
Saving Definitions of Functions Used inside 
Manipulate

Suppose you define a function, then use it in the first argument of a Manipulate.

f@x_D := x^2

Manipulate@f@yD, 8y, 0, 100<D

y

f@16.6D

This  example  will  work  well,  until  you  try  saving  it  in  a  file  and  then  reopening  it  in  a  fresh

session of Mathematica. Then the function f will not be defined until you manually evaluate the

cell containing its definition. (In fact, if you are reading this documentation inside Mathematica

you will see f appearing in the output area of the Manipulate at first, for exactly this reason.)

Manipulate  supports  the  option  SaveDefinitions -> True,  which  causes  it  to  automatically

build  into  the  Manipulate  output  a  copy  of  all  the  definitions  of  functions  referred  to  in  the

Manipulate  input  (and  recursively  any  functions  they  refer  to).  These  definitions  are  then

reestablished  in  any  new  Mathematica  sessions  the  Manipulate  output  is  opened  in,  before

contents of the Manipulate are evaluated for the first time.

g@x_D := x^2

Manipulate@g@yD, 8y, 0, 100<, SaveDefinitions Ø TrueD

y

2851.56

Thus if you are reading this inside Mathematica, the second example should correctly display a

number even when first opened.

You can  use  SaveDefinitions  to  store  function  definitions  or  datasets,  but  be  warned that  if

you refer to a large volume of data, it will of course be present in the file containing the saved

Manipulate output, potentially creating a very large file.

An  alternative  in  such  a  case  is  to  use  the  Initialization  option  to  load  a  package  of  data

from  a  file  or  other  source,  rather  than  building  it  into  the  Manipulate  output.  The

Initialization  option can be given any arbitrary block of Mathematica  code to be evaluated

before the contents of the Manipulate  are first evaluated in any fresh session of Mathematica.

The right-hand side of the Initialization option will be evaluated only once per session.

80     Dynamic Interactivity



An alternative  in  such  a  case  is  to  use  the  Initialization  option  to  load  a  package  of  data

from  a  file  or  other  source,  rather  than  building  it  into  the  Manipulate  output.  The

Initialization  option can be given any arbitrary block of Mathematica  code to be evaluated

before the contents of the Manipulate  are first evaluated in any fresh session of Mathematica.

The right-hand side of the Initialization option will be evaluated only once per session.

For  example,  you  can  achieve  the  same  result  as  earlier  using  the  Initialization  option

instead of SaveDefinitions.

Manipulate@h@yD, 8y, 0, 100<, Initialization ß Hh@x_D := x^2LD

y

2209.

You  can  think  of  SaveDefinitions  as  a  convenient  automatic  way  of  setting  an

Initialization option with all the definitions you need to run the example. (SaveDefinitions

does not actually interfere with the use of the Initialization option: you can use both if you

like.)

Gamepads and Joysticks

When interacting with a Manipulate  output using a mouse, you are limited to moving only one

control  at  a  time.  However,  there  are  many  USB  controller  devices  available  which  overcome

this  limitation  by  placing  a  button  or  joystick  under  each  finger,  thus  greatly  increasing  the

number of controls you can move simultaneously.

In order to take advantage of a USB controller in Manipulate, all you have to do is plug it in,

and use the mouse to select (highlight) the cell bracket containing the Manipulate  output you

want  to  control.  Mathematica  automatically  detects  the  controller,  and  Manipulate  automati-

cally links as many parameters as possible with the available joysticks and buttons.

Dynamic Interactivity     81



While  Mathematica  will  work,  or  attempt  to  work,  with  any  USB  controller  device  (gamepad,

joystick,  simulated  airplane  throttle  control~even  data  acquisition  devices  that  use  the  USB

controller  interface  standard),  some  definitely  work  better  than  others  for  controlling

Manipulate  outputs. Generally speaking, dual-joystick gamepads, such as commonly used with

video games, provide a good set of controls, typically four analog axes and a large number of

buttons.

For the remainder of this section we will assume you are using a Logitech Dual Action gamepad.

(This inexpensive controller is widely available and has better mechanical and electrical perfor-

mance  than  many  other  units,  even  significantly  more  expensive  ones.)  If  you  are  using  a

single joystick or another brand of gamepad there may be some differences in which controller

parts map to which Manipulate parameters.

With a gamepad plugged in,  select the cell  bracket of  the cell  containing the following output.

Initially nothing will  happen, because the gamepad's joysticks are in their neutral,  undeflected

position.  But  if  you  move  them,  you  will  see  one  or  more  of  the  parameters  start  to  change.

The  rate  at  which  the  parameter  changes  is  proportional  to  the  degree  of  deflection  of  the

joystick.

Manipulate@Plot@a1 Sin@n1 xD + a2 Sin@n2 xD, 8x, 0, 2 Pi<, PlotRange Ø 2D,
8n1, 1, 20<, 8a1, 0, 1<, 8n2, 1, 20<, 8a2, 0, 1<D

n1

a1

n2

a2

1 2 3 4 5 6

-2

-1

1

2

By  default,  Manipulate  connects  the  x  axis  of  the  left  gamepad  to  the  first  parameter,  the  y

axis  of  the  left  joystick  to  the  second  parameter,  the  x  axis  of  the  right  joystick  to  the  third

parameter, and the y axis of the right gamepad to the fourth parameter. You can verify this by

moving each joystick  in  a  given direction  and watching which  parameter  changes.  (If  you are

using something other than a Logitech Dual Action gamepad you may see a different mapping:

each manufacturer does things a bit differently, and while Mathematica has tables that attempt

to normalize many commonly available controllers, new ones are always being introduced.)

82     Dynamic Interactivity



By  default,  Manipulate  connects  the  x  axis  of  the  left  gamepad  to  the  first  parameter,  the  y

axis  of  the  left  joystick  to  the  second  parameter,  the  x  axis  of  the  right  joystick  to  the  third

parameter, and the y axis of the right gamepad to the fourth parameter. You can verify this by

moving each joystick  in  a  given direction  and watching which  parameter  changes.  (If  you are

using something other than a Logitech Dual Action gamepad you may see a different mapping:

each manufacturer does things a bit differently, and while Mathematica has tables that attempt

to normalize many commonly available controllers, new ones are always being introduced.)

By default, the mapping is "velocity-based", which is to say that the rate at which the parame-

ter changes is controlled by the position of the joystick. The joystick position is thus not directly

connected to the value of the variable. 

You might instead want the value of the variable to be determined by the absolute position of

the joystick, and there are two ways to achieve this. On many gamepads, including the recom-

mended Logitech model, the joysticks are also buttons: if you press down on a joystick it clicks

like a button, and when the joystick is controlling a Manipulate, this causes the corresponding

parameter(s)  to  become directly  linked to  the position  of  the joystick.  You can use this  direct

mode  to  rapidly  jump  to  any  position,  then  release  the  joystick  to  stop  the  parameter  value

there.

If your gamepad does not have buttons in the joysticks, or you just want the linkage to always

be direct, you can use the option ControllerMethod -> "Absolute". 

Dynamic Interactivity     83



Manipulate@Plot@a1 Sin@n1 xD + a2 Sin@n2 xD, 8x, 0, 2 Pi<, PlotRange Ø 2D,
8n1, 1, 20<, 8a1, 0, 1<, 8n2, 1, 20<, 8a2, 0, 1<, ControllerMethod Ø "Absolute"D

n1

a1

n2

a2

1 2 3 4 5 6

-2

-1

1

2

Note that there are disadvantages to direct linkage, most notably that as soon as you highlight

the cell bracket (with a gamepad connected), all of the parameter values immediately jump to

their middle positions, which is of course what they must do if the joysticks are in their neutral

positions.  While  you  can  still  use  the  mouse  to  set  values,  they  will  be  overridden  by  the

gamepad as soon as it is touched. 

A  small  variation  on  velocity  control  can  be  had  with  the  option

ControllerMethod -> "Cyclic".  With  this  setting  the  linkage is  velocity-based,  but  when you

reach one end of  the parameter's  range of  values,  instead of  stopping it  cycles  around to the

opposite end.

Whether direct or velocity-based linking is best depends on the example. The previous example

is  generally  more  satisfactory  with  velocity  linking,  while  the  following  example  is  definitely

better with direct linking.

84     Dynamic Interactivity



Manipulate@Graphics@8Thickness@0.02D,
Line@88-Cos@lD, Sin@lD<, 80, 0<, 8Cos@lD, Sin@lD<<D,
Line@880, 0<, 80, 1.5<<D,
Line@88-Cos@aD, 1 + Sin@aD<, 80, 1<, 8Cos@aD, 1 + Sin@aD<<D,
Disk@80, 1.5<, .2D<,

PlotRange Ø 88-1, 1<, 8-1, 2<<D, 8l, -Pi ê 2, 0<,
8a, -Pi ê 2, Pi ê 2<, ControllerMethod Ø "Absolute"D

l

a

If any of these examples seem not to be working, chances are it is because you have forgotten

to highlight the cell bracket containing them. This is a common mistake. As a convenience, and

to avoid the need to select each output as soon as it is generated, if you wiggle any gamepad

controller  immediately after generating an output that references controllers,  Mathematica  will

automatically select the output cell for you. But this only happens immediately after the output

is generated, after that it is up to you to choose, by selecting it, which Manipulate  output you

want the controller connected to.

If  you  want  a  given  Manipulate  to  always  respond  to  the  controller  whether  it  is  selected  or

not,  you  can  add  the  option  ControllerLinking -> All,  but  this  feature  should  be  used  with

caution. If you have multiple such outputs on screen, they will all attempt to move simultane-

ously,  which  is  rarely  helpful.  The  option  is  best  used  in  situations  where  you  are  creating  a

fixed-format  output  window,  rather  than  when  creating  examples  meant  to  be  used  in  a

scrolling document such as this one.

Dynamic Interactivity     85



If  you  want  a  given  Manipulate  to  always  respond  to  the  controller  whether  it  is  selected  or

not,  you  can  add  the  option  ControllerLinking -> All,  but  this  feature  should  be  used  with

caution. If you have multiple such outputs on screen, they will all attempt to move simultane-

ously,  which  is  rarely  helpful.  The  option  is  best  used  in  situations  where  you  are  creating  a

fixed-format  output  window,  rather  than  when  creating  examples  meant  to  be  used  in  a

scrolling document such as this one.

In examples like the previous one, which do not make much sense unless you have a gamepad

available, it is often pointless to display the sliders associated with the parameters, or the rest

of  the  framework  of  Manipulate.  The  function  ControllerManipulate  is  basically  identical  to

Manipulate in all its features and syntax, except that it does not display any frame or sliders.

ControllerManipulate@Graphics@8Thickness@0.02D,
Line@88-Cos@lD, Sin@lD<, 80, 0<, 8Cos@lD, Sin@lD<<D,
Line@880, 0<, 80, 1.5<<D,
Line@88-Cos@aD, 1 + Sin@aD<, 80, 1<, 8Cos@aD, 1 + Sin@aD<<D,
Disk@80, 1.5<, .2D<,

PlotRange Ø 88-1, 1<, 8-1, 2<<D,
8l, -Pi ê 2, 0<,
8a, -Pi ê 2, Pi ê 2<,
ControllerMethod Ø "Absolute"D

Manipulate  will continue to be used in subsequent examples because it is helpful to be able to

see the controls to understand how they are being affected by the gamepad, but many of these

examples would look and work just as well with ControllerManipulate.

86     Dynamic Interactivity



Manipulate  will continue to be used in subsequent examples because it is helpful to be able to

see the controls to understand how they are being affected by the gamepad, but many of these

examples would look and work just as well with ControllerManipulate.

If the Manipulate contains Slider2D  variables, whose values are 8x, y< pairs of numbers, they

will  automatically  be  linked to  both  directions  of  available  joysticks.  This  example  responds in

both directions to the left-hand joystick on a gamepad.

Manipulate@Graphics@8PointSize@0.05D, Point@ptD<, PlotRange Ø 1D,
8pt, 8-1, -1<, 81, 1<<D

pt

Dynamic Interactivity     87



Push buttons on the controller are by default  linked up to any Boolean (True/False) parame-

ters specified in the Manipulate. Which button is which can be a bit hard to guess on a given

controller  (a  concept  which  is  explained  elsewhere),  but  on  the  Logitech  model  the  group  of

four  buttons  on  the  right  side  are  labeled  1  through  4,  and  are  used  by  Manipulate  in  that

order.  In this  example clicking the "1" button toggles the setting of  b1,  changing the color  of

the point.

Manipulate@Graphics@8If@b1, Red, GreenD, PointSize@0.05D, Point@ptD<,
PlotRange Ø 1D, 8pt, 8-1, -1<, 81, 1<<, 8b1, 8True, False<<D

pt

b1

88     Dynamic Interactivity



This  toggling  behavior  (flipping  the  value  of  the  parameter  once  each  time  the  button  is

pressed)  is  the  equivalent  of  velocity-based  linking.  If  you  use  the

ControllerMethod -> "Absolute" option (see previous examples) the parameter will be linked

directly, which is to say its value will  be False  all  the time except while the button is actually

being held down.

Manipulate@
Graphics@8If@b1, Red, GreenD, PointSize@0.05D, Point@ptD<, PlotRange Ø 1D,
8pt, 8-1, -1<, 81, 1<<, 8b1, 8True, False<<, ControllerMethod Ø "Absolute"D

pt

b1

Dynamic Interactivity     89



The  exact  rules  by  which  Manipulate  connects  controller  axes  to  parameters  are  somewhat

complex,  but  basically  they  try  to  allocate  the  available  analog  and  Boolean  controls  to  the

parameters in the Manipulate  so as to make maximum use of the available joysticks, buttons,

knobs,  and other  widgets  on the  controller.  (Often  the  quickest  and easiest  way to  figure  out

what has been linked to what is simply to wiggle the various knobs and see what happens.)

If you find that the default linking is not to your liking, it can be overridden by explicitly stating

which controller  axis  should be connected to which parameter.  The controller  axes are named

according  to  a  logical  system,  but  for  most  purposes  it  is  enough  to  remember  a  few  basic

names: "X", "Y", "XY", "X1", "X2", "B1", "B2", etc.

"X",  or its synonym "X1",  refers to the x  axis of  the primary, or the left-hand joystick on the

gamepad. To specify that a parameter should be linked to this axis, use the following form.

Manipulate@x, "X" Ø 8x, 0, 1<D

x

0.0363582

"X2" similarly refers to the x axis of the secondary, or right-hand joystick.

Manipulate@x, "X2" Ø 8x, 0, 1<D

x

0.132

90     Dynamic Interactivity



Axes  can  be  combined  into  multidimensional  parameters.  For  example,  "XY"  refers  to  both

directions of the left or primary joystick, combined into a single 8x, y< value. Such a combined

axis must be connected to a Slider2D style of parameter, as in this example.

Manipulate@Graphics@8PointSize@0.05D, Point@ptD<, PlotRange Ø 1D,
"XY" Ø 8pt, 8-1, -1<, 81, 1<<D

pt

Dynamic Interactivity     91



Three-axis variables are also supported as "XYZ".  When using a three-axis joystick controller,

the  axes  will  correspond to  the  three  degrees  of  freedom of  the  joystick.  When using  a  dual-

joystick gamepad, each joystick only has two degrees of freedom. In this case the "XYZ" axis is

linked  to  the  x  and  y  directions  of  the  left  joystick  plus  the  x  direction  of  the  right  joystick.

Whether  this  makes  sense  depends  on  the  example:  examples  written  specifically  to  take

advantage  of  a  three-degrees-of-freedom  joystick  may  not  work  well  with  any  other  kind  of

controller.

Manipulate@Graphics3D@8PointSize@0.05D, Point@ptD<, PlotRange Ø 1D,
"XYZ" Ø 8pt, 8-1, -1, -1<, 81, 1, 1<<D

pt

92     Dynamic Interactivity



Some  controllers  actually  provide  6  analog  degrees  of  freedom,  which  can  be  referred  to  as

"XYZ" and "XYZ2". For example, if you have a 3Dconnexion SpaceNavigator control, the follow-

ing example will  let you explore its three spatial and three angular degrees of freedom. If you

do not have one, the example will be unsatisfactory.

Manipulate@
Graphics3D@8Thickness@0.01D, PointSize@0.04D, Point@pt1D, Line@8pt1, pt1 + pt2<D<,
PlotRange Ø 1D, "XYZ" Ø 8pt1, 8-1, -1, -1<, 81, 1, 1<<,

"XYZ2" Ø 8pt2, 8-1, -1, -1<, 81, 1, 1<<, ControllerMethod Ø "Absolute"D

pt1

pt2

(Note that 3D variables in Manipulate  are available whether you are using a controller or not,

but are not generally useful other than in connection with a joystick or gamepad.)

Dynamic Interactivity     93



A typical gamepad has two x-y controllers, named "XY" and "XY2". But what is less obvious is

that  there  are  also  several  more  pseudo-analog  axes  available,  generated  by  considering

groups of  four  buttons as four  directions:  up,  down,  left,  and right.  For  example,  the "hat",  a

directional pad on the left side of a Logitech Dual Action gamepad, can be referenced as "XY3".

Manipulate@Graphics@8PointSize@0.05D, Point@ptD<, PlotRange Ø 1D,
"XY3" Ø 8pt, 8-1, -1<, 81, 1<<D

pt

Two additional axes ("XY4") are defined by the four buttons on the right side of the gamepad,

and  the  four  buttons  on  the  front  face  ("XY5").  Needless  to  say  this  is  highly  specific  to  the

Logitech brand of controller, but others typically have similar groups of buttons.

94     Dynamic Interactivity



These  pseudo-analog  axes  act  just  like  real  analog  ones,  except  that  in  velocity-linked  mode

they always progress at the same speed, and in absolute mode they are always pegged at the

full-left, center, or full-right positions.

When attempting to hook up specific axes it is often confusing trying to figure out which one is

which on a given controller. The function ControllerInformation@D can be used to figure this

out  interactively.  With  your  gamepad  or  joystick  plugged  in,  evaluate  this  input  (you  have  to

evaluate  it  in  your  session  of  Mathematica  with  your  controller  plugged  in  to  get  current

information).

ControllerInformation@D

Controller Device 1: Logitech Dual Action

Controller Device 2: Apple IR

Controller Device 3: Sudden Motion Sensor

Depending on what type of  computer you are using you may get several  built-in controls.  For

example, Macintosh laptops typically contain a position sensor that reads out the orientation of

the computer at all times. This information is available and can be used with Manipulate, but is

not  used  by  default  (otherwise  all  Manipulate  functions  that  run  on  such  laptops  would  con-

stantly move around as you tilted the computer, which some might consider a nuisance).

Locate the controller you want to examine and click the disclosure triangle next to its name to

open a panel of information, then open the Mathematica Controls subsection to see a list of

all the available axis names.

Dynamic Interactivity     95



ControllerInformation@D

Controller Device 1: Logitech Dual Action

Manufacturer Logitech H1133L
Raw Product Name "Logitech Dual Action"

Raw Product ID 49686
Device Type Mac OS X Human Interface Device

Raw Controller Type Joystick

Mathematica Controls 35 controls

X 0.00392157
Y 0.00392157
Z 0.00392157
X1 0.00392157
Y1 0.00392157
Z1 0.00392157
X2 0.00392157
Y2 -0.00392157
X3 0.
Y3 0.
X4 0
Y4 0
X5 0
Y5 0
B1 False
B2 False
B3 False
B4 False
B5 False
B6 False
B7 False
B8 False
B9 False
B10 False
B11 False
B12 False
BLB False
BRB False
JB False
JB1 False
JB2 False

Select Button False
Start Button False

TLB False
TRB False

Show Dynamic Values

Raw Controls 18 controls

Controller Device 2: Apple IR

Controller Device 3: Sudden Motion Sensor

If Show Dynamic Values is checked, the values displayed in the panel will update in real time

as you wiggle the controller or push its buttons, allowing you to easily determine which button

corresponds to which named axis. (Do not forget the quotes around the axis names when using

them in Manipulate.)

96     Dynamic Interactivity



If Show Dynamic Values is checked, the values displayed in the panel will update in real time

as you wiggle the controller or push its buttons, allowing you to easily determine which button

corresponds to which named axis. (Do not forget the quotes around the axis names when using

them in Manipulate.)

The option ControllerMethod  can only be used at the level of the whole Manipulate to change

the linking from velocity-based to absolute. If you want to make some axes absolute and some

velocity-based, add "Absolute" to the name of any axes you want to have linked absolutely, as

in this example, which has a velocity-based x direction and an absolute y direction.

Manipulate@Graphics@8PointSize@0.05D, Point@8x, y<D<, PlotRange Ø 1D,
"X" Ø 8x, -1, 1<, "YAbsolute" Ø 8y, -1, 1<D

x

y

The opposite of "Absolute" in this notation is "Relative", as in "XRelative", etc.

Dynamic Interactivity     97



Autorun

In  many  ways  Manipulate  is  a  big  improvement  over  simple  linear  animations.  Rather  than

running through a fixed sequence, Manipulate lets you move back and forth at will. But what if

you do not want to have to move a slider by hand? One option is to use the  icon next to each

slider to open a panel with animation controls. A Manipulate  with one variable being animated

is virtually equivalent to Animate.

But if you have multiple variables and want to see the effect of changing all of them, it is incon-

venient  to  use  the  individual  animation  controls.  The  Autorun  feature  of  Manipulate  solves

this  problem  by  providing  a  single  animation  control  that  runs  all  the  variables  through  their

ranges of values.

Click the  menu in the top right corner of a Manipulate  output and select Autorun from the

bottom  of  the  menu.  You  will  see  an  Autorun  panel  appear  at  the  top  of  the  Manipulate,

containing animation controls and a  button. By default the animation runs each individ-

ual variable through its range of values, leaving the others at their default values. As with any

animation control, you can change the speed and direction, or click the slider to move through

the animation manually. The Autorun animation slider acts as a sort of master control driving

all the other controls in a defined order.

98     Dynamic Interactivity



Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8filling, 8None, Axis, Top, Bottom<<D

Autorun

n1

n2

filling None Axis Top Bottom

1 2 3 4 5 6

-2

-1

1

2

The  default  behavior  of  Autorun  simulates  something  you  could  do  yourself  with  the  mouse,

moving  one  control  at  a  time.  If  you  add  the  option  AutorunSequencing -> All  to  the

Manipulate  input,  the  Autorun  command  in  the  resulting  output  will  instead  move  all  the

controls  simultaneously,  as  you  can  see  in  this  example.  This  feature  works  better  for  some

examples than for others.

Dynamic Interactivity     99



Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8filling, 8None, Axis, Top, Bottom<<,
AutorunSequencing Ø AllD

Autorun

n1

n2

filling None Axis Top Bottom

You can also use AutorunSequencing to exclude certain controls from the Autorun animation,

or  change  the  order  in  which  the  controls  are  animated.  In  the  following  example,  the  third

control is animated first, then the first control, then the fourth, and the second control is left at

its default value.

Manipulate@8w, x, y, z<, 8w, 0, 1<, 8x, 0, 1<,
8y, 0, 1<, 8z, 0, 1<, AutorunSequencing Ø 83, 1, 4<D

w

x

y

z

80, 0, 0.812034, 0<

100     Dynamic Interactivity



AutorunSequencing allows you to specify the duration reserved for the animation of a particu-

lar  control.  This  setting  reserves  two  seconds  for  the  first  control,  two  seconds  for  the  third

control, and ten seconds for the fourth control. The second control is skipped as before.

Manipulate@8w, x, y, z<, 8w, 0, 1<, 8x, 0, 1<, 8y, 0, 1<,
8z, 0, 1<, AutorunSequencing Ø 881, 2<, 83, 2<, 84, 10<<D

w

x

y

z

80.299, 0, 0, 0<

One  reason  to  care  about  the  details  of  AutorunSequencing  is  that  it  is  possible  to  use  the

Export command to automatically generate an animation video (in, for example, QuickTime or

Flash  format).  By  default  Export  will  generate  an  animation  by  running  the  Manipulate

through one Autorun cycle.

If AutorunSequencing does not give you enough control over the animation sequence, you can

use  the  Bookmarks  feature  described  in  the  next  section  to  define  a  list  of  "way  points"~

combinations  of  parameter  values~and  then  create  an  animation  that  smoothly  interpolates

through those defined points. This allows complete control over the exact path of the animation.

Bookmarking Combinations of Parameter Values

Manipulate  functions, particularly when they have many controls, can be used to find a needle

in  a  haystack:  a  particular  combination  of  multiple  parameter  values  that  yields  a  particularly

interesting result. When you have found a set of values like that, you might want to save it for

future  reference.  Manipulate  provides  several  features  for  doing  this  through  the   menu in

the top-right corner of the Manipulate output.

Dynamic Interactivity     101



To get a single value out into a form you can use as a static  input,  use the Paste Snapshot

command  from the   menu.  The  result  will  be  inserted  as  a  new  cell  below  the  Manipulate

output.

Manipulate@8x, y, z<, 8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<D

x

y

z

80.37, 0.506, 0.29<

Here is the result of using Paste Snapshot with this example.

DynamicModule@8x = 0.37, y = 0.506, z = 0.29<, 8x, y, z<D

The  three  current  values  have  been  copied  into  the  variable  definition  block  of  a

DynamicModule, and the first argument has been copied into the body. (DynamicModule  is used

because  in  cases  where  the  body  contains  explicit  uses  of  Dynamic  this  will  result  in  more

correct functioning. Depending on what you want to do with the result, you are of course free

to  replace  DynamicModule  with  Module,  With,  or  Block  without  needing  to  make  any  other

changes to the expression. Or you can copy/paste the block of assignments into other code you

are building, etc. The differences between Module  and DynamicModule  are discussed in further

detail in "Advanced Dynamic Functionality".)

If,  instead  of  immediately  extracting  that  location,  you  just  want  to  remember  it  so  that  it  is

easy to visit  in the future, select Add To Bookmarks  from the  menu. That will  bring up a

panel that will let you name the bookmark and add it to list of bookmarks which are known to

this  Manipulate  by  clicking  the   button,  or  cancel  the  addition  by  clicking  the  

button.

After adding a bookmark, the name you have specified for it will appear in the  menu. Select-

ing its name from that menu will cause all the parameters to snap back to the values they had

when  that  bookmark  was  added.  Also  note  that  every  Manipulate  remembers  the  initial  set-

tings of all its controls, and you can snap back to those values by choosing Initial Settings in

this menu.

Once  you  start  placing  bookmarks,  there  are  two  other  items  in  the   menu  which  become

relevant: Paste Bookmarks and Animate Bookmarks.

Bookmarks are lists of locations in a given parameter space, and you can extract the raw data

in that list by choosing the Paste Bookmarks item. Every element of the resulting list is of the

form  bookmarkName :> parameterValues.  This  list  is  syntactically  appropriate  for  reinserting

into Manipulate  input as the setting for the Bookmarks  option. (This allows you to, for exam-

ple, modify the bookmarks by manual editing, or run a program on them, before restoring them

as active bookmarks in a new Manipulate output.)

102     Dynamic Interactivity



Bookmarks are lists of locations in a given parameter space, and you can extract the raw data

in that list by choosing the Paste Bookmarks item. Every element of the resulting list is of the

form  bookmarkName :> parameterValues.  This  list  is  syntactically  appropriate  for  reinserting

into Manipulate  input as the setting for the Bookmarks  option. (This allows you to, for exam-

ple, modify the bookmarks by manual editing, or run a program on them, before restoring them

as active bookmarks in a new Manipulate output.)

The Animate Bookmarks menu command works much like the Autorun  command described

in the previous section,  except  that  instead of  animating each parameter through its  range of

values, it creates an animation that interpolates through the points specified by the bookmarks.

The  interpolation  which  occurs  when  animating  bookmarks  is  done  internally  via  the

Interpolation  command. Manipulate  even accepts the InterpolationOrder  option to adjust

how the animation  proceeds  from one point  to  the  next.  The default  value  of  Automatic  per-

forms quadratic interpolation if there are enough bookmarks, and linear interpolation otherwise.

When  a  Manipulate  output  containing  explicit  bookmarks  is  exported  to  a  video  animation

format using Export,  the resulting video will  be one cycle through the sequence generated by

Animate Bookmarks. (If no bookmarks are present, the result is one cycle of Autorun.)

Dynamic Interactivity     103



Advanced Manipulate Functionality

This tutorial covers advanced features of the Manipulate  command. It assumes that you have

read "Introduction to Manipulate" and thus have a good idea what the command is for and how

it works overall.

This  tutorial  also,  in  places,  assumes  a  familiarity  with  the  lower-level  dynamic  mechanism

covered in "Introduction to Dynamic" and "Advanced Dynamic Functionality".

Please note that this is a hands-on tutorial. You are expected to actually evaluate

each input line as you reach it in your reading, and watch what happens. The accom-

panying text will not make sense without evaluating as you read.

Controlling Automatic Reevaluation

Some  Manipulate  examples  "spin,"  continually  reevaluating  their  contents  even  when  no

sliders are being moved. Sometimes this is in fact exactly what you intend. For example, here

is a droopy triangle, which always sags down in the middle. You can drag it back up using the

slider, but as soon as you stop moving, it starts falling down again.

104     Dynamic Interactivity



Manipulate@
y = Max@-1, y - 0.05D; Graphics@Polygon@88-1, 1<, 80, y<, 81, 1<<D, PlotRange Ø 1D,
88y, 1<, -1, 1<D

y

This  happens because the variable  y  is  being changed by the code in  the  first  argument,  and

the system, correctly and helpfully, notices that since the value of y has changed, the contents

need to be evaluated and displayed again, which in turn causes the value of y to change again,

and so  on,  until,  in  this  case,  we reach a  stable  point  at  y= -1.  After  that  the  value  of  y  no

longer changes, and the contents are no longer continually redrawn, until  you touch the slider

again. (If you have a CPU activity monitor on your system you can verify that while the triangle

is drooping, Mathematica is using CPU time, but once it reaches the bottom, Mathematica's CPU

usage stops.)

Of course it is possible to construct examples that do not stop. Here we declare two variables,

both initialized to zero, and include code in the body of the Manipulate  to continuously update

the value of one of them based on the value of the other.

Dynamic Interactivity     105



Manipulate@total = total + step; 8step, total<,
88total, 0<, -1000, 1000, 1<, 88step, 0<, -10, 10, 1<D

total

step

80, 0<

Any time the step size is moved away from zero, the content area will continually update, and a

CPU monitor will indicate that Mathematica is using CPU time. This will go on for as long as you

let it. (Fortunately it does not totally consume the CPU, and other activities in the front end are

not  hindered  by  this  activity;  you  can  keep  editing,  evaluating,  etc.,  while  it  is  running.  You

may think of it sort of like an animated image or applet running in a web browser.)

In some cases, however, the continual reevaluation is pointless and undesirable. Consider this

somewhat contrived example: any time it is present on screen (i.e., in an open window and not

scrolled offscreen to the point where no part of it is visible), it will constantly reevaluate itself,

consuming CPU time even though nothing is changing.

Manipulate@
temp = n;
temp = temp^3;
Graphics@8Thickness@0.01D, Line@880, 0<, 8n, temp<<D<, PlotRange Ø 1D,
8n, -1, 1<D

This happens because the variable temp has its value changed during the evaluation, even if the

value  of  n  has  not  changed  (i.e.  it  is  reset  to  two  different  values  each  time  through).  The

spinning is pointless because the value of temp is set before it is ever used.

Another way to get inadvertent and pointless spinning is to make a function definition or other

complex assignment in the body of the Manipulate, as in this example.

Manipulate@
f@x_D := x^3;
Graphics@8Thickness@0.01D, Line@880, 0<, 8n, f@nD<<D<, PlotRange Ø 1D,
8n, -1, 1<D

In  both  these  cases,  the  problem  can  be  solved  by  making  the  offending  variables  be  local

variables inside a Module. (This is good programming practice in any case, quite aside from any

desire to avoid pointless updating.)

Manipulate@Module@8temp<,
temp = n;
temp = temp^3;
Graphics@8Thickness@0.01D, Line@880, 0<, 8n, temp<<D<, PlotRange Ø 1DD,

8n, -1, 1<D

106     Dynamic Interactivity



Manipulate@Module@8f<,
f@x_D := x^3;
Graphics@8Thickness@0.01D, Line@880, 0<, 8n, f@nD<<D<, PlotRange Ø 1DD,

8n, -1, 1<D

Nothing you do to local Module variables will cause retriggering, because it is part of the defini-

tion of Module that values do not survive from one invocation to the next (therefore the result

will  not be any different the next time around just because of anything done to the value of a

local variable during the current cycle).

Another solution is to use the TrackedSymbols option to Manipulate  to control which variables

are allowed to cause updating behavior. The default value, Full, means that any symbols that

appear  explicitly  (lexically)  in  the  first  argument  will  be  tracked.  (This  means,  among  other

things, that temporary variables and other such problems inside the definitions of functions you

use in your Manipulate  example will not cause infinite reevaluation problems, because they do

not occur explicitly in the first argument, only indirectly through functions you call.)

Taking the second example, if for some reason you do not want f to be a local Module variable,

and you cannot move its definition outside the Manipulate  (there are sometimes good reasons

for both those conditions, in more complicated cases), you can use TrackedSymbols to disable

updating triggered by f:

Manipulate@
f@x_D := x^3;
Graphics@8Thickness@0.01D, Line@880, 0<, 8n, f@nD<<D<, PlotRange Ø 1D,
8n, -1, 1<, TrackedSymbols :> 8n<D

This example updates the content area only when n changes its value as a result of moving the

slider.

The  subject  of  when  exactly  a  given  dynamic  expression  will  be  updated  is  complex,  and  is

addressed  in  "Introduction  to  Dynamic"  and  "Advanced  Dynamic  Functionality".  In  reading

those, keep in mind that Manipulate simply wraps its first argument in Dynamic and passes the

value of its TrackedSymbols option to a Refresh  inside that. Everything to do with updating is

handled by that Dynamic and Refresh.

Nesting Manipulate

You  can  put  one  Manipulate  inside  another.  For  example,  here  we  use  a  slider  in  an  outer

Manipulate to control the number of sliders in the inner Manipulate.

Dynamic Interactivity     107



In[26]:= Manipulate@With@8value = Table@c@iD, 8i, 1, n<D,
controls = Sequence üü Table@8c@iD, 0, 1<, 8i, 1, n<D<,

Manipulate@value, controlsDD, 8n, 1, 10, 1<D

Out[26]=

n

Cell$$25584`c@1D

80<

While  nesting  Manipulate  many  levels  deep  is  possible,  and  will  work,  it  is  probably  not  the

most useful feature in the world. But by nesting once, you have in effect created a parameter-

ized user interface construction interface. The outer Manipulate  allows you to control parame-

ters  that  determine the user  interface presented by the inner  Manipulate.  With some slightly

more complex programming than in the previous example, remarkable things can be done.

Interdependent Controls

It  is  possible  to  make  the  range  of  one  slider  in  a  Manipulate  depend  on  the  position  of

another  slider.  For  example,  the  function  Binomial@n, mD  makes  sense  only  when  m <= n,  so

you might want to make an m-slider whose range is from 1 to the current value of n. You can do

this simply by using n in the variable specification for m, like this.

Manipulate@Row@8"H", Column@8n, m<, CenterD, "L = ", Binomial@n, mD<D,
8n, 1, 10, 1<, 8m, 1, n, 1<D

n

m

H
7
7
L = 1

Note that if you first move both sliders part way towards the right, then move the n-slider left,

the m-slider will automatically move to the right, because its maximum is getting smaller. If you

move n far enough to the left, to the point where it becomes smaller than the current value of

m,  the  m-slider  will  display  a  red  "out  of  range"  indicator,  because  m  is  now  larger  than  its

maximum allowed value.

You might  wonder why m  is  not  automatically  reset  to  the current  maximum, when the maxi-

mum is set lower than its current value. The reason is that sometimes it is preferable to leave

the value alone, and if  you want to have it  reset automatically,  it  is  easy to do manually.  For

example, you can add an If statement to the code in the first argument.

108     Dynamic Interactivity



You might  wonder why m  is  not  automatically  reset  to  the current  maximum, when the maxi-

mum is set lower than its current value. The reason is that sometimes it is preferable to leave

the value alone, and if  you want to have it  reset automatically,  it  is  easy to do manually.  For

example, you can add an If statement to the code in the first argument.

Manipulate@If@m > n, m = nD;
Row@8"H", Column@8n, m<, CenterD, "L = ", Binomial@n, mD<D,
8n, 1, 10, 1<, 8m, 1, n, 1<D

n

m

H
3
1
L = 3

Generally speaking, you can use Manipulate  variables in the definition of other variables with-

out restriction, though it is certainly possible in this way to create peculiar interactions that are

more confusing than helpful. 

This example shows another variation, using a check box to control the range of a slider: some-

thing  like  this  can  be  useful  in  cases  where  you  want  to  provide  fine  and  coarse  ranges,  for

example.

Manipulate@n,
8n, 1, If@wide, 100, 10D, 1<, 88wide, False, "Wide Range"<, 8False, True<<D

n

Wide Range

4

Dynamic Interactivity     109



Dealing with Slow Evaluations

Manipulate  does not precompute all the possible output values you could reach by moving its

sliders:  that  would  be  completely  impractical  for  all  but  the  most  trivial  cases.  That  means  it

has  to  calculate,  format,  and  display  the  current  value  in  real  time  as  each  slider  is  being

dragged. Obviously no matter how fast your computer, there is a limit to how much computa-

tion can be done in a finite amount of time, and if the expression you use in the first argument

to Manipulate  takes more than about a second to evaluate, you will not have a very satisfac-

tory experience using the Manipulate.

Many very interesting and powerful computations can be done in under a second, and as comput-

ers get faster the range will only increase (people are not getting any faster, so the amount of

time  available  before  the  example  seems  too  sluggish  should  remain  unchanged  for  quite  a

while). But some computations just cannot be done that fast, and some alternative is necessary

if you want to use them within Manipulate. Fortunately there are several good ways of dealing

with slow evaluations. 

For purposes of this section we are going to use Pause  to simulate a slow evaluation. The main

reason  for  this  is  that  any  actual  computation  would  run  at  such  widely  differing  speeds  on

different users' computers that it would be hard to illustrate the point with any one example. So

where you see a Pause  command, please imagine that something terribly complex and interest-

ing is being done, resulting in a fantastically detailed and enlightening output.

To get a feel for the problem, try dragging the following slider. While this example is not unac-

ceptable, it is on the borderline of something not worth playing with. If the delay is increased to

several  seconds,  it  becomes  quite  pointless.  (And  beyond  5  seconds  you  will  start  seeing

$Aborted  instead  of  the  number,  because  the  system  is  protecting  itself  from  unreasonably

long evaluations, which block other activity in the front end in this situation.)

Manipulate@Pause@1D; x, 8x, 0, 10<D

x

4.88

Manipulate@Pause@1D; x, 8x, 0, 10<D

110     Dynamic Interactivity



The simplest improvement is to add the option ContinuousAction -> False to the Manipulate.

Manipulate@Pause@1D; x, 8x, 0, 10<, ContinuousAction Ø FalseD

x

2.9

In this example the slider moves smoothly and instantaneously as it is dragged, but the value

in  the  output  area  does  not  attempt  to  track  in  real  time.  Instead  it  updates  only  when  the

slider is released.

A  more  subtle  difference  is  that  when  the  value  updates  in  this  example,  it  does  so  without

blocking  other  activity  in  the  front  end.  You  can  see  this  by  the  fact  that  the  cell  bracket

becomes outlined for a second each time the slider is released, and you can continue typing or

doing other work in the front end during that second. There is no 5-second limit to such non-

blocking  evaluations,  so  by  using  the  ContinuousAction -> False  option,  arbitrarily  long

evaluations can be used. (Though something that takes a minute is still probably better done as

a normal Shift+Return evaluation than inside Manipulate.)

A  more  sophisticated  alternative  is  to  use  the  ControlActive  function  to  present  an  alterna-

tive, simpler and faster display while the slider is being dragged, and do the long computation

only when it is released. 

ControlActive  takes two arguments: the first is returned if the expression is evaluated while a

control (e.g. a slider) is currently being dragged with the mouse, and the second if no control is

currently active.  (See the documentation for  ControlActive  for  some fine print  about exactly

when which argument is returned.)

In this example we use just x as the preview to be displayed while the slider is being dragged,

and x  with a box around it,  plus a second of delay, as the final  display to be presented when

the slider is released. Note that we have removed the ContinuousAction -> False  option from

the example above.

Dynamic Interactivity     111



Manipulate@ControlActive@x, Pause@1D; Framed@xDD, 8x, 0, 10<D

x

7.02

Note that the cell bracket is outlined, indicating a nonblocking evaluation, only when the slider

is released. While the slider is being dragged, evaluations are done in a blocking way for maxi-

mum interactive performance.

Here is a slightly more realistic example of where ControlActive  can be useful. This example

shows how the default behavior of DensityPlot  is to use fewer sample points while the slider is

being dragged.

Manipulate@DensityPlot@Sin@n x ê yD, 8x, -2, 2<, 8y, -2, 2<D, 8n, 1, 10<D

n

112     Dynamic Interactivity



But even the higher number used after the slider is released is not enough to produce a satisfac-

tory plot. If we just set a fixed, larger number of plot points, the result is pretty, but interactive

performance is not good enough.

Manipulate@
DensityPlot@Sin@n x ê yD, 8x, -2, 2<, 8y, -2, 2<, PlotPoints Ø 150D, 8n, 1, 10<D

n

(There  is  still  a  difference  between  the  active  and  inactive  forms,  because  by  default  several

different options, not just PlotPoints, depend on ControlActive.)

Dynamic Interactivity     113



The optimal combination of speed and quality can be achieved by using ControlActive  explic-

itly in the value of the PlotPoints option.

Manipulate@DensityPlot@Sin@n x ê yD, 8x, -2, 2<,
8y, -2, 2<, PlotPoints Ø ControlActive@30, 150DD, 8n, 1, 10<D

n

The  result  is  an  example  that  displays  a  crude,  but  virtually  instantaneous,  preview  of  the

graphic,  then  spends  many  seconds  constructing  a  high-resolution  version  when  the  slider  is

released.

The next section explains a more complex solution that works in cases where some changes to

the  parameters  require  a  slow  evaluation  while  others  could  update  the  display  much  more

rapidly.

Using Dynamic inside Manipulate

You might want to read "Introduction to Dynamic" before finishing this section, as we refer to

the use of explicit Dynamic expressions, which are not explained in this tutorial.

When  you  move  the  sliders  (or  other  controls)  in  a  Manipulate,  the  expression  given  in  the

first  argument  is  reevaluated  from scratch  for  each  new parameter  value.  "Dealing  with  Slow

Evaluations"   discusses a number of  general  things that  can be done if  evaluation of  this  first

argument is too slow to allow smooth interactive performance of the Manipulate. But in some

cases it is possible to separate the evaluation into slower and faster parts, and thereby achieve

much better performance.

114     Dynamic Interactivity



When  you  move  the  sliders  (or  other  controls)  in  a  Manipulate,  the  expression  given  in  the

first  argument  is  reevaluated  from scratch  for  each  new parameter  value.  "Dealing  with  Slow

Evaluations"   discusses a number of  general  things that  can be done if  evaluation of  this  first

argument is too slow to allow smooth interactive performance of the Manipulate. But in some

cases it is possible to separate the evaluation into slower and faster parts, and thereby achieve

much better performance.

Consider  this  example  where  one  slider  controls  the  contents  of  a  3D  plot,  while  the  other

controls its viewpoint.

Manipulate@Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<, ViewPoint Ø 82, v, 2<,
SphericalRegion Ø True, Ticks Ø NoneD, 8n, 1, 4<, 8v, -2, 2<D

n

v

When  the  n-slider  is  moved,  it  is  obviously  necessary  to  recompute  the  3D  plot,  because  it

actually  changes  shape.  The  plot  becomes  jagged  while  the  slider  is  being  dragged,  then

improves shortly after you release it, which is correct and as expected. When you move the v-

slider, on the other hand, there is no point in recomputing the function, because only the view-

point has changed. But Manipulate  has no way of knowing this (and in more complex cases it

is  genuinely  impossible  for  this  kind  of  distinction  to  be  made  in  any  automatic  way),  so  the

whole plot is regenerated from scratch each time v is changed. 

Dynamic Interactivity     115



To improve this example, we can tell Manipulate  that the ViewPoint option should be updated

separately from the rest of the output, which we can do by wrapping Dynamic around the right-

hand side of the option.

Manipulate@Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<, ViewPoint Ø Dynamic@82, v, 2<D,
SphericalRegion Ø True, Ticks Ø NoneD, 8n, 1, 4<, 8v, -2, 2<D

n

v

Notice that now when the v-slider is moved, the plot does not revert to the jagged appearance,

and actually rotates faster than before. This is because the plot is no longer being regenerated

with each movement.

To  explain  exactly  why  this  works  requires  an  understanding  of  the  internals  of  the  Dynamic

mechanism  explained  in  "Introduction  to  Dynamic"  and  "Advanced  Dynamic  Functionality".  In

short,  Manipulate  always  wraps  Dynamic  around  the  expression  given  in  its  first  argument,

and  normally  any  changes  to  variables  used  in  the  first  argument  will  trigger  updates  of  that

Dynamic.  But  when  a  variable  occurs  only  inside  an  explicit  Dynamic  nested  inside  the  one

implicitly created by Manipulate, an update of the outer Dynamic  will not be triggered, only an

update of the inner Dynamic in which it resides.

116     Dynamic Interactivity



Explaining  the  full  range  of  what  is  possible  by  using  Dynamic  explicitly  inside  Manipulate  is

beyond  the  scope  of  this  document,  but  another  common  case  worth  looking  at  involves  a

situation where the slow part of some computation involves only some of the input variables.

In the next example we construct a large table of numbers (using RandomReal  in this case, but

in a real-world example it might be a much more complicated, slower computation, or even one

involving  reading  external  data  from  the  network).  After  constructing  the  data,  we  display  it

using  a  fairly  simple,  fast  function  (illustrated  here  by  just  raising  the  coordinate  values  to  a

power).

Note  that  when  the  n-slider  is  moved,  the  number  of  points  changes,  and  they  jump  around

because a new random set is generated each time. But when the p-slider is moved, updates are

smoother,  and  the  points  do  not  jump  around.  This  is  because  the  inner  Dynamic  wrapped

around  the  use  of  p  prevents  the  first  argument  as  a  whole  from being  reevaluated.  Thus  no

new random points are generated only the presentation of the existing ones is updated.

Manipulate@
data = RandomReal@80, 1<, 8n, 2<D;
Graphics@8Point@Dynamic@data^pDD<, AspectRatio Ø 1D,
8n, 100, 5000, 1<, 8p, 0.1, 10<, SynchronousUpdating Ø FalseD

n

p

The option SynchronousUpdating -> False  is used to cause the outer Dynamic (the one implic-

itly created by Manipulate) to update asynchronously (visible by the fact that the cell bracket

becomes outlined  when the  n-slider  is  moved).  Asynchronous updating  does  not  give  quite  as

smooth updating, but if the evaluation takes a long time, it does not block other activity in the

front end. 

Dynamic Interactivity     117



The option SynchronousUpdating -> False  is used to cause the outer Dynamic (the one implic-

itly created by Manipulate) to update asynchronously (visible by the fact that the cell bracket

becomes outlined  when the  n-slider  is  moved).  Asynchronous updating  does  not  give  quite  as

smooth updating, but if the evaluation takes a long time, it does not block other activity in the

front end. 

The  inner  Dynamic  uses  the  default  synchronous  updating,  so  when  the  p-slider  is  moved,

updating is smooth and rapid.

It is thus practical,  using the technique illustrated here, to make an example that takes many

seconds,  even minutes,  to  respond when one slider  is  changed,  yet  preserve rapid  interactive

performance  when  other  controls,  which  do  not  require  the  long  computation  to  be  repeated,

are changed.

You can also use Dynamic inside Manipulate  to make the output dynamically respond to things

other than the values of  the Manipulate's  control  variables.  For example,  here is  an example

taken from an earlier section, except that we have made it respond dynamically to the current

mouse position.

Manipulate@
Graphics@8Dynamic@With@8pt = MousePosition@8"Graphics", Graphics<, 80, 0<D<,

Line@Table@88Cos@tD, Sin@tD<, pt<, 8t, 2. Pi ê n, 2. Pi, 2. Pi ê n<DDDD<,
PlotRange Ø 1D, 88n, 30<, 1, 200, 1<D

n

Any time the mouse is over the area of the plot, the center of the lines will follow it (without a

click). Consult the documentation for MousePosition for further detail.

118     Dynamic Interactivity



Any time the mouse is over the area of the plot, the center of the lines will follow it (without a

click). Consult the documentation for MousePosition for further detail.

It  is  important  to  remember  also  that  Manipulate  is  not  the  only  way  of  creating  interactive

user  interfaces  in  Mathematica.  Manipulate  is  intended to  be  a  simple,  yet  powerful,  tool  for

defining user interfaces at a very high level. But when you reach the limits of what it is capable

of  doing,  either  in  terms  of  control  layout,  updating  behavior,  or  interaction  with  external

systems, it is always possible (and often not terribly difficult) to drop to a lower level of inter-

face programming using functions such as Dynamic and EventHandler.

Dynamic Objects in the Control Area

We saw in  "Introduction  to  Manipulate"  that  it  is  possible  to  add a  variety  of  elements  to  the

control area of a Manipulate, for example titles and delimiters, as in this example.

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

Style@"Horizontal", 12, BoldD, 88n1, 1, "Frequency"<, 1, 4<,
88a1, 1, "Amplitude"<, 0, 1<, 88p1, 0, "Phase"<, 0, 2 Pi<,
Delimiter, Style@"Vertical", 12, BoldD, 88n2, 5 ê 4, "Frequency"<, 1, 4<,
88a2, 1, "Amplitude"<, 0, 1<, 88p2, 0, "Phase"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Horizontal
Frequency

Amplitude

Phase

Vertical
Frequency

Amplitude

Phase

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

There is in fact virtually no limit  to what can be put into the controls area, including arbitrary

formatting constructs and dynamic objects, even controls that are not part of the Manipulate's

control  specifications.  Anything  placed  in  the  variables  sequence  that  is  either  a  string  or  has

head Dynamic, Style, or ExpressionCell will automatically be interpreted as an annotation to

be inserted in the controls area.

Dynamic Interactivity     119



There is in fact virtually no limit  to what can be put into the controls area, including arbitrary

formatting constructs and dynamic objects, even controls that are not part of the Manipulate's

control  specifications.  Anything  placed  in  the  variables  sequence  that  is  either  a  string  or  has

head Dynamic, Style, or ExpressionCell will automatically be interpreted as an annotation to

be inserted in the controls area.

You might want to read "Introduction to Dynamic" before finishing this section, as we refer to

the use of explicit Dynamic expressions, which are not explained in this tutorial.

Suppose you want to show plots of  the individual  x  and y  sine functions that combine to form

the Lissajous figure. You could do this by putting all three functions into the output area, using

Grid to lay them out.

Manipulate@
Grid@8

8Plot@a2 Sin@n2 Hx + p2LD, 8x, 0, 2 Pi<, AspectRatio Ø 1, PlotRange Ø 1D,
ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D<,

8Null, ParametricPlot@8a1 Sin@n1 Hx + p1LD, x<, 8x, 0, 2 Pi<,
AspectRatio Ø 1, PlotRange Ø 88-1, 1<, 80, 2 Pi<<D<

<D,
88n1, 1, "Frequency"<, 1, 4<,
88a1, 1, "Amplitude"<, 0, 1<,
88p1, 0, "Phase"<, 0, 2 Pi<,
Delimiter,
88n2, 5 ê 4, "Frequency"<, 1, 4<,
88a2, 1, "Amplitude"<, 0, 1<,
88p2, 0, "Phase"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Frequency

Amplitude

Phase

Frequency

Amplitude

Phase

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

1

2

3

4

5

6

There is in fact a lot to be said for this presentation. But suppose you instead want to leave the

main output area as it is, with a large, prominent presentation of the Lissajous figure itself, and

show the individual sine functions only much smaller,  in association with the controls for each

direction. You can do this by placing a dynamic plot object into the controls area, as follows.

120     Dynamic Interactivity



There is in fact a lot to be said for this presentation. But suppose you instead want to leave the

main output area as it is, with a large, prominent presentation of the Lissajous figure itself, and

show the individual sine functions only much smaller,  in association with the controls for each

direction. You can do this by placing a dynamic plot object into the controls area, as follows.

Manipulate@
ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

88n1, 1, "Frequency"<, 1, 4<,
88a1, 1, "Amplitude"<, 0, 1<,
88p1, 0, "Phase"<, 0, 2 Pi<,
Dynamic@ParametricPlot@8a1 Sin@n1 Hx + p1LD, x<, 8x, 0, 2 Pi<,

ImageSize Ø 100, AspectRatio Ø 1, PlotRange Ø 88-1, 1<, 80, 2 Pi<<DD,
Delimiter,
88n2, 5 ê 4, "Frequency"<, 1, 4<,
88a2, 1, "Amplitude"<, 0, 1<,
88p2, 0, "Phase"<, 0, 2 Pi<,
Dynamic@Plot@a2 Sin@n2 Hx + p2LD, 8x, 0, 2 Pi<, ImageSize Ø 100,

AspectRatio Ø 1, PlotRange Ø 1DD, ControlPlacement Ø LeftD

Frequency

Amplitude

Phase

-1.0 -0.5 0.5 1.0

1
2
3
4
5
6

Frequency

Amplitude

Phase

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Just as the headings in the example at the start of this section were mixed in with the controls

simply by listing them in the variable specifications sequence, here we have placed dynamically

updated plots in the variable specification sequence. Dynamic is used explicitly in these subplots

so that they will update when the controls are moved. (The main output area does not need an

explicit Dynamic because Manipulate automatically wraps Dynamic around its first argument.)

It is worth briefly discussing here why it is that an example like this can just work. The reason

is that the output of Manipulate  is not a special, fixed object that just connects a set of con-

trols  with  a  single  output  area.  Instead,  the  output  of  Manipulate  is  built  up  using  the  same

formatting, layout, user interface, and dynamic interactivity features that can be accessed at a

lower level using the techniques discussed in "Introduction to Dynamic" (which in fact includes

an  example  of  how  to  build  up  a  simple  version  of  Manipulate  by  hand).  In  some  ways  the

relationship between Manipulate  and the lower level interactive features is like the relationship

between Plot and Graphics. The result of evaluating a high-level Plot command is a low-level

Graphics  object,  and  if  Plot  is  not  able  to  generate  the  specific  graphic  you  want,  you  are

always free to use Graphics  directly. You can use the Prolog and Epilog options to add arbi-

trary graphical elements to a Plot. Furthermore there is no graphical output you can get using

Plot that you cannot get using Graphics. Plot has no special access to any features in Mathe-

matica unavailable at the lower level.

Dynamic Interactivity     121



It is worth briefly discussing here why it is that an example like this can just work. The reason

is that the output of Manipulate  is not a special, fixed object that just connects a set of con-

trols  with  a  single  output  area.  Instead,  the  output  of  Manipulate  is  built  up  using  the  same

formatting, layout, user interface, and dynamic interactivity features that can be accessed at a

lower level using the techniques discussed in "Introduction to Dynamic" (which in fact includes

an  example  of  how  to  build  up  a  simple  version  of  Manipulate  by  hand).  In  some  ways  the

relationship between Manipulate  and the lower level interactive features is like the relationship

between Plot and Graphics. The result of evaluating a high-level Plot command is a low-level

Graphics  object,  and  if  Plot  is  not  able  to  generate  the  specific  graphic  you  want,  you  are

always free to use Graphics  directly. You can use the Prolog and Epilog options to add arbi-

trary graphical elements to a Plot. Furthermore there is no graphical output you can get using

Plot that you cannot get using Graphics. Plot has no special access to any features in Mathe-

matica unavailable at the lower level.

Likewise, Manipulate  does not have any special access to features unavailable with lower level

functions: there is nothing you can do with Manipulate  that you cannot do with Dynamic, it is

just a higher-level, more convenient function for building a certain style of interface.

So  when  you  use  dynamic  objects  in  the  control  labels,  as  in  the  example  above,  you're  just

adding a couple more Dynamic  objects to the already fairly complex set of Panel  objects, Grid

objects,  Dynamic  objects,  and  DynamicModule  objects  that  constitutes  the  output  of  a

Manipulate command. There is nothing really different there, just more of it, so it should come

as no surprise that the new dynamic elements interoperate smoothly with the others.

Although it is not always sensible to do so, it is possible to build completely arbitrary interactive

dynamic user interfaces entirely in the controls area of a Manipulate.

Custom Control Appearances

You might  want  to  read  "Introduction  to  Dynamic"  before  reading  this  section,  as  we refer  to

the use of explicit Dynamic expressions, which are not explained in this tutorial.

Suppose you want to use a type of  control  that  is  not  supported by Manipulate,  for  example

one you have built yourself using graphics and dynamics. Here is a block of code that defines a

custom  style  of  slider,  one  that  shows  its  value  at  the  thumb  position.  Do  not  worry  about

understanding  the  details  of  how this  code  works,  though it  is  not  overly  complicated  beyond

the details of drawing the desired elements in the right places.

122     Dynamic Interactivity



In[1]:= ValueThumbSlider@v_D := ValueThumbSlider@v, 80, 1<D;
ValueThumbSlider@Dynamic@var_D, 8min_, max_<, options___D :=

LocatorPane@Dynamic@If@! NumberQ@varD, var = minD; 8var, 0<, Hvar = First@ÒDL &D,
Graphics@8AbsoluteThickness@1.5D, Line@88min, 0<, 8max, 0<<D,

Dynamic@8Text@var, 8var, 0<, 80, -1<D, Polygon@8Offset@80, -1<, 8var, 0<D,
Offset@8-5, -8<, 8var, 0<D, Offset@85, -8<, 8var, 0<D<D<D<,

ImageSize Ø 8300, 30<, PlotRange Ø 88min, max< + 0.1 8-1, 1< Hmax - minL, 8-1, 1<<,
AspectRatio Ø 1 ê 10D,

88min, 0<, 8max, 0<<, Appearance Ø NoneD;

Here  is  an  example  of  what  this  new  control  looks  like:  click  anywhere  to  move  the  thumb

around, just like with a normal slider.

In[3]:= ValueThumbSlider@Dynamic@xxD, 80, 10<D

Out[3]= 0

To use a custom control in Manipulate, you include a pure function that is used to generate the

control  object  as  part  of  the  variable  specification.  As  long  as  your  function  conforms  to  the

convention used by all  the built-in control  functions, with the variable (inside Dynamic) as the

first  argument and the range as the second argument,  you can simply use the function name

and the appropriate arguments will  be passed to it automatically by Manipulate. Here we see

our custom control used in a simple Manipulate.

In[4]:= Manipulate@x, 8x, 0, 1, ValueThumbSlider@ÒÒD &<D

Out[4]=
x ValueThumbSlider@0, 80, 1<D

0

(The notation  ÒÒ  means  that  all  the  arguments  will  be  passed in  to  the  function,  not  just  the

first one.)

Note  that  if  you  supply  the  necessary  information  in  the  pure  function,  you  do  not  have  to

specify the min and max as part of the variable specification.

In[5]:= Manipulate@x, 8x, ValueThumbSlider@Ò, 80, 1<D &<D

Out[5]=
x ValueThumbSlider@0, 80, 1<D

0

However,  if  you  do  that,  then  Manipulate  is  not  aware  of  the  range you chose  to  use  in  the

slider, which means that the very nice Autorun feature (as described in the documentation for

Manipulate)  cannot  work.  So  generally  it  is  a  good  idea  to  include  the  range  in  the  variable

specification, and let the control function inherit it.

Dynamic Interactivity     123



However,  if  you  do  that,  then  Manipulate  is  not  aware  of  the  range you chose  to  use  in  the

slider, which means that the very nice Autorun feature (as described in the documentation for

Manipulate)  cannot  work.  So  generally  it  is  a  good  idea  to  include  the  range  in  the  variable

specification, and let the control function inherit it.

Naturally it is possible to combine standard and custom controls freely; here we use two of our

new sliders together with a SetterBar supplied automatically by Manipulate.

In[6]:= Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20, ValueThumbSlider@ÒÒD &<,
8n2, 1, 20, ValueThumbSlider@ÒÒD &<,
8filling, 8None, Axis, Top, Bottom<<D

Out[6]=

n1 ValueThumbSlider@1, 81, 20<D
n2 ValueThumbSlider@1, 81, 20<D

filling None Axis Top Bottom

1 2 3 4 5 6

-2

-1

1

2

It is also possible to combine custom controls with other dynamic elements in the controls area

(discussed in the previous section).

124     Dynamic Interactivity



In[7]:= Manipulate@
ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

88n1, 1<, 1, 4, ValueThumbSlider@ÒÒD &<,
88a1, 1<, 0, 1, ValueThumbSlider@ÒÒD &<,
88p1, 0<, 0, 2 Pi, ValueThumbSlider@ÒÒD &<,
Dynamic@ParametricPlot@8a1 Sin@n1 Hx + p1LD, x<, 8x, 0, 2 Pi<,

ImageSize Ø 100, AspectRatio Ø 1, PlotRange Ø 88-1, 1<, 80, 2 Pi<<DD,
Delimiter,
88n2, 5 ê 4.<, 1, 4, ValueThumbSlider@ÒÒD &<,
88a2, 1<, 0, 1, ValueThumbSlider@ÒÒD &<,
88p2, 0<, 0, 2 Pi, ValueThumbSlider@ÒÒD &<,
Dynamic@Plot@a2 Sin@n2 Hx + p2LD, 8x, 0, 2 Pi<, ImageSize Ø 100,

AspectRatio Ø 1, PlotRange Ø 1DD, ControlPlacement Ø LeftD

Out[7]=

n1 ValueThumbSlider@1, 81, 4<D
a1 ValueThumbSlider@1, 80, 1<D
p1 ValueThumbSlider@0, 80, 2 p<D

-1.0 -0.5 0.5 1.0

1
2
3
4
5
6

n2 ValueThumbSlider@1.25, 81, 4<D
a2 ValueThumbSlider@1, 80, 1<D
p2 ValueThumbSlider@0, 80, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

This example should give some idea of  how far Manipulate  can be pushed to create complex

interfaces. However, it is important to remember that Manipulate  is not the only way to create

interfaces  in  Mathematica.  "Introduction  to  Dynamic"  provides  further  information  and  exam-

ples  showing  how  to  create  free-form  interfaces  not  restricted  to  the  model  provided  by

Manipulate.

One of the nice things about building an interface like this inside Manipulate  is that it lets you

use Autorun  (click the plus icon in the top right corner of the panel and choose Autorun) to

put the example through its  paces,  varying each variable according to a sensible interpolating

pattern.

On the other  hand,  Manipulate  restricts  you to  a  certain  set  of  layouts  and behaviors  which,

while very flexible and expandable, are still fixed compared to what is possible using the lower

level features described in "Introduction to Dynamic".

Dynamic Interactivity     125



Generalized Input

The fundamental paradigm of most computer languages, including Mathematica, is that input is

given and processed into output. Historically, such input has consisted of strings of letters and

numbers obeying a certain syntax. 

Evaluate this input line to generate a table of output.

In[1]:= Table@n!, 8n, 1, 10<D

Out[1]= 81, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800<

Starting in Version 3, Mathematica has supported the use of two-dimensional typeset mathemati -

cal notations as input, freely mixed with textual input.

This also generates a table of output.

In[2]:= TableB
n + 3

n!
, 8n, 1, 10<F

Out[2]= :4,
5

2
, 1,

7

24
,

1

15
,

1

80
,

1

504
,

11

40320
,

1

30240
,

13

3628800
>

Starting with Version 6, a wide range of nontextual objects can be used as input just as easily,

and can be mixed with text or typeset notations. 

Evaluate the following input, then move the slider and evaluate it again to see a new result.

In[3]:= TableB

n +

n!
, 8n, 1, 10<F

Out[3]= :5, 3,
7

6
,
1

3
,

3

40
,

1

72
,

11

5040
,

1

3360
,

13

362880
,

1

259200
>

The "value" of this slider when it is given as input is determined by its position, in this case an

integer between 1 and 10. It  can be used anywhere in an input line that a textual  number or

variable name could be used.

How to create such controls is discussed in the next section, but it is worth noting first that in

many cases there are better alternatives to this kind of input.

Casting this example in the form of a Manipulate allows you to see the effect of moving the 
slider in real time.

126     Dynamic Interactivity



Casting this example in the form of a Manipulate allows you to see the effect of moving the 
slider in real time.

In[4]:= ManipulateBTableB
n + m

n!
, 8n, 1, 10<F, 8m, 1, 10, 1<F

Out[4]=

m

:5, 3,
7

6
,
1

3
,

3

40
,

1

72
,

11

5040
,

1

3360
,

13

362880
,

1

259200
>

But there are situations where using a control inside a traditional Shift+Return evaluated input

works better. Some cases are: if the evaluation is very slow, if you want complete flexibility in

editing  the  rest  of  the  input  line  around the  control(s),  or  if  the  point  of  the  code is  to  make

definitions  that  will  be  used  later,  and  the  controls  are  being  used  as  a  convenient  way  to

specify initial values.

For example, you might want to set up a color palette using ColorSetter  to initialize named 
colors that will be used in subsequent code.

In[5]:= edgeColor = ;

In[6]:= fillColor = ;

In[7]:= backgroundColor = BlendB: , >F;

Dynamic Interactivity     127



Click any color swatch to get a dialog allowing you to interactively choose a new color. These 
values can then be used in subsequent programming just as if they had been initialized with 
more traditional textually specified values.

In[8]:= Graphics@8
fillColor, EdgeForm@8AbsoluteThickness@2D, edgeColor<D,
Polygon@RandomReal@80, 1<, 85, 3, 2<DD<, Background Ø backgroundColorD

Out[8]=

These  color  swatches  provide  an  informative,  more  easily  edited  representation  of  the  colors

than would an expression consisting of numerical color values.

How to Create Inline Controls

The most flexible and powerful way to create anything in Mathematica is to evaluate a function

that returns it. 

These examples use Slider, but the same principles apply to any controls. Control Objects lists

all the available control objects.

You can create a slider by evaluating Slider@D.

In[9]:= Slider@D

Out[9]=

The  resulting  slider  object  can  be  copied  and  pasted  into  a  subsequent  input  cell  just  as  if  it

were any other  kind of  input.  (Or you can just  click  in  the output  cell  and start  typing,  which

will cause it to be converted automatically into an input cell.) 

Controls created this way are inert to evaluation.

128     Dynamic Interactivity



Controls created this way are inert to evaluation.

 For example, type 2+, then paste the previous slider after the + to create this input line, and 
then evaluate it.

In[10]:= 2 +

Out[10]= 2 +

When evaluated, the slider remains a slider, which is not wanted in this case (though it is very

useful  in  other  situations).  What  is  needed  instead  is  a  slider  that,  when  evaluated  as  input,

becomes the value it is set to, rather than a slider object. 

DynamicSetting@eD an object that displays as e, but is interpreted as the 
dynamically updated current setting of e upon evaluation

Object that evaluates into its current setting.

When DynamicSetting is wrapped around a slider and evaluated, the new slider looks identical

to the original one, but has the hidden property of evaluating into its current setting.

This displays the new slider.

In[11]:= DynamicSetting@Slider@DD

Out[11]=

If the new slider is copied and pasted into an input line, the act of evaluation transforms the 
slider into its current value (by default 0.5 if it has not been moved with the mouse).

In[12]:= 2 +

Out[12]= 2.5

The examples in the previous section were created using DynamicSetting in this way.

While  copying and pasting can be used very effectively to build  up input lines containing con-

trols,  it  is  often  most  convenient  to  use  Evaluate  in  Place  Ctrl+Shift+Enter

(Command+Return on Mac) to transform control  expressions in place, especially once you are

familiar with the commands that create controls. 

Dynamic Interactivity     129



Ctrl +Shift +Enter evaluate a selection "in place", replacing the selection with 
the output

Evaluating in place.

For example, enter the following input line.

In[13]:= 2 + DynamicSetting@Slider@DD

Out[13]= 2 +

Then, highlight the entire control expression. (Triple-clicking the word DynamicSetting is an 
especially quick way to do this.)

In[14]:= 2 + DynamicSetting@Slider@DDDynamicSetting@Slider@DD

Type Ctrl+Shift+Enter (Command+Return on Mac), and the control expression will be trans-
formed in place into an actual control. (Note that Ctrl+Shift+Enter is not the normal Shift+Enter 
used for evaluating input.)

In[14]:= 2 +

Evaluating the input cell with Shift+Return will then give the desired result.

In[15]:= 2 +

Out[15]= 2.5

All the arguments of Slider can be used to change the initial value, range, and step size.

Start with this input expression.

In[16]:= ExpandAH1 + xLDynamicSettingASlider@5,81,50,1<DEE

Out[16]= H1 + xL

Then evaluate in place (Ctrl+Shift+Enter) to transform the text command into a slider.

In[17]:= ExpandBH1 + xL F

Out[17]= 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

130     Dynamic Interactivity



Of course, this works with other kinds of controls as well. 

In[18]:= ExpandAH1 + xLDynamicSettingAPopupMenuA5,TableAi,9i,50=EEEE

Out[18]= H1 + xL
5

This is the result after evaluating in place.

In[19]:= ExpandBH1 + xL
5

F

Out[19]= 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

Note  that  the  control  expressions  do  not  contain  a  dynamic  reference  to  a  variable  as  they

normally  would  (see  "Introduction  to  Dynamic").  Controls  used  in  input  expressions  as

described here  are  static,  inert  objects,  much like  a  textual  command.  They are  not  linked to

each other, and nothing happens when you move one, except that it moves. Basically they are

simply recording their current state, for use when you evaluate the input line. 

Complex Templates in Input Expressions

It is possible to use whole panels containing multiple controls in input expressions. Constructing

such  panels  is  more  complex  than  simply  wrapping  DynamicSetting  around  a  single  control,

because you have to specify how the various control values should be assembled into the value

returned when the template is evaluated. 

The function Interpretation is used to assemble a self-contained input template object, which

may contain many internal parts that interact with each other through dynamic variables. The

arguments are Interpretation@variables, body, returnvalueD.

The first argument gives a list of local variables with optional initializers in the same format as

Module  or  DynamicModule.  (In  fact,  Interpretation  creates  a  DynamicModule  in  the  output.

See "Introduction to Dynamic".)

The  second  argument  is  typeset  to  become  the  displayed  form  of  the  interpretation  object.

Typically it contains formatting constructs and controls with dynamic references to the variables

defined in the first argument.

Dynamic Interactivity     131



The third argument is the expression that will be used as the value of the interpretation object

when it is given as input. Typically this is an expression involving the variables listed in the first

argument.

Interpretation@e,exprD an object which displays as e, but is interpreted as the 
unevaluated form of expr if supplied as input

Interpretation@
8x=x0,y=y0,…<,e,exprD

allows local variables in e and expr

Object that displays as one expression and evaluates as another.

Evaluating the following input cell creates an output cell containing a template for the Plot 
command.

In[20]:= Interpretation@8f = Sin@xD, min = 0, max = 2 Pi<,
Panel@Grid@8

8Style@"Plot", BoldD, SpanFromLeft<,
8"Function:", InputField@Dynamic@fDD<,
8"Min:", InputField@Dynamic@minDD<, 8"Max:", InputField@Dynamic@maxDD<<DD,

Plot@f, 8x, min, max<DD

Out[20]=

Plot

Function: Sin@xD

Min: 0

Max: 2 p

This template can be copied and pasted into an input cell, and the values edited as you like. 
Shift+Return evaluation of the input cell generates a plot.

In[21]:=

Plot

Function: Cos@xD

Min: 0

Max: 4 p

Out[21]=

In the following more sophisticated example, the variable definite is used to communicate 
between the controls in the template, dimming the min and max value fields when indefinite 
integration is selected.

132     Dynamic Interactivity



In the following more sophisticated example, the variable definite is used to communicate 
between the controls in the template, dimming the min and max value fields when indefinite 
integration is selected.

In[1]:= InterpretationA9f = x2, var = x, definite = False, min = a, max = b=, Panel@Grid@8
8Style@"Integrate", BoldD, SpanFromLeft<,
8"Function:",
InputField@Dynamic@fD, FieldSize Ø 8820, Infinity<, 81, Infinity<<D<,

8"Variable:", InputField@Dynamic@varDD<,
8Row@8Checkbox@Dynamic@definiteDD, "Definite integral"<D, SpanFromLeft<,
8"Min:", InputField@Dynamic@minD, Enabled Ø Dynamic@definiteDD<,
8"Max:", InputField@Dynamic@maxD, Enabled Ø Dynamic@definiteDD<<DD,

If@definite, Integrate@f, 8var, min, max<D, Integrate@f, varDDE

Out[1]=

Integrate

Function: x2

Variable: x

Definite integral

Min: a

Max: b

This copy of the previous template gives the integral upon evaluation.

In[23]:=

Integrate

Function: x3

Variable: x

Definite integral

Min: a

Max: b

Out[23]=
x4

4

Dynamic Interactivity     133



As with the single controls in earlier sections, these input templates can be copied and pasted

into new input cells, and they can be freely intermixed with textual input.

To test the result of integration, wrap the template with D to take the derivative and verify that 
the result is the same as the starting point.

In[24]:= DB

Integrate

Function: x2

Variable: x

Definite integral

Min: a

Max: b

, xF

Out[24]= x2

These examples are fairly  generic:  they look like dialog boxes in  a  lot  of  programs.  But  there

are  some  important  differences.  For  example,  note  the  x2  in  the  input  field.  Input  fields  in

Mathematica  may  look  like  those  in  other  programs,  but  the  contents  can  be  any  arbitrary

typeset mathematics, or even graphics or other controls. (See the next section to learn how to

write templates that can be nested inside each other.)

Mathematica templates (and dialog boxes) are also not restricted to using a regular grid of text

fields.

Here is a simple definite integration template laid out typographically.

In[25]:= InterpretationA9f = x2, var = x, min = a, max = b=, PanelARowA9

UnderoverscriptAStyleA"Ÿ", 36E,
InputField@min, FieldSize Ø TinyD, InputField@max, FieldSize Ø TinyDE,

InputField@f, FieldSize Ø 8810, Infinity<, 81, Infinity<<D,
" „ ", InputField@var, FieldSize Ø TinyD=EE,

Integrate@f, 8var, min, max<DE

Out[25]= Ÿ
a

b

x2 „ x

Note that you do not need a template to evaluate integrals; they can be entered as plain 
typeset math formulas using keyboard shortcuts (as described in "Entering Two-Dimensional 
Expressions") or the Basic Input palette.

134     Dynamic Interactivity



Note that you do not need a template to evaluate integrals; they can be entered as plain 
typeset math formulas using keyboard shortcuts (as described in "Entering Two-Dimensional 
Expressions") or the Basic Input palette.

In[26]:= ‡
a

b
x2 „x

Out[26]= -
a3

3
+
b3

3

Whether it is useful to make a template like this or not depends on many things, but the impor-

tant point is that in Mathematica the full range of formatting constructs, including text, typeset

math, and graphics, is available both inside and around input fields and templates.

Advanced Topic: Dealing with Premature Evaluation 
in Templates

Templates  defined  like  those  in  the  previous  section  do  not  work  as  you  might  hope  if  the

variables  given  in  initializers  already  have  other  values  assigned  to  them (for  example,  if  the

variable  x  has  a  value  in  the  previous  section),  or  if  template  structures  are  pasted  into  the

input fields. To deal with evaluation issues correctly, it is necessary to use InputField  objects

that  store  their  values  in  the  form  of  unparsed  box  structures  rather  than  expressions.  (Box

structures  are  like  strings  in  the sense that  they represent  any possible  displayable  structure,

whether it is a legal Mathematica input expression or not.)

This defines a template.

In[27]:= InterpretationA9
f = MakeBoxesAx2E,
var = MakeBoxes@xD,
definite = False,
min = MakeBoxes@aD,
max = MakeBoxes@bD=,

Panel@Grid@8
8Style@"Integrate", BoldD, SpanFromLeft<,
8"Function:",
InputField@Dynamic@fD, Boxes, FieldSize Ø 8820, Infinity<, 81, Infinity<<D<,

8"Variable:", InputField@Dynamic@varD, BoxesD<,
8Row@8Checkbox@Dynamic@definiteDD, "Definite integral"<D, SpanFromLeft<,
8"Min:", InputField@Dynamic@minD, Boxes, Enabled Ø Dynamic@definiteDD<,
8"Max:", InputField@Dynamic@maxD, Boxes, Enabled Ø Dynamic@definiteDD<<DD,

With@8f = ToExpression@fD, var = ToExpression@varD,
min = ToExpression@minD, max = ToExpression@maxD<,

If@definite, Integrate@f, 8var, min, max<D, Integrate@f, varDDDE

Dynamic Interactivity     135



Out[27]=

Integrate

Function: x2

Variable: x

Definite integral

Min: a

Max: b

This copy of the previous template gives the integral upon evaluation.

In[28]:=

Integrate

Function: x2

Variable: x

Definite integral

Min: a

Max: b

Out[28]=
x3

3

This template will work properly even under what might be considered abuse. For example, you 
can nest it repeatedly to integrate a function several times.

In[29]:=

Integrate

Function: x2

Variable: x

Definite integral

Min: a

Max: b

Out[29]=
x3

3

Note how the InputField  grows automatically to accommodate larger contents. (This behavior

is controlled by the FieldSize option.)

136     Dynamic Interactivity



Note how the InputField  grows automatically to accommodate larger contents. (This behavior

is controlled by the FieldSize option.)

The typographic template can also be made robust to evaluation.

In[30]:= InterpretationA9
f = MakeBoxesAx2E,
var = MakeBoxes@xD,
definite = False,
min = MakeBoxes@aD,
max = MakeBoxes@bD=, PanelARowA9

UnderoverscriptAStyleA"Ÿ", 36E,
InputField@min, Boxes, FieldSize Ø TinyD,
InputField@max, Boxes, FieldSize Ø TinyDE,

InputField@f, Boxes, FieldSize Ø 8810, Infinity<, 81, Infinity<<D,
" „ ", InputField@var, Boxes, FieldSize Ø TinyD=EE,

With@8f = ToExpression@fD, var = ToExpression@varD, min = ToExpression@minD,
max = ToExpression@maxD<, Integrate@f, 8var, min, max<DDE

Out[30]= Ÿ
a

b

x2 „ x

And it can be nested, though this kind of thing can easily get out of hand, so it is probably more 
fun than useful.

In[31]:= Ÿ
a

b

x2 „ x

Out[31]= -
a3

3
+
b3

3

Dynamic Interactivity     137



Graphics as Input

Graphic objects, including the output of Graphics, Graphics3D, plotting commands, and graph-

ics  imported from external  image files,  can all  be used as input  and freely mixed with textual

input. There are no arbitrary limitations in the mixing of graphics, controls, typeset mathemat-

ics, and text.

Evaluate a simple plot command.

In[32]:= Plot@Sin@xD, 8x, 0, 2 Pi<D

Out[32]=

Then click to place the insertion point just to the left of the plot and type "Table@". 

In[33]:= TableB
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

138     Dynamic Interactivity



Complete the command by clicking and typing to the right of the plot, then evaluating.

In[2]:= TableB
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

, 85<F

Out[2]=

Notice how the plot appears in several different sizes depending on its context. There are three

standard automatic plot sizes, the largest if the plot is by itself in an output, smaller if used in a

list or table output, and smallest if in a textual input line. This is mainly a convenience to make

graphical input less bulky. You are always free to resize the graphic by clicking it and using the

resize handles, or by including an explicit ImageSize option.

You can import a bitmap image from a file.

In[29]:= Import@"ExampleDataêpeacock.tif"D

Out[29]=

Dynamic Interactivity     139



Then copy/paste this into an input cell to do simple image processing on it.

In[30]:= ê. HoldPattern@Image@coords_, rest___DD ß Image@255 - coords, restD

Out[30]=

The ability to use graphics as input allows for remarkably rich input, as in this simple 
Manipulate example.

In[32]:= ManipulateB ê. HoldPattern@Image@coords_, rest___DD ß

Image@Map@Mod@Ò, 256D &, coords + i, 83<D, restD, 8i, 0, 255, 1<F

Out[32]=

i

140     Dynamic Interactivity



Views

Mathematica supports a variety of objects that can be used to organize and display information

in output. Known collectively as views, these objects range from the simple OpenerView  to the

complex and versatile TabView.

All  have in common that they take a first  argument containing a list  of  expressions to be dis-

played as separate panes in the view, and an optional second argument to determine which one

should be displayed at the moment. All  provide a user interface allowing you to change which

pane is displayed: they are intended as interactive data-viewers.

The individual views are described first, then options and techniques common to all or most of

them.

OpenerView

OpenerView  allows  you  to  open  and  close  a  pane  containing  an  arbitrary  expression.

OpenerView  is always given a list of two elements: the first element becomes the title (always

visible) and the second becomes the contents that are revealed by clicking the disclosure trian-

gle. In this example, click the triangle to reveal the word "Contents".

In[1]:= OpenerView@8"Title", "Contents"<D

Out[1]= Title

This control  can be used to create objects that mimic the way disclosure triangles are used in

other applications, for example, in the Finder (Macintosh) or Explorer (Windows). Typically the

second element is bigger than the first, as in this example.

In[2]:= OpenerView@8"Plot", Plot@Sin@xD, 8x, 0, 2 Pi<D<D

Out[2]= Plot

Dynamic Interactivity     141



A column or grid of more than one OpenerView  objects lets you browse a large amount of data

in a compact format.

In[3]:= Column@
Map@OpenerView@8Ò, DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD<D &,
CountryData@"GroupOf8"DDD

Out[3]=

Canada

France

1970 1980 1990 2000
0

5.0µ 1011

1.0µ 1012

1.5µ 1012

2.0µ 1012

Germany

Italy

Japan

Russia

UnitedKingdom

UnitedStates

The title is not limited to being a plain string: any arbitrary typeset expression or graphic can

be used. Here, for example, is an outline of the country with its name as the title line.

142     Dynamic Interactivity



In[4]:= Column@Map@
OpenerView@8Row@8Rasterize@Show@CountryData@Ò, "Shape"D, ImageSize Ø 840, 40<D,

Background Ø NoneD, Ò<D, DateListPlot@
CountryData@Ò, 88"GDP"<, 81970, 2005<<DD<D &, CountryData@"GroupOf8"DDD

Out[4]=

Canada

France

Germany

Italy

Japan

1970 1980 1990 2000
0

1µ 1012

2µ 1012

3µ 1012

4µ 1012

5µ 1012

Russia

UnitedKingdom

UnitedStates

One advantage of a column like this over a TabView, for example, is that you can have two or

more panes open at once, while other views typically let you see only one pane at a time.

Like other Views, OpenerView  can be nested arbitrarily deeply. This example turns any expres-

sion into a nested tree of openers in which the closed state is the head of the expression and

the open state is a column of openers for each argument.

In[5]:= OpenerTree@expr_D := OpenerView@
8OpenerTree@Head@exprDD, Column@Map@OpenerTree, Apply@List, exprDDD<D;

OpenerTree@expr_D := expr ê; HLength@exprD === 0L

Dynamic Interactivity     143



Here is a simple application shown with all the openers in the open state.

In[7]:= OpenerTree@Ha + bL Hc + dLD

Out[7]= Times

Plus

a
b

Plus

c
d

Here is a more deeply nested application with just a few opened.

In[8]:= OpenerTree@Integrate@1 ê H1 - x^9L, xDD

Out[8]= Times

1

18

Plus

Times

Times

Times

Log

Plus

1
x

Power

x
2

Times

Times

Times

Times

Times

For more information and a detailed listing of options, see OpenerView.

TabView

TabView  is a rich object capable of creating surprisingly interesting user interfaces. Given a list

of expressions, it  returns a panel with a row of tabs that allow you to look at the expressions

one at a time.

144     Dynamic Interactivity



By  default,  the  tabs  are  numbered  sequentially.  In  the  output  below,  click  the  tabs  to  flip

between panes.

In[9]:= TabView@840!, Plot@Sin@xD, 8x, 0, 2 Pi<D, Factor@x^14 - 1D<D

Out[9]=

H-1 + xL H1 + xL I1 - x + x2 - x3 + x4 - x5 + x6M I1 + x + x2 + x3 + x4 + x5 + x6M

1 2 3

More descriptive tab labels can be added using the form label -> contents.

In[10]:= TabView@8"Factorial" Ø 40!,
"Plot" Ø Plot@Sin@xD, 8x, 0, 2 Pi<D, "Factor" Ø Factor@x^14 - 1D<D

Out[10]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Factorial Plot Factor

Dynamic Interactivity     145



The contents can of course be programmatically generated. Here a Table  command is used to

generate ten different plots.

In[11]:= TabView@Table@Plot@Sin@n xD, 8x, 0, 2 Pi<D, 8n, 10<DD

Out[11]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6 7 8 9 10

The tab labels are not restricted to simple strings. Here typeset mathematical  expressions are

used as tab labels.

In[10]:= TabView@
HHoldForm@Integrate@1 ê H1 - x^ÒL, xDD Ø Integrate@1 ê H1 - x^ÒL, xDL & êü Range@6DD

Out[10]=

-Log@1 - xD

‡
1

1-x1
„x ‡

1

1-x2
„x ‡

1

1-x3
„x ‡

1

1-x4
„x ‡

1

1-x5
„x ‡

1

1-x6
„x

146     Dynamic Interactivity



This example uses the shapes of countries as tab labels, with a plot of each country's GDP in its

pane.

In[13]:= TabView@Rasterize@Show@CountryData@Ò, "Shape"D, ImageSize Ø 840, 40<D,
Background Ø NoneD Ø DateListPlot@
CountryData@Ò, 88"GDP"<, 81970, 2005<<DD & êü CountryData@"GroupOf8"DD

Out[13]=

1970 1980 1990 2000
0

1µ 1012

2µ 1012

3µ 1012

4µ 1012

5µ 1012

When  arranged  across  the  top,  tab  labels  need  to  be  kept  reasonably  short.  The

ControlPlacement option can be used to move the tabs to any side of the panel.

In[14]:= TabView@
Row@8Rasterize@Show@CountryData@Ò, "Shape"D, ImageSize Ø 840, 40<D, Background Ø

NoneD, Ò<D Ø DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD & êü
CountryData@"GroupOf8"D, ControlPlacement Ø LeftD

Dynamic Interactivity     147



Out[14]=

1970 1980 1990 2000
0

1µ 1012

2µ 1012

3µ 1012

4µ 1012

5µ 1012
Canada

France

Germany

Italy

Japan

Russia

UnitedKingdom

UnitedStates

The fact that tab labels can be absolutely anything, including typeset expressions, graphics, and

dynamic output, makes TabView  considerably more flexible than you might at first think. Here,

for example, is a TabView  where each pane includes a slider that allows you to adjust the label

of  the  tab  for  that  pane.  (Dynamic  and  DynamicModule  are  explained  in  "Introduction  to

Dynamic".)

148     Dynamic Interactivity



In[15]:= DynamicModule@8values = RandomInteger@80, 100<, 810<D<, TabView@Table@With@8i = i<,
Dynamic@values@@iDDD Ø Slider@Dynamic@values@@iDDD, 81, 100, 1<DD, 8i, 10<DDD

Out[15]=

49 90 3 79 57 88 53 64 5 18

The  "Controlling  the  Currently  Displayed  Pane"  section  contains  further  examples  of  dynamic

tab labels.

TabView objects can be nested to arbitrary depth, allowing very large amounts of content to be

presented  in  compact  form.  Here,  for  example,  is  a  copy  of  the  Mathematica  Preferences

dialog box, which is implemented as a set of nested TabView  objects. The fact that a complex

dialog box like this can be copied and pasted into a document without loss of functionality is an

example of the power of Mathematica's symbolic dynamic interface technology.

Note  that  this  is  a  fully  functional  copy,  so  if  you  change  anything  here  it  will  in

fact immediately change your preference settings. 

Dynamic Interactivity     149



Out[29]=

User Interface Settings

Language for menus and dialog boxes: English

HLanguages other than Englishmay require special licensesL

Ruler units: Inches

Recently opened files history length: 15

Show openêclose icon for cell groups

Flash cursor tracker when insertion point moves unexpectedly

Enable drag-and-drop text editing

Enable blinking cell insertion point

Automatically re-fit 3D graphics after rotation

Message and Warning Actions

Minor user interface warnings: Beep

Serious user interface errors: Beep and Put up Dialog Box

User interface log messages: Print to Console

Formatting error indications: Highlight and tooltip

Reset to Defaults

Interface Evaluation Appearance System Parallel Internet Connectivity Advanced

For more information and a detailed listing of options, see TabView.

150     Dynamic Interactivity



MenuView

MenuView  is much like TabView, except that it uses a popup menu rather than a row of tabs to

select  which  pane  is  displayed.  These  two  examples  are  identical  to  the  first  two  examples

given in the "TabView" section; we have simply substituted the word MenuView for TabView.

In[16]:= MenuView@840!, Plot@Sin@xD, 8x, 0, 2 Pi<D, Factor@x^14 - 1D<D

Out[16]=

1

815915283247897734345611269596115894272000000000

MenuView  supports  the  same  label -> value  syntax  as  TabView,  allowing  you  to  specify  more

descriptive labels.

In[17]:= MenuView@8"Factorial" Ø 40!,
"Plot" Ø Plot@Sin@xD, 8x, 0, 2 Pi<D, "Factor" Ø Factor@x^14 - 1D<D

Out[17]=

Factorial

815915283247897734345611269596115894272000000000

Dynamic Interactivity     151



In  the  case  of  TabView,  all  the  labels  are  displayed  simultaneously,  which  means  there  is  a

fairly  small  practical  limit  to  the  number  of  panes  you  can  have.  MenuView  displays  only  one

label at a time, allowing you to use many more. For example, in the "TabView" section above

there is a nice example with graphical tabs for the G8 countries. With MenuView  the same thing

can be done for as many as 237 countries.

In[18]:= MenuView@
Row@8Rasterize@Show@CountryData@Ò, "Shape"D, ImageSize Ø 840, 40<D, Background Ø

NoneD, Ò<D Ø
Dynamic@DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DDD & êü

CountryData@D, ImageSize Ø AutomaticD

Out[18]=

Afghanistan

1970 1980 1990 2000

2µ 109

3µ 109

4µ 109

5µ 109

6µ 109

For more information and a detailed listing of options, see MenuView.

SlideView

SlideView is basically much like TabView or MenuView, except with a set of first/previous/next-

/last buttons for navigating the panes.

152     Dynamic Interactivity



In[19]:= SlideView@840!, Plot@Sin@xD, 8x, 0, 2 Pi<D, Factor@x^14 - 1D<D

Out[19]=

 « ▸ 

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The  number  of  panes  can  be  arbitrarily  large,  but  navigation  is  limited  to  stepping  through

them like a slide show.

In[20]:= SlideView@
Dynamic@Column@8Rasterize@Show@CountryData@Ò, "Shape"D, ImageSize Ø 840, 40<D,

Background Ø NoneD, Ò,
DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD<DD & êü

CountryData@D, ImageSize Ø AutomaticD

Out[20]=

 « ▸ 

Angola

1970 1980 1990 2000

5.0µ 109

1.0µ 1010

1.5µ 1010

2.0µ 1010

For more information and a detailed listing of options, see SlideView.

Dynamic Interactivity     153



PopupView

PopupView  might  seem  at  first  similar  to  MenuView,  but  they  are  actually  quite  different.

MenuView  and TabView  both, in effect, have two items representing each pane: a label and the

actual  contents  of  the  pane.  PopupView,  on  the  other  hand,  has  only  one  item per  pane:  the

main contents of the pane.

Given a list of expressions, PopupView displays them as a popup menu.

In[28]:= PopupView@Table@i!, 8i, 20<DD

Out[28]= 1

Readers  familiar  with  the  PopupMenu  control  may  wonder  how  this  is  different,  since  both

appear  to  do  basically  the  same  thing.  The  difference  is  largely  one  of  intent:  PopupMenu  is

intended  as  a  control  that  affects  something  when  an  item is  selected;  it  has  a  required  first

argument that holds a variable that tracks the currently selected item. PopupView, on the other

hand,  is  intended  simply  as  a  way  of  displaying  information,  without  necessarily  having  any

effect when a different pane is selected.

As will  other controls and views in Mathematica,  PopupView  fully supports arbitrary typeset or

graphical content.

In[29]:= PopupView@824!, Plot@Sin@xD, 8x, 0, 2 Pi<D, Factor@x^6 - 1D<D

Out[29]=
1 2 3 4 5 6

-0.5

0.5

For more information and a detailed listing of options, see PopupView.

154     Dynamic Interactivity



FlipView

Dynamic Interactivity     155

FlipView  is  unusual  in  that  it  provides  no  visible  user  interface  around  the  contents  of  its

panes. It does, however, provide a mechanism for changing the pane being displayed. Clicking

anywhere in the contents of the current pane flips the display to the next one.

In[30]:= FlipView@840!, Plot@Sin@xD, 8x, 0, 2 Pi<D, Factor@x^14 - 1D<D

Out[30]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

FlipView  is also unusual in that instead of having a fixed overall size large enough to hold the

largest  pane,  it  is  always  exactly  as  large  as  the  currently  displayed  pane.  This  is,  in  fact,

simply a difference in the default value of the ImageSize option for FlipView  versus the other

views, as explained in the "Controlling whether a View Changes Size" section.

Controlling the Currently Displayed Pane

All  View  objects  support  an  optional  second  argument  that  specifies  which  pane  is  currently

visible.  Given  a  literal  value,  this  argument  determines  the  initially  displayed  pane  when  the

object  is  first  created.  Given  a  Dynamic  variable,  it  can  be  used  to  externally  influence,  or  to

track, the currently displayed pane.

The set of values in the second argument that corresponds to the displayed panes depends on

the view.

OpenerView normally starts in the closed state.

In[31]:= OpenerView@8"Title", "Contents"<D

Out[31]= Title



156     Dynamic Interactivity

Its two panes are referred to with True (open) and False  (closed), so this example will start in

the open state.

In[32]:= OpenerView@8"Title", "Contents"<, TrueD

Out[32]= Title

Contents

TabView's panes are by default referred to by index number

In[33]:= TabView@Table@i!, 8i, 10<D, 6D

Out[33]=
720

1 2 3 4 5 6 7 8 9 10

In[34]:= TabView@Map@Ò Ø DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD &,
CountryData@"GroupOf8"DD, 4D

Out[34]=

1970 1980 1990 2000
0

5.0µ 1011

1.0µ 1012

1.5µ 1012

Canada France Germany Italy Japan Russia UnitedKingdom UnitedStates

  



Dynamic Interactivity     157

Sometimes it  is  desirable  to  give  symbolic  identifiers  to  the  panes  in  place  of  index numbers,

allowing you to refer to them by name. This can be done using the form 8id, label -> contents<.

For example, here "Japan" is used rather than "6" in the second argument.

In[35]:= TabView@Map@8Ò, Ò Ø DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD< &,
CountryData@"GroupOf8"DD, "Japan"D

Out[35]=

1970 1980 1990 2000
0

1µ 1012

2µ 1012

3µ 1012

4µ 1012

5µ 1012

Canada France Germany Italy Japan Russia UnitedKingdom UnitedStates

Using a Dynamic  variable in the second argument allows you to control the currently displayed

pane  from a  separate  control.  (Dynamic  and  DynamicModule  are  explained  in  "Introduction  to

Dynamic".)  For  example,  here a  slider  is  added that  allows you to  flip  through the tabs.  Note

that the linkage is automatically bidirectional: if  you click one of the tabs, the slider moves to

the corresponding position.

In[38]:= DynamicModule@8index = 1<,
Column@8Slider@Dynamic@indexD, 81, 8, 1<D,

TabView@Map@Ò Ø DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD &,
CountryData@"GroupOf8"DD, Dynamic@indexDD<DD

Out[38]=

1970 1980 1990 2000
0

1µ 1012

2µ 1012

3µ 1012

4µ 1012

5µ 1012

Canada France Germany Italy Japan Russia UnitedKingdom UnitedStates

  



Using a Dynamic  variable in the second argument allows you to control the currently displayed

pane  from a  separate  control.  (Dynamic  and  DynamicModule

Controlling whether a View Changes Size

158     Dynamic Interactivity

In  the  previous  example,  having  an  index  number  to  refer  to  the  panes  is  good,  as  it  makes

linkage to a numerical Slider easy. If, on the other hand, you want to have a text field where

you can enter  the country name, having named panes is  more convenient.  This  example pro-

vides a text field where you can enter a country name directly.

In[39]:= DynamicModule@8country = "Canada"<,
Column@8InputField@Dynamic@countryD, StringD, MenuView@

Map@8Ò, Ò Ø Dynamic@DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DDD< &,
CountryData@DD, Dynamic@countryD, ImageSize Ø AutomaticD<DD

Out[39]=

Tuvalu

Tuvalu

1970 1980 1990 2000
0

5.0µ 106

1.0µ 107

1.5µ 107

2.0µ 107

2.5µ 107

Controlling whether a View Changes Size

Views  always  display  one  of  several  alternate  panes.  In  determining  the  overall  size  of  the

View,  there  are  two  obvious  alternatives:  make  the  View  big  enough  to  hold  the  currently

displayed  pane,  or  make  it  big  enough  so  that  it  never  has  to  change  size  when  switching

between panes (i.e., as big as the biggest one in each dimension).

By  default  all  Views,  other  than  OpenerView  and  FlipView,  are  made  large  enough  to  never

change  size.  (OpenerView  in  particular  would  make  little  sense  if  it  did  not  get  bigger  when

opened.)

The  behavior  of  any  View  can  be  changed  using  the  ImageSize  option.  ImageSize -> All

means  make  the  View  as  large  as  the  largest  pane,  while  ImageSize -> Automatic  means

make  the  View  only  as  large  as  the  currently  displayed  frame,  potentially  changing  size  any

time the View is switched to a new pane. (You can also specify a fixed numerical ImageSize, in

which case the View will attempt to fit its contents into the specified overall size.)



Which behavior is best depends on the situation. In general, tab views and similar controls used

in applications other than Mathematica  rarely change size, so if  you are trying to make some-

thing that looks and acts like a traditional hard-coded application, ImageSize -> All is best. On

the other hand, using ImageSize -> Automatic allows you to take advantage of the fact that, in

Mathematica,  dialog  boxes  and  controls  are  not  fixed  objects.  A  great  deal  of  freedom  and

flexibility is possible precisely because these objects can change size.

Dynamic Interactivity     159

Compare these two examples (ImageSize -> All  is  the default;  it  is  included only for  clarity).

The first one is always big, but stays the same size. The second one is only as big as it needs to

be, and thus changes size.

In[40]:= TabView@Table@H50 iL!, 8i, 10<D, ImageSize Ø AllD

Out[40]=

30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000

1 2 3 4 5 6 7 8 9 10

In[41]:= TabView@Table@H50 iL!, 8i, 10<D, ImageSize Ø AutomaticD

Out[41]=
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000

1 2 3 4 5 6 7 8 9 10

The ImageSize option works this way for all View objects.

Which behavior is best depends on the situation. In general, tab views and similar controls used

in applications other than Mathematica  rarely change size, so if  you are trying to make some-

thing that looks and acts like a traditional hard-coded application, ImageSize -> All is best. On

the other hand, using ImageSize -> Automatic allows you to take advantage of the fact that, in

Mathematica,  dialog  boxes  and  controls  are  not  fixed  objects.  A  great  deal  of  freedom  and

flexibility is possible precisely because these objects can change size.

Dynamic Content in Views

This  section assumes that  you are familiar  with the Dynamic  mechanism (see "Introduction to

Dynamic").

All  the  View  objects  fully  support  Dynamic  content  in  any  positions  where  it  makes  sense.

Consider this MenuView example.

MenuView@Map@Ò Ø DateListPlot@CountryData@Ò, 88"GDP"<, 81970, 2005<<DD &,
CountryData@DD, ImageSize Ø AutomaticD



The trade-off is that each new country selected computes the GDP plot on the fly. Fortunately

this  generally  happens  so  fast  as  to  be  unnoticeable.  Errors  for  a  particular  country  are  dis-

played only if that country is selected. 

160     Dynamic Interactivity

In  this form,  the example computes  in advance all  237 GDP plots,  generating errors for  some

countries  where  data  is missing,  and  doing far  more  computation  than necessary,  since it  is

unlikely  anyone will  try to look at  every single country.  The code takes a long time to  evaluate

and wastes a lot of memory.

By  simply  wrapping Dynamic  around  the  contents  of  each page,  the input  evaluates  almost

instantly  and produces an output that occupies very little memory.

In[42]:= MenuView@Map@Ò Ø Dynamic@DateListPlot@CountryData@ Ò, 88"GDP"<, 81970, 2005<<DDD &,
CountryData @DD, ImageSize Ø AutomaticD

Out[42]=

Afghanistan

1970 1980 1990 2000

2 µ 10 9

3 µ 10 9

4 µ 10 9

5 µ 10 9

6 µ 10 9

The  trade-off  is that  each  new country selected computes  the GDP plot  on the fly.  Fortunately

this  generally  happens  so fast  as  to  be unnoticeable.  Errors  for  a particular  country  are  dis -

played  only if that country is selected. 

Note  that  with the  setting ImageSize-> All (the default  for all  views except OpenerView  and

FlipView),  every pane is formatted once when the object is first created,  in order  to  determine

the  overall  size  of  the  view object.  You  can  avoid  this  by  setting  the ImageSize  option  to

Automatic or to a fixed numerical size.

(The  astute reader will  notice a subtlety here.  With the setting ImageSize-> All and  dynamic

content  in  currently  invisible panes,  it  would  theoretically  be  necessary  to  continually  update

the  values of all  the hidden dynamics,  since the size of  the  View as a whole should depend  on

the  size of  the largest pane,  even if  it  is not  currently  being displayed.  An intentional  decision

was  made not  to do such updating of  hidden panes.  As a result,  a  View with ImageSize-> All

can  in fact  change size when a  new pane is selected, if that  pane contains dynamic content  that

has  changed size since the last  time it  was displayed.  The alternative would be for  the  View  to

change  size  mysteriously  when  activity  in  a  hidden  pane  caused that  hidden  pane  to  change

size.  This would be peculiar and of  little conceivable use.)

  



An important  property  of  Views  is  that  currently  hidden  panes  are  not  updated.  Consider  this

example.

Dynamic Interactivity     161

In  the case of TabView, dynamic tab labels can be used to implement a variety of special  behav -

iors.  In  this  example,  the  currently  selected  tab  is  highlighted  in  a  custom-defined way,  by

making  the  labels  dynamically  dependent  on  the  variable  that  tracks  the  currently  selected

pane.

In[43]:= DynamicModule @8j<, TabView@Table@With@8i =i<, Graphics@Dynamic@
If@i ===j,
8 Disk@D, White, Inset@iD<,
8 Circle@D, Inset@iD<DD, ImageSize Ø 25, PlotRangePadding Ø.5DØ

Plot@Sin@i xD, 8x, 0, 2 Pi<DD, 8i, 10<D, Dynamic@jDDD

Out[43]=

1 2 3 4 5 6

- 1.0

- 0.5

0.5

1.0

1 2 3 4 5 6 7 8 9 10

An  important  property  of  Views  is that  currently  hidden panes  are not  updated.  Consider this

example.

In[44]:= OpenerView@
8"Mouse Position", Column@8"Mouse Position", Dynamic@MousePosition@DD<D < D

Out[44]= Mouse Position

When  the output is in the open state,  the current  position of  the mouse pointer is displayed  and

continuously  updated,  consuming a  certain amount of  CPU time. However,  when the output  is

in  the closed state,  the mouse position is no longer  tracked and no CPU time is used. (This is  of

course  of  more  concern if  the  contents  are  something  more  compute-intensive  than  simply

displaying  the mouse position.)

This  property  allows  you  to  do  things  like  build large,  complex TabViews  in  which  expensive

computations  are done  in each pane of  the view,  without  incurring the cost of  keeping all  the

panes  updated all  the time.



162     Dynamic Interactivity

Views  versus Controls

There  are two classes of  functions in Mathematica that represent  relatively low-level  user  inter-

face  objects: Views and Controls.  This tutorial  describes the Views class of functions, but  there

is  considerable overlap with Controls in some cases.

Views  are designed to present  multiple panes of  data and provide a user  interface for  switching

among them,  so the logical first argument is the list of  expressions representing the contents  of

the panes.

Controls  are primarily designed to influence the value of  a variable through a Dynamic connec-

tion,  so the first argument of all  control  functions is  the variable representing the value of  the

control.

What  is potentially confusing is that views also  allow you to control  the value of  a variable,  just

like  controls do.  In at  least  one case,  PopupView versus PopupMenu, the functions  are  essen-

tially identical  with the arguments reversed.

In[45]:= PopupView @81, 2, 3, 4<, Dynamic@popPositionD D

Out[45]= 1

In[46]:= PopupMenu @Dynamic@popPositionD, 81, 2, 3, 4 < D

Out[46]= 1

Why  have both?  In the case of PopupView and PopupMenu it  is  simply for  consistency with  the

other  View and Control functions,  though there is the convenience that  the second argument  of

PopupView is optional  (since very often you do not  need to provide any external control  of  the

currently  displayed pane).  In the case of PopupMenu,  the  only  purpose in creating the control is

for  it to control  a variable,  so the first argument is of  course not optional.

Other  than the set  described in the next  section,  views  do not  correspond  quite so directly with

any control objects. It is, however, useful  to keep in mind that views can,  through their  second

argument,  be  used  essentially  as control  objects:  they  can control  and  be  controlled  by  the

value of  a variable, that is simply not their only purpose.



Dynamic Interactivity     163

FlipView versus PaneSelector versus Toggler

There are three objects that appear (and in fact are) very similar but not identical: FlipView,

PaneSelector, and Toggler. Each of these objects takes a list of expressions and displays one

of  them at  a  time.  They  differ  in  the  details  of  their  argument  order  and  click  behavior.  (But

mainly they differ in their intended use more so than in their actual behavior.)

FlipView  and PaneSelector take identical arguments: a list of expressions and a number that

specifies  which  pane  should  be  displayed.  The  difference  is  that  clicking  anywhere  in  a

FlipView  flips  to the next  pane,  while  clicking in a PaneSelector  allows you to edit  the con-

tents of the currently displayed pane (and there is no user interface to flip to any other pane).

In[47]:= FlipView@Table@8i, i!<, 8i, 10<D, 6D

Out[47]= 86, 720<

In[48]:= PaneSelector@Table@8i, i!<, 8i, 10<D, 6D

Out[48]= 86, 720<

Toggler  behaves  exactly  like  FlipView  in  that  it  flips  between  panes  when  clicked,  but  the

arguments are in the opposite order, with the index number first (see previous section for why

this  actually  makes  sense).  Toggler  also  uses  ImageSize -> All  by  default,  while

PaneSelector uses ImageSize -> Automatic.

In[49]:= Toggler@6, Table@8i, i!<, 8i, 10<DD

Out[49]= 81, 1<

For  more  information  and  a  detailed  listing  of  options,  see  FlipView,  PaneSelector,  and

Toggler. 






