
In general, formulas for any given derivative with asymptotic error of any chosen order can be

derived  from  the  Taylor  formulas  as  long  as  a  sufficient  number  of  sample  points  are  used.

However,  this  method  becomes  cumbersome  and  inefficient  beyond  the  simple  examples

shown. An alternate formulation is based on polynomial interpolation: since the Taylor formulas

formulas.  It  is  not  difficult  to  show  that  the  finite  difference  formulas  are  equivalent  to  the

derivatives of interpolating polynomials. For example, a simple way of deriving the formula just

shown  for  the  second  derivative  is  to  interpolate  a  quadratic  and  find  its  second  derivative

(which is essentially just the leading coefficient).

This finds the three-point finite difference formula for the second derivative by differentiating 
the polynomial interpolating the three points Hxi-1, f Hxi-1LL, Hxi, f HxiLL, and Hxi+1, f Hxi+1LL.

In[9]:= D@InterpolatingPolynomial@Table@8 xi+k, f@xi+kD<, 8k, -1, 1<D, zD, z, zD

Out[9]=

2 K-
-fAx-1+iE+f@xiD

-x-1+i+xi
+

-f@xiD+fAx1+iE

-xi+x1+i
O

-x-1+i + x1+i

In this form of the formula, it is easy to see that it is effectively a difference of the forward and

backward  first-order  derivative  approximations.  Sometimes  it  is  advantageous  to  use  finite

differences  in  this  way,  particularly  for  terms  with  coefficients  inside  of  derivatives,  such  as

HaHxL uxLx, which commonly appear in PDEs. 

Another  property  made  apparent  by  considering  interpolation  formulas  is  that  the  point  at

which you get the derivative approximation need not be on the grid.  A common use of this is

with staggered grids where the derivative may be wanted at the midpoints between grid points. 

This generates a fourth-order approximation for the first derivative on a uniform staggered grid, 
xi, where the main grid points xi+kê2 are at xi + h k ê2, for odd k. 

In[10]:= Simplify@
D@InterpolatingPolynomial@Table@8 xi + k h ê 2, f@xi+kê2D<, 8k, -3, 3, 2<D, zD, zD ê.
z Ø xiD

Out[10]=

fBx
-
3

2
+i
F - 27 fBx

-
1

2
+i
F + 27 fBx 1

2
+i
F - fBx 3

2
+i
F

24 h

The fourth-order error coefficient for this formula is 3
640

h4 f H5LHxiL  versus 1
30

h4 f H5LHxiL  for the stan-

dard  fourth-order  formula  derived  next.  Much  of  the  reduced  error  can  be  attributed  to  the

reduced stencil size.

This generates a fourth-order approximation for the first derivative at a point on a uniform grid.

In[11]:= Simplify@
D@InterpolatingPolynomial@Table@8 xi + k h, f@xi+kD<, 8k, -2, 2, 1<D, zD, zD ê.
z Ø xiD

Out[11]=
f@x-2+iD - 8 f@x-1+iD + 8 f@x1+iD - f@x2+iD

12 h
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In general, a finite difference formula using n points will be exact for functions that are polynomi-

als of  degree n - 1  and have asymptotic order at least n - m.  On uniform grids,  you can expect  

higher asymptotic order, especially for centered differences.

Using efficient polynomial interpolation techniques is a reasonable way to generate coefficients,

but  B.  Fornberg  has  developed  a  fast  algorithm  for  finite  difference  weight  generation  [F92],

[F98], which is substantially faster. 

In [F98], Fornberg presents a one-line Mathematica formula for explicit finite differences.

This is the simple formula of Fornberg for generating weights on a uniform grid. Here it has 
been modified slightly by making it a function definition.

In[12]:= UFDWeights@m_, n_, s_D :=
CoefficientList@Normal@Series@xs Log@xDm, 8x, 1, n<D ê hmD, xD

Here m  is the order of the derivative, n  is the number of grid intervals enclosed in the stencil,

and s is the number of grid intervals between the point at which the derivative is approximated

and the leftmost edge of the stencil.  There is no requirement that s  be an integer; noninteger

values  simply  lead  to  staggered  grid  approximations.  Setting  s  to  be  n ê2  always  generates  a

centered formula. 

This uses the Fornberg formula to generate the weights for a staggered fourth-order approxima-
tion to the first derivative. This is the same one computed earlier with 
InterpolatingPolynomial.

In[13]:= UFDWeights@1, 3, 3 ê 2D

Out[13]= :
1

24 h
, -

9

8 h
,

9

8 h
, -

1

24 h
>

A table of some commonly used finite difference formulas follows for reference.

formula error term

f £HxiL >
f Ixi-2M-4 f Ixi-1M+3 f IxiM

2 h
1
3

h2 f H3L

f £HxiL >
f Ixi+1M- f Ixi-1M

2 h
1
6

h2 f H3L

f £HxiL >
-3 f IxiM+4 f Ixi+1M- f Ixi+2M

2 h
1
3

h2 f H3L
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f £HxiL >
3 f Ixi-4M-16 f Ixi-3M+36 f Ixi-2M-48 f Ixi-1M+25 f IxiM

12 h
1
5

h4 f H5L

f £HxiL >
- f Ixi-3M+6 f Ixi-2M-18 f Ixi-1M+10 f IxiM+3 f Ixi+1M

12 h
1
20

h4 f H5L

f £HxiL >
f Ixi-2M-8 f Ixi-1M+8 f Ixi+1M- f Ixi+2M

12 h
1
30

h4 f H5L

f £HxiL >
-3 f Ixi-1M-10 f IxiM+18 f Ixi+1M-6 f Ixi+2M+ f Ixi+3M

12 h
1
20

h4 f H5L

f £HxiL >
-25 f IxiM+48 f Ixi+1M-36 f Ixi+2M+16 f Ixi+3M-3 f Ixi+4M

12 h
1
5

h4 f H5L

f £HxiL >
10 f Ixi-6M-72 f Ixi-5M+225 f Ixi-4M-400 f Ixi-3M+450 f Ixi-2M-360 f Ixi-1M+147 f IxiM

60 h
1
7

h6 f H7L

f £HxiL >
-2 f Ixi-5M+15 f Ixi-4M-50 f Ixi-3M+100 f Ixi-2M-150 f Ixi-1M+77 f IxiM+10 f Ixi+1M

60 h
1
42

h6 f H7L

f £HxiL >
f Ixi-4M-8 f Ixi-3M+30 f Ixi-2M-80 f Ixi-1M+35 f IxiM+24 f Ixi+1M-2 f Ixi+2M

60 h
1
105

h6 f H7L

f £HxiL >
- f Ixi-3M+9 f Ixi-2M-45 f Ixi-1M+45 f Ixi+1M-9 f Ixi+2M+ f Ixi+3M

60 h
1
140

h6 f H7L

f £HxiL >
2 f Ixi-2M-24 f Ixi-1M-35 f IxiM+80 f Ixi+1M-30 f Ixi+2M+8 f Ixi+3M- f Ixi+4M

60 h
1
105

h6 f H7L

f £HxiL >
-10 f Ixi-1M-77 f IxiM+150 f Ixi+1M-100 f Ixi+2M+50 f Ixi+3M-15 f Ixi+4M+2 f Ixi+5M

60 h
1
42

h6 f H7L

f £HxiL >
-147 f IxiM+360 f Ixi+1M-450 f Ixi+2M+400 f Ixi+3M-225 f Ixi+4M+72 f Ixi+5M-10 f Ixi+6M

60 h
1
7

h6 f H7L

Finite difference formulas on uniform grids for the first derivative.

formula error term

f ££HxiL >
- f Ixi-3M+4 f Ixi-2M-5 f Ixi-1M+2 f IxiM

h2
11
12

h2 f H4L

f ££HxiL >
f Ixi-1M-2 f IxiM+ f Ixi+1M

h2
1
12

h2 f H4L

f ££HxiL >
2 f IxiM-5 f Ixi+1M+4 f Ixi+2M- f Ixi+3M

h2
11
12

h2 f H4L

f ££HxiL >
-10 f Ixi-5M+61 f Ixi-4M-156 f Ixi-3M+214 f Ixi-2M-154 f Ixi-1M+45 f IxiM

12 h2
137
180

h4 f H6L

f ££HxiL >
f Ixi-4M-6 f Ixi-3M+14 f Ixi-2M-4 f Ixi-1M-15 f IxiM+10 f Ixi+1M

12 h2
13
180

h4 f H6L

f ££HxiL >
- f Ixi-2M+16 f Ixi-1M-30 f IxiM+16 f Ixi+1M- f Ixi+2M

12 h2
1
90

h4 f H6L
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f ££HxiL >
10 f Ixi-1M-15 f IxiM-4 f Ixi+1M+14 f Ixi+2M-6 f Ixi+3M+ f Ixi+4M

12 h2
13
180

h4 f H6L

f ££HxiL >
45 f IxiM-154 f Ixi+1M+214 f Ixi+2M-156 f Ixi+3M+61 f Ixi+4M-10 f Ixi+5M

12 h2
137
180

h4 f H6L

f ££HxiL >
1

180 h2
H-126 f Hxi-7L + 1019 f Hxi-6L - 3618 f Hxi-5L +

7380 f Hxi-4L - 9490 f Hxi-3L + 7911 f Hxi-2L - 4014 f Hxi-1L + 938 f HxiLL

363
560

h6 f H8L

f ££HxiL >
1

180 h2
H11 f Hxi-6L - 90 f Hxi-5L + 324 f Hxi-4L -

670 f Hxi-3L + 855 f Hxi-2L - 486 f Hxi-1L - 70 f HxiL + 126 f Hxi+1LL

29
560

h6 f H8L

f ££HxiL >
1

180 h2
H-2 f Hxi-5L + 16 f Hxi-4L - 54 f Hxi-3L +

85 f Hxi-2L + 130 f Hxi-1L - 378 f HxiL + 214 f Hxi+1L - 11 f Hxi+2LL

47
5040

h6 f H8L

f ££HxiL >
2 f Ixi-3M-27 f Ixi-2M+270 f Ixi-1M-490 f IxiM+270 f Ixi+1M-27 f Ixi+2M+2 f Ixi+3M

180 h2
1
560

h6 f H8L

f ££HxiL >
1

180 h2
H-11 f Hxi-2L + 214 f Hxi-1L - 378 f HxiL +

130 f Hxi+1L + 85 f Hxi+2L - 54 f Hxi+3L + 16 f Hxi+4L - 2 f Hxi+5LL

47
5040

h6 f H8L

f ££HxiL >
1

180 h2
H126 f Hxi-1L - 70 f HxiL - 486 f Hxi+1L +

855 f Hxi+2L - 670 f Hxi+3L + 324 f Hxi+4L - 90 f Hxi+5L + 11 f Hxi+6LL

29
560

h6 f H8L

f ££HxiL >
1

180 h2
H938 f HxiL - 4014 f Hxi+1L + 7911 f Hxi+2L - 9490 f Hxi+3L +

7380 f Hxi+4L - 3618 f Hxi+5L + 1019 f Hxi+6L - 126 f Hxi+7LL

363
560

h6 f H8L

Finite difference formulas on uniform grids for the second derivative.

One thing to notice from this table is that the farther the formulas get from centered, the larger

the error term coefficient, sometimes by factors of hundreds. For this reason, sometimes where

one-sided  derivative  formulas  are  required  (such  as  at  boundaries),  formulas  of  higher  order

are used to offset the extra error.

NDSolve`FiniteDifferenceDerivative

Fornberg [F92], [F98] also gives an algorithm that, though not quite so elegant and simple, is

more general and, in particular, is applicable to nonuniform grids. It is not difficult to program

in Mathematica, but to make it as efficient as possible, a new kernel function has been provided

as a simpler interface (along with some additional features).
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NDSolve`FiniteDifferenceDerivativeADerivative@mD,grid,valuesE

approximate the mth-order derivative for the function that 
takes on values on the grid

NDSolve`FiniteDifferenceDerivativeA
Derivative@m1,m2,…,mnD,8grid1,grid2,…,gridn<,valuesE

approximate the partial derivative of order (m1, m2, …, mn) 
for the function of n variables that takes on values on the 
tensor product grid defined by the outer product of (grid1, 
grid2, …, gridn)

NDSolve`FiniteDifferenceDerivativeADerivative@m1,m2,…,mnD,8grid1,grid2,…,gridn<E

compute the finite difference weights needed to 
approximate the partial derivative of order (m1, m2, …, mn) 
for the function of n variables on the tensor product grid 
defined by the outer product of (grid1, grid2, …, gridn); the 

result is returned as an 
NDSolve`FiniteDifferenceDerivativeFunction, 
which can be repeatedly applied to values on the grid

Finding finite difference approximations to derivatives.

This defines a uniform grid with points spaced apart by a symbolic distance h.

In[14]:= ugrid = h Range@0, 8D

Out[14]= 80, h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h<

This gives the first derivative formulas on the grid for a symbolic function f.

In[15]:= NDSolve`FiniteDifferenceDerivative@Derivative@1D, ugrid, Map@f, ugridDD

Out[15]= :-
25 f@0D

12 h
+
4 f@hD

h
-
3 f@2 hD

h
+
4 f@3 hD

3 h
-
f@4 hD

4 h
,

-
f@0D

4 h
-
5 f@hD

6 h
+
3 f@2 hD

2 h
-
f@3 hD

2 h
+
f@4 hD

12 h
,
f@0D

12 h
-
2 f@hD

3 h
+
2 f@3 hD

3 h
-
f@4 hD

12 h
,

f@hD

12 h
-
2 f@2 hD

3 h
+
2 f@4 hD

3 h
-
f@5 hD

12 h
,
f@2 hD

12 h
-
2 f@3 hD

3 h
+
2 f@5 hD

3 h
-
f@6 hD

12 h
,

f@3 hD

12 h
-
2 f@4 hD

3 h
+
2 f@6 hD

3 h
-
f@7 hD

12 h
,
f@4 hD

12 h
-
2 f@5 hD

3 h
+
2 f@7 hD

3 h
-
f@8 hD

12 h
,

-
f@4 hD

12 h
+
f@5 hD

2 h
-
3 f@6 hD

2 h
+
5 f@7 hD

6 h
+
f@8 hD

4 h
,
f@4 hD

4 h
-
4 f@5 hD

3 h
+
3 f@6 hD

h
-
4 f@7 hD

h
+
25 f@8 hD

12 h
>

The derivatives at  the endpoints are computed using one-sided formulas.  The formulas shown

in the previous example are fourth-order accurate, which is  the default.  In general,  when you

use  a  symbolic  grid  and/or  data,  you  get  symbolic  formulas.  This  is  often  useful  for  doing

analysis  on  the  methods;  however,  for  actual  numerical  grids,  it  is  usually  faster  and  more

accurate  to  give  the  numerical  grid  to  
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The derivatives at  the endpoints are computed using one-sided formulas.  The formulas shown

use  a  symbolic  grid  and/or  data,  you  get  symbolic  formulas.  This  is  often  useful  for  doing

analysis  on  the  methods;  however,  for  actual  numerical  grids,  it  is  usually  faster  and  more

accurate  to  give  the  numerical  grid  to  NDSolve`FiniteDifferenceDerivative  rather  than

using the symbolic formulas.

This defines a randomly spaced grid between 0 and 2 p.

In[16]:= rgrid = Sort@Join@80, 2 p<, Table@2 p RandomReal@D, 810<DDD

Out[16]= 80, 0.94367, 1.005, 1.08873, 1.72052, 1.78776, 2.41574, 2.49119, 2.93248, 4.44508, 6.20621, 2 p<

This approximates the derivative of the sine function at each point on the grid.

In[17]:= NDSolve`FiniteDifferenceDerivative@Derivative@1D, rgrid, Sin@rgridDD

Out[17]= 80.989891, 0.586852, 0.536072, 0.463601, -0.149152,
-0.215212, -0.747842, -0.795502, -0.97065, -0.247503, 0.99769, 0.999131<

This shows the error in the approximations.

In[18]:= % - Cos@rgridD

Out[18]= 9-0.0101091, 0.000031019, -0.0000173088, -0.0000130366, 9.03135µ10-6, 0.0000521639,
0.0000926836, 0.000336785, 0.00756426, 0.0166339, 0.000651758, -0.000869237=

In multiple dimensions, NDSolve`FiniteDifferenceDerivative works on tensor product grids,

and you only need to specify the grid points for each dimension. 

This defines grids xgrid and ygrid for the x and y direction, gives an approximation for the mixed 
xy partial derivative of the Gaussian on the tensor product of xgrid and ygrid, and makes a 
surface plot of the error. 

In[19]:= xgrid = Range@0, 8D;
ygrid = Range@0, 10D;
gaussian@x_, y_D = ExpA-IHx - 4L2 + Hy - 5L2M ë 10E;
values = Outer@gaussian, xgrid, ygridD;
ListPlot3D@NDSolve`FiniteDifferenceDerivative@81, 1<, 8xgrid, ygrid<, valuesD -

Outer@Function@8x, y<, Evaluate@D@gaussian@x, yD, x, yDDD, xgrid, ygridDD

Out[23]=

Note that the values need to be given in a matrix corresponding to the outer product of the grid

coordinates. 
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NDSolve`FiniteDifferenceDerivative  does  not  compute  weights  for  sums  of  derivatives.

This  means  that  for  common  operators  like  the  Laplacian,  you  need  to  combine  two

approximations.

This makes a function that approximates the Laplacian operator on a tensor product grid.

In[24]:= lap@values_, 8xgrid_, ygrid_<D :=
NDSolve`FiniteDifferenceDerivative@82, 0<, 8xgrid, ygrid<, valuesD +
NDSolve`FiniteDifferenceDerivative@80, 2<, 8xgrid, ygrid<, valuesD

This uses the function to approximate the Laplacian for the same grid and Gaussian function 
used in the previous example.

In[25]:= ListPlot3D@lap@values, 8xgrid, ygrid<DD

Out[25]=

option name default value

“DifferenceOrder“ 4 asymptotic order of the error

PeriodicInterpolation False whether to consider the values as those of 
a periodic function with the period equal to 
the interval enclosed by the grid

Options for NDSolve`FiniteDifferenceDerivative.

This approximates the derivatives for the sine function on the random grid defined earlier, 
assuming that the function repeats periodically.

In[26]:= NDSolve`FiniteDifferenceDerivative@
1, rgrid, Sin@rgridD, PeriodicInterpolation Ø TrueD

Out[26]= 80.99895, 0.586765, 0.536072, 0.463601, -0.149152,
-0.215212, -0.747842, -0.795502, -0.97065, -0.247503, 0.994585, 0.99895<

When using PeriodicInterpolation -> True, you can omit the last point in the values since it

should always be the same as the first. This feature is useful when solving a PDE with periodic

boundary conditions.

Advanced Numerical Differential Equation Solving in Mathematica     187

5

10
2

4

6

8

–0.4
–0.3
–0.2
–0.1
0.0



This generates second-order finite difference formulas for the first derivative of a symbolic 
function.

In[27]:= NDSolve`FiniteDifferenceDerivative@1,
8x-1, x0, x1<, 8f-1, f0, f1<, “DifferenceOrder“ Ø 2D

Out[27]= :
f1 Hx-1 - x0L

H-x-1 + x1L H-x0 + x1L
+

f0 H-x-1 + x1L

H-x-1 + x0L H-x0 + x1L
+

f-1 J-1 -
-x-1+x1
-x-1+x0

N

-x-1 + x1
,

f1 H-x-1 + x0L

H-x-1 + x1L H-x0 + x1L
-

f-1 H-x0 + x1L

H-x-1 + x0L H-x-1 + x1L
+

f0 J-1 +
-x0+x1
-x-1+x0

N

-x0 + x1
,

-
f-1 Hx0 - x1L

H-x-1 + x0L H-x-1 + x1L
-

f0 H-x-1 + x1L

H-x-1 + x0L H-x0 + x1L
+

f1 H-x-1 + x0L J
-x-1+x1
-x-1+x0

+
-x0+x1
-x-1+x0

N

H-x-1 + x1L H-x0 + x1L
>

Fourth-order  differences  typically  provide  a  good  balance  between  truncation  (approximation)

error  and  roundoff  error  for  machine  precision.  However,  there  are  some  applications  where

fourth-order  differences  produce  excessive  oscillation  (Gibb's  phenomena),  so  second-order

differences  are  better.  Also,  for  high-precision,  higher-order  differences  may  be  appropriate.

Even  values  of  “DifferenceOrder“  use  centered  formulas,  which  typically  have  smaller  error

coefficients than noncentered formulas, so even values are recommended when appropriate.

NDSolve`FiniteDifferenceDerivativeFunction

When computing the solution to a PDE, it is common to repeatedly apply the same finite differ-

ence approximation to different values on the same grid. A significant savings can be made by

storing the necessary weight computations and applying them to the changing data. When you

omit  the (third) argument with function values in NDSolve`FiniteDifferenceDerivative,  the

result  will  be an NDSolve`FiniteDifferenceDerivativeFunction,  which is  a  data object  that

stores the weight computations in a efficient form for future repeated use.
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NDSolve`FiniteDifferenceDerivative@8m1,m2,…<,8grid1,grid2,…<D

compute the finite difference weights needed to approxi-
mate the partial derivative of order (m1, m2, …) for the 
function of n variables on the tensor product grid defined 
by the outer product of (grid1, grid2, …); the result is 
returned as an 
NDSolve`FiniteDifferenceDerivativeFunction 
object

NDSolve`FiniteDifferenceDerivativeFunctionADerivative@mD,dataE

a data object that contains the weights and other data 
needed to quickly approximate the mth-order derivative of 
a function; in the standard output form, only the 
Derivative@mD operator it approximates is shown

NDSolve`FiniteDifferenceDerivativeFunction@dataD@valuesD

approximate the derivative of the function that takes on 
values on the grid used to determine data

Computing finite difference weights for repeated use. 

This defines a uniform grid with 25 points on the unit interval and evaluates the sine function 
with one period on the grid.

In[2]:= n = 24;
grid = N@Range@0, nD ê nD;
values = Sin@2 p gridD

Out[4]= 90., 0.258819, 0.5, 0.707107, 0.866025, 0.965926, 1., 0.965926, 0.866025,

0.707107, 0.5, 0.258819, 1.22465µ10-16, -0.258819, -0.5, -0.707107, -0.866025,
-0.965926, -1., -0.965926, -0.866025, -0.707107, -0.5, -0.258819, -2.44929µ10-16=

This defines an NDSolve`FiniteDifferenceDerivativeFunction, which can be repeat-
edly applied to different values on the grid to approximate the second derivative.

In[5]:= fddf = NDSolve`FiniteDifferenceDerivative@Derivative@2D, gridD

Out[5]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2D, <>D

Note that the standard output form is abbreviated and only shows the derivative operators that

are approximated. 

This computes the approximation to the second derivative of the sine function.

In[6]:= fddf@valuesD

Out[6]= 90.0720267, -10.2248, -19.7382, -27.914, -34.1875, -38.1312, -39.4764, -38.1312,

-34.1875, -27.914, -19.7382, -10.2172, 3.39687µ10-13, 10.2172, 19.7382, 27.914,
34.1875, 38.1312, 39.4764, 38.1312, 34.1875, 27.914, 19.7382, 10.2248, -0.0720267=
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This function is only applicable for values defined on the particular grid used to construct it. If

your  problem  requires  changing  the  grid,  you  will  need  to  use  NDSolve`FiniteDifferenceÖ

Derivative  to  generate  weights  each  time  the  grid  changes.  However,  when  you  can  use

NDSolve`FiniteDifferenceDerivativeFunction  objects,  evaluation  will  be  substantially

faster. 

This compares timings for computing the Laplacian with the function just defined and with the 
definition of the previous section. A loop is used to repeat the calculation in each case because 
it is too fast for the differences to show up with Timing. 

In[9]:= repeats = 10000;
8First@Timing@Do@fddf@valuesD, 8repeats<DDD,
First@Timing@Do@NDSolve`FiniteDifferenceDerivative@

Derivative@2D, grid, valuesD, 8repeats<DDD<
Out[10]= 80.047, 2.25<

An  NDSolve`FiniteDifferenceDerivativeFunction  can  be  used  repeatedly  in  many  situa-

tions.  As  a  simple  example,  consider  a  collocation  method  for  solving  the  boundary  value

problem

uxx + sinHxL u = l u; uH0L = uH1L = 0

on the unit interval. (This simple method is not necessarily the best way to solve this particular

problem, but it is useful as an example.)

This defines a function that will have all components zero at an approximate solution of the 
boundary value problem. Using the intermediate vector v and setting its endpoints (parts 
{1,-1}) to 0 is a fast and simple trick to enforce the boundary conditions. Evaluation is pre-
vented except for numbers l because this would not work otherwise. (Also, because Times is 
Listable, Sin@2 Pi gridD u would thread componentwise.)

In[11]:= Clear@funD;
fun@u_, l_?NumberQD :=
Module@8n = Length@uD, v = fddf@uD + H Sin@gridD - lL u<,
v@@81, -1<DD = 0.;
8v, u.u - 1<D
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This uses FindRoot to find an approximate eigenfunction using the constant coefficient case 
for a starting value and shows a plot of the eigenfunction.

In[13]:= s4 = FindRootAfun@u, lD, 8u, values<, 9l, -4 p2=E;
ListPlot@Transpose@8grid, u ê. s4<D, PlotLabel Ø ToString@Last@s4DDD

Out[14]=
0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.1

0.2

0.3
l -> -39.4004

Since  the  setup  for  this  problem  is  so  simple,  it  is  easy  to  compare  various  alternatives.  For

example, to compare the solution above, which used the default fourth-order differences, to the

usual use of second-order differences, all that needs to be changed is the “DifferenceOrder“.

This solves the boundary value problem using second-order differences and shows a plot of the 
difference between it and the fourth-order solution.

In[39]:= fddf = NDSolve`FiniteDifferenceDerivative@
Derivative@2D, grid, “DifferenceOrder“ Ø 2D;

s2 = FindRootAfun@u, lD, 8u, values<, 9l, -4 p2=E;
ListPlot@Transpose@8grid, Hu ê. s4L - Hu ê. s2L<DD

Out[41]=
0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.02

One  way  to  determine  which  is  the  better  solution  is  to  study  the  convergence  as  the  grid  is

refined. This will be considered to some extent in the section on differentiation matrices below. 

While  the  most  vital  information  about  an  NDSolve`FiniteDifferenceDerivativeFunction

object, the derivative order, is displayed in its output form, sometimes it is useful to extract this

and other information from an NDSolve`FiniteDifferenceDerivativeFunction, say for use in

a program. The structure of the way the data is stored may change between versions of Mathe-

matica,  so extracting the information by using parts of the expression is not recommended. A

better alternative is to use any of the several method functions provided for this purpose. 
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Let FDDF represent an NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

FDDFü“DerivativeOrder“ get the derivative order that FDDF approximates

FDDFü“DifferenceOrder“ get the list with the difference order used for the approxima-
tion in each dimension 

FDDFü“PeriodicInterpolation“ get the list with elements True or False indicating 
whether periodic interpolation is used for each dimension

FDDFü“Coordinates“ get the list with the grid coordinates in each dimension

FDDFü“Grid“ form the tensor of the grid points; this is the outer product 
of the grid coordinates

FDDFü“DifferentiationMatrix“ compute the sparse differentiation matrix mat such that 
mat.Flatten@valuesD is equivalent to 
Flatten@FDDF@valuesDD

Method functions for exacting information from an 
NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

Any of the method functions that return a list with an element for each of the dimensions can

be used with an integer argument dim, which will return only the value for that particular dimen-

sion such that FDDFümethod@dimD = HFDDFümethodL@@dimDD.

The following examples show how you might use some of these methods.

Here is an NDSolve`FiniteDifferenceDerivativeFunction object created with random 
grids having between 10 and 16 points in each dimension.

In[15]:= fddf = NDSolve`FiniteDifferenceDerivative@Derivative@0, 1, 2D,
Table@Sort@Join@80., 1.<, Table@RandomReal@D, 8RandomInteger@88, 14<D<DDD,
83<D, PeriodicInterpolation Ø TrueD

Out[15]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@0, 1, 2D, <>D

This shows the dimensions of the outer product grid. 

In[20]:= Dimensions@tpg = fddfü“Grid“D

Out[20]= 815, 10, 11, 3<

Note  that  the  rank of  the  grid  point  tensor  is  one more than the  dimensionality  of  the  tensor

product.  This  is  because  the  three  coordinates  defining  each  point  are  in  a  list  themselves.  If

you  have  a  function  that  depends  on  the  grid  variables,  you  can  use

Apply@ f, fddf@“Grid“D, 8n<D where n = Length@ fddf@“DerivativeOrder“DD is the dimensional-

ity of the space in which you are approximating the derivative.
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This defines a Gaussian function of 3 variables and applies it to the grid on which the 
NDSolve`FiniteDifferenceDerivativeFunction is defined.

In[21]:= f = Function@8x, y, z<, Exp@-HHx - .5L^2 + Hy - .5L^2 + Hz - .5L^2LDD;
values = Apply@f, fddfü“Grid“, 8Length@fddf@“DerivativeOrder“DD<D;

This shows a 3-dimensional plot of the grid points colored according to the scaled value of the 
derivative.

In[23]:= Module@8dvals = fddf@valuesD, maxval, minval<,
maxval = Max@dvalsD;
minval = Min@dvalsD;
Graphics3D@MapThread@8Hue@HÒ2 - minvalL ê Hmaxval - minvalLD, Point@Ò1D< &,

8fddf@“Grid“D, fddf@valuesD<, Length@fddf@“DerivativeOrder“DDDDD

Out[23]=

For a moderate-sized tensor product grid like the example here, using Apply  is reasonably fast.

However, as the grid size gets larger, this approach may not be the fastest because Apply  can

only be used in limited ways with the Mathematica compiler and hence, with packed arrays. If

you can define your function so you can use Map  instead of  Apply,  you may be able to use a

CompiledFunction  since  Map  has  greater  applicability  within  the  Mathematica  compiler  than

does Apply.
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This defines a CompiledFunction that uses Map to get the values on the grid. (If the first grid 
dimension is greater than the system option “MapCompileLength“, then you do not need to 
construct the CompiledFunction since the compilation is done automatically when grid is a 
packed array.)

In[24]:= cf = Compile@88grid, _Real, 4<<,
Map@Function@8X<, Module@8Xs = X - .5<, Exp@-HXs.XsLDDD, grid, 83<DD

Out[24]= CompiledFunctionA8grid<,
MapAFunctionA8X<, ModuleA8Xs = X - 0.5<, ‰-Xs.XsEE, grid, 83<E, -CompiledCode-E

This defines a function that takes advantage of the fact that Exp has the Listable attribute to 
find the values on the grid.

In[25]:= fgrid@grid_D :=
Apply@f, Transpose@grid, RotateLeft@Range@TensorRank@gridDD, 1DDD

This compares timings for the three methods. The commands are repeated several times to get 
more accurate timings.

In[26]:= Module@
8repeats = 100, grid = fddf@“Grid“D, n = Length@fddf@“DerivativeOrder“DD<,
8First@Timing@Do@Apply@f, grid, 8n<D, 8repeats<DDD,
First@Timing@Do@cf@gridD, 8repeats<DDD,
First@Timing@Do@fgrid@gridD, 8repeats<DDD<D

Out[26]= 81.766, 0.125, 0.047<

The example timings show that using the CompiledFunction  is typically much faster than using

Apply and taking advantage of listability is a little faster yet.

Pseudospectral Derivatives

The maximum value the difference order can take on is determined by the number of points in

the  grid.  If  you  exceed  this,  a  warning  message  will  be  given  and  the  order  reduced

automatically.
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An even better approach, when possible, is to take advantage of listability when your function

consists of operations and functions which have the Listable  attribute. The trick is to separate

the  x,  y,  and  z  values  at  each  of  the  points  on  the  tensor  product  grid.  The  fastest

way  to  do  this  is  using  Transpose@ fddf@"Grid"DD, RotateLeft@Range@n + 1DDD,  where

n = Length@ fddf@"DerivativeOrder "DD  is  the  dimensionality  of  the  space  in  which  you  are

approximating the derivative. This will return a list of length n, which has the values on the grid

for  each  of  the  component  dimensions  separately.  With  the  Listable  attribute,  functions

applied to this will thread over the grid.



This uses maximal order to approximate the first derivative of the sine function on a random 
grid. 

In[50]:= NDSolve`FiniteDifferenceDerivative@1,
rgrid, Sin@rgridD, “DifferenceOrder“ Ø Length@rgridDD

NDSolve`FiniteDifferenceDerivative::ordred : There are insufficient points in dimension 1
to achieve the requested approximation order. Order will be reduced to 11.

Out[50]= 81.00001, 0.586821, 0.536089, 0.463614, -0.149161, -0.215265,
-0.747934, -0.795838, -0.978214, -0.264155, 0.997089, 0.999941<

Using a limiting order is commonly referred to as a pseudospectral derivative. A common prob-

lem  with  these  is  that  artificial  oscillations  (Runge's  phenomena)  can  be  extreme.  However,

there are two instances where this is not the case: a uniform grid with periodic repetition and a

grid  with  points  at  the  zeros  of  the  Chebyshev  polynomials,  Tn,  or  Chebyshev|Gauss|Lobatto

points [F96a], [QV94]. The computation in both of these cases can be done using a fast Fourier

transform, which is efficient and minimizes roundoff error.

“DifferenceOrder“->n use nth-order finite differences to approximate the 
derivative

“DifferenceOrder“->Length@gridD use the highest possible order finite differences to approxi-
mate the derivative on the grid (not generally   
recommended)

“DifferenceOrder“->
“Pseudospectral“

use a pseudospectral derivative approximation; only 
applicable when the grid points are spaced corresponding 
to the Chebyshev|Gauss|Lobatto points or when the grid is 
uniform with PeriodicInterpolation -> True

“DifferenceOrder“->8n1,n2,…< use difference orders n1, n2, … in dimensions 1, 2, … 
respectively

Settings for the “DifferenceOrder“ option. 

This gives a pseudospectral approximation for the second derivative of the sine function on a 
uniform grid.

In[27]:= ugrid = N@2 p Range@0, 10D ê 10D;
NDSolve`FiniteDifferenceDerivative@1, ugrid, Sin@ugridD,
PeriodicInterpolation Ø True, “DifferenceOrder“ -> “Pseudospectral“D

Out[28]= 81., 0.809017, 0.309017, -0.309017, -0.809017, -1., -0.809017, -0.309017, 0.309017, 0.809017, 1.<
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This computes the error at each point. The approximation is accurate to roundoff because the 
effective basis for the pseudospectral derivative on a uniform grid for a periodic function are the 
trigonometric functions.

In[29]:= % - Cos@ugridD

Out[29]= 96.66134µ10-16, -7.77156µ10-16, 4.996µ10-16, 1.11022µ10-16, -3.33067µ10-16, 4.44089µ10-16,

-3.33067µ10-16, 3.33067µ10-16, -3.88578µ10-16, -1.11022µ10-16, 6.66134µ10-16=

This defines a simple function that generates a grid of n points with leftmost point at x0 and 
interval length L having the spacing of the Chebyshev|Gauss|Lobatto points.

In[30]:= CGLGrid@x0_, L_, n_Integer ê; n > 1D :=

x0 +
1

2
L H1 - Cos@p Range@0, n - 1D ê Hn - 1LDL

This computes the pseudospectral derivative for a Gaussian function.

In[31]:= cgrid = CGLGrid@-5, 10., 16D; NDSolve`FiniteDifferenceDerivativeA
1, cgrid, ExpA-cgrid2E, “DifferenceOrder“ -> “Pseudospectral“E

Out[31]= 80.0402426, -0.0209922, 0.0239151, -0.0300589, 0.0425553, -0.0590871, 0.40663, 0.60336,
-0.60336, -0.40663, 0.0590871, -0.0425553, 0.0300589, -0.0239151, 0.0209922, -0.0402426<

This shows a plot of the approximation and the exact values.

In[32]:= ShowA9
ListPlot@Transpose@8cgrid, %<D, PlotStyle Ø PointSize@0.025DD,
PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[32]=
-4 -2 2 4

-0.5

0.5
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The  Chebyshev-Gauss-Lobatto  points  are  the  zeros  of  I1 - x2M Tn£HxL.  Using  the  property

TnHxL = TnHcosHqLL == cosHn qL, these can be shown to be at x j = cosJ
p j
n
N.



This shows a plot of the derivative computed using a uniform grid with the same number of 
points with maximal difference order.

In[35]:= ugrid = -5 + 10. Range@0, 15D ê 15;
ShowA9

ListPlotA
TransposeA9ugrid, NDSolve`FiniteDifferenceDerivativeA1, ugrid, ExpA-ugrid2E,

“DifferenceOrder“ Ø Length@ugridD - 1E=E, PlotStyle Ø PointSize@0.025DE,
PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[36]=
-4 -2 2 4

-20

-10

10

20

Even though the approximation is somewhat better in the center (because the points are more

closely spaced there in the uniform grid), the plot clearly shows the disastrous oscillation typical

of  overly  high-order  finite  difference  approximations.  Using  the  Chebyshev|Gauss|Lobatto

spacing has minimized this.

This shows a plot of the pseudospectral derivative approximation computed using a uniform grid 
with periodic repetition.

In[70]:= ugrid = -5 + 10. Range@0, 15D ê 15;
ShowA 9

ListPlotATransposeA9ugrid, NDSolve`FiniteDifferenceDerivativeA
1, ugrid, ExpA-ugrid2E, “DifferenceOrder“ Ø “Pseudospectral“,
PeriodicInterpolation Ø TrueE=E, PlotStyle Ø PointSize@0.025DE,

PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[71]=
-4 -2 2 4

-0.5

0.5
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With the assumption of periodicity, the approximation is significantly improved. The accuracy of

the periodic pseudospectral approximations is sufficiently high to justify, in some cases, using a

larger computational  domain to simulate periodicity,  say for  a pulse like the example.  Despite

the  great  accuracy  of  these  approximations,  they  are  not  without  pitfalls:  one  of  the  worst  is

probably aliasing error,  whereby an oscillatory function component with too great  a frequency

can be misapproximated or disappear entirely.

Accuracy and Convergence of Finite Difference Approximations

When using finite differences, it  is  important to keep in mind that the truncation error,  or the

asymptotic  approximation  error  induced  by  cutting  off  the  Taylor  series  approximation,  is  not

the  only  source  of  error.  There  are  two  other  sources  of  error  in  applying  finite  difference

formulas; condition error and roundoff  error [GMW81]. Roundoff  error comes from roundoff  in

the arithmetic computations required. Condition error comes from magnification of any errors in

the function values, typically from the division by a power of the step size, and so grows with

decreasing step size. This means that in practice, even though the truncation error approaches

zero  as  h  does,  the  actual  error  will  start  growing  beyond  some  point.  The  following  figures

demonstrate the typical behavior as h becomes small for a smooth function.
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1. µ 10-8
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A logarithmic plot of the maximum error for approximating the first derivative of the Gaussian 
f HxL = ‰-H15 Hx-1ê2LL

2
 at points on a grid covering the interval @0, 1D as a function of the number of grid points, 

n, using machine precision. Finite differences of order 2, 4, 6, and 8 on a uniform grid are shown in red, 
green, blue, and magenta, respectively. Pseudospectral derivatives with uniform (periodic) and 
Chebyshev spacing are shown in black and gray, respectively. 
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A logarithmic plot of the truncation error (dotted) and the condition and roundoff error (solid line) for 
approximating the first derivative of the Gaussian f HxL = ‰-H15 Hx-1ê2LL

2
 at points on a grid covering the 

interval @0, 1D as a function of the number of grid points, n. Finite differences of order 2, 4, 6, and 8 on a 
uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral derivatives with 
uniform (periodic) and Chebyshev spacing are shown in black and gray, respectively. The truncation error 
was computed by computing the approximations with very high precision. The roundoff and condition 
error was estimated by subtracting the machine-precision approximation from the high-precision 
approximation. The roundoff and condition error tends to increase linearly (because of the 1 êh factor 
common to finite difference formulas for the first derivative) and tends to be a little bit higher for higher-
order derivatives. The pseudospectral derivatives show more variations because the error of the FFT 
computations vary with length. Note that the truncation error for the uniform (periodic) pseudospectral 
derivative does not decrease below about 10-22. This is because, mathematically, the Gaussian is not a 
periodic function; this error in essence gives the deviation from periodicity.
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A semilogarithmic plot of the error for approximating the first derivative of the Gaussian f HxL = ‰-Hx-1ê2L
2
 as 

a function of x at points on a 45-point grid covering the interval @0, 1D. Finite differences of order 2, 4, 6, 
and 8 on a uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral 
derivatives with uniform (periodic) and Chebyshev spacing are shown in black and gray, respectively. All 
but the pseudospectral derivative with Chebyshev spacing were computed using uniform spacing 1 ê45. It 
is apparent that the error for the pseudospectral derivatives is not so localized; not surprising since the 
approximation at any point is based on the values over the whole grid. The error for the finite difference 
approximations are localized and the magnitude of the errors follows the size of the Gaussian (which is 
parabolic on a semilogarithmic plot).
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From the second plot,  it  is  apparent that there is  a size for which the best possible derivative

approximation  is  found;  for  larger  h,  the  truncation  error  dominates,  and  for  smaller  h,  the

condition  and  roundoff  error  dominate.  The  optimal  h  tends  to  give  better  approximations  for

higher-order differences. This is not typically an issue for spatial discretization of PDEs because

computing to that level  of  accuracy would be prohibitively expensive.  However,  this  error bal-

ance is a vitally important issue when using low-order differences to approximate, for example,

Jacobian  matrices.  To  avoid  extra  function  evaluations,  first-order  forward  differences  are

usually used, and the error balance is proportional to the square root of unit roundoff, so pick-

ing a good value of h is important [GMW81]. 

The plots showed the situation typical for smooth functions where there were no real boundary

effects. If the parameter in the Gaussian is changed so the function is flatter, boundary effects

begin to appear.
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A semilogarithmic plot of the error for approximating the first derivative of the Gaussian f HxL = ‰-H15 Hx-1ê2LL
2
 

as a function of x at points on a 45-point grid covering the interval @0, 1D. Finite differences of order 2, 4, 
6, and 8 on a uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral 
derivatives with uniform (nonperiodic) and Chebyshev spacing are shown in black and gray, respectively. 
All but the pseudospectral derivative with Chebyshev spacing were computed using uniform spacing 1 ê45. 
The error for the finite difference approximations are localized, and the magnitude of the errors follows 
the magnitude of the first derivative of the Gaussian. The error near the boundary for the uniform spacing 
pseudospectral (order-45 polynomial) approximation becomes enormous; as h decreases, this is not 
bounded. On the other hand, the error for the Chebyshev spacing pseudospectral is more uniform and 
overall quite small.

From what has so far been shown, it would appear that the higher the order of the approxima-

tion, the better. However, there are two additional issues to consider. The higher-order approxi-

mations lead to more expensive function evaluations, and if implicit iteration is needed (as for a

stiff problem), then not only is computing the Jacobian more expensive, but the eigenvalues of

the  matrix  also  tend  to  be  larger,  leading  to  more  stiffness  and  more  difficultly  for  iterative

solvers.  This is  at an extreme for pseudospectral  methods, where the Jacobian has essentially

no nonzero entries  [F96a].  Of  course,  these problems are a trade-off  for  smaller  system (and

hence matrix) size. 
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From what has so far been shown, it would appear that the higher the order of the approxima-

mations lead to more expensive function evaluations, and if implicit iteration is needed (as for a

stiff problem), then not only is computing the Jacobian more expensive, but the eigenvalues of

the  matrix  also  tend  to  be  larger,  leading  to  more  stiffness  and  more  difficultly  for  iterative

solvers.  This is  at an extreme for pseudospectral  methods, where the Jacobian has essentially

no nonzero entries  [F96a].  Of  course,  these problems are a trade-off  for  smaller  system (and

hence matrix) size. 

The  other  issue  is  associated  with  discontinuities.  Typically,  the  higher  order  the  polynomial

approximation, the worse the approximation. To make matters even worse, for a true discontinu-

ity, the errors magnify as the grid spacing is reduced. 
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A plot of approximations for the first derivative of the discontinuous unit step function 
fHxL = UnitStep Hx - 1 ê 2L as a function of x at points on a 128-point grid covering the interval @0, 1D. 
Finite differences of order 2, 4, 6, and 8 on a uniform grid are shown in red, green, blue, and magenta, 
respectively. Pseudospectral derivatives with uniform (periodic) and Chebyshev spacing are shown in 
black and gray, respectively. All but the pseudospectral derivative with Chebyshev spacing were 
computed using uniform spacing 1 ê128. All show oscillatory behavior, but it is apparent that the 
Chebyshev pseudospectral derivative does better in this regard.

There  are  numerous  alternatives  that  are  used  around  known  discontinuities,  such  as  front

tracking.  First-order  forward  differences  minimize  oscillation,  but  introduce  artificial  viscosity

terms. One good alternative are the so-called essentially nonoscillatory (ENO) schemes, which

have full order away from discontinuities but introduce limits near discontinuities that limit the

approximation  order  and  the  oscillatory  behavior.  At  this  time,  ENO  schemes  are  not  imple-

mented in NDSolve. 

In  summary,  choosing  an  appropriate  difference  order  depends  greatly  on  the  problem struc-

ture. The default of 4 was chosen to be generally reasonable for a wide variety of PDEs, but you

may want to try other settings for a particular problem to get better results.
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Differentiation Matrices

Since  differentiation,  and  naturally  finite  difference  approximation,  is  a  linear  operation,  an

alternative way of expressing the action of a FiniteDifferenceDerivativeFunction  is with a

matrix. A matrix that represents an approximation to the differential operator is referred to as a

differentiation matrix [F96a]. While differentiation matrices may not always be the optimal way

of applying finite difference approximations (particularly in cases where an FFT can be used to

reduce complexity and error), they are invaluable as aids for analysis and, sometimes, for use

in the linear solvers often needed to solve PDEs. 

Let FDDF represent an NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

FDDFü“DifferentiationMatrix“ recast the linear operation of FDDF as a matrix that 
represents the linear operator

Forming a differentiation matrix. 

This creates a FiniteDifferenceDerivativeFunction object.

In[37]:= fdd = NDSolve`FiniteDifferenceDerivative@2, Range@0, 10DD

Out[37]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2D, <>D

This makes a matrix representing the underlying linear operator.

In[38]:= smat = fdd@“DifferentiationMatrix“D

Out[38]= SparseArray@<59>, 811, 11<D

The matrix is given in a sparse form because, in general, differentiation matrices have relatively

few nonzero entries. 
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This converts to a normal dense matrix and displays it using MatrixForm.

In[39]:= MatrixForm@mat = Normal@smatDD

Out[39]//MatrixForm=
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This shows that all three of the representations are roughly equivalent in terms of their action 
on data.

In[40]:= data = MapAExpA-Ò2E &, N@Range@0, 10DDE;
8fdd@dataD, smat.data, mat.data<

Out[41]= 99-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11=,
9-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11=,
9-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11==

As mentioned previously, the matrix form is useful for analysis. For example, it can be used in a

direct  solver  or  to  find  the  eigenvalues  that  could,  for  example,  be  used  for  linear  stability

analysis.

This computes the eigenvalues of the differentiation matrix.

In[42]:= Eigenvalues@N@smatDD

Out[42]= 9-4.90697, -3.79232, -2.38895, -1.12435, -0.287414,

8.12317µ10-6 + 0.0000140698 Â, 8.12317µ10-6 - 0.0000140698 Â, -0.0000162463,
-8.45104µ10-6, 4.22552µ10-6 + 7.31779µ10-6 Â, 4.22552µ10-6 - 7.31779µ10-6 Â=

For pseudospectral derivatives, which can be computed using fast Fourier transforms, it may be

faster to use the differentiation matrix for small size, but ultimately, on a larger grid, the better

complexity and numerical properties of the FFT make this the much better choice. 
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For  multidimensional  derivatives,  the  matrix  is  formed so  that  it  is  operating  on  the  flattened

data,  the  KroneckerProduct  of  the  matrices  for  the  one-dimensional  derivatives.  It  is  easiest

to understand this through an example.

This evaluates a Gaussian function on the grid that is the outer product of grids in the x and y 
direction.

In[4]:= xgrid = N@Range@-2, 2, 1 ê 10DD;
ygrid = N@Range@-2, 2, 1 ê 8DD;
data = OuterAExpA-IHÒ1L2 + HÒ2L2ME &, xgrid, ygridE;

This defines an NDSolve`FiniteDifferenceDerivativeFunction which computes the 
mixed x-y partial of the function using fourth-order differences.

In[7]:= fdd = NDSolve`FiniteDifferenceDerivative@81, 1<, 8xgrid, ygrid<D

Out[7]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@1, 1D, <>D

This computes the associated differentiation matrix.

In[8]:= dm = fdd@“DifferentiationMatrix“D

Out[8]= SparseArray@<22848>, 81353, 1353<D

Note that the differentiation matrix is a 1353×1353 matrix. The number 1353 is the total num-

ber of points on the tensor product grid, that, of course, is the product of the number of points

on the x and y grids. The differentiation matrix operates on a vector of data which comes from

flattening data on the tensor product grid. The matrix is also very sparse; only about one-half

of  a  percent  of  the  entries  are  nonzero.  This  is  easily  seen  with  a  plot  of  the  positions  with

nonzero values.

Show a plot of the positions with nonzero values for the differentiation matrix.

In[9]:= MatrixPlot@Unitize@dmDD

Out[9]=

1 500 1000 1353

1

500

1000

1353

1 500 1000 1353
1

500

1000

1353
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This compares the computation of the mixed x-y partial with the two methods.

In[53]:= Max@dm.Flatten@dataD - Flatten@fdd@dataDDD

Out[53]= 3.60822µ10-15

The matrix is the KroneckerProduct, or direct matrix product of the 1-dimensional matrices.

Get the 1-dimensional differentiation matrices and form their direct matrix product.

In[16]:= fddx = NDSolve`FiniteDifferenceDerivative@81<, 8xgrid<D;
fddy = NDSolve`FiniteDifferenceDerivative@81<, 8ygrid<D;
dmk = KroneckerProduct@fddxü“DifferentiationMatrix“,

fddyü“DifferentiationMatrix“D; dmk ã dm
Out[17]= True

Using the differentiation matrix results in slightly different values for machine numbers because

the order of operations is different which, in turn, leads to different roundoff errors. 

The differentation matrix can be advantageous when what is desired is a linear combination of

derivatives.  For  example,  the  computation  of  the  Laplacian  operator  can  be  put  into  a  single

matrix.

This makes a function that approximates the Laplacian operator on a the tensor product grid.

In[18]:= flap =
Function@Evaluate@NDSolve`FiniteDifferenceDerivative@82, 0<, 8xgrid, ygrid<D@ÒD +

NDSolve`FiniteDifferenceDerivative@80, 2<, 8xgrid, ygrid<D@ÒDDD
Out[18]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@0, 2D, <>D@Ò1D +

NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2, 0D, <>D@Ò1D &

This computes the differentiation matrices associated with the derivatives in the x and y 
direction.

In[19]:= dmlist = Map@HHead@ÒD@“DifferentiationMatrix“DL &, List üü First@flapDD

Out[19]= 8SparseArray@<6929>, 81353, 1353<D, SparseArray@<6897>, 81353, 1353<D<

This adds the two sparse matrices together resulting in a single matrix for the Laplacian 
operator.

In[68]:= slap = Total@dmlistD

Out[68]= SparseArray@<12473>, 81353, 1353<D

Advanced Numerical Differential Equation Solving in Mathematica     205



This shows a plot of the positions with nonzero values for the differentiation matrix.

In[69]:= MatrixPlot@Unitize@slapDD

Out[69]=

1 500 1000 1353

1

500

1000

1353

1 500 1000 1353
1

500

1000

1353

This compares the values and timings for the two different ways of approximating the Laplacian.

In[64]:= Block@8repeats = 1000, l1, l2<,
data = Developer`ToPackedArray@dataD;
fdata = Flatten@dataD;
Map@First, 8

Timing@Do@l1 = flap@dataD, 8repeats<DD,
Timing@Do@l2 = slap.fdata, 8repeats<DD,
8Max@Flatten@l1D - l2D<

<D
D

Out[64]= 90.14, 0.047, 1.39888µ10-14=

Interpretation of Discretized Dependent Variables

When  a  dependent  variable  is  given  in  a  monitor  (e.g.  StepMonitor)  option  or  in  a  method

where interpretation of the dependent variable is needed (e.g. EventLocator and Projection),

for ODEs, the interpretation is generally clear: at a particular value of time (or the independent

variable), use the value for that component of the solution for the dependent variable.

For PDEs, the interpretation to use is not so obvious. Mathematically speaking, the dependent

variable  at  a  particular  time  is  a  function  of  space.  This  leads  to  the  default  interpretation,

which  is  to  represent  the  dependent  variable  as  an  approximate  function  across  the  spatial

domain using an InterpolatingFunction.
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Another  possible  interpretation  for  PDEs  is  to  consider  the  dependent  variable  at  a  particular

time  as  representing  the  spatially  discretized  values  at  that  time~that  is,  discretized  both  in

time and space. You can request that monitors and methods use this fully discretized interpreta-

tion by using the MethodOfLines option DiscretizedMonitorVariables -> True.

The best way to see the difference between the two interpretations is with an example.

This solves Burgers' equation. The StepMonitor  is set so that it makes a plot of the solution 
at the step time of every tenth time step, producing a sequence of curves of gradated color. 
You can animate the motion by replacing Show with ListAnimate; note that the motion of the 
wave in the animation does not reflect actual wave speed since it effectively includes the step 
size used by NDSolve.

In[5]:= curves = Reap@Block@8count = 0<, Timing@
NDSolve@8D@u@t, xD , tD ã 0.01 D@u@t, xD, x, xD + u@t, xD D@u@t, xD, xD,

u@0, xD ã Cos@2 Pi xD, u@t, 0D ã u@t, 1D<, u, 8t, 0, 1<, 8x, 0, 1<,
StepMonitor ß If@Mod@count++, 10D ã 0, Sow@Plot@u@t, xD, 8x, 0, 1<,

PlotRange Ø 880, 1<, 8-1, 1<<, PlotStyle Ø Hue@tDDDD, Method Ø
8“MethodOfLines“, “SpatialDiscretization“ Ø 8“TensorProductGrid“,

“MinPoints“ Ø 100, “DifferenceOrder“ Ø “Pseudospectral“<<DDDD@@2, 1DD;

In[8]:= Show@curvesD

Out[6]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

In executing the command above, u@t, xD in the StepMonitor  is effectively a function of x, so it

can be plotted with plot. You could do other operations on it, such as numerical integration.

This solves Burgers' equation. The StepMonitor  is set so that it makes a list plot of the 
spatially discretized solution at the step time every tenth step. You can animate the motion by 
replacing Show with ListAnimate .

In[10]:= discretecurves =
Reap@Block@8count = 0<, Timing@NDSolve@8D@u@t, xD , tD ã 0.01 D@u@t, xD, x, xD +

u@t, xD D@u@t, xD, xD, u@0, xD ã Cos@2 Pi xD, u@t, 0D ã u@t, 1D<,
u, 8t, 0, 1<, 8x, 0, 1<, StepMonitor ß If@Mod@count++, 10D ã 0,

Sow@ListPlot@u@t, xD, PlotRange Ø 8-1, 1<, PlotStyle Ø Hue@tDDD;D,
Method Ø 8“MethodOfLines“, “DiscretizedMonitorVariables“ Ø True,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MinPoints“ Ø 100,
“DifferenceOrder“ Ø “Pseudospectral“<<DDDD@@2, 1DD;

In[11]:= Show@discretecurvesD

Out[11]=
20 40 60 80 100

-1.0

-0.5

0.5

1.0
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In this case, u@t, xD is given at each step as a vector with the discretized values of the solution

on the spatial  grid. Showing the discretization points makes for a more informative monitor in

this example since it allows you to see how well the front is resolved as it forms.

The vector  of  values  contains  no  information about  the  grid  itself;  in  the  example,  the  plot  is

made  versus  the  index  values,  which  shows  the  correct  spacing  for  a  uniform grid.  Note  that

when u  is  interpreted as a  function,  the grid  will  be contained in  the InterpolatingFunction

used to  represent  the  spatial  solution,  so  if  you  need the  grid,  the  easiest  way to  get  it  is  to

extract it from the InterpolatingFunction, which represents u@t, xD. 

Finally  note  that  using  the  discretized  representation  is  significantly  faster.  This  may  be  an

important issue if  you are using the representation in solution method such as Projection  or

EventLocator.  An  example  where  event  detection  is  used  to  prevent  solutions  from  going

beyond  a  computational  domain  is  computed  much  more  quickly  by  using  the  discretized

interpretation.

Boundary Conditions

Often, with PDEs, it is possible to determine a good numerical way to apply boundary conditions

for a particular equation and boundary condition. The example given previously in the introduc-

tion  of  "The  Numerical  Method  of  Lines"  is  such  a  case.  However,  the  problem  of  finding  a

general algorithm is much more difficult and is complicated somewhat by the effect that bound-

ary conditions can have on stiffness and overall stability.

Periodic boundary conditions are particularly simple to deal with: periodic interpolation is used

for the finite differences. Since pseudospectral approximations are accurate with uniform grids,

solutions can often be found quite efficiently.
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NDSolve@8eqn1,eqn2,…,u1@t,xminD==u1@t,xmaxD,u2@t,xminD==u2@t,xmaxD,…<,
8u1@t,xD,u2@t,xD,…<,8t,tmin,tmax<,8x,xmin,xmax<D

solve a system of partial differential equations for function 
u1, u2, … with periodic boundary conditions in the spatial 
variable x (assuming that t is a temporal variable)

NDSolve@8eqn1,eqn2,…,u1@t,x1min,x2,…D==u1@t,x1max x2,…D,
u2@t,x1min,x2,…D==u2@t,x1max x2,…D,…<,

8u1@t,x1,x2,…D,u2@t,x1,x2,…D,…<, 8t,tmin,tmax<,8x,xmin,xmax<D

solve a system of partial differential equations for function 
u1, u2, … with periodic boundary conditions in the spatial 
variable x1 (assuming that t is a temporal variable)

Giving boundary conditions for partial differential equations. 

If you are solving for several functions u1, u2, … then for any of the functions to have periodic

boundary conditions, all of them must (the condition need only be specified for one function). If

you are working with more than one spatial dimension, you can have periodic boundary condi-

tions in some independent variable dimensions and not in others. 

This solves a generalization of the sine-Gordon equation to two spatial dimensions with periodic 
boundary conditions using a pseudospectral method. Without the pseudospectral method 
enabled by the periodicity, the problem could take much longer to solve.

In[2]:= sol = NDSolveA9D@u@t, x, yD, t, tD ã
D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,

u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -10, yD ã u@t, 10, yD, u@t, x, -10D ã u@t, x, 10D=, u, 8t, 0, 6<,

8x, -10, 10<, 8y, -10, 10<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<<E

Out[2]= 88u Ø InterpolatingFunction@880., 6.<, 8-10., 10.<, 8-10., 10.<<, <>D<<

In  the  InterpolatingFunction  object  returned  as  a  solution,  the  ellipses  in  the  notation

8…, xmin, xmax, …< are used to indicate that this dimension repeats periodically
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This makes a surface plot of a part of the solution derived from periodic continuation at t == 6.

In[7]:= Plot3D@First@u@6, x, yD ê. solD, 8x, 20, 40<,
8y, -15, 15<, PlotRange Ø All, PlotPoints Ø 40D

Out[7]=

NDSolve  uses  two  methods  for  nonperiodic  boundary  conditions.  Both  have  their  merits  and

drawbacks.  The  first  method  is  to  differentiate  the  boundary  conditions  with  respect  to  the

temporal  variable  and  solve  for  the  resulting  differential  equation(s)  at  the  boundary.  The

second  method  is  to  discretize  each  boundary  condition  as  it  is.  This  typically  results  in  an

algebraic equation for the boundary solution component, so the equations must be solved with

a  DAE  solver.  This  is  controlled  with  the  DifferentiateBoundaryConditions  option  to

MethodOfLines.

To see how the differentiation method works, consider again the simple example of the method

of  lines introduction section.  In the first  formulation,  the Dirichlet  boundary condition at  x == 0

was handled by differentiation with respect to t. The Neumann boundary condition was handled

using  the  idea  of  reflection,  which  worked  fine  for  a  second-order  finite  difference

approximation,  but does not generalize quite as easily  to higher order (though it  can be done

easily  for  this  problem  by  computing  the  entire  reflection).  The  differentiation  method,

however, can be used for any order differences on the Neumann boundary condition at x == 1.

As an example, a solution to the problem will be developed using fourth-order differences.
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This is a setting for the number of and spacing between spatial points. It is purposely set small 
so you can see the resulting equations. You can change it later to improve the accuracy of the 
approximations.

In[8]:= n = 10; hn = 1 ê n;

This defines the vector of ui.

In[9]:= U@t_D = Table@ui@tD, 8i, 0, n<D

Out[9]= 8u0@tD, u1@tD, u2@tD, u3@tD, u4@tD, u5@tD, u6@tD, u7@tD, u8@tD, u9@tD, u10@tD<

This discretizes the Neumann boundary condition at x == 1 in the spatial direction.

In[10]:= bc = Last@NDSolve`FiniteDifferenceDerivative@1, hn Range@0, nD, U@tDDD ã 0

Out[10]=
5 u6@tD

2
-
40 u7@tD

3
+ 30 u8@tD - 40 u9@tD +

125 u10@tD

6
ã 0

This differentiates the discretized boundary condition with respect to t.

In[11]:= bcprime = D@bc, tD

Out[11]=
5

2
u6

£@tD -
40

3
u7

£@tD + 30 u8
£@tD - 40 u9

£@tD +
125

6
u10

£@tD ã 0

Technically,  it  is  not  necessary  that  the  discretization  of  the  boundary  condition  be  done  with

the same difference order as the rest of the DE; in fact, since the error terms for the one-sided

derivatives  are  much  larger,  it  may  sometimes  be  desirable  to  increase  the  order  near  the

boundaries. NDSolve  does not do this because it is desirable that the difference order and the

InterpolatingFunction interpolation order be consistent across the spatial direction. 
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This is another way of generating the equations using 
NDSolve`FiniteDifferenceDerivative. The first and last will have to be replaced with the 
appropriate equations from the boundary conditions.

In[12]:= eqns = ThreadB

D@U@tD, tD ã
1

8
NDSolve`FiniteDifferenceDerivative@2, hn Range@0, nD, U@tDDF

Out[12]= :u0
£@tD ã

1

8
375 u0@tD -

3850 u1@tD

3
+
5350 u2@tD

3
- 1300 u3@tD +

1525 u4@tD

3
-
250 u5@tD

3
,

u1
£@tD ã

1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

u10
£@tD ã

1

8
-
250

3
u5@tD +

1525 u6@tD

3
- 1300 u7@tD +

5350 u8@tD

3
-
3850 u9@tD

3
+ 375 u10@tD >

Now you can replace the first and last equation with the boundary condition.

In[13]:= eqns@@1, 2DD = D@Sin@2 p tD, tD;
eqns@@-1DD = bcprime;
eqns

Out[15]= :u0
£@tD ã 2 p Cos@2 p tD, u1

£@tD ã
1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

,
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Out[15]=

u6
£@tD ã

8
-
3

u4@tD +
3

- 250 u6@tD +
3

-
3

,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

5

2
u6

£@tD -
40

3
u7

£@tD + 30 u8
£@tD - 40 u9

£@tD +
125

6
u10

£@tD ã 0>

NDSolve is capable of solving the system as is for the appropriate derivatives, so it is ready for 
the ODEs.

In[16]:= diffsol = NDSolve@8eqns, Thread@U@0D ã Table@0, 811<DD<, U@tD, 8t, 0, 4<D

Out[16]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<

This shows a plot of how well the boundary condition at x == 1 was satisfied.

In[17]:= Plot@Evaluate@Apply@Subtract, bcD ê. diffsolD, 8t, 0, 4<D

Out[17]=

1 2 3 4

-5.µ 10-16

5.µ 10-16

1.µ 10-15

Treating the boundary conditions as algebraic conditions saves a couple of steps in the process-

ing at the expense of using a DAE solver.
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This replaces the first and last equations (from before) with algebraic conditions corresponding 
to the boundary conditions.

In[18]:= eqns@@1DD = u0@tD ã Sin@2 p tD;
eqns@@-1DD = bc;
eqns

Out[20]= :u0@tD ã Sin@2 p tD, u1
£@tD ã

1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

5 u6@tD

2
-
40 u7@tD

3
+ 30 u8@tD - 40 u9@tD +

125 u10@tD

6
ã 0>

This solves the system of DAEs with NDSolve.

In[21]:= daesol = NDSolve@8eqns, Thread@U@0D ã Table@0, 811<DD<, U@tD, 8t, 0, 4<D

Out[21]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<
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This shows how well the boundary condition was satisfied.

In[22]:= Plot@Evaluate@Apply@Subtract, bcD ê. daesolD, 8t, 0, 4<, PlotRange Ø AllD

Out[22]=
1 2 3 4

-1.5µ 10-14

-1.µ 10-14

-5.µ 10-15

5.µ 10-15

1.µ 10-14

1.5µ 10-14

For this example, the boundary condition was satisfied well within tolerances in both cases, but

the differentiation method did very slightly better. This is not always true; in some cases, with

the  differentiation  method,  the  boundary  condition  can  experience  cumulative  drift  since  the

error control in this case is only local. The Dirichlet boundary condition at x == 0 in this example

shows some drift.

This makes a plot that compares how well the Dirichlet boundary condition at x == 0 was satis-
fied with the two methods. The solution with the differentiated boundary condition is shown in 
black.

In[23]:= Plot@Evaluate@8u0@tD ê. diffsol, u0@tD ê. daesol< - Sin@2 p tD D,
8t, 0, 4<, PlotStyle Ø 88Black<, 8Blue<<, PlotRange Ø AllD

Out[23]=

1 2 3 4

-2.µ 10-7

-1.µ 10-7

1.µ 10-7

2.µ 10-7

3.µ 10-7

4.µ 10-7

When  using  NDSolve,  it  is  easy  to  switch  between  the  two  methods  by  using  the

DifferentiateBoundaryConditions  option.  Remember  that  when  you  use

DifferentiateBoundaryConditions -> False,  you  are  not  as  free  to  choose  integration

methods; the method needs to be a DAE solver.

With  systems  of  PDEs  or  equations  with  higher-order  derivatives  having  more  complicated

boundary conditions,  both methods can be made to  work in  general.  When there are multiple

boundary  conditions  at  one  end,  it  may  be  necessary  to  attach  some  conditions  to  interior

points.  Here  is  an  example  of  a  PDE with  two  boundary  conditions  at  each  end  of  the  spatial

interval.
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Understanding the message about spatial error will be addressed in the next section. For now,

ignore the message and consider the boundary conditions.

This forms a list of InterpolatingFunctions differentiated to the same order as each of the 
boundary conditions.

In[26]:=

This makes a logarithmic plot of how well each of the four boundary conditions is satisfied by 
the solution computed with NDSolve as a function of t.

In[27]:=

It  is  clear  that  the  boundary  conditions  are  satisfied  to  well  within  the  tolerances  allowed  by

AccuracyGoal and PrecisionGoal options. It is typical that conditions with higher-order deriva-

tives will not be satisfied as well as those with lower-order derivatives.
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This solves a differential equation with two boundary conditions at each end of the spatial 
interval. The StiffnessSwitching integration method is used to avoid potential problems 
with stability from the fourth-order derivative.

In[25]:= dsol = NDSolveB:D@u@x, tD, t, tD ã -D@u@x, tD, x, x, x, xD,

:u@x, tD ã
x2

2
-
x3

3
+
x4

12
,

D@u@x, tD, tD ã 0> ê. t Ø 0,
Table@HD@u@x, tD, 8x, d<D ã 0L ê. x Ø b, 8b, 0, 1<, 8d, 2 b, 2 b + 1<D

>,

u, 8x, 0, 1<, 8t, 0, 2<, Method Ø "StiffnessSwitching", InterpolationOrder Ø AllF

Out[25]= 88u Ø InterpolatingFunction@880., 1.<, 80., 2.<<, <>D<<

bct =
Table@HD@u@x, tD, 8x, d<D ê. x Ø bL ê. First@dsolD, 8b, 0, 1<, 8d, 2 b, 2 b + 1<D

Out[26]= 88InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@0, tD,
InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@0, tD<,

8InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@1, tD,
InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@1, tD<<

LogPlot@Evaluate@Map@Abs, bct, 82<DD, 8t, 0, 2<, PlotRange Ø AllD

Out[27]=

0.5 1.0 1.5 2.0

10-16

10-12

10-8

10-4

1



Inconsistent Boundary Conditions

It  is  important  that  the  boundary  conditions  you  specify  be  consistent  with  both  the  initial

condition and the PDE. If this is not the case, NDSolve  will issue a message warning about the

inconsistency. When this happens, the solution may not satisfy the boundary conditions, and in

the worst cases, instability may appear.

In this example for the heat equation, the boundary condition at x == 0 is clearly inconsistent 
with the initial condition.

In[2]:= sol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@t, 0D ã 1, u@t, 1D ã 0, u@0, xD ã .5<, u, 8t, 0, 1<, 8x, 0, 1<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[2]= 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<<

This shows a plot of the solution at x == 0 as a function of t. The boundary condition uHt, 0L = 1 is 
clearly not satisfied.

In[3]:= Plot@Evaluate@First@u@t, 0D ê. solDD, 8t, 0, 1<D

Out[3]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The  reason  the  boundary  condition  is  not  satisfied  is  because  once  it  is  differentiated,  it

becomes  utHt, 0L = 0,  so  the  solution  will  be  whatever  constant  value  comes  from  the  initial

condition.
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When the boundary conditions are not differentiated, the DAE solver in effect modifies the initial 
conditions so that the boundary condition is satisfied. 

In[4]:= daesol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@t, 0D ã 1, u@t, 1D ã 0, u@0, xD ã 0<, u, 8t, 0, 1<, 8x, 0, 1<,

Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False<D;
Plot@First@u@t, 0D ê. daesolD - 1, 8t, 0, 1<, PlotRange Ø AllD

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

NDSolve::ivcon: The given initial conditions were not consistent with the
differential-algebraic equations. NDSolve will attempt to correct the values. à

NDSolve::ivres :
NDSolve has computed initial values that give a zero residual for the differential-algebraic system, but

some components are different from those specified. If you need those to be satisfied, it is
recommended that you give initial conditions for all dependent variables and derivatives of them.

Out[5]=
0.2 0.4 0.6 0.8 1.0

-1.µ 10-15

1.µ 10-15

2.µ 10-15

It  is  not  always  the  case  that  the  DAE  solver  will  find  good  initial  conditions  that  lead  to  an

effectively  correct  solution  like  this.  A  better  way  to  handle  this  problem  is  to  give  an  initial

condition that is consistent with the boundary conditions, even if it is discontinuous. In this case

the unit step function does what is needed.

This uses a discontinuous initial condition to match the boundary condition, giving a solution 
correct to the resolution of the spatial discretization.

In[6]:= usol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD, u@t, 0D ã 1,
u@t, 1D ã 0, u@0, xD ã UnitStep@-xD<, u, 8t, 0, 1<, 8x, 0, 1<D;

Plot3D@Evaluate@First@u@t, xD ê. usolDD, 8x, 0, 1<, 8t, 0, 1<D

Out[7]=
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In  general,  with  discontinuous  initial  conditions,  spatial  error  estimates  cannot  be  satisfied,

since they are predicated on smoothness so, in general, it is best to choose how well you want

to model the effect of the discontinuity by either giving a smooth function which approximates

the discontinuity or by specifying explicitly the number of points to use in the spatial discretiza-

tion.  More  detail  on  spatial  error  estimates  and  discretization  is  given  in  "Spatial  Error

Estimates".

A more subtle inconsistency arises when the temporal variable has higher-order derivatives and

boundary conditions may be differentiated more than once.

Consider the wave equation 

utt = uxx
with initial conditions uH0, xL = sinHxL utH0, xL = 0

and boundary conditions uHt, 0L = 0 uxHt, 0L = ‰t

The  initial  condition  sinHxL  satisfies  the  boundary  conditions,  so  you  might  be  surprised  that

NDSolve issues the NDSolve::ibcinc message.

In this example, the boundary and initial conditions appear to be consistent at first glance, but 
actually have inconsistencies which show up under differentiation.

In[8]:= isol = NDSolve@
8D@u@t, xD, t, tD ã D@u@t, xD, x, xD, u@0, xD ã Sin@xD, HD@u@t, xD, tD ê. t Ø 0L ã 0,
u@t, 0D ã 0, HD@u@t, xD, xD ê. x Ø 0L ã Exp@tD<, u, 8t, 0, 1<, 8x, 0, 2 p<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[8]= 88u Ø InterpolatingFunction@880., 1.<, 80., 6.28319<<, <>D<<

The inconsistency appears when you differentiate the second initial condition with respect to x,

giving  ut xHx, 0L = 0,  and  differentiate  the  second  boundary  condition  with  respect  to  t,  giving

ux tH0, tL = ‰t. These two are inconsistent at x = t = 0.

Occasionally,  NDSolve  will  issue  the  NDSolve::ibcinc  message  warning  about  inconsistent

boundary conditions when they are actually consistent. This happens due to discretization error

in  approximating  Neumann  boundary  conditions  or  any  boundary  condition  that  involves  a

spatial  derivative.  The  reason  this  happens  is  that  spatial  error  estimates  (see  "Spatial  Error

Estimates")  used  to  determine  how many  points  to  discretize  with  are  based  on  the  PDE  and

the  initial  condition,  but  not  the  boundary  conditions.  The  one-sided  finite  difference  formulas

that  are  used  to  approximate  the  boundary  conditions  also  have  larger  error  than  a  centered

formula of the same order, leading to additional discretization error at the boundary. Typically

this is not a problem, but it is possible to construct examples where it does occur.

Advanced Numerical Differential Equation Solving in Mathematica     219



In this example, because of discretization error, NDSolve incorrectly warns about inconsistent 
boundary conditions.

In[9]:= sol = NDSolve@8D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã 1 - Sin@4 * Pi * xD ê H4 * PiL,
u@0, tD ã 1, u@1, tD + Derivative@1, 0D@uD@1, tD ã 0<, u, 8x, 0, 1<, 8t, 0, 1<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[9]= 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<<

A plot of the boundary condition shows that the error, while not large, is outside of the default 
tolerances.

In[10]:= Plot@First@u@1, tD + Derivative@1, 0D@uD@1, tD ê. solD, 8t, 0, 1<D

Out[10]=

0.2 0.4 0.6 0.8 1.0

0.000234638

0.000234638

0.000234638

0.000234638

When  the  boundary  conditions  are  consistent,  a  way  to  correct  this  error  is  to  specify  that

NDSolve use a finer spatial discretization.

With a finer spatial discretization, there is no message and the boundary condition is satisfied 
better.

In[13]:= fsol =
NDSolve@8D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã 1 - Sin@4 * Pi * xD ê H4 * PiL,

u@0, tD ã 1, u@1, tD + Derivative@1, 0D@uD@1, tD ã 0<,
u, 8x, 0, 1<, 8t, 0, 1<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MinPoints“ Ø 100<<D;
Plot@First@u@1, tD + Derivative@1, 0D@uD@1, tD ê. fsolD, 8t, 0, 1<, PlotRange Ø AllD

Out[14]=

0.2 0.4 0.6 0.8 1.0

1.385µ 10-6

1.3851µ 10-6

1.3852µ 10-6

1.3853µ 10-6
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Spatial Error Estimates

Overview

When NDSolve solves a PDE, unless you have specified the spatial grid for it to use, by giving it

explicitly or by giving equal values for the MinPoints and MaxPoints options, NDSolve needs to

make a spatial error estimate. 

Ideally, the spatial error estimates would be monitored over time and the spatial mesh updated

according to the evolution of the solution. The problem of grid adaptivity is difficult enough for

a  specific  type  of  PDE  and  certainly  has  not  been  solved  in  any  general  way.  Furthermore,

techniques such as local refinement can be problematic with the method of lines since changing

the number of mesh points requires a complete restart of the ODE methods. There are moving

mesh  techniques  that  appear  promising  for  this  approach,  but  at  this  point,  NDSolve  uses  a

static grid. The grid to use is determined by an a priori error estimate based on the initial condi-

tion.  An  a  posteriori  check  is  done  at  the  end  of  the  temporal  interval  for  reasonable  consis-

tency and a warning message is given if that fails. This can, of course, be fooled, but in practice

it  provides a reasonable compromise. The most common cause of failure is when initial  condi-

tions have little variation, so the estimates are essentially meaningless. In this case, you may

need to choose some appropriate grid settings yourself.

Load a package that will be used for extraction of data from InterpolatingFunction objects.

In[1]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D

A priori Error Estimates

When NDSolve solves a PDE using the method of lines, a decision has to be made on an appro-

priate  spatial  grid.  NDSolve  does  this  using  an  error  estimate  based  on  the  initial  condition

(thus, a priori).

It  is  easiest  to  show  how  this  works  in  the  context  of  an  example.  For  illustrative  purposes,

consider the sine-Gordon equation in one dimension with periodic boundary conditions.

This solves the sine-Gordon equation with a Gaussian initial condition.

In[5]:= ndsol =
NDSolve@8D@u@x, tD, t, tD ã D@u@x, tD, x, xD - Sin@u@x, tDD, u@x, 0D ã Exp@-Hx^2LD,

Derivative@0, 1D@uD@x, 0D ã 0, u@-5, tD ã u@5, tD<, u, 8x, -5, 5<, 8t, 0, 5<D
Out[5]= 88u Ø InterpolatingFunction@88-5., 5.<, 80., 5.<<, <>D<<
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This gives the number of spatial and temporal points used, respectively.

In[6]:= Map@Length, InterpolatingFunctionCoordinates@First@u ê. ndsolDDD

Out[6]= 897, 15<

The  temporal  points  are  chosen  adaptively  by  the  ODE  method  based  on  local  error  control.

NDSolve  used  97  (98  including  the  periodic  endpoint)  spatial  points.  This  choice  will  be  illus-

trated through the steps that follow.

In the equation processing phase of NDSolve, one of the first things that happen is that equa-

tions with second- (or higher-) order temporal derivatives are replaced with systems with only

first-order temporal derivatives. 

This is a first-order system equivalent to the sine-Gordon equation earlier.

In[7]:= 8D@u@x, tD, tD ã v@x, tD, D@v@x, tD, tD ã D@u@x, tD, x, xD + -Sin@u@x, tDD<

Out[7]= 9uH0,1L@x, tD ã v@x, tD, vH0,1L@x, tD ã -Sin@u@x, tDD + uH2,0L@x, tD=

The next stage is to solve for the temporal derivatives.

This is the solution for the temporal derivatives, with the right-hand side of the equations in 
normal (ODE) form.

In[8]:= rhs = 8D@u@x, tD, tD, D@v@x, tD, tD< ê. Solve@%, 8D@u@x, tD, tD, D@v@x, tD, tD<D

Out[8]= 99v@x, tD, -Sin@u@x, tDD + uH2,0L@x, tD==

Now the problem is to choose a uniform grid that will approximate the derivative to within local

error tolerances as specified by AccuracyGoal and PrecisionGoal. For this illustration, use the

default “DifferenceOrder“  (4) and the default AccuracyGoal  and PrecisionGoal  (both 4 for

PDEs). The methods used to integrate the system of ODEs that results from discretization base

their  own error  estimates on the assumption of  sufficiently accurate function values.  The esti-

mates here have the goal of finding a spatial grid for which (at least with the initial condition)

the spatial error is somewhat balanced with the local temporal error.

This sets variables to reflect the default settings for “DifferenceOrder“, AccuracyGoal, 
and PrecisionGoal.

In[9]:= p = 4;
atol = 1.*^-4;
rtol = 1.*^-4;
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The error estimate is based on Richardson extrapolation. If you know that the error is OHhpL and

you  have  two  approximations  y1  and  y2  at  different  values,  h1  and  h2  of  h,  then  you  can,  in

effect, extrapolate to the limit h Ø 0 to get an error estimate

y1 - y2 = Ic h1
p
+ yM - Ic h2

p
+ yM = c h1

p 1 -
h2

h1

p

so the error in y1 is estimated to be

(1)°y1 - y¥ @ c h1
p
=

°y1-y2¥

1-
h2
h1

p

Here  y1  and  y2  are  vectors  of  different  length  and  y  is  a  function,  so  you  need  to  choose  an

appropriate norm. If you choose h1 = 2 h2, then you can simply use a scaled norm on the compo-

nents  common  to  both  vectors,  which  is  all  of  y1  and  every  other  point  of  y2.  This  is  a  good

choice because it does not require any interpolation between grids.

For  a  given  interval  on  which  you  want  to  set  up  a  uniform  grid,  you  can  define  a  function

hHnL = L ên,  where  L  is  the  length  of  the  interval  such  that  the  grid  is  8x0, x1, x1, …, xn<,  where

x j ã x0 + j hHnL. 

This defines functions that return the step size h and a list of grid points as a function of n for 
the sine-Gordon equation.

In[12]:= Clear@h, gridD;

h@n_D :=
10

n
;

grid@n_D := N@-5 + Range@0, nD * h@nDD;

For  a  given  grid,  the  equation  can  be  discretized  using  finite  differences.  This  is  easily  done

using NDSolve`FiniteDifferenceDerivative.

This defines a symbolic discretization of the right-hand side of the sine-Gordon equation as a 
function of a grid. It returns a function of u and v, which gives the approximate values for ut and 
vt in a list. (Note that in principle this works for any grid, uniform or not, though in the follow-
ing, only uniform grids will be used.)

In[15]:= sdrhs@grid_D := Block@8app, u, v<,
app = rhs ê.

Derivative@i_, 0D@var : Hu vLD@x, tD ß NDSolve`FiniteDifferenceDerivative@
i, grid, “DifferenceOrder“ Ø p, PeriodicInterpolation Ø TrueD@varD;

app = app ê. Hvar : Hu vLL@x, tD ß var;
Function@8u, v<, Evaluate@appDDD

For a given step size and grid, you can also discretize the initial conditions for u and v.
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This defines a function that discretizes the initial conditions for u and v. The last grid point is 
dropped because, by periodic continuation, it is considered the same as the first.

In[16]:= dinit@n_D := Transpose@Map@Function@8x<, 8Exp@-x^2D, 0<D, Drop@grid@nD, -1DDD

The quantity  of  interest  is  the approximation of  the right-hand side for  a  particular  value of  n

with this initial condition.

This defines a function that returns a vector consisting of the approximation of the right-hand 
side of the equation for the initial condition for a given step size and grid. The vector is flat-
tened to make subsequent analysis of it simpler.

In[17]:= rhsinit@n_D := Flatten@Apply@sdrhs@grid@nDD, dinit@nDDD

Starting with a particular value of n, you can obtain the error estimate by generating the right

hand side for n and 2 n points.

This gives an example of the right-hand side approximation vector for a grid with 10 points.

In[18]:= rhsinit@10D

Out[18]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0000202683, -0.00136216, -0.00666755,
0.343233, 0.0477511, -2.36351, 0.0477511, 0.343233, -0.00666755, -0.00136216<

This gives an example of the right-hand side approximation vector for a grid with 20 points.

In[19]:= rhsinit@20D

Out[19]= 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5.80538µ10-8,

-1.01297µ10-6, -0.0000168453, -0.0000373357, 0.00285852, 0.0419719, 0.248286,
0.640267, 0.337863, -1.48981, -2.77952, -1.48981, 0.337863, 0.640267,
0.248286, 0.0419719, 0.00285852, -0.0000373357, -0.0000168453, -1.01297µ10-6=

As mentioned earlier, every other point on the grid with 2 n points lies on the grid with n points.

Thus,  for  simplicity,  you  can  use  a  norm  that  only  compares  points  common  to  both  grids.

Because the goal is to ultimately satisfy absolute and relative tolerance criteria, it is appropriate

to use a scaled norm. In addition to taking into account the size of the right-hand side for the

scaling, it  is also important to include the size of the corresponding components of u  and v  on

the grid since error in the right-hand side is ultimately included in u and v.

This defines a norm function for the difference in the approximation of the right-hand side.

In[20]:= dnorm@rhsn_, rhs2n_, uv_D := Module@8rhs2 = Take@rhs2n, 81, -1, 2<D<,
NDSolve`ScaledVectorNorm@Infinity, 8rtol, atol<D@
rhsn - rhs2, Internal`MaxAbs@rhs2, uvDDD ê;

HHLength@rhs2nD ã 2 Length@rhsnDL && HLength@rhsnD ã Length@uvDLL
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This applies the norm function to the two approximations found.

In[21]:= dnorm@rhsinit@10D, rhsinit@20D, Flatten@dinit@10DDD

Out[21]= 2168.47

To get the error estimate form the distance, according to the Richardson extrapolation formula

(3), this simply needs to be divided by H1 - Hh2 êh1LpL = H1 - 2-pL.

This computes the error estimate for n == 10. Since this is based on a scaled norm, the toler-
ance criteria are satisfied if the result is less than 1.

In[22]:= % ê H1 - 2-pL

Out[22]= 2313.04

This makes a function that combines the earlier functions to give an error estimate as a function 
of n.

In[23]:= errest@n_D := dnorm@rhsinit@nD, rhsinit@2 nD, Flatten@dinit@nDDD ê H1 - 2-pL

The goal is to find the minimum value of n, such that the error estimate is less than or equal to

1 (since it  is  based on a scaled norm).  In principle,  it  would be possible  to  use a root-finding

algorithm on  this,  but  since  n  can  only  be  an  integer,  this  would  be  overkill  and  adjustments

would have to be made to the stopping conditions. An easier solution is simply to use the sim-

ple Richardson extrapolation formula to predict what value of n would be appropriate and repeat

the prediction process until the appropriate n is found.

The condition to satisfy is

c hopt
p

= 1

and you have estimated that

c hHnLp > errestHnL

so you can project that

hopt > hHnL
1

errestHnL

1êp

or in terms of n, which is proportional to the reciprocal of h,

nopt > en errestHnL1êpu
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This computes the predicted optimal value of n based on the error estimate for n == 10 com-
puted earlier.

In[24]:= CeilingA10 errest@10D1êpE

Out[24]= 70

This computes the error estimate for the new value of n.

In[25]:= errest@%D

Out[25]= 3.75253

Often the case that a prediction based on a very coarse grid will  be inadequate. A coarse grid

may completely miss some solution features that  contribute to the error  on a finer  grid.  Also,

the error estimate is based on an asymptotic formula, so for coarse spacings, the estimate itself

may not be very good, even when all the solution features are resolved to some extent.

In practice, it can be fairly expensive to compute these error estimates. Also, it is not necessary

to find the very optimal n, but one that satisfies the error estimate. Remember, everything can

change  as  the  PDE  evolves,  so  it  is  simply  not  worth  a  lot  of  extra  effort  to  find  an  optimal

spacing for just the initial time. A simple solution is to include an extra factor greater than 1 in

the prediction formula for the new n. Even with an extra factor, it may still take a few iterations

to get to an acceptable value. It does, however, typically make the process faster.

This defines a function that gives a predicted value for the number of grid points, which should 
satisfy the error estimate.

In[26]:= pred@n_D := CeilingA1.05 n errest@nD1êpE

This iterates the predictions until a value is found that satisfies the error estimate.

In[27]:= NestWhileList@pred, 10, Herrest@ÒD > 1L &D

Out[27]= 810, 73, 100<

It is important to note that this process must have a limiting value since it may not be possible

to  satisfy  the  error  tolerances,  for  example,  with  a  discontinuous  initial  function.  In  NDSolve,

the  MaxSteps  option  provides  the  limit;  for  spatial  discretization,  this  defaults  to  a  total  of

10000 across all spatial dimensions. 

Pseudospectral derivatives cannot use this error estimate since they have an exponential rather

than a polynomial convergence. An estimate can be made based on the formula used earlier in

the limit 
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Pseudospectral derivatives cannot use this error estimate since they have an exponential rather

the limit p -> Infinity.  What this amounts to is considering the result on the finer grid to be

exact  and  basing  the  error  estimate  on  the  difference  since  1 - 2-p  approaches  1.  A  better

approach  is  to  use  the  fact  that  on  a  given  grid  with  n  points,  the  pseudospectral  method  is

OHhnL. When comparing for two grids, it is appropriate to use the smaller n for p. This provides

an imperfect, but adequate estimate for the purpose of determining grid size. 

This modifies the error estimation function so that it will work with pseudospectral derivatives.

In[28]:= errest@n_D :=
dnorm@rhsinit@nD, rhsinit@2 nD, Flatten@dinit@nDDD ë I1 - 2-If@p === “Pseudospectral“,n,pDM

The prediction formula can be modified to use n instead of p in a similar way. 

This modifies the function predicting an appropriate value of n to work with pseudospectral 
derivatives. This formulation does not try to pick an efficient FFT length.

In[29]:= pred@n_D := CeilingA1.05 n errest@nD1êIf@p === “Pseudospectral“,n,pDE

When finalizing  the  choice  of  n  for  a  pseudospectral  method,  an  additional  consideration  is  to

choose a value that not only satisfies the tolerance conditions, but is also an efficient length for

computing FFTs. In Mathematica, an efficient FFT does not require a power of two length since

the Fourier command has a prime factor algorithm built in.

Typically, the difference order has a profound effect on the number of points required to satisfy

the error estimate. 

This makes a table of the number of points required to satisfy the a priori error estimate as a 
function of the difference order.

In[30]:= TableForm@Map@Block@8p = Ò<, 8p, NestWhile@pred, 10, Herrest@ÒD > 1L &D<D &,
82, 4, 6, 8, “Pseudospectral“<D,

TableHeadings Ø 88<, 8“DifferenceOrder“, “Number of points“<<D

Out[30]//TableForm=

DifferenceOrder Number of points
2 804
4 100
6 53
8 37
Pseudospectral 24

A  table  of  the  number  of  points  required  as  a  function  of  difference  order  goes  a  long  way

toward explaining why the default  setting for  the method of  lines  is  “DifferenceOrder“ -> 4:

the  improvement  from  2  to  4  is  usually  most  dramatic  and  in  the  default  tolerance  range,

fourth-order  differences  do  not  tend  to  produce  large  roundoff  errors,  which  can  be  the  case

with higher orders. Pseudospectral differences are often a good choice, particularly with periodic

boundary  conditions,  but  they  are  not  a  good  choice  for  the  default  because  they  lead  to  full

Jacobian matrices, which can be expensive to generate and solve if needed for stiff equations.
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For nonperiodic grids,  the error estimate is  done using only interior  points.  The reason is  that

the  error  coefficients  for  the  derivatives  near  the  boundary  are  different.  This  may  miss  fea-

tures that are near the boundary, but the main idea is to keep the estimate simple and inexpen-

sive since the evolution of the PDE may change everything anyway.

For  multiple  spatial  dimensions,  the  determination  is  made  one  dimension  at  a  time.  Since

better  resolution  in  one  dimension  may  change  the  requirements  for  another,  the  process  is

repeated in reverse order to improve the choice. 

A posteriori Error Estimates

When the solution of a PDE is computed with NDSolve, a final step is to do a spatial error esti-

mate on the evolved solution and issue a warning message if this is excessively large.

These error  estimates  are  done in  a  manner  similar  to  the  a  priori  estimates  described previ-

ously.  The only real  difference is  that,  instead of  using grids with n  and 2 n  points  to estimate

the error, grids with n ê2 and n points are used. This is because, while there is no way to gener-

ate the values on a grid of 2 n points without using interpolation, which would introduce its own

errors, values are readily available on a grid of n ê2  points simply by taking every other value.

This is easily done in the Richardson extrapolation formula by using h2 ã 2 h1, which gives

°y1 - y¥ @
°y1 - y2¥

H2p - 1L

This defines a function (based on functions defined in the previous section) that can compute an 
error estimate on the solution of the sine-Gordon equation from solutions for u and v expressed 
as vectors. The function has been defined to be a function of the grid since this is applied to a 
grid already constructed. (Note, as defined here, this only works for grids of even length. It is 
not difficult to handle odd length, but it makes the function somewhat more complicated.)

In[31]:= posterrest@8uvec_, vvec_<, grid_D := ModuleB8
huvec = Take@uvec, 81, -1, 2<D,
hvvec = Take@vvec, 81, -1, 2<D,
hgrid = Take@grid, 81, -1, 2<D<,

dnorm@Flatten@sdrhs@hgridD@huvec, hvvecDD,
Flatten@sdrhs@gridD@uvec, vvecDD, Flatten@8huvec, hvvec<DD í

J2IfAp === “Pseudospectral“,LengthAgridEë2,pE - 1NF

This solves the sine-Gordon equation with a Gaussian initial condition.

In[41]:=
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ndsol = First@NDSolve@8D@u@x, tD, t, tD ã D@u@x, tD, x, xD + -Sin@u@x, tDD,
u@x, 0D ã Exp@-Hx^2LD, Derivative@0, 1D@uD@x, 0D ã 0, u@-5, tD ã u@5, tD<,

u, 8x, -5, 5<, 8t, 0, 5<, InterpolationOrder Ø AllDD
Out[41]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 5.<<, <>D<



This is the grid used in the spatial direction that is the first set of coordinates used in the 
InterpolatingFunction. A grid with the last point dropped is used to obtain the values 
because of periodic continuation. 

In[42]:= ndgrid = InterpolatingFunctionCoordinates@u ê. ndsolD@@1DD
pgrid = Drop@ndgrid, -1D;

Out[42]= 8-5., -4.89583, -4.79167, -4.6875, -4.58333, -4.47917, -4.375, -4.27083, -4.16667, -4.0625,
-3.95833, -3.85417, -3.75, -3.64583, -3.54167, -3.4375, -3.33333, -3.22917, -3.125,
-3.02083, -2.91667, -2.8125, -2.70833, -2.60417, -2.5, -2.39583, -2.29167, -2.1875,
-2.08333, -1.97917, -1.875, -1.77083, -1.66667, -1.5625, -1.45833, -1.35417, -1.25,
-1.14583, -1.04167, -0.9375, -0.833333, -0.729167, -0.625, -0.520833, -0.416667,
-0.3125, -0.208333, -0.104167, 0., 0.104167, 0.208333, 0.3125, 0.416667, 0.520833, 0.625,
0.729167, 0.833333, 0.9375, 1.04167, 1.14583, 1.25, 1.35417, 1.45833, 1.5625, 1.66667,
1.77083, 1.875, 1.97917, 2.08333, 2.1875, 2.29167, 2.39583, 2.5, 2.60417, 2.70833, 2.8125,
2.91667, 3.02083, 3.125, 3.22917, 3.33333, 3.4375, 3.54167, 3.64583, 3.75, 3.85417,
3.95833, 4.0625, 4.16667, 4.27083, 4.375, 4.47917, 4.58333, 4.6875, 4.79167, 4.89583, 5.<

This makes a function that gives the a posteriori error estimate at a particular numerical value 
of t. 

In[44]:= peet@t_?NumberQD :=
posterrest@8 u@pgrid, tD, Derivative@0, 1D@uD@pgrid, tD< ê. ndsol, ndgridD

This makes a plot of the a posteriori error estimate as a function of t.

In[45]:=

The  large  amount  of  local  variation  seen  in  this  function  is  typical.  For  that  reason,  NDSolve

does not warn about excessive error unless this estimate gets above 10 (rather than the value

of  1,  which  is  used  to  choose  the  grid  based  on  initial  conditions).  The  extra  factor  of  10  is

further justified by the fact that the a posteriori error estimate is less accurate than the a priori 

one. Thus, when NDSolve issues a warning message based on the a posteriori error estimate, it

is  usually  because  new  solution  features  have  appeared  or  because  there  is  instability  in  the

solution process. 
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Plot@peet@tD, 8t, 0, 5<, PlotRange Ø AllD

Out[45]=
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This is an example with the same initial condition used in the earlier examples, but where 
NDSolve gives a warning message based on the a posteriori error estimate. 

In[46]:= bsol = FirstANDSolveA9D@u@x, tD, tD ã 0.01 D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ‰-x2, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 272.7279341590405` at t = 4.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 75 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[46]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

This shows a plot of the solution at t == 4. It is apparent that the warning message is appropri-
ate because the oscillations near the peak are not physical.

In[47]:= Plot@u@x, 4D ê. bsol, 8x, -5, 5<, PlotRange Ø AllD

Out[47]=
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When the NDSolve::eerr message does show up, it may be necessary for you to use options

to  control  the  grid  selection  process  since  it  is  likely  that  the  default  settings  did  not  find  an

accurate solution. 

Controlling the Spatial Grid Selection

The NDSolve implementation of the method of lines has several ways to control the selection of

the spatial grid.
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option name default value

AccuracyGoal Automatic the number of digits of absolute tolerance 
for determining grid spacing

PrecisionGoal Automatic the number of digits of relative tolerance 
for determining grid spacing

“DifferenceOrder“ Automatic the order of finite difference approximation 
to use for spatial discretization

Coordinates Automatic the list of coordinates for each spatial 
dimension 88x1,x2,…<,8y1,y2,…<,…< 
for independent variable dimensions 
x,y,…; this overrides the settings for all 
the options following in this list

MinPoints Automatic the minimum number of points to be used 
for each dimension in the grid; for 
Automatic, value will be determined by 
the minimum number of points needed to 
compute an error estimate for the given 
difference order

MaxPoints Automatic the maximum number of points to be used 
in the grid

StartingPoints Automatic the number of points to begin the process 
of grid refinement using the a priori error 
estimates

MinStepSize Automatic the minimum grid spacing to use

MaxStepSize Automatic the maximum grid spacing to use

StartingStepSize Automatic the grid spacing to use to begin the pro-
cess of grid refinement using the a priori 
error estimates

Tensor product grid options for the method of lines. 

All the options for tensor product grid discretization can be given as a list with length equal to

the  number  of  spatial  dimensions,  in  which  case  the  parameter  for  each  spatial  dimension  is

determined by the corresponding component of the list.

With  the exception of  pseudospectral  methods on nonperiodic  problems,  discretization is  done

with uniform grids, so when solving a problem on interval length L, there is a direct correspon-

dence between the Points and StepSize options:

MaxPoints Ø n ó MaxStepSize Ø L ên
MinPoints Ø n ó MinStepSize Ø L ên

StartingPoints Ø n ó StartingStepSize Ø L ên
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The  StepSize  options  are  effectively  converted  to  the  equivalent  Points  values.  They  are

simply  provided  for  convenience  since  sometimes  it  is  more  natural  to  relate  problem

specification  to  step  size  rather  then  the  number  of  discretization  points.  When  values  other

then  Automatic  are  specified  for  both  the  Points  and  corresponding  StepSize  option,

generally, the more stringent restriction is used.

In the previous section an example was shown where the solution was not resolved sufficiently

because the solution steepened as it evolved. The examples that follow will show some different

ways of modifying the grid parameters so that the near shock is better resolved.

One way to avoid the oscillations that showed up in the solution as the profile steepened is to

make sure that you use sufficient points to resolve the profile at its steepest. In the one-hump

solution of Burgers' equation, 

ut + u ux = n uxx

it can be shown [W76] that the width of the shock profile is proportional to n as n Ø 0. More than

95% of the change is included in a layer of width 10 n. Thus, if you pick a maximum step size of

half  the profile width, there will  always be a point somewhere in the steep part of  the profile,

and there is a hope of resolving it without significant oscillation.

This computes the solution to Burgers' equation, such that there are sufficient points to resolve 
the shock profile.

In[48]:= n = 0.01;
bsol2 = FirstANDSolveA

9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD, u@x, 0D ã ‰-x2,
u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<, Method Ø 8“MethodOfLines“,
“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MaxStepSize“ Ø 10 n ê 2<<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 82.77168552068868` at t = 4.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 201 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[49]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

Note that resolving the profile alone is by no means sufficient to meet the default tolerances of

NDSolve,  which  requires  an  accuracy  of  10-4.  However,  once  you  have  sufficient  point  to

resolve the basic profile, it  is not unreasonable to project based on the a posteriori  error esti-

mate  shown  in  the  NDSolve::eerr  message  (with  an  extra  10%  since,  after  all,  it  is  just  a

projection).
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This computes the solution to Burgers' equation with the maximum step size chosen so that it 
should be small enough to meet the default error tolerances based on a projection from the 
error of the previous calculation.

In[50]:= n = 0.01;
bsol3 = FirstBNDSolveB9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ‰-x2, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<,

8t, 0, 4<, Method Ø :“MethodOfLines“, “SpatialDiscretization“ Ø

:“TensorProductGrid“, “MaxStepSize“ Ø H10 n ê 2L ì H1.1L 85
1

4 >>FF

Out[51]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

To compare solutions like this, it is useful to look at a plot of the solution only at the spatial grid

points. Because the grid points are stored as a part of the InterpolatingFunction, it is fairly

simple to define a function that does this.

This defines a function that plots a solution only at the spatial grid points at a time t.

In[52]:= GridPointPlot@8u Ø if_InterpolatingFunction<, t_, opts___D :=
Module@8grid = InterpolatingFunctionCoordinates@ifD@@1DD<,
ListPlot@Transpose@8grid, if@grid, tD<D, optsDD

This makes a plot comparing the three solutions found at t = 4.

In[53]:= Show@Block@8 t = 4<, 8
GridPointPlot@bsol3, 4D,
GridPointPlot@bsol2, 4, PlotStyle Ø Hue@1 ê 3DD,
GridPointPlot@bsol, 4, PlotStyle Ø Hue@1DD

<
D, PlotRange Ø AllD

Out[53]=
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In  this  example,  the  left-hand  side  of  the  domain  really  does  not  need  so  many  points.  The

points need to be clustered where the steep profile evolves, so it might make sense to consider

explicitly specifying a grid that has more points where the profile appears.
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This solves Burgers' equation on a specified grid that has most of its points to the right of x = 1.

In[54]:= mygrid = Join@-5. + 10 Range@0, 48D ê 80, 1. + Range@1, 4 µ 70D ê 70D;
n = 0.01;
bsolg = FirstANDSolveA

9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD, u@x, 0D ã ‰-x2,
u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<, Method Ø 8“MethodOfLines“,
“SpatialDiscretization“ Ø 8“TensorProductGrid“, “Coordinates“ Ø 8mygrid<<<EE

Out[56]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

This makes a plot of the values of the solution at the assigned spatial grid points.

In[57]:= GridPointPlot@bsolg, 4D

Out[57]=
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Many  of  the  same  principles  apply  to  multiple  spatial  dimensions.  Burgers'  equation  in  two

dimensions with anisotropy provides a good example.

This solves a variant of Burgers' equation in 2 dimensions with different velocities in the x and y 
directions.

In[58]:= n = 0.075;
sol1 =
FirstANDSolveA9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL,
u@0, x, yD ã ExpA-Ix2 + y2ME, u@t, -4, yD ã u@t, 4, yD,
u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<, 8x, -4, 4<, 8y, -4, 4<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 29.72177327883787` at t = 2.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 69 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options.

Out[59]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<
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This shows a surface plot of the leading edge of the solution at t = 2.

In[60]:= Plot3D@u@2, x, yD ê. sol1, 8x, 0, 4<, 8y, -4, 0<, PlotRange Ø AllD

Out[60]=

Similar to the one-dimensional case, the leading edge steepens. Since the viscosity term (n) is

larger,  the  steepening  is  not  quite  so  extreme,  and  this  default  solution  actually  resolves  the

front reasonably well. Therefore it should be possible to project from the error estimate to meet

the default tolerances. A simple scaling argument indicates that the profile width in the x direc-

tion will  be narrower than in the y  direction by a factor of  2 .  Thus,  it  makes sense that the

step sizes in the y direction can be larger than those in the x direction by this factor, or, corre-

spondingly, that the minimum number of points can be a factor of 1í 2  less.

This solves the 2-dimensional variant of Burgers' equation with appropriate step size restrictions 
in the x and y direction projected from the a posteriori error estimate of the previous computa-
tion, which was done with 69 points in the x direction.

In[61]:= n = 0.075;
sol2 =

FirstBNDSolveB9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL, u@0, x, yD ã ExpA-Ix2 + y2ME,
u@t, -4, yD ã u@t, 4, yD, u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<,

8x, -4, 4<, 8y, -4, 4<, Method Ø :“MethodOfLines“, “SpatialDiscretization“ Ø

:“TensorProductGrid“, “MinPoints“ Ø CeilingB:1 , 1 í 2 > 69 31
1

4 F>>FF

Out[62]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<

This solution takes a substantial  amount of time to compute, which is not surprising since the

solution  involves  solving  a  system  of  more  than  18000  ODEs.  In  many  cases,  particularly  in

more than one spatial  dimension, the default  tolerances may be unrealistic to achieve, so you

may  have  to  reduce  them  by  using  AccuracyGoal  and/or  PrecisionGoal  appropriately.

Sometimes,  especially  with  the  coarser  grids  that  come  with  less  stringent  tolerances,  the

systems are not stiff and it is possible to use explicit methods, that avoid the numerical linear

algebra,  which  can  be  problematic,  especially  for  higher-dimensional  problems.  For  this

example, using Method -> ExplicitRungeKutta gets the solution in about half the time.
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This solution takes a substantial  amount of time to compute, which is not surprising since the

solution  involves  solving  a  system  of  more  than  18000  ODEs.  In  many  cases,  particularly  in

may  have  to  reduce  them  by  using  AccuracyGoal  and/or  PrecisionGoal  appropriately.

Sometimes,  especially  with  the  coarser  grids  that  come  with  less  stringent  tolerances,  the

systems are not stiff and it is possible to use explicit methods, that avoid the numerical linear

algebra,  which  can  be  problematic,  especially  for  higher-dimensional  problems.  For  this

example, using Method -> ExplicitRungeKutta gets the solution in about half the time.

Any  of  the  other  grid  options  can  be  specified  as  a  list  giving  the  values  for  each  dimension.

When only a single value is given, it is used for all the spatial dimensions. The two exceptions

to this are MaxPoints, where a single value is taken to be the total number of grid points in the

outer product, and Coordinates, where a grid must be specified explicitly for each dimension. 

This chooses parts of the grid from the previous solutions so that it is more closely spaced 
where the front is steeper.

In[63]:= n = 0.075;
xgrid = Join@Select@Part@u ê. sol1, 3, 2D, NegativeD,

80.<, Select@Part@u ê. sol2, 3, 2D, PositiveDD;
ygrid = Join@Select@Part@u ê. sol2, 3, 3D, NegativeD, 80.<,

Select@Part@u ê. sol1, 3, 3D, PositiveDD; sol3 =
FirstANDSolveA9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL, u@0, x, yD ã ExpA-Ix2 + y2ME,
u@t, -4, yD ã u@t, 4, yD, u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<,

8x, -4, 4<, 8y, -4, 4<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “Coordinates“ Ø 8xgrid, ygrid<<<EE

Out[65]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<

It is important to keep in mind that the a posteriori spatial error estimates are simply estimates

of  the local  error  in  computing spatial  derivatives  and may not  reflect  the actual  accumulated

spatial  error for a given solution. One way to get an estimate on the actual  spatial  error is  to

compute  the  solution  to  very  stringent  tolerances  in  time  for  different  spatial  grids.  To  show

how this works, consider again the simpler one-dimensional Burgers' equation.

This computes a list of solutions using 833, 65, …, 4097< spatial grid points to compute the 
solution to Burgers' equation for difference orders 2, 4, 6, and pseudospectral. The temporal 
accuracy and precision tolerances are set very high so that essentially all of the error comes 
from the spatial discretization. Note that by specifying 8t, 4, 4< in NDSolve, only the solution at 
t = 4 is saved. Without this precaution, some of the solutions for the finer grids (which take 
many more time steps) could exhaust available memory. Even so, the list of solutions takes a 
substantial amount of time to compute. 
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In[66]:= n = 0.01;
solutions = MapATableA

n = 2i + 1;
u ê.
FirstANDSolveA9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ExpA-x2E, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 4, 4<,
AccuracyGoal Ø 10, PrecisionGoal Ø 10, MaxSteps Ø Infinity,
Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø

8“TensorProductGrid“, “DifferenceOrder“ Ø Ò, AccuracyGoal Ø 0,
PrecisionGoal Ø 0, “MaxPoints“ Ø n, “MinPoints“ Ø n<<EE,

8i, 5, If@NumberQ@ÒD, 12, 11D<
E &, 82, 4, 6, “Pseudospectral“<E;

Given two solutions, a comparison needs to be done between the two. To keep out any sources

of error except for that in the solutions themselves, it is best to use the data that is interpolated

to  make  the  InterpolatingFunction.  This  can  be  done  by  using  points  common  to  the  two

solutions.

This defines a function to estimate error by comparing two different solutions at the points 
common to both. The arguments coarse and fine should be the solutions on the coarser and 
finer grids, respectively. This works for the solutions generated earlier with grid spacing varying 
by powers of 2.

In[68]:= Clear@errfunD;
errfun@t_, coarse_InterpolatingFunction, fine_InterpolatingFunctionD :=
Module@8cgrid = InterpolatingFunctionCoordinates@coarseD@@1DD, c, f<,
c = coarse@cgrid, tD;
f = fine@cgrid, tD;
Norm@f - c, ¶D ê Length@cgridDD

To get an indication of the general trend in error (in cases of instability, solutions do not con-

verge,  so  this  does  not  assume  that),  you  can  compare  the  difference  of  successive  pairs  of

solutions.

This defines a function that will plot a sequence of error estimates for the successive solutions 
found for a given difference order and uses it to make a logarithmic plot of the estimated error 
as a function of the number of grid points.

In[69]:= Clear@errplotD;
errplot@t_, sols : 8_InterpolatingFunction ..<, opts___D :=
Module@8errs, lens<,
errs = MapThread@errfun@t, ÒÒD &, Transpose@Partition@sols, 2, 1DDD;
lens = Map@Length, Drop@sols@@All, 3, 1DD, -1DD;
ListLogLogPlot@Transpose@8lens, errs<D, optsDD
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In[71]:= colors = 8RGBColor@1, 0, 0D, RGBColor@0, 1, 0D,
RGBColor@0, 0, 1D, RGBColor@0, 0, 0D<; Show@Block@8c = -1 ê 3<,
MapThread@errplot@4, Ò1, PlotStyle Ø 8PointSize@0.015D, Ò2<D &,
8solutions, colors<DD, PlotRange Ø AllD

Out[71]= 100 1000500200 2000300150 1500700
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A logarithmic plot of the maximum spatial error in approximating the solution of Burgers' equation at t = 4 
as a function of the number of grid points. Finite differences of order 2, 4, and 6 on a uniform grid are 
shown in red, green, and blue, respectively. Pseudospectral derivatives with uniform (periodic) spacing 
are shown in black. 

The  upper-left  part  of  the  plot  are  the  grids  where  the  profile  is  not  adequately  resolved,  so

differences  are  simply  of  magnitude  order  1  (it  would  be  a  lot  worse  if  there  was  instability).

However, once there are a sufficient number of points to resolve the profile without oscillation,

convergence becomes quite rapid. Not surprisingly, the slope of the logarithmic line is -4, which

corresponds to the difference order NDSolve uses by default. If your grid is fine enough to be in

the asymptotically converging part, a simpler error estimate could be effected by using Richard-

son  extrapolation  as  in  the  previous  two  sections,  but  on  the  overall  solution  rather  than  the

local error. On the other hand, computing more values and viewing a plot gives a better indica-

tion of whether you are in the asymptotic regime or not.

It  is  fairly  clear  from the  plot  that  the  best  solution  computed  is  the  pseudospectral  one  with

2049  points  (the  one  with  more  points  was  not  computed  because  its  spatial  accuracy  far

exceeds the temporal tolerances that were set). This solution can, in effect, be treated almost

as an exact solution, at least up to error tolerances of 10-9or so.

To get a perspective of how best to solve the problem, it is useful to do the following: for each

solution  found  that  was  at  least  a  reasonable  approximation,  recompute  it  with  the  temporal

accuracy tolerance set to be comparable to the possible spatial accuracy of the solution and plot

the  resulting  accuracy  as  a  function  of  solution  time.  The  following  (somewhat  complicated)

commands do this.
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This identifies the "best" solution that will be used, in effect, as an exact solution in the computa-
tions that follow. It is dropped from the list of solutions to compare it to since the comparison 
would be meaningless.

In[72]:= best = Last@Last@solutionsDD;
solutions@@-1DD = Drop@solutions@@-1DD, -1D;

This defines a function that, given a difference order, do, and a solution, sol, computed with 
that difference order, recomputes it with local temporal tolerance slightly more stringent than 
the actual spatial accuracy achieved if that accuracy is sufficient. The function output is a list of 
{number of grid points, difference order, time to compute in seconds, actual error of the recom-
puted solution}. 

In[74]:= TimeAccuracy@do_D@sol_D := BlockA8tol, ag, n, solt, Second = 1<,
tol = errfun@4, sol, bestD;
ag = -Log@10., tolD;
IfAag < 2,
$Failed,
n = Length@sol@@3, 1DDD;
secs = FirstATimingAsolt = FirstA

u ê. NDSolveA9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,
u@x, 0D ã ExpA-x2E, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 4, 4<,

AccuracyGoal Ø ag + 1, PrecisionGoal Ø Infinity, MaxSteps Ø Infinity,
Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø

8“TensorProductGrid“, “DifferenceOrder“ Ø do, AccuracyGoal Ø 0,
PrecisionGoal Ø 0, “MaxPoints“ Ø n, “MinPoints“ Ø n<<EEEE;

8n, do, secs, errfun@4, solt, bestD<
E

E

This applies the function to each of the previously computed solutions. (With the appropriate 
difference order!)

In[75]:= results =
MapThread@Map@TimeAccuracy@Ò1D, Ò2D &, 882, 4, 6, “Pseudospectral“<, solutions<D

Out[75]= 99$Failed, $Failed, 8129, 2, 0.06, 0.00432122<, 8257, 2, 0.12, 0.000724265<,

8513, 2, 0.671, 0.0000661853<, 91025, 2, 1.903, 4.44696µ10-6=,

92049, 2, 5.879, 3.10464µ10-7=, 94097, 2, 17.235, 2.4643µ10-8==,
9$Failed, 865, 4, 0.02, 0.00979942<, 8129, 4, 0.1, 0.00300281<, 8257, 4, 0.161, 0.000213248<,

9513, 4, 1.742, 6.02345µ10-6=, 91025, 4, 5.438, 1.13695µ10-7=,

92049, 4, 43.793, 2.10218µ10-9=, 94097, 4, 63.551, 6.48318µ10-11==,
9$Failed, 865, 6, 0.03, 0.00853295<, 8129, 6, 0.14, 0.00212781<,

8257, 6, 0.37, 0.0000935051<, 9513, 6, 1.392, 1.1052µ10-6=, 91025, 6, 7.14, 6.38732µ10-9=,

92049, 6, 35.121, 3.22349µ10-11=, 94097, 6, 89.809, 2.15934µ10-11==,
9833, Pseudospectral, 0.02, 0.00610004<, 865, Pseudospectral, 0.03, 0.00287949<,

8129, Pseudospectral, 0.08, 0.000417946<, 9257, Pseudospectral, 0.22, 3.72935µ10-6=,

9513, Pseudospectral, 2.063, 2.28232µ10-9=, 91025, Pseudospectral, 544.974, 8.81844µ10-13===
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This removes the cases that were not recomputed and makes a logarithmic plot of accuracy as 
a function of computation time.

In[76]:= fres = Map@DeleteCases@Ò, $FailedD &, resultsD;
ListLogLogPlot@fres@@All, All, 83, 4<DD,
PlotRange Ø All, PlotStyle Ø White, Epilog Ø MapThread@

Function@8c, d<, 8c, Apply@Text@ToString@Ò1D, Log@8Ò3, Ò4<DD &, d, 1D<D,
88Red, Green, Blue, Black<, fres<DD

Out[76]=

0.1 1 10 100

10-10

10-8

10-6

10-4

0.01
129

257

513

1025

2049

4097

65
129

257

513

1025

2049

4097

65
129

257

513

1025

2049 4097

3365
129

257

513

1025

A logarithmic plot of the error in approximating the solution of Burgers' equation at t = 4 as a function of 
the computation time. Each point shown indicates the number of spatial grid points used to compute the 
solution. Finite differences of order 2, 4, and 6 on a uniform grid are shown in red, blue, and green, 
respectively. Pseudospectral derivatives with uniform (periodic) spacing are shown in black. Note that the 
cost of the pseudospectral method jumps dramatically from 513 to 1025. This is because the method has 
switched to the stiff solver, which is very expensive with the dense Jacobian produced by the 
discretization.

The resulting graph demonstrates quite forcefully that, when they work, as in this case, periodic

pseudospectral approximations are incredibly efficient. Otherwise, up to a point, the higher the

difference  order,  the  better  the  approximation  will  generally  be.  These  are  all  features  of

smooth  problems,  which  this  particular  instance  of  Burgers'  equation  is.  However,  the  higher-

order solutions would generally be quite poor if you went toward the limit n Ø 0.

One final point to note is that the above graph was computed using the Automatic method for

the  temporal  direction.  This  uses  LSODA,  which  switches  between  a  stiff  and  nonstiff  method

depending  on  how  the  solution  evolves.  For  the  coarser  grids,  strictly  explicit  methods  are

typically  a  bit  faster,  and,  except  for  the  pseudospectral  case,  the  implicit  BDF  methods  are

faster for the finer grids. A variety of alternative ODE methods are available in NDSolve.
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Error at the Boundaries

The a  priori  error  estimates  are  computed in  the interior  of  the computational  region because

the differences used there all  have consistent error terms that can be used to effectively esti-

mate the number of points to use. Including the boundaries in the estimates would complicate

the  process  beyond  what  is  justified  for  such  an  a  priori  estimate.  Typically,  this  approach  is

successful in keeping the error under reasonable control. However, there are a few cases which

can lead to difficulties.

Occasionally it may occur that because the error terms are larger for the one-sided derivatives

used  at  the  boundary,  NDSolve  will  detect  an  inconsistency  between  boundary  and  initial

conditions, which is an artifact of the discretization error. 

This solves the one-dimensional heat equation with the left end held at constant temperature 
and the right end radiating into free space.

In[2]:= solution = FirstBNDSolveB:∂tu@x, tD == ∂x,xu@x, tD, u@x, 0D == 1 -
Sin@4 p xD

4 p
,

u@0, tD == 1, u@1, tD + uH1,0L@1, tD == 0>, u, 8x, 0, 1<, 8t, 0, 1<FF

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent.

Out[2]= 8u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<

The  NDSolve:ibcinc  message  is  issued,  in  this  case,  completely  to  the  larger  discretization

error  at  the  right  boundary.  For  this  particular  example,  the  extra  error  is  not  a  problem

because it gets damped out due to the nature of the equation. However, it is possible to elimi-

nate the message by using just a few more spatial points.

This computes the solution to the same equation as above, but using a minimum of 50 points in 
the x direction.

In[3]:= solution =

FirstBNDSolveB:∂tu@x, tD == ∂x,xu@x, tD, u@x, 0D == 1 -
Sin@4 p xD

4 p
, u@0, tD == 1,

u@1, tD + uH1,0L@1, tD == 0>, u, 8x, 0, 1<, 8t, 0, 1<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, MinPoints Ø 50<<FF

Out[3]= 8u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<

One other case where error problems at the boundary can affect the discretization unexpectedly

is when periodic boundary conditions are given with a function that is not truly periodic, so that

an unintended discontinuity is introduced into the computation. 
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This begins the computation of the solution to the sine-Gordon equation with a Gaussian initial 
condition and periodic boundary conditions. The NDSolve command is wrapped with 
TimeConstrained since solving the given problem can take a very long time and a large 
amount of system memory.

In[4]:= L = 1;
TimeConstrained@
sol1 = First@NDSolve@8D@u@t, xD, t, tD ã D@u@t, xD, x, xD - Sin@u@t, xDD,

u@0, xD ã Exp@-x^2D, Derivative@1, 0D@uD@0, xD ã 0, u@t, -1D ã u@t, 1D<,
u, 8t, 0, 1<, 8x, -1, 1<, Method Ø StiffnessSwitchingDD, 10D

NDSolve::mxsst : Using maximum number of grid points 10000
allowed by the MaxPoints or MinStepSize options for independent variable x.

Out[5]= $Aborted

The  problem  here  is  that  the  initial  condition  is  effectively  discontinuous  when  the  periodic

continuation is taken into account. 

This shows a plot of the initial condition over the extent of three full periods.

In[6]:= Plot@Exp@-HMod@x + 1, 2D - 1L^2D, 8x, -3, 3<D

Out[6]=
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Since there is always a large derivative error at the cusps, NDSolve  is forced to use the maxi-

mum  number  of  points  in  an  attempt  to  satisfy  the  a  priori  error  bound.  To  make  matters

worse, the extreme change makes solving the resulting ODEs more difficult,  leading to a very

long solution time which uses a lot of memory.

If  the  discontinuity  is  really  intended,  you will  typically  want  to  specify  a  number  of  points  or

spacing for the spatial grid that will be sufficient to handle the aspects of the discontinuity you

are  interested  in.  To  model  discontinuities  with  high  accuracy  will  typically  take  specialized

methods that are beyond the scope of the general methods that NDSolve provides.

On the other hand, if the discontinuity was unintended, say in this example by simply choosing

a computational domain that was too small, it can usually be fixed easily enough by extending

the domain or by adding in terms to smooth things between periods. 
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This solves the sine-Gordon problem on a computational domain large enough so that the 
discontinuity in the initial condition is negligible compared to the error allowed by the default 
tolerances. 

In[7]:= L = 10;
Timing@sol2 = First@NDSolve@8D@u@t, xD, t, tD ã D@u@t, xD, x, xD - Sin@u@t, xDD,

u@0, xD ã Exp@-x^2D, Derivative@1, 0D@uD@0, xD ã 0,
u@t, -LD ã u@t, LD<, u, 8t, 0, 1<, 8x, -L, L<DDD

Out[8]= 80.031, 8u Ø InterpolatingFunction@880., 1.<, 8-10., 10.<<, <>D<<

Numerical Solution of Boundary Value 
Problems

"Shooting" Method

The shooting method works  by considering the boundary conditions  as  a  multivariate  function

of  initial  conditions  at  some  point,  reducing  the  boundary  value  problem  to  finding  the  initial

conditions that give a root. The advantage of the shooting method is that it takes advantage of

the speed and adaptivity of methods for initial value problems. The disadvantage of the method

is that it is not as robust as finite difference or collocation methods: some initial value problems

with growing modes are inherently unstable even though the BVP itself may be quite well posed

and stable.

Consider the BVP system

The shooting method looks for initial conditions XHt0L = c so that G = 0. Since you are varying the

initial  conditions,  it  makes  sense  to  think  of  X = Xc  as  a  function  of  them,  so  shooting  can  be

thought of as finding c such that with 

After  setting  up  the  function  for  G,  the  problem is  effectively  passed  to  FindRoot  to  find  the

initial  conditions  c  giving  the  root.  The  default  method  is  to  use  Newton's  method,  which

involves computing the Jacobian. While the Jacobian can be computed using finite differences,

the sensitivity of solutions of an IVP to its initial conditions may be too much to get reasonably

accurate derivative values, so it is advantageous to compute the Jacobian as a solution to ODEs.
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involves computing the Jacobian. While the Jacobian can be computed using finite differences,

the sensitivity of solutions of an IVP to its initial conditions may be too much to get reasonably

accurate derivative values, so it is advantageous to compute the Jacobian as a solution to ODEs.

Linearization and Newton's Method

Linear problems can be described by 

Where JHtL is a matrix and F0HtL is a vector both possibly depending on t, B0 is a constant vector,

and B1, B2, …, Bn are constant matrices.

Let Y =
∂XcHtL
∂c

. Then, differentiating both the IVP and boundary conditions with respect to c gives

Since  G  is  linear,  when thought  of  as  a  function  of  c,  you  have  GHcL = GHc0L + J
∂G
∂c
N Hc - c0L,  so  the

value of c for which GHcL = 0 satisfies

c = c0 +
∂G

∂c

-1

GHc0L

for any particular initial condition c0.

For nonlinear problems, let JHtL be the Jacobian for the nonlinear ODE system, and let Bi  be the

Jacobian of the ith  boundary condition. Then computation of ∂G
∂c

 for the linearized system gives

the  Jacobian  for  the  nonlinear  system  for  a  particular  initial  condition,  leading  to  a  Newton

iteration,

cn+1 = cn +
∂G

∂c
HcnL

-1

GHcnL
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Y £HtL = JHtL YHtLL; YHt0L = I

∂G

∂c
= B1 YHt1L + B2 YHt2L +… Bn YHtnL = 0



"StartingInitialConditions"

For boundary value problems, there is no guarantee of uniqueness as there is in the initial value

problem  case.  “Shooting“  will  find  only  one  solution.  Just  as  you  can  affect  the  particular

solution FindRoot  gets for a system of nonlinear algebraic equations by changing the starting

values, you can change the solution that “Shooting“ finds by giving different initial conditions

to start the iterations from.

“StartingInitialConditions“  is  an  option  of  the  “Shooting“  method  that  allows  you  to

specify the values and position of the initial conditions to start the shooting process from.

The  shooting  method  by  default  starts  with  zero  initial  conditions  so  that  if  there  is  a  zero

solution, it will be returned.

This computes a very simple solution to the boundary value problem 

In[105]:= sols =
Map@First@NDSolve@8x‘‘@tD + Sin@x@tDD ã 0, x@0D ã x@10D ã 0<, x, t, Method Ø

8“Shooting“, “StartingInitialConditions“ Ø 8x@0D ã 0, x‘@0D ã Ò<<DD &,
81.5, 1.75, 2<D;

Plot@Evaluate@x@tD ê. solsD, 8t, 0, 10<, PlotStyle Ø 8Black, Blue, Green<D

Out[106]=
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By  default,  “Shooting“  starts  from  the  left  side  of  the  interval  and  shoots  forward  in  time.

There are cases where is it advantageous to go backwards, or even from a point somewhere in

the middle of the interval.

Consider the linear boundary value problem 
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x″ + sinHxLã 0 with xH0L = xH1L = 0.

x£££HtL - 2 lx″HtL - l2 x£HtL + 2 l3 xHtL = Il2 + p2M H2 l cosHp tL + p sinHp tLL

xH0L = 1 +
1 + ‰-2 l + ‰-l

2 + ‰-l
, xH1L = 0, x ' H1L =

3 l - ‰-l l

2 + ‰-l



that has a solution 

xHtL =
‰l Ht-1L + ‰2 l Ht-1L + ‰-l t

2 + ‰-l
+ cosHp tL

For moderate values of l, the initial value problem starting at t = 0 becomes unstable because of

the  growing  ‰l Ht-1L  and  ‰2 l Ht-1L  terms.  Similarly,  starting  at  t = 1,  instability  arises  from  the  ‰-l t

term, though this is not as large as the term in the forward direction. Beyond some value of l,

shooting will not be able to get a good solution because the sensitivity in either direction will be

too great. However, up to that point, choosing a point in the interval that balances the growth

in the two directions will give the best solution.

This gives the equation, boundary conditions, and exact solution as Mathematica input.

In[107]:= eqn =
x‘‘‘@tD - 2 l x‘‘@tD - l2 x‘@tD + 2 l3 x@tD ã Il2 + p2M H2 l Cos@p tD + p Sin@p tDL;

bcs = :x@0D ã 1 +
1 + ‰-2 l + ‰-l

2 + ‰-l
, x@1D ã 0, x‘@1D ã

3 l - ‰-l l

2 + ‰-l
>;

xsol@t_D =
‰l Ht-1L + ‰2 l Ht-1L + ‰-l t

2 + ‰-l
+ Cos@p tD;

This solves the system with l = 10 shooting from the default t = 0.

In[110]:= Block@8l = 10<,
sol = First@NDSolve@8eqn, bcs<, x, tDD;
Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DD

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

NDSolve::berr :
There are significant errors 9-1.11022µ10-16, 6.95123µ10-6, 0.000139029= in the boundary

value residuals. Returning the best solution found.

Out[110]=
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Shooting from t = 0, the “Shooting“ method gives warnings about an ill-conditioned matrix, and

further that the boundary conditions are not satisfied as well as they should be. This is because

a small error at t = 0 is amplified by e20 > 4ä108. Since the reciprocal of this is of the same order

of  magnitude  as  the  local  truncation  error,  visible  errors  as  those  seen  in  the  plot  are  not

surprising.  In  the  reverse  direction,  the  magnification  will  be  much  less:  
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 method gives warnings about an ill-conditioned matrix, and

further that the boundary conditions are not satisfied as well as they should be. This is because
20 8

of  magnitude  as  the  local  truncation  error,  visible  errors  as  those  seen  in  the  plot  are  not

surprising.  In  the  reverse  direction,  the  magnification  will  be  much  less:  e10 > 2ä104,  so  the

solution should be much better.

This computes the solution using shooting from t = 1.

In[111]:= BlockB8l = 10<,

sol = FirstBNDSolveB8eqn, bcs<, x, t,

Method Ø :“Shooting“, “StartingInitialConditions“ Ø

:x@1D ã 0, x‘@1D ã
3 l - ‰-l l

2 + ‰-l
, x‘‘@1D ã 0>>FF;

Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DF

Out[111]=
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A good point to choose is actually one that will balance the sensitivity in each direction, which is

about at t = 2 ê3. With this, the error with l = 15 will still be under reasonable control.

This computes the solution for l = 15 shooting from t = 2 ê3.
In[112]:= Block@8l = 15<,

sol = First@NDSolve@8eqn, bcs<, x, t,
Method Ø 8“Shooting“, “StartingInitialConditions“ Ø

8x@2 ê 3D ã 0, x‘@2 ê 3D ã 0, x‘‘@2 ê 3D ã 0<<DD;
Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DD

Out[112]=
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Option summary

option name default value

"StartingInitialConditions
"

Automatic the initial conditions to initiate the shooting 
method from

"ImplicitSolver" Automatic the method to use for solving the implicit 
equation defined by the boundary condi-
tions; this should be an acceptable value 
for the Method option of FindRoot

"MaxIterations" Automatic how many iterations to use for the implicit 
solver method

"Method" Automatic the method to use for integrating the 
system of ODEs

"Shooting" method options.

"Chasing" Method

The method of chasing came from a manuscript of Gel'fand and Lokutsiyevskii first published in

English  in  [BZ65]  and  further  described  in  [Na79].  The  idea  is  to  establish  a  set  of  auxiliary

problems that can be solved to find initial conditions at one of the boundaries. Once the initial

conditions are determined, the usual methods for solving initial value problems can be applied.

The chasing method is,  in  effect,  a  shooting  method that  uses  the  linearity  of  the  problem to

good advantage.

Consider the linear ODE

(2)X£ HtL == AHtL XHtL + A0HtL

where  XHtL = Hx1HtL, x2HtL, …, xnHtLL,  AHtL  is  the  coefficient  matrix,  and  A0HtL  is  the  inhomogeneous

coefficient vector, with n linear boundary conditions 

(3)Bi.XHtiLã bi0, i = 1, 2, , n

where  Bi = Hbi1, bi2, , binL  is  a  coefficient  vector.  From  this,  construct  the  augmented  homoge-

nous system

(4)X
£
HtL = AHtL XHtL, Bi.XHtiL = 0
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where

XHtL =

1
x1HtL
x2HtL
ª

xnHtL

, AHtL =

a01HtL a11HtL a12HtL  a1 nHtL
a02HtL a21HtL a22HtL  a2 nHtL
ª ª ª  ª

a0 nHtL an1HtL an2HtL  annHtL
0 0 0  0

, and Bi =

bi0
bi1
bi2
ª

bin

The chasing method amounts to finding a vector function FiHtL such that FiHtiL = Bi and FiHtL XHtL = 0.

Once the function FiHtL is known, if there is a full set of boundary conditions, solving 

(5)

F1Ht0L
F2Ht0L

ª

FnHt0L

XHt0L = 0

can be used to determine initial conditions Hx1Ht0L, x2Ht0L, , xnHt0LL that can be used with the usual

initial value problem solvers. Note that the solution to system (3) is nontrivial because the first

component of X is always 1. 

Thus, solving the boundary value problem is reduced to solving the auxiliary problems for the

FiHtL. Differentiating the equation for Fi HtL gives

FiHtL X
£
HtL + XHtLFi£HtL = 0

Substituting the differential equation, 

AHtL XHtLFiHtL + XHtLFi£HtL = 0

and transposing

XHtL JFi£HtL + A
T
HtLFiHtLN = 0

Since this should hold for all solutions X, you have the initial value problem for Fi,

(6)Fi
£HtL + A

T
HtLFiHtL = 0 with initial condition FiHtiL = Bi

Given t0  where you want to have solutions to all of the boundary value problems, Mathematica

just uses NDSolve to solve the auxiliary problems for F1, F2, …, Fm by integrating them to t0. The

results are then combined into the matrix of (3) that is solved for 

Advanced Numerical Differential Equation Solving in Mathematica     249



t0. The

results are then combined into the matrix of (3) that is solved for XHt0L to obtain the initial value

problem that NDSolve integrates to give the returned solution. 

This variant of the method is further described in and used by the MathSource package [R98],

which also allows you to solve linear eigenvalue problems.

There  is  an  alternative,  nonlinear  way  to  set  up  the  auxiliary  problems  that  is  closer  to  the

original method proposed by Gel'fand and Lokutsiyevskii. Assume that the boundary conditions

are  linearly  independent  (if  not,  then  the  problem is  insufficiently  specified).  Then  in  each  Bi,

there  is  at  least  one  nonzero  component.  Without  loss  of  generality,  assume  that  bij ≠ 0.  Now

solve  for  Fij  in  terms  of  the  other  components  of  Fi,  Fij = Bi
è

.Fi
è
,  where

Fi
è
= I1, Fi1, , Fij-1, , Fij+1, , FinM  and  Bi

è
= Hbi0, bi1, , bij-1, , bij+1, , binMë-bij.  Using  (5)  and

replacing Fij, and thinking of xnHtL in terms of the other components of xHtL you get the nonlinear

equation

Fi
è £
HtL = -A

è T
@tDFi

è
HtL + IA j.Fi

è
HtLMFi

è
HtL

where A
è
 is  A  with the jthcolumn removed and A j  is  the jth  column of A. The nonlinear method

can be more numerically stable than the linear method, but it has the disadvantage that integra-

tion along the real line may lead to singularities. This problem can be eliminated by integrating

on a contour in the complex plane. However, the integration in the complex plane typically has

more numerical error than a simple integration along the real line, so in practice, the nonlinear

method  does  not  typically  give  results  better  than  the  linear  method.  For  this  reason,  and

because it is also generally faster, the default for Mathematica is to use the linear method.

This solves a two-point boundary value problem for a second-order equation.

In[113]:= nsol1 = NDSolve@8y‘‘@tD + y@tD ê 4 ã 8, y@0D ã 0, y@10D ã 0<, y, 8t, 0, 10<D

Out[113]= 88y Ø InterpolatingFunction@880., 10.<<, <>D<<
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This shows a plot of the solution.

In[114]:= Plot@First@y@tD ê. nsol1D, 8t, 0, 10<D

Out[114]=
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The solver can solve multipoint boundary value problems of linear systems of equations. (Note 
that each boundary equation must be at one specific value of t.)

In[115]:= bconds = 8
x@0D + x‘@0D + y@0D + y‘@0D ã 1,
x@1D + 2 x‘@1D + 3 y@1D + 4 y‘@1D ã 5,
y@2D + 2 y‘@2D ã 4,
x@3D - x‘@3D ã 7<;

nsol2 = NDSolve@8
x‘‘@tD + x@tD + y@tD ã t, y‘‘@tD + y@tD ã Cos@tD,
bconds<,

8x, y<,
8t, 0, 4<D

Out[116]= 88x Ø InterpolatingFunction@880., 4.<<, <>D, y Ø InterpolatingFunction@880., 4.<<, <>D<<

In general,  you cannot expect the boundary value equations to be satisfied to the close toler-

ance of Equal.

This checks to see if the boundary conditions are "satisfied".

In[117]:= bconds ê. First@nsol2D

Out[117]= 8True, False, False, False<

They are  typically  only  be satisfied  at  most  tolerances  that  come from the AccuracyGoal  and

PrecisionGoal  options of  NDSolve.  Usually,  the actual  accuracy and precision is  less because

these are used for local, not global, error control.

This checks the residual error at each of the boundary conditions.

In[118]:= Apply@Subtract, bconds, 1D ê. First@nsol2D

Out[118]= 90., -2.5751µ10-7, -4.13357µ10-8, -2.95508µ10-8=

When you give NDSolve a problem that has no solution, numerical error may make it appear to

be a solvable problem. Typically, NDSolve will issue a warning message.
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This is a boundary value problem that has no solution.

In[125]:= NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x@PiD ã 0<,
x, 8t, 0, Pi<, Method Ø “Chasing“D

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

Out[125]= 88x Ø InterpolatingFunction@880., 3.14159<<, <>D<<

In this case, it is not able to integrate over the entire interval because of nonexistence.

Another situation in which the equations can be ill-conditioned is when the boundary conditions

do not give a unique solution.

Here is a boundary value problem that does not have a unique solution. Its general solution is 
shown as computed symbolically with DSolve. 

In[120]:= dsol =
First@x ê. DSolve@8x‘‘@tD + x@tD ã t, x‘@0D ã 1, x@Pi ê 2D ã Pi ê 2<, x, tDD

DSolve::bvsing:
Unable to resolve some of the arbitrary constants in the general solution using the given boundary

conditions. It is possible that some of the conditions
have been specified at a singular point for the equation.

Out[120]= Function@8t<, t + C@1D Cos@tDD

NDSolve issues a warning message because the matrix to solve for the initial conditions is 
singular, but has a solution.

In[122]:= onesol = First@x ê. NDSolve@8x‘‘@tD + x@tD ã t, x‘@0D ã 1, x@Pi ê 2D ã Pi ê 2<,
x, 8t, 0, Pi ê 2<, Method Ø “Chasing“DD

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

Out[122]= InterpolatingFunction@880., 1.5708<<, <>D
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You can identify which solution it found by fitting it to the interpolating points. This makes a plot 
of the error relative to the actual best fit solution.

In[126]:= ip = onesolü“Coordinates“@1D;
points = Transpose@8ip, onesol@ipD<D;
model = dsol@tD ê. C@1D Ø a;
fit = FindFit@points, model, a, tD;
ListPlot@Transpose@8ip, onesol@ipD - HHmodel ê. fitL ê. t Ø ipL<DD

Out[130]=
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Typically  the  default  values  Mathematica  uses  work  fine,  but  you  can  control  the  chasing

method  by  giving  NDSolve  the  option  Method -> 8“Chasing“, chasing options<.  The  possible

chasing options are shown in the following table.

option name default value

Method Automatic the numerical method to use for computing 
the initial value problems generated by the 
chasing algorithm

“ExtraPrecision“ 0 number of digits of extra precision to use 
for solving the auxiliary initial value 
problems

“ChasingType“ “LinearChasing“ the type of chasing to use, which can be 
either “LinearChasing“ or 
“NonlinearChasing“

Options for the “Chasing“ method of NDSolve. 
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The method “ChasingType“ -> “NonlinearChasing“ itself has two options.

option name default value

“ContourType“ Ellipse the shape of contour to use when integra-
tion in the complex plane is required, which 
can either be “Ellipse“ or “Rectangle“

“ContourRatio“ 1ê10 the ratio of the width to the length of the 
contour; typically a smaller number gives 
more accurate results, but yields more 
numerical difficulty in solving the equations

Options for the “NonlinearChasing“ option of the “Chasing“ method.

These  options,  especially  “ExtraPrecision“  can  be  useful  in  cases  where  there  is  a  strong

sensitivity to computed initial conditions.

Here is a boundary value problem with a simple solution computed symbolically using DSolve.

In[131]:= bvp = 8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<;
dsol = First@x ê. DSolve@bvp, x, tDD

Out[132]= FunctionB8t<, CscB10 10 F SinB10 10 tFF

This shows the error in the solution computed using the chasing method in NDSolve.

In[133]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø “Chasing“DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[134]=
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Using extra precision to solve for the initial conditions reduces the error substantially.

In[135]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø 8“Chasing“, “ExtraPrecision“ Ø 10<DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[136]=
0.2 0.4 0.6 0.8 1.0

-6.µ 10-7

-4.µ 10-7

-2.µ 10-7

2.µ 10-7

4.µ 10-7

6.µ 10-7

Increasing the extra precision beyond this really will  not help because a significant part of the

error results from computing the solution once the initial  conditions are found. To reduce this,

you need to give more stringent AccuracyGoal and PrecisionGoal options to NDSolve.

This uses extra precision to compute the initial conditions along with more stringent settings for 
the AccuracyGoal and PrecisionGoal options.

In[137]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø 8“Chasing“, “ExtraPrecision“ Ø 10<,
AccuracyGoal Ø 10, PrecisionGoal Ø 10DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[138]=

Boundary Value Problems with Parameters

In many of the applications where boundary value problems arise, there may be undetermined

parameters, such as eigenvalues, in the problem itself that may be a part of the desired solu-

tion.  By introducing the parameters as dependent variables,  the problem can often be written

as a boundary value problem in standard form.
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For example, the flow in a channel can be modeled by 

This solves the flow problem with R = 1 for f  and a, plots the solution f  and returns the value of 
a.

In[1]:= Block@8R = 1<,
sol = NDSolve@8f‘‘‘@tD - R HHf‘@tDL^2 - f@tD f‘‘@tDL + R a@tD ã 0, a‘@tD ã 0,

f@0D ã f‘@0D ã f‘@1D ã 0, f@1D ã 1<, 8f, a<, tD;
Column@8Plot@f@tD ê. First@solD, 8t, 0, 1<D,

a@0D ê. First@solD<DD

Out[1]=
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Numerical Solution of Differential-
Algebraic Equations

Introduction

In general, a system of ordinary differential equations (ODEs) can be expressed in the normal

form,

x£ = f Ht, xL.

The derivatives of  the dependent  variables  x  are  expressed explicitly  in  terms of  the indepen-

dent variable t  and the dependent variables x. As long as the function f  has sufficient continu-

ity, a unique solution can always be found for an initial value problem where the values of the

dependent variables are given at a specific value of the independent variable.
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f £££ - RIH f £L2 - f f ″M + Ra = 0

f H0L = f £H0L = 0, f H1L = 1, f £H1L = 0

where R (the Reynolds number) is given, but a is to be determined.

To find the solution f  and the value of a, just add the equation a£ = 0.



With  differential-algebraic  equations  (DAEs),  the  derivatives  are  not,  in  general,  expressed

explicitly. In fact, derivatives of some of the dependent variables typically do not appear in the

equations. The general form of a system of DAEs is

(7)FHt, x, x£L = 0,

where the Jacobian with respect to x£, ∂F ê∂x£ may be singular.

A system of DAEs can be converted to a system of ODEs by differentiating it with respect to the

independent  variable  t.  The  index  of  a  DAE  is  effectively  the  number  of  times  you  need  to

differentiate the DAEs to get a system of ODEs. Even though the differentiation is possible, it is

not  generally  used  as  a  computational  technique  because  properties  of  the  original  DAEs  are

often lost in numerical simulations of the differentiated equations.

Thus, numerical methods for DAEs are designed to work with the general form of a system of

DAEs. The methods in NDSolve are designed to generally solve index-1 DAEs, but may work for

higher index problems as well.

This  tutorial  will  show  numerous  examples  that  illustrate  some  of  the  differences  between

solving DAEs and ODEs.

This loads packages that will be used in the examples and turns off a message.

In[10]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

The  specification  of  initial  conditions  is  quite  different  for  DAEs  than  for  ODEs.  For  ODEs,  as

already  mentioned,  a  set  of  initial  conditions  uniquely  determines  a  solution.  For  DAEs,  the

situation is not nearly so simple; it may even be difficult to find initial conditions that satisfy the

equations at all. To better understand this issue, consider the following example [AP98].

Here is a system of DAEs with three equations, but only one differential term.

In[11]:= DAE =

x1£@tD ã x3@tD
x2@tD H1 - x2@tDL ã 0

x1@tD x2@tD + x3@tD H1 - x2@tDL ã t
;

The initial conditions are clearly not free; the second equation requires that x2@t0D be either 0 or

1. 

This solves the system of DAEs starting with a specified initial condition for the derivative of x1. 

In[12]:= sol = NDSolve@8DAE, x1‘@0D ã 1<, 8x1, x2, x3<, 8t, 0, 1<D

Out[12]= 88x1 Ø InterpolatingFunction@880., 1.<<, <>D,
x2 Ø InterpolatingFunction@880., 1.<<, <>D, x3 Ø InterpolatingFunction@880., 1.<<, <>D<<
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To get this solution, NDSolve first searches for initial conditions that satisfy the equations, using

a combination of Solve  and a procedure much like FindRoot. Once consistent initial conditions

are found, the DAE is solved using the IDA method.

This shows the initial conditions found by NDSolve. 

In[13]:= 88x1‘@0D<, 8x1@0D, x2@0D, x3@0D<< ê. First@solD

Out[13]= 881.<, 80., 1., 1.<<

This shows a plot of the solution. The solution x2@0D is obscured by the solution x3@0D, which 
has the same constant value of 1.

In[15]:= Plot@Evaluate@8x1@tD, x2@tD, x3@tD< ê. First@solDD, 8t, 0, 1<,
PlotStyle Ø 8Red, Black, Blue<D

Out[15]=
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However, there may not be a solution from all initial conditions that satisfy the equations. 

This tries to find a solution with x2@0D starting from steady state with derivative 0. 

In[16]:= sols = NDSolve@8DAE, x1‘@0D ã 0<, 8x1, x2, x3<, 8t, 0, 1<D

NDSolve::nderr : Error test failure at t == 0.`; unable to continue.

Out[16]= 88x1 Ø InterpolatingFunction@880., 0.<<, <>D,
x2 Ø InterpolatingFunction@880., 0.<<, <>D, x3 Ø InterpolatingFunction@880., 0.<<, <>D<<

This shows the initial conditions found by NDSolve. 

In[17]:= 88x1‘@0D<, 8x1@0D, x2@0D, x3@0D<< ê. First@solsD

Out[17]= 880.<, 80., 1., 0.<<

If  you  look  at  the  equations  with  x2  set  to  1,  you  can  see  why  it  is  not  possible  to  advance

beyond t == 1.

Substitute x2@tD = 1 into the equations.

In[18]:= DAE ê. x2@tD Ø 1

Out[18]= 88x1
£@tD ã x3@tD<, 8True<, 8x1@tD ã t<<

258     Advanced Numerical Differential Equation Solving in Mathematica



The middle  equation  effectively  drops  out.  If  you differentiate  the  last  equation  with  x2@tD = 1,

you  get  the  condition  x1‘@tD = 1,  but  then  the  first  equation  is  inconsistent  with  the  value  of

x3@tD = 0 in the initial conditions. 

It turns out that the only solution with x2@tD = 1 is 8x2@tD = t, x2@tD = 1, x3@tD = 1<, and along this

solution, the system has index 2. 

The  other  set  of  solutions  for  the  problem is  when  x2@tD = 0.  You  can  find  these  by  specifying

that as an initial condition.

This finds a solution with x2@tD = 0. It is also necessary to specify a value for x1@0D because it is 
a differential variable.

In[19]:= sol0 = NDSolve@8DAE, x1@0D ã 1, x2@0D ã 0<, 8x1, x2, x3<, 8t, 0, 1<D

Out[19]= 88x1 Ø InterpolatingFunction@880., 1.<<, <>D,
x2 Ø InterpolatingFunction@880., 1.<<, <>D, x3 Ø InterpolatingFunction@880., 1.<<, <>D<<

This shows a plot of the nonzero components of the solution. 

In[21]:= Plot@Evaluate@8x1@tD, x3@tD< ê. First@sol0DD, 8t, 0, 1<,
PlotStyle Ø 8Red, Blue<D

Out[21]=
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In  general,  you  must  specify  initial  conditions  for  the  differential  variables  because  typically

there is a parametrized general solution. For this problem with x2@tD = 0, the general solution is

8x1@tD = x1@0D + t2 ê 2, x2@tD = 0, x3@tD == t<,  so  it  is  necessary  to  give  x1@0D  to  determine  the

solution.

NDSolve  cannot always find initial conditions consistent with the equations because sometimes

this is a difficult problem. "Often the most difficult part of solving a DAE system in applications

is  to  determine  a  consistent  set  of  initial  conditions  with  which  to  start  the  computation".

[BCP89]
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NDSolve fails to find a consistent initial condition.

In[22]:= NDSolve@8DAE, x1@0D ã 1<, 8x1, x2, x3<, 8t, 0, 1<D

NDSolve::icfail :
Unable to find initial conditions that satisfy the residual function within specified tolerances.

Try giving initial conditions for both values and derivatives of the functions.
Out[22]= 8<

If NDSolve  fails to find consistent initial conditions, you can use FindRoot  with a good starting

value  or  some  other  procedure  to  obtain  consistent  initial  conditions  and  supply  them.  If  you

know  values  close  to  a  good  starting  guess,  NDSolve  uses  these  values  to  start  its  search,

which may help. You may specify values of the dependent variables and their derivatives.

With index-1 systems of DAEs, it is often possible to differentiate and use an ODE solver to get

the solution. 

Here is the Robertson chemical kinetics problem. Because of the large and small rate constants, 
the problem is quite stiff.

In[23]:= kinetics =

:y1‘@tD ã -
1

25
y1@tD + 104 y2@tD y3@tD, y2‘@tD ã

1

25
y1@tD - 3 µ 107 y2@tD2 >;

balance = y1@tD + y2@tD + y3@tD ã 1;
start = 8y1@0D ã 1, y2@0D ã 0, y3@0D ã 0<;

This solves the Robertson kinetics problem as an ODE by differentiating the balance equation.

In[26]:= odesol =
First@NDSolve@8kinetics, D@balance, tD, start<, 8y1, y2, y3<, 8t, 0, 40000<DD

Out[26]= 8y1 Ø InterpolatingFunction@880., 40000.<<, <>D,
y2 Ø InterpolatingFunction@880., 40000.<<, <>D, y3 Ø InterpolatingFunction@880., 40000.<<, <>D<

The stiffness of the problem is supported by y1  and y2  having their main variation on two com-

pletely different time scales.
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This shows the solutions y1 and y2.

In[27]:= GraphicsRow@8
Plot@y1@tD ê. odesol, 8t, 0, 25<, PlotRange Ø All, ImageSize Ø 200D,
Plot@y2@tD ê. odesol, 8t, 0, 0.01<, PlotRange Ø All, ImageSize Ø 200,
Ticks -> 880.0, 0.005, 0.01<, 80.0, 0.000005, 0.000015, 0.000025, 0.000035<<D

<D

Out[27]=

5 10 15 20 25

0.92

0.94

0.96

0.98

1.00

0.005 0.01

5.µ 10-6

0.000015

0.000025

0.000035

This solves the Robertson kinetics problem as a DAE.

In[33]:= daesol = First@NDSolve@8kinetics, balance, start<, 8y1, y2, y3<, 8t, 0, 40000<DD

Out[33]= 8y1 Ø InterpolatingFunction@880., 40000.<<, <>D,
y2 Ø InterpolatingFunction@880., 40000.<<, <>D, y3 Ø InterpolatingFunction@880., 40000.<<, <>D<

The  solutions  for  a  given  component  will  appear  quite  close,  but  comparing  the  chemical  bal-

ance constraint shows a difference between them.

Here is a graph of the error in the balance equation for the ODE and DAE solutions, shown in 
black and blue respectively. A log-log scale is used because of the large variation in t and the 
magnitude of the error.

In[34]:= berr@t_D = Abs@Apply@Subtract, balanceDD;
gode = First@InterpolatingFunctionCoordinates@y1 ê. odesolDD;
gdae = First@InterpolatingFunctionCoordinates@y1 ê. daesolDD;
Show@8

ListLogLogPlot@Transpose@8gode, berr@godeD ê. odesol<D, PlotStyle Ø BlackD,
ListLogLogPlot@
Transpose@8gdae, berr@gdaeD ê. daesol<D, PlotStyle Ø RGBColor@0, 0, 1DD

<, ImageSize Ø 400, PlotRange Ø AllD

Out[37]=
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In  this  case,  both  solutions  satisfied  the  balance  equations  well  beyond  expected  tolerances.

Note that even though the error in the balance equation was greater at some points for the DAE

solution,  over  the long term, the DAE solution is  brought  back to  better  satisfy  the constraint

once the range of quick variation is passed.

You may want to solve some DAEs of the form

x£HtL = f Ht, xHtLL
gHt, xHtLL = 0,

such that  the solution of  the differential  equation is  required to satisfy  a particular  constraint.

NDSolve  cannot handle such DAEs directly because the index is too high and NDSolve  expects

the number of equations to be the same as the number of dependent variables. NDSolve  does,

however, have a Projection method that will often solve the problem.

A  very  simple  example  of  such  a  constrained  system  is  a  nonlinear  oscillator  modeling  the

motion of a pendulum.

This defines the equation, invariant constraint, and starting condition for a simulation of the 
motion of a pendulum.

In[55]:= equation = x‘‘@tD + Sin@x@tDD ã 0;
invariant = x‘@tD2 - 2 Cos@x@tDD;
start = 8x@0D ã 1, x‘@0D ã 0<;

Note  that  the  differential  equation is  effectively  the  derivative  of  the  invariant,  so  one way to

solve the equation is to use the invariant.

This solves for the motion of a pendulum using the invariant equation. The SolveDelayed 
option tells NDSolve not to symbolically solve the quadratic equation for x£, but instead to solve 
the system as a DAE.

In[58]:= isol = First@
NDSolve@8invariant ã -2 Cos@1D, start<, x, 8t, 0, 1000<, SolveDelayed Ø TrueDD

Out[58]= 8x Ø InterpolatingFunction@880., 1000.<<, <>D<

However, this solution may not be quite what you expect: the invariant equation has the solu-

tion  x@tD ==  constant  when  it  starts  with  x‘@tD == 0.  In  fact  it  does  not  have  unique  solutions

from this  starting  point.  This  is  because  if  you  do  actually  solve  for  x£,  the  function  does  not

satisfy the continuity requirements for uniqueness. 
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This solves for the motion of a pendulum using only the differential equation. The method 
“ExplicitRungeKutta“ is used because it can also be a submethod of the projection method.

In[59]:= dsol =
First@NDSolve@8equation, start<, x, 8t, 0, 2000<, Method Ø “ExplicitRungeKutta“DD

Out[59]= 8x Ø InterpolatingFunction@880., 2000.<<, <>D<

This shows the solution plotted over the last several periods.

In[60]:= Plot@x@tD ê. dsol, 8t, 1950, 2000<D

Out[60]=
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This shows a plot of the invariant at the ends of the time steps NDSolve took.

In[61]:= ts = First@InterpolatingFunctionCoordinates@x ê. dsolDD;
ListPlot@Transpose@8ts, invariant + 2 Cos@1D ê. dsol ê. t Ø ts<D, PlotRange Ø AllD

Out[62]=
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The error in the invariant is not large, but it  does show a steady and consistent drift.  Eventu-

ally, it could be large enough to affect the fidelity of the solution.

This solves for the motion of the pendulum, constraining the motion at each step to lie on the 
invariant.

In[63]:= psol = First@NDSolve@8equation, start<, x, 8t, 0, 2000<,
Method Ø 8Projection, Method Ø “ExplicitRungeKutta“, Invariants Ø invariant<DD

Out[63]= 8x Ø InterpolatingFunction@880., 2000.<<, <>D<
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This shows a plot of the invariant at the ends of the time steps NDSolve took with the 
projection method.

In[64]:= ts = First@InterpolatingFunctionCoordinates@x ê. psolDD;
ListPlot@Transpose@8ts, invariant + 2 Cos@1D ê. psol ê. t Ø ts<D, PlotRange Ø AllD

Out[65]=
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IDA Method for NDSolve

The IDA package is part of the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equa-

tion  Solvers)  developed  at  the  Center  for  Applied  Scientific  Computing  of  Lawrence  Livermore

National  Laboratory.  As  described  in  the  IDA  user  guide  [HT99],  “IDA  is  a  general  purpose

solver  for  the  initial  value  problem for  systems of  differential-algebraic  equations  (DAEs).  The

name IDA  stands  for  Implicit  Differential-Algebraic  solver.  IDA  is  based  on  DASPK ...”  DASPK

[BHP94], [BHP98] is a Fortran code for solving large-scale differential-algebraic systems.

In Mathematica, an interface has been provided to the IDA package so that rather than needing

to  write  a  function  in  C  for  evaluating  the  residual  and  compiling  the  program,  Mathematica

generates the function automatically from the equations you input to NDSolve. 

IDA  solves  the  system  (1)  with  Backward  Differentiation  Formula  (BDF)  methods  of  orders  1

through 5, implemented using a variable-step form. The BDF of order k is at time tn = tn-1 + hn  is

given by the formula

‚
i=1

k

an,i xn-i = hn xn£.

The coefficients an,i  depend on the order k and past step sizes. Applying the BDF to the DAE (1)

gives a system of nonlinear equations to solve:

F tn, xn,
1

hn
‚
i=1

k

an,i xn-i = 0.
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The solution of the system is achieved by Newton-type methods, typically using an approxima-

tion to the Jacobian

(8)J = ∂F
∂x

+ cn
∂F
∂x‘

, where cn =
an,0
hn

.

 “Its [IDAs] most notable feature is that, in the solution of the underlying nonlinear system at

each  time  step,  it  offers  a  choice  of  Newton/direct  methods  or  an  Inexact  Newton/Krylov

(iterative)  method.”  [HT99]  In  Mathematica,  you  can  access  these  solvers  using  method

options  or  use  the  default  Mathematica  LinearSolve,  which  switches  automatically  to  direct

sparse solvers for large problems.

At each step of the solution, IDA computes an estimate En  of the local truncation error and the

step  size  and  order  are  chosen  so  that  the  weighted  norm  Norm@En ê wnD  is  less  than  1.  The

jthcomponent, wn, j, of wn is given by

wn, j =
1

10-prec °xn, j• + 10-acc
.

The values prec and acc are taken from the NDSolve  settings for the PrecisionGoal -> prec and

AccuracyGoal -> acc. 

Because IDA provides a great deal of flexibility, particularly in the way nonlinear equations are

solved, there are a number of method options which allow you to control how this is done. You

can  use  the  method  options  to  IDA  by  giving  NDSolve  the  option

Method -> 8IDA, ida method options<.

The options for the IDA method are associated with the symbol IDA in the NDSolve` context.

In[1]:= Options@NDSolve`IDAD

Out[1]= 8MaxDifferenceOrder Ø 5, ImplicitSolver Ø Newton<

IDA method option name default value

“ImplicitSolver“ “Newton“ how to solve the implicit equations

“MaxDifferenceOrder“ 5 the maximum order BDF to use

IDA method options.
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When strict accuracy of intermediate values computed with the InterpolatingFunction  object

returned  from NDSolve  is  important,  you  will  want  to  use  the  NDSolve  method  option  setting

InterpolationOrder -> All  that  uses  interpolation  based on the  order  of  the  method,  some-

times called dense output,  to  represent  the solution between times steps.  By default  NDSolve

stores a minimal amount of data to represent the solution well enough for graphical purposes.

Keeping the amount of data small saves on both memory and time for more complicated solu-

tions. 

As an example which highlights the difference between minimal output and full method interpola-

tion  order,  consider  tracking  a  quantity,  f HtL = xHtL2 + yHtL2  derived  from  the  solution  of  a  simple

linear equation where the exact solution can be computed using DSolve.

This defines the function f  giving the quantity as a function of time based on solutions x@tD and 
y@tD.

In[2]:= f@t_D := x@tD2 + y@tD2;

This defines the linear equations along with initial conditions.

In[3]:= eqns = 8x‘@tD ã x@tD - 2 y@tD, y‘@tD ã x@tD + y@tD<;
ics = 8x@0D ã 1, y@0D ã 1<;

The exact value of f  as a function of time can be computed symbolically using DSolve.

In[4]:= fexact@t_D = First@f@tD ê. DSolve@8eqns, ics<, 8x, y<, tDD

Out[4]= ‰2 t CosB 2 tF - 2 SinB 2 tF
2

+
1

4
‰2 t 2 CosB 2 tF + 2 SinB 2 tF

2

The exact solution will be compared with solutions computed with and without dense output.

A simple way to track the quantity is to create a function which derives it from the numerical 
solution of the differential equation.

In[5]:= f1@t_D = First@f@tD ê. NDSolve@8eqns, ics<, 8x, y<, 8t, 0, 1<DD

Out[5]= InterpolatingFunction@880., 1.<<, <>D@tD2 + InterpolatingFunction@880., 1.<<, <>D@tD2

It can also be computed with dense output.

In[6]:= f1dense@t_D =
First@f@tD ê. NDSolve@8eqns, ics<, 8x, y<, 8t, 0, 1<, InterpolationOrder Ø AllDD

Out[6]= InterpolatingFunction@880., 1.<<, <>D@tD2 + InterpolatingFunction@880., 1.<<, <>D@tD2
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This plot shows the error in the two computed solutions. The computed solution at the time 
steps are indicated by black dots. The default output error is shown in gray and the dense 
output error in black.

In[7]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;
t1 = Cases@f1@tD, Hif_InterpolatingFunctionL@tD Ø

InterpolatingFunctionCoordinates@ifD, InfinityD@@1, 1DD;
pode = Show@Block@8$DisplayFunction = Identity<,

8ListPlot@Transpose@8t1, fexact@t1D - f1@t1D<D, PlotStyle Ø PointSize@.02DD,
Plot@fexact@tD - f1@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@.8, .8, .8DD,
Plot@fexact@tD - f1dense@tD, 8t, 0, 1<D<D, PlotRange Ø AllD

Out[7]=

From  the  plot,  it  is  quite  apparent  that  when  the  time  steps  get  large,  the  default  solution

output  has  much  larger  error  between  time  steps.  The  dense  output  solution  represents  the

solution  computed  by  the  solver  even  between  time  steps.  Keep  in  mind,  however,  that  the

dense output solution takes up much more space.

This compares the sizes of the default and dense output solutions.

In[8]:= ByteCount êü 8f1@tD, f1dense@tD<

Out[8]= 83560, 17648<

When the quantity you want to derive from the solution is complicated, you can ensure that it is

locally kept within tolerances by giving it as an algebraic quantity, forcing the solver to keep its

error in control.

This adds a dependent variable with an algebraic equation that sets the dependent variable 
equal to the quantity of interest.

In[9]:= f2@t_D = First@g@tD ê. NDSolve@8eqns, ics, g@tD ã f@tD<, 8x, y, g<, 8t, 0, 1<DD

Out[9]= InterpolatingFunction@880., 1.<<, <>D@tD

This computes the same solution with dense output.

In[10]:= f2dense@t_D = First@g@tD ê. NDSolve@8eqns, ics, g@tD ã f@tD<,
8x, y, g<, 8t, 0, 1<, InterpolationOrder Ø AllDD

Out[10]= InterpolatingFunction@880., 1.<<, <>D@tD
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This makes a plot comparing the error for all four solutions. The time steps for IDA are shown 
as blue points and the dense output from IDA is shown in blue with the default output shown in 
light blue.

In[11]:= t2 = InterpolatingFunctionCoordinates@Head@f2@tDDD@@1DD;
Show@8pode, ListPlot@Transpose@8t2, fexact@t2D - f2@t2D<D,

PlotStyle Ø 8RGBColor@0, 0, 1D, PointSize@0.02D<D,
Plot@fexact@tD - f2@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@.7, .7, 1DD,
Plot@fexact@tD - f2dense@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@0, 0, 1DD<,

PlotRange Ø 880, 1<, 1*^-7 8-1, 1<<D

Out[11]=

You can see from the plot  that  the error  is  somewhat  smaller  when the quantity  is  computed

algebraically along with the solution.

The  remainder  of  this  documentation  will  focus  on  suboptions  of  the  two  possible  settings  for

the “ImplicitSolver“ option, which can be “Newton“ or “GMRES“. With “Newton“, the Jacobian

or an approximation to it is computed and the linear system is solved to find the Newton step.

On the other hand, “GMRES“ is an iterative method and, rather than computing the entire Jaco-

bian, a directional derivative is computed for each iterative step.

The “Newton“ method has one method option, “LinearSolveMethod“, which you can use to tell

Mathematica  how  to  solve  the  linear  equations  required  to  find  the  Newton  step.  There  are

several possible values for this option.

Automatic this is the default, automatically switch between using the 
Mathematica LinearSolve  and Band methods depending 
on the band width of the Jacobian; for systems with larger 
band width, this will automatically switch to a direct sparse 
solver for large systems with sparse Jacobians 

“Band“ use the IDA band method (see the IDA user manual for 
more information)

“Dense“ use the IDA dense method (see the IDA user manual for 
more information) 

Possible settings for the “LinearSolveMethod“ option. 
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The “GMRES“ method may be substantially faster, but is typically quite a bit more tricky to use

because  to  really  be  effective  typically  requires  a  preconditioner,  which  can  be  supplied  via  a

method  option.  There  are  also  some  other  method  options  that  control  the  Krylov  subspace

process. To use these, refer to the IDA user guide [HT99].

“GMRES“ method options. 

As an example problem, consider a two-dimensional Burgers’ equation. 

ut = n Iuxx + uyyM -
1

2
JIu2Mx + Iu2MyN

This  can  typically  be  solved  with  an  ordinary  differential  equation  solver,  but  in  this  example

two  things  are  achieved  by  using  the  DAE  solver.  First,  boundary  conditions  are  enforced  as

algebraic  conditions.  Second,  NDSolve  is  forced  to  use  conservative  differencing  by  using  an

algebraic  term.  For  comparison,  a  known  exact  solution  will  be  used  for  initial  and  boundary

conditions.

This defines a function that satisfies Burger’s equation.

In[12]:= Bsol@t_, x_, y_D = 1 ê H1 + Exp@Hx + y - tL ê H2 nLDL;

This defines initial and boundary conditions for the unit square consistent with the exact 
solution.

In[13]:= ic = u@0, x, yD ã Bsol@0, x, yD;
bc = 8

u@t, 0, yD ã Bsol@t, 0, yD, u@t, 1, yD ã Bsol@t, 1, yD,
u@t, x, 0D ã Bsol@t, x, 0D, u@t, x, 1D ã Bsol@t, x, 1D<;

This defines the differential equation.

In[14]:= de = D@u@t, x, yD, tD ã n H D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -
u@t, x, yD HD@u@t, x, yD, xD + D@u@t, x, yD, yDL;

This sets the diffusion constant n to a value for which we can find a solution in a reasonable 
amount of time and shows a plot of the solution at t == 1.
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GMRES method option name default value

"Preconditioner" Automatic a Mathematica function that returns 
another function that preconditions

"OrthogonalizationType" "ModifiedGramSÖ
chmidt"

this can also be 
"ClassicalGramSchmidt" (see variable 
gstype in the IDA user guide)

"MaxKrylovSubspaceDimensiÖ
on"

Automatic maximum susbspace dimension (see 
variable maxl in the IDA user guide)

"MaxKrylovRestarts" Automatic maximum number of restarts (see variable 
maxrs in the IDA user guide)



This sets the diffusion constant n to a value for which we can find a solution in a reasonable 
amount of time and shows a plot of the solution at t == 1.

In[15]:= n = 0.025;
Plot3D@Bsol@1, x, yD, 8x, 0, 1<, 8y, 0, 1<D

Out[15]=

You can see from the plot that with n = 0.025, there is a fairly steep front. This moves with con-

stant speed.

This solves the problem using the default settings for NDSolve and the IDA method with the 
exception of the “DifferentiateBoundaryConditions“ option for “MethodOfLines“, 
which causes NDSolve to treat the boundary conditions as algebraic. 

In[16]:= Timing@sol = NDSolve@8de, ic, bc<, u, 8t, 0, 1<, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False<DD

Out[16]= 82.233, 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<, 80., 1.<<, <>D<<<

Since there is an exact solution to compare to, the overall  solution accuracy can be compared

as well.

This defines a function that finds the maximum deviation between the exact and computed 
solutions at the grid points at all of the time steps.

In[17]:= errfun@sol_D := Module@8ifun = First@u ê. solD, grid, exvals, gvals<,
grid = InterpolatingFunctionGrid@ifunD;
gvals = InterpolatingFunctionValuesOnGrid@ifunD;
exvals =
Apply@Bsol, Transpose@grid, RotateLeft@Range@ArrayDepth@gridDD, 1DDD;

Max@Abs@exvals - gvalsDDD

This computes the maximal error for the computed solution. 

In[18]:= errfun@solD

Out[18]= 0.000749446
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In  the  following,  a  comparison  will  be  made with  different  settings  for  the  options  of  the  IDA

method. To emphasize the option settings, a function will be defined to time the computation of

the solution and give the maximal error.

This defines a function for comparing different IDA option settings.

In[19]:= TimeSolution@idaopts___D := Module@8time, err, steps<,
time =
First@Timing@sol = NDSolve@8de, ic, bc<, u, 8t, 0, 1<, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False,
Method Ø 8IDA, idaopts<<DDD;

err = errfun@solD;
steps =
Length@First@InterpolatingFunctionCoordinates@First@u ê. solDDDD “Steps“;

8time, err, steps<D

No options use the previous defaults.

In[20]:= TimeSolution@D

Out[20]= 82.184, 0.000749446, 88 Steps<

This uses the “Band“ method.

In[21]:= TimeSolution@“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø “Band“<D

Out[21]= 88.543, 0.000749497, 88 Steps<

The  “Band“  method  is  not  very  effective  because  the  bandwidth  of  the  Jacobian  is  relatively

large,  partly  because  of  the  fourth-order  derivatives  used  and  partly  because  the  one-sided

stencils  used  near  the  boundary  add  width  at  the  top  and  bottom.  You  can  specify  the  band-

width explicitly.

This uses the “Band“ method with the width set to include the stencil of the differences in only 
one direction.

In[22]:= TimeSolution@
“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø 8“Band“, “BandWidth“ Ø 3<<D

Out[22]= 87.441, 0.000937962, 311 Steps<

While the solution time was smaller, notice that the error is slightly greater and the total num-

ber of time steps is a lot greater. If the problem was more stiff, the iterations likely would not

have converged because it was missing information from the other direction. Ideally, the band-

width should not eliminate information from an entire dimension. 
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This computes the grids used in the X and Y  directions and shows the number of points used.

In[23]:= 8X, Y< = InterpolatingFunctionCoordinates@First@u ê. solDD@@82, 3<DD;
8nx, ny< = 8Length@XD, Length@YD<

Out[23]= 851, 51<

This uses the “Band“ method with the width set to include at least part of the stencil in both 
directions.

In[24]:= TimeSolution@
“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø 8“Band“, “BandWidth“ Ø 51<<D

Out[24]= 82.273, 0.00085973, 88 Steps<

With the more appropriate setting of the bandwidth, the solution is still  slightly slower than in

the default case. The “Band“ method can sometimes be effective on two-dimensional problems,

but is usually most effective on one-dimensional problems.

This computes the solution using the “GMRES“ implicit solver without a preconditioner.

In[25]:= TimeSolution@“ImplicitSolver“ Ø “GMRES“D

Out[25]= 826.137, 0.00435431, 672 Steps<

This is incredibly slow! Using the “GMRES“ method without a preconditioner is not recommended

for this very reason. However, finding a good preconditioner is not usually trivial. For this exam-

ple, a diagonal preconditioner will be used.

The setting  of  the  “Preconditioner“  option  should  be  a  function  f ,  which  accepts  four  argu-

ments that will be given to it by NDSolve  such that f@t, x, x‘, cD returns another function that

will  apply the preconditioner to the residual  vector.  (See IDA user guide [HT99] for details  on

how the preconditioner is used.) The arguments t, x, x‘, c are the current time, solution vector,

solution  derivative  vector,  and  the  constant  c  in  formula  (2)  above.  For  example,  if  you  can

determine a  procedure that  would  generate an appropriate  preconditioner  matrix  P  as  a  func-

tion of these arguments, you could use

“Preconditioner“ -> Function@8t, x, xp, c<, LinearSolve@P@t, x, xp, cDDD

to  produce  a  LinearSolveFunction  object  which  will  effectively  invert  the  preconditioner

matrix P. Typically, for each time the preconditioner function is set up, it is applied to the resid-

ual  vector  several  times,  so  using  some  sort  of  factorization  such  as  is  contained  in  a

LinearSolveFunction is a good idea.
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For  the  diagonal  case,  the  inverse  can  be  effected  simply  by  using  the  reciprocal.  The  most

difficult part of setting up a diagonal preconditioner is keeping in mind that values on the bound-

ary should not be affected by it. 

This finds the diagonal elements of the differentiation matrix for computing the preconditioner.

In[26]:= DM = NDSolve`FiniteDifferenceDerivative@82, 0<, 8X, Y<Dü“DifferentiationMatrix“ +
NDSolve`FiniteDifferenceDerivative@80, 2<, 8X, Y<Dü“DifferentiationMatrix“;

Short@diag = Tr@DM, ListDD
Out[26]//Short= 818750., 6250., 3125., 3125., á2593à, 3125., 3125., 6250., 18750.<

This gets the positions where elements at the boundary that satisfy a simple algebraic condition 
are in the flattened solution vector.

In[27]:= bound = SparseArray@
88i_, 1< Ø 1., 8i_, ny< Ø 1., 81, i_< Ø 1., 8nx, i_< Ø 1.<, 8nx, ny<, 0.D;

Short@pos = Drop@ArrayRules@Flatten@boundDD, -1D@@All, 1, 1DDD
Out[27]//Short= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, á180à, 2592,

2593, 2594, 2595, 2596, 2597, 2598, 2599, 2600, 2601<

This defines the function that sets up the function called to get the effective inverse of the 
preconditioner. For the diagonal case, the inverse is done simply by taking the reciprocal.

In[28]:= pfun@t_, x_, xp_, c_D := Module@8d, dd<,
d = 1. ê Hc - n diagL;
d@@posDD = 1.;
Function@Ò ddD ê. dd Ø dD

This uses the preconditioned “GMRES“ method to compute the solution.

In[29]:= TimeSolution@“ImplicitSolver“ Ø 8“GMRES“, “Preconditioner“ Ø pfun<D

Out[29]= 81.161, 0.000716006, 88 Steps<

Thus, even with a crude preconditioner, the “GMRES“ method computes the solution faster than

the using the direct sparse solvers. 

For  PDE  discretizations  with  higher-order  temporal  derivatives  or  systems  of  PDEs,  you  may

need  to  look  at  the  corresponding  NDSolve`StateData  object  to  determine  how the  variables

are ordered so that you can get the structural form of the preconditioner correctly.

Advanced Numerical Differential Equation Solving in Mathematica     273



Delay Differential Equations

A delay differential equation is a differential equation where the time derivatives at the current

time depend on the solution and possibly its derivatives at previous times:

Instead  of  a  simple  initial  condition,  an  initial  history  function  fHtL  needs  to  be  specified.   The

quantities ti ¥ 0, i = 1, …, n  and si ¥ 0, i = 1, …, k  are called the delays or time lags.  The delays

may be constants, functions tH tL and sH tL of t (time dependent delays), or functions tHt, XHtLL and

sH t, XHtLL  (state  dependent  delays).   Delay  equations  with  delays  s  of  the  derivatives  are

referred to as neutral delay differential equations (NDDEs).

The  equation  processing  code  in  NDSolve  has  been  designed  so  that  you  can  input  a  delay

differential equation in essentially mathematical notation. 

Inputting delays and initial history.

Currently, the implementation for DDEs in NDSolve only supports constant delays.

Solve a second order delay differential equation.

In[1]:= sol = NDSolve@8x‘‘@tD + x@t - 1D ã 0, x@t ê; t § 0D ã t^2<, x, 8t, -1, 5<D

Out[1]= 88x Ø InterpolatingFunction@88-1., 5.<<, <>D<<

Plot the solution and its first two derivatives. 

In[2]:= Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. First@solDD, 8t, -1, 5<, PlotRange Ø AllD

Out[2]=
-1 1 2 3 4 5
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-1

1

2
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x@t-tD dependent variable x with delay t

x@t ê; t§t0Dãf specification of initial history function as expression f for t 
less than t0

X£HtL = F Ht, X HtL, X Ht - t1L, , X Ht - tnL, X£Ht - s1L, , X Ht - smL; t ¥ t0
X HtL = fHtL ; t § t0



For  simplicity,  this  documentation  is  written  assuming  that  integration  always  proceeds  from

smaller  to  larger  t.   However,  NDSolve  supports  integration  in  the  other  direction  if  the  initial

history function is given for value above t0 and the delays are negative.

Solve a second order delay differential equation in the direction of negative t.

In[3]:= nsol = NDSolve@8x‘‘@tD + x@t + 1D ã 0, x@t ê; t ¥ 0D ã t^2<, x, 8t, -5, 1<D;
Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. First@nsolDD, 8t, -5, 1<, PlotRange Ø AllD

Out[3]=
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Comparison and Contrast with ODEs

While DDEs look a lot like ODEs the theory for them is quite a bit more complicated and there

are  some  surprising  differences  with  ODEs.   This  section  will  show  a  few  examples  of  the

differences.

Look at the solutions of x£HtL = xHt - 1L HxHtL - 1L for different initial history functions.

In[47]:= Manipulate@
Module@
8sol = NDSolve@8x‘@tD ã x@t - 1D H1 - x@tDL, x@t ê; t § 0D ã f<, x, 8t, -2, 2<D<,
Plot@Evaluate@x@tD ê. First@solDD, 8t, -2, 2<DD,

8f, 8Exp@tD, Cos@tD, 1 - t, 1 - Sin@tD<<D

Out[47]=

f ‰t Cos@tD 1- t 1- Sin@tD

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0
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As  long  as  the  initial  function  satisfies  fH0L = 1,  the  solution  for  t > 0  is  always  1.  [Z06]   With

ODEs,  you  could  always  integrate  backwards  in  time  from  a  solution  to  obtain  the  initial

condition.

Investigate at the solutions of x£HtL = a xHtL H1 - xHt - 1LL for different values of the parameter a.

In[1]:= Manipulate@
Module@8T = 50, sol, x, t<, sol = First@x ê. NDSolve@

8x‘@tD ã a x@tD H1 - x@t - 1DL, x@t ê; t § 0D ã 0.1<, x, 8t, 0, T<DD;
If@pp, ParametricPlot@8sol@tD, sol@t - 1D<, 8t, 1, T<,

PlotRange Ø 880, 3<, 80, 3<<D,
Plot@sol@tD, 8t, 0, T<, PlotRange Ø 880, 50<, 80, 3<<DDD,

88pp, False, “Plot in Phase Plane“<, 8False, True<<, 88a, 1<, 0, 2<D

Out[1]=
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For  a < 1
‰
,  the  solutions  are  monotonic,  for  1

‰
§ a § p

2
 the  solutions  oscillate.  and  for  a > p

2
 the

solutions approach a limit cycle.   Of course, for the scalar ODE, solutions are monotonic inde-

pendent of a.

Solve the Ikeda delay differential equation, x£HtL sinHxHt - 2 pLL for two nearby constant initial 
functions.

In[88]:= sol1 =
First@NDSolve@8x‘@tD ã Sin@x@t - 20DD, x@t ê; t § 0D ã .0001<, x, 8t, 0, 500<DD;

sol2 = First@NDSolve@8x‘@tD ã Sin@x@t - 20DD, x@t ê; t § 0D ã .00011<,
x, 8t, 0, 500<DD;
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Plot the solutions.

In[90]:= Plot@Evaluate@x@tD ê. 8sol1, sol2<D, 8t, 0, 500<D

Out[90]=
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This simple scalar delay differential equation has chaotic solutions and the motion shown above

looks very much like Brownian motion. [S07]  As the delay t is increased beyond t = p ê2 a limit

cycle appears, followed eventually by a period doubling cascade leading to chaos before t = 5.
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Compare solutions for t=4.9, 5.0, and 5.1

In[104]:= Grid@Table@sol = First@NDSolve@8x‘@tD ã Sin@x@t - tDD, x@t ê; t § 0D ã .1<,
x, 8t, 100 t, 200 t<, MaxSteps Ø InfinityDD;

8ParametricPlot@Evaluate@8x@t - 1D, x@tD< ê. solD, 8t, 101 t, 200 t<D.
Plot@Evaluate@x@tD ê. solD, 8t, 100 t, 200 t<D<, 8t, 4.9, 5.1, .1<DD

Out[104]=

Stability is much more complicated for delay equations as well.  It is well known that the linear

ODE  test  equation  x£HtL = lxHtL  has  asymptotically  stable  solutions  if  ReHlL < 0  and  is  unstable  if

ReHlL > 0.  

The closest corresponding DDE is x£HtL = l xHtL + m xHt - 1L.  Even if you consider just real l and m the

situation is no longer so clear cut.  Shown below are some plots of solutions indicating this.
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The solution is stable with l = 1
2
 and m = -1

In[110]:= Block@8l = 1 ê 2, m = -1, T = 25<, Plot@
Evaluate@First@x@tD ê. NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<,

x, 8t, 0, T<DDD, 8t, 0, T<, PlotRange Ø AllDD

Out[110]=
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The solution is unstable with l = - 7
2
 and m = 4

In[111]:= Block@8l = -7 ê 2, m = 4, T = 25<, Plot@
Evaluate@First@x@tD ê. NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<,

x, 8t, 0, T<DDD, 8t, 0, T<, PlotRange Ø AllDD

Out[111]=
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So the solution can be stable with l > 0 and unstable with l < 0 depending on the value of m.  A

Manipulate is set up below so that you can investigate the l-m plane.

Investigate by varying l and m

In[113]:= Manipulate@Module@8T = 25, x, t<, Plot@Evaluate@First@x@tD ê.
NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<, x, 8t, 0, T<DDD,

8t, 0, T<, PlotRange Ø AllDD, 8l, -5, 5<, 8m, -5, 5<D

Out[113]=
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Propagation and Smoothing of Discontinuities

The way discontinuities are propagated by the delays is an important feature of DDEs and has a

profound effect on numerical methods for solving them.

Solve x£HtL xHt - 1L with xHtL = 1 for t § 0.

In[3]:= sol = First@NDSolve@8x‘@tD ã x@t - 1D, x@t ê; t § 0D ã 1<, x, 8t, -1, 3<DD

Out[3]= 8x Ø InterpolatingFunction@88-1., 3.<<, <>D<

In[4]:= Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. solD, 8t, -1, 3<D

Out[4]=
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In the example above, xHtL  is  continuous, but there is a jump discontinuity in x£HtL  at t = 0  since

approaching from the left  the value is  0,  given by the derivative of  the initial  history  function

x£HtL = f£HtL = 0  while  approaching  from  the  right  the  value  is  given  by  the  DDE,  giving

x£HtL = xHt - 1L = fHt - 1L = 1.  

Differentiating  the  equation,  we  can  conclude  that  Hx£L£HtL x£Ht - 1L  so  Hx£L£HtL  has  a  jump

discontinuity at t = 1.   Using essentially the same argument as above, we can conclude that at

t = 2 the second derivative is continuous.  

Similarly, xHkLHtL is continuous at t = k or, in other words, at t = k, xHtL is k times differentiable.  This

is referred to as smoothing and holds generally for non-neutral delay equations.  In some cases

the smoothing can be faster than one order per interval.[Z06]

For neutral delay equations the situation is quite different.

Solve x£HtL x ‘ Ht - 1L with xHtL = -t for t § 0.

In[10]:= sol = First@NDSolve@8x‘@tD ã -x‘@t - 1D, x@t ê; t § 0D ã t<, x, 8t, -1, 3<DD

Out[10]= 8x Ø InterpolatingFunction@88-1., 3.<<, <>D<
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Near  t=1,  we  have  by  the  continuity  of  x  at  0  limtØ1- x£HtL = limtØ1- xHt - 1L = limzØ0- xHzL = limzØ0+ xHzL =

limtØ1+ x£HtL  and so x£HtLis continuous at t = 1.



In[11]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, -1, 3<D

Out[11]=
-1 1 2 3
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which has a discontinuity at every non negative integer.

In general, there is no smoothing of discontinuities for neutral DDEs.

The  propagation  of  discontinuities  is  very  important  from the  standpoint  of  numerical  solvers.

If the possible discontinuity points are ignored, then the order of the solver will be reduced.  If

a discontinuity point is known a more accurate solution can be found by integrating just up to

the discontinuity point and then restarting the method just past the point with the new function

values.   This  way,  the  integration  method  is  used  on  smooth  parts  of  the  solution  leading  to

better accuracy and fewer rejected steps.  From any given discontinuity points, future discontinu-

ity  points  can  be  determined  from the  delays  and  detected  by  treating  them as  events  to  be 

located.  

When  there  are  multiple  delays,  the  propagation  of  discontinuities  can  become  quite

complicated.

Solve a neutral delay differential equation with two delays.

In[109]:= sol =
NDSolve@8x‘@tD ã x@tD Hx@t - PiD - x‘@t - 1DL, x@t ê; t § 0D ã Cos@tD<, x, 8t, -1, 8<D

Out[109]= 88x Ø InterpolatingFunction@88-1., 8.<<, <>D<<
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It is easy to see that the solution is piecewise with x[t] continuous. However, 

x£HtL =
- 1 0 <modHt, 2L < 1
1 1 <modHt, 2L < 2



Plot the solution.

In[110]:= Plot@Evaluate@8x@tD, x‘@tD< ê. First@solDD, 8t, -1, 8<, PlotRange Ø AllD

Out[110]= 2 4 6 8
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It is clear from the plot that there is a discontinuity at each non negative integer as would be

expected from the neutral delay s = 1. However, looking at the second and third derivative, it is

clear  that  there  are  also  discontinuities  associated  with  points  like  t = p,  1 + p,  2 + p  propagated

from the jump discontinuities in x£HtL.

Plot the second derivative

In[111]:= Plot@Evaluate@x‘‘@tD ê. First@solDD, 8t, 2.5, 5.5<, PlotRange Ø AllD

Out[111]= 3.0 3.5 4.0 4.5 5.0 5.5
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In fact, there is a whole tree of discontinuities that are propagated forward in time.   A way of

determining and displaying the discontinuity tree for a solution interval is shown in the subsec-

tion below.
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Discontinuity Tree

Define a command that gives the graph for the propagated discontinuities for a DDE with the 
given delays

In[112]:= DiscontinuityTree@t0_, Tend_, delays_D :=
Module@8dt, next, ord<,
ord@t_D := Infinity;
ord@t0D = 0;
next@b_, order_, del_D := Map@dt@b, Ò, order , delD &, delD;
dt@t_ , 8d_, nq_<, order_, del_D := Module@8b = t + d<,

If@b § Tend,
o = order + Boole@! nqD;
ord@bD = Min@ord@bD, oD;
Sow@8t Ø b, d<D;
next@b, o, delDDD;

rules = Reap@next@t0, 0, delaysDD@@2, 1DD;
rules = Tally@rulesD@@All, 1DD;
f@x_?NumericQD := 8x, ord@xD<;
f@a_ Ø b_D := f@aD Ø f@bD;
rules@@All, 1DD = Map@f, rules@@All, 1DDD;
rulesD

Get the discontinuity tree for the example above up to t = 8.

In[113]:= tree = Tally@DiscontinuityTree@0, 8, 881, True<, 8p, False<<DD@@All, 1DD

Out[113]=

Define a command that shows a plot of xHkLHtL and xIk+1MHtL  for a discontinuity of order k.
In[116]:= ShowDiscontinuity@8dt_, o_<, ifun_, D_D :=

Quiet@
Plot@Evaluate@8Derivative@oD@ifunD@tD, Derivative@o + 1D@ifunD@tD<D, 8t, dt - D,

dt + D<, Exclusions Ø 8dt<, ExclusionsStyle Ø Red, Frame Ø True, FrameLabel Ø
8None, None, 8Derivative@oD@xD@tD, Derivative@o + 1D@xD@tD<, None<DD
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8880, 0< Ø 81, 0<, 1<, 881, 0< Ø 82, 0<, 1<, 882, 0< Ø 83, 0<, 1<, 883, 0< Ø 84, 0<, 1<,
884, 0< Ø 85, 0<, 1<, 885, 0< Ø 86, 0<, 1<, 886, 0< Ø 87, 0<, 1<, 887, 0< Ø 88, 0<, 1<,
884, 0< Ø 84 + p, 1<, p<, 883, 0< Ø 83 + p, 1<, p<, 883 + p, 1< Ø 84 + p, 1<, 1<,
882, 0< Ø 82 + p, 1<, p<, 882 + p, 1< Ø 83 + p, 1<, 1<, 881, 0< Ø 81 + p, 1<, p<,
881 + p, 1< Ø 82 + p, 1<, 1<, 881 + p, 1< Ø 81 + 2 p, 2<, p<, 880, 0< Ø 8p, 1<, p<,
88p, 1< Ø 81 + p, 1<, 1<, 88p, 1< Ø 82 p, 2<, p<, 882 p, 2< Ø 81 + 2 p, 2<, 1<<



Plot as a layered graph, showing the discontinuity plot as a tooltip for each discontinuity.

In[117]:= LayeredGraphPlot@tree, Left, VertexLabeling Ø True, VertexRenderingFunction Ø
Function@Tooltip@8White, EdgeForm@BlackD, Disk@Ò, .3D, Black, Text@Ò2@@1DD, Ò1D<,

ShowDiscontinuity@Ò2, First@x ê. solD, 1DDDD

Out[117]=
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Storing History Data

Once the solution has advanced beyond the first discontinuity point, some of the delayed values

that  need  to  be  computed  are  outside  of  the  domain  of  the  initial  history  function  and  the

computed solution needs to be used to get the values, typically be interpolating between steps

previously taken.  For the DDE solution to be accurate it is essential that the interpolation be as

accurate  as  the  method.   This  is  achieved  by  using  dense  output  for  the  ODE  integration

method  (the  output  you  get  if  you  use  the  option  InterpolationOrder -> All  in  NDSolve).

NDSolve  has  a  general  algorithm for  obtaining  dense  output  from most  methods,  so  you  can

use  just  about  any  method  as  the  integrator.   Some methods,  including  the  default  for  DDEs

have  their  own  way  of  getting  dense  output  which  is  usually  more  efficient  than  the  general

method.   Methods  that  are  low  enough  order,  such  as  “ExplicitRungeKutta“  with

“DifferenceOrder“ -> 3 can just use a cubic Hermite polynomial as the dense output so there

is essentially no extra cost in keeping the history.

Since  the history  data  is  accessed frequently,  it  needs to  have a  quick  look up mechanism to

determine which step to interpolate within. In NDSolve, this is done with a binary search mecha-

nism and the search time is negligible compared with the cost of actual function evaluation.

The  data  for  each  successful  step  is  saved  before  attempting  the  next  step  and  is  saved  in  a

data structure that can repeatedly be expanded efficiently.  When NDSolve  produces the solu-

tion,  it  simply  takes  this  data  and  restructures  it  into  an  InterpolatingFunction  object,  so

DDE solutions are always returned with dense output.
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The Method of Steps

For constant delays, it is possible to get the entire set of discontinuities as fixed time.  The idea

of  the  method  of  steps  is  to  simply  integrate  the  smooth  function  over  these  intervals  and

restart on the next interval, being sure to reevaluate the function from the right.  As long as the

intervals do not get too small, the method works quite well in practice.

The method currently implemented for NDSolve is based on the method of steps.

Symbolic method of steps

This  section defines a symbolic  method of  steps that  illustrates how the method works.   Note

that to keep the code simpler and more to the point, it does not do any real argument check-

ing.  Also, the data structure and look up for the history is not done in an efficient way, but for

symbolic solutions this is a minor issue.

Use DSolve to integrate over an interval where the solution is smooth.

In[16]:= IntegrateSmooth@rhs_, history_, delayvars_, pfun_, dvars_, 8t_, t0_, t1_<D :=
Module@8delayvals, dvt, tau, hrule, dvrule, dvrules, oderhs, ode, init, sol<,
dvt@tau_D = Map@Ò@tauD &, dvarsD;
hrule@pos_D :=
Thread@dvars -> Map@Function@Evaluate@8t<D, ÒD &, history@@posDDDD;

dvrule@Hdv_L@z_DD := Module@8delay, pos<,
delay = t - z;
pos = pfun@t0 - delayD;
dv@zD Ø Hdv@zD ê. hrule@posDLD;

dvrules = Map@dvrule, delayvarsD;
oderhs = rhs ê. dvrules;
ode = Thread@D@dvt@tD, tD ã oderhsD;
init = Thread@dvt@t0D ã Hdvt@t0D ê. hrule@-1DLD;
sol = DSolve@8ode, init<, dvars, tD;
If@Head@solD === DSolve »» Length@solD ã 0,
Message@DDESteps::stuck, ode, initD;
Throw@$FailedDD;

dvt@tD ê. First@solD
D;

DDESteps::stuck =
“DSolve was not able to find a solution for `1` with initial conditions `2`.“;
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Define a method of steps function that returns Piecewise functions.

In[21]:= DDESteps@rhsin_, phin_, dvarsin_, 8t_, tinit_, tend_<D :=
Module@8rhs = Listify@rhsinD, phi = Listify@phinD, dvars = Listify@dvarsinD,

history, delayvars, delays, dtree, intervals, p, pfun, next, pieces, hfuns<,
history = 8phi<;
delayvars = Cases@rhs, Hv : HHdv_@z_D Derivative@1D@dv_D@z_DL ê;

HMemberQ@dvars, dvD && UnsameQ@z, tDLLL Ø 8v, t - z<, InfinityD;
8delayvars, delays< = Map@Union, Transpose@delayvarsDD;
dtree = DiscontinuityTree@tinit, tend, Map@8Ò, True< &, delaysDD;
dtree = Union@Flatten@8tinit, tend, dtree@@All, 1, 2, 1DD<DD;
dtree = SortBy@dtree, ND;
intervals = Partition@dtree, 2, 1D;
p = 2;
pfun =
Join@881, t < tinit<<, Apply@Function@8p++, Ò1 § t < Ò2<D, intervals, 81<DD;

pfun = Function@Evaluate@8t<D, Evaluate@Piecewise@pfun, pDDD;
Catch@Do@

next = IntegrateSmooth@rhs,
history, delayvars, pfun, dvars, Prepend@interval, tDD;

history = Append@history, nextD,
8interval, intervals<DD;

pieces =
Flatten@8t < tinit, Apply@HÒ1 § t < Ò2L &, Drop@intervals, -1D, 81<D,

Apply@HÒ1 § t § Ò2L &, Last@intervalsDD<D;
pieces = Take@pieces, Length@historyDD;
hfuns = Map@Function@Evaluate@8t<D, Evaluate@Piecewise@

Transpose@8Ò, pieces<D, IndeterminateDDD &, Transpose@historyDD;
Thread@dvars Ø hfunsD

D;
Listify@x_ListD := x;
Listify@x_D := 8x<;

Find the solution for the DDE x£HtL xHt - 1L - xHtL with fHtL sinHtL
In[24]:= sol = DDESteps@x@t - 1D - x@tD, Sin@tD, x, 8t, 0, 3<D

Out[24]= :x Ø FunctionB8t<,

Sin@tD t < 0

-
1

2
‰-t I-Cos@1D + ‰t Cos@1 - tD - Sin@1D + ‰t Sin@1 - tDM 0 § t

-
1

2
‰-t I‰ - Cos@1D - ‰ t Cos@1D + ‰t Cos@2 - tD - Sin@1D + ‰ Sin@1D - ‰ t Sin@1DM 1 § t

-
1

4
‰-t I2 ‰ - 2 ‰2 + 2 ‰2 t - 2 Cos@1D - ‰2 Cos@1D - 2 ‰ t Cos@1D +

2 ‰2 t Cos@1D - ‰2 t2 Cos@1D + ‰t Cos@3 - tD - 2 Sin@1D + 2 ‰ Sin@1D -
3 ‰2 Sin@1D - 2 ‰ t Sin@1D + 4 ‰2 t Sin@1D - ‰2 t2 Sin@1D - ‰t Sin@3 - tDM

2 § t

Indeterminate True

F>

Plot the solution.

In[25]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 3<D

Out[25]=
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Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[26]:= ndsol =
First@NDSolve@8x‘@tD ã -x@tD + x@t - 1D, x@t ê; t § 0D ã Sin@tD<, x, 8t, 0, 3<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 3<, PlotRange Ø AllD

Out[27]=

The method will also work for neutral DDEs.

Find the solution for the neutral DDE x£HtL x ‘ Ht - 1L - xHtL with fHtL sinHtL
In[28]:= sol = DDESteps@x‘@t - 1D - x@tD, Sin@tD, x, 8t, 0, 3<D

Out[28]= :x Ø FunctionB8t<,

Sin@tD t < 0 
1

2
‰-t I-Cos@1D + ‰t Cos@1 - tD + Sin@1D - ‰t Sin@1 - tDM 0 § t

1

2
‰-t I‰ - Cos@1D - 2 ‰ Cos@1D + ‰ t Cos@1D + ‰t Cos@2 - tD + Sin@1D + ‰ Sin@1D - ‰ t Sin@1DM 1 § t

1

4
‰-t I2 ‰ + 6 ‰2 - 2 ‰2 t - 2 Cos@1D - 4 ‰ Cos@1D - 13 ‰2 Cos@1D +

2 ‰ t Cos@1D + 8 ‰2 t Cos@1D - ‰2 t2 Cos@1D + ‰t Cos@3 - tD + 2 Sin@1D + 2 ‰ Sin@1D +
7 ‰2 Sin@1D - 2 ‰ t Sin@1D - 6 ‰2 t Sin@1D + ‰2 t2 Sin@1D + ‰t Sin@3 - tDM

2 § t

Indeterminate Tru e

F>

Plot the solution.

In[29]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 3<D

Out[29]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[30]:= ndsol =
First@NDSolve@8x‘@tD ã -x@tD + x‘@t - 1D, x@t ê; t § 0D ã Sin@tD<, x, 8t, 0, 3<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 3<, PlotRange Ø AllD

Out[31]=

The symbolic method will  also work with symbolic parameter values as long as DSolve  is able

to still able to find the solution.
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Find the solution to a simple linear DDE with symbolic coefficients.

In[32]:= sol = DDESteps@l x@tD + m x@t - 1D, t, x, 8t, 0, 2<D

Out[32]=

The reason the code was designed to take lists was so that it would work with systems

Solve a system of DDEs.

In[33]:= ssol = DDESteps@8y@tD, -x@t - 1D<, 8t^2, 2 t<, 8x, y<, 8t, 0, 5<D

Out[33]= :x Ø FunctionB8t<,

t2 t < 0
1

12
I-6 t2 + 4 t3 - t4M 0 § t

1

360
I52 - 216 t + 165 t2 - 140 t3 + 60 t4 - 12 t5 + t6M 1 § t

-3744+8640 t-18088 t2+11872 t3-5040 t4+1456 t5-252 t6+24 t7-t8

20160
2 § t

1

1814400
I804654 - 2371680 t + 2210265 t2 - 1643400 t3 +

771120 t4 - 236376 t5 + 51030 t6 - 7560 t7 + 720 t8 - 40 t9 + t10M

3 § t

1

239500800
I-168 512584 + 394727040 t - 534391836 t2 + 359788000 t3 - 165844800 t4 +

55576224 t5 - 13370280 t6 + 2347488 t7 - 300960 t8 + 27280 t9 - 1650 t10 + 60 t11 - t12M

4 § t

Indeterminate True

F, y Ø FunctionB8t<,

2 t t < 0
1

3
I-3 t + 3 t2 - t3M 0 § t

1

60
I-36 + 55 t - 70 t2 + 40 t3 - 10 t4 + t5M 1 § t

1080-4522 t+4452 t2-2520 t3+910 t4-189 t5+21 t6-t7

2520
2 § t

-237168+442 053 t-493 020 t2+308448 t3-118188 t4+30618 t5-5292 t6+576 t7-36 t8+t9

181440
3 § t   

1

19958400
I32893920 - 89065306 t + 89947000 t2 - 55281600 t3 + 23156760 t4 -

6685140 t5 + 1369368 t6 - 200640 t7 + 20460 t8 - 1375 t9 + 55 t10 - t11M

4 § t

Indeterminate Tru e

F>
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Plot the solution.

In[34]:= Plot@Evaluate@8x@tD, y@tD< ê. ssolD, 8t, 0, 5<D

Out[34]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[35]:= ndssol = First@NDSolve@8x‘@tD ã y@tD, y‘@tD ã -x@t - 1D,
x@t ê; t § 0D ã t^2, y@t ê; t § 0D ã 2 t<, 8x, y<, 8t, 0, 5<DD;

Plot@Evaluate@H8x@tD, y@tD< ê. ssolL - H8x@tD, y@tD< ê. ndssolLD, 8t, 0, 5<D

Out[36]=

Since the method computes the discontinuity tree, it will also work for multiple constant delays.

However, with multiple delays, the solution may become quite complicated quickly and DSolve

can bog down with huge expressions.

Solve a nonlinear neutral DDE with two delays.

In[37]:= sol = DDESteps@x@tD Hx@t - Log@2DD - x‘@t - 1DL, 1, x, 8t, 0, 2<D

Out[37]= :x Ø FunctionB8t<,

1 t < 0

‰t 0 § t < Log@2D

2 ‰
-1+

‰t

2 Log@2D § t < 1

2 ‰
1

2
H-2+‰L ‰-1+t

1 § t < 2 Log@2D

2 ‰
2-‰-1+t-

2 ExpIntegralEiA1E

‰
+
2 ExpIntegralEiB

‰t

4
F

‰ 2 Log@2D § t < 1 + Log@2D

2 ‰
2-2 ‰

-1+
‰-1+t

2 -
2 ExpIntegralEiA1E

‰
-2 ExpIntegralEiB

1

2
H-2+‰LF+

2 ExpIntegralEiB
‰

2
F

‰
+2 ExpIntegralEiB

1

4
H-2+‰L ‰-1+tF

1 + Log@2D § t § 2

Indeterminate True

F>
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Plot the solution.

In[38]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 2<D

Out[38]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[39]:= ndsol = First@NDSolve@
8x‘@tD ã x@tD Hx@t - Log@2DD - x‘@t - 1DL, x@t ê; t § 0D ã 1<, x, 8t, 0, 2<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 2<, PlotRange Ø AllD

Out[40]=

Examples

Lotka-Volterra equations with delay

The Lotka-Volterra system models the growth and interaction of animal species assuming that

the  effect  of  one  species  on  another  is  continuous  and  immediate.   A  delayed  effect  of  one

species on another can be modeled by introducing time lags in the interaction terms.  

Consider the system 

(9)Y1 ‘ HtL = Y1HtL HY2Ht - t2L - 1L, Y2 ‘ HtL = Y2HtL H2 - Y1Ht - t1L L.

With  no  delays,  t1 = t2 = 0  the  system  (1)  has  an  invariant  HHtL = 2 ln Y1 - Y1 + ln Y2 - Y1  that  is

constant for all t and there is a (neutrally) stable periodic solution.
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Compare the solution with and without delays.

In[13]:= lvsystem@t1_, t2_D := 8
Y1‘@tD ã Y1@tD HY2@t - t1D - 1L, Y1@0D ã 1,
Y2‘@tD ã Y2@tD H2 - Y1@t - t2DL, Y2@0D ã 1<;

lv = First@NDSolve@lvsystem@0, 0D, 8Y1, Y2<, 8t, 0, 25<DD;
lvd = Quiet@First@NDSolve@lvsystem@.01, 0D, 8Y1, Y2<, 8t, 0, 25<DDD;
ParametricPlot@Evaluate@8Y1@tD, Y2@tD< ê. 8lv, lvd<D, 8t, 0, 25<D

Out[16]=
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In this example, the effect of even a small delay is to destabilize the periodic orbit.  With differ-

ent parameters in the delayed Lotka-Volterra system it has been shown that there are globally

attractive equilibria.[TZ08]

Enzyme kinetics

Consider the system

(10)

y1£HtL Is - z y1HtL
y2£ HtL z y1 HtL - y2 HtL
y3£HtL y2HtL - y3 HtL

y2£HtL y3HtL -
1
2

y4HtL

z = k1
1+a Hy4Ht-tLLn

modeling  enzyme kinetics  where  Is  is  a  substrate  supply  maintained at  a  constant  level  and n

molecules of the end product y4 inhibits the reaction step y1 Ø y2. [HNW93]

The system has an equilibrium when 8y1 = Is êz, y2 = y3 = Is, y4 = 2 Is<.
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Investigate solutions of (1) starting a small perturbation away from the equilibrium.

In[43]:= Manipulate@
Module@8t, y1, y2, y3, y4, z, sol<,
z = k1 ê H1 + a y4@t - tD^nL;
sol = First@NDSolve@8

y1‘@tD ã Is - z y1@tD, y1@t ê; t § 0D ã Is * H1 + a H2 IsL^nL + e,
y2‘@tD ã z y1@tD - y2@tD, y2@t ê; t § 0D ã Is,
y3‘@tD ã y2@tD - y3@tD, y3@t ê; t § 0D ã Is,
y4‘@tD ã y3@tD - y4@tD ê 2, y4@t ê; t § 0D ã 2 Is<,

8y1, y2, y3, y4<, 8t, 0, 200<DD;
Plot@Evaluate@8y1@tD, y2@tD, y3@tD, y4@tD< ê. solD, 8t, 0, 200<DD,

88Is, 10.5<, 1, 20<, 88a, 0.0005<, 0, .001<, 88k1, 1<, 0, 2<,
88n, 3<, 1, 10, 1<, 88t, 4<, 0, 10<, 88e, 0.1<, 0, .25<D

Mackey-Glass equation

The  Mackey-Glass  equation  x'[t]=a  x[t-t]/(1  +  x[t-t]^n)  -  b  x[t]  was  proposed  to  model  the

production of white blood cells.  There are both periodic and chaotic solutions.

Here is a periodic solution of the Mackey-Glass equation.  The plot is only shown after t = 300 to 
let transients die out.

In[31]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 15D ê H1 + x@t - 15D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 500<DD;

ParametricPlot@Evaluate@8x@tD, x@t - 15D< ê. solD, 8t, 300, 500<D

Out[32]=
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Here is a chaotic solution of the Mackey-Glass equation.

In[44]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 500<DD;

ParametricPlot@Evaluate@8x@tD, x@t - 17D< ê. solD, 8t, 300, 500<D

Out[45]=
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This shows an embedding of the solution above in 3D 8xHtL, xHt - tL, xHt - 2 tL<

In[14]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶DD;

ParametricPlot3D@Evaluate@8x@tD, x@t - 17D, x@t - 34D< ê. solD, 8t, 500, 5000<D

Out[15]=
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It is interesting to check the accuracy of the chaotic solution.  

Compute the chaotic solution with another method and plot log10 d  for the difference d 

between xHtL computed by the different methods.
In[16]:= solrk = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,

x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶,
Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 3<DD;

ListPlot@Table@8t, RealExponent@Hx@tD ê. solL - Hx@tD ê. solrkLD<,
8t, 17, 5000, 17<DD

Out[17]=
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By  the  end  of  the  interval,  the  differences  between  methods  is  order  1.    Large  deviation  is

typical  in  chaotic  systems  and  in  practice  it  is  not  possible  or  even  necessary  to  get  a  very

accurate solution for a large interval.  However, if you do want a high quality solution, NDSolve

allows you to use higher precision.  For DDEs with higher precision, the “StiffnessSwitching“

method is recommended.

Compute the chaotic solution with higher precision and tolerances.

In[18]:= hpsol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶,

Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32 DD;
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Plot the three solutions near the final time. 

In[19]:= Plot@Evaluate@x@tD ê. 8hpsol, sol, solrk<D, 8t, 4900, 5000<, PlotRange Ø AllD

Out[19]=
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Norms in NDSolve

NDSolve  uses norms of error estimates to determine when solutions satisfy error tolerances. In

nearly all cases the norm has been weighted, or scaled, such that it is less than 1 if error toler-

ances have been satisfied and greater than one if error tolerances are not satisfied. One signifi-

cant  advantage  of  such  a  scaled  norm is  that  a  given  method  can  be  written  without  explicit

reference to tolerances: the satisfaction of tolerances is found by comparing the scaled norm to

1, thus simplifying the code required for checking error estimates within methods.

Suppose that v is vector and u is a reference vector to compute weights with (typically u is an

approximate  solution  vector).  Then  the  scaled  vector  w  to  which  the  norm  is  applied  has

components:

(11)wi =
vi

ta+tr ui

where  absolute  and  relative  tolerances  ta  and  tr  are  derived  respectively  from  the

AccuracyGoal -> ag and PrecisionGoal -> pg options by ta = 10-ag and tr = 10-pg.

The  actual  norm  used  is  determined  by  the  setting  for  the  NormFunction  option  given  to

NDSolve.

option name default value

NormFunction Automatic a function to use to compute norms of 
error estimates in NDSolve

NormFunction option to NDSolve.
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The setting for the NormFunction  option can be any function that returns a scalar for a vector

argument and satisfies the properties of a norm. If you specify a function that does not satisfy

the  required  properties  of  a  norm,  NDSolve  will  almost  surely  run  into  problems  and  give  an

answer, if any, which is incorrect.

The  default  value  of  Automatic  means  that  NDSolve  may  use  different  norms  for  different

methods.  Most  methods  use  an  infinity-norm,  but  the  IDA  method  for  DAEs  uses  a  2-norm

because that helps maintain smoothness in the merit function for finding roots of the residual.

It is strongly recommended that you use Norm with a particular value of p. For this reason, you

can  also  use  the  shorthand  NormFunction -> p  in  place  of  NormFunction -> HNorm@Ò, pD ê

Length@ÒD^H1 ê pL &L.  The  most  commonly  used  implementations  for  p = 1,  p = 2,  and  p =¶

have been specially optimized for speed.

This compares the overall error for computing the solution to the simple harmonic oscillator 
over 100 cycles with different norms specified.

In[1]:= Map@
First@H1 - x@100 pDL ê. NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x,

8t, 0, 100 p<, Method Ø ExplicitRungeKutta, NormFunction Ø ÒDD &, 81, 2, ¶<D

Out[1]= 98.62652µ10-8, 7.50564µ10-8, 5.81547µ10-8=

The  reason  that  error  decreases  with  increasing  p  is  because  the  norms  are  normalized  by

multiplying with 1ën1êp,  where n  is  the length of the vector. This is often important in NDSolve

because  in  many  cases,  an  attempt  is  being  made  to  check  the  approximation  to  a  function,

where more points should give a better approximation, or less error.

Consider a finite difference approximation to the first derivative of a periodic function u given by

ui‘ =
ui+1-ui

h
 where  ui = uHxiL  on  a  grid  with  uniform  spacing  h = xi+1 - xi.  In  Mathematica,  this  can

easily be computed using ListCorrelate.

This computes the error of the first derivative approximation for the cosine function on a grid 
with 16 points covering the interval @0, 2 pD.

In[2]:= h = 2 p ê 16.;
grid = h Range@16D;
err16 = Sin@gridD - ListCorrelate@81, -1< ê h, Cos@gridD, 81, 1<D

Out[2]= 8-0.169324, -0.11903, -0.0506158, 0.0255046, 0.0977423, 0.1551, 0.188844, 0.193839,
0.169324, 0.11903, 0.0506158, -0.0255046, -0.0977423, -0.1551, -0.188844, -0.193839<
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This computes the error of the first derivative approximation for the cosine function on a grid 
with 32 points covering the interval @0, 2 pD.

In[3]:= h = 2 p ê 32.;
grid = h Range@32D;
err32 = Sin@gridD - ListCorrelate@81, -1< ê h, Cos@gridD, 81, 1<D

Out[3]= 8-0.0947283, -0.0879564, -0.0778045, -0.0646625, -0.0490356, -0.0315243, -0.0128016, 0.00641315,
0.0253814, 0.0433743, 0.0597003, 0.0737321, 0.0849304, 0.0928648, 0.0972306, 0.0978598,
0.0947283, 0.0879564, 0.0778045, 0.0646625, 0.0490356, 0.0315243, 0.0128016, -0.00641315,
-0.0253814, -0.0433743, -0.0597003, -0.0737321, -0.0849304, -0.0928648, -0.0972306, -0.0978598<

It is quite apparent that the pointwise error is significantly less with a larger number of points.

The 2 norms of the vectors are of the same order of magnitude.

In[4]:= 8Norm@err16, 2D, Norm@err32, 2D<

Out[4]= 80.552985, 0.392279<

The norms of the vectors are comparable because is because the number of components in the

vector  has  increased,  so  the  usual  linear  algebra  norm  does  not  properly  reflect  the

convergence.  Normalizing  by  multiplying  by  1ën1êp  reflects  the  convergence  in  the  function

space properly.

The normalized 2 norms of the vectors reflect the convergence to the actual function. Since the 
approximation is first order, doubling the number of grid points should approximately halve the 
error.

In[5]:= 8Norm@err16, 2D ê Sqrt@16D, Norm@err32, 2D ê Sqrt@32D<

Out[5]= 80.138246, 0.0693457<

Note that if you specify a function an option value, and you intend to use it for PDE or function

approximation solutions, you should be sure to include a proper normalization in the function.

ScaledVectorNorm

Methods  that  have  error  control  need  to  determine  whether  a  step  satisfies  local  error  toler-

ances or not.  To simplify the process of  checking this,  utility function ScaledVectorNorm  does

the scaling (1) and computes the norm. The table includes the formulas for specific values of p

for reference.
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ScaledVectorNorm@p,8tr,ta<D@v,uD compute the normalized p-norm of the vector v scaling 
using scaling (1) with reference vector u and relative and 
absolute tolerances ta and tr

ScaledVectorNorm@ fun,8tr,ta<D@
v,uD

compute the norm of the vector v using scaling (1) with 
reference vector u and relative and absolute tolerances ta 
and tr and the norm function fun

ScaledVectorNorm@2,8tr,ta<D@v,uD compute 1
n ⁄i=1

n J
vi

ta+tr ui
N
2

where n is the length of vectors 

v and u

ScaledVectorNorm@¶,8tr,ta<D@v,uD compute maxJ
vi

ta+tr ui
N, 1 § i § n where n is the length of 

vectors v and u

ScaledVectorNorm. 

This sets up a scaled vector norm object with the default machine-precision tolerances used in 
NDSolve.

In[10]:= svn = NDSolve`ScaledVectorNormA2, 910.-8, 10.-8=E

Out[10]= NDSolve`ScaledVectorNormA2, 91.µ10-8, 1.µ10-8=E

This applies the scaled norm object with a sample error and solution reference vector.

In[11]:= svnA99. µ 10.-9, 10.-8=, 82., 1.<E

Out[11]= 0.412311

Because of the absolute tolerance term, the value comes out reasonably even if some of the 
components of the reference solution are zero.

In[12]:= svnA99. µ 10.-9, 10.-8, 2 µ 10-8=, 81., 0., 0.<E

Out[12]= 1.31688

When setting up a method for NDSolve, you can get the appropriate ScaledVectorNorm object

to use using the “Norm“ method function of the NDSolve`StateData object.

Here is an NDSolve`StateData object.

In[13]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x, tDD

Out[13]= NDSolve`StateData@<0.>D
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This gets the appropriate scaled norm to use from the state data.

In[14]:= svn = state@“Norm“D

Out[14]= NDSolve`ScaledVectorNormA¶, 91.05367µ10-8, 1.05367µ10-8=, NDSolveE

This applies it to a sample error vector using the initial condition as reference vector.

In[15]:= svnA910.-9, 10.-8=, stateü“SolutionVector“@“Forward“DE

Out[15]= 0.949063

Stiffness Detection

Overview

Many  differential  equations  exhibit  some  form  of  stiffness  which  restricts  the  step-size  and

hence effectiveness of explicit solution methods.

A number of implicit methods have been developed over the years to circumvent this problem.

For the same step size,  implicit  methods can be substantially less efficient than explicit  meth-

ods, due to the overhead associated with the intrinsic linear algebra.

This cost can offset by the fact that, in certain regions, implicit methods can take substantially

larger step sizes.

Several attempts have been made to provide user-friendly codes that automatically attempt to

detect stiffness at runtime and switch between appropriate methods as necessary.

A number of strategies that have been proposed to automatically equip a code with a stiffness

detection device are outlined here.

Particular attention is given to the problem of estimation of the dominant eigenvalue of a matrix

in order to describe how stiffness detection is implemented in NDSolve.

Numerical examples illustrate the effectiveness of the strategy.

298     Advanced Numerical Differential Equation Solving in Mathematica



Initialization

Load some packages with predefined examples and utility functions.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“FunctionApproximations`“D;

Introduction

Consider the numerical solution of initial value problems:

(12)

Stiffness  is  a  combination  of  problem,  solution  method,  initial  condition  and  local  error

tolerances.

Stiffness  limits  the effectiveness of  explicit  solution methods due to  restrictions on the size  of

steps that can be taken.

Stiffness arises in many practical systems as well as in the numerical solution of partial differen-

tial equations by the method of lines.

Example

The  van  der  Pol  oscillator  is  a  non-conservative  oscillator  with  nonlinear  damping  and  is  an

example of a stiff system of ordinary differential equations:

y1£HtL = y2HtL ,

ε y2£HtL = -y1HtL + I1 - y1HtL2M y2HtL ,

with ε = 3/1000.

Consider initial conditions.

y1H0L = 2, y2H0L = 0

and solve over the interval t œ [0, 10].

The method “StiffnessSwitching“ uses a pair of extrapolation methods by default:

† Explicit modified midpoint (Gragg smoothing), double-harmonic sequence 2, 4, 6,…

† Linearly implicit Euler, sub-harmonic sequence 2, 3, 4,…

Solution
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Solution

This loads the problem from a package.

In[4]:= system = GetNDSolveProblem@“VanderPol“D;

Solve the system numerically using a nonstiff method.

In[5]:= solns = NDSolve@system, 8T, 0, 10<, Method Ø “Extrapolation“D;

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

Solve the system using a method that switches when stiffness occurs.

In[6]:= sols = NDSolve@system, 8T, 0, 10<,
Method Ø 8“StiffnessSwitching“, “NonstiffTest“ -> False<D;

Here is a plot of the two solution components. The sharp peaks (in blue) extend out to about 
450 in magnitude and have been cropped.

In[7]:= Plot@Evaluate@Part@sols, 1, All, 2DD, 8T, 0, 10<,
PlotStyle -> 88Red<, 8Blue<<, Axes -> False, Frame -> TrueD

Out[7]=
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Stiffness can often occur in regions that follow rapid transients.

This plots the step sizes taken against time.

In[8]:= StepDataPlot@solsD

Out[8]=
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The  problem  is  that  when  the  solution  is  changing  rapidly,  there  is  little  point  using  a  stiff

solver, since local accuracy is the dominant issue.

For  efficiency,  it  would  be useful  if  the method could  automatically  detect  regions where local

accuracy (and not stability) is important.
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Linear Stability

Linear stability theory arises from the study of Dahlquist's scalar linear test equation:

(13)

as a simplified model for studying the initial value problem  (12).

Stability is characterized by analyzing a method applied to (1) to obtain

(14)yn+1 = RHzL yn

where z = h l and R(z) is the (rational) stability function.

The boundary of absolute stability is obtained by considering the region:

†RHzL§ = 1

Explicit Euler Method

The explicit or forward Euler method:

yn+1 = yn + h f Htn, ynL

applied to (1) gives:

RHzL = 1 + z.

The shaded region represents instability, where RHzL > 1.

In[9]:= OrderStarPlot@1 + z, 1, z, FrameTicks -> TrueD

Out[9]=

The Linear Stability Boundary is often taken as the intersection with the negative real axis.

For the explicit Euler method LSB = -2.
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For an eigenvalue of l = -1, linear stability requirements mean that the step-size needs to satisfy

h < 2, which is a very mild restriction.

However,  for  an  eigenvalue  of  l  =  -106,  linear  stability  requirements  mean  that  the  step  size

needs to satisfy h < 2ä10-6, which is a very severe restriction.

Example

This  example  shows  the  effect  of  stiffness  on  the  step-size  sequence  when  using  an  explicit

Runge-Kutta method to solve a stiff system.

This system models a chemical reaction.

In[10]:= system = GetNDSolveProblem@“Robertson“D;

The system is solved by disabling the built-in stiffness detection.

In[11]:= sol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “StiffnessTest“ -> False<D;

The step-size sequence starts to oscillate when the stability boundary is reached.

In[12]:= StepDataPlot@solD

Out[12]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0020

0.0015

† A large number of step rejections often has a negative impact on performance.

† The large number of steps taken adversely affects the accuracy of the computed solution.

The built-in detection does an excellent job of locating when stiffness occurs.

In[13]:= sol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “StiffnessTest“ -> True<D;

NDSolve::ndstf :
At T == 0.012555829610695773`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à
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Implicit Euler Method

The implicit or backward Euler method:

yn+1 = yn + h f Htn, yn+1L

applied to (1) gives:

RHzL =
1

1 - z

The method is unconditionally stable for the entire left half-plane.

In[14]:= OrderStarPlot@1 ê H1 - zL, 1, z, FrameTicks -> TrueD

Out[14]=

This means that to maintain stability there is no longer a restriction on the step size.

The drawback is that an implicit system of equations now has to be solved at each integration

step.

Type Insensitivity

A type-insensitive solver recognizes and responds efficiently to stiffness at each step and so is

insensitive to the (possibly changing) type of the problem.

One of the most established solvers of this class is LSODA [H83], [P83].

Later generations of LSODA such as CVODE no longer incorporate a stiffness detection device.

The reason is because LSODA use norm bounds to estimate the dominant eigenvalue and these

bounds, as will be seen later, can be quite inaccurate.

The low order of A(a)-stable BDF methods means that LSODA and CVODE are not very suitable

for solving systems with high accuracy or systems where the dominant eigenvalue has a large

imaginary  part.  Alternative  methods,  such  as  those  based  on  extrapolation  of  linearly  implicit

schemes, do not suffer from these issues.
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The low order of A(a)-stable BDF methods means that LSODA and CVODE are not very suitable

imaginary  part.  Alternative  methods,  such  as  those  based  on  extrapolation  of  linearly  implicit

schemes, do not suffer from these issues.

Much  of  the  work  on  stiffness  detection  was  carried  out  in  the  1980s  and  1990s  using  stan-

dalone FORTRAN codes.

New linear algebra techniques and efficient software have since become available and these are

readily accessible in Mathematica.

Stiffness can be a transient phenomenon, so detecting nonstiffness is equally important [S77],

[B90].

"StiffnessTest" Method Option

There are several approaches that can be used to switch from a nonstiff to a stiff solver.

Direct Estimation

A convenient  way of  detecting stiffness  is  to  directly  estimate the dominant  eigenvalue of  the

Jacobian J of the problem (see [S77], [P83], [S83], [S84a], [S84c], [R87] and [HW96]).

Such  an  estimate  is  often  available  as  a  by-product  of  the  numerical  integration  and  so  it  is

reasonably inexpensive.

If v  denotes an approximation to the eigenvector corresponding to dominant eigenvalue of the

Jacobian, with °v¥ sufficiently small, then by the mean value theorem a good approximation to

the leading eigenvalue is:

l
~
=

° f Ht, y + vL - f Ht, yL¥

°v¥
.

Richardson's  extrapolation  provides  a  sequence  of  refinements  that  yields  a  quantity  of  this

form, as do certain explicit Runge|Kutta methods.

Cost  is  at  most  two function evaluations,  but  often at  least  one of  these is  available  as  a  by-

product of the numerical integration, so it is reasonably inexpensive.

Let LSB  denote the linear stability boundary~the intersection of the linear stability region with

the negative real axis.
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The  product  h l
~
 gives  an  estimate  that  can  be  compared  to  the  linear  stability  boundary  of  a

method in order to detect stiffness:

(15)£h l
~
ß § s †LSB§

where s is a safety factor.

Description

The  methods  “DoubleStep“,  “Extrapolation“,  and  “ExplicitRungeKutta“  have  the  option

“StiffnessTest“, which can be used to identify whether the method applied with the specified

AccuracyGoal and PrecisionGoal tolerances to a given problem is stiff.

The method option “StiffnessTest“ itself accepts a number of options that implement a weak

form of (15) where the test  is allowed to fail a specified number of times.

The  reason  for  this  is  that  some  problems  can  be  only  mildly  stiff  in  a  certain  region  and  an

explicit integration method may still be efficient.

"NonstiffTest" Method Option

The  “StiffnessSwitching“  method  has  the  option  “NonstiffTest“,  which  is  used  to  switch

back from a stiff method to a nonstiff method.

The following settings are allowed for the option “NonstiffTest“ 

† None or False (perform no test).

† "NormBound".

† "Direct".

† "SubspaceIteration".

† "KrylovIteration".

† "Automatic".
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Switching to a Nonstiff Solver

An approach that is independent of the stiff method is used.

Given the Jacobian J (or an approximation) compute one of:

Norm Bound: ° J ¥

Spectral Radius: rHJL = max li

Dominant Eigenvalue li : li > l j

Many linear algebra techniques focus on solving a single problem to high accuracy.

For  stiffness  detection,  a  succession  of  problems  with  solutions  to  one  or  two  digits  are

adequate.

For a numerical discretization

0 = t0 < t1 <  < tn = T

consider a sequence k of matrices in some sub-interval(s)

Jti , Jti+1 , … Jti+k-1

The spectra of the succession of matrices often changes very slowly from step to step.

The  goal  is  to  find  a  way  of  estimating  (bounds  on)  dominant  eigenvalues

of a succession of matrices Jti that:

† Costs less than the work carried out in the linear algebra at each step in the stiff solver.

† Takes account of the step-to-step nature of the solver.

NormBound

A simple and efficient technique of obtaining a bound on the dominant eigenvalue is to use the

norm of the Jacobian ° J ¥p  where typically p = 1 or p = ¶.
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The method has complexity OIn2M, which is less than the work carried out in the stiff solver.

This is the approach used by LSODA.

† Norm bounds for dense matrices overestimate and the bounds become worse as the dimen-
sion increases.

† Norm bounds can be tight for sparse or banded matrices of quite large dimension.

The  setting  “NormBound“  of  the  option  “NonstiffTest“  computes  ° J ¥1  and  ° J ¥¶  and  returns

the smaller of the two values.

Example

The following Jacobian matrix arises in the numerical solution of the van der Pol system using a 
stiff solver.

In[18]:= a = 880., 1.<, 82623.532160943381, -69.56342161343568<<;

Bounds based on norms overestimate the spectral radius by more than an order of magnitude.

In[19]:= 8Abs@First@Eigenvalues@aDDD, Norm@a, 1D, Norm@a, InfinityD<

Out[19]= 896.6954, 2623.53, 2693.1<

Direct Eigenvalue Computation

For small problems (n § 32) it can be efficient just to compute the dominant eigenvalue directly.

† Hermitian matrices use the LAPACK function xgeev

† General matrices use the LAPACK function xsyevr

The  setting  “Direct“  of  the  option  “NonstiffTest“  computes  the  dominant  eigenvalue  of  J

using the same LAPACK routines as Eigenvalues.

For larger problems the cost of direct eigenvalue computation is OIn3Mwhich becomes prohibitive

when compared to the cost of the linear algebra work in a stiff solver.

A number of iterative schemes have been implemented for this purpose. These effectively work

by approximating the dominant  eigenspace in  a  smaller  subspace and using dense eigenvalue

methods for the smaller problem.
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The Power Method

Shampine has proposed the use of the power method for estimating the dominant eigenvalue of

the Jacobian [S91].

The power method is perhaps not a very well-respected method, but has received a resurgence

of interest due to its use in Google's page ranking.

The power method can be used when

† A œ n ä n has n linearly independent eigenvectors (diagonalizable)

† The eigenvalues can be ordered in magnitude as † l1§ > † l2 § ¥  ¥ †ln§

† l1 is the dominant eigenvalue of A.

Description

Given a starting vector v0 œ n compute

vk = A vk-1

The Rayleigh quotient is used to compute an approximation to the dominant eigenvalue:

l1
HkL =

vk-1* A vk-1

vk-1* vk-1
=

vk* vk-1

vk-1* vk-1

In practice, the approximate eigenvector is scaled at each step:

v`k =
vk

° vk ¥

Properties

The power method converges linearly with rate:

l1

l2

which can be slow.

In particular, the method does not converge when applied to a matrix with a dominant complex

conjugate pair of eigenvalues.

308     Advanced Numerical Differential Equation Solving in Mathematica



Generalizations

The  power  method  can  be  adapted  to  overcome  the  issue  of  equimodular  eigenvalues  (e.g.

NAPACK)

However the modification does not generally address the issue of the slow rate of convergence

for clustered eigenvalues.

There are two main approaches to generalizing the power method:

† Subspace iteration for small to medium dimensions

† Arnoldi iteration for large dimensions

Although the methods work quite differently, there are a number of core components that can

be shared and optimized.

Subspace and Krylov iteration cost OIn2 mM operations.

They project an nän matrix to an mäm matrix, where m << n.

The  small  matrix  represents  the  dominant  eigenspace  and  approximation  uses  dense  eigen-

value routines.

Subspace Iteration

Subspace (or simultaneous) iteration generalizes the ideas in the power method by acting on m

vectors at each step.

Start with an orthonormal  set of vectors V H0L = n äm,  where usually m << n: 

V H0L = @v1, …, vmD

Form the product with the matrix A:

ZHkL = A V Hk-1L
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In order to prevent all vectors from converging to multiples of the same dominant eigenvector

v1 of A, they are orthonormalized:

QHkL RHkL = ZHkL reduced QR factorization

V HkL = QHkL

The orthonormalization step is expensive compared to the matrix product.

Rayleigh-Ritz Projection

Input: matrix A and an orthonormal set of vectors V

† Compute the Rayleigh quotient S = V* A V

† Compute the Schur decomposition U* S U = T

The matrix S has small dimension m ä m.

Note  that  the  Schur  decomposition  can  be  computed  in  real  arithmetic  when  S œm äm  using  a

quasi upper-triangular matrix T.

Convergence

Subspace (or simultaneous) iteration generalizes the ideas in the power method by acting on m

vectors at each step.

SRRIT converges linearly with rate:

li

lm+1
, i = 1, …, m

In particular the rate for the dominant eigenvalue is:

l1

lm+1

Therefore it  can be beneficial  to take e.g.  m = 3  or  more even if  we are only interested in the

dominant eigenvalue.
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Error Control

A relative error test on successive approximations, dominant eigenvalue is:

l1
HkL - l1

Hk-1L

l1
HkL

§ tol

This is not sufficient since it can be satisfied when convergence is slow.

If †li§ = †li-1§ or †li§ = †li+1§  then the ith column of QHkL is not uniquely determined.

The residual test used in SRRIT is:

rHkL = A q` i
HkL

- Q
` HkL

ti
HkL, ± rHkL µ2 § tol

where Q
` HkL

= QHkL UHkL,  q` i
HkL is the ith column of Q

` HkL
 and ti

HkL is the ith column of T HkL.

This is advantageous since it works for equimodular eigenvalues.

The first column position of the upper triangular matrix T HkL  is  tested because of the use of an

ordered Schur decomposition.

Implementation

There are several implementations of subspace iteration.

† LOPSI [SJ81]

† Subspace iteration with Chebyshev acceleration [S84b], [DS93]

† Schur Rayleigh|Ritz iteration ([BS97] and [SLEPc05])

The implementation for use in “NonstiffTest“ is based on:

† Schur Rayleigh|Ritz iteration  [BS97]

"An attractive feature of SRRIT is that it displays monotonic consistency, that is, as the conver-

gence tolerance decreases so does the size of the computed residuals" [LS96].

SRRIT  makes  use  of  an  ordered  Schur  decomposition  where  eigenvalues  of  largest  modulus

appear in the upper-left entries.

Modified  Gram|Schmidt  with  reorthonormalization  is  used  to  form  QHkL,  which  is  faster  than

Householder transformations.

Advanced Numerical Differential Equation Solving in Mathematica     311



The approximate  dominant  subspace Vti
HkL  at  integration  time ti  is  used to  start  the  iteration  at

the next integration step ti+1:

Vti+1
H0L = Vti

HkL

KrylovIteration

Given an n ä m matrix V whose columns vi comprise an orthogonal basis of a given subspace :

VT V = I and span 8v1, v2, …, vm< = 

The Rayleigh|Ritz procedure consists of computing H = VT A V  and solving the associated eigen-

problem H yi = qi yi.

The  approximate  eigenpairs  of  the  original  problem  l
è
i,  xè i  satisfy  l

è
= qi  and  xè i = V yi,  which  are

called Ritz values and Ritz vectors.

The process works best when the subspace  approximates an invariant subspace of A.

This process is effective when  is equal to the Krylov subspace associated with a matrix A and

a given initial vector x as:

KmHA, xL = span 9x, A x, A2 x, …, Am-1 x=.

Description

The  method  of  Arnoldi  is  a  Krylov-based  projection  algorithm  that  computes  an  orthogonal

basis of the Krylov subspace and produces a projected m ä m matrix H with m << n.

Input: matrix A, the number of steps m, an initial vector  v1 of norm 1

Output: HVm, Hm, f , b L with b = ° f ¥2

For j = 1, 2, …, m - 1
w = A v j
Orthogonalize w with respect to V j to obtain hi, j for i = 1, …, j
h j+1, j = w (if h j+1, j = 0 stop)
v j+1 = wëh j+1, j

end
f = A vm
Orthogonalize f with respect to Vm to obtain hi, m for i = 1, …, m
b = ° f ¥2
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In  the  case  of  Arnoldi,  H  has  an  unreduced  upper  Hessenberg  form (upper  triangular  with  an

additional nonzero subdiagonal).

Orthogonalization is usually carried out by means of a Gram-Schmidt procedure.

The quantities computed by the algorithm satisfy:

A Vm = Vm Hm + f em*

The  residual  f  gives  an  indication  of  proximity  to  an  invariant  subspace  and  the  associated

norm b indicates the accuracy of the computed Ritz pairs:

±A xè i - l
è
i xè iµ2 = ±A Vm yi - qi Vm xè iµ2 = ±IA Vm - Vm xè iM yi µ2 = b ° em* yi•

Restarting

The  Ritz  pairs  converge  quickly  if  the  initial  vector  x  is  rich  in  the  direction  of  the  desired

eigenvalues.

When  this  is  not  the  case  then  a  restarting  strategy  is  required  in  order  to  avoid  excessive

growth in both work and memory.

There are a several of strategies for restarting, in particular:

† Explicit  restart  ~  a  new  starting  vector  is  a  linear  combination  of  a  subset  of  the  Ritz
vectors.

† Implicit  restart ~  a new starting vector is formed from the Arnoldi  process combined with
an implicitly shifted QR algorithm.

Explicit  restart  is  relatively  simple  to  implement,  but  implicit  restart  is  more  efficient  since  it

retains the relevant eigeninformation of the larger problem. However implicit restart is difficult

to implement in a numerically stable way.

An  alternative  which  is  much  simpler  to  implement,  but  achieves  the  same  effect  as  implicit

restart, is a Krylov|Schur method [S01].

Implementation

A number of software implementations are available, in particular:

† ARPACK [ARPACK98]

† SLEPc [SLEPc05]

The implementation in “NonstiffTest“ is based on Krylov|Schur Iteration.
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Automatic Strategy

The “Automatic“ setting uses an amalgamation of the methods as follows.

† For n  §  2*m  direct eigenvalue computation is used. Either m = minHn, msiL or m = minHn, mkiL is
used depending on which method is active.

† For  n > 2*m  subspace  iteration  is  used  with  a  default  basis  size  of  msi = 8.  If  the  method
succeeds then the resulting basis is used to start the method at the next integration step.

† If subspace iteration fails to converge after maxsi iterations then the dominant vector is used
to  start  the  Krylov  method  with  a  default  basis  size  of  mki = 16.  Subsequent  integration
steps use the Krylov method, starting with the resulting vector from the previous step.

† If Krylov iteration fails to converge after maxki iterations then norm bounds are used for the
current step. The next integration step will continue to try to use Krylov iteration.

† Since they are so inexpensive, norm bounds are always computed when subspace or Krylov
iteration is used and the smaller of the absolute values is used.

Step Rejections

Caching of the time of evaluation ensures that the dominant eigenvalue estimate is not recom-

puted for rejected steps.

Stiffness detection is also performed for rejected steps since:

† Step rejections often occur for nonstiff solvers when working near the stability boundary

† Step rejections often occur for stiff solvers when resolving fast transients

Iterative Method Options

The iterative methods of “NonstiffTest“ have options that can be modified:

In[20]:= Options@NDSolve`SubspaceIterationD

Out[20]= :BasisSize Ø Automatic, MaxIterations Ø Automatic, Tolerance Ø
1

10
>

In[21]:= Options@NDSolve`KrylovIterationD

Out[21]= :BasisSize Ø Automatic, MaxIterations Ø Automatic, Tolerance Ø
1

10
>
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The default tolerance aims for just one correct digit, but often obtains substantially more accu-

rate values~especially after a few successful iterations at successive steps.

The default values limiting the number of iterations are:

† For subspace iteration maxsi = max H25, n ê H2 msi)).

† For Krylov iteration maxki = maxH50, n êmki).

If these values are set too large then a convergence failure becomes too costly.

In  difficult  problems,  it  is  better  to  share  the  work  of  convergence  across  steps.  Since  the

methods  effectively  refine  the  basis  vectors  from  the  previous  step,  there  is  a  reasonable

chance of convergence in subsequent steps.

Latency and Switching

It  is  important  to  incorporate  some  form  of  latency  in  order  to  avoid  a  cycle  where  the

“StiffnessSwitching“ method continually tries to switch between stiff and nonstiff methods.

The options “MaxRepetitions“ and “SafetyFactor“ of “StiffnessTest“ and “NonstiffTest“

are used for this purpose.

The  default  settings  allow  switching  to  be  quite  reactive,  which  is  appropriate  for  one-step

integration methods.

† “StiffnessTest“   is carried out at the end of a step with a nonstiff  method. When either
value  of  the  option  “MaxRepetitions“  is  reached,  a  step  rejection  occurs  and  the  step  is
recomputed with a stiff method.

† “NonstiffTest“   is  preemptive.  It  is  performed  before  a  step  is  taken  with  a  stiff  solve
using the Jacobian matrix from the previous step.

Examples

Van der Pol

Select an example system.

In[22]:= system = GetNDSolveProblem@“VanderPol“D;
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StiffnessTest

The system is integrated successfully with the given method and the default option settings for 
“StiffnessTest“.

In[23]:= NDSolve@system, Method Ø “ExplicitRungeKutta“D

Out[23]= 88Y1@TD Ø InterpolatingFunction@880., 2.5<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 2.5<<, <>D@TD<<

A longer integration is aborted and a message is issued when the stiffness test condition is not 
satisfied. 

In[24]:= NDSolve@system, 8T, 0, 10<, Method Ø “ExplicitRungeKutta“D

NDSolve::ndstf : At T == 4.353040548903924`, system appears to be stiff.
Methods Automatic, BDF or StiffnessSwitching may be more appropriate.

Out[24]= 88Y1@TD Ø InterpolatingFunction@880., 4.35304<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 4.35304<<, <>D@TD<<

Using a unit safety factor and specifying that only one stiffness failure is allowed effectively 
gives a strict test. The specification uses the nested method option syntax.

In[25]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“StiffnessTest“ Ø 8True, “MaxRepetitions“ Ø 81, 1<, “SafetyFactor“ Ø 1< <D

NDSolve::ndstf :
At T == 0.`, system appears to be stiff. Methods Automatic, BDF or StiffnessSwitching may

be more appropriate.
Out[25]= 88Y1@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD<<

NonstiffTest

For such a small system, direct eigenvalue computation is used.

The example serves as a good test that the overall stiffness switching framework is behaving as

expected.

Set up a function to monitor the switch between stiff and nonstiff methods and the step size 
taken. Data for the stiff and nonstiff solvers is put in separate lists by using a different tag for 
"Sow".

In[26]:= SetAttributes@SowSwitchingData, HoldFirstD;

SowSwitchingData@told_, t_, method_NDSolve`StiffnessSwitchingD :=
HSow@8t, t - told<, method@“ActiveMethodPosition“DD;
told = t;L;
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Solve the system and collect the data for the method switching.

In[28]:= T0 = 0;
data =

Last@
Reap@
sol = NDSolve@system, 8T, 0, 10<,

Method Ø StiffnessSwitching,
“MethodMonitor“ ß HSowSwitchingData@T0, T, NDSolve`SelfD;L

D;
D

D;

Plot the step sizes taken using an explicit solver (blue) and an implicit solver (red).

In[30]:= ListLogPlot@data, Axes Ø False, Frame Ø True, PlotStyle Ø 8Blue, Red<D

Out[30]=

0 2 4 6 8 10
0.002

0.005

0.010

0.020

0.050

Compute the number of nonstiff and stiff steps taken (including rejected steps).

In[31]:= Map@Length, dataD

Out[31]= 8266, 272<

CUSP

The cusp catastrophe model for the nerve impulse mechanism [Z72]:

Combining with the van der Pol oscillator gives rise to the CUSP system [HW96]:

∂y

∂ t
= -

1

ε
Iy3 + a y + bM + s

∂2 y

∂x2

∂a

∂ t
= -b +

7

100
v + s

∂2 a

∂x2

∂b

∂ t
= I1 - a2M b - a -

2

5
y +

7

200
v + s

∂2 b

∂x2
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where

v =
u

u - 1 ê10
, u = Hy - 7 ê10L Hy - 13 ê10L

and s = 1 ê144 and ε = 10-4.

Discretization  of  the  diffusion  terms  using  the  method  of  lines  is  used  to  obtain  a  system  of

ODEs of dimension 3 n = 96.

Unlike the van der Pol system, because of the size of the problem, iterative methods are used

for eigenvalue estimation.

Step Size and Order Selection

Select the problem to solve.

In[32]:= system = GetNDSolveProblem@“CUSP-Discretized“D;

Set up a function to monitor the type of method used and step size. Additionally the order of 
the method is included as a Tooltip. 

In[33]:= SetAttributes@SowOrderData, HoldFirstD;

SowOrderData@told_, t_, method_NDSolve`StiffnessSwitchingD :=
HSow@

Tooltip@8t, t - told<, method@“DifferenceOrder“DD,
method@“ActiveMethodPosition“D

D;
told = t;L;

Collect the data for the order of the method as the integration proceeds.

In[35]:= T0 = 0;
data =

Last@
Reap@
sol = NDSolve@system,

Method Ø “StiffnessSwitching“,
“MethodMonitor“ ß HSowOrderData@T0, T, NDSolve`SelfD;L

D;
D

D;
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Plot the step sizes taken using an explicit solver (blue) and an implicit solver (red). A Tooltip 
shows the order of the method at each step.

In[37]:= ListLogPlot@data, Axes Ø False, Frame Ø True, PlotStyle Ø 8Blue, Red<D

Out[37]=

Compute the total number of nonstiff and stiff steps taken (including rejected steps).

In[39]:= Map@Length, dataD

Out[39]= 846, 120<

Jacobian Example

Define a function to collect the first few Jacobian matrices.

In[41]:= SetAttributes@StiffnessJacobianMonitor, HoldFirstD;

StiffnessJacobianMonitor@i_, method_NDSolve`StiffnessSwitchingD :=
If@SameQ@method@“ActiveMethodPosition“D, 2D && i < 5,
If@MatrixQ@ÒD,

Sow@ÒD;
i = i + 1

D & ü method@“Jacobian“D
D;

In[43]:= i = 0;
jacdata = Reap@sol = NDSolve@system, Method Ø “StiffnessSwitching“,

“MethodMonitor“ ß HStiffnessJacobianMonitor@i, NDSolve`SelfD;LD;
D@@
-1,
1DD;

A switch to a stiff method occurs near 0.00113425 and the first test for nonstiffness occurs at

the next step tk º 0.00127887.
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Graphical illustration of the Jacobian Jtk .

In[45]:= MatrixPlot@First@jacdataDD

Out[45]=
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Define a function to compute and display the first few eigenvalues of Jtk , Jtk+1 ,… and the norm 

bounds.
In[46]:= DisplayJacobianData@jdata_D :=

Module@8evdata, hlabels, vlabels<,
evdata =
Map@
Join@Eigenvalues@Normal@ÒD, 4D, 8Norm@Ò, 1D, Norm@Ò, InfinityD<D &, jdataD;

vlabels = 88““<, 8“l1“<, 8“l2“<, 8“l3“<, 8“l4“<, 8“°Jtk¥1“<, 8“°Jtk¥¶“<<;
hlabels = Table@Jtk, 8k, Length@jdataD<D;
Grid@
MapThread@Join, 8vlabels, Join@8hlabels<, Transpose@evdataDD<D, Frame Ø AllD

D;

In[47]:= DisplayJacobianData@jacdataD

Out[47]=

Jt1 Jt2 Jt3 Jt4 Jt5
l1 -56013.2 -56009.7 -56000. -55988.2 -55959.6
l2 -56007.9 -56003.8 -55992.2 -55978. -55943.5
l3 -55671.3 -55670.7 -55669.1 -55667.1 -55662.2

l4 -55660.3 -55658.3 -55652.6 -55645.7 -55628.9
°Jtk¥1 56027.5 56024.1 56014.4 56002.6 55973.9

°Jtk¥¶ 81315.4 81311.3 81299.7 81285.6 81251.4

Norm bounds are quite sharp in this example.

Korteweg|deVries

The Korteweg|deVries partial differential equation is a mathematical model of waves on shallow

water surfaces:

∂U

∂ t
+ 6 U

∂U

∂x
+

∂3 U

∂x3
= 0
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We consider boundary conditions:

UH0, xL = ‰-x
2 , UHt, -5L = UHt, 5L

and solve over the interval t œ [0, 1].

Discretization using the method of lines is used to form a system of 192 ODEs.

Step Sizes

Select the problem to solve.

In[48]:= system = GetNDSolveProblem@“Korteweg-deVries-PDE“D;

The Backward Differentiation Formula methods used in LSODA run into difficulties solving this 
problem.

In[49]:= First@Timing@sollsoda = NDSolve@system, Method Ø LSODAD;DD

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 806.6079731642326` at T = 1.` in the direction of

independent variable X is much greater than prescribed error tolerance. Grid
spacing with 193 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[49]= 0.971852

A plot shows that the step sizes rapidly decrease.

In[50]:= StepDataPlot@sollsodaD

Out[50]=

In contrast StiffnessSwitching immediately switches to using the linearly implicit Euler method 
which needs very few integration steps.

In[51]:= First@Timing@sol = NDSolve@system, Method -> “StiffnessSwitching“D;DD

Out[51]= 0.165974
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In[52]:= StepDataPlot@solD

Out[52]=

The extrapolation methods never switch back to a nonstiff solver once the stiff solver is chosen

at the beginning of the integration.

Therefore this is a form of worst case example for the nonstiff detection.

Despite this,  the cost of using subspace iteration is only a few percent of the total  integration

time.

Compute the time taken with switching to a nonstiff method disabled.

In[53]:= First@Timing@sol = NDSolve@system,
Method -> 8“StiffnessSwitching“, “NonstiffTest“ -> False<D;DD

Out[53]= 0.160974

Jacobian Example

Collect data for the first few Jacobian matrices using the previously defined monitor function.

In[54]:= i = 0;
jacdata = Reap@sol = NDSolve@system, Method Ø “StiffnessSwitching“,

“MethodMonitor“ ß HStiffnessJacobianMonitor@i, NDSolve`SelfD;LD;
D@@
-1,
1DD;

Graphical illustration of the initial Jacobian Jt0 .

In[56]:= MatrixPlot@First@jacdataDD

Out[56]=
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Compute and display the first few eigenvalues of Jtk , Jtk+1 ,… and the norm bounds.

In[57]:= DisplayJacobianData@jacdataD

Out[57]=

Jt1 Jt2 Jt3 Jt4 Jt5
l1 1.37916µ10-8 +

32608. Â
5.3745µ10-6 +
32608. Â

0.0000209094 +
32608. Â

0.0000428279 +
32608. Â

0.0000678117 +
32608.1 Â

l2 1.37916µ10-8 -
32608. Â

5.3745µ10-6 -
32608. Â

0.0000209094 -
32608. Â

0.0000428279 -
32608. Â

0.0000678117 -
32608.1 Â

l3 5.90398µ10-8 +
32575.5 Â

0.0000103621 +
32575.5 Â

0.0000406475 +
32575.5 Â

0.0000817789 +
32575.5 Â

0.000125286 +
32575.6 Â

l4 5.90398µ10-8 -
32575.5 Â

0.0000103621 -
32575.5 Â

0.0000406475 -
32575.5 Â

0.0000817789 -
32575.5 Â

0.000125286 -
32575.6 Â

°Jtk¥1 38928.4 38928.4 38928.4 38930. 38932.9

°Jtk¥¶ 38928.4 38928.4 38928.4 38930.1 38933.

Norm bounds overestimate slightly, but more importantly they give no indication of the relative

size of real and imaginary parts.

Option Summary

StiffnessTest

option name default value

“MaxRepetitions“ 83,5< specify the maximum number of successive 
and total times that the stiffness test (15) 
is allowed to fail

“SafetyFactor“ 4
5

specify the safety factor to use in the right-
hand side of the stiffness test (15)

Options of the method option “StiffnessTest“. 
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NonstiffTest

option name default value

“MaxRepetitions“ 82,¶< specify the maximum number of successive 
and total times that the stiffness test (15) 
is allowed to fail

“SafetyFactor“ 4
5

specify the safety factor to use in the right-
hand side of the stiffness test (15)

Options of the method option “NonstiffTest“. 

Structured Systems

Numerical Methods for Solving the Lotka|Volterra 
Equations

Introduction

The  Lotka|Volterra  system  arises  in  mathematical  biology  and  models  the  growth  of  animal

species.  Consider  two  species  where  Y1HTL  denotes  the  number  of  predators  and  Y2HTL  denotes

the number of prey. A particular case of the Lotka|Volterra differential system is:

(1)Y1
°

= Y1 HY2 - 1L, Y2
°

= Y2 H2 - Y1L ,

where the dot denotes differentiation with respect to time T.

The Lotka|Volterra system (9) has an invariant H, which is constant for all T:

(2)HHY1, Y2L = 2 ln Y1 - Y1 + ln Y2 - Y2.
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The level  curves of  the invariant  (2)  are closed so that  the solution is  periodic.  It  is  desirable

that the numerical solution of (9) is also periodic, but this is not always the case.  Note that (9)

is a Poisson system:

(3)Y
°

= BHYL“H HYL =
0 -Y1 Y2

Y1 Y2 0

2
Y1

- 1
1
Y2

- 1

where HHYL is defined in (2).

Poisson systems and Poisson integrators are discussed in Chapter VII.2 of [HLW02] and [MQ02].

Load a package with some predefined problems and select the Lotka|Volterra system.

In[10]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

system = GetNDSolveProblem@“LotkaVolterra“D;
invts = system@“Invariants“D;
time = system@“TimeData“D;
vars = system@“DependentVariables“D;
step = 3 ê 25;

Define a utility function for visualizing solutions.

In[18]:= LotkaVolterraPlot@sol_, vars_, time_, opts___?OptionQD :=
Module@8data, data1, data2, ifuns, lplot, pplot<,
ifuns = First@vars ê. solD;
data1 = Part@ifuns, 1, 0D@“ValuesOnGrid“D;
data2 = Part@ifuns, 2, 0D@“ValuesOnGrid“D;
data = Transpose@8data1, data2<D;
commonopts = Sequence@Axes Ø False, Frame Ø True, FrameLabel Ø

Join@Map@TraditionalForm, varsD, 8None, None<D, RotateLabel Ø FalseD;
lplot = ListPlot@data, Evaluate@FilterRules@8opts<, Options@ListPlotDDD,

PlotStyle Ø 8PointSize@0.02D, RGBColor@0, 1, 0D<, Evaluate@commonoptsDD;
pplot = ParametricPlot@Evaluate@ifunsD, time, Evaluate@

FilterRules@8opts<, Options@ParametricPlotDDD, Evaluate@commonoptsDD;
Show@lplot, pplotD

D;
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Explicit Euler

Use the explicit or forward Euler method to solve the system (9).

In[19]:= fesol = NDSolve@system, Method Ø “ExplicitEuler“, StartingStepSize Ø stepD;

LotkaVolterraPlot@fesol, vars, timeD

Out[20]=

Backward Euler

Define the backward or implicit Euler method in terms of the RadauIIA implicit Runge|Kutta 
method and use it to solve (9). The resulting trajectory spirals from the initial conditions toward 
a fixed point at H2, 1L in a clockwise direction.

In[21]:= BackwardEuler = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ Ø
“ImplicitRungeKuttaRadauIIACoefficients“, “DifferenceOrder“ Ø 1,

“ImplicitSolver“ Ø 8“FixedPoint“, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

besol = NDSolve@system, Method Ø BackwardEuler, StartingStepSize Ø stepD;

LotkaVolterraPlot@besol, vars, timeD

Out[23]=
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Projection

Projection of the forward Euler method using the invariant (2) of the Lotka|Volterra equations 
gives a periodic solution.

In[24]:= pfesol = NDSolve@system,
Method Ø 8Projection, Method Ø “ExplicitEuler“, Invariants Ø invts<,
StartingStepSize Ø stepD;

LotkaVolterraPlot@pfesol, vars, timeD

Out[25]=

Splitting

Another approach for obtaining the correct qualitative behavior is to additively split (9) into two

systems:

(4)
Y1
°

= Y1 HY2 - 1 L Y2
°

= 0

Y1
°

= 0 Y2
°

= Y2 H2 - Y1L.

By appropriately solving (4) it is possible to construct Poisson integrators.

Define the equations for splitting of the Lotka|Volterra equations.

In[26]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 2, 2D = 0;
Y2 = eqs;
Part@Y2, 1, 2D = 0;

Symplectic Euler

Define the symplectic Euler method in terms of a splitting method using the backward and 
forward Euler methods for each system in (4).

In[31]:= SymplecticEuler = 8“Splitting“,
“DifferenceOrder“ Ø 1, “Equations“ Ø 8Y1, Y2<,
“Method“ Ø 8BackwardEuler, “ExplicitEuler“<<;

sesol = NDSolve@system, Method Ø SymplecticEuler, StartingStepSize Ø stepD;
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The numerical solution using the symplectic Euler method is periodic.

In[33]:= LotkaVolterraPlot@sesol, vars, timeD

Out[33]=

Flows

Consider  splitting  the  Lotka|Volterra  equations  and  computing  the  flow  (or  exact  solution)  of

each  system  in  (4).  The  solutions  can  be  found  as  follows,  where  the  constants  should  be

related to the initial conditions at each step.

In[34]:= DSolve@Y1, vars, TD

Out[34]= 99Y2@TD Ø C@1D, Y1@TD Ø ‰T H-1+C@1DL C@2D==

In[35]:= DSolve@Y2, vars, TD

Out[35]= 99Y1@TD Ø C@1D, Y2@TD Ø ‰T H2-C@1DL C@2D==

An advantage of locally computing the flow is that it yields an explicit, and hence very efficient,

integration  procedure.  The  “LocallyExact“  method  provides  a  general  way  of  computing  the

flow of each splitting using DSolve only during the initialization phase.

Set up a hybrid symbolic-numeric splitting method and use it to solve the Lotka|Volterra system.

In[36]:= SplittingLotkaVolterra = 8“Splitting“,
“DifferenceOrder“ Ø 1, “Equations“ Ø 8Y1, Y2<,
“Method“ Ø 8“LocallyExact“, “LocallyExact“<<;

spsol = NDSolve@system, Method Ø SplittingLotkaVolterra, StartingStepSize Ø stepD;

The numerical solution using the splitting method is periodic.

In[38]:= LotkaVolterraPlot@spsol, vars, timeD

Out[38]=

Rigid Body Solvers
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Rigid Body Solvers

Introduction

The equations of motion for a free rigid body whose center of mass is at the origin are given by

the following Euler equations (see [MR99]).

y° 1
y° 2
y° 3

=

0 y3 ê I3 -y2 ê I2
-y3 ê I3 0 y1 ê I1
y2 ê I2 -y1 ê I1 0

y1
y2
y3

Two quadratic first integrals of the system are:

IHyL = y12 + y22 + y32

HHyL = 1
2
K
y12

I1
+

y22

I2
+

y32

I3
O

.

The first constraint effectively confines the motion from 3  to a sphere. The second constraint

represents  the kinetic  energy of  the system and,  in  conjunction with  the first  invariant,  effec-

tively confines the motion to ellipsoids on the sphere.

Numerical  experiments  for  various  methods  are  given  in  [HLW02]  and  a  variety  of  NDSolve

methods will now be compared.

Manifold Generation and Utility Functions

Load some useful packages.

In[6]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Define Euler's equations for rigid body motion together with the invariants of the system.

In[8]:= system = GetNDSolveProblem@“RigidBody“D;
eqs = system@“System“D;
vars = system@“DependentVariables“D;
time = system@“TimeData“D;
invariants = system@“Invariants“D;

The equations of motion evolve as closed curves on the unit sphere. This generates a three-
dimensional graphics object to represent the unit sphere.

In[13]:= UnitSphere = Graphics3D@8EdgeForm@D, Sphere@D<, Boxed Ø FalseD;

This function superimposes a solution from NDSolve on a given manifold.
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This function superimposes a solution from NDSolve on a given manifold.

In[14]:= PlotSolutionOnManifold@sol_, vars_, time_, manifold_, opts___?OptionQD :=
Module@8solplot<,
solplot = ParametricPlot3D@

Evaluate@vars ê. solD, time, opts, Boxed Ø False, Axes Ø FalseD;
Show@solplot, manifold, optsD

D

This function plots the various solution components.

In[15]:= PlotSolutionComponents@sols_, vars_, time_, opts___?OptionQD :=
Module@8ifuns, plotopts<,
ifuns = vars ê. First@solsD;
Table@plotopts = Sequence@PlotLabel Ø

StringForm@“`1` vs time“, Part@vars, iDD, Frame Ø True, Axes Ø FalseD;
Plot@Evaluate@Part@ifuns, iDD, time, opts, Evaluate@plotoptsDD,
8i, Length@varsD<D

D;

Method Comparison

Various integration methods can be used to solve Euler's equations and they each have differ-

ent associated costs and different dynamical properties.

Adams Multistep Method

Here an Adams method is used to solve the equations of motion.

In[21]:= AdamsSolution = NDSolve@system, Method Ø “Adams“D;
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This shows the solution trajectory by superimposing it on the unit sphere.

In[22]:= PlotSolutionOnManifold@AdamsSolution, vars, time, UnitSphere, PlotRange Ø AllD

Out[22]=

The solution appears visually to give a closed curve on the sphere. However, a plot of the error 
reveals that neither constraint is conserved particularly well.

In[23]:= InvariantErrorPlot@invariants, vars, T, AdamsSolution, PlotStyle Ø 8Red, Blue<D

Out[23]=
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Euler and Implicit Midpoint Methods

This solves the equations of motion using Euler's method with a specified fixed step size.

In[16]:= EulerSolution = NDSolve@system,
Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<, StartingStepSize Ø 1 ê 20D;
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This solves the equations of motion using the implicit midpoint method with a specified fixed 
step size.

In[17]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“,
“Coefficients“ Ø “ImplicitRungeKuttaGaussCoefficients“, DifferenceOrder Ø 2,
“ImplicitSolver“ Ø 8FixedPoint, “AccuracyGoal“ Ø MachinePrecision,

“PrecisionGoal“ Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

IMPSolution =
NDSolve@system, Method Ø ImplicitMidpoint, StartingStepSize Ø 3 ê 10D;

This shows the superimposition on the unit sphere of the numerical solution of the equations of 
motion for Euler's method (left) and the implicit midpoint rule (right).

In[19]:= EulerPlotOnSphere =
PlotSolutionOnManifold@EulerSolution, vars, time, UnitSphere, PlotRange Ø AllD;

IMPPlotOnSphere =
PlotSolutionOnManifold@IMPSolution, vars, time, UnitSphere, PlotRange Ø AllD;

GraphicsArray@8EulerPlotOnSphere, IMPPlotOnSphere<D

Out[21]=

This shows the components of the numerical solution using Euler's method (left) and the 
implicit midpoint rule (right).

In[30]:= EulerSolutionPlots = PlotSolutionComponents@EulerSolution, vars, timeD;

IMPSolutionPlots = PlotSolutionComponents@IMPSolution, vars, timeD;

GraphicsArray@Transpose@8EulerSolutionPlots, IMPSolutionPlots<DD

Out[32]=
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Orthogonal Projection Method

Here the “OrthogonalProjection“ method is used to solve the equations.

In[33]:= OPSolution = NDSolve@system, Method Ø 8“OrthogonalProjection“,
Dimensions Ø 83, 1<, Method Ø “ExplicitEuler“<, StartingStepSize Ø 1 ê 20D;

Only the orthogonal constraint is conserved so the curve is not closed.

In[34]:= PlotSolutionOnManifold@OPSolution, vars, time, UnitSphere, PlotRange Ø AllD

Out[34]=

Plotting the error in the invariants against time, it can be seen that the orthogonal projection 
method conserves only one of the two invariants.

In[35]:= InvariantErrorPlot@invariants, vars, T, OPSolution, PlotStyle Ø 8Red, Blue<D

Out[35]=
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Projection Method

The method “Projection“ takes a set of constraints and projects the solution onto a manifold

at the end of each integration step.
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Generally  all  the  invariants  of  the  problem  should  be  used  in  the  projection;  otherwise  the

numerical solution may actually be qualitatively worse than the unprojected solution.

The following specifies the integration method and defers determination of the constraints until 
the invocation of NDSolve.

In[36]:= ProjectionMethod = 8Projection,
Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<, “Invariants“ ß invts<;

Projecting One Constraint

This projects the first constraint onto the manifold.

In[37]:= invts = First@invariantsD;

projsol1 = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol1, vars, time, UnitSphere, PlotRange Ø AllD

Out[39]=

Only the first invariant is conserved.

In[40]:= InvariantErrorPlot@invariants, vars, T, projsol1, PlotStyle Ø 8Red, Blue<D

Out[40]=
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This projects the second constraint onto the manifold.

In[41]:= invts = Last@invariantsD;

projsol2 = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol2, vars, time, UnitSphere, PlotRange Ø AllD

Out[43]=

Only the second invariant is conserved.

In[44]:= InvariantErrorPlot@invariants, vars, T, projsol2, PlotStyle Ø 8Red, Blue<D

Out[44]=
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Projecting Multiple Constraints

This projects both constraints onto the manifold.

In[45]:= invts = invariants;

projsol = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol, vars, time, UnitSphere, PlotRange Ø AllD

Out[47]=

Now both invariants are conserved.

In[48]:= InvariantErrorPlot@invariants, vars, T, projsol, PlotStyle Ø 8Red, Blue<D

Out[48]=
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"Splitting" Method

A  splitting  that  yields  an  efficient  explicit  integration  method  was  derived  independently  by

McLachlan [M93] and Reich [R93].

Write the flow of an ODE y° = Y as yHtL = expHt YL HyH0L.
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The  differential  system  is  split  into  three  components,  YH1,  YH2,  and  YH3,  each  of  which  is

Hamiltonian and can be solved exactly.

The Hamiltonian systems are solved and recombined at each integration step as:

expHt YL º expH1 ê2 t YH1L expH1 ê2 t YH2L expHt YH3L expH1 ê2 t YH2L expH1 ê2 t YH1L.

This defines an appropriate splitting into Hamiltonian vector fields.

In[49]:= Grad@H_, x_?VectorQD := Map@D@H, ÒD &, xD;
isub = 8I1 -> 2, I2 -> 1, I3 -> 2 ê 3<;
H1 = Y1@TD^2 ê H2 I1L ê. isub;
H2 = Y2@TD^2 ê H2 I2L ê. isub;
H3 = Y3@TD^2 ê H2 I3L ê. isub;
JX = 880, -Y3@TD, Y2@TD<, 8Y3@TD, 0, -Y1@TD<, 8-Y2@TD, Y1@TD, 0<<;
YH1 = Thread@D@vars, TD == JX.Grad@H1, varsDD;
YH2 = Thread@D@vars, TD == JX.Grad@H2, varsDD;
YH3 = Thread@D@vars, TD == JX.Grad@H3, varsDD;

Here is the differential system for Euler's equations.

In[58]:= eqs

Out[58]= :Y1
£@TD ã

1

2
Y2@TD Y3@TD, Y2

£@TD ã -Y1@TD Y3@TD, Y3
£@TD ã

1

2
Y1@TD Y2@TD>

Here are the three split vector fields.

In[59]:= YH1

Out[59]= :Y1
£@TD ã 0, Y2

£@TD ã
1

2
Y1@TD Y3@TD, Y3

£@TD ã -
1

2
Y1@TD Y2@TD>

In[60]:= YH2

Out[60]= 8Y1
£@TD ã -Y2@TD Y3@TD, Y2

£@TD ã 0, Y3
£@TD ã Y1@TD Y2@TD<

In[61]:= YH3

Out[61]= :Y1
£@TD ã

3

2
Y2@TD Y3@TD, Y2

£@TD ã -
3

2
Y1@TD Y3@TD, Y3

£@TD ã 0>

Solution

This defines a symmetric second-order splitting method. The coefficients are automatically 
determined from the structure of the equations and are an extension of the Strang splitting.

In[62]:= SplittingMethod =
8“Splitting“,
“DifferenceOrder“ Ø 2,
“Equations“ Ø 8YH1, YH2, YH3, YH2, YH1<,
“Method“ Ø 8“LocallyExact“<<;
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This solves the system and graphically displays the solution.

In[63]:= splitsol = NDSolve@system, Method Ø SplittingMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@splitsol, vars, time, UnitSphere, PlotRange Ø AllD

Out[64]=

One of the invariants is preserved up to roundoff while the error in the second invariant remains 
bounded.

In[65]:= InvariantErrorPlot@invariants, vars, T, splitsol, PlotStyle Ø 8Red, Blue<D

Out[65]=
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Components and Data Structures in 
NDSolve

Introduction

NDSolve is broken up into several basic steps. For advanced usage, it can sometimes be advan-

tageous to access components to carry out each of these steps separately.

† Equation processing and method selection

† Method initialization

† Numerical solution

† Solution processing

NDSolve  performs  each  of  these  steps  internally,  hiding  the  details  from a  casual  user.  How-

ever, for advanced usage it can sometimes be advantageous to access components to carry out

each of these steps separately.

Here are the low-level functions that are used to break up these steps.

† NDSolve`ProcessEquations

† NDSolve`Iterate

† NDSolve`ProcessSolutions

NDSolve`ProcessEquations  classifies the differential system into initial value problem, bound-

ary  value  problem,  differential-algebraic  problem,  partial  differential  problem,  etc.  It  also

chooses  appropriate  default  integration  methods  and  constructs  the  main  NDSolve`StateData

data structure.

NDSolve`Iterate  advances the numerical  solution.  The first  invocation (there can be several)

initializes the numerical integration methods.

NDSolve`ProcessSolutions converts numerical data into an InterpolatingFunction  to repre-

sent each solution.
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Note that NDSolve`ProcessEquations can take a significant portion of the overall time to solve

a  differential  system.  In  such  cases,  it  can  be  useful  to  perform  this  step  only  once  and  use

NDSolve`Reinitialize to repeatedly solve for different options or initial conditions.

Example

Process equations and set up data structures for solving the differential system.

In[1]:= ndssdata =
First@NDSolve`ProcessEquations@8y‘‘@tD + y@tD ã 0, y@0D ã 1, y‘@0D ã 0<,

8y, y‘<, t, Method Ø “ExplicitRungeKutta“DD
Out[1]= NDSolve`StateData@<0.>D

Initialize the method “ExplicitRungeKutta“ and integrate the system up to time 10. The 
return value of NDSolve`Iterate is Null in order to avoid extra references, which would lead 
to undesirable copying.

In[2]:= NDSolve`Iterate@ndssdata, 10D

Convert each set of solution data into an InterpolatingFunction.

In[3]:= ndsol = NDSolve`ProcessSolutions@ndssdataD

Out[3]= 8y Ø InterpolatingFunction@880., 10.<<, <>D, y£ Ø InterpolatingFunction@880., 10.<<, <>D<

Representing the solution as an InterpolatingFunction allows continuous output even for 
points that are not part of the numerical solution grid.

In[4]:= ParametricPlot@8y@tD, y‘@tD< ê. ndsol, 8t, 0, 10<D

Out[4]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Creating NDSolve`StateData Objects

ProcessEquations

The first stage of any solution using NDSolve  is processing the equations specified into a form

that  can  be  efficiently  accessed  by  the  actual  integration  algorithms.  This  stage  minimally

involves determining the differential order of each variable, making substitutions needed to get

a first-order system, solving for the time derivatives of the functions in terms of the functions,

and  forming  the  result  into  a  “NumericalFunction“  object.  If  you  want  to  save  the  time  of

repeating this process for the same set of equations or if you want more control over the numeri-

cal  integration  process,  the  processing  stage  can  be  executed  separately  with 

NDSolve`ProcessEquations.

NDSolve`ProcessEquations@8eqn1,eqn2,…<,8u1,u2,…<,tD

process the differential equations 8eqn1, eqn2, …< for the 
functions 8u1, u2, …< into a normal form; return a list of 
NDSolve`StateData objects containing the solution and 
data associated with each solution for the time derivatives 
of the functions in terms of the functions; t may be speci-
fied in a list with a range of values as in NDSolve

NDSolve`ProcessEquations@8eqn1,eqn2,…<,8u1,u2,…<,8x1,x1min,x1max<,8x2,x2min,x2max<,…D

process the partial differential equations 8eqn1, eqn2, …< 
for the functions 8u1, u2, …< into a normal form; return a 
list of NDSolve`StateData objects containing the solu-
tion and data associated with each solution for the time 
derivatives of the functions in terms of the functions; if x j 
is the temporal variable, it need not be specified with the 
boundaries x j min, x j max

Processing equations for NDSolve.

This creates a list of two NDSolve`StateData objects because there are two possible solu-
tions for the y£ in terms of y.

In[1]:= NDSolve`ProcessEquations@8y‘@xD^2 ã y@xD + x, y@0D ã 1<, y, xD

Out[1]= 8NDSolve`StateData@<0.>D, NDSolve`StateData@<0.>D<
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Reinitialize

It is not uncommon that the solution to a more sophisticated problem involves solving the same

differential  equation repeatedly, but with different initial  conditions. In some cases, processing

equations  may  be  as  time-consuming  as  numerically  integrating  the  differential  equations.  In

these situations, it is a significant advantage to be able to simply give new initial values.

NDSolve`Reinitialize@
state,conditionsD

assuming the equations and variables are the same as the 
ones used to create the NDSolve`StateData object state, 
form a list of new NDSolve`StateData objects, one for 
each of the possible solutions for the initial values of the 
functions of the equations conditions

Reusing processed equations.

This creates an NDSolve`StateData object for the harmonic oscillator.

In[2]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + x@tD ã 0, x@0D ã 0, x‘@0D ã 1<, x, tDD

Out[2]= NDSolve`StateData@<0.>D

This creates three new NDSolve`StateData objects, each with a different initial condition.

In[3]:= newstate = NDSolve`Reinitialize@state, 8x@1D^3 ã 1, x‘@1D ã 0<D

Out[3]= 8NDSolve`StateData@<1.>D, NDSolve`StateData@<1.>D, NDSolve`StateData@<1.>D<

Using  NDSolve`Reinitialize  may  save  computation  time  when  you  need  to  solve  the  same

differential equation for many different initial conditions, as you might in a shooting method for

boundary value problems.

A subset of NDSolve options can be specified as options to NDSolve`Reinitialize.

This creates a new NDSolve`StateData object, specifying a starting step size.

In[3]:= newstate =
NDSolve`Reinitialize@state, 8x@0D ã 0, x‘@0D ã 1<, StartingStepSize Ø 1 ê 10D

Out[3]= 8NDSolve`StateData@<0.>D<
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Iterating Solutions

One  important  use  of  NDSolve`StateData  objects  is  to  have  more  control  of  the  integration.

For some problems, it is appropriate to check the solution and start over or change parameters,

depending on certain conditions.

NDSolve`Iterate@state,tD compute the solution of the differential equation in an 
NDSolve`StateData object that has been assigned as 
the value of the variable state from the current time up to 
time t

Iterating solutions to differential equations. 

This creates an NDSolve`StateData object that contains the information needed to solve the 
equation for an oscillator with a varying coefficient using an explicit Runge|Kutta method.

In[4]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + H1 + 4 UnitStep@Sin@tDDL x@tD ã 0,

x@0D ã 1, x‘@0D ã 0<, x, t, Method Ø “ExplicitRungeKutta“DD
Out[4]= NDSolve`StateData@<0.>D

Note that when you use NDSolve`ProcessEquations, you do not need to give the range of the

t  variable  explicitly  because  that  information  is  not  needed  to  set  up  the  equations  in  a  form

ready  to  solve.  (For  PDEs,  you  do  have  to  give  the  ranges  of  all  spatial  variables,  however,

since that information is essential for determining an appropriate discretization.)

This computes the solution out to time t = 1.

In[5]:= NDSolve`Iterate@state, 1D

NDSolve`Iterate  does  not  return  a  value  because  it  modifies  the  NDSolve`StateData  object

assigned to the variable state. Thus, the command affects the value of the variable in a manner

similar to setting parts of a list,  as described in "Manipulating Lists by Their Indices". You can

see  that  the  value  of  state  has  changed  since  it  now  displays  the  current  time  to  which  it  is

integrated.

The output form of state shows the range of times over which the solution has been integrated.

In[6]:= state

Out[6]= NDSolve`StateData@<0.,1.>D
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If  you want to integrate further,  you can call  NDSolve`Iterate  again,  but  with a larger value

for time. 

This computes the solution out to time t = 3.

In[7]:= NDSolve`Iterate@state, 3D

You can specify a time that is earlier than the first current time, in which case the integration

proceeds backwards with respect to time.

This computes the solution from the initial condition backwards to t = -p ê2.

In[8]:= NDSolve`Iterate@state, -Pi ê 2D

NDSolve`Iterate  allows  you  to  specify  intermediate  times  at  which  to  stop.  This  can  be  useful,  for

example, to avoid discontinuities. Typically,  this strategy is more effective with so-called one-step meth-

ods, such as the explicit Runge|Kutta method used in this example. However, it generally works with the
default NDSolve method as well.

This computes the solution out to t = 10 p, making sure that the solution does not have problems 
with the points of discontinuity in the coefficients at t = p, 2 p, ….

In[9]:= NDSolve`Iterate@state, p Range@10DD

Getting Solution Functions

Once you have integrated a system up to a certain time, typically you want to be able to look at

the current solution values and to generate an approximate function representing the solution

computed so far. The command NDSolve`ProcessSolutions allows you to do both.

NDSolve`ProcessSolutions@stateD give the solutions that have been computed in state as a 
list of rules with InterpolatingFunction objects

Getting solutions as InterpolatingFunction objects. 

This extracts the solution computed in the previous section as an InterpolatingFunction 
object.

In[10]:= sol = NDSolve`ProcessSolutions@stateD

Out[10]= 8x Ø InterpolatingFunction@88-1.5708, 31.4159<<, <>D<
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This plots the solution.

In[11]:= Plot@Evaluate@x@tD ê. solD, 8t, 0, 10 Pi<D

Out[11]=
5 10 15 20 25 30
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Just as when using NDSolve  directly, there will be a rule for each function you specified in the

second  argument  to  NDSolve`ProcessEquations.  Only  the  specified  components  of  the  solu-

tions are saved in such a way that an InterpolatingFunction object can be created.

NDSolve`ProcessSolutions@
state,dirD

give the solutions that have been most recently computed 
in direction dir in state as a list of rules with values for both 
the functions and their derivatives

Obtaining the current solution values.

This gives the current solution values and derivatives in the forward direction.

In[12]:= sol = NDSolve`ProcessSolutions@state, “Forward“D

Out[12]= 8x@31.4159D Ø 0.843755, x£@31.4159D Ø -1.20016, x££@31.4159D Ø -0.843755<

The choices you can give for the direction dir are “Forward“ and “Backward“, which refer to the

integration forward and backward from the initial condition. 

“Forward“ integration in the direction of increasing values of the 
temporal variable 

“Backward“ integration in the direction of decreasing values of the 
temporal variables

“Active“ integration in the direction that is currently being inte-
grated; typically, this value should only be called from 
method initialization that is used during an active 
integration

Integration direction specifications. 
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The  output  given  by  NDSolve`ProcessSolution  is  always  given  in  terms  of  the  dependent

variables, either at a specific value of the independent variable, or interpolated over all  of  the

saved values. This means that when a partial differential equation is being integrated, you will

get results representing the dependent variables over the spatial variables.

This computes the solution to the heat equation from time t = -1 ê4 to t = 2.

In[13]:= state = First@NDSolve`ProcessEquations@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@0, xD ã Cos@p ê 2 xD, u@t, 0D ã 1 , u@t, 1D ã 0<, u, t, 8x, 0, 1<DD;

NDSolve`Iterate@state, 8-1 ê 4, 2<D

This gives the solution at t = 2.

In[15]:= NDSolve`ProcessSolutions@state, “Forward“D

Out[15]= 9u@2., xD Ø InterpolatingFunction@880., 1.<<, <>D@xD,

uH1,0L@2., xD Ø InterpolatingFunction@880., 1.<<, <>D@xD=

The  solution  is  given  as  an  InterpolatingFunction  object  that  interpolates  over  the  spatial

variable x.

This gives the solution at t = -1 ê4.

In[16]:= NDSolve`ProcessSolutions@state, “Backward“D

NDSolve::eerr : Warning: Scaled local spatial error estimate of 638.6378240455119`
at t = -0.25 in the direction of independent variable x
is much greater than prescribed error tolerance. Grid spacing with 15
points may be too large to achieve the desired accuracy or precision. A

singularity may have formed or you may want to specify a smaller
grid spacing using the MaxStepSize or MinPoints method options. à

Out[16]= 9u@-0.25, xD Ø InterpolatingFunction@880., 1.<<, <>D@xD,

uH1,0L@-0.25, xD Ø InterpolatingFunction@880., 1.<<, <>D@xD=

When you process  the  current  solution  for  partial  differential  equations,  the  spatial  error  esti-

mate  is  checked.  (It  is  not  generally  checked  except  when  solutions  are  produced  because

doing so would be quite time consuming.) Since it is excessive, the NDSolve::eerr message is

issued.  The  typical  association  of  the  word  "backward"  with  the  heat  equation  as  implying

instability gives a clue to what is wrong in this example. 
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Here is a plot of the solution at t = 1 ê4.

In[17]:= Plot@Evaluate@u@-0.25, xD ê. %D, 8x, 0, 1<D

Out[17]=

The plot of the solution shows that instability is indeed the problem. 

Even though the heat equation example is simple enough to know that the solution backward in

time  is  problematic,  using  NDSolve`Iterate  and  NDSolve`ProcessSolutions  to  monitor  the

solution of a PDE can be used to save computing a solution that turns out not to be as accurate

as desired. Another simple form of monitoring follows.
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Entering the following commands generates a sequence of plots showing the solution of a 
generalization of the sine-Gordon equation as it is being computed. 

In[58]:= L = -10;
state = FirstANDSolve`ProcessEquationsA9D@u@t, x, yD, t, tD ã

D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,
u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -L, yD ã u@t, L, yD, u@t, x, -LD ã u@t, x, LD=, u, t, 8x, -L, L<,

8y, -L, L<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<<EE;

GraphicsGrid@Partition@Table@
NDSolve`Iterate@state, tD;
Plot3D@Evaluate@u@t, x, yD ê. NDSolve`ProcessSolutions@state, “Forward“DD,
8x, -L, L<, 8y, -L, L<, PlotRange Ø 8-1 ê 4, 1 ê 4<D,

8t, 0., 20., 5.<D, 2DD

Out[60]=

When you monitor  a  solution in  this  way,  it  is  usually  possible  to  interrupt  the computation if

you see that the solution found is sufficient. You can still use the NDSolve`StateData object to

get the solutions that have been computed.

NDSolve`StateData Methods

An  NDSolve`StateData  object  contains  a  lot  of  information,  but  it  is  arranged  in  a  manner

which  makes  it  easy  to  iterate  solutions,  and not  in  a  manner  which  makes  it  easy  to  under-

stand where the information is kept. However, sometimes you will want to get information from

the  state  data  object:  for  this  reason  several  method  functions  have  been  defined  to  make

accessing the information easy.
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stateü“TemporalVariable“ give the independent variable that the dependent variables 
(functions) depend on

stateü“DependentVariables“ give a list of the dependent variables (functions) to be 
solved for

stateü“VariableDimensions“ give the dimensions of each of the dependent variables 
(functions)

stateü“VariablePositions“ give the positions in the solution vector for each of the 
dependent variables

stateü“VariableTransformation“ give the transformation of variables from the original 
problem variables to the working variables

stateü“NumericalFunction“ give the “NumericalFunction“ object used to evaluate 
the derivatives of the solution vector with respect to the 
temporal variable t

stateü“ProcessExpression“@args,expr,dimsD

process the expression expr using the same variable 
transformations that NDSolve used to generate state to 
give a “NumericalFunction“ object for numerically 
evaluating expr; args are the arguments for the numerical 
function and should either be All or a list of arguments 
that are dependent variables of the system; dims should be 
Automatic or an explicit list giving the expected dimen-
sions of the numerical function result

stateü“SystemSize“ give the effective number of first-order ordinary differential 
equations being solved

stateü“MaxSteps“ give the maximum number of steps allowed for iterating 
the differential equations

stateü“WorkingPrecision“ give the working precision used to solve the equations

stateü“Norm“ the scaled norm to use for gauging error

General method functions for an NDSolve`StateData object state.

Much  of  the  available  information  depends  on  the  current  solution  values.  Each

NDSolve`StateData  object  keeps  solution  information  for  solutions  in  both  the  forward  and

backward direction. At the initial condition these are the same, but once the problem has been

iterated in either direction, these will be different.
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stateü“CurrentTime“@dirD give the current value of the temporal variable in the 
integration direction dir

stateü“SolutionVector“@dirD give the current value of the solution vector in the integra-
tion direction dir 

stateü“SolutionDerivativeVector“@dirD

give the current value of the derivative with respect to the 
temporal variable of the solution vector in the integration 
direction dir

stateü“TimeStep“@dirD give the time step size for the next step in the integration 
direction dir

stateü“TimeStepsUsed“@dirD give the number of time steps used to get to the current 
time in the integration direction dir

stateü“MethodData“@dirD give the method data object used in the integration direc-
tion dir

Directional method functions for an NDSolve`StateData object state.

If  the  direction  argument  is  omitted,  the  functions  will  return  a  list  with  the  data  for  both

directions (a list with a single element at the initial condition). Otherwise, the direction can be

“Forward“, “Backward“, or “Active“ as specified in the previous subsection.

Here is an NDSolve`StateData object for a solution of the nonlinear Schrodinger equation 
that has been computed up to t = 1.

In[24]:= state = First@NDSolve`ProcessEquations@
8I D@u@t, xD, tD ã D@u@t, xD, x, xD + Abs@u@t, xDD^2 u@t, xD,
u@0, xD ã Sech@xD Exp@p I xD, u@t, -15D ã u@t, 15D<,

u, t, 8x, -15, 15<, Method Ø StiffnessSwitchingDD;
NDSolve`Iterate@state, 1D;
state

Out[24]= NDSolve`StateData@<0.,1.>D

“Current” refers to the most recent point reached in the integration. 

This gives the current time in both the forward and backward directions.

In[27]:= stateü“CurrentTime“

Out[27]= 80., 1.<

This gives the size of the system of ordinary differential equations being solved.

In[28]:= stateü“SystemSize“

Out[28]= 400
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The method functions are relatively low-level hooks into the data structure; they do little pro-

cessing  on  the  data  returned  to  you.  Thus,  unlike  NDSolve`ProcessSolutions,  the  solutions

given are simply vectors of data points relating to the system of ordinary differential equations

NDSolve is solving.

This makes a plot of the modulus of current solution in the forward direction.

In[29]:= ListPlot@Abs@stateüSolutionVector@“Forward“DDD

Out[29]=
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This plot does not show the correspondence with the x-grid values correctly. To get the corre-

spondence with the spatial grid correctly, you must use NDSolve`ProcessSolutions. 

There is a tremendous amount of control provided by these methods, but an exhaustive set of

examples is beyond the scope of this documentation.

One  of  the  most  important  uses  of  the  information  from  an  NDSolve`StateData  object  is  to

initialize integration methods. Examples are shown in "The NDSolve Method Plug-in Framework".

Utility Packages for Numerical Differential 
Equation Solving

InterpolatingFunctionAnatomy

NDSolve  returns  solutions  as  InterpolatingFunction  objects.  Most  of  the  time,  simply  using

these as functions does what is needed, but occasionally it  is useful to access the data inside,

which  includes  the  actual  values  and  points  NDSolve  computed  when  taking  steps.  The  exact

structure of  an InterpolatingFunction  object  is  arranged to make the data storage efficient

and evaluation at a given point fast. This structure may change between Mathematica versions,

so  code  that  is  written  in  terms  of  accessing  parts  of  
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and evaluation at a given point fast. This structure may change between Mathematica versions,

so  code  that  is  written  in  terms  of  accessing  parts  of  InterpolatingFunction

objects may not work with new versions of Mathematica. The DifferentialEquations`InterÖ

polatingFunctionAnatomy`  package  provides  an  interface  to  the  data  in  an

InterpolatingFunction object that will be maintained for future Mathematica versions.

Anatomy of InterpolatingFunction objects.

This loads the package.

In[21]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

One  common  situation  where  the  InterpolatingFunctionAnatomy  package  is  useful  is  when

NDSolve  cannot  compute  a  solution  over  the  full  range  of  values  that  you  specified,  and  you

want to plot all of the solution that was computed to try to understand better what might have

gone wrong.

Here is an example of a differential equation which cannot be computed up to the specified 
endpoint. 

In[2]:= ifun = First@x ê. NDSolve@8x‘@tD ã Exp@x@tDD - x@tD, x@0D ã 1<, x, 8t, 0, 10<DD

NDSolve::ndsz :
At t == 0.5160191740198964`, step size is effectively zero; singularity or stiff system suspected. à

Out[2]= InterpolatingFunction@880., 0.516019<<, <>D
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InterpolatingFunctionDomain@
ifunD

return a list with the domain of definition for each of the 
dimensions of the InterpolatingFunction object ifun

InterpolatingFunctionCoordinaÖ
tes@ifunD

return a list with the coordinates at which data is specified 
in each of the dimensions for the 
InterpolatingFunction object ifun

InterpolatingFunctionGrid@ifunD return the grid of points at which data is specified for the 
InterpolatingFunction object ifun

InterpolatingFunctionValuesOnÖ
Grid@ifunD

return the values that would be returned by evaluating the 
InterpolatingFunction object ifun at each of its grid 
points

InterpolatingFunctionInterpolÖ
ationOrder@ifunD

return the interpolation order used for each of the dimen -
sions for the InterpolatingFunction object ifun

InterpolatingFunctionDerivatiÖ
veOrder@ifunD

return the order of the derivative of the base function for 
which values are specified when evaluating the 
InterpolatingFunction object ifun



This gets the domain.

In[3]:= domain = InterpolatingFunctionDomain@ifunD

Out[3]= 880., 0.516019<<

Once the domain has been returned in a list, it is easy to use Part to get the desired endpoints 
and make the plot.

In[4]:= 8begin, end< = domain@@1DD;
Plot@ifun@tD, 8t, begin, end<D

Out[5]=
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From the plot,  it  is  quite  apparent  that  a  singularity  has formed and it  will  not  be possible  to

integrate the system any further.

Sometimes it  is  useful  to  see where NDSolve  took steps.  Getting the coordinates  is  useful  for

doing this.

This shows the values that NDSolve computed at each step it took. It is quite apparent from 
this that nearly all of the steps were used to try to resolve the singularity.

In[6]:= coords = First@InterpolatingFunctionCoordinates@ifunDD;
ListPlot@Transpose@8coords, ifun@coordsD<DD

Out[7]=
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The package is particularly useful for analyzing the computed solutions of PDEs.

With this initial condition, Burgers' equation forms a steep front.

In[8]:= mdfun =
First@u ê. NDSolve@8D@u@x, tD, tD ã 0.01 D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@0, tD ã u@1, tD, u@x, 0D ã Sin@2 Pi xD<, u, 8x, 0, 1<, 8t, 0, 0.5<DD

NDSolve::ndsz :
At t == 0.472151168326526`, step size is effectively zero; singularity or stiff system suspected. à

NDSolve::eerr : Warning: Scaled local spatial error estimate of 9.135898727911074`*^12
at t = 0.472151168326526` in the direction of independent variable x
is much greater than prescribed error tolerance. Grid spacing with 27
points may be too large to achieve the desired accuracy or precision. A

singularity may have formed or you may want to specify a smaller
grid spacing using the MaxStepSize or MinPoints method options. à

Out[8]= InterpolatingFunction@88..., 0., 1., ...<, 80., 0.472151<<, <>D

This shows the number of points used in each dimension.

In[9]:= Map@Length, InterpolatingFunctionCoordinates@mdfunDD

Out[9]= 827, 312<

This shows the interpolation order used in each dimension.

In[10]:= InterpolatingFunctionInterpolationOrder@mdfunD

Out[10]= 85, 3<

This shows that the inability to resolve the front has manifested itself as numerical instability.

In[11]:= Max@Abs@InterpolatingFunctionValuesOnGrid@mdfunDDD

Out[11]= 1.14928µ1012

This shows the values computed at the spatial grid points at the endpoint of the temporal 
integration.

In[12]:= end = InterpolatingFunctionDomain@mdfunD@@2, -1DD;
X = InterpolatingFunctionCoordinates@mdfunD@@1DD;
ListPlot@Transpose@8X, mdfun@X, endD<D,
PlotStyle Ø PointSize@.025D, PlotRange Ø 8-1, 1<D

Out[14]=
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It is easily seen from the point plot that the front has not been resolved.

This makes a 3D plot showing the time evolution for each of the spatial grid points. The initial 
condition is shown in red.

In[15]:= Show@Graphics3D@8Map@Line, MapThread@Append, 8InterpolatingFunctionGrid@mdfunD,
InterpolatingFunctionValuesOnGrid@mdfunD<, 2DD,

8RGBColor@1, 0, 0D, Line@Transpose@8X, 0. X, mdfun@X, 0.D<DD<<D,
BoxRatios Ø 81, 1, 1<, PlotRange Ø 8All, All, 8-1, 1<<D

Out[15]=

When  a  derivative  of  an  InterpolatingFunction  object  is  taken,  a  new

InterpolatingFunction  object is returned that gives the requested derivative when evaluated

at  a  point.  The  InterpolatingFunctionDerivativeOrder  is  a  way  of  determining  what

derivative will be evaluated.

The derivative returns a new InterpolatingFunction object.

In[16]:= dmdfun = Derivative@0, 1D@mdfunD

Out[16]= InterpolatingFunction@88..., 0., 1., ...<, 80., 0.472151<<, <>D

This shows what derivative will be evaluated.

In[17]:= InterpolatingFunctionDerivativeOrder@dmdfunD

Out[17]= Derivative@0, 1D
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NDSolveUtilities

A number of utility routines have been written to facilitate the investigation and comparison of

various  NDSolve  methods.  These  functions  have  been  collected  in  the  package

DifferentialEquations`NDSolveUtilities`.

Functions provided in the NDSolveUtilities package.

This loads the package.

In[18]:= Needs@“DifferentialEquations`NDSolveUtilities`“D

A useful means of analyzing Runge|Kutta methods is to study how they behave when applied to

a scalar linear test problem (see the package FunctionApproximations.m).

This assigns the (exact or infinitely precise) coefficients for the 2-stage implicit Runge|Kutta 
Gauss method of order 4.

In[19]:= 8amat, bvec, cvec< = NDSolve`ImplicitRungeKuttaGaussCoefficients@4, InfinityD

Out[19]= :::
1

4
,

1

12
3 - 2 3 >, :

1

12
3 + 2 3 ,

1

4
>>, :

1

2
,
1

2
>, :

1

6
3 - 3 ,

1

6
3 + 3 >>

This computes the linear stability function, which corresponds to the (2,2) Padé approximation 
to the exponential at the origin.

In[20]:= RungeKuttaLinearStabilityFunction@amat, bvec, zD

Out[20]=
1 +

z

2
+

z2

12

1 -
z

2
+

z2

12
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CompareMethods@
sys,refsol,methods,optsD

return statistics for various methods applied to the system 
sys

FinalSolutions@sys,solsD return the solution values at the end of the numerical 
integration for various solutions sols  corresponding to the 
system sys

InvariantErrorPlot@
invts,dvars,ivar,sol,optsD

return a plot of the error in the invariants invts for the 
solution sol

RungeKuttaLinearStabilityFuncÖ
tion@amat,bvec,varD

return the linear stability function for the Runge|Kutta 
method with coefficient matrix amat and weight vector bvec 
using the variable var

StepDataPlot@sols,optsD return plots of the step sizes taken for the solutions sols on 
a logarithmic scale



Examples  of  the  functions  CompareMethods,  FinalSolutions,  RungeKuttaLinearStabilityÖ

Function, and StepDataPlot can be found within "ExplicitRungeKutta Method for NDSolve".

Examples  of  the  function  InvariantErrorPlot  can  be  found  within  "Projection  Method  for

NDSolve".

InvariantErrorPlot Options

The  function  InvariantErrorPlot  has  a  number  of  options  that  can  be  used  to  control  the

form of the result.

option name default value

InvariantDimensions Automatic specify the dimensions of the invariants

InvariantErrorFunction AbsASubtract@
Ò1,Ò2DE&

specify the function to use for comparing 
errors

InvariantErrorSampleRate Automatic specify how often errors are sampled

Options of the function InvariantErrorPlot. 

The default value for InvariantDimensions is to determine the dimensions from the structure

of the input, Dimensions@invtsD.

The default value for InvariantErrorFunction is a function to compute the absolute error.

The default value for InvariantErrorSampleRate  is to sample all  points if  there are less than

1000 steps taken. Above this threshold a logarithmic sample rate is used.
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