica are certainly much higher than for typical mathe-

matical  proofs.  But  just  as  long  proofs  will  inevitably  contain  errors  that  go  undetected  for

many years, so also a complex software system such as Mathematica will contain errors that go

undetected even after millions of people have used it. 

Nevertheless, particularly after all the testing that has been done on it, the probability that you

will actually discover an error in Mathematica in the course of your work is extremely low. 

Doubtless there will be times when Mathematica does things you do not expect. But you should

realize that the probabilities are such that it is vastly more likely that there is something wrong

with  your  input  to  Mathematica  or  your  understanding  of  what  is  happening  than  with  the

internal code of the Mathematica system itself. 

If you do believe that you have found a genuine error in Mathematica, then you should contact

Wolfram Research Technical Support, so that the error can be corrected in future versions. 
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Security and Connectivity

Mathematica Internet Connectivity

Introduction

Mathematica provides important functionality through accessing the internet. Most Mathematica

functions that provide computable data operate by loading data over the internet. Some func-

tions require real-time access to the internet; others update a local data repository by access-

ing  the  internet  when required.  Mathematica  also  requires  internet  access  when you explicitly

use Import  to read from a URL, or when you use web services. The Mathematica  documenta-

tion system also supports automatic updating via the internet. 

When you call a data function like FinancialData, Mathematica gets the data it needs from the

internet.  When  you  click  a  link  to  a  documentation  notebook  or  call  a  data  function  like

CountryData, Mathematica knows whether a newer version of the information is available on a

Wolfram Research Paclet Server, and if so it will download and install the update automatically.

In the case of smaller paclets like documentation notebooks, this is often so fast that you will

not even notice it happening.

Mathematica  acts  like  a  web browser  when it  accesses  the  internet,  so  if  you can browse the

web  from  your  computer,  you  should  be  able  to  use  Mathematica's  internet  connectivity  fea-

tures, although in some cases additional configuration may be required.

Internet Connectivity Dialog

The  Internet  Connectivity  dialog,  accessed  from the  Help  menu,  allows  you  to  configure  a

number  of  settings  related  to  the  paclet  system,  and  Mathematica's  use  of  the  internet  in

general.

The  Allow  Mathematica  to  access  the  Internet  checkbox  can  be  turned  off  to  prevent

Mathematica  from  even  attempting  to  use  the  internet.  You  will  not  be  able  to  get  load-on-

demand updates to documentation, and some data collection functions will not operate.

The Test Internet Connectivity button is useful to see if Mathematica is properly configured

for  internet  use.  After  clicking  the  button,  you  should  see  a  dialog  within  a  few  seconds

(perhaps slightly longer if it fails) reporting success or failure. If the test succeeds, then Mathe-

matica's internet functionality should work properly. If it fails, consult "Troubleshooting Connec-

tivity Problems".
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The Test Internet Connectivity button is useful to see if Mathematica is properly configured

for  internet  use.  After  clicking  the  button,  you  should  see  a  dialog  within  a  few  seconds

(perhaps slightly longer if it fails) reporting success or failure. If the test succeeds, then Mathe-

matica's internet functionality should work properly. If it fails, consult "Troubleshooting Connec-

tivity Problems".

The Proxy Settings section allows you to specify a proxy server if necessary. In many cases,

Mathematica  is  able  to  inherit  the  proxy  settings  configured  globally  for  your  system  or

browser. This is the default setting, and most users will leave it as is. If you know that you do

not need to go through a proxy server to access the internet, you can click the Direct connec-

tion to  the Internet  checkbox.  You can also  manually  configure  proxy  settings  if  necessary.

Contact  your  system administrator  for  the values  to  use.  Most  users  will  only  need to  set  the

HTTP proxy.

The  Automatically  check  for  documentation  updates  checkbox  and  the  Automatically

check  for  data  updates  checkbox  can  be  turned  off  to  disable  load-on-demand  updates  to

documentation and data files. This will not interfere with the operation of Mathematica, except

that you will not receive updates to the documentation or data paclets as they become available.

The Update Local Indices from the Wolfram Research Server button will cause Mathemat-

ica to read information from the Wolfram Research Paclet Server that describes the versions of

the paclets that are available. Mathematica  uses this information to decide whether an update

is available to a given resource when you access that resource. Mathematica reads this informa-

tion on a weekly basis automatically, but you can force an update using this button. You might

want  to  do this  to  be sure you will  get  the absolute  latest  data  from data collection functions

like CountryData, ChemicalData, AstronomicalData, etc.

Troubleshooting Connectivity Problems

If  you  get  error  messages  or  dialogs  that  report  internet  connectivity  problems  while  running

Mathematica, the first thing to do is try the Test Internet Connectivity button in the Inter-

net Connectivity dialog, accessible from the Help menu. If the test succeeds, then Mathemat-

ica  is  correctly  configured  for  general  internet  use,  and  the  problem  probably  lies  elsewhere

(such as trying to access an incorrect URL). If the test fails, try the following steps:

1. Test  network  connectivity  by  seeing if  other  programs on your  computer  can access  the
internet. For example, launch a web browser and see if it works. If it fails, then the net-
work might be unavailable, or you might have connectivity problems beyond what can be
configured in Mathematica.
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1.

Test  network  connectivity  by  seeing if  other  programs on your  computer  can access  the
internet. For example, launch a web browser and see if it works. If it fails, then the net-
work might be unavailable, or you might have connectivity problems beyond what can be
configured in Mathematica.

2. Check proxy settings, as in "Proxy Settings".

3. Check firewall settings, as in "Firewall Settings".

Proxy Settings

Incorrect  proxy  settings  are  a  common  cause  of  problems  with  internet  connectivity.  Many

users on a company network cannot directly access the internet, but instead must pass through

a proxy server, which acts like a gateway to the internet. By default, Mathematica will attempt

to use systemwide proxy settings, if your operating system has such settings. For example, on

Windows, Mathematica will use the proxy settings configured for Internet Explorer. On Mac OS

X, proxy settings are configured in the Network Preferences panel.

Mathematica's  proxy settings are configured in the Internet Connectivity  dialog. The default

setting,  described in  "Internet  Connectivity  Dialog",  is  Use proxy settings from my system

or browser. If this does not work for you, try the Direct connection to the Internet choice.

If  that does not work,  then contact your system administrator for  proxy settings to enter into

the text fields. If you can successfully surf the web with a web browser, you can find its proxy

settings dialog and read the values it is using. Many users will only need to set the HTTP proxy.

If your system or browser is configured to get proxy settings from a configuration script, then

Mathematica will not be able to use these settings, and you will have to manually configure its

proxy settings.

If Mathematica is configured to Use proxy settings from your system or browser, and your

browser  functions  but  Mathematica  cannot  connect,  see  if  your  system proxy  settings  have  a

Use same proxy server for  all  protocols  checkbox and try  unchecking it.  Mathematica  will

attempt to use a SOCKS proxy if one is set, and if your HTTP proxy does not also handle SOCKS

traffic, Use same proxy server for all protocols is not a correct setting for your system. An

incorrectly  configured  SOCKS  proxy  can  cause  very  long  timeouts,  so  if  the  Test  Network

Connectivity button fails after a minutes-long delay, an incorrect SOCKS proxy configuration is

likely the problem. Mathematica does not require a SOCKS proxy, so the SOCKS Host field can

be  left  blank,  but  if  you  supply  a  value,  either  manually  or  via  the  system  setting  Use  the

same proxy server for all protocols, it must be correct.
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Firewall Settings

Because  Mathematica  acts  like  a  web  browser  when  it  accesses  the  internet,  most  company

firewalls will  not interfere with it.  Some users, however, have so-called "personal" firewalls on

their machines (ZoneAlarm, Norton, etc., or the one built into Microsoft Windows). If configured

with  strict  settings,  these  firewalls  might  interfere  with  Mathematica's  attempts  to  use  the

internet.

These types of firewalls will generally display a dialog box warning you that a program is trying

to use the internet and allow you to accept or reject it. If you see such a dialog, it might report

that the program is the Mathematica kernel or the Java Runtime Environment that is bundled in

the Mathematica layout. Configure the firewall to always allow such requests.

Further Information

If  the  information  in  this  document  is  not  sufficient  to  help  you  solve  connectivity  problems,

consult     the     Wolfram     Research     Technical     Support     troubleshooting     guide    at

http://support.wolfram.com/technotes/networkconnectivityissues.html

Notebook Security

Mathematica  provides  users  with  access  to  their  computer's  file  system  (Files),  interprocess

communication  (MathLink  Mathematica  Functions),  evaluation  of  data  as  code  (Converting

between  Expressions  and  Strings),  and  the  ability  to  run  arbitrary  external  programs  (Calling

External  Programs).  While  these  features  enable  Mathematica  users  to  create  powerful  pro-

grams that can perform truly useful tasks, they bring with them the potential for misuse.

The  Mathematica  notebook  front  end  provides  three  mechanisms  for  evaluating  code:

Shift+Return evaluations, initialization cells, and dynamic content.

Note that this tutorial contains live controls, so if you change anything it will imme-

diately change the settings on your system.
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 Shift +Return Evaluations

Because Shift+Return evaluations require user interaction to start them, Mathematica provides

no safeguards against potentially malicious code that is evaluated using this mechanism. Users

should  ensure  that  they  do  not  perform  Shift+Return  evaluations  on  code  from  untrusted

sources.  When  writing  their  own  code,  users  should  take  great  care  to  ensure  that  the  code

does not have unintended consequences. For example, Mathematica will not provide a warning

when the user evaluates a program to delete files from his or her computer.

Initialization Cells

Initialization  cells  provide  users  with  a  convenient  way  to  evaluate  startup  code  needed  by  a

given notebook when the user first evaluates any input in that notebook. Since this code will be

automatically evaluated, likely without the user ever seeing the initialization code, Mathematica

will display an alert prompt asking the user to confirm his or her intent to run the initialization

code.  Users  should  not  evaluate  initialization  code  in  a  notebook  that  was  obtained  from  an

untrusted source unless the code has been determined to be safe.

† Clicking the Yes button will first evaluate all of the initialization cells in the notebook, then
evaluate the selected cells.

† Clicking the No button will  not evaluate any of the initialization cells, but will  still  evaluate
the selected cells. Note that this may cause errors in the evaluations since they may rely on
startup code that has not yet been evaluated.

† Clicking the Cancel button will cause neither the initialization cells nor the selected cells to
be evaluated.
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Dynamic Content

Mathematica  7  has  amazing  dynamic  interactivity  features.  Notebooks  containing  interactive

Dynamic  content  can  automatically  evaluate  code  without  any  additional  action  by  the  user,

aside from opening the notebook file. Many times this is exactly what the user will want, while

other times the user should be alerted before this sort of automatic evaluation takes place.

When the user opens a notebook containing dynamic content, Mathematica will first determine

whether the notebook's directory is trusted, untrusted, or neither.

† If the notebook's directory is trusted, the notebook will be allowed to automatically perform
dynamic evaluations without alerting the user.

† If  the  notebook's  directory  is  untrusted,  the  user  will  be  alerted upon any attempt  by the
notebook to perform dynamic evaluations.

† If the notebook's directory is neither trusted nor untrusted, the behavior will depend on the
value of the TrustByDefault option explained as follows.

Mathematica  provides some options which can be used to configure which notebooks will  alert

the user about automatic evaluations and which notebooks will not.

TrustedPath

The value of the TrustedPath option is a list of directories that are always trusted by Mathemat-

ica. Any notebook file located in any directory in TrustedPath is trusted by Mathematica. Mathe-

matica  will  never  display  an  alert  when  a  trusted  notebook  is  opened,  and  the  notebook  can

automatically perform dynamic evaluations.
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By default, the TrustedPath option value contains $InstallationDirectory, $BaseDirectory,

and $UserBaseDirectory  so that Mathematica installation files and additional installed applica-

tions will be able to display dynamic content without alerting the user.

Here are the directories on your computer that are currently trusted by Mathematica:

Dynamic@Column@ToFileName êü
CurrentValue@$FrontEnd, 8“NotebookSecurityOptions“, “TrustedPath“<DDD

êApplicationsêMathematica.appê
êLibraryêMathematicaê
êhomeêusr2êlarryaêLibraryêMathematicaê

Edit TrustedPath ...  

UntrustedPath

The  value  of  the  UntrustedPath  option  is  a  list  of  directories  that  are  always  untrusted  by

Mathematica.  Any  notebook  file  located  in  any  directory  in  UntrustedPath  is  untrusted  by

Mathematica.  Mathematica  will  always display an alert  when an untrusted notebook is  opened

and attempts to perform dynamic evaluations. 

By  default,  the  UntrustedPath  option  value  contains  the  user's  desktop  folder  (where  web

browser downloads are likely to be stored), the user's configuration folder (where email attach-

ments are likely to be stored), and the computer's temporary directory. If the user has config-

ured  his  or  her  web  browser  or  email  program to  save  downloaded  files  in  nonstandard  loca-

tions, then the user is encouraged to add these locations to the UntrustedPath option value.

Here are the directories on your computer that are currently untrusted by Mathematica:

Dynamic@Column@ToFileName êü
CurrentValue@$FrontEnd, 8“NotebookSecurityOptions“, “UntrustedPath“<DDD

êhomeêusr2êlarryaêDesktopê
êhomeêusr2êlarryaêDownloadsê
êhomeêusr2êlarryaêLibraryê
êtmpê
êvarê
êprivateê

Edit UntrustedPath...  
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Nesting

Directories  in  TrustedPath  and  UntrustedPath  can  be  nested.  A  notebook  is  trusted  if  the

most  deeply  nested  directory  containing  the  notebook  is  trusted.  Consider  the  following

example:

† FrontEnd`FileName[{$HomeDirectory, “Desktop“}] is untrusted.

† FrontEnd`FileName[{$HomeDirectory, “Desktop“, “SafeNotebooks“}] is trusted.

† FrontEnd`FileName[{$HomeDirectory,  “Desktop“},  “SomeDownload.nb“]  would  be
untrusted because “Desktop“ is untrusted.

† FrontEnd`FileName[{$HomeDirectory,  “Desktop“,  “SafeNotebooks“},
“MyNotebook.nb“] would be trusted because “SafeNotebooks“ is trusted.

TrustByDefault

The TrustByDefault option determines whether Mathematica should display an alert when the

user  opens  notebooks  with  dynamic  content  whose  containing  directories  are  neither  trusted

nor untrusted. Below are the possible values for the TrustByDefault option.

True a notebook which is not located in a directory in 
UntrustedPath is considered to be trusted and will not 
display an alert when opened

False a notebook which is not located in a directory in 
TrustedPath is considered to be untrusted and will 
display an alert when opened

Automatic a notebook which is not located in any directory in either 
TrustedPath or UntrustedPath will display an alert 
when opened only if the notebook contains unsafe dynamic 
content (see below)

Values for TrustByDefault option.

The current value of the TrustByDefault option is: Automatic

Unsafe Dynamic Content

Dynamic content is considered unsafe if it:

† uses File operations

† uses interprocess communication via MathLink Mathematica Functions

† uses J/Link or .NET/Link

† uses Low-Level Notebook Programming
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†

† uses data as code by Converting between Expressions and Strings

† uses Namespace Management

† uses Options Management

† uses External Programs

Changing Option Values

TrustedPath,  UntrustedPath,  and  TrustByDefault  are  options  in  the

NotebookSecurityOptions  category.  They  can  be  changed  using  the  Preferences...  dialog  or

the Option Inspector... .

Any  attempt  to  change  the  value  of  the  TrustedPath,  UntrustedPath,  or  TrustByDefault

options  will  cause  Mathematica  to  prompt  the  user  to  confirm  the  change.  Mathematica  does

this  as  a  security  precaution so that  malicious  code cannot  change the value of  these options

without the user's knowledge.
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MathLink and External Program 
Communication
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Introduction to MathLink

In  many  cases,  you  will  find  it  convenient  to  communicate  with  external  programs  at  a  high

level, and to exchange structured data with them. 

On almost all computer systems, Mathematica supports the MathLink communication standard,

which  allows  higher-level  communication  between  Mathematica  and  external  programs.  In

order  to  use  MathLink,  an  external  program  has  to  include  some  special  source  code  and  a

MathLink library, which are usually distributed with Mathematica. 

MathLink allows external programs both to call Mathematica, and to be called by Mathematica.

"MathLink and External Program Communication" discusses some of the details of MathLink. By

using MathLink,  you can,  for  example,  treat  Mathematica  essentially  like a subroutine embed-

ded inside an external program. Or you can create a front end that implements your own user

interface, and communicates with the Mathematica kernel via MathLink. 

You  can  also  use  MathLink  to  let  Mathematica  call  individual  functions  inside  an  external  pro-

gram.  As  described  in  "MathLink  and  External  Program  Communication",  you  can  set  up  a

MathLink  template file  to specify  how particular  functions in  Mathematica  should call  functions

inside your external program. From the MathLink template file, you can generate source code to

include  in  your  program.  Then  when  you  start  your  program,  the  appropriate  Mathematica

definitions are automatically made, and when you call  a particular Mathematica  function, code

in your external program is executed. 

Install@"command"D start an external program and install Mathematica defini -
tions to call functions it contains

Uninstall@linkD terminate an external program and uninstall definitions for 
functions in it

Calling functions in external programs. 



This starts the external program simul, and installs Mathematica definitions to call various 
functions in it. 

In[1]:= Install@"simul"D

Out[1]= LinkObject[simul, 5, 4]

Here is a usage message for a function that was installed in Mathematica to call a function in 
the external program. 

In[2]:= ? srun

srun[{a, r, gamma}, x] performs a simulation with the
   specified parameters.

When you call this function, it executes code in the external program. 

In[3]:= srun@83, 0, 7<, 5D

Out[3]= 6.78124

This terminates the simul program. 

In[4]:= Uninstall@"simul"D

Out[4]= simul

You can use MathLink to communicate with many types of programs, including with Mathemat-

ica  itself.  There  are  versions  of  the  MathLink  library  for  a  variety  of  common  programming

languages.  The  J/Link  system  provides  a  standard  way  to  integrate  Mathematica  with  Java,

based on MathLink. With J/Link you can take any Java class, and immediately make its methods

accessible as functions in Mathematica. 

How MathLink Is Used

MathLink provides a mechanism through which programs can interact with Mathematica.

† Calling functions in an external program from within Mathematica.

† Calling Mathematica from within an external program.

† Setting up alternative front ends to Mathematica.

† Exchanging data between Mathematica and external programs.

† Exchanging data between concurrent Mathematica processes.

Some typical uses of MathLink. 

MathLink provides a general interface for external programs to communicate with Mathematica.

Many standard software systems now have MathLink compatibility either built in or available in

add-on modules. 
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MathLink provides a general interface for external programs to communicate with Mathematica.

Many standard software systems now have MathLink compatibility either built in or available in

add-on modules. 

In  addition,  the  MathLink  Developer  Kit  bundled  with  most  versions  of  Mathematica  provides

the tools you need to create your own MathLink-compatible programs. 

Once you have a MathLink-compatible program, you can transparently establish a link between

it and Mathematica. 

The  link  can  either  be  on  a  single  computer,  or  it  can  be  over  a  network,  potentially  with  a

different type of computer at each end. 

† Implementing inner loops in a low-level language.

† Handling large volumes of data external to Mathematica.

† Sending Mathematica graphics or other data for special processing.

† Connecting to a system with an existing user interface.

A few uses of MathLink-compatible programs. 

MathLink-compatible  programs  range  from very  simple  to  very  complex.  A  minimal  MathLink-

compatible program is just a few lines long. But it is also possible to build very large and sophis-

ticated  MathLink-compatible  programs.  Indeed,  the  Mathematica  notebook  front  end  is  one

example of a sophisticated MathLink-compatible program. 

† MathLink is a mechanism for exchanging Mathematica expressions between programs.

The basic idea of MathLink. 

Much of the power of MathLink comes from its use of Mathematica expressions. The basic idea

is that MathLink provides a way to exchange Mathematica expressions between programs, and

such expressions can represent absolutely any kind of data. 

† An array of numbers.

† A collection of geometrical objects.

† A sequence of commands.

† A stream of text.

† Records in a database.

† The cells of a Mathematica notebook.

A few examples of data represented by Mathematica expressions in MathLink. 

The  MathLink  library  consists  of  a  collection  of  routines  that  allow  external  programs  to  send

and receive Mathematica expressions using the fundamental C data types.
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The  MathLink  library  consists  of  a  collection  of  routines  that  allow  external  programs  to  send

and receive Mathematica expressions using the fundamental C data types.

The  MathLink  Developer  Kit  provides  utilities  for  incorporating  these  routines  into  external

programs. Utilities are included for a variety of languages, although here we discuss mainly the

case of C. 

An important feature of the MathLink library is that it is completely platform independent: it can

transparently  use  any  interprogram  communication  mechanism  that  exists  on  your  computer

system.

Installing Existing MathLink-Compatible Programs

One of the most common uses of MathLink is to allow you to call functions in an external pro-

gram from within Mathematica. Once the external program has been set up, all you need do to

be able to use it is to “install” it in your current Mathematica session. 

Install@"prog"D install a MathLink-compatible external program

Uninstall@linkD uninstall the program

Setting up external programs with functions to be called from within Mathematica. 

This installs a MathLink-compatible external program called bitprog. 

In[1]:= Install@"bitprog"D

Out[1]= LinkObject@.êbitprog, 6, 5D

BitShift is one of the functions inside bitprog. 

In[2]:= BitShift@111, 3D

Out[2]= 13

You can use it just as you would a function within Mathematica. 

In[3]:= Table@BitShift@111, iD, 8i, 3, 8<D

Out[3]= 813, 6, 3, 1, 0, 0<

When  you  have  a  package  written  in  the  Mathematica  language  a  single  version  will  run

unchanged  on  any  computer  system.  But  external  programs  typically  need  to  be  compiled

separately for every different type of computer. 

Mathematica has a convention of keeping versions of external programs in directories that are

named after the types of computers on which they will run. And assuming that this convention

has been followed, Install@"prog"D should always install the version of prog appropriate for the

particular kind of computer that you are currently using. 
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Mathematica has a convention of keeping versions of external programs in directories that are

named after the types of computers on which they will run. And assuming that this convention

has been followed, Install@"prog"D should always install the version of prog appropriate for the

particular kind of computer that you are currently using. 

Install@"name`"D install a program found anywhere on $Path

Using context names to specify programs to install. 

When you ask to read in a Mathematica language file using << name`, Mathematica will automati-

cally  search  all  directories  in  the  list  $Path  in  order  to  find  a  file  with  the  appropriate  name.

Similarly,  if  you use Install@"name`"D  Mathematica  will  automatically search all  directories in

$Path  in order to find an external program with the name name.exe. Install@"name`"D allows

you to install programs that are stored in a central directory without explicitly having to specify

their location.

Setting Up External Functions to Be Called from 
Mathematica

If  you  have a  function  defined  in  an  external  program,  then what  you need to  do  in  order  to

make  it  possible  to  call  the  function  from  within  Mathematica  is  to  add  appropriate  MathLink

code that passes arguments to the function, and takes back the results it produces. 

In  simple  cases,  you can generate  the necessary code just  by giving an appropriate  MathLink

template for each external function.

:Begin:
:Function:      f
:Pattern:       f[x_Integer, y_Integer]
:Arguments:     {x, y}
:ArgumentTypes: {Integer, Integer}
:ReturnType:    Integer
:End:

A file f.tm containing a MathLink template for an external function f.
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:Begin: begin the template for a particular function

:Function: the name of the function in the external program

:Pattern: the pattern to be defined to call the function

:Arguments: the arguments to the function

:ArgumentTypes: the types of the arguments to the function

:ReturnType: the type of the value returned by the function

:End: end the template for a particular function

:Evaluate: Mathematica input to evaluate when the function is 
installed

The elements of a MathLink template. 

Once you have constructed a MathLink template for a particular external function, you have to

combine this  template  with  the actual  source code for  the function.  Assuming that  the source

code is written in the C programming language, you can do this just by adding a line to include

the standard MathLink header file, and then inserting a small main program. 

Include the standard MathLink header file. 

#include "mathlink.h"

Here is the actual source code for the function f.

int f(int x, int y) {
   return x+y;
}

This sets up the external program to be ready to take requests from Mathematica. 

int main(int argc, char *argv[]) {
   return MLMain(argc, argv);
}

A file f.c containing C source code. 

Note that the form of main required on different systems may be slightly different. The release

notes  included  in  the  MathLink  Developer  Kit  on  your  particular  computer  system should  give

the appropriate form. 

mcc preprocess and compile MathLink source files

mprep preprocess MathLink source files

Typical external programs for processing MathLink source files. 

MathLink templates are conventionally put in files with names of the form file.tm. Such files can

also contain C source code, interspersed between templates for different functions. 
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MathLink templates are conventionally put in files with names of the form file.tm. Such files can

also contain C source code, interspersed between templates for different functions. 

Once  you  have  set  up  the  appropriate  files,  you  then  need  to  process  the  MathLink  template

information,  and  compile  all  of  your  source  code.  Typically  you  do  this  by  running  various

external programs, but the details will depend on your computer system. 

Under Unix, for example, the MathLink Developer Kit includes a program named mcc which will

preprocess MathLink templates in any file whose name ends with .tm, and then call cc on the

resulting C source code. mcc will pass command-line options and other files directly to cc. 

This preprocesses f.tm, then compiles the resulting C source file together with the file f.c. 

mcc -o f.exe f.tm f.c

This installs the binary in the current Mathematica session. 

In[1]:= Install@"f.exe"D

Out[1]= LinkObject@f.exe, 4, 4D

Now f@x, yD calls the external function f Hint x, int yL and adds two integers together. 

In[2]:= f@6, 9D

Out[2]= 15

The external program handles only machine integers, so this gives a peculiar result. 

In[3]:= f@2^31 - 1, 5D

Out[3]= -2147483644

On Windows, the MathLink Developer Kit includes a program named mprep, which you have to

call directly, giving as input all of the .tm files that you want to preprocess. mprep will generate

C source code as output, which you can then feed to a C compiler. 

Install@"prog"D install an external program

Uninstall@linkD uninstall an external program

Links@"prog"D show active links associated with "prog"

Links@D show all active links

LinkPatterns@linkD show patterns that can be evaluated on a particular link

Handling links to external programs. 

This finds the link to the f.exe program. 
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This finds the link to the f.exe program. 

In[4]:= Links@"f.exe"D

Out[4]= 8LinkObject@.êf.exe, 8, 6D<

This shows the Mathematica patterns that can be evaluated using the link. 

In[5]:= LinkPatterns@%@@1DDD

Out[5]= 8f@x_Integer, y_IntegerD<

Install sets up the actual function f to execute an appropriate ExternalCall function. 

In[6]:= ? f

Global`f

f@x_Integer, y_IntegerD :=
ExternalCall@LinkObject@.êf.exe, 8, 6D, CallPacket@0, 8x, y<DD

When a MathLink  template file  is  processed,  two basic  things are done.  First,  the : Pattern :

and  : Arguments :  specifications  are  used  to  generate  a  Mathematica  definition  that  calls  an

external  function  via  MathLink.  And  second,  the  : Function :,  : ArgumentTypes :  and

: ReturnType : specifications are used to generate C source code that calls your function within

the external program. 

:Begin:

This gives the name of the actual C function to call in the external program.

:Function:      prog_add

This gives the Mathematica pattern for which a definition should be set up.

:Pattern:       SkewAdd[x_Integer, y_Integer:1]

The values of the two list elements are the actual arguments to be passed to the external 
function. 

:Arguments:     {x, If[x > 1, y, y + x - 2]}

This specifies that the arguments should be passed as integers to the C function.

:ArgumentTypes: {Integer, Integer}
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This specifies that the return value from the C function will be an integer.

:ReturnType:    Integer

:End:

Both  the  : Pattern :  and  : Arguments :  specifications  in  a  MathLink  template  can  be  any

Mathematica  expressions.  Whatever  you give as  the : Arguments :  specification will  be evalu-

ated every time you call the external function. The result of the evaluation will be used as the

list of arguments to pass to the function. 

Sometimes  you  may  want  to  set  up  Mathematica  expressions  that  should  be  evaluated  not

when an external function is called, but instead only when the external function is first installed. 

You can do this by inserting : Evaluate : specifications in your MathLink template. The expres-

sion you give after : Evaluate : can go on for several lines: it is assumed to end when there is

first a blank line, or a line that does not begin with spaces or tabs. 

This specifies that a usage message for SkewAdd should be set up when the external program 
is installed.

:Evaluate:    SkewAdd::usage = "SkewAdd[x, y] performs
       a skew addition in an external program."

When an external program is installed, the specifications in its MathLink template file are used

in the order they were given. This means that any expressions given in : Evaluate : specifica-

tions that appear before : Begin :  will  have been evaluated before definitions for the external

function are set up. 

Here are Mathematica expressions to be evaluated before the definitions for external functions 
are set up.

:Evaluate:  BeginPackage["XPack`"]
:Evaluate:  XF1::usage = "XF1[x, y] is one external function."
:Evaluate:  XF2::usage = "XF2[x] is another external function."
:Evaluate:  Begin["`Private`"]
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This specifies that the function XF1 in Mathematica should be set up to call the function f in the 
external C program.

:Begin:
:Function:       f
:Pattern:        XF1[x_Integer, y_Integer]
:Arguments:      {x, y}
:ArgumentTypes:  {Integer, Integer}
:ReturnType:     Integer
:End:

This specifies that XF2 in Mathematica should call g. Its argument and return value are taken to 
be approximate real numbers. 

:Begin:
:Function:       g
:Pattern:        XF2[x_?NumberQ]
:Arguments:      {x}
:ArgumentTypes:  {Real}
:ReturnType:     Real
:End:

These Mathematica expressions are evaluated after the definitions for the external functions. 
They end the special context used for the definitions.

:Evaluate:  End[ ]
:Evaluate:  EndPackage[ ]

Here is the actual source code for the function f. There is no need for the arguments of this 
function to have the same names as their Mathematica counterparts.

int f(int i, int j) {
   return i + j;
}

Here is the actual source code for g. Numbers that you give in Mathematica will automatically 
be converted into C double types before being passed to g.

double g(double x) {
   return x*x;
}

By  using  : Evaluate :  specifications,  you  can  evaluate  Mathematica  expressions  when  an

external  program  is  first  installed.  You  can  also  execute  code  inside  the  external  program  at

this time simply by inserting the code in main HL before the call to MLMain HL. This is sometimes

useful if you need to initialize the external program before any functions in it are used. 
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By  using  : Evaluate :  specifications,  you  can  evaluate  Mathematica  expressions  when  an

external  program  is  first  installed.  You  can  also  execute  code  inside  the  external  program  at

this time simply by inserting the code in main HL before the call to MLMain HL. This is sometimes

useful if you need to initialize the external program before any functions in it are used. 

MLEvaluateString Hstdlink,"string"L

evaluate a string as Mathematica input

Executing a command in Mathematica from within an external program. 

int diff(int i, int j) {

This evaluates a Mathematica Print function if i < j.

    if (i < j) MLEvaluateString(stdlink, "Print[\"negative\"]");
    return i - j;
}

This installs an external program containing the diff function defined above. 

In[7]:= Install@"diffprog"D

Out[7]= LinkObject@.êdiffprog, 9, 7D

Calling diff causes Print to be executed. 

In[8]:= diff@4, 7D

negative
Out[8]= -3

Note  that  any  results  generated  in  the  evaluation  requested  by  MLEvaluateString()  are

ignored. To make use of such results requires full two-way communication between Mathemat-

ica and external programs, as discussed in "Two-Way Communication with External Programs". 

Handling Lists, Arrays and Other Expressions

MathLink  allows you to exchange data of any type with external  programs. For more common

types of data, you simply need to give appropriate : ArgumentTypes : or : ReturnType : specifi-

cations in your MathLink template file. 
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Mathematica specification C specification

Integer integer int

Real floating-point 
number

double

IntegerList list of integers int*,long

RealList list of floating-
point numbers

double*,long

String character string char*

Symbol symbol name char*

Manual call MathLink 
routines directly

void

Basic type specifications. 

Here is the MathLink template for a function that takes a list of integers as its argument. 

:Begin:
:Function:       h
:Pattern:        h[a_List]
:Arguments:      {a}
:ArgumentTypes:  {IntegerList}
:ReturnType:     Integer
:End:

Here is the C source code for the function. Note the extra argument alen which is used to pass 
the length of the list. 

int h(int *a, long alen) {

   int i, tot=0;

   for(i=0; i<alen; i++)
      tot += a[i];

   return tot;
}

This installs an external program containing the specifications for the function h. 

In[1]:= Install@"hprog"D

Out[1]= LinkObject@.êhprog, 11, 8D
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This calls the external code. 

In[2]:= h@83, 5, 6<D

Out[2]= 14

This does not match the pattern h@a_ListD so does not call the external code. 

In[3]:= h@67D

Out[3]= h@67D

The pattern is matched, but the elements in the list are of the wrong type for the external code, 
so $Failed is returned. 

In[4]:= h@8a, b, c<D

Out[4]= $Failed

You can mix basic types of arguments in any way you want. Whenever you use IntegerList or

RealList, however, you have to include an extra argument in your C program to represent the

length of the list. 

Here is an : ArgumentTypes : specification. 

:ArgumentTypes:  {IntegerList, RealList, Integer}

Here is a possible corresponding C function declaration. 

void f(int *a, long alen, double *b, long blen, int c)

Note that when a list is passed to a C program by MathLink its first element is assumed to be at

position 0, as is standard in C, rather than at position 1, as is standard in Mathematica. 

In  addition,  following C standards,  character  strings specified by String  are passed as char *

objects,  terminated  by  î 0  null  bytes.  "Portability  of  MathLink  Programs"  discusses  how  to

handle special characters. 
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MLPutInteger32 Hstdlink,int iL put a single integer

MLPutReal64 Hstdlink,double xL put a single floating-point number

MLPutInteger32List Hstdlink,int*a,int nL

put a list of n integers starting from location a

MLPutReal64List Hstdlink,double*a,int nL

put a list of n floating-point numbers starting from 
location a

MLPutInteger32Array Hstdlink,int*a,int*dims,NULL,int dL

put an array of integers to form a depth d list with dimen -
sions dims

MLPutReal64Array Hstdlink,double*a,int*dims,NULL,int dL

put an array of floating-point numbers

MLPutString Hstdlink,char*sL

put a character string

MLPutSymbol Hstdlink,char*sL

put a character string as a symbol name

MLPutFunction Hstdlink,char*s,int nL

begin putting a function with head s and n arguments

MathLink functions for sending data to Mathematica. 

When you use a MathLink  template file,  what mprep  and mcc  actually do is to create a C pro-

gram that includes explicit calls to MathLink library functions. If you want to see an example of

how  to  use  the  MathLink  library  functions  directly,  you  can  look  at  the  source  code  of  this

program. Note when you use mcc, you typically need to give a -g option, otherwise the source

code that is generated is automatically deleted.

If  your  external  function  just  returns  a  single  integer  or  floating-point  number,  then  you  can

specify  this  just  by  giving  Integer  or  Real  as  the  : ReturnType :  in  your  MathLink  template

file. But because of the way memory allocation and deallocation work in C, you cannot directly

give  : ReturnType :  specifications  such  as  IntegerList  or  RealList.  And  instead,  to  return

such structures, you must explicitly call  MathLink  library functions within your C program, and

give Manual as the : ReturnType : specification. 
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Here is the MathLink template for a function that takes an integer as an argument, and returns 
a list of the digits in its binary representation using explicit MathLink functions. 

:Begin:
:Function:       bits
:Pattern:        bits[i_Integer]
:Arguments:      {i}
:ArgumentTypes:  {Integer}
:ReturnType:     Manual
:End:

The return type of the function is declared as void. 

void bits(int i) {

   int a[32], k;

This puts values into the C array a.

   for(k=0; k<32; k++) {
       a[k] = i%2;
       i >>= 1;
       if (i==0) break;
   }

   if (k<32) k++;

This sends k elements of the array a back to Mathematica. 

    MLPutInteger32List(stdlink, a, k);
    return ;
}

This installs the program containing the external function bits. 

In[5]:= Install@"bitsprog"D

Out[5]= LinkObject@bitsprog, 5, 5D

The external function now returns a list of bits. 

In[6]:= bits@14D

Out[6]= 80, 1, 1, 1<

If  you declare an array in C as int a@n1D@n2D@n3D,  then you can use MLPutInteger32Array()

to send it to Mathematica as a depth 3 list. 
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If  you declare an array in C as int a@n1D@n2D@n3D,  then you can use MLPutInteger32Array()

to send it to Mathematica as a depth 3 list. 

Here is a declaration for a 3-dimensional C array.

   int a[8][16][100];

This sets up the array dims and initializes it to the dimensions of a. 

   int dims[] = {8, 16, 100};

This sends the 3-dimensional array a to Mathematica, creating a depth 3 list. 

    MLPutInteger32Array(stdlink, a, dims, NULL, 3);

You  can  use  MathLink  functions  to  create  absolutely  any  Mathematica  expression.  The  basic

idea is to call a sequence of MathLink functions that correspond directly to the FullForm  repre-

sentation of the Mathematica expression. 

This sets up the Mathematica function Plus with 2 arguments. 

MLPutFunction(stdlink, "Plus", 2);

This specifies that the first argument is the integer 77.

MLPutInteger32(stdlink, 77);

And this specifies that the second argument is the symbol x. 

MLPutSymbol(stdlink, "x");

In  general,  you  first  call  MLPutFunction(),  giving  the  head  of  the  Mathematica  function  you

want to create, and the number of arguments it has. Then you call other MathLink functions to

fill in each of these arguments in turn. "Expressions" discusses the general structure of Mathe-

matica expressions and the notion of heads. 

This creates a Mathematica list with 2 elements. 

MLPutFunction(stdlink, "List", 2);

The first element of the list is a list of 10 integers from the C array r. 

MLPutInteger32List(stdlink, r, 10);
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The second element of the main list is itself a list with 2 elements. 

MLPutFunction(stdlink, "List", 2);

The first element of this sublist is a floating-point number. 

MLPutReal64(stdlink, 4.5);

The second element is an integer. 

MLPutInteger32(stdlink, 11);

MLPutInteger32Array()  and  MLPutReal64Array()  allow  you  to  send  arrays  which  are  laid

out in memory in the one-dimensional way that C pre-allocates them. But if you create arrays

during the execution of a C program, it is more common to set them up as nested collections of

pointers. You can send such arrays to Mathematica  by using a sequence of MLPutFunction()

calls, ending with an MLPutInteger32List() call. 

This declares a to be a nested list of lists of lists of integers. 

int ***a;

This creates a Mathematica list with n1 elements. 

MLPutFunction(stdlink, "List", n1);

for (i=0; i<n1; i++) {

This creates a sublist with n2 elements. 

    MLPutFunction(stdlink, "List", n2);

    for (j=0; j<n2; j++) {

This writes out lists of integers. 

        MLPutInteger32List(stdlink, a[i][j], n3);

    }
}

It is important to realize that any expression you create using MathLink functions will be evalu-

ated as soon as it is sent to Mathematica. This means, for example, that if you wanted to trans-

pose an array that you were sending back to Mathematica, all you would need to do is to wrap

a  Transpose  around  the  expression  representing  the  array.  You  can  then  do  this  simply  by

calling MLPutFunction Hstdlink, "Transpose", 1L;  just  before you start  creating the expres-

sion that represents the array. 
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It is important to realize that any expression you create using MathLink functions will be evalu-

ated as soon as it is sent to Mathematica. This means, for example, that if you wanted to trans-

a  Transpose  around  the  expression  representing  the  array.  You  can  then  do  this  simply  by

calling MLPutFunction Hstdlink, "Transpose", 1L;  just  before you start  creating the expres-

sion that represents the array. 

The idea of postprocessing data that you send back to Mathematica has many uses. One exam-

ple is as a way of sending lists whose length you do not know in advance.

This creates a list in Mathematica by explicitly appending successive elements. 

In[7]:= t = 8<; Do@t = Append@t, i^2D, 8i, 5<D; t

Out[7]= 81, 4, 9, 16, 25<

This creates a list in which each successive element is in a nested sublist. 

In[8]:= t = 8<; Do@t = 8t, i^2<, 8i, 5<D; t

Out[8]= 888888<, 1<, 4<, 9<, 16<, 25<

Flatten flattens out the list. 

In[9]:= Flatten@tD

Out[9]= 81, 4, 9, 16, 25<

Sequence automatically flattens itself. 

In[10]:= 8Sequence@1, Sequence@4, Sequence@DDD<

Out[10]= 81, 4<

In order to call  MLPutInteger32List(),  you need to know the length of  the list  you want to

send.  But  by  creating  a  sequence  of  nested  Sequence  objects,  you  can  avoid  having  to  know

the length of your whole list in advance. 

This sets up the List around your result. 

MLPutFunction(stdlink, "List", 1);

while( condition ) {
     /* generate an element */

Create the next level Sequence object. 

    MLPutFunction(stdlink, "Sequence", 2);
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Put the element. 

    MLPutInteger32(stdlink,  i );

}

This closes off your last Sequence object. 

MLPutFunction(stdlink, "Sequence", 0);

MLGetInteger32 Hstdlink,int*iL get an integer, storing it at address i

MLGetReal64 Hstdlink,double*xL get a floating-point number, storing it at address x

Basic functions for explicitly getting data from Mathematica. 

MathLink  provides  functions  like  MLPutInteger32()  to  send  data  from  an  external  program

into  Mathematica.  MathLink  also  provides  functions  like  MLGetInteger32()  that  allow  you  to

get data from Mathematica into an external program. 

The  list  that  you  give  for  : ArgumentTypes :  in  a  MathLink  template  can  end  with  Manual,

indicating that after other arguments have been received, you will call MathLink functions to get

additional expressions. 

:Begin:
:Function:       f

The function f in Mathematica takes 3 arguments. 

:Pattern:        f[i_Integer, x_Real, y_Real]

All these arguments are passed directly to the external program.

:Arguments:      {i, x, y}

Only the first argument is sent directly to the external function. 

:ArgumentTypes:  {Integer, Manual}

:ReturnType:     Real
:End:

The external function only takes one explicit argument. 

double f(int i) {

This declares the variables x and y. 
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This declares the variables x and y. 

   double x, y;

MLGetReal64() explicitly gets data from the link. 

   MLGetReal64(stdlink, &x);
   MLGetReal64(stdlink, &y);

   return i+x+y;
}

MathLink  functions such as  MLGetInteger32 Hlink, piL  work much like  standard C library  func-

tions  such  as  fscanf H fp, "%d", piL.  The  first  argument  specifies  the  link  from  which  to  get

data. The last argument gives the address at which the data that is obtained should be stored. 

MLCheckFunction Hstdlink,"name",int*nL

check the head of a function and store how many argu-
ments it has

Getting a function via MathLink. 

:Begin:
:Function:       f

The function f in Mathematica takes a list of integers as an argument. 

:Pattern:        f[a:{___Integer}]

The list is passed directly to the external program.

:Arguments:      {a}

The argument is to be retrieved manually by the external program. 

:ArgumentTypes:  {Manual}

:ReturnType:     Integer
:End:

The external function takes no explicit arguments. 

int f(void) {

This declares local variables. 
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This declares local variables. 

    int n, i;
    int a[MAX];

This checks that the function being sent is a list, and stores how many elements it has in n. 

    MLCheckFunction(stdlink, "List", &n);

This gets each element in the list, storing it in a@iD.

   for (i=0; i<n; i++)
      MLGetInteger32(stdlink, a+i);

In simple cases, it is usually possible to ensure on the Mathematica side that the data you send

to an external program has the structure that is expected. But in general the return value from

MLCheckFunction()  will  be MLSUCCESS only if  the data consists of a function with the name

you specify. 

Note  that  if  you  want  to  get  a  nested  collection  of  lists  or  other  objects,  you  can  do  this  by

making an appropriate sequence of calls to MLCheckFunction(). 

MLGetInteger32List Hstdlink,int**a,int*nL

get a list of integers, allocating the memory needed to 
store it

MLGetReal64List Hstdlink,double**a,int*nL

get a list of floating-point numbers

MLReleaseInteger32List Hstdlink,int*a,int nL

release the memory associated with a list of integers

MLReleaseReal64List Hstdlink,double*a,int nL

release the memory associated with a list of floating-point 
numbers

Getting lists of numbers. 

When  an  external  program  gets  data  from  Mathematica,  it  must  set  up  a  place  to  store  the

data.  If  the  data  consists  of  a  single  integer,  as  in  MLGetInteger32 Hstdlink, & nL,  then  it

suffices just to have declared this integer using int n. 

But  when  the  data  consists  of  a  list  of  integers  of  potentially  any  length,  memory  must  be

allocated to store this list at the time when the external program is actually called. 

MLGetInteger32List Hstdlink, & a, & nL will automatically do this allocation, setting a to be a

pointer to the result.  Note that memory allocated by functions like MLGetInteger32List()  is

always in a special reserved area, so you cannot modify or free it directly. 
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MLGetInteger32List Hstdlink, & a, & nL will automatically do this allocation, setting a to be a

pointer to the result.  Note that memory allocated by functions like MLGetInteger32List()  is

always in a special reserved area, so you cannot modify or free it directly. 

Here is an external program that will be sent a list of integers. 

int f(void) {

This declares local variables. a is an array of integers. 

    int n;
    int *a;

This gets a list of integers, making a be a pointer to the result. 

    MLGetInteger32List(stdlink, &a, &n);

This releases the memory used to store the list of integers. 

    MLReleaseInteger32List(stdlink, a, n);

...
}

If you use IntegerList as an : ArgumentTypes : specification, then MathLink will automatically

release the memory used for the list  after your external function exits. But if  you get a list  of

integers  explicitly  using  MLGetInteger32List(),  then  you  must  not  forget  to  release  the

memory used to store the list after you have finished with it. 

MLGetInteger32Array Hstdlink,int**a,int**dims,char***heads,int*dL

get an array of integers of any depth

MLGetReal64Array Hstdlink,double**a,int**dims,char***heads,int*dL

get an array of floating-point numbers of any depth

MLReleaseInteger32Array Hstdlink,int*a,int*dims,char**heads,int dL

release memory associated with an integer array

MLReleaseRealArray Hstdlink,double*a,int*dims,char**heads,int dL

release memory associated with a floating-point array

Getting arrays of numbers. 

MLGetInteger32List() extracts a one-dimensional array of integers from a single Mathemat-

ica  list.  MLGetInteger32Array()  extracts  an  array  of  integers  from  a  collection  of  lists  or

other Mathematica functions nested to any depth. 
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MLGetInteger32List() extracts a one-dimensional array of integers from a single Mathemat-

ica  list.  MLGetInteger32Array()  extracts  an  array  of  integers  from  a  collection  of  lists  or

other Mathematica functions nested to any depth. 

The name of the Mathematica function at level i in the structure is stored as a string in heads@iD.

The size of the structure at level i is stored in dims@iD, while the total depth is stored in d. 

If  you  pass  a  list  of  complex  numbers  to  your  external  program,  then  MLGetReal64Array()

will create a two-dimensional array containing a sequence of pairs of real and imaginary parts.

In this case, heads@0D will be "List" while heads@1D will be "Complex". 

Note  that  you  can  conveniently  exchange  arbitrary-precision  numbers  with  external  programs

by converting them to lists of digits in Mathematica using IntegerDigits and RealDigits.

MLGetString Hstdlink,char**sL get a character string

MLGetSymbol Hstdlink,char**sL get a symbol name

MLReleaseString
Hstdlink,char*sL

release memory associated with a character string

MLReleaseSymbol
Hstdlink,char*sL

release memory associated with a symbol name

Getting character strings and symbol names. 

If  you  use  String  as  an  : ArgumentTypes :  specification,  then  MathLink  will  automatically

release the memory that is used to store the string after your function exits. This means that if

you want to continue to refer to the string, you must allocate memory for it, and explicitly copy

each character in it. 

If you get a string using MLGetString(), however, then MathLink will not automatically release

the memory used for the string when your function exits. As a result,  you can continue refer-

ring to the string. Be careful not to modify the contents of the string by writing to the memory

that is returned by MLGetString(). When you no longer need the string, you must neverthe-

less explicitly call MLReleaseString() in order to release the memory associated with it.

MLGetFunction Hstdlink,char**s,int*nL

begin getting a function, storing the name of the head in s 
and the number of arguments in n

MLReleaseSymbol
Hstdlink,char*sL

release memory associated with a function name

Getting an arbitrary function. 

If you know what function to expect in your external program, then it is usually simpler to call

MLCheckFunction(). But if you do not know what function to expect, you have no choice but

to  call  MLGetFunction().  If  you  do  this,  you need to  be  sure  to  call  MLReleaseSymbol()  to

release  the  memory  associated  with  the  name  of  the  function  that  is  found  by  MLGetFuncÖ

tion(). 
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If you know what function to expect in your external program, then it is usually simpler to call

MLCheckFunction(). But if you do not know what function to expect, you have no choice but

to  call  MLGetFunction().  If  you  do  this,  you need to  be  sure  to  call  MLReleaseSymbol()  to

release  the  memory  associated  with  the  name  of  the  function  that  is  found  by  MLGetFuncÖ

tion(). 

Portability of MathLink Programs

The Mathematica side of a MathLink connection is set up to work exactly the same on all com-

puter  systems.  But  inevitably  there  are  differences  between  external  programs  on  different

computer systems.

For  a  start,  different  computer  systems  almost  always  require  different  executable  binaries.

When  you  call  Install@"prog"D,  therefore,  you  must  be  sure  that  prog  corresponds  to  a  pro-

gram that can be executed on your particular computer system. 

Install@" file"D try to execute file directly

InstallA" file",LinkProtocol->"type"E

use the specified protocol for low-level data transport

$SystemID identify the type of computer system being used

Install@"dir"D try to execute a file with a name of the form 
dir ê $SystemID ê dir

Installing programs on different computer systems.

Mathematica  follows  the  convention  that  if  prog  is  an  ordinary  file,  then  Install@"prog"D  will

just try to execute it. But if prog is a directory, then Mathematica will look for a subdirectory of

that  directory  whose  name  agrees  with  the  current  value  of  $SystemID,  and  will  then  try  to

execute a file named prog within that subdirectory. 

mcc -o prog … put compiled code in the file prog in the current directory

mcc -xo prog … put compiled code in prog ê $SystemID ê prog

Typical Unix commands for compiling external programs. 

Even  though  the  executable  binary  of  an  external  program  is  inevitably  different  on  different

computer systems, it  can still  be the case that  the source code in a language such as C from

which this binary is obtained can be essentially the same. 

But  to  achieve  portability  in  your  C  source  code  there  are  several  points  that  you  need  to

watch. 
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But  to  achieve  portability  in  your  C  source  code  there  are  several  points  that  you  need  to

watch. 

For  a  start,  you  should  never  make  use  of  extra  features  of  the  C  language  or  C  runtime

libraries that happen to be provided on a particular system, but are not part of standard C. In

addition, you should try to avoid dealing with segmented or otherwise special memory models. 

The include file mathlink.h  contains standard C prototypes for all the functions in the MathLink

library.

MLPutInteger32 HL MLGetInteger32 HL integer corresponding to C type int, that 
is, 32 bits

MLPutInteger16 HL MLGetInteger16 HL integer of type short, that is, 16 bits

MLPutInteger64 HL MLGetInteger64 HL 64-bit integer

MLPutReall64 HL MLGetReal64 HL IEEE double-precision real number, corre- 
sponding to the C-language type double

MLPutReal32 HL MLGetReal32 HL IEEE single-precision real number, corre -
sponding to the C-language type float

MLPutReal128 HL MLGetReal128 HL IEEE quad-precision real number

MathLink functions that use specific C types. 

If you are going to call MathLink library functions in a portable way, it is essential that you use

the same types as they do. 

If your programs correctly match the argument types for the MathLink library functions, you do

not have to worry about C type differences between computer systems. MathLink automatically

converts the C types to the appropriate sizes for each platform. MathLink  also swaps bytes as

needed to  correctly  transfer  numbers  across  platforms,  and it  converts  between floating-point

number formats with the smallest possible loss of precision. 
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MLPutString Hstdlink,char*sL put a null-terminated C character string

MLPutUnicodeString Hstdlink,unsigned short*s,int nL

put a string encoded in terms of 16-bit UCS-2 Unicode 
characters

MLPutByteString Hstdlink,unsigned char*s,int nL

put a string containing only 8-bit character codes

MLPutUTF8String
Hstdlink, const

unsigned char*s,int nL

put a string of UTF-8 encoded Unicode characters

MLPutUTF16String
Hstdlink, const unsigned

short*s,int nL

put a string of UTF-16 encoded Unicode characters

MLPutUTF32String Hstdlink,
const unsigned int*s,int nL

put a string of UTF-32 encoded Unicode characters

MLGetString Hstdlink,char**sL get a null-terminated C character string

MLGetUnicodeString Hstdlink,unsigned short**s,long*nL

get a string encoded in terms of 16-bit UCS-2 Unicode 
characters

MLGetByteString Hstdlink,unsigned char**s,long*n,long specL

get a string containing only 8-bit character codes, using 
spec as the code for all 16-bit characters

MLGetUTF8String Hstdlink,
const unsigned char**s,
int*m,int*nL

get a string of UTF-8 encoded Unicode characters

MLGetUTF16String
Hstdlink, const unsigned

short**s,int*m,int*nL

get a string of UTF-16 encoded Unicode characters

MLGetUTF32String
Hstdlink, const

unsigned int**s,int*nL

get a string of UTF-32 encoded Unicode characters

Manipulating general strings. 

In  simple  C  programs,  it  is  typical  to  use  strings  that  contain  only  ordinary  ASCII  characters.

But in Mathematica it is possible to have strings containing all sorts of special characters. These

characters  are  specified  within  Mathematica  using  Unicode  character  codes,  as  discussed  in

"Raw Character Encodings".
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C language char * strings typically use only 8 bits to store the code for each character. UCS-2

encoded  strings,  however,  require  16  bits.  As  a  result,  the  functions  MLPutUnicodeString()

and MLGetUnicodeString() work with arrays of unsigned short integers. The same is true of

UTF-16 encoded strings and the corresponding functions MLPutUTF16String()  and MLGetUTÖ

F16String().

UTF-32  encoded  strings  require  32  bits  for  each  character,  and  the  corresponding  functions

MLPutUTF32String() and MLGetUTF32String() work with arrays of unsigned int integers.

If you know that your program will not have to handle special characters, then you may find it

convenient to use MLPutByteString() and MLGetByteString(). These functions represent all

characters directly using 8-bit character codes. If a special character is sent from Mathematica,

then it will be converted by MLGetByteString() to a fixed code that you specify. 

† mainHL may need to be different on different computer systems

A point to watch in creating portable MathLink programs. 

Computer systems and compilers that have C runtime libraries based on the Unix model allow

MathLink  programs to have a main program of the form main Hargc, argvL  which simply calls

MLMain Hargc, argvL. 

Some computer systems or compilers may however require main programs of a different form.

You should realize that you can do whatever initialization you want inside main HL before calling

MLMain().  Once you have called MLMain(),  however,  your program will  effectively go into an

infinite loop, responding to requests from Mathematica until the link to it is closed. 
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Using MathLink to Communicate between 
Mathematica Sessions

LinkCreate@"name"D create a link for another program to connect to

LinkConnect@"name"D connect to a link created by another program

LinkClose@linkD close a MathLink connection

LinkWrite@link,exprD write an expression to a MathLink connection

LinkRead@linkD read an expression from a MathLink connection

LinkReadAlink,HoldE read an expression and immediately wrap it with Hold

LinkReadyQ@linkD find out whether there is data ready to be read from a link

LinkReadyQ@link,tD wait for up to t seconds to see if an expression becomes 
ready to read

LinkReadyQ@8link1,link2,…<D find out whether there is data ready to be read from one of 
the links

LinkReadyQ@8link1,link2,…<,tD wait for up to t seconds to see if an expression becomes 
ready to read

MathLink connections between Mathematica sessions. 

Session A

This starts up a link on port number 8000. 

In[1]:= link = LinkCreate@"8000", LinkProtocol Ø "TCPIP"D

Out[1]= LinkObject@8000üfrog.wolfram.com,4470üfrog.wolfram.com, 17, 5D

Session B

This connects to the link on port 8000. 

In[2]:= Link = LinkConnect@"8000", LinkProtocol Ø "TCPIP"D

Out[2]= LinkObject@8000ü frog.wolfram.com , 11, 4D

Session A

This evaluates 15! and writes it to the link. 

In[3]:= LinkWrite@link, 15!D

Session B
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Session B

This reads from the link, getting the 15! that was sent. 

In[4]:= LinkRead@LinkD

Out[4]= 1307674368000

This writes data back on the link. 

In[5]:= LinkWrite@link, N@%^6DD

Session A

And this reads the data written in session B. 

In[6]:= LinkRead@linkD

Out[6]= 5.00032µ1072

One use of MathLink connections between Mathematica sessions is simply as a way to transfer

data without using intermediate files. 

Another use is as a way to dispatch different parts of a computation to different sessions. 

Session A

This writes the expression 2 + 2 without evaluating it. 

In[7]:= LinkWrite@link, Unevaluated@2 + 2DD

Session B

This reads the expression from the link, immediately wrapping it in Hold. 

In[8]:= LinkRead@Link, HoldD

Out[8]= Hold[2 + 2]

This evaluates the expression. 

In[9]:= ReleaseHold@%D

Out[9]= 4

When you call LinkWrite, it writes an expression to the MathLink connection and immediately

returns. But when you call  LinkRead, it will  not return until  it  has read a complete expression

from the MathLink connection. 
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When you call LinkWrite, it writes an expression to the MathLink connection and immediately

returns. But when you call  LinkRead, it will  not return until  it  has read a complete expression

from the MathLink connection. 

You can tell  whether  anything is  ready to  be read by calling  LinkReadyQ@linkD.  If  LinkReadyQ

returns  True,  then  you  can  safely  call  LinkRead  and  expect  immediately  to  start  reading  an

expression.  But  if  LinkReadyQ  returns  False,  then  LinkRead  would  block  until  an  expression

for it to read had been written by a LinkWrite in your other Mathematica session. 

Session A

There is nothing waiting to be read on the link, so if LinkRead were to be called, it would 
block. 

In[10]:= LinkReadyQ@linkD

Out[10]= False

Session B

This writes an expression to the link. 

In[11]:= LinkWrite@Link, x + yD

Session A

Now there is an expression waiting to be read on the link. 

In[12]:= LinkReadyQ@linkD

Out[12]= True

LinkRead can thus be called without fear of blocking. 

In[13]:= LinkRead@linkD

Out[13]= x + y

LinkReadyQ  can take a list of link objects, evaluating each link in parallel to determine if there

is data to read. As in the case of a single link, a second argument specifies a time out period,

causing LinkReadyQ to wait until one of the links is ready to use. 
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LinkCreate@
LinkProtocol->"TCPIP"D

pick any unused port on your computer

LinkCreate@"number",LinkProtocol->"TCPIP"D

use a specific port

LinkConnect@"number",LinkProtocol->"TCPIP"D

connect to a port on the same computer

LinkConnect@"numberühost",LinkProtocol->"TCPIP"D

connect to a port on another computer

Ways to set up MathLink links over TCP/IP. 

MathLink can use whatever mechanism for interprogram communication your computer system

supports.  In  setting  up  connections  between  concurrent  Mathematica  sessions,  a  common

mechanism is internet TCP ports.

Most  computer  systems  have  a  few  thousand  possible  numbered  ports,  some  of  which  are

typically allocated to standard system services. 

You can use any of the unallocated ports for MathLink connections. 

Session on frog.wolfram.com

This finds an unallocated port on frog.wolfram.com. 

In[14]:= link = LinkCreate@LinkProtocol Ø "TCPIP"D

Out[14]= LinkObject["2981@frog.wolfram.com,2982@frog.wolfram.com", 5, 5]

Session on toad.wolfram.com

This connects to the port on frog.wolfram.com. 

In[15]:= link = LinkConnect@
"2981üfrog.wolfram.com,2982üfrog.wolfram.com", LinkProtocol Ø "TCPIP"D

Out[15]= LinkObject["2981@frog.wolfram.com,2982@frog.wolfram.com", 5, 5]

This sends the current machine name over the link. 

In[16]:= LinkWrite@link, $MachineNameD
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Session on frog.wolfram.com

This reads the expression written on toad. 

In[17]:= LinkRead@linkD

Out[17]= toad

By using internet ports for MathLink connections, you can easily transfer data between Mathe-

matica  sessions on different  machines.  All  that  is  needed is  that  an internet  connection exists

between the machines. 

Note that because MathLink is completely system independent, the computers at each end of a

MathLink  connection do not have to be of the same type. MathLink  nevertheless notices when

they are, and optimizes data transmission in this case. 

Calling Subsidiary Mathematica Processes

LinkLaunch@"prog"D start an external program and open a connection to it

Connecting to a subsidiary program via MathLink. 

This starts a subsidiary Mathematica process on the computer system used here. 

In[1]:= link = LinkLaunch@"math -mathlink"D

Out[1]= LinkObject[math -mathlink, 4, 4]

Here is a packet representing the first input prompt from the subsidiary Mathematica process. 

In[2]:= LinkRead@linkD

Out[2]= InputNamePacket[In[1]:= ]

This writes a packet representing text to enter in the subsidiary Mathematica process. 

In[3]:= LinkWrite@link, EnterTextPacket@"10!"DD

Here is a packet representing the output prompt from the subsidiary Mathematica process. 

In[4]:= LinkRead@linkD

Out[4]= OutputNamePacket[Out[1]= ]
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And here is the actual result from the computation. 

In[5]:= LinkRead@linkD

Out[5]= ReturnTextPacket[3628800]

The  basic  way  that  the  various  different  objects  involved  in  a  Mathematica  session  are  kept

organized  is  by  using  MathLink  packets.  A  MathLink  packet  is  simply  an  expression  with  a

definite head that indicates its role or meaning.

EnterTextPacket@"input"D text to enter corresponding to an input line

ReturnTextPacket@"output"D text returned corresponding to an output line

InputNamePacket@"name"D text returned for the name of an input line

OutputNamePacket@"name"D text returned for the name of an output line

Basic packets used in Mathematica sessions. 

The fact that LinkRead returns an InputNamePacket indicates that the subsidiary Mathemat-
ica is now ready for new input. 

In[6]:= LinkRead@linkD

Out[6]= InputNamePacket[In[2]:= ]

This enters two Print commands as input. 

In[7]:= LinkWrite@link, EnterTextPacket@"Print@aD; Print@bD;"DD

Here is the text from the first Print. 

In[8]:= LinkRead@linkD

Out[8]= TextPacket[a
]

And here is the text from the second Print. 

In[9]:= LinkRead@linkD

Out[9]= TextPacket[b
]

No output line is generated, so the new packet is an InputNamePacket. 

In[10]:= LinkRead@linkD

Out[10]= InputNamePacket[In[3]:= ]
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TextPacket@"string"D text from Print etc.

MessagePacket@symb,"tag"D a message name

DisplayPacket@"string"D parts of PostScript graphics

DisplayEndPacket@"string"D the end of PostScript graphics

Some additional packets generated in Mathematica sessions. 

If  you  enter  input  to  Mathematica  using  EnterTextPacket@"input"D,  then  Mathematica  will

automatically  generate  a  string  version  of  your  output,  and  will  respond  with

ReturnTextPacket@"output"D.  But  if  you  instead  enter  input  using

EnterExpressionPacket@exprD  then  Mathematica  will  respond  with

ReturnExpressionPacket@exprD and will not turn your output into a string. 

EnterExpressionPacket@exprD an expression to enter corresponding to an input line

ReturnExpressionPacket@exprD an expression returned corresponding to an output line

Packets for representing input and output lines using expressions. 

This enters an expression into the subsidiary Mathematica session without evaluating it. 

In[11]:= LinkWrite@link, Unevaluated@EnterExpressionPacket@Factor@x^6 - 1DDDD

Here are the next 3 packets that come back from the subsidiary Mathematica session. 

In[12]:= Table@LinkRead@linkD, 83<D

Out[12]= 9OutputNamePacket@Out@3D=D,

ReturnExpressionPacketAH-1 + xL H1 + xL I1 - x - x2M I1 + x + x2ME, InputNamePacket@In@4D:=D=

InputNamePacket  and  OutputNamePacket  packets  are  often  convenient  for  making  it  possible

to tell the current state of a subsidiary Mathematica session. But you can suppress the genera-

tion  of  these  packets  by  calling  the  subsidiary  Mathematica  session  with  a  string  such  as

"math -mathlink -batchoutput". 

Even if you suppress the explicit generation of InputNamePacket  and OutputNamePacket  pack-

ets,  Mathematica  will  still  process  any  input  that  you  give  with  EnterTextPacket  or

EnterExpressionPacket  as  if  you  were  entering  an  input  line.  This  means  for  example  that

Mathematica will call $Pre and $Post, and will assign values to In@$LineD and Out@$LineD.
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EvaluatePacket@exprD an expression to be sent purely for evaluation

ReturnPacket@exprD an expression returned from an evaluation

Evaluating expressions without explicit input and output lines. 

This sends an EvaluatePacket. The Unevaluated  prevents evaluation before the packet is 
sent. 

In[13]:= LinkWrite@link, Unevaluated@EvaluatePacket@10!DDD

The result is a pure ReturnPacket. 

In[14]:= LinkRead@linkD

Out[14]= ReturnPacket@3628800D

This sends an EvaluatePacket requesting evaluation of Print@xD. 

In[15]:= LinkWrite@link, Unevaluated@EvaluatePacket@Print@xDDDD

The first packet to come back is a TextPacket representing text generated by the Print. 

In[16]:= LinkRead@linkD

Out[16]= TextPacket[x
]

After that, the actual result of the Print is returned. 

In[17]:= LinkRead@linkD

Out[17]= ReturnPacket[Null]

In most cases, it is reasonable to assume that sending an EvaluatePacket to Mathematica will

simply cause Mathematica to do a computation and to return various other packets, ending with

a ReturnPacket. However, if the computation involves a function like Input, then Mathematica

will have to request additional input before it can proceed with the computation. 

This sends a packet whose evaluation involves an Input function. 

In[18]:= LinkWrite@link, Unevaluated@EvaluatePacket@2 + Input@"data ="DDDD

What comes back is an InputPacket  which indicates that further input is required. 

In[19]:= LinkRead@linkD

Out[19]= InputPacket[data =]
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There is nothing more to be read on the link at this point. 

In[20]:= LinkReadyQ@linkD

Out[20]= False

This enters more input. 

In[21]:= LinkWrite@link, EnterTextPacket@"x + y"DD

Now the Input function can be evaluated, and a ReturnPacket is generated. 

In[22]:= LinkRead@linkD

Out[22]= ReturnPacket[2 + x + y]

LinkInterrupt@linkD send an interrupt to a MathLink-compatible program

Interrupting a MathLink-compatible program. 

This sends a very time-consuming calculation to the subsidiary process. 

In[23]:= LinkWrite@link, EnterTextPacket@"FactorInteger@2^777-1D"DD

The calculation is still going on. 

In[24]:= LinkReadyQ@linkD

Out[24]= False

This sends an interrupt. 

In[25]:= LinkInterrupt@linkD

Now the subsidiary process has stopped, and is sending back an interrupt menu. 

In[26]:= LinkRead@linkD

Out[26]= MenuPacket[1, Interrupt> ]

This closes the link.

In[27]:= LinkClose@linkD
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Two-Way Communication with External Programs

When you install a MathLink-compatible external program using Install, the program is set up

to behave somewhat like a simplified Mathematica kernel. Every time you call a function in the

external program, a CallPacket  is sent to the program, and the program responds by sending

back a result wrapped in a ReturnPacket. 

This installs an external program, returning the LinkObject used for the connection to that 
program. 

In[1]:= link = Install@"bitsprog"D

Out[1]= LinkObject@bitsprog, 4, 4D

The function ExternalCall sends a CallPacket to the external program. 

In[2]:= ? bits

Global`bits

bits@i_IntegerD :=
ExternalCall@LinkObject@bitsprog, 4, 4D, CallPacket@0, 8i<DD

You can send the CallPacket explicitly using LinkWrite. The first argument of the 
CallPacket specifies which function in the external program to call. 

In[3]:= LinkWrite@link, CallPacket@0, 867<DD

Here is the response to the CallPacket from the external program. 

In[4]:= LinkRead@linkD

Out[4]= 81, 1, 0, 0, 0, 0, 1<

If you use Install  several times on a single external program, Mathematica will  open several

MathLink  connections  to  the  program.  Each  connection  will  however  always  correspond  to  a

unique LinkObject. 

$CurrentLink the MathLink connection to the external program currently 
being run

Identifying different instances of a single external program. 

:Begin:
:Function:      addto
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This gives $CurrentLink as an argument to addto.

:Pattern:       addto[$CurrentLink, n_Integer]

:Arguments:     8n<
:ArgumentTypes: 8Integer<
:ReturnType:    Integer
:End:

This zeros the global variable counter every time the program is started.

int counter = 0;

int addto(int n) 8
    counter += n;
    return counter;
<

This installs one instance of the external program containing addto. 

In[5]:= ct1 = Install@"addtoprog"D

Out[5]= LinkObject@addtoprog, 5, 5D

This installs another instance. 

In[6]:= ct2 = Install@"addtoprog"D

Out[6]= LinkObject@addtoprog, 6, 6D

This adds 10 to the counter in the first instance of the external program. 

In[7]:= addto@ct1, 10D

Out[7]= 10

This adds 15 to the counter in the second instance of the external program. 

In[8]:= addto@ct2, 15D

Out[8]= 15

This operates on the first instance of the program again. 

In[9]:= addto@ct1, 20D

Out[9]= 30

If  an  external  program  maintains  information  about  its  state  then  you  can  use  different  ins-

tances of the program to represent different states. $CurrentLink then provides a way to refer

to each instance of the program. 
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If  an  external  program  maintains  information about  its  state  then  you  can  use  different  in- 

stances of the program to represent different states.  $CurrentLink then provides a way to refer

to each instance of the program. 

The value of $CurrentLink is temporarily set every time a particular instance of the program is

called, as well as when each instance of the program is first installed. 

MLEvaluateString Hstdlink,"string"L

send input to Mathematica but return no results

Sending a string for evaluation by Mathematica. 

The two-way nature of  MathLink  connections allows you not  only to have Mathematica  call  an

external program, but also to have that external program call back to Mathematica. 

In the simplest case, you can use the MathLink function MLEvaluateString HL to send a string

to  Mathematica.  Mathematica  will  evaluate  this  string,  producing  whatever  effects  the  string

specifies, but it will not return any results from the evaluation back to the external program. 

To get  results  back you need explicitly  to  send an EvaluatePacket  to  Mathematica,  and then

read the contents of the ReturnPacket that comes back. 

This starts an EvaluatePacket. 

MLPutFunction(stdlink, "EvaluatePacket", 1);

This constructs the expression Factorial@7D or 7!.

  MLPutFunction(stdlink, "Factorial", 1);
    MLPutInteger32(stdlink, 7);

This specifies that the packet you are constructing is finished. 

MLEndPacket(stdlink);

This checks the ReturnPacket that comes back. 

MLCheckFunction(stdlink, "ReturnPacket", &n);

This extracts the integer result for 7! from the packet. 

MLGetInteger32(stdlink, &ans);
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MLEndPacket HstdlinkL specify that a packet is finished and ready to be sent to 
Mathematica

Sending a packet to Mathematica. 

When  you  can  send  Mathematica  an  EvaluatePacket@inputD,  it  may  in  general  produce  many

packets in response, but the final packet should be ReturnPacket@outputD. "Manipulating Expres-

sions  in  External  Programs"  will  discuss  how  to  handle  sequences  of  packets  and  expressions

whose structure you do not know in advance. 

Running Programs on Remote Computers

MathLink  allows  you  to  call  an  external  program  from  within  Mathematica  even  when  that

program  is  running  on  a  remote  computer.  Typically,  you  need  to  start  the  program  directly

from the operating system on the remote computer. But then you can connect to it using com-

mands within your Mathematica session. 

Operating system on toad.wolfram.com

This starts the program fprog and tells it to create a new link.

fprog -linkcreate -linkprotocol TCPIP

The program responds with the specification of the link it has created. 

Link created on: 2976@toad.wolfram.com,2977@toad.wolfram.com 

Mathematica session on frog.wolfram.com

This connects to the link that has been created. 

In[1]:= Install@LinkConnect@
"2976ütoad.wolfram.com,2977ütoad.wolfram.com", LinkProtocol Ø "TCPIP"DD

Out[1]= LinkObject[2976@toad.wolfram.com,2977@toad.wolfram.com, 1, 1]

This now executes code in the external program on toad.wolfram.com. 

In[2]:= f@16D

Out[2]= 561243

External programs that are created using mcc or mprep always contain the code that is needed

to  set  up  MathLink  connections.  If  you  start  such  programs  directly  from  your  operating

system, they will prompt you to specify what kind of connection you want. Alternatively, if your

operating system supports it,  you can also give this  information as a command-line argument

to the external program. 
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External programs that are created using mcc or mprep always contain the code that is needed

to  set  up  MathLink  connections.  If  you  start  such  programs  directly  from  your  operating

system, they will prompt you to specify what kind of connection you want. Alternatively, if your

operating system supports it,  you can also give this  information as a command-line argument

to the external program. 

prog-linkcreate -
linkprotocol TCPIP

operating system command to run a program and have it 
create a link

InstallALinkConnect@
"port1ühost,port2ühost",
LinkProtocol->"TCPIP"DE

Mathematica command to connect to the external program

Running an external program on a remote computer. 

Running External Programs under a Debugger

MathLink  allows  you  to  run  external  programs  under  whatever  debugger  is  provided  in  your

software environment. 

MathLink-compatible programs are typically set up to take arguments, usually on the command

line, which specify what MathLink connections they should use. 

In debugger: run -linkcreate -linkprotocol TCPIP

In Mathematica: InstallA
LinkConnect@"port",LinkProtocol->"TCPIP"DE

Running an external program under a debugger. 

Note that in order to get a version of an external program that can be run under a debugger,

you  need  to  compile  the  program  so  that  the  output  is  suitable  for  use  with  your  debugger.

Unix  compilers  commonly  use  -g  as  a  command-line  argument  for  producing  a  debuggable

program.  See  your  compiler  documentation  for  specific  information  on  the  steps  you  should

take.

Unix debugger

Set a breakpoint in the C function f. 

break f
Breakpoint set: f: line 1  

Start the external program.
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Start the external program.

run -linkcreate -linkprotocol TCPIP 

The program responds with what port it is listening on.

Link created on: 2981@frog.wolfram.com,2982@frog.wolfram.com 

Mathematica session

This connects to the program running under the debugger. 

In[1]:= Install@LinkConnect@
"2981üfrog.wolfram.com,2982üfrog.wolfram.com", LinkProtocol Ø "TCPIP"DD

Out[1]= LinkObject[2981@frog.wolfram.com,2982@frog.wolfram.com, 1, 1]

This calls a function which executes code in the external program. 

In[2]:= f@16D

Unix debugger

The external program stops at the breakpoint. 

Breakpoint: f(16) 

This tells the debugger to continue.

continue 

Mathematica session

Now f returns. 
Out[3]= 561243

Manipulating Expressions in External Programs

Mathematica expressions provide a very general way to handle all kinds of data, and you may

sometimes  want  to  use  such  expressions  inside  your  external  programs.  A  language  like  C,

however, offers no direct way to store general Mathematica expressions. But it is nevertheless

possible to do this by using the loopback links provided by the MathLink library. A loopback link

is a local MathLink connection inside your external program, to which you can write expressions

that can later be read back. 
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Mathematica expressions provide a very general way to handle all kinds of data, and you may

sometimes  want  to  use  such  expressions  inside  your  external  programs.  A  language  like  C,

possible to do this by using the loopback links provided by the MathLink library. A loopback link

is a local MathLink connection inside your external program, to which you can write expressions

that can later be read back. 

MLINK MLLoopbackOpen Hstdenv,int*errnoL

open a loopback link

void MLClose HMLINK linkL close a link

int MLTransferExpression
HMLINK dest,MLINK srcL

get an expression from src and put it onto dest

Functions for manipulating loopback links. 

This opens a loopback link. 

...
ml = MLLoopbackOpen(stdenv, &errno);

This puts the expression Power@x, 3D onto the loopback link. 

MLPutFunction(ml, "Power", 2);
  MLPutSymbol(ml, "x");
  MLPutInteger32(ml, 3);
...

This gets the expression back from the loopback link. 

MLGetFunction(ml, &head, &n);
  MLGetSymbol(ml, &sname);
  MLGetInteger32(ml, &k);
...

This closes the loopback link again. 

MLClose(ml);

You can use  MLTransferExpression()  to  take  an expression  that  you get  via  stdlink  from

Mathematica, and save it in a local loopback link for later processing. 

You can also use MLTransferExpression() to take an expression that you have built up on a

local loopback link, and transfer it back to Mathematica via stdlink. 

This puts 21! onto a local loopback link. 

...
MLPutFunction(ml, "Factorial", 1);
  MLPutInteger32(ml, 21);

This sends the head FactorInteger to Mathematica. 
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This sends the head FactorInteger to Mathematica. 

MLPutFunction(stdlink, "FactorInteger", 1);

This transfers the 21! from the loopback link to stdlink.

MLTransferExpression(stdlink, ml);

You can put any sequence of expressions onto a loopback link. Usually you get the expressions

off the link in the same order as you put them on. 

And  once  you  have  got  an  expression  off  the  link  it  is  usually  no  longer  saved.  But  by  using

MLCreateMark()  you  can  mark  a  particular  position  in  a  sequence  of  expressions  on  a  link,

forcing MathLink to save every expression after the mark so that you can go back to it later. 

MLMARK MLCreateMark IMLINK linkM

create a mark at the current position in a sequence of 
expressions on a link

MLSeekMark IMLINK link,MLMARK mark,int nM

go back to a position n expressions after the specified mark 
on a link

MLDestroyMark IMLINK link,MLMARK markM

destroy a mark in a link

Setting up marks in MathLink links. 

This puts the integer 45 onto a loopback link. 

...
MLPutInteger32(ml, 45);

This puts 33 onto the link. 

MLPutInteger32(ml, 33);

And this puts 76. 

MLPutInteger32(ml, 76);

This will read 45 from the link. The 45 will no longer be saved. 

MLGetInteger32(ml, &i);
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This creates a mark at the current position on the link. 

mark = MLCreateMark(ml);

This will now read 33. 

MLGetInteger32(ml, &i);

And this will read 76. 

MLGetInteger32(ml, &i);

This goes back to the position of the mark. 

MLSeekMark(ml, mark, 0);

Now this will read 33 again. 

MLGetInteger32(ml, &i);

It is important to destroy marks when you have finished with them, so no unnecessary expres-
sions will be saved.

MLDestroyMark(ml, mark);

The  way  the  MathLink  library  is  implemented,  it  is  very  efficient  to  open  and  close  loopback

links, and to create and destroy marks in them. The only point to remember is that as soon as

you create a mark on a particular link, MathLink will save subsequent expressions that are put

on that link, and will go on doing this until the mark is destroyed. 

int MLGetNext HMLINK linkL find the type of the next object on a link

int MLGetArgCount
IMLINK link,int*nM

store in n the number of arguments for a function on a link

int MLGetSymbol
IMLINK link,char**nameM

get the name of a symbol

int MLGetInteger32
IMLINK link,int*iM

get a machine integer

int MLGetReal64
IMLINK link,double*xM

get a machine floating-point number

int MLGetString
IMLINK link,char**stringM

get a character string

Functions for getting pieces of expressions from a link. 
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MLTKFUNC composite function~head and arguments

MLTKSYM Mathematica symbol

MLTKINT integer

MLTKREAL floating-point number

MLTKSTR character string

Constants returned by MLGetNext(). 

switch(MLGetNext(ml)) {

This reads a composite function. 

    case MLTKFUNC:
    MLGetArgCount(ml, &n);
     recurse for head
    for (i = 0; i < n; i++) 8
         recurse for each argument
    <
    … 

This reads a single symbol. 

    case MLTKSYM:
    MLGetSymbol(ml, &name);
    … 

This reads a machine integer. 

    case MLTKINT:
    MLGetInteger32(ml, &i);
    … 
}

By  using  MLGetNext HL  it  is  straightforward  to  write  programs  that  can  read  any  expression.

The way MathLink  works,  the head and arguments of  a function appear as successive expres-

sions on the link, which you read one after another. 

Note  that  if  you  know  that  the  head  of  a  function  will  be  a  symbol,  then  you  can  use

MLGetFunction HL  instead  of  MLGetNext HL.  In  this  case,  however,  you  still  need  to  call

MLReleaseSymbol HL to disown the memory used to store the symbol name. 
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int MLPutNext IMLINK link,int typeM

prepare to put an object of the specified type on a link

int MLPutArgCount IMLINK link,int nM

give the number of arguments for a composite function

int MLPutSymbol IMLINK link,char*nameM

put a symbol on the link

int MLPutInteger32 IMLINK link,int iM

put a machine integer

int MLPutReal64 IMLINK link,double xM

put a machine floating-point number

int MLPutString IMLINK link,char*stringM

put a character string

Functions for putting pieces of expressions onto a link. 

MLPutNext()  specifies  types  of  expressions  using  constants  such  as  MLTKFUNC  from  the

mathlink.h header file~just like MLGetNext(). 

Error and Interrupt Handling

When you are putting and getting data via MathLink  various kinds of  errors can occur.  When-

ever  any  error  occurs,  MathLink  goes  into  a  completely  inactive  state,  and  all  MathLink  func-

tions you call will return 0 immediately.

int MLError IMLINK linkM return a number identifying the current error, or 0 if none 
has occurred

char*MLErrorMessage IMLINK linkM

return a character string describing the current error

int MLClearError IMLINK linkM clear the current error, returning MathLink if possible to an 
active state

Handling errors in MathLink programs. 

When you do complicated operations, it is often convenient to check for errors only at the end.

If  you  find  that  an  error  occurred,  you  must  then  call  MLClearError()  to  activate  MathLink

again. 
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int MLNewPacket IMLINK linkM skip to the end of the current packet

Clearing out the remains of a packet. 

After an error, it is common to want to discard the remainder of the packet or expression that

you are currently processing. You can do this using MLNewPacket(). 

In some cases,  you may want to set  it  up so that  if  an error  occurs while  you are processing

particular data, you can then later go back and reprocess the data in a different way. You can

do this by calling MLCreateMark() to create a mark before you first process the data, and then

calling MLSeekMark() to seek back to the mark if you need to reprocess the data. You should

not  forgot  to  call  MLDestroyMark()  when  you  have  finally  finished  with  the  data~otherwise

MathLink will continue to store it. 

int MLAbort a global variable set when a program set up by Install is 
sent an abort interrupt

Aborting an external program. 

If  you interrupt  Mathematica  while  it  is  in  the middle of  executing an external  function,  it  will

typically give you the opportunity to try to abort the external function. If you choose to do this,

what will  happen is  that the global  variable MLAbort  will  be set  to 1  inside your external  pro-

gram. 

MathLink  cannot automatically back out of an external function call  that has been made. So if

you  have  a  function  that  can  take  a  long  time,  you  should  explicitly  check  MLAbort  every  so

often, returning from the function if you find that the variable has been set. 

Running Mathematica from Within an External 
Program

To  run  Mathematica  from  within  an  external  program  requires  making  use  of  many  general

features of MathLink. The first issue is how to establish a MathLink connection to Mathematica. 

When you use MathLink templates to create external programs that can be called from Mathe-

matica, source code to establish a MathLink connection is automatically generated, and all you

have to do in your external  program is  to call  MLMain Hargc, argvL.  But in general  you need to

call several functions to establish a MathLink connection. 
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MLENV MLInitialize H0L initialize MathLink library functions

MLINK MLOpenArgcArgv HMLENV env,int argc,char**argv,int*errnoL

open a MathLink connection taking parameters from an 
argv array

MLINK MLOpenString HMLENV env,char*string,int*errnoL

open a MathLink connection taking parameters from a 
single character string

int MLActivate HMLINK linkL activate a MathLink connection, waiting for the program at 
the other end to respond

void MLClose HMLINK linkL close a MathLink connection

void MLDeinitialize HMLENV envL deinitialize MathLink library functions

Opening and closing MathLink connections. 

Include the standard MathLink header file. 

#include "mathlink.h"

int main(int argc, char *argv[]) {

   MLENV env;
   MLINK link;
   int errno;

This initializes MathLink library functions. 

   env = MLInitialize(0);

This opens a MathLink connection, using the same arguments as were passed to the main 
program. 

   link = MLOpenArgcArgv(env, argc, argv, &errno);

This activates the connection, waiting for the other program to respond.

   MLActivate(link);

   ...
}
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Often  the  argv  that  you  pass  to  MLOpenArgcArgv()  will  come  directly  from the  argv  that  is

passed to main HL when your whole program is started. 

The elements in the argv  array are character strings which mirror the arguments and options

used in the Mathematica functions LinkLaunch, LinkCreate and LinkConnect. 

"-linklaunch" operate like LinkLaunch@"name"D

"-linkcreate" operate like LinkCreate@"name"D

"-linkconnect" operate like LinkConnect@"name"D

"-linkname","name" give the name to use

"-linkprotocol","protocol" give the link protocol to use (TCPIP, Pipes, etc.)

Possible elements of the argv array passed to MLOpenArgcArgv().

As  an  alternative  to  MLOpenArgcArgv()  you  can  use  MLOpenString(),  which  takes  parame-

ters concatenated into a single character string with spaces in between. 

Once you have successfully opened a MathLink connection to the Mathematica kernel, you can

then use standard MathLink functions to exchange data with it. 

int MLEndPacket IMLINK linkM indicate the end of a packet

int MLNextPacket IMLINK linkM find the head of the next packet

int MLNewPacket IMLINK linkM skip to the end of the current packet

Functions often used in communicating with the Mathematica kernel. 

Once you have sent all the pieces of a packet using MLPutFunction() etc., MathLink requires

you to call MLEndPacket() to ensure synchronization and consistency. 

One  of  the  main  issues  in  writing  an  external  program which  communicates  directly  with  the

Mathematica kernel is handling all the various kinds of packets that the kernel can generate. 

The  function  MLNextPacket()  finds  the  head  of  the  next  packet  that  comes  from the  kernel,

and returns a constant that indicates the type of the packet. 
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Mathematica packet constant
ReturnPacket@exprD RETURNPKT result from a computation
ReturnTextPacket@"string"D RETURNTEXTPKT textual form of a result
InputNamePacket@"name"D INPUTNAMEPKT name of an input line
OutputNamePacket@"name"D OUTPUTNAMEPKT name of an output line
TextPacket@"string"D TEXTPKT textual output from functions like Print
MessagePacket@symb,"tag"D MESSAGEPKT name of a message generated by 

Mathematica
InputPacket@"prompt"D INPUTPKT request for a response to an Input function
CallPacket@i,listD CALLPKT request for a call to an external function

Some packets recognized by MLNextPacket(). 

This keeps on reading data from a link, discarding it until an error or a ReturnPacket is found. 

while ((p = MLNextPacket(link)) && p != RETURNPKT)
    MLNewPacket(link);

If  you  want  to  write  a  complete  front  end  to  Mathematica,  you  will  need  to  handle  all  of  the

possible types of packets that the kernel can generate. Typically you can do this by setting up

an appropriate switch on the value returned by MLNextPacket(). 

The MathLink Developer Kit contains sample source code for several simple but complete front

ends. 

int MLReady IMLINK linkM test whether there is data waiting to be read on a link

int MLReadyParallel IMLENV e, MLINK *links, int n, mltimeval tM

test in parallel whether there is data to be read from a list 
of links

int MLFlush IMLINK linkM flush out buffers containing data waiting to be sent on a 
link

Flow of data on links. 

One feature of more sophisticated external programs such as front ends is that they may need

to perform operations while they are waiting for data to be sent to them by Mathematica. When

you call  a standard MathLink  library function such as MLNextPacket()  your program will  nor-

mally block until all the data needed by this function is available.

You  can  avoid  blocking  by  repeatedly  calling  MLReady(),  and  only  calling  functions  like

MLNextPacket() when MLReady() no longer returns 0. MLReady() is the analog of the Mathe-

matica function LinkReadyQ. 

Note that  MathLink  sometimes buffers the data that  you tell  it  to  send.  To make sure that  all

necessary  data  has  been  sent  you  should  call  MLFlush().  Only  after  doing  this  does  it  make

sense to call MLReady() and wait for data to be sent back. 
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Note that  MathLink  sometimes buffers the data that  you tell  it  to  send.  To make sure that  all

necessary  data  has  been  sent  you  should  call  MLFlush().  Only  after  doing  this  does  it  make

sense to call MLReady() and wait for data to be sent back. 

MathLink Interface 3

The  library  now  fully  supports  the  Unicode  character  encoding  forms  UTF-8,  UTF-16,  and

UTF-32. Use the following new API functions to put or get Unicode characters to or from a link.

      MLPutUTF8String() MLGetUTF8String()

      MLPutUTF16String() MLGetUTF16String()

      MLPutUTF32String() MLGetUTF32String()

      MLPutUTF8Symbol() MLGetUTF8Symbol()

      MLPutUTF16Symbol() MLGetUTF16Symbol()

      MLPutUTF32Symbol() MLGetUTF32Symbol()

      MLReleaseUTF8String() MLReleaseUTF8Symbol()

      MLReleaseUTF16String() MLReleaseUTF16Symbol()

      MLReleaseUTF32String() MLReleaseUTF32Symbol()

The  MathLink  library  header  file  mathlink.h  no  longer  contains  obsolete  platform  support

sections such as those defined by MACINTOSH_MATHLINK or OS2_MATHLINK. MACINTOSH_MATHÖ

LINK  definitions  referred  to  Mac-OS  9  and  earlier.  DARWIN_MATHLINK  contains  all  platform-

specific definitions for Mac OS X.

All uses of special alternative names for common C types have been removed from the API. The

MathLink  header  file  mathlink.h  still  contains  versions  of  the  API  functions  with  these  types

for use with Interface 2 and older programs.

      Previous MathLink type C type

      uchar_ct unsigned char

      ucharp_ct unsigned char *

      ucharpp_ct unsigned char **

      ucharppp_ct unsigned char ***

      ushort_ct unsigned short

      ushortp_ct unsigned short *

      ushortpp_ct unsigned short **

      ushortppp_ct unsigned short ***

      uint_ct unsigned int

      uintp_ct unsigned int *

      uintpp_ct unsigned int **
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uintpp_ct
      int_ct int

      voidp_ct void *

      voidpp_ct void **

      charp_ct char *

      charpp_ct char **

      charppp_ct char ***

      long_ct long

      longp_ct long *
      longpp_ct long **

      long_st long

      longp_st long *

      longpp_st long **

      ulong_ct unsigned long

      ulongp_ct unsigned long *

      kushortp_ct const unsigned short *

      kushortpp_ct const unsigned short **

      kuintp_ct const unsigned int *

      kuintpp_ct const unsigned int **

      kucharp_ct const unsigned char *

      kucharpp_ct const unsigned char **

      kcharp_ct const char *

      kcharpp_ct const char **

      kvoidp_ct const void *

The  memory  allocator/deallocator  functions  passed  to  the  library  using  MLSetAllocParameÖ

ter() now must be thread-safe.

API functions that previously took a MLParametersPointer type as an argument or returned a

MLParametersPointer type now instead take or return a char * type.

API functions that take as an argument or return a mlapi_result type now take or return type

int.

API functions that take as an argument or return a mlapi_error type now take or return type

int.

API functions that take as an argument or return a mlapi_token type now take or return type

int.

API functions that take as an argument or return a mlapi_packet type now take or return type

int.

API functions that take as an argument or return a MLPointer type now take or return void *.

The  MLOpen*  functions  previously  took  type  long *  for  the  error  variable  but  now take  type

int *.
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The  MLOpen*  functions  previously  took  type  long *  for  the  error  variable  but  now take  type

int *.

The header file  mathlink.h  now contains several  new error definitions related to the Unicode

character encoding forms.

      Error code Interpretation

      MLEPDATABAD MathLink encountered invalid character data in given charac -
ter encoding

      MLEPSCONVERT Unable to convert from given character encoding to MathLink 
encoding

      MLEGSCONVERT Unable to convert from MathLink encoding to requested 
character encoding

MLPutMessage()  and MLGetMessage()  now use types int  and int *  respectively  instead of

the dev_message and dev_message * types.

MLSeekMark()  and MLSeekToMark()  now use type int  rather than type long  for the expres-

sion index.

The functions in the following table took long types for some arguments; they now take int.

      MLGetRawData() MLGetData()

      MLGetArgCount() MLGetRawArgCount()

      MLBytesToGet() MLRawBytesToGet()

      MLExpressionsToGet() MLTakeLast()

      MLPutRawSize() MLPutRawData()

      MLPutArgCount() MLPutComposite()

      MLBytesToPut()

MLGetReal()  is  now  an  actual  API  function  rather  than  a  #define  alias  to  MLGetDouble().

MLGetReal() still has the same functionality as MLGetDouble().

MLActivate()  is  now  an  actual  API  function  rather  than  a  #define  alias  to  MLConnect().

MLActivate() still has the same functionality as MLConnect().

The  functions  in  column  one  listed  below  are  now  obsolete.  New  programs  should  use  the

functions listed in column two for replacement functionality.

      MLCheckFunction() MLTestHead()

      MLCheckFunctionWithArg() MLTestHead()

      MLGetShortInteger() MLGetInteger16()

      MLGetInteger() MLGetInteger32()
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      MLGetLongInteger() MLGetInteger64() for 64-bit integers or MLGetInteger32() 
for 32-bit integers

      MLGetFloat() MLGetReal32()

      MLGetDouble() MLGetReal64()

      MLGetLongDouble() MLGetReal128()

      MLGetShortIntegerArrayData() MLGetInteger16ArrayData()

      MLGetIntegerArrayData() MLGetInteger32ArrayData()

      MLGetLongIntegerArrayData() MLGetInteger64ArrayData() for 64-bit integers or 
MLGetInteger32ArrayData() for 32-bit integers

      MLGetFloatArrayData() MLGetReal32ArrayData()

      MLGetDoubleArrayData() MLGetReal64ArrayData()

      MLGetLongDoubleArrayData() MLGetReal128ArrayData()

      MLGetShortIntegerArray() MLGetInteger16Array()

      MLGetIntegerArray() MLGetInteger32Array()

      MLGetLongIntegerArray() MLGetInteger64Array() for 64-bit integers or 
MLGetInteger32Array() for 32-bit integers

      MLGetFloatArray() MLGetReal32Array()

      MLGetDoubleArray() MLGetReal64Array()

      MLGetLongDoubleArray() MLGetReal128Array()

      MLDisownShortIntegerArray() MLReleaseInteger16Array()

      MLDisownIntegerArray() MLReleaseInteger32Array()

      MLDisownLongIntegerArray() MLReleaseInteger64Array() for 64-bit integers or 
MLReleaseInteger32Array() for 32-bit integers

      MLDisownFloatArray() MLReleaseReal32Array()

      MLDisownDoubleArray() MLReleaseReal64Array()

      MLDisownLongDoubleArray() MLReleaseReal128Array()

      MLGetIntegerList() MLGetInteger32List(()

      MLGetRealList() MLGetReal64List()

      MLDisownIntegerList() MLReleaseInteger32List()

      MLDisownRealList() MLReleaseReal64List()

      MLPutShortInteger() MLPutInteger16()

      MLPutInteger() MLPutInteger32()

      MLPutLongInteger() MLPutInteger64() for 64-bit integers or MLPutInteger32() 
for 32-bit integers

      MLPutFloat() MLPutReal32()

      MLPutDouble() MLPutReal64()

      MLPutLongDouble() MLPutReal128()

      MLPutShortIntegerArrayData() MLPutInteger16ArrayData()

      MLPutIntegerArrayData() MLPutInteger32ArrayData()

      MLPutLongIntegerArrayData() MLPutInteger64ArrayData() for 64-bit integers or 
MLPutInteger32ArrayData() for 32-bit integers

      MLPutFloatArrayData() MLPutReal32ArrayData()

      MLPutDoubleArrayData() MLPutReal64ArrayData()
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      MLPutLongDoubleArrayData() MLPutReal128ArrayData()

      MLPutShortIntegerArray() MLPutInteger16Array()

      MLPutIntegerArray() MLPutInteger32Array()

      MLPutLongIntegerArray() MLPutInteger64Array() for 64-bit integers or 
MLPutInteger32Array() for 32-bit integers

      MLPutFloatArray() MLPutReal32Array()

      MLPutDoubleArray() MLPutReal64Array()

      MLPutLongDoubleArray() MLPutReal128Array()

      MLPutIntegerList() MLPutInteger32List()

      MLPutRealList() MLPutReal64List()

      MLGetUnicodeString() MLGetUCS2String()

      MLGetUnicodeSymbol() MLGetUCS2Symbol()

      MLPutUnicodeString() MLPutUCS2String()

      MLPutUnicodeSymbol() MLPutUCS2Symbol()

      MLPut16BitCharacters() MLPutUCS2Characters()

      MLDisownUnicodeString() MLReleaseUCS2String()

      MLDisownUnicodeSymbol() MLReleaseUCS2Symbol()

Interface 3 changes the default linkprotocol for linkmode Listen and linkmode Connect links. By

default the MathLink library will create "SharedMemory" links for linkmode Listen and linkmode

Connect links on all platforms.
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