
Wolfram Mathematica ® Tutorial Collection

DYNAMIC INTERACTIVITY

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Content authored by:
Theodore Gray and Lou D'Andria

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Introduction to Dynamic . 1

Advanced Dynamic Functionality . 20

Introduction to Manipulate . 44

Advanced Manipulate Functionality . 104

Generalized Input . 126

Views . 141

Introduction to Dynamic

This tutorial describes the principles behind Dynamic, DynamicModule and related functions,

and goes into detail about how they interact with each other and with the rest of Mathematica.

These functions are the foundation of a higher-level function Manipulate that provides a simple

yet powerful way of creating a great many interactive examples, programs, and demonstra-

tions, all in a very convenient, though relatively rigid, structure. If that structure solves the

problem at hand, you need look no further than Manipulate and you do not need to read this

tutorial. However, do continue with this tutorial if you want to build a wider range of structures,

including complex user interfaces.

This is a hands-on tutorial. You are expected to evaluate all the input lines as you

reach them and watch what happens. The accompanying text will not make sense

without evaluating as you read.

The Fundamental Principle of Dynamic

Ordinary Mathematica sessions consist of a series of static inputs and outputs, which form a

record of calculations done in the order in which they were entered.

Evaluate each of these four input cells one after the other.

In[1]:= x = 5;

In[2]:= x2

Out[2]= 25

In[1]:= x = 7;

In[4]:= x2

Out[4]= 49

The first output still shows the value from when x was 5, even though it is now 7. This is, of

course, very useful, if you want to see a history of what you have been doing. However, you

may often want a fundamentally different kind of output, one that is automatically updated to

always reflect its current value. This new kind of output is provided by Dynamic.

Evaluate the following cell; note that the result will be 49 because the current value of x is 7.

Evaluate the following cell; note that the result will be 49 because the current value of x is 7.

In[5]:= DynamicAx2E

In fact it is generally the case that when you first evaluate an input that contains variables

wrapped in Dynamic, you will get the same result as you would have without Dynamic. But if

you subsequently change the value of the variables, the displayed output will change

retroactively.

Evaluate the following cells one at a time, and note the change in the value displayed above.

In[6]:= x = 9;

In[7]:= x = 15;

In[8]:= x = 10;

The first two static outputs are still 25 and 49 respectively, but the single dynamic output now

displays 100, the square of the last value of x. (This sentence will, of course, become incorrect

as soon as the value of x is changed again.)

There are no restrictions on the kinds of values that can go into a dynamic output. Just because

x was initially a number does not mean it cannot become a formula or even a graphic in subse-

quent evaluations. This might seem like a simple feature, but it is the basis for a very powerful

set of interactive capabilities.

Each time the value of x is changed, the dynamic output above is updated automatically. (You
might need to scroll back to see it.)

In[9]:= x = IntegrateB
1

1 - y3
, yF;

In[10]:= x = Plot@Sin@xD, 8x, 0, 2 Pi<D;

In[1]:= x = 0;

Dynamic@exprD an object that displays as the dynamically updated current
value of expr

Basic dynamic expression.

2 Dynamic Interactivity

Dynamic and Controls

Dynamic is often used in connection with controls such as sliders and checkboxes. The full

range of controls available in Mathematica is discussed in "Control Objects"; here sliders are

used to illustrate how things work. The principles of using Dynamic with other controls is basi-

cally the same.

A slider is created by evaluating the Slider function, in which the first argument is the position

and the optional second argument specifies the range and step size, with the default range

from 0 to 1 and the default step size 0.

This is a slider in a centered position.

In[11]:= Slider@0.5D

Out[11]=

Click on the thumb and move it around. The thumb moves, but nothing else happens since the

slider is not connected to anything.

This associates the position of the slider with the current value of the variable x. (This form is
explained in more detail later.)

In[12]:= Slider@Dynamic@xDD

Out[13]=

This creates a new dynamic output of x since the last one has probably scrolled off your screen
by now.

In[14]:= Dynamic@xD

Out[14]= 0.

Drag the last slider around. As the slider moves, the value of x changes and the dynamic output

updates in real time.

The slider also responds to changes in the value of x.

To see this, evaluate this line.

In[15]:= x = 0.8;

Dynamic Interactivity 3

You should see the slider jump, and the dynamic output of x change, simultaneously.

This creates another x slider.

In[16]:= Slider@Dynamic@xDD

Out[16]=

Notice that if you move either of the two sliders you now have, the other one moves in "lock

sync." Both are connected, dynamically and bi-directionally, to the current value of x.

Dynamic and Other Functions

Dynamic and control constructs such as Slider are in many ways just like any other functions

in Mathematica. They can occur anywhere in an output, in tables, and even inside typeset

mathematical expressions. Wherever these functions occur, they carry with them the behavior

of dynamically displaying or changing in real time the current value of the expression or vari-

able they are linked to. Dynamic is a simple building block, but the rest of Mathematica turns it

into a flexible tool for creating nimble, zippy, and often fun little interactive displays.

This makes a table of x sliders, which are updated in sync.

In[2]:= Table@Slider@Dynamic@xDD, 84<D

Out[2]= : , ,

, >

You can combine a slider with a display of its current value in a single output.

In[3]:= 8Slider@Dynamic@xDD, Dynamic@xD<

Out[3]= : , 0.>

4 Dynamic Interactivity

The great power of Dynamic lies in the fact that it can display any function of x just as easily.

In[20]:= 8Slider@Dynamic@xDD, Dynamic@Plot@Sin@10 y xD, 8y, 0, 2 Pi<DD<

Out[20]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Using integer-valued sliders, you can create dynamically updated algebraic expressions.

In[21]:= 9Slider@Dynamic@x1D, 81, 10, 1<D, DynamicAExpandAHa + bLx1EE=

Out[21]= : , a + b>

You can use dynamic expressions with Panel, Row, Column, Grid, and other formatting
constructs.

In[22]:= Panel@Column@8Row@8Slider@Dynamic@xDD, Dynamic@xD<D,
Dynamic@Plot@Sin@10 y xD, 8y, 0, 2 Pi<DD<DD

Out[22]=

0.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Notice that the last example resembles the output of Manipulate. This is no coincidence,

because Manipulate in fact produces a combination of Dynamic, controls, and formatting

constructs, not fundamentally different from what you can do yourself using these lower-level

functions.

Dynamic Interactivity 5

Localizing Variables in Dynamic Output

Here is another copy of a slider connected to a simple plot.

In[23]:= 8Slider@Dynamic@xDD, Dynamic@Plot@Sin@10 y xD, 8y, 0, 2 Pi<DD<

Out[23]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

This is a slider connected to another function.

In[24]:= 8Slider@Dynamic@xDD, Dynamic@Plot@Tan@10 y xD, 8y, 0, 2 Pi<DD<

Out[24]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

If you have both these outputs visible and drag either slider, you will notice that they are com-

municating with each other. Move the slider in one example, and the other example moves too.

This is because you are using the global variable x in both examples. Although this can be very

useful in some situations, most of the time you would probably be happier if these two sliders

could be moved independently. The solution is a function called DynamicModule.

DynamicModule@8x,y,…<,exprD an object which maintains the same local instance of the
symbols x, y, … in the course of all evaluations of Dynamic
objects in expr

DynamicModule@8x=x0,y=y0<,exprD specifies initial values for x, y, …

Localizing and initializing variables for Dynamic objects.

DynamicModule has arguments identical to Module and is similarly used to localize and initialize

variables, but there are important differences in how they operate.

6 Dynamic Interactivity

DynamicModule has arguments identical to Module and is similarly used to localize and initialize

variables, but there are important differences in how they operate.

Here are the same two examples with "private" values of x.

In[25]:= DynamicModule@8x = .5<,
8Slider@Dynamic@xDD, Dynamic@Plot@Sin@10 y xD, 8y, 0, 2 Pi<DD<D

Out[25]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Notice that these two examples now work independently of each other.

In[26]:= DynamicModule@8x = .5<,
8Slider@Dynamic@xDD, Dynamic@Plot@Tan@10 y xD, 8y, 0, 2 Pi<DD<D

Out[26]= : ,
1 2 3 4 5 6

-6

-4

-2

2

4

6

>

Dynamic Interactivity 7

Multiple DynamicModules can be placed in a single output, and they maintain separate values
of the variables associated with their respective areas in the output.

In[27]:= 8DynamicModule@8x = .5<,
8Slider@Dynamic@xDD, Dynamic@Plot@Sin@10 y xD, 8y, 0, 2 Pi<DD<D,

DynamicModule@8x = .5<, 8Slider@Dynamic@xDD,
Dynamic@Plot@Tan@10 y xD, 8y, 0, 2 Pi<DD<D<

Out[27]= :: ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>,

: ,
1 2 3 4 5 6

-6

-4

-2

2

4

6

>>

You might be tempted to use Module in place of DynamicModule, and in fact this would appear

to work at first. However, it is not a good idea for several reasons, which are discussed in more

detail in "Advanced Dynamic Functionality".

DynamicModule does its work in the front end, not in the kernel. It remains unchanged by

evaluation, and when formatted as output, it creates an invisible object embedded in the output

expression which handles the localization. As long as that space of output remains in existence

(i.e., is not deleted), the invisible object representing the DynamicModule will maintain the

values of the variables, allowing them to be used in subsequent evaluations of Dynamic expres-

sions within the scope (area) of the DynamicModule.

If you save a notebook containing a DynamicModule, close that notebook, then later reopen it

in a new Mathematica session, the values of all the local variables will still be preserved and the

sliders inside the DynamicModule will be in the same positions. This will not be the case with

sliders linked to global variables (like the earliest examples in this tutorial), nor with sliders

linked to variables localized with Module instead of DynamicModule. Such variables store their

values in the current Mathematica kernel session, and they are lost as soon as you quit Mathe-

matica.

8 Dynamic Interactivity

If you save a notebook containing a DynamicModule, close that notebook, then later reopen it

in a new Mathematica session, the values of all the local variables will still be preserved and the

sliders inside the DynamicModule will be in the same positions. This will not be the case with

sliders linked to global variables (like the earliest examples in this tutorial), nor with sliders

linked to variables localized with Module instead of DynamicModule. Such variables store their

values in the current Mathematica kernel session, and they are lost as soon as you quit Mathe-

matica.

In addition to localizing variables to particular regions of output, DynamicModule provides

options to automatically initialize function definitions when an expression containing a

DynamicModule is opened, and to clean up values when the expression is closed or deleted.

More details are found in DynamicModule.

The Second Argument of Dynamic

Dynamic connections are by default bi-directional. Sliders connected to a variable move

together because they both reflect and control the value of the same variable. When you drag a

slider thumb, the system constructs and evaluates expressions of the form expr = new, where

expr is the expression given in the first argument to Dynamic and new is the proposed new value

determined by where you have dragged the slider thumb. If the assignment can be done, the

new value is accepted. If the assignment fails, the slider will not move.

These two sliders move in opposite directions when you move the first one. However, trying to
move the second slider gives an error because you cannot assign a new value to the expression
1 - x.

In[1]:= DynamicModule@8x = 0<, 8Slider@Dynamic@xDD, Slider@Dynamic@1 - xDD<D

Out[1]= : , >

You can keep an arbitrary expression in the first argument of Dynamic, but change the dynami-

cally executed evaluation by using the optional second argument. This is a convenient way to

specify "inverse functions" that update the values of variables in the first arguments. Mathemat-

ica does not attempt to deduce such inverse functions automatically from the first argument of

Dynamic; you have to supply one yourself.

Dynamic@expr, fD continually evaluates f@val, exprD during interactive
changing or editing of val

Inverse functions.

Dynamic Interactivity 9

This specifies how the value of x is to be updated and makes the second slider interactive. You
can move either slider and the other slider responds by moving in the opposite direction.

In[30]:= DynamicModule@8x = 0<, 8Slider@Dynamic@xDD, Slider@Dynamic@1 - x, Hx = 1 - ÒL &DD<D

Out[30]= : , >

Now the dynamically executed expression in the second slider is the pure function Hx = 1 - ÒL &,

which is given the proposed new value in Ò. Note that the function is responsible for actually

doing the assignment to whatever variable you want to change; you cannot just say H1 - ÒL & if

you want to change x.

The ability to interpose your own arbitrary function between the mouse position and the state

of Mathematica is very powerful, and you can use it for purposes beyond simple inverse func-

tions. The function given in the second argument is effectively free do to anything it wants.

This defines "detents" that snap the slider to integer values if the thumb is within a certain
tolerance of a round number.

In[31]:= DynamicModule@8x = 0<,
8Slider@Dynamic@x, If@Abs@Ò - Round@ÒDD < 0.1, x = Round@ÒD, x = ÒD &D, 80, 5<D,
Dynamic@xD<D

Out[31]= : , 0>

This makes the variable take on rational numbers (integer fractions) instead of decimals.

In[32]:= DynamicModule@8x = 0<,
8Slider@Dynamic@x, Hx = Rationalize@ÒDL &D, 80, 5<D, Dynamic@xD<D

Out[32]= : , 0>

For complete control over the tracking behavior, it is possible to specify separate functions that

are called at the start, middle, and end of a mouse click on the slider thumb. If you are familiar

with conventional user-interface programming, you will recognize these as separate, high-level

event functions for the mouse-down, mouse-drag, and mouse-up events.

This changes the background color while the click-and-drag operation is underway.

In[33]:= DynamicModule@8x = 0, bg = RGBColor@0, 0, 1D<, Style@Slider@Dynamic@x,
8Hbg = RGBColor@1, 0, 0DL &,
Hx = ÒL &,
Hbg = RGBColor@0, 0, 1DL &<DD, Background Ø Dynamic@bgDDD

Out[33]=

The second argument of Dynamic also lets you restrict the movement of a slider and effectively

implement geometric constraints.

You can only move the thumb of this Slider2D along a circle.

10 Dynamic Interactivity

You can only move the thumb of this Slider2D along a circle.

In[34]:= DynamicModule@8pt = 81, 0<<,
Slider2D@Dynamic@pt, Hpt = Ò ê Norm@ÒDL &D, 8-1, 1<, Exclusions Ø 80, 0<DD

Out[34]=

Where Should Dynamic Be Placed in an Expression?

The fundamental behavior of Dynamic is to build a copy of the input expression into the output

cell. To be more specific, Dynamic has the attribute HoldFirst and remains unchanged by

evaluation.

The result of evaluating Dynamic@x + yD is Dynamic@x + yD, which you can see by examining
the InputForm representation of the output.

In[35]:= Dynamic@x + yD êê InputForm

Out[35]//InputForm= Dynamic[x + y]

You do not see Dynamic in ordinary output because, when formatted for display in the front

end, Dynamic@x + yD is represented by an object that contains a copy of the unevaluated input

(x + y), but displays as the evaluated value of that expression. The Dynamic wrapper is still

present in the output, but it is invisible.

Because Dynamic does its work entirely in the front end, you cannot use it inside functions that

need to access the value of an expression in order to do their work.

For example, this works.

In[36]:= DynamicModule@8x<,
8Slider@Dynamic@xD, 81, 5<D, Dynamic@Plot@Sin@x iD, 8i, 0, 2 Pi<DD<D

Out[36]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

But this does not.

Dynamic Interactivity 11

But this does not.

In[37]:= DynamicModule@8x<,
8Slider@Dynamic@xD, 81, 5<D, Plot@Sin@Dynamic@xD iD, 8i, 0, 2 Pi<D<D

Out[37]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

The Plot command needs to have specific numerical values for x to make a plot, but the

Dynamic@xD inside the function being plotted does not evaluate into anything in the kernel. It

remains inert as Dynamic@xD, preventing the Plot command from doing anything sensible.

Another way to look at it is that the expression inside a Plot command does not appear directly

anywhere in the output. Dynamic is a formatting function that does its work in the front end,

not in the kernel, so if it is used in a way where it will never be placed as output, it is probably

a mistake.

When combining Dynamic with controls, it is particularly important to get the Dynamic in the

right place.

This example works as expected; move the slider and the value of x changes.

In[38]:= DynamicModule@8x = 0.5<, 8Slider@Dynamic@xDD, Dynamic@xD<D

Out[38]= : , 0.5>

This example looks good at first, but if you move the slider, x does not change.

In[39]:= DynamicModule@8x = 0.5<, 8Dynamic@Slider@xDD, Dynamic@xD<D

Out[39]= : , 0.5>

That is because when the Dynamic wrapped around Slider@xD evaluates its contents, the value

of x is substituted, and the result is a slider whose first argument is a specific number, with no

trace of the variable name left. The slider in this case is a dynamic display of a static slider.

What is needed is a static slider, which contains within it a dynamic reference to the value of

the variable. In the case of controls, there is a simple rule for where to put the Dynamic. The

first argument of any control function, such as Slider, Checkbox, or PopupMenu, will almost

always be Dynamic@varD.

12 Dynamic Interactivity

What is needed is a static slider, which contains within it a dynamic reference to the value of

the variable. In the case of controls, there is a simple rule for where to put the Dynamic. The

first argument of any control function, such as Slider, Checkbox, or PopupMenu, will almost

always be Dynamic@varD.

Beyond these cases where Dynamic will not work in a particular position, there is often a great

deal of flexibility about where to place Dynamic. It is often used as the outermost function in an

input expression, but this is by no means necessary, and in more sophisticated applications,

Dynamic is usually used deeper in the expression and can even be nested.

This displays a table of ten copies of the value of x.

In[40]:= Dynamic@Table@x, 8i, 10<DD

Out[40]= 80., 0., 0., 0., 0., 0., 0., 0., 0., 0.<

Dynamic is wrapped around the whole expression, so evaluation of the Table command is

delayed until the output is displayed in the notebook. Any time the value of x is changed, the

Table command will be reevaluated.

The output from this example looks exactly the same.

In[41]:= Table@Dynamic@xD, 8i, 10<D

Out[41]= 80., 0., 0., 0., 0., 0., 0., 0., 0., 0.<

But in this case the Table command is evaluated immediately, generating a list of ten separate

Dynamic expressions, each of which evaluates x separately after the overall result has been

placed in the notebook.

When x is changed, the first example sends a single request to the kernel to get the value of

Table@x, 8i, 10<D, while the second example sends ten separate requests to the kernel to get

the value of x. It might seem that the first example is obviously more efficient, and in this case

it is. However, you should also avoid the other extreme, wrapping too many things into a single

Dynamic, which can also be inefficient.

This initializes x and y to set up a new slider connected to the value of x.

In[6]:= x = 0.5;

In[7]:= y = Plot3D@Sin@n mD, 8n, 0, 4<, 8m, 0, 4<D;

In[8]:= Slider@Dynamic@xDD

Out[8]=

This is a tab view with two groups of dynamic expressions, both showing the dynamic values of
x (a simple number) and y (a 3D plot).

Dynamic Interactivity 13

This is a tab view with two groups of dynamic expressions, both showing the dynamic values of
x (a simple number) and y (a 3D plot).

In[9]:= TabView@88Dynamic@xD, Dynamic@yD<, Dynamic@8x, y<D<D

Out[9]=
80., y<

1 2

Drag the slider around, and note that the value of x in the first tab updates quite rapidly. On

most computers it will be essentially instantaneous. However, updates are more sluggish in the

second tab. Each individual Dynamic expression keeps track (quite carefully) of exactly when it

might need to be reevaluated in order to remain up-to-date. In the second tab, the output is

forcing the whole expression 8x, y<, including the large, slow 3D plot, to be reevaluated every

time the value of x changes. By using two separate Dynamic expressions in the first tab, you

allow the value of x to be updated without needing to also reevaluate y, which has not actually

changed. (You may want to delete the last output before proceeding, as it will slow down any

examples containing the global x as long as it is visible on screen.)

It is hard to make blanket statements about where Dynamic should be placed in every case, but

generally speaking if you are building a large, complex output where only small parts of it will

change, the Dynamic should probably be wrapped just around those parts. On the other hand, if

all or most of the output is going to change in response to a single variable changing its value,

then it is probably best to wrap Dynamic around the whole thing.

Dynamic in Options

Dynamic can be used on the right-hand side of options, in those cases where the option value

will be transmitted to the front end before being used. This is a somewhat subtle distinction

related to the discussion in "Where Should Dynamic Be Placed in an Expression".

An option like PlotPoints in plotting commands cannot have Dynamic on the right-hand side,

because the plotting command needs to know a specific numerical value before the plot can be

generated. Remember that Dynamic has the effect of delaying evaluation until the expression

reaches the front end, and in the case of PlotPoints, that is too late since the value is needed

right away. On the other hand, options to functions that do their work in the front end can

usually, and usefully, accept Dynamic in their option values.

For example, you can control the size of a block of text in two ways.

Dynamic can be wrapped around a whole Style expression.

14 Dynamic Interactivity

Dynamic can be wrapped around a whole Style expression.

In[10]:= h = 12;

In[11]:= 8Slider@Dynamic@hD, 86, 100<D, Dynamic@Style@"Some Text", FontSize Ø hDD<

Out[11]= : , Some Text.>

Or Dynamic can be only in the FontSize option value.

In[59]:= 8Slider@Dynamic@hD, 86, 100<D, Style@"Some Text", FontSize Ø Dynamic@hDD<

Out[59]= : , Some Text>

There are two potential advantages to putting the Dynamic in the option value. First, suppose

the dynamically regenerated expression is very large, for example if the block of text is the

entire document, it is inefficient to retransmit it from the kernel to the front end every time the

font size is changed, as is necessary if Dynamic encloses the whole expression.

Second, the output of a Dynamic expression is not editable (since it is liable to be regenerated

at any moment), which makes the output of the first example non-editable. But the text in the

second example can be edited freely since it is ordinary static output: only the option value is

dynamic.

Dynamic option values can be also set in the Option Inspector. They are allowed at the cell,

notebook, or global level, and in stylesheets. (Note, however, that if you set a dynamic option

value in a position where the value will be inherited by many cells, for example in a stylesheet,

there can be a significant impact on performance.)

You can set dynamic option values through SetOptions, as well.

In[51]:= x = 0;

In[51]:= SetOptions@EvaluationNotebook@D, Background Ø Dynamic@Hue@xDDD

Having linked the background color of the notebook to the global variable x, it can now be
controlled by a slider or by a program.

In[52]:= Slider@Dynamic@xDD

Out[52]=

Of course, it is good to be able to return to normal.

In[53]:= SetOptions@EvaluationNotebook@D, Background Ø InheritedD

 Dynamic and Infinite Loops

Dynamic Interactivity 15

 Dynamic and Infinite Loops

If you are not careful, you can easily throw Dynamic into an infinite loop.

This counts upwards as fast as possible for as long as it remains on screen.

In[54]:= DynamicModule@8x = 1<, Dynamic@x = x + 1DD

This is not a bug (but delete the above output if it is distracting you to have it there).

Because the output is updated and the screen redrawn after each cycle of an infinite loop, it is

actually quite a useful thing to be able to do. Generally speaking, the system will remain respon-

sive to typing, evaluation, and so on, even as the infinitely updating Dynamic zips along.

It is also useful to make such a self-triggering Dynamic that stops changing at some point.

This is a "droopy" slider, which always drops back to zero no matter what you drag it to.

In[55]:= DynamicModule@8x = 1<, 8VerticalSlider@Dynamic@xDD, Dynamic@x = Max@0, x - 0.01DD<D

Out[55]= : , 0>

If you have a CPU monitor running, you will see that while the slider is dropping there is a small

load on the CPU (for redrawing the screen, primarily), but once it reaches zero, the load drops

to nothing. The dynamic tracking system has noticed that the value of x did not change: there-

fore, further updating is not necessary until someone changes the value of x again (e.g., when

you click on the slider). "Advanced Dynamic Functionality" describes in more detail how the

dynamic tracking system works.

A Good Trick to Know

Because it has the attribute HoldFirst, Dynamic does not evaluate its first argument. This is

fundamental to the workings of Dynamic, but it can lead to a somewhat unexpected behavior.

For example, suppose you have a list of numbers you wish to be able to modify by creating one

slider to control each value.

16 Dynamic Interactivity

For example, suppose you have a list of numbers you wish to be able to modify by creating one

slider to control each value.

This creates the list and a dynamic display of its current value.

In[1]:= data = 8.1, .5, .3, .9, .2<;

In[2]:= Dynamic@dataD

Out[2]= data

This attempts to make a table of sliders, one for each element of the list, using list@@iDD to
access the individual members.

In[3]:= Table@Slider@Dynamic@data@@iDDDD, 8i, 5<D

Out[3]= : , ,

, , >

Surprisingly, this does not work! You can see an error indication around the sliders, they cannot

be moved, and the dynamic output above never changes. You might even jump to the conclu-

sion that part extraction syntax cannot be used in this way with controls. Nothing could be

further from the truth.

The problem is that the variable i was given a temporary value by the Table command, but

that value was never used, because Dynamic is HoldFirst.

Looking at the InputForm of the table of sliders reveals the problem.

In[59]:= Table@Slider@Dynamic@data@@iDDDD, 8i, 5<D êê InputForm

Out[59]//InputForm= {Slider[Dynamic[data[[i]]]], Slider[Dynamic[data[[i]]]],
 Slider[Dynamic[data[[i]]]], Slider[Dynamic[data[[i]]]],
 Slider[Dynamic[data[[i]]]]}

What is needed is to do a replacement of the variable i with its temporary value, even inside

held expressions.

This can be done with ê. or with the somewhat peculiar but convenient idiomatic form demon-
strated here.

In[60]:= Table@With@8i = i<, Slider@Dynamic@data@@iDDDDD, 8i, 5<D

This output shows that Dynamic does in fact work perfectly with part extraction syntax, a very

useful property.

Dynamic Interactivity 17

Slow Evaluations inside Dynamic

Dynamic wrapped around an expression that will take forever, or even more than just a few

seconds, to finish evaluating is a bad thing.

If you evaluate this example, you will have to wait about 5 seconds before seeing the output
$Aborted.

In[61]:= Dynamic@While@TrueDD

During the wait for the Dynamic output to evaluate, the front end is frozen, and no typing or

other action is possible. Because updating of ordinary dynamic output locks up the front end, it

is important to restrict the expressions you put inside Dynamic to things that will evaluate

relatively quickly (preferably, within a second or so). Fortunately computers, and Mathematica,

are fast, so a wide range of functions, including complex 2D and 3D plots, can easily be evalu-

ated in a fraction of a second.

To avoid locking up the front end for good, dynamic evaluations are internally wrapped in

TimeConstrained, with a timeout value of, by default, 5 seconds. (This can be changed with

the DynamicEvaluationTimeout option.) In certain extreme cases, TimeConstrained can fail to

abort the calculation, in which case the front end will, a few seconds later, put up a dialog box

allowing you to terminate dynamic updating until the offending output has been deleted.

Fortunately there is an alternative if you need to have something slow in a Dynamic. The option

SynchronousUpdating Ø False allows the dynamic to be evaluated in a way that does not lock

up the front end. During evaluation of such an asynchronous Dynamic the front end continues

operating as usual, but the main Shift+Return evaluation queue is occupied evaluating the

Dynamic, so further Shift+Return evaluations will wait until the Dynamic finishes. (Normal

synchronous Dynamic evaluations do not interfere with Shift+Return evaluations.)

Evaluate this example, and you will see a gray placeholder rectangle for about 10 seconds, after
which the result will be displayed.

In[62]:= Dynamic@8DateList@D, Pause@10D; DateList@D<, SynchronousUpdating Ø FalseD

Out[62]= 882009, 1, 2, 15, 47, 41.977359<, 82009, 1, 2, 15, 47, 51.981876<<

Importantly, during that 10-second pause you are free to continue working on other things in

the front end.

"Advanced Dynamic Functionality" gives more details about the differences between syn-

chronous and asynchronous dynamic evaluations. In general, you should not plan to use asyn-

chronous ones unless is it absolutely necessary. They do not update as quickly, and can interact

in a very surprising, though not technically incorrect, way with controls and other synchronous

evaluations.

18 Dynamic Interactivity

"Advanced Dynamic Functionality" gives more details about the differences between syn-

chronous and asynchronous dynamic evaluations. In general, you should not plan to use asyn-

chronous ones unless is it absolutely necessary. They do not update as quickly, and can interact

in a very surprising, though not technically incorrect, way with controls and other synchronous

evaluations.

Further Reading

The implementation details behind Dynamic and DynamicModule are worth understanding if you

plan to use complex constructions, particularly those involving nested Dynamic expressions.

This is discussed in "Advanced Dynamic Functionality".

Dynamic Interactivity 19

Advanced Dynamic Functionality

"Introduction to Manipulate" and "Introduction to Dynamic" provide most of the information you

need to use Mathematica's interactive features accessible through the functions Manipulate,

Dynamic, and DynamicModule. This tutorial gives further details on the workings of Dynamic

and DynamicModule and describes advanced features and techniques for achieving maximum

performance for complex interactive examples.

Many examples in this tutorial display a single output value and use Pause to simulate slow

calculations. In real life, you will instead be doing useful computations and displaying sophisti-

cated graphics or large tables of values.

Please note that this is a hands-on tutorial. You are expected to actually evaluate

each of the input lines as you reach them in your reading, and watch what hap-

pens. The accompanying text will not make sense without evaluating as you read.

Module versus DynamicModule

Module and DynamicModule have similar syntax and in many respects behave similarly, at least

at first glance. They are, however, fundamentally different in such areas as when their variables

are localized, where the local values are stored, and in what universe the variables are unique.

Module works by replacing all occurrences of its local variables with new, uniquely named

variables, constructed so that they do not conflict with any variables in the current session of

the Mathematica kernel.

You can see the names of these localized variables by allowing them to "escape" the context of
the module without having been assigned a value.

In[3]:= Module@8x<, xD

Out[3]= x$651

The local variables can be updated dynamically just like any other variables.

In[4]:= Module@8x<, Dynamic@xDD

Out[4]= x$653

That is why sliders inside Module seem to work just as well as sliders inside DynamicModule.

20 Dynamic Interactivity

That is why sliders inside Module seem to work just as well as sliders inside DynamicModule.

In[9]:= Table@Module@8x = .5<, 8Slider@Dynamic@xDD, Dynamic@xD<D, 82<D

Out[9]= :: , 0.>, : , 0.>>

In[10]:= Table@DynamicModule@8x = .5<, 8Slider@Dynamic@xDD, Dynamic@xD<D, 82<D

Out[10]= :: , 0.5>, : , 0.5>>

Both examples produce seemingly independent sliders that allow separate settings of separate

copies of the variable x. The problem with sliders inside Module is that a different kernel session

may coincidentally share the same localized variable names. So if this notebook is saved and

then reopened sometime later, the sliders may "connect" to variables in some other Module

that happen to have the same local variables at that time.

This will not happen with the sliders inside DynamicModule because DynamicModule waits to

localize the variables until the object is displayed in the front end and generates local names

that are unique to the current session of the front end. Localization happens when

DynamicModule is first created as output and then repeats anew each time the file that contains

DynamicModule is opened, so there can never be a name conflict among examples generated in

different sessions.

Variables generated by Module are purely kernel session variables; when the kernel session

ends, the values are irretrievably lost. DynamicModule, on the other hand, generates a struc-

ture in the output cell that is responsible for maintaining the values of the variables, allowing

them to be saved in files. This is a somewhat subtle concept, best explained by way of two

analogies. First, you can think of DynamicModule as a sort of persistent version of Module.

Consider this command.

In[5]:= ModuleA8x = 2, y, z<,
x = 4;
y = x2;
x = 8;
z = x3;

E

The module in this example evaluates a series of expressions in order, and from one line to the

next the values of all the local module variables are preserved (obviously). You can have as

many lines as you like in the compound expression, but they all have to be there at the start;

once the Module has finished execution, it evaporates along with all its local variables.

DynamicModule, on the other hand, creates an environment in which evaluations of expressions

in Dynamic that appear within the body of the DynamicModule are like additional lines in the

compound expression in the previous example. From one dynamic update to the next the

values of all the variables are preserved, just as if the separate evaluations were separate lines

in a compound expression, all within the local variable context created by DynamicModule.

Dynamic Interactivity 21

DynamicModule, on the other hand, creates an environment in which evaluations of expressions

in Dynamic that appear within the body of the DynamicModule are like additional lines in the

compound expression in the previous example. From one dynamic update to the next the

values of all the variables are preserved, just as if the separate evaluations were separate lines

in a compound expression, all within the local variable context created by DynamicModule.

This preservation of variable values extends not just to subsequent dynamic evaluations within

the same session, but to all future sessions. Because all the local variable values are stored and

preserved in the notebook file, if the notebook is opened in an entirely new session of Mathemat -

ica, the values will still be there, and dynamic updates will resume just where they left off.

DynamicModule is like an indefinitely extendable Module.

Another way to think about the difference between Module and DynamicModule is that while

Module localizes its variables for a certain duration of time (while the body of the module is

being evaluated), DynamicModule localizes its variables for a certain area of space in the output.

As long as that space of the output remains in existence, the values of the variables defined for

it will be preserved, allowing them to be used in subsequent evaluations of Dynamic expres-

sions within the scope (area) of the DynamicModule. Saving the output into a file puts that bit

of real estate into hibernation, waiting for the moment when the file is opened again. (In com-

puter science terms, this is sometimes referred to as a freeze-dried or serialized object.)

The ability of DynamicModule to preserve state across sessions is also a way of extending the

notion of editing in a file. Normally when you edit text or expressions in a file, save the file, and

reopen it, you expect it to open the way you left it. Editing means changing the contents of a

file.

Ordinary kernel variables do not have this property; if you make an assignment to x, then quit

and restart Mathematica, x does not have that value anymore. There are several reasons for

this, not least of which is the question of where the value of x should be saved.

DynamicModule answers this question by defining a specific location (the output cell) where

values of specific variables (the local variables) should be preserved. Arbitrary editing opera-

tions, like moving a slider, typing in an input field, or dragging a dynamic graphics object,

change the values of the local variables. And since these values are automatically preserved

when the file is saved, the sliders, and other objects, open exactly where they were left. Thus

DynamicModule lets you make any quantity editable in the same way that text and expressions

can be edited and saved in notebook files.

Front End Ownership of DynamicModule Variable
Values

22 Dynamic Interactivity

Front End Ownership of DynamicModule Variable
Values

Ordinary variables in Mathematica are owned by the kernel. Their values reside in the kernel,

and when you ask Mathematica to display the value in the front end, a transaction is initiated

with the kernel to retrieve the value. The same is true of dynamic output that refers to the

values of ordinary variables.

Consider this example.

In[6]:= x = 0;

In[6]:= Table@Slider@Dynamic@xDD, 8500<D

Out[7]= : , , …>

When one slider is moved, the other 499 move in sync with it. This requires 500 separate

transactions with the kernel to retrieve the value of x. (The semantics of Mathematica are

complex enough that there is no guarantee that evaluating x several times in a row will actually

return the same value each time: it would not be possible for the front end to improve effi-

ciency by somehow sharing a single value retrieved from the kernel with all the sliders.)

Variables declared with DynamicModule, on the other hand, are owned by the front end. Their

values reside in the front end, and when the front end needs a value, it can be retrieved locally

with very little overhead.

The following example thus runs noticeably faster.

In[8]:= DynamicModule@8x = 0<, Table@Slider@Dynamic@xDD, 8500<DD

Out[8]= : , , …>

If a complex function is applied to such a variable, its value must of course be sent to the

kernel. This happens transparently, with each side of the system being kept informed on a just-

in-time basis of any changes to variable values.

Whether it is better to use a normal kernel variable or a DynamicModule variable in a given

situation depends on a number of factors. The most important is the fact that values of all

DynamicModule variables are saved in the file when the notebook is saved. If you need a value

preserved between sessions, it must be declared in a DynamicModule. On the other hand, a

temporary variable holding a large table of numbers, for example, might be a poor choice for a

DynamicModule variable as it could greatly increase the size of the file. It is quite reasonable to

nest a Module inside a DynamicModule and vice versa, or to partition variables between the

front end and kernel.

Dynamic Interactivity 23

Whether it is better to use a normal kernel variable or a DynamicModule variable in a given

situation depends on a number of factors. The most important is the fact that values of all

DynamicModule variables are saved in the file when the notebook is saved. If you need a value

preserved between sessions, it must be declared in a DynamicModule. On the other hand, a

temporary variable holding a large table of numbers, for example, might be a poor choice for a

DynamicModule variable as it could greatly increase the size of the file. It is quite reasonable to

nest a Module inside a DynamicModule and vice versa, or to partition variables between the

front end and kernel.

In many situations the limiting factor in performance is the time needed to retrieve information

from the kernel: by making variables local to the front end, speed can sometimes be increased

dramatically.

Automatic Updates of Dynamic Objects

The specification for dynamic output is simple: Dynamic@exprD should always display the value

you would get if you evaluated expr now. If a variable value, or some other state of the system,

changes, the dynamic output should be updated immediately. Of course, for efficiency, not

every dynamic output should be reevaluated every time any variable changes. It is critical that

dependencies be tracked so that dynamic outputs are evaluated only when necessary.

Consider these two expressions.

In[9]:= Dynamic@a + b + cD

Out[9]= a + b + c

In[10]:= Dynamic@If@a, b, cDD

Out[10]= If@a, b, cD

The first expression might change its value any time the value of a, b, or c changes, or if any

patterns associated with a, b, or c are changed. The second expression depends on a and b (but

not c) while a is True and on a and c (but not b) while a is False. If a is neither True nor False,

then it depends only on a (because the If statement returns unevaluated).

Figuring out these dependencies a priori is impossible (there are theorems to this effect), so

instead the system keeps track of which variables or other trackable entities are actually encoun -

tered during the process of evaluating a given expression. Data is then associated with those

variable(s) identifying which dynamic expressions need to be notified if the given variable

receives a new value.

An important design goal of the system is to allow monitoring of variable values by way of

dynamic output referencing them, without imposing any more load than absolutely necessary

on the system, especially if the value of the variable is being changed rapidly.

24 Dynamic Interactivity

An important design goal of the system is to allow monitoring of variable values by way of

dynamic output referencing them, without imposing any more load than absolutely necessary

on the system, especially if the value of the variable is being changed rapidly.

Consider this simple example.

In[11]:= Dynamic@xD

Out[11]= x

In[13]:= Do@x, 8x, 1, 5000000<D

When the dynamic output is created, it is evaluated, and the symbol x is tagged with informa-

tion identifying the output that needs to be updated if its value should be changed.

When the loop is started and x is first given a new value, the data associated with it is con-

sulted, and the front end is notified that the dynamic output needs to be updated. The data

associated with x is then deleted. Essentially the system forgets all about the dynamic output,

and subsequent assignments in the loop incur absolutely no speed penalty because of the

existence of a dynamic output monitoring the value of x.

Much later (on a computer time scale; only a fraction of a second on a human time scale) when

the screen is next redrawn and the dynamic output containing the reference to x is reevaluated,

the connection between the dynamic output and the variable x is noticed again, and the associa-

tion is reestablished.

Meanwhile the loop has continued to run. The next time the assignment is done after the screen

is updated, another notification will be sent to the front end, and the process repeats.

By default, dynamic outputs triggered by changes in variable values are updated no faster than

twenty times per second (this rate can be changed with the SystemOption

"DynamicUpdateInterval"). In the previous example you will typically see the value jump by

tens or hundreds of thousands with each update (more the faster your computer is), and the

overall speed of the computation is slowed down by only a percent or two, nearly zero if you

have a multiprocessor system.

You might expect that having a dynamic output monitoring the value of a symbol that is being

changed rapidly in a tight loop would slow that loop down significantly. But the overhead is in

fact zero-order in the rate at which the variable is changed, and in practice is usually minimal.

Dynamic outputs are only updated when they are visible on screen. This optimization allows

you to have an open-ended number of dynamic outputs, all changing constantly, without incur-

ring an open-ended amount of processor load. Outputs that are scrolled off-screen, above or

below the current document position, will be left unexamined until the next time they are

scrolled on-screen, at which point they are updated before being displayed. (Thus the fact that

they stopped updating is not normally apparent, unless they have side effects, which is discour-

aged in general.)

Dynamic Interactivity 25

Dynamic outputs are only updated when they are visible on screen. This optimization allows

you to have an open-ended number of dynamic outputs, all changing constantly, without incur-

ring an open-ended amount of processor load. Outputs that are scrolled off-screen, above or

below the current document position, will be left unexamined until the next time they are

scrolled on-screen, at which point they are updated before being displayed. (Thus the fact that

they stopped updating is not normally apparent, unless they have side effects, which is discour-

aged in general.)

Dynamic output can depend on things other than variables, and in these cases tracking is also

done carefully and selectively.

This gives a rapidly updated display of the current mouse position in screen coordinates.

In[14]:= Dynamic@MousePosition@DD

Out[14]= 81058, 553<

As long as the output is visible on screen, there will be a certain amount of CPU activity any

time the mouse is moved, because this particular dynamic output is being redrawn immediately

with every movement of the mouse. But if it is scrolled off-screen, the CPU usage will vanish.

Refresh

Normally, dynamic output is updated whenever the system detects any reason to believe it

might need to be (see "Automatic Updates of Dynamic Objects" for details about what this

means). Refresh can be used to modify this behavior by specifying explicitly what should or

should not trigger updates.

This updates when either slider is moved.

In[15]:= DynamicModule@8x, y<, Column@8
Slider@Dynamic@xDD,
Slider@Dynamic@yDD,
Dynamic@8x, y<D<DD

Out[15]=

80.245, 0.11<

Refresh with a TrackedSymbols option can be used to specify a list of those symbols that

should be tracked, with all other reasons for updating being ignored.

26 Dynamic Interactivity

This updates only when x changes, ignoring changes in y.

In[16]:= DynamicModule@8x, y<, Column@8
Slider@Dynamic@xDD,
Slider@Dynamic@yDD,
Dynamic@Refresh@8x, y<, TrackedSymbols Ø 8x<DD<DD

Out[16]=

80.065, 0.<

When you move the second (y) slider, nothing happens, but when you move the first slider, the

expression is updated to reflect the current value of both variables. You might say that after

moving the second slider, the dynamic output is wrong, since it does not reflect the current

state of the system. But that is essentially the whole reason for the existence of the Refresh

command. It allows you to override the system's mandate to always update dynamic output

any time it is potentially out of date.

The setting TrackedSymbols -> Automatic can be used to track only those symbols that occur

explicitly (lexically) in the expression given in the first argument to Refresh. For example, if

you use a function that depends on a global variable that does not occur lexically inside

Refresh, changes to the value of the global variable will not cause updating, when normally

they would.

Refresh can also be used to cause updates at regular time intervals. It is important to unders-

tand that this is not a feature that should be used lightly. It is fundamental to the design of

Dynamic that it does not need to update on any fixed schedule, because it simply always

updates immediately whenever doing so would be useful. But there are some situations where

this either cannot, or just unfortunately does not, happen.

One potentially vexing case is RandomReal. Every time you evaluate RandomReal@D, you get a

different answer, and you might think that Dynamic@RandomReal@DD should therefore con-

stantly update itself as fast as possible. But this would normally not be useful, and would in fact

have negative consequences for a number of algorithms that use randomness internally (e.g., a

Monte Carlo integration inside Dynamic should probably not update constantly simply because it

will, in fact, give a slightly different answer each time).

For this reason, RandomReal@D is not "ticklish," in the sense that it does not trigger updates. If

you want to see new random numbers, you have to use Refresh to specify how frequently you

want the output updated. Another example of non-ticklish functions are file system operations.

This gives you a new number every second.

Dynamic Interactivity 27

This gives you a new number every second.

In[17]:= Dynamic@Refresh@RandomReal@D, UpdateInterval Ø 1DD

Out[17]= 0.722136

This is not updated automatically.

In[18]:= Dynamic@FileByteCount@ToFileName@
8$TopDirectory, "SystemFiles", "FrontEnd", "Palettes"<, "BasicMathInput.nb"DDD

Out[18]= $Failed

In the unlikely event that the file containing the BasicMathInput palette changes size, this

Dynamic will not be updated. If you want to monitor the size of a file, you need to use Refresh

to specify a polling interval. (On sufficiently advanced operating systems it would theoretically

be possible for Mathematica to efficiently receive notifications of file system activity, and future

versions of Mathematica might in fact update such expressions automatically. As with other

Dynamic expressions, automatic correctness is always the goal.)

Finally, several functions you might think would trigger dynamic updates in fact do not: for

example, DateList and AbsoluteTime. As with RandomReal, it would cause more trouble than

it is worth for these functions to automatically trigger updates, and Refresh can trivially be

used to create clock-like objects. The function Clock is intended specifically as a time-based

function that is ticklish.

This updates approximately every second.

In[19]:= Dynamic@Refresh@DateList@D, UpdateInterval Ø 1DD

Out[19]= 82009, 1, 2, 17, 3, 24.196806<

This updates without an explicit Refresh.

In[26]:= Dynamic@Clock@81, 10<DD

Nesting Refresh

In the Refresh section examples, Refresh is always the outermost function inside Dynamic. You

might almost wonder why its options are not simply options to Dynamic. But in fact it is often

important to place Refresh as deeply in the expression as possible, especially if it specifies a

time-based updating interval.

28 Dynamic Interactivity

Consider this example.

In[20]:= DynamicModule@8showclock = True<, 8Checkbox@Dynamic@showclockDD,
Dynamic@If@showclock, Refresh@DateList@D, UpdateInterval Ø 0.05D, "No clock"DD<D

Out[20]= 9 , No clock=

When the checkbox is checked, Refresh is causing frequent updating of the clock, and CPU

time is being consumed to keep things up-to-date. When the checkbox is unchecked, however,

the Refresh expression is no longer reached by evaluation, the output remains static, and no

CPU time is consumed. If Refresh were wrapped around the whole expression inside Dynamic,

CPU time would be consumed constantly, even if the clock were not being displayed. The words

"No clock" would be constantly refreshed, pointlessly. (This refreshing is not visible; there is no

flicker of the screen, but CPU time is being consumed nevertheless.)

Nesting Dynamic

Dynamic expressions can be nested, and the system takes great care to update them only when

necessary. Particularly when the contents of a Dynamic contain further interactive elements, it

is important to keep track of what will stay static and what will update, when a given variable is

changed.

Consider this example.

In[21]:= DynamicModule@8n = 5, data = Table@RandomReal@D, 820<D<,
Column@8

Slider@Dynamic@nD, 81, 20, 1<D,
Dynamic@Column@Table@With@8i = i<, Slider@Dynamic@data@@iDDDDD, 8i, n<DDD<DD

Out[21]=

The position of the first slider determines the number of sliders underneath it, and each of

those sliders in turn is connected to the value of one element of a list of data. Because the

number of sliders is variable, and changes dynamically in response to the position of the first

slider, the table that generates them needs to be inside Dynamic.

The example works, but now suppose you want to display the value of each number in the list

next to its slider.

Dynamic Interactivity 29

The example works, but now suppose you want to display the value of each number in the list

next to its slider.

You might at first try this.

In[22]:= DynamicModule@8n = 5, data = Table@RandomReal@D, 820<D<,
Column@8

Slider@Dynamic@nD, 81, 20, 1<D,
Dynamic@Grid@Table@With@8i = i<,

8Slider@Dynamic@data@@iDDDD, data@@iDD<D, 8i, n<D
DD<DD

Out[22]=

0.0772513

0.078808

0.627453

0.165515

0.441267

Now any time you click one of the lower sliders, it moves only one step, then stops. The prob-

lem is that the data@@iDD expressions in the second column of the grid are creating a depen-

dency in the outer Dynamic on the values in data.

As soon as data changes, the contents of the outer Dynamic, including the slider you are trying

to drag, are destroyed and replaced with a nearly identical copy (in which the displayed value of

one of the data@@iDD has been changed). In other words, the act of dragging the slider destroys

it, preventing any further activity.

The solution to this is to prevent the outer Dynamic from depending on the value of data, by
making sure that all occurrences of data in the expression are wrapped in Dynamic.

In[23]:= DynamicModule@8n = 5, data = Table@RandomReal@D, 820<D<,
Column@8

Slider@Dynamic@nD, 81, 20, 1<D,
Dynamic@Grid@Table@With@8i = i<,

8Slider@Dynamic@data@@iDDDD, Dynamic@data@@iDDD<D, 8i, n<D
DD<DD

Out[23]=

0.858271

0.729104

0.355231

0.581138

0.779463

Now you can drag any of the sliders and see dynamically updated values. This works because

the outer Dynamic now depends only on the value of n, the number of sliders, not on the value

of data. (Technically this is because Dynamic is HoldFirst: when it is evaluated, the expression

in its first argument is never touched by evaluation, and therefore no dependencies are

registered.)

30 Dynamic Interactivity

Now you can drag any of the sliders and see dynamically updated values. This works because

the outer Dynamic now depends only on the value of n, the number of sliders, not on the value

of data. (Technically this is because Dynamic is HoldFirst: when it is evaluated, the expression

in its first argument is never touched by evaluation, and therefore no dependencies are

registered.)

When building large, complex interfaces using multiple levels of nested Dynamic expressions,

these are important issues to keep in mind. Mathematica works hard to do exactly the right

thing even in the most complex cases. For example, the output of Manipulate consists of a

highly complex set of interrelated and nested Dynamic expressions: if the dependency tracking

system did not work correctly, Manipulate would not work right.

Synchronous versus Asynchronous Dynamic
Evaluations

Mathematica consists of two separate processes, the front end and the kernel. These really are

separate processes in the computer science sense of the word: two independent threads of

execution with separate memory spaces that show up separately in a CPU task monitor.

The front end and kernel communicate with each other through several MathLink connections,

known as the main link, the preemptive link, and the service link. The main and preemptive

links are pathways by which the front end can send evaluation requests to the kernel, and the

kernel can respond with results. The service link works in reverse, with the kernel sending

requests to the front end.

The main link is used for Shift+Return evaluations. The front end maintains a queue of pending

evaluation requests to send down this link. When you use Shift+Return on one or more input

cells, they are all added to the queue, and then processed one by one. At any one time, the

kernel is only aware of a single main link evaluation, the one it is currently working on (if any).

In the meantime, the front end remains fully functional; you can type, open and save files, and

so on. There is no arbitrary limit on how long a main link evaluation can reasonably take. Peo-

ple routinely do evaluations that take days to complete.

The preemptive link works the same way as the main link in the sense that the front end can

send an evaluation to it and get an answer, but it is administered quite differently on both

Dynamic updates.

There is no queue; instead, the front end sends one evaluation at a time and waits for the

result before continuing with its other work. It is thus important to limit preemptive link evalua-

tions to a couple of seconds at most. During any preemptive link evaluation, the front end is

completely locked up, and no typing or other actions are possible.

Dynamic Interactivity 31

ends. On the front end side, the preemptive link is used to handle normal Dynamic updates.

There is no queue; instead, the front end sends one evaluation at a time and waits for the

result before continuing with its other work. It is thus important to limit preemptive link evalua-

tions to a couple of seconds at most. During any preemptive link evaluation, the front end is

completely locked up, and no typing or other actions are possible.

On the kernel side, evaluation requests coming from the preemptive link are given priority over

evaluations from the main link, including the current running main link evaluation (if any). If an

evaluation request comes from the preemptive link while the kernel is processing a main link

evaluation, the main link evaluation is halted at a safe point (usually within microseconds). The

preemptive link evaluation is then run to completion, after which the main link evaluation is

restarted and allowed to continue as before. The net effect is similar to, though not the same

as, a threading mechanism. Multiple fast preemptive link evaluations can be executed during a

single long, slow main link evaluation, giving the impression that the kernel is working on more

than one problem at a time.

Preemptive link evaluations can change the values of variables, including those being used by a

main link evaluation running at the same time. There is no paradox here, and the interleaving

is done in a way that is entirely safe, though it can result in some fairly peculiar behavior until

you understand what is going on.

For example, evaluate this to get a slider.

In[24]:= Slider@Dynamic@xDD

Out[24]=

Then evaluate this command, and during the ten seconds it takes to finish, drag the slider
around randomly.

In[25]:= Table@Pause@1D; x, 810<D

Out[25]= 80, 0.2, 0., 0., 0., 0.5, 0.675, 0., 0., 0.<

You will not see anything happening (other than the slider moving) but when the second evalua-

tion finishes, you will see that it has recorded ten different values of x, representing the posi-

tions the slider happened to be at during the ten points at which x was evaluated to build the

list.

Dynamic normally uses the preemptive link for its evaluations. Evaluation is synchronous, and

the front end locks up until it is finished. This is unavoidable in some cases, but can be subopti-

mal in others. By setting the option SynchronousUpdating -> False, you can tell the front end

to use the main link queue, rather than the preemptive link. The front end then displays a gray

box placeholder until it receives the response from the kernel.

32 Dynamic Interactivity

Dynamic normally uses the preemptive link for its evaluations. Evaluation is synchronous, and

the front end locks up until it is finished. This is unavoidable in some cases, but can be subopti-

mal in others. By setting the option SynchronousUpdating -> False, you can tell the front end

to use the main link queue, rather than the preemptive link. The front end then displays a gray

box placeholder until it receives the response from the kernel.

In this case, the default (synchronous) update is appropriate because the front end needs to
know the result of evaluating the Dynamic@xD for drawing with the correct font size.

In[26]:= DynamicModule@8x = 12<,
8Slider@Dynamic@xD, 810, 100<D, Style@"Hello", FontSize Ø Dynamic@xDD<D

Out[26]= : , Hello>

Here, the output cell is drawn before the second dynamic expression finishes. A gray box
placeholder persists for one second until the result is known. Reevaluate the example to see the
gray box again.

In[27]:= DynamicModule@8n = 1<, Column@8Slider@Dynamic@nD, 81, 10<D,
Dynamic@Pause@nD; n, SynchronousUpdating Ø FalseD<DD

Out[27]=
1

Clicking the slider will update the display with a delay of between one and ten seconds. Notice

that the cell bracket is outlined, just as if the cell were being Shift+Return evaluated. This is an

indication that the evaluation is queued, and that you can continue with other work in the front

end while the evaluation is progressing.

Asynchronous updating is useful for displaying full Dynamic subexpressions when it is possible

to draw a screen around them and fill in their value later, in much the same way a web browser

draws text around an image that is inserted later when it finishes downloading.

Why not always use asynchronous Dynamic expressions? There are several reasons. First, they

are queued so that, by definition, they do not operate while another Shift+Return evaluation is

underway. This is not the case for normal (synchronous) updates.

A synchronous Dynamic updates smoothly even if the Pause command above is running.

In[28]:= Pause@20D

In[29]:= DynamicModule@8n = 1<, Column@8Slider@Dynamic@nD, 81, 10<D, Dynamic@nD<DD

Out[29]=
1

Also, many controls need to be synchronous in order to be responsive to mouse actions. Making

them asynchronous may cause potentially strange interactions with other controls.

Dynamic Interactivity 33

Also, many controls need to be synchronous in order to be responsive to mouse actions. Making

them asynchronous may cause potentially strange interactions with other controls.

Here is a problematic example.

In[30]:= n = 1;
Column@8Slider@Dynamic@nD, 81, 10<D,

Dynamic@Graphics@Line@Table@8x, Sin@n xD<, 8x, 0, 2 Pi, 0.0001<DDD,
SynchronousUpdating Ø FalseD<D

Out[31]=

Move the slider around rapidly, and you will end up with a choppy, distorted sine wave, because

the value of n changed during the evaluation of the Table command. This is the correct,

expected behavior, but it is probably not what you wanted.

This problem does not occur if you use synchronous Dynamic expressions, generally does not

happen with DynamicModule local variables, and can be avoided by storing the value of any

potentially changing variables into a second variable before starting the asynchronous evalua-

tions.

This fixes the problem.

In[32]:= n = 1;
Column@8Slider@Dynamic@nD, 81, 10<D, Dynamic@

Module@8n1 = n<, Graphics@Line@Table@8x, Sin@n1 xD<, 8x, 0, 2 Pi, 0.0001<DDDD,
SynchronousUpdating Ø FalseD<D

Out[33]=

34 Dynamic Interactivity

ControlActive and SynchronousUpdatingÆAutomatic

As a general rule, if you have a Dynamic that is meant to respond interactively to the move-

ments of a slider or other continuous-action control, it should be able to evaluate in under a

second, preferably well under. If the evaluation takes longer than that, you are not going to get

satisfactory interactive performance, whether the Dynamic is updating synchronously or

asynchronously.

But what if you have an example that simply cannot finish evaluating fast enough, yet you want

to be able to make it respond to a slider? One option is to use asynchronous updating and

simply accept that you will not get real-time interactive performance. If that is what you want

to do, setting ContinuousAction -> False in the slider or other control is a good idea; that

way you get only one update after the control is released, avoiding the starting up of potentially

lengthy evaluations in the middle of a drag, before you have arrived at the value you want to

stop at.

The cell bracket becomes outlined, indicating evaluation activity, only after you release the
slider.

In[34]:= DynamicModule@8n = 1<,
Column@8Slider@Dynamic@nD, 81, 10<, ContinuousAction Ø FalseD,

Dynamic@Pause@nD; n, SynchronousUpdating Ø FalseD<DD

Out[34]=
1

Another, much better solution is to provide a fast-to-compute preview of some sort during the

interactive control dragging operation, then compute the full, slow output when the control is

released. Several features exist specifically to support this.

The first is the function ControlActive, which returns its first argument if a control is currently

being dragged, and its second argument if not. Unlike Dynamic, ControlActive is an ordinary

function that evaluates in the kernel, returning one or the other of its arguments immediately.

It can be embedded inside functions or option values.

The second feature is an option setting SynchronousUpdating -> Automatic for Dynamic,

which makes the Dynamic synchronous when a control is being dragged, and asynchronous

when the control is released. Together, these two features can be used to implement a fast,

synchronously updated display to be used while a control is being dragged, along with a slower,

asynchronously updated display when it is released.

The displayed text changes depending on whether or not the slider is being dragged.

Dynamic Interactivity 35

The displayed text changes depending on whether or not the slider is being dragged.

In[35]:= DynamicModule@8n = 1<, Column@8Slider@Dynamic@nD, 81, 10<D,
Dynamic@8n, ControlActive@"Active", "Not Active"D<D<DD

Out[35]=
81, Not Active<

A simple number is displayed, synchronously, while the slider is being dragged, and when it is
released, a graphic is generated asynchronously.

In[36]:= DynamicModule@8n = 3<,
Column@8Slider@Dynamic@nD, 83, 1000, 1<D, Dynamic@Graphics@ControlActive@Inset@n,

80, 0<D, Line@Table@880, 0<, 8Cos@tD, Sin@tD<<, 8t, 0., 2 Pi, 2 Pi ê n<DDD,
ImageSize Ø 300, PlotRange Ø 1D, SynchronousUpdating Ø AutomaticD<DD

Out[36]=

This example shows that the front end can remain responsive no matter how long the final

display takes to compute and that the preview and the final display can be completely different.

Of course, in most cases, you will want a preview that is some kind of reduced, thinned out,

skeletal, or other elided form of the final display. Then the crude form can be fast enough to

give a smooth preview, and the computation of the final version, even if it takes awhile, does

not block the front end. In fact, this behavior is so useful that it is the default in Plot3D and

other plotting functions.

36 Dynamic Interactivity

This displays a 3D plot with a very small number of plot points while the control is being
dragged and then refines the image with a large number of plot points when the control is
released.

In[37]:= DynamicModule@8n = 1<,
Column@8Slider@Dynamic@nD, 81, 5<D, Dynamic@Plot3D@Sin@n x yD, 8x, 0, 3<,

8y, 0, 3<, PlotPoints Ø ControlActive@10, 100D, MaxRecursion Ø 0D,
SynchronousUpdating Ø AutomaticD<DD

Out[37]=

By default, Plot3D produces a similar preview, though with a somewhat less extreme spread of
quality.

In[38]:= DynamicModule@8n = 1<, Column@8Slider@Dynamic@nD, 81, 5<D, Dynamic@
Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<D, SynchronousUpdating Ø AutomaticD<DD

Out[38]=

Dynamic Interactivity 37

In addition, Manipulate uses SynchronousUpdating -> Automatic in Dynamic by default
so the example becomes as simple as it can be.

In[39]:= Manipulate@Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<D, 8n, 1, 5<D

Out[39]=

n

You may have noticed one subtlety. When the output of either of the above three examples is

first placed in the notebook, you see a crudely drawn (control-active state) version, followed

shortly thereafter by a refined (control-inactive) version. This is intentional: the system is

providing a fast preview so you see something rather than just a gray rectangle. The first

update is done synchronously, just as if a control were being dragged.

This preview-evaluation behavior is examined in more detail in the next section.

ImageSizeCache in Dynamic

ImageSizeCache is an option to Dynamic that specifies a rectangular size to be used in

displaying a Dynamic whose value has not yet been computed. It is normally not specified in

input, but is instead generated automatically by the front end and saved in files along with the

Dynamic expression.

The interaction of ControlActive, SynchronousUpdating, and ImageSizeCache is subtle,

complex, and very useful. The first two constructs are explained in ControlActive and Syn-

chronousUpdatingØAutomatic. The remaining part is explained here.

Note first that Dynamic expressions with the default value of SynchronousUpdating -> True

will never have a chance to use the value of their ImageSizeCache option, because they are

always computed before being displayed, and, once computed, the actual image size will be

used.

38 Dynamic Interactivity

Note first that Dynamic expressions with the default value of SynchronousUpdating -> True

will never have a chance to use the value of their ImageSizeCache option, because they are

always computed before being displayed, and, once computed, the actual image size will be

used.

On the other hand, Dynamic expressions with SynchronousUpdating Ø False will be displayed

as a gray rectangle while they are being computed for the first time. In that case, the size of

the rectangle is determined by the value of the ImageSizeCache option. This allows the sur-

rounding contents of the notebook to be drawn in the right place, so that when the Dynamic

finishes updating, there is no unnecessary flicker and shifting around of the contents of the

notebook. (Users of HTML will recognize this as the analog of the width and height parameters

of the img tag.)

It is generally not necessary to specify the ImageSizeCache option explicitly, because the

system will set it automatically as soon as the value of the Dynamic is computed successfully.

(The computed result is measured, and the actual size copied into the ImageSizeCache option.)

This automatically computed value is preserved if the Dynamic output is saved in a file.

Consider the following input.

In[40]:= Dynamic@Pause@3D; Style@"Hello", 100D, SynchronousUpdating Ø FalseD

Out[40]=Hello
When the input expression is evaluated, a small gray rectangle appears; because this Dynamic

has never been evaluated, there is no cache of its proper image size, and a default small size is

used.

Three seconds later, the result arrives, and the dynamic output is displayed. At this point an

actual size is known, and is copied to the ImageSizeCache option. You can see the value by

clicking anywhere in the output cell and choosing Show Expression from the Cell menu. (This

shows you the underlying expression representing the cell, exactly as it would appear in the

notebook file if you were to save this cell.) Note the presence of an ImageSizeCache option.

Now type a space in some innocuous place in the raw cell expression (to force a reparsing of

the cell contents), and choose Show Expression again to reformat the cell. This time you will

see a gray rectangle the size of the final output for three seconds, followed by the proper out-

put. This is also what you would see if you opened a notebook containing previously saved,

asynchronous dynamic output.

Dynamic Interactivity 39

Now type a space in some innocuous place in the raw cell expression (to force a reparsing of

the cell contents), and choose Show Expression again to reformat the cell. This time you will

see a gray rectangle the size of the final output for three seconds, followed by the proper out-

put. This is also what you would see if you opened a notebook containing previously saved,

asynchronous dynamic output.

The behavior of the setting SynchronousUpdating -> Automatic is similar, but subtly different.

As we saw in the examples in "ControlActive and SynchronousUpdatingØAutomatic", with the

Automatic setting, a synchronous preview-evaluation is done when the output is first placed, to

provide a (hopefully) rapid display of the contents of the Dynamic expression before the slower,

asynchronous value is computed. Because the first evaluation is synchronous, no gray rectangle

is ever displayed.

But this preview evaluation is done only if the ImageSizeCache option is not present. A Dynamic

with SynchronousUpdating -> Automatic and an ImageSizeCache option specifying explicit

dimensions will not do a synchronous preview evaluation, and will instead display a gray rectan-

gle (of the correct size) pending the result of the first asynchronous evaluation.

This may seem like baffling behavior at first, until you consider the practical effect of it. Gener-

ally speaking, Dynamic expressions will always have an ImageSizeCache option (created auto-

matically by the front end) except for the very first time they appear, when they are originally

placed as output from an evaluation. Any time they are opened from a file they will have a

known, cached size.

In Manipulate, which accounts for the vast majority of dynamic outputs, the default setting is

SynchronousUpdating -> Automatic and the described behavior lets the output show up

cleanly with a preview image in place when it is first generated. When a file containing dozens

of Manipulate outputs is opened, you will get a useful behavior that is familiar from web

browsers: the text displays immediately, and graphics (and other dynamic content) fill in later

as fast as they are able. So you can scroll through a file rapidly, without any delay associated

with precomputing potentially many preview images before the first page of the file can be

displayed.

If the initial evaluations when the Manipulate output was first placed were not synchronous,

there would be flicker and resizing/shifting of the surroundings, because the size would not be

known. But when the Manipulate output is opened from a file, the size is known, and the final

output can be placed smoothly without flicker.

One-Sided Updating of ControlActive

40 Dynamic Interactivity

One-Sided Updating of ControlActive

After evaluating in the kernel, ControlActive can trigger an update of the Dynamic containing

it, but in a highly asymmetric fashion, only when it is going from the active to the inactive

state. When making a transition in the other direction, from inactive to active, ControlActive

does not trigger any update on its own.

The reason for this somewhat unusual behavior is that ControlActive is a completely global

concept. It returns the active state if any control anywhere in Mathematica is currently being

dragged~even controls that have nothing to do with a particular Dynamic that happen to

contain a reference to ControlActive. If ControlActive caused updates on its own, then as

soon as you clicked any control, all Dynamic expressions containing references to

ControlActive (e.g., a default dynamic Plot3D output) would immediately update, which

would be entirely pointless. Instead, only those outputs that have some other reason for

updating will pick up the current value of ControlActive.

On the other hand, when the control is released, it is desirable to fix up any outputs that were

drawn in control-active form, to give them their final polished appearance. Thus, when

ControlActive is going into its inactive state, it needs to, on its own, issue updates to any

Dynamic expression that may have been drawn in the active state.

Dragging the slider does not change the Active/Inactive display because ControlActive does
not trigger updates on its own.

In[49]:= DynamicModule@8x<,
8Slider@Dynamic@xDD, Dynamic@ControlActive@"Active", "Inactive"DD<D

Out[49]= : , Inactive>

This Active/Inactive display updates because x in the dynamic output changes.

In[41]:= DynamicModule@8x<,
8Slider@Dynamic@xDD, Dynamic@8x, ControlActive@"Active", "Inactive"D<D<D

Out[41]= : , 80., Inactive<>

Watch carefully what happens when you click the slider. If you click and hold the mouse without

moving it, the display will remain Inactive. But as soon as you move it, the display updates to

Active. This is happening because x changed, causing the Dynamic as a whole to update, thus

picking up the current state of ControlActive.

Now carefully release the mouse button without moving the mouse. Note that the display does

revert to Inactive even though x has not changed.

Dynamic Interactivity 41

Now carefully release the mouse button without moving the mouse. Note that the display does

revert to Inactive even though x has not changed.

DynamicModule Wormholes

The variables declared in a DynamicModule are localized to a particular rectangular area within

one cell in a notebook. There are situations in which it is desirable to extend the scope of such

a local variable to other cells or even other windows. For example, you might want to have a

button in one cell that opens a dialog box that allows you to modify the value of a variable

declared in the same scope as the button that opened the dialog.

This can be done with one of the more surreal constructs in Mathematica, a DynamicModule

wormhole. DynamicModule accepts the option DynamicModuleParent, whose value is a

NotebookInterfaceObject that refers to another DynamicModule anywhere in the front end.

For purposes of variable localization, the DynamicModule with this option will be treated as if it

resided inside the one referred to, regardless of where the two actually are (even if they are in

separate windows).

The tricky part in setting up such a wormhole is getting the NotebookInterfaceObject neces-

sary to refer to the parent DynamicModule. This reference can be created only after the

DynamicModule has been created and placed as output, and it is valid only for the current

session.

To make the process easier, and in fact avoid all reference to explicit

NotebookInterfaceObjects, DynamicModule also accepts the option InheritScope, which

automatically generates the correct value of the DynamicModuleParent option to make the new

DynamicModule function as if it were inside the scope of the DynamicModule from which it was

created. This is confusing, so an example is in order.

Evaluate this to create an output with a + button and a number.

In[42]:= DynamicModule@8x = 1<, 8Button@"+", ++xD, Button@"Make - Palette", CreatePalette@
DynamicModule@8<, Button@"-", --xD, InheritScope Ø TrueDDD, Dynamic@xD<D

Out[42]= : + , Make - Palette , 1>

Clicking the + button increments the value of a DynamicModule local variable, which is

displayed at the end of the output. To decrement the number you have to click the Make -

Palette button, which creates a new (very small) floating palette window containing a - button.

This - button is living in a wormhole created by the InheritScope option of the DynamicModule

containing it. Clicking the button decrements the value of a local, private variable in the scope

of a distant DynamicModule in another window.

42 Dynamic Interactivity

This - button is living in a wormhole created by the InheritScope option of the DynamicModule

containing it. Clicking the button decrements the value of a local, private variable in the scope

of a distant DynamicModule in another window.

InheritScope can be used only when the code creating the second DynamicModule is executed

from inside a button or other dynamic object located within the first DynamicModule. By using

DynamicModuleParent explicitly, it is possible to link up arbitrary existing DynamicModules, but

doing so is tricky, and beyond the scope of this document.

Dynamic Interactivity 43

Introduction to Manipulate

The single command Manipulate lets you create an astonishing range of interactive applica-

tions with just a few lines of input. Manipulate is designed to be used by anyone who is comfort-

able using basic commands such as Table and Plot: it does not require learning any compli-

cated new concepts, nor any understanding of user interface programming ideas.

The output you get from evaluating a Manipulate command is an interactive object containing

one or more controls (sliders, etc.) that you can use to vary the value of one or more parame-

ters. The output is very much like a small applet or widget: it is not just a static result, it is a

running program you can interact with.

This tutorial is designed for people who are familiar with the basics of using the Mathematica

language, including how to use functions, the various kinds of brackets and braces, and how to

make simple plots. Some of the examples will use more advanced functions, but it is not neces-

sary to understand exactly how these work in order to get the point of the example.

Despite the length of this tutorial, it is only half the story. "Advanced Manipulate Functionality"

provides further information about some of the more sophisticated features of this rich

command.

Manipulate Is as Easy as Table

At its most basic, the syntax of Manipulate is identical to that of the humble function Table.

Consider this Table command, which produces a list of numbers from one to twenty.

Table@n, 8n, 1, 20<D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

Simply replace the word Table with the word Manipulate, and you get an interactive applica-

tion that lets you explore values of n with a slider.

44 Dynamic Interactivity

Manipulate@n, 8n, 1, 20<D

n

6.18

If you are reading this documentation inside Mathematica, you can click and drag the slider to

see the displayed value change in real time (meaning that it changes while you are dragging

the slider, not just when you release it). If you are reading a static form of the documentation,

you will see the slider moved to an arbitrary position. (By default, it starts out on the left side,

but in the following examples the slider has typically been moved away from its initial position.)

In both Table and Manipulate, the form 8variable, min, max< is used to specify an "iterator",

giving the name of the variable and the range over which to vary it.

Of course the whole point of Manipulate (and Table for that matter) is that you can put any

expression you like in the first argument, not just a simple variable name. Moving the slider in

this very simple output already starts to give an idea of the power of Manipulate.

Manipulate@Plot@Sin@n xD, 8x, 0, 2 Pi<D, 8n, 1, 20<D

n

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Again, if you are reading this in a static form you will have to trust that the graph changes in

real time when the slider is moved.

Dynamic Interactivity 45

Note that the slider has an extra icon next to it which, when clicked, opens a small panel of

additional controls. Here, the panel from the previous example is opened.

n

6.42

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The panel allows you to see the numerical value of the variable, as well as set it in motion using

the animation controls.

If you want to see the value of the variable without having to open the subpanel, you can add

the option Appearance -> "Labeled" to the variable specification. (Note the number displayed

to the right of the plus sign, which is updated in real time as the slider is moved.)

Manipulate@Plot@Sin@n xD, 8x, 0, 2 Pi<D, 8n, 1, 20, Appearance Ø "Labeled"<D

n 6.1

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This is also the first hint that Manipulate goes far beyond the relative simplicity of Table, both

in its output and in the flexibility and range of what can be specified in the list of variables.

46 Dynamic Interactivity

Just like Table, Manipulate allows you to give more than one variable range specification.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<D

n1

n2

1 2 3 4 5 6

-2

-1

1

2

You can have as many variables as you like, including so many that a similar Table command

would try to enumerate an unreasonably large number of entries.

Manipulate@Plot@a1 Sin@n1 Hx + p1LD + a2 Sin@n2 Hx + p2LD, 8x, 0, 2 Pi<, PlotRange Ø 2D,
8n1, 1, 20<, 8a1, 0, 1<, 8p1, 0, 2 Pi<, 8n2, 1, 20<, 8a2, 0, 1<, 8p2, 0, 2 Pi<D

n1

a1

p1

n2

a2

p2

1 2 3 4 5 6

-2

-1

1

2

You can open any or all of the subpanels to see numerical values, and you are free to animate

many different variables at the same time if you like.

Dynamic Interactivity 47

You can open any or all of the subpanels to see numerical values, and you are free to animate

many different variables at the same time if you like.

One way to think of Manipulate is as a way to interactively explore a large parameter space.

You can move around that space at will, exploring interesting directions as they appear. As you

will see in later sections, Manipulate has many features designed to make such exploration

easier and more rewarding.

Symbolic Output and Step Sizes

The previous examples are graphical, and indeed the most common application for Manipulate

is producing interactive graphics. But Manipulate is capable of making any Mathematica func-

tion interactive, not just graphical ones.

Often the first issue in examples involving symbolic, rather than graphical, output is that you

want to deal with integers, rather than continuously variable real numbers. In Table the default

step size is 1, so you naturally get integers, while in Manipulate the default is to allow continu-

ous variation (which you could think of as a step size of zero). Compare these two examples,

and note that Manipulate allows values in between those returned by Table.

Table@n, 8n, 1, 20<D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

Manipulate@n, 8n, 1, 20<D

n

11.72

Functions involving algebraic manipulations, for example, often do nothing interesting when

given noninteger parameter values. This Expand function never expands anything.

Manipulate@Expand@Ha + bLnD, 8n, 1, 20<D

n

Ha + bL12.42

Fortunately it is trivial to add an explicit step size of 1 to the Manipulate command, yielding

exactly the same set of possible values in Manipulate as is returned by Table.

48 Dynamic Interactivity

Fortunately it is trivial to add an explicit step size of 1 to the Manipulate command, yielding

exactly the same set of possible values in Manipulate as is returned by Table.

Manipulate@n, 8n, 1, 20, 1<D

n

8

With an explicit step size, the Expand example is much more interesting.

Manipulate@Expand@Ha + bLnD, 8n, 1, 20, 1<D

n

a10 + 10 a9 b + 45 a8 b2 + 120 a7 b3 + 210 a6 b4 + 252 a5 b5 + 210 a4 b6 + 120 a3 b7 + 45 a2 b8 + 10 a b9 + b10

The fact that only one value is displayed at a time allows you to create examples that go far

beyond what would be practical in a Table command. An important property of Manipulate

output is that there is no fixed panel size or arbitrary limit as to how large the output panel can

grow.

Manipulate@Expand@Ha + bLnD, 8n, 1, 300, 1<D

n

a53 + 53 a52 b + 1378 a51 b2 + 23426 a50 b3 + 292825 a49 b4 + 2869685 a48 b5 + 22957480 a47 b6 +

154143080 a46 b7 + 886322710 a45 b8 + 4431613550 a44 b9 + 19499099620 a43 b10 +

76223753060 a42 b11 + 266783135710 a41 b12 + 841392966470 a40 b13 + 2403979904200 a39 b14 +

6250347750920 a38 b15 + 14844575908435 a37 b16 + 32308782859535 a36 b17 +

64617565719070 a35 b18 + 119032357903550 a34 b19 + 202355008436035 a33 b20 +

317986441828055 a32 b21 + 462525733568080 a31 b22 + 623404249591760 a30 b23 +

779255311989700 a29 b24 + 903936161908052 a28 b25 + 973469712824056 a27 b26 +

973469712824056 a26 b27 + 903936161908052 a25 b28 + 779255311989700 a24 b29 +

623404249591760 a23 b30 + 462525733568080 a22 b31 + 317986441828055 a21 b32 +

202355008436035 a20 b33 + 119032357903550 a19 b34 + 64617565719070 a18 b35 +

32308782859535 a17 b36 + 14844575908435 a16 b37 + 6250347750920 a15 b38 +

2403979904200 a14 b39 + 841392966470 a13 b40 + 266783135710 a12 b41 + 76223753060 a11 b42 +

19499099620 a10 b43 + 4431613550 a9 b44 + 886322710 a8 b45 + 154143080 a7 b46 +

22957480 a6 b47 + 2869685 a5 b48 + 292825 a4 b49 + 23426 a3 b50 + 1378 a2 b51 + 53 a b52 + b53

Dynamic Interactivity 49

(In printed forms of this documentation, the slider is set fairly low to avoid wasting paper, but

when moved all the way to the right, the output smoothly grows to cover many pages worth of

vertical space.)

As with Table, if you use rational numbers for the minimum and step, you will get perfect

rational numbers in the variable, not approximate real numbers. Here is an example that uses

the formatting function Row to create a simple example of adding fractions.

Manipulate@Row@8n, "+", m, "=", n + m<D,
8n, 1 ê 2, 1 ê 3, 1 ê 144<, 8m, 1 ê 2, 1 ê 3, 1 ê 144<D

n

m

3

8
+
17

36
=
61

72

You can even use end points and step sizes that are symbolic expressions rather than just plain

numbers.

Manipulate@Row@8n, "+", m, "=", n + m<D, 8n, a, 10 a, a ê 12<, 8m, a, 10 a, a ê 12<D

n

m

13 a

4
+
11 a

4
=6 a

Types of Controls

Manipulate supports a wide range of alternate ways of specifying variables, which generate

different kinds of controls for those variables. This includes checkboxes, popup menus, and

others in addition to sliders.

50 Dynamic Interactivity

The principle is that for each variable, you ask for a particular set of possible values, and

Manipulate automatically chooses an appropriate type of control to make those values conve-

niently available. For a typical numerical Table-like iterator, a slider is the most convenient

interface.

You might, on the other hand, want to specify a discrete list of possible values (numeric or

symbolic) rather than a range. This is done with an iterator of the form

8variable, 8val1, val2, …<<.

(Note the extra level of list compared to the range specification.) If you ask for a small number

of separate values, you will get a row of buttons.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8filling, 8None, Axis, Top, Bottom<<D

n1

n2

filling None Axis Top Bottom

Dynamic Interactivity 51

If you ask for a larger number of discrete values, Manipulate will switch to using a popup

menu.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<,
8filling, 8None, Axis, Top, Bottom, Automatic, 1, 0.5, 0, -0.5, -1<<D

n1

n2

filling Automatic

If you use the specific values True and False, you will get a checkbox.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Frame Ø frame, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8frame, 8True, False<<D

n1

n2

frame

0 1 2 3 4 5 6
-2

-1

0

1

2

These choices are of course somewhat arbitrary, but they are designed to be convenient, and

you can always override the automatic choice of control type using a ControlType option

inserted into the variable specification. (The full list of possible control types is given in the

documentation for Manipulate.)

52 Dynamic Interactivity

These choices are of course somewhat arbitrary, but they are designed to be convenient, and

you can always override the automatic choice of control type using a ControlType option

inserted into the variable specification. (The full list of possible control types is given in the

documentation for Manipulate.)

For example, you can ask for a row of buttons even if the automatic behavior would have

chosen a popup menu, using the option ControlType -> SetterBar.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8filling,
8None, Axis, Top, Bottom, Automatic, 2, 1, 0, -1, -2<, ControlType Ø SetterBar<D

n1

n2

filling None Axis Top Bottom Automatic 2 1 0 -1 -2

Dynamic Interactivity 53

Sliders can be used to scan through discrete symbolic values, not just through numerical

ranges (and this allows you to animate through them as well). The option

ControlType -> Manipulator asks for the default control used by Manipulate, which is a

slider plus an optional control panel with numerical value and animation controls (see the

previous example). ControlType -> Slider asks for a plain slider.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<, 8filling, 8None, Axis, Top, Bottom,

Automatic, 1, 0.5, 0, -0.5, -1<, ControlType Ø Manipulator<D

n1

n2

filling

54 Dynamic Interactivity

It is even possible to use two different controls to adjust the value of the same variable. Here

both a popup menu and a slider are connected to the value of the filling variable. If the slider

is used to select a value that does not appear in the popup menu, the popup will appear blank,

but remains functional. When a value is chosen from the popup menu, the slider is moved to

the corresponding position. Both controls can thus be used interchangeably to adjust the same

value, and each one follows along when the other is being used.

Manipulate@Plot@Sin@n1 xD + Sin@n2 xD, 8x, 0, 2 Pi<, Filling Ø filling, PlotRange Ø 2D,
8n1, 1, 20<, 8n2, 1, 20<,
8filling, 8None, 2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5, -2<<, 8filling, -2, 2<D

n1

n2

filling 0

filling

This is not an exhaustive list of the possible control types in Manipulate. See the Manipulate

documentation for a more detailed listing. One of the most important control types, Locator,

which allows you to place control points inside graphical output in a Manipulate, is discussed in

"Locator", Slider2D is discussed in the "2D Sliders" section.

Dynamic Interactivity 55

Initial Values and Labels

Here is a fun example for making Lissajous figures.

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

8n1, 1, 4<, 8a1, 0, 1<, 8p1, 0, 2 Pi<,
8n2, 1, 4<, 8a2, 0, 1<, 8p2, 0, 2 Pi<D

n1

a1

p1

n2

a2

p2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Unfortunately you see nothing at first: until you move the a1 and a2 (amplitude) variables away

from their initial values of zero, there is nothing to see. It would be convenient to set their

initial value to something other than the default left-most value. This is done by using a vari-

able specification of the form 88var, init<, min, max<.

56 Dynamic Interactivity

Here is the same example with both amplitudes set to 1 initially, and the default frequency

values set to give a pleasing initial figure.

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

8n1, 1, 4<, 88a1, 1<, 0, 1<, 8p1, 0, 2 Pi<,
88n2, 5 ê 4<, 1, 4<, 88a2, 1<, 0, 1<, 8p2, 0, 2 Pi<D

n1

a1

p1

n2

a2

p2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Dynamic Interactivity 57

It is fun to watch how one shape turns into another, and in this connection it is good to know

about an unusual feature of sliders in Mathematica. If you hold down the Option key

(Macintosh) or Alt key (Windows), the action of the slider will be slowed down by a factor of 20

relative to the movements of the mouse. In other words, when you drag the mouse left and

right, the thumb will move only 1/20th as much as it normally would. If you move outside the

area of the slider, the value will start moving slowly in that direction as long as the mouse

remains clicked.

By holding down the Shift or Ctrl keys, or both, in addition to the Option/Alt key, you can slow

the movement down by additional factors of 20 (one for each additional modifier key). With all

three held down, it is possible to move the thumb by less that one part per million of its full

range, which can be helpful in examples like this where beautiful patterns are hidden in very

small ranges of parameter space.

(The option PerformanceGoal -> "Quality" is used in this example to ensure that

ParametricPlot draws smooth curves even when a slider is being moved: the need for this

option is explained in more detail in "Advanced Manipulate Functionality".)

By default Manipulate uses the names of the variables to label each control. But you may want

to provide longer, more descriptive labels, which can be done by using variable specifications of

the form 88var, init, label<, min, max<.

Here is the same example with labels.

58 Dynamic Interactivity

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

88n1, 1, "Frequency 1"<, 1, 4<, 88a1, 1, "Amplitude 1"<, 0, 1<,
88p1, 0, "Phase 1"<, 0, 2 Pi<, 88n2, 5 ê 4, "Frequency 2"<, 1, 4<,
88a2, 1, "Amplitude 2"<, 0, 1<, 88p2, 0, "Phase 2"<, 0, 2 Pi<D

Frequency 1

Amplitude 1

Phase 1

Frequency 2

Amplitude 2

Phase 2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Beautifying the Control Area

Manipulate supports a number of features that allow you to rearrange, annotate, and generally

pretty up the control area, to make it suit the needs of a particular example. (Advanced users

should remember, however, that Manipulate is by no means the only way to create interactive

interfaces in Mathematica, and if you cannot do what you want using Manipulate, you can

easily start using functions such as Dynamic and DynamicModule directly to create free-form,

open-ended user interfaces not tied to the particular conventions of Manipulate. These fea-

tures are explained in detail in "Introduction to Dynamic" and "Advanced Dynamic Functional-

ity".)

When you have a small number of controls, it is usually most convenient to have them above

the content area of the Manipulate panel. But because screens are typically wider than they

are tall, if you have a large number of controls, you may find it better to put them on the left

side, using the ControlPlacement option.

Dynamic Interactivity 59

When you have a small number of controls, it is usually most convenient to have them above

the content area of the Manipulate panel. But because screens are typically wider than they

are tall, if you have a large number of controls, you may find it better to put them on the left

side, using the ControlPlacement option.

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<, 8x, 0, 20 Pi<,
PlotRange Ø 1, PerformanceGoal Ø "Quality"D, 88n1, 1, "Frequency 1"<, 1, 4<,

88a1, 1, "Amplitude 1"<, 0, 1<, 88p1, 0, "Phase 1"<, 0, 2 Pi<,
88n2, 5 ê 4, "Frequency 2"<, 1, 4<, 88a2, 1, "Amplitude 2"<, 0, 1<,
88p2, 0, "Phase 2"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Frequency 1

Amplitude 1

Phase 1

Frequency 2

Amplitude 2

Phase 2
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

When ControlPlacement is used at the level of the Manipulate as a whole, it sets the default

position of all the controls. But the option can also be used inside individual variable specifica-

tions, allowing you to distribute controls to multiple sides of the output field.

In the following example the controls naturally fall into two groups of three, or three groups of

two. You can use the keyword Delimiter inserted in the sequence of variable specifications to

indicate where you would like dividing lines put. Here two unlabeled delimiters break the con-

trols up into three groups.

60 Dynamic Interactivity

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

88n1, 1, "Frequency 1"<, 1, 4<, 88n2, 5 ê 4, "Frequency 2"<, 1, 4<,
Delimiter, 88a1, 1, "Amplitude 1"<, 0, 1<, 88a2, 1, "Amplitude 2"<, 0, 1<,
Delimiter, 88p1, 0, "Phase 1"<, 0, 2 Pi<,
88p2, 0, "Phase 2"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Frequency 1

Frequency 2

Amplitude 1

Amplitude 2

Phase 1

Phase 2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Alternately strings, or delimiters and strings, can be used to label the groups of controls.

Dynamic Interactivity 61

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

"Horizontal", 88n1, 1, "Frequency"<, 1, 4<,
88a1, 1, "Amplitude"<, 0, 1<, 88p1, 0, "Phase"<, 0, 2 Pi<,
Delimiter, "Vertical", 88n2, 5 ê 4, "Frequency"<, 1, 4<,
88a2, 1, "Amplitude"<, 0, 1<, 88p2, 0, "Phase"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Horizontal

Frequency

Amplitude

Phase

Vertical

Frequency

Amplitude

Phase

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Quite a variety of things can be interspersed with the controls, including styled text, arbitrary

expressions, and even dynamic objects that update independently of the main output window.

Here is a simple example of using Style to make the group headings more prominent.

62 Dynamic Interactivity

Manipulate@ParametricPlot@8a1 Sin@n1 Hx + p1LD, a2 Cos@n2 Hx + p2LD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

Style@"Horizontal", 12, BoldD, 88n1, 1, "Frequency"<, 1, 4<,
88a1, 1, "Amplitude"<, 0, 1<, 88p1, 0, "Phase"<, 0, 2 Pi<,
Delimiter, Style@"Vertical", 12, BoldD, 88n2, 5 ê 4, "Frequency"<, 1, 4<,
88a2, 1, "Amplitude"<, 0, 1<, 88p2, 0, "Phase"<, 0, 2 Pi<, ControlPlacement Ø LeftD

Horizontal
Frequency

Amplitude

Phase

Vertical
Frequency

Amplitude

Phase

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Examples of more complex arrangements and dynamic labels are shown in "Advanced Manipu-

late Functionality".

2D Sliders

A clever feature of Mathematica is support for two-dimensional sliders, which allow you to use

both directions of mouse movement to control two values simultaneously. (Ordinary one-

dimensional sliders in a sense waste one of the two degrees of freedom a mouse is capable of.)

To get a 2D slider, use pairs of numbers for both the min and max, as in
8var, 8xmin, ymin<, 8xmax, ymax<<

Dynamic Interactivity 63

The value of the variable will also be an 8x, y< pair. In this trivial example, just look at the

value of the variable to get a feel for how the control works.

Manipulate@pt, 8pt, 8-1, -1<, 81, 1<<D

pt

8-0.19, 0.33<

The following example shows more graphically how the value of a 2D slider corresponds to a

coordinate point.

Manipulate@Graphics@8PointSize@0.1D, Point@ptD<, PlotRange Ø 1D,
8pt, 8-1, -1<, 81, 1<<D

pt

64 Dynamic Interactivity

To do something more interesting, you can recast the Lissajous figure from the previous section

with three 2D sliders instead of six 1D sliders. You are controlling the same six parameters, but

now you can do it two at a time.

Manipulate@
ParametricPlot@8a@@1DD Sin@n@@1DD Hx + p@@1DDLD, a@@2DD Cos@n@@2DD Hx + p@@2DDLD<,
8x, 0, 20 Pi<, PlotRange Ø 1, PerformanceGoal Ø "Quality"D,

88n, 81, 5 ê 4<, "Frequency"<, 81, 1<, 84, 4<<,
88a, 81, 1<, "Amplitude"<, 80, 0<, 81, 1<<,
88p, 80, 0<, "Phase"<, 80, 0<, 82 Pi, 2 Pi<<, ControlPlacement Ø LeftD

Frequency

Amplitude

Phase

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

This creates an example that is compact and fun. Note that fine control using the Option, Shift,

and Ctrl keys to slow down the motion of sliders (as explained in "Initial Values and Labels")

works for 2D sliders as well as 1D sliders.

Dynamic Interactivity 65

Graphics beyond Plotting

So far high-level plotting functions have mostly been used, but it is equally interesting to use

Mathematica's low level graphics language inside Manipulate. The following example, repeated

from the previous section, is a trivial example of using the low-level graphics language.

Manipulate@Graphics@8PointSize@0.1D, Point@ptD<, PlotRange Ø 1D,
8pt, 8-1, -1<, 81, 1<<D

pt

This example also makes the important point that anytime you use Graphics inside

Manipulate, you probably want to set an explicit PlotRange option. (PlotRange -> 1 means 1

in all directions from the origin, and is equivalent to PlotRange -> 88-1, 1<, 8-1, 1<<.) If you

omit the PlotRange option Mathematica's automatic plot range determination will cause the dot

to appear not to move at all, because the plot range is always exactly centered around it.

66 Dynamic Interactivity

Simple (or complicated) Mathematica programming can add arbitrary graphical elements to the

output. For example, here we have lines to the center point instead of a dot, with a second

linear slider determining the number of lines.

Manipulate@
Graphics@8Line@Table@88Cos@tD, Sin@tD<, pt<, 8t, 2. Pi ê n, 2. Pi, 2. Pi ê n<DD<,
PlotRange Ø 1D, 88n, 30<, 1, 200, 1<, 8pt, 8-1, -1<, 81, 1<<D

n

pt

Dynamic Interactivity 67

Here is a fun little string-figure example also based on creating a table of lines.

Manipulate@
Graphics@Line@Table@88Sin@n + iD, Cos@n + iD<, 8Sin@n + dn + iD, Cos@n + dn + iD<<,

8i, 0, di, di ê l<DD, PlotRange Ø 1.1D, 8n, 0, 2 p<,
8dn, 0, 2 p<, 8di, 1, 2 p<, 8l, 1, 200<, ControlPlacement Ø LeftD

n

dn

di

l

Because Mathematica is a sophisticated programming language, it is possible to use

Manipulate to explore parameterized programs or algorithms interactively. The Mathematica

graphics language is explained in "The Structure of Graphics", and many more examples like

this can be found in The Wolfram Demonstrations Project.

Locator

For creating interactive graphics examples, one of the most important features of Manipulate

is the ability to place a control point, called a Locator, inside graphics that appear in the output

area.

68 Dynamic Interactivity

Consider the previous example with lines going to a center point. While using a 2D slider is a

fine way to control the center point, you might prefer to be able to simply click and drag the

center point itself. This can be done by adding Locator to the control specification for the pt

variable. In this case it is not necessary to specify a min and max range, because it can be taken

automatically from the graphic. (It is, however, necessary to specify an initial value.)

Manipulate@
Graphics@8Line@Table@88Cos@tD, Sin@tD<, pt<, 8t, 2. Pi ê n, 2. Pi, 2. Pi ê n<DD<,
PlotRange Ø 1D, 88n, 30<, 1, 200, 1<, 88pt, 80, 0<<, Locator<D

n

Now you can click anywhere in the graphic and the center point of the lines will follow the

mouse as long as you keep the mouse button down. (It is not necessary to click exactly on the

center; it will jump to wherever you click, anywhere in the graphic.)

You can have multiple Locator controls by listing them individually, and it is perfectly fine to

have a Manipulate with no controls outside the content area, so you can create purely graphi-

cal examples.

Dynamic Interactivity 69

Manipulate@Graphics@Polygon@8pt1, pt2, pt3<D, PlotRange Ø 1D,
88pt1, 80, 0<<, Locator<, 88pt2, 80, 1<<, Locator<, 88pt3, 81, 0<<, Locator<D

When there are multiple locators, you can still click anywhere in the graphic, and the nearest

Locator will jump to where you click and start tracking the mouse.

Instead of using multiple separate variables, each of which corresponds to a single 8x, y< point,

you can use a single variable whose value is a list of points.

70 Dynamic Interactivity

Manipulate@Graphics@Polygon@ptsD, PlotRange Ø 1D,
88pts, 880, 0<, 81, 0<, 80, 1<<<, Locator<D

Again, if you click anywhere in the graphic, not on a particular Locator, the nearest one will

jump to the mouse and start tracking it.

Due to internal limitations, it is not possible to combine individual Locator variables with a

variable that is a list of multiple Locator variables: you can have only one multipoint Locator

variable in a Manipulate. However, in exchange, it is possible to add the option

LocatorAutoCreate -> True to that one Locator multivariable specification, and thereby allow

you to create and destroy Locator points interactively (changing the length of the list of points

stored in the variable).

In the following example, hold down the Cmd key (Macintosh) or Alt key (Windows) and click

anywhere that is not an existing Locator to create a new one at that location. Cmd/Alt click an

existing Locator to destroy it. When you add or remove a Locator, you are changing the

length of the list of points stored in the pts variable, thus changing the number of vertices in the

displayed polygon.

Dynamic Interactivity 71

Manipulate@Graphics@Polygon@ptsD, PlotRange Ø 1D,
88pts, 880, 0<, 8.5, 0<, 80, .5<<<, Locator, LocatorAutoCreate Ø True<D

You can of course combine Locator controls with normal Manipulate variables. For example,

you can use some sliders and color choosers to control the appearance of the polygon.

72 Dynamic Interactivity

Manipulate@
Graphics@8FaceForm@faceD, EdgeForm@8edge, Thickness@thicknessD<D, Polygon@ptsD<,
PlotRange Ø 1, Background Ø backgroundD,

8face, Green<,
8edge, Red<,
8background, Cyan<,
88thickness, 0.02<, 0, 0.1<,
88pts, 880, 0<, 8.5, 0<, 80, .5<<<, Locator, LocatorAutoCreate Ø True<D

face

edge

background

thickness

While a case can be made that the previous examples are frivolous, they are meant to demon-

strate the generality of the system: it provides a framework inside of which anything is possi-

ble. And the following example shows that even just a couple of lines of code can do something

quite remarkable: create an interactive polynomial curve-fitting environment.

The locator thumbs represent data points that are being fit by least squares with a polynomial

whose order is determined by the "order" slider. Five points are provided initially, but you can

add new ones by Cmd/Alt clicking any blank area of the graphic, or remove one by Cmd/Alt

clicking it.

Dynamic Interactivity 73

Manipulate@Module@8x<, Plot@Fit@points, Table@x^i, 8i, 0, order<D, xD,
8x, -2, 2<, PlotRange Ø 2, ImageSize Ø 500, Evaluated -> TrueDD,

88order, 3<, 1, 10, 1, Appearance Ø "Labeled"<,
88points, RandomReal@8-2, 2<, 85, 2<D<, Locator, LocatorAutoCreate Ø True<D

order 3

-2 -1 1 2

-2

-1

1

2

The fact that an example of this sophistication can be constructed using such a small volume of

code is really quite remarkable. And if you want to really impress someone with the compact-

ness of Mathematica code, the following example shows how to do it using only two lines, with

some loss of generality. Practice a bit and you can type this from scratch in 30 seconds or less.

Manipulate@Plot@InterpolatingPolynomial@points, xD, 8x, -2, 2<, PlotRange Ø 2D,
88points, RandomReal@8-2, 2<, 85, 2<D<, Locator<D

-2 -1 1 2

-2

-1

1

2

3D Graphics

74 Dynamic Interactivity

3D Graphics

Manipulate can be used to explore 3D graphics just as easily as 2D, though performance

issues become more of a concern. Consider this simple example.

Manipulate@Plot3D@Sin@n x yD, 8x, 0, 3<, 8y, 0, 3<D, 8n, 1, 5<D

n

For large values of n the function oscillates rapidly, and in order to produce a smooth picture,

the default adaptive sampling algorithm in Plot3D produces a fairly large number of polygons,

with correspondingly long computation and rendering times.

Fortunately, Plot3D and other built-in plotting functions automatically adjust their internal

algorithms and settings when used inside Manipulate in order to deliver increased speed while

a control is being dragged, sometimes at the expense of rendering quality. As soon as the

mouse button is released, a high-quality version of the plot is generated asynchronously

(meaning other operations in the front end can continue while the plot is being generated).

Asynchronous evaluations are discussed in further detail in "Synchronous Versus Asynchronous

Dynamic Evaluations" in "Advanced Dynamic Functionality".

Dynamic Interactivity 75

The net result is that while you drag the slider, a fast, but somewhat crude, rendering of the

plot is created in real time, and when you release the control, a smooth rendering shows up a

moment later. (This happens because Plot3D, and most other plotting functions, refer to the

function ControlActive in the default settings of the various options that control rendering

quality and speed. See "Dealing with Slow Evaluations" in "Advanced Manipulate Functionality"

for more about using ControlActive within Manipulate.)

As in 2D, you can use the low-level graphics language just as easily as higher-level plotting

commands. In this example you can see how Mathematica handles spheres that intersect with

each other and with the bounding box.

Manipulate@Graphics3D@8Sphere@80, 0, 0<, r1D, Sphere@8c@@1DD, c@@2DD, 0<, r2D<,
PlotRange Ø 2D, 88r1, 1<, 0, 2<, 88r2, 1<, 0, 2<, 8c, 8-2, -2<, 82, 2<<D

r1

r2

c

76 Dynamic Interactivity

This example shows how opacity (which is to say, transparency) can be used to see inside

nested 3D structures.

Manipulate@SphericalPlot3D@ q + f, 8q, 0, a p<, 8f, 0, b p<, SphericalRegion Ø True,
PlotRange Ø 10, Ticks Ø None, BaseStyle Ø Opacity@opacityDD,

8a, 0.1, 2<, 8b, 0.1, 2<, 8opacity, 1, 0<D

a

b

opacity

(Note that adding transparency to a 3D graphic can slow down rendering significantly.)

You can rotate a 3D graphic inside a Manipulate output by clicking and dragging it in the

ordinary way. In most cases if you subsequently move one of the Manipulate controls, the

graphic will stay rotated to the position you moved it to manually, unless the graphics expres-

sion in the Manipulate contains an explicit ViewPoint option, or wraps the graphical output in

additional formatting constructs.

Dynamic Interactivity 77

All Types of Output Are Supported

Manipulate is designed to work with the full range of possible types of output you can get with

Mathematica, and it does not stop with graphical and algebraic output. Any kind of output

supported by Mathematica can be used inside Manipulate. Here are some examples which may

be less than obvious.

Formatting constructs such as Grid, Column, Panel, etc. can be used to produce nicely format-

ted outputs. (See "Grids, Rows, and Columns" for more information about formatting

constructs.)

Manipulate@Grid@Table@8i, i^m<, 8i, 1, n<D, Alignment Ø Left, Frame Ø AllD,
8n, 1, 20, 1<, 8m, 1, 100, 1<D

n

m

1 1
2 17179869184
3 16677181699666569
4 295147905179352825856
5 582076609134674072265625
6 286511799958070431838109696
7 54116956037952111668959660849

You can even wrap Manipulate around functions that generate user interface elements like

sliders and tab views. (See "Control Objects" and "Viewers and Annotation" for more informa-

tion about user interface elements.) In this example we use two sliders to control the appear-

ance of a third slider.

Manipulate@Column@88style, size<, Slider@0.5, Appearance Ø 8style, size<D<D,
8style, 8"Automatic", "Vertical", "LeftArrow",

"RightArrow", "UpArrow", "DownArrow"<, ControlType Ø Slider<,
8size, 8"Automatic", "Tiny", "Small", "Medium", "Large"<, ControlType Ø Slider<D

style

size

8UpArrow, Tiny<

In this more complicated example the structure of a TabView is controlled by a Manipulate.

Dynamic@paneD allows the current pane of the TabView to be selected either by using the slider

created by Manipulate, or by clicking the TabView in the output area. The output is fully active.

78 Dynamic Interactivity

In this more complicated example the structure of a TabView is controlled by a Manipulate.

Dynamic@paneD allows the current pane of the TabView to be selected either by using the slider

created by Manipulate, or by clicking the TabView in the output area. The output is fully active.

ManipulateBTabViewBTableBNestB
1

1 - Ò
&, base, iF, 8i, 1, n<F,

Dynamic@paneD, Alignment Ø alignmentF,

8n, 1, 20, 1<, 8alignment, 8-1, -1<, 81, 1<<, 8pane, 1, n, 1<F

n

alignment

pane

1

1 -
1

1-
1

1-
1

1-
1

1-base

1 2 3 4 5 6 7 8 9

This example may be somewhat alarming, but is meant only to illustrate that Manipulate is a

fully general function, not limited to exploring any fixed domain of graphical or algebraic exam-

ples. There is literally nothing you can see in a cell in a Mathematica notebook that you cannot

interactively explore using Manipulate (subject only, of course, to the speed of your computer).

Dynamic Interactivity 79

