
In general, formulas for any given derivative with asymptotic error of any chosen order can be

derived from the Taylor formulas as long as a sufficient number of sample points are used.

However, this method becomes cumbersome and inefficient beyond the simple examples

shown. An alternate formulation is based on polynomial interpolation: since the Taylor formulas

formulas. It is not difficult to show that the finite difference formulas are equivalent to the

derivatives of interpolating polynomials. For example, a simple way of deriving the formula just

shown for the second derivative is to interpolate a quadratic and find its second derivative

(which is essentially just the leading coefficient).

This finds the three-point finite difference formula for the second derivative by differentiating
the polynomial interpolating the three points Hxi-1, f Hxi-1LL, Hxi, f HxiLL, and Hxi+1, f Hxi+1LL.

In[9]:= D@InterpolatingPolynomial@Table@8 xi+k, f@xi+kD<, 8k, -1, 1<D, zD, z, zD

Out[9]=

2 K-
-fAx-1+iE+f@xiD

-x-1+i+xi
+

-f@xiD+fAx1+iE

-xi+x1+i
O

-x-1+i + x1+i

In this form of the formula, it is easy to see that it is effectively a difference of the forward and

backward first-order derivative approximations. Sometimes it is advantageous to use finite

differences in this way, particularly for terms with coefficients inside of derivatives, such as

HaHxL uxLx, which commonly appear in PDEs.

Another property made apparent by considering interpolation formulas is that the point at

which you get the derivative approximation need not be on the grid. A common use of this is

with staggered grids where the derivative may be wanted at the midpoints between grid points.

This generates a fourth-order approximation for the first derivative on a uniform staggered grid,
xi, where the main grid points xi+kê2 are at xi + h k ê2, for odd k.

In[10]:= Simplify@
D@InterpolatingPolynomial@Table@8 xi + k h ê 2, f@xi+kê2D<, 8k, -3, 3, 2<D, zD, zD ê.
z Ø xiD

Out[10]=

fBx
-
3

2
+i
F - 27 fBx

-
1

2
+i
F + 27 fBx 1

2
+i
F - fBx 3

2
+i
F

24 h

The fourth-order error coefficient for this formula is 3
640

h4 f H5LHxiL versus 1
30

h4 f H5LHxiL for the stan-

dard fourth-order formula derived next. Much of the reduced error can be attributed to the

reduced stencil size.

This generates a fourth-order approximation for the first derivative at a point on a uniform grid.

In[11]:= Simplify@
D@InterpolatingPolynomial@Table@8 xi + k h, f@xi+kD<, 8k, -2, 2, 1<D, zD, zD ê.
z Ø xiD

Out[11]=
f@x-2+iD - 8 f@x-1+iD + 8 f@x1+iD - f@x2+iD

12 h

Advanced Numerical Differential Equation Solving in Mathematica 181

In general, a finite difference formula using n points will be exact for functions that are polynomi-

als of degree n - 1 and have asymptotic order at least n - m. On uniform grids, you can expect

higher asymptotic order, especially for centered differences.

Using efficient polynomial interpolation techniques is a reasonable way to generate coefficients,

but B. Fornberg has developed a fast algorithm for finite difference weight generation [F92],

[F98], which is substantially faster.

In [F98], Fornberg presents a one-line Mathematica formula for explicit finite differences.

This is the simple formula of Fornberg for generating weights on a uniform grid. Here it has
been modified slightly by making it a function definition.

In[12]:= UFDWeights@m_, n_, s_D :=
CoefficientList@Normal@Series@xs Log@xDm, 8x, 1, n<D ê hmD, xD

Here m is the order of the derivative, n is the number of grid intervals enclosed in the stencil,

and s is the number of grid intervals between the point at which the derivative is approximated

and the leftmost edge of the stencil. There is no requirement that s be an integer; noninteger

values simply lead to staggered grid approximations. Setting s to be n ê2 always generates a

centered formula.

This uses the Fornberg formula to generate the weights for a staggered fourth-order approxima-
tion to the first derivative. This is the same one computed earlier with
InterpolatingPolynomial.

In[13]:= UFDWeights@1, 3, 3 ê 2D

Out[13]= :
1

24 h
, -

9

8 h
,

9

8 h
, -

1

24 h
>

A table of some commonly used finite difference formulas follows for reference.

formula error term

f £HxiL >
f Ixi-2M-4 f Ixi-1M+3 f IxiM

2 h
1
3

h2 f H3L

f £HxiL >
f Ixi+1M- f Ixi-1M

2 h
1
6

h2 f H3L

f £HxiL >
-3 f IxiM+4 f Ixi+1M- f Ixi+2M

2 h
1
3

h2 f H3L

182 Advanced Numerical Differential Equation Solving in Mathematica

f £HxiL >
3 f Ixi-4M-16 f Ixi-3M+36 f Ixi-2M-48 f Ixi-1M+25 f IxiM

12 h
1
5

h4 f H5L

f £HxiL >
- f Ixi-3M+6 f Ixi-2M-18 f Ixi-1M+10 f IxiM+3 f Ixi+1M

12 h
1
20

h4 f H5L

f £HxiL >
f Ixi-2M-8 f Ixi-1M+8 f Ixi+1M- f Ixi+2M

12 h
1
30

h4 f H5L

f £HxiL >
-3 f Ixi-1M-10 f IxiM+18 f Ixi+1M-6 f Ixi+2M+ f Ixi+3M

12 h
1
20

h4 f H5L

f £HxiL >
-25 f IxiM+48 f Ixi+1M-36 f Ixi+2M+16 f Ixi+3M-3 f Ixi+4M

12 h
1
5

h4 f H5L

f £HxiL >
10 f Ixi-6M-72 f Ixi-5M+225 f Ixi-4M-400 f Ixi-3M+450 f Ixi-2M-360 f Ixi-1M+147 f IxiM

60 h
1
7

h6 f H7L

f £HxiL >
-2 f Ixi-5M+15 f Ixi-4M-50 f Ixi-3M+100 f Ixi-2M-150 f Ixi-1M+77 f IxiM+10 f Ixi+1M

60 h
1
42

h6 f H7L

f £HxiL >
f Ixi-4M-8 f Ixi-3M+30 f Ixi-2M-80 f Ixi-1M+35 f IxiM+24 f Ixi+1M-2 f Ixi+2M

60 h
1
105

h6 f H7L

f £HxiL >
- f Ixi-3M+9 f Ixi-2M-45 f Ixi-1M+45 f Ixi+1M-9 f Ixi+2M+ f Ixi+3M

60 h
1
140

h6 f H7L

f £HxiL >
2 f Ixi-2M-24 f Ixi-1M-35 f IxiM+80 f Ixi+1M-30 f Ixi+2M+8 f Ixi+3M- f Ixi+4M

60 h
1
105

h6 f H7L

f £HxiL >
-10 f Ixi-1M-77 f IxiM+150 f Ixi+1M-100 f Ixi+2M+50 f Ixi+3M-15 f Ixi+4M+2 f Ixi+5M

60 h
1
42

h6 f H7L

f £HxiL >
-147 f IxiM+360 f Ixi+1M-450 f Ixi+2M+400 f Ixi+3M-225 f Ixi+4M+72 f Ixi+5M-10 f Ixi+6M

60 h
1
7

h6 f H7L

Finite difference formulas on uniform grids for the first derivative.

formula error term

f ££HxiL >
- f Ixi-3M+4 f Ixi-2M-5 f Ixi-1M+2 f IxiM

h2
11
12

h2 f H4L

f ££HxiL >
f Ixi-1M-2 f IxiM+ f Ixi+1M

h2
1
12

h2 f H4L

f ££HxiL >
2 f IxiM-5 f Ixi+1M+4 f Ixi+2M- f Ixi+3M

h2
11
12

h2 f H4L

f ££HxiL >
-10 f Ixi-5M+61 f Ixi-4M-156 f Ixi-3M+214 f Ixi-2M-154 f Ixi-1M+45 f IxiM

12 h2
137
180

h4 f H6L

f ££HxiL >
f Ixi-4M-6 f Ixi-3M+14 f Ixi-2M-4 f Ixi-1M-15 f IxiM+10 f Ixi+1M

12 h2
13
180

h4 f H6L

f ££HxiL >
- f Ixi-2M+16 f Ixi-1M-30 f IxiM+16 f Ixi+1M- f Ixi+2M

12 h2
1
90

h4 f H6L

Advanced Numerical Differential Equation Solving in Mathematica 183

f ££HxiL >
10 f Ixi-1M-15 f IxiM-4 f Ixi+1M+14 f Ixi+2M-6 f Ixi+3M+ f Ixi+4M

12 h2
13
180

h4 f H6L

f ££HxiL >
45 f IxiM-154 f Ixi+1M+214 f Ixi+2M-156 f Ixi+3M+61 f Ixi+4M-10 f Ixi+5M

12 h2
137
180

h4 f H6L

f ££HxiL >
1

180 h2
H-126 f Hxi-7L + 1019 f Hxi-6L - 3618 f Hxi-5L +

7380 f Hxi-4L - 9490 f Hxi-3L + 7911 f Hxi-2L - 4014 f Hxi-1L + 938 f HxiLL

363
560

h6 f H8L

f ££HxiL >
1

180 h2
H11 f Hxi-6L - 90 f Hxi-5L + 324 f Hxi-4L -

670 f Hxi-3L + 855 f Hxi-2L - 486 f Hxi-1L - 70 f HxiL + 126 f Hxi+1LL

29
560

h6 f H8L

f ££HxiL >
1

180 h2
H-2 f Hxi-5L + 16 f Hxi-4L - 54 f Hxi-3L +

85 f Hxi-2L + 130 f Hxi-1L - 378 f HxiL + 214 f Hxi+1L - 11 f Hxi+2LL

47
5040

h6 f H8L

f ££HxiL >
2 f Ixi-3M-27 f Ixi-2M+270 f Ixi-1M-490 f IxiM+270 f Ixi+1M-27 f Ixi+2M+2 f Ixi+3M

180 h2
1
560

h6 f H8L

f ££HxiL >
1

180 h2
H-11 f Hxi-2L + 214 f Hxi-1L - 378 f HxiL +

130 f Hxi+1L + 85 f Hxi+2L - 54 f Hxi+3L + 16 f Hxi+4L - 2 f Hxi+5LL

47
5040

h6 f H8L

f ££HxiL >
1

180 h2
H126 f Hxi-1L - 70 f HxiL - 486 f Hxi+1L +

855 f Hxi+2L - 670 f Hxi+3L + 324 f Hxi+4L - 90 f Hxi+5L + 11 f Hxi+6LL

29
560

h6 f H8L

f ££HxiL >
1

180 h2
H938 f HxiL - 4014 f Hxi+1L + 7911 f Hxi+2L - 9490 f Hxi+3L +

7380 f Hxi+4L - 3618 f Hxi+5L + 1019 f Hxi+6L - 126 f Hxi+7LL

363
560

h6 f H8L

Finite difference formulas on uniform grids for the second derivative.

One thing to notice from this table is that the farther the formulas get from centered, the larger

the error term coefficient, sometimes by factors of hundreds. For this reason, sometimes where

one-sided derivative formulas are required (such as at boundaries), formulas of higher order

are used to offset the extra error.

NDSolve`FiniteDifferenceDerivative

Fornberg [F92], [F98] also gives an algorithm that, though not quite so elegant and simple, is

more general and, in particular, is applicable to nonuniform grids. It is not difficult to program

in Mathematica, but to make it as efficient as possible, a new kernel function has been provided

as a simpler interface (along with some additional features).

184 Advanced Numerical Differential Equation Solving in Mathematica

NDSolve`FiniteDifferenceDerivativeADerivative@mD,grid,valuesE

approximate the mth-order derivative for the function that
takes on values on the grid

NDSolve`FiniteDifferenceDerivativeA
Derivative@m1,m2,…,mnD,8grid1,grid2,…,gridn<,valuesE

approximate the partial derivative of order (m1, m2, …, mn)
for the function of n variables that takes on values on the
tensor product grid defined by the outer product of (grid1,
grid2, …, gridn)

NDSolve`FiniteDifferenceDerivativeADerivative@m1,m2,…,mnD,8grid1,grid2,…,gridn<E

compute the finite difference weights needed to
approximate the partial derivative of order (m1, m2, …, mn)
for the function of n variables on the tensor product grid
defined by the outer product of (grid1, grid2, …, gridn); the

result is returned as an
NDSolve`FiniteDifferenceDerivativeFunction,
which can be repeatedly applied to values on the grid

Finding finite difference approximations to derivatives.

This defines a uniform grid with points spaced apart by a symbolic distance h.

In[14]:= ugrid = h Range@0, 8D

Out[14]= 80, h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h<

This gives the first derivative formulas on the grid for a symbolic function f.

In[15]:= NDSolve`FiniteDifferenceDerivative@Derivative@1D, ugrid, Map@f, ugridDD

Out[15]= :-
25 f@0D

12 h
+
4 f@hD

h
-
3 f@2 hD

h
+
4 f@3 hD

3 h
-
f@4 hD

4 h
,

-
f@0D

4 h
-
5 f@hD

6 h
+
3 f@2 hD

2 h
-
f@3 hD

2 h
+
f@4 hD

12 h
,
f@0D

12 h
-
2 f@hD

3 h
+
2 f@3 hD

3 h
-
f@4 hD

12 h
,

f@hD

12 h
-
2 f@2 hD

3 h
+
2 f@4 hD

3 h
-
f@5 hD

12 h
,
f@2 hD

12 h
-
2 f@3 hD

3 h
+
2 f@5 hD

3 h
-
f@6 hD

12 h
,

f@3 hD

12 h
-
2 f@4 hD

3 h
+
2 f@6 hD

3 h
-
f@7 hD

12 h
,
f@4 hD

12 h
-
2 f@5 hD

3 h
+
2 f@7 hD

3 h
-
f@8 hD

12 h
,

-
f@4 hD

12 h
+
f@5 hD

2 h
-
3 f@6 hD

2 h
+
5 f@7 hD

6 h
+
f@8 hD

4 h
,
f@4 hD

4 h
-
4 f@5 hD

3 h
+
3 f@6 hD

h
-
4 f@7 hD

h
+
25 f@8 hD

12 h
>

The derivatives at the endpoints are computed using one-sided formulas. The formulas shown

in the previous example are fourth-order accurate, which is the default. In general, when you

use a symbolic grid and/or data, you get symbolic formulas. This is often useful for doing

analysis on the methods; however, for actual numerical grids, it is usually faster and more

accurate to give the numerical grid to

Advanced Numerical Differential Equation Solving in Mathematica 185

The derivatives at the endpoints are computed using one-sided formulas. The formulas shown

use a symbolic grid and/or data, you get symbolic formulas. This is often useful for doing

analysis on the methods; however, for actual numerical grids, it is usually faster and more

accurate to give the numerical grid to NDSolve`FiniteDifferenceDerivative rather than

using the symbolic formulas.

This defines a randomly spaced grid between 0 and 2 p.

In[16]:= rgrid = Sort@Join@80, 2 p<, Table@2 p RandomReal@D, 810<DDD

Out[16]= 80, 0.94367, 1.005, 1.08873, 1.72052, 1.78776, 2.41574, 2.49119, 2.93248, 4.44508, 6.20621, 2 p<

This approximates the derivative of the sine function at each point on the grid.

In[17]:= NDSolve`FiniteDifferenceDerivative@Derivative@1D, rgrid, Sin@rgridDD

Out[17]= 80.989891, 0.586852, 0.536072, 0.463601, -0.149152,
-0.215212, -0.747842, -0.795502, -0.97065, -0.247503, 0.99769, 0.999131<

This shows the error in the approximations.

In[18]:= % - Cos@rgridD

Out[18]= 9-0.0101091, 0.000031019, -0.0000173088, -0.0000130366, 9.03135µ10-6, 0.0000521639,
0.0000926836, 0.000336785, 0.00756426, 0.0166339, 0.000651758, -0.000869237=

In multiple dimensions, NDSolve`FiniteDifferenceDerivative works on tensor product grids,

and you only need to specify the grid points for each dimension.

This defines grids xgrid and ygrid for the x and y direction, gives an approximation for the mixed
xy partial derivative of the Gaussian on the tensor product of xgrid and ygrid, and makes a
surface plot of the error.

In[19]:= xgrid = Range@0, 8D;
ygrid = Range@0, 10D;
gaussian@x_, y_D = ExpA-IHx - 4L2 + Hy - 5L2M ë 10E;
values = Outer@gaussian, xgrid, ygridD;
ListPlot3D@NDSolve`FiniteDifferenceDerivative@81, 1<, 8xgrid, ygrid<, valuesD -

Outer@Function@8x, y<, Evaluate@D@gaussian@x, yD, x, yDDD, xgrid, ygridDD

Out[23]=

Note that the values need to be given in a matrix corresponding to the outer product of the grid

coordinates.

186 Advanced Numerical Differential Equation Solving in Mathematica

5

10
2

4

6

8
–0.002
0.000

0.002

NDSolve`FiniteDifferenceDerivative does not compute weights for sums of derivatives.

This means that for common operators like the Laplacian, you need to combine two

approximations.

This makes a function that approximates the Laplacian operator on a tensor product grid.

In[24]:= lap@values_, 8xgrid_, ygrid_<D :=
NDSolve`FiniteDifferenceDerivative@82, 0<, 8xgrid, ygrid<, valuesD +
NDSolve`FiniteDifferenceDerivative@80, 2<, 8xgrid, ygrid<, valuesD

This uses the function to approximate the Laplacian for the same grid and Gaussian function
used in the previous example.

In[25]:= ListPlot3D@lap@values, 8xgrid, ygrid<DD

Out[25]=

option name default value

“DifferenceOrder“ 4 asymptotic order of the error

PeriodicInterpolation False whether to consider the values as those of
a periodic function with the period equal to
the interval enclosed by the grid

Options for NDSolve`FiniteDifferenceDerivative.

This approximates the derivatives for the sine function on the random grid defined earlier,
assuming that the function repeats periodically.

In[26]:= NDSolve`FiniteDifferenceDerivative@
1, rgrid, Sin@rgridD, PeriodicInterpolation Ø TrueD

Out[26]= 80.99895, 0.586765, 0.536072, 0.463601, -0.149152,
-0.215212, -0.747842, -0.795502, -0.97065, -0.247503, 0.994585, 0.99895<

When using PeriodicInterpolation -> True, you can omit the last point in the values since it

should always be the same as the first. This feature is useful when solving a PDE with periodic

boundary conditions.

Advanced Numerical Differential Equation Solving in Mathematica 187

5

10
2

4

6

8

–0.4
–0.3
–0.2
–0.1
0.0

This generates second-order finite difference formulas for the first derivative of a symbolic
function.

In[27]:= NDSolve`FiniteDifferenceDerivative@1,
8x-1, x0, x1<, 8f-1, f0, f1<, “DifferenceOrder“ Ø 2D

Out[27]= :
f1 Hx-1 - x0L

H-x-1 + x1L H-x0 + x1L
+

f0 H-x-1 + x1L

H-x-1 + x0L H-x0 + x1L
+

f-1 J-1 -
-x-1+x1
-x-1+x0

N

-x-1 + x1
,

f1 H-x-1 + x0L

H-x-1 + x1L H-x0 + x1L
-

f-1 H-x0 + x1L

H-x-1 + x0L H-x-1 + x1L
+

f0 J-1 +
-x0+x1
-x-1+x0

N

-x0 + x1
,

-
f-1 Hx0 - x1L

H-x-1 + x0L H-x-1 + x1L
-

f0 H-x-1 + x1L

H-x-1 + x0L H-x0 + x1L
+

f1 H-x-1 + x0L J
-x-1+x1
-x-1+x0

+
-x0+x1
-x-1+x0

N

H-x-1 + x1L H-x0 + x1L
>

Fourth-order differences typically provide a good balance between truncation (approximation)

error and roundoff error for machine precision. However, there are some applications where

fourth-order differences produce excessive oscillation (Gibb's phenomena), so second-order

differences are better. Also, for high-precision, higher-order differences may be appropriate.

Even values of “DifferenceOrder“ use centered formulas, which typically have smaller error

coefficients than noncentered formulas, so even values are recommended when appropriate.

NDSolve`FiniteDifferenceDerivativeFunction

When computing the solution to a PDE, it is common to repeatedly apply the same finite differ-

ence approximation to different values on the same grid. A significant savings can be made by

storing the necessary weight computations and applying them to the changing data. When you

omit the (third) argument with function values in NDSolve`FiniteDifferenceDerivative, the

result will be an NDSolve`FiniteDifferenceDerivativeFunction, which is a data object that

stores the weight computations in a efficient form for future repeated use.

188 Advanced Numerical Differential Equation Solving in Mathematica

NDSolve`FiniteDifferenceDerivative@8m1,m2,…<,8grid1,grid2,…<D

compute the finite difference weights needed to approxi-
mate the partial derivative of order (m1, m2, …) for the
function of n variables on the tensor product grid defined
by the outer product of (grid1, grid2, …); the result is
returned as an
NDSolve`FiniteDifferenceDerivativeFunction
object

NDSolve`FiniteDifferenceDerivativeFunctionADerivative@mD,dataE

a data object that contains the weights and other data
needed to quickly approximate the mth-order derivative of
a function; in the standard output form, only the
Derivative@mD operator it approximates is shown

NDSolve`FiniteDifferenceDerivativeFunction@dataD@valuesD

approximate the derivative of the function that takes on
values on the grid used to determine data

Computing finite difference weights for repeated use.

This defines a uniform grid with 25 points on the unit interval and evaluates the sine function
with one period on the grid.

In[2]:= n = 24;
grid = N@Range@0, nD ê nD;
values = Sin@2 p gridD

Out[4]= 90., 0.258819, 0.5, 0.707107, 0.866025, 0.965926, 1., 0.965926, 0.866025,

0.707107, 0.5, 0.258819, 1.22465µ10-16, -0.258819, -0.5, -0.707107, -0.866025,
-0.965926, -1., -0.965926, -0.866025, -0.707107, -0.5, -0.258819, -2.44929µ10-16=

This defines an NDSolve`FiniteDifferenceDerivativeFunction, which can be repeat-
edly applied to different values on the grid to approximate the second derivative.

In[5]:= fddf = NDSolve`FiniteDifferenceDerivative@Derivative@2D, gridD

Out[5]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2D, <>D

Note that the standard output form is abbreviated and only shows the derivative operators that

are approximated.

This computes the approximation to the second derivative of the sine function.

In[6]:= fddf@valuesD

Out[6]= 90.0720267, -10.2248, -19.7382, -27.914, -34.1875, -38.1312, -39.4764, -38.1312,

-34.1875, -27.914, -19.7382, -10.2172, 3.39687µ10-13, 10.2172, 19.7382, 27.914,
34.1875, 38.1312, 39.4764, 38.1312, 34.1875, 27.914, 19.7382, 10.2248, -0.0720267=

Advanced Numerical Differential Equation Solving in Mathematica 189

This function is only applicable for values defined on the particular grid used to construct it. If

your problem requires changing the grid, you will need to use NDSolve`FiniteDifferenceÖ

Derivative to generate weights each time the grid changes. However, when you can use

NDSolve`FiniteDifferenceDerivativeFunction objects, evaluation will be substantially

faster.

This compares timings for computing the Laplacian with the function just defined and with the
definition of the previous section. A loop is used to repeat the calculation in each case because
it is too fast for the differences to show up with Timing.

In[9]:= repeats = 10000;
8First@Timing@Do@fddf@valuesD, 8repeats<DDD,
First@Timing@Do@NDSolve`FiniteDifferenceDerivative@

Derivative@2D, grid, valuesD, 8repeats<DDD<
Out[10]= 80.047, 2.25<

An NDSolve`FiniteDifferenceDerivativeFunction can be used repeatedly in many situa-

tions. As a simple example, consider a collocation method for solving the boundary value

problem

uxx + sinHxL u = l u; uH0L = uH1L = 0

on the unit interval. (This simple method is not necessarily the best way to solve this particular

problem, but it is useful as an example.)

This defines a function that will have all components zero at an approximate solution of the
boundary value problem. Using the intermediate vector v and setting its endpoints (parts
{1,-1}) to 0 is a fast and simple trick to enforce the boundary conditions. Evaluation is pre-
vented except for numbers l because this would not work otherwise. (Also, because Times is
Listable, Sin@2 Pi gridD u would thread componentwise.)

In[11]:= Clear@funD;
fun@u_, l_?NumberQD :=
Module@8n = Length@uD, v = fddf@uD + H Sin@gridD - lL u<,
v@@81, -1<DD = 0.;
8v, u.u - 1<D

190 Advanced Numerical Differential Equation Solving in Mathematica

This uses FindRoot to find an approximate eigenfunction using the constant coefficient case
for a starting value and shows a plot of the eigenfunction.

In[13]:= s4 = FindRootAfun@u, lD, 8u, values<, 9l, -4 p2=E;
ListPlot@Transpose@8grid, u ê. s4<D, PlotLabel Ø ToString@Last@s4DDD

Out[14]=
0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.1

0.2

0.3
l -> -39.4004

Since the setup for this problem is so simple, it is easy to compare various alternatives. For

example, to compare the solution above, which used the default fourth-order differences, to the

usual use of second-order differences, all that needs to be changed is the “DifferenceOrder“.

This solves the boundary value problem using second-order differences and shows a plot of the
difference between it and the fourth-order solution.

In[39]:= fddf = NDSolve`FiniteDifferenceDerivative@
Derivative@2D, grid, “DifferenceOrder“ Ø 2D;

s2 = FindRootAfun@u, lD, 8u, values<, 9l, -4 p2=E;
ListPlot@Transpose@8grid, Hu ê. s4L - Hu ê. s2L<DD

Out[41]=
0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.02

One way to determine which is the better solution is to study the convergence as the grid is

refined. This will be considered to some extent in the section on differentiation matrices below.

While the most vital information about an NDSolve`FiniteDifferenceDerivativeFunction

object, the derivative order, is displayed in its output form, sometimes it is useful to extract this

and other information from an NDSolve`FiniteDifferenceDerivativeFunction, say for use in

a program. The structure of the way the data is stored may change between versions of Mathe-

matica, so extracting the information by using parts of the expression is not recommended. A

better alternative is to use any of the several method functions provided for this purpose.

Advanced Numerical Differential Equation Solving in Mathematica 191

Let FDDF represent an NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

FDDFü“DerivativeOrder“ get the derivative order that FDDF approximates

FDDFü“DifferenceOrder“ get the list with the difference order used for the approxima-
tion in each dimension

FDDFü“PeriodicInterpolation“ get the list with elements True or False indicating
whether periodic interpolation is used for each dimension

FDDFü“Coordinates“ get the list with the grid coordinates in each dimension

FDDFü“Grid“ form the tensor of the grid points; this is the outer product
of the grid coordinates

FDDFü“DifferentiationMatrix“ compute the sparse differentiation matrix mat such that
mat.Flatten@valuesD is equivalent to
Flatten@FDDF@valuesDD

Method functions for exacting information from an
NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

Any of the method functions that return a list with an element for each of the dimensions can

be used with an integer argument dim, which will return only the value for that particular dimen-

sion such that FDDFümethod@dimD = HFDDFümethodL@@dimDD.

The following examples show how you might use some of these methods.

Here is an NDSolve`FiniteDifferenceDerivativeFunction object created with random
grids having between 10 and 16 points in each dimension.

In[15]:= fddf = NDSolve`FiniteDifferenceDerivative@Derivative@0, 1, 2D,
Table@Sort@Join@80., 1.<, Table@RandomReal@D, 8RandomInteger@88, 14<D<DDD,
83<D, PeriodicInterpolation Ø TrueD

Out[15]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@0, 1, 2D, <>D

This shows the dimensions of the outer product grid.

In[20]:= Dimensions@tpg = fddfü“Grid“D

Out[20]= 815, 10, 11, 3<

Note that the rank of the grid point tensor is one more than the dimensionality of the tensor

product. This is because the three coordinates defining each point are in a list themselves. If

you have a function that depends on the grid variables, you can use

Apply@ f, fddf@“Grid“D, 8n<D where n = Length@ fddf@“DerivativeOrder“DD is the dimensional-

ity of the space in which you are approximating the derivative.

192 Advanced Numerical Differential Equation Solving in Mathematica

This defines a Gaussian function of 3 variables and applies it to the grid on which the
NDSolve`FiniteDifferenceDerivativeFunction is defined.

In[21]:= f = Function@8x, y, z<, Exp@-HHx - .5L^2 + Hy - .5L^2 + Hz - .5L^2LDD;
values = Apply@f, fddfü“Grid“, 8Length@fddf@“DerivativeOrder“DD<D;

This shows a 3-dimensional plot of the grid points colored according to the scaled value of the
derivative.

In[23]:= Module@8dvals = fddf@valuesD, maxval, minval<,
maxval = Max@dvalsD;
minval = Min@dvalsD;
Graphics3D@MapThread@8Hue@HÒ2 - minvalL ê Hmaxval - minvalLD, Point@Ò1D< &,

8fddf@“Grid“D, fddf@valuesD<, Length@fddf@“DerivativeOrder“DDDDD

Out[23]=

For a moderate-sized tensor product grid like the example here, using Apply is reasonably fast.

However, as the grid size gets larger, this approach may not be the fastest because Apply can

only be used in limited ways with the Mathematica compiler and hence, with packed arrays. If

you can define your function so you can use Map instead of Apply, you may be able to use a

CompiledFunction since Map has greater applicability within the Mathematica compiler than

does Apply.

Advanced Numerical Differential Equation Solving in Mathematica 193

This defines a CompiledFunction that uses Map to get the values on the grid. (If the first grid
dimension is greater than the system option “MapCompileLength“, then you do not need to
construct the CompiledFunction since the compilation is done automatically when grid is a
packed array.)

In[24]:= cf = Compile@88grid, _Real, 4<<,
Map@Function@8X<, Module@8Xs = X - .5<, Exp@-HXs.XsLDDD, grid, 83<DD

Out[24]= CompiledFunctionA8grid<,
MapAFunctionA8X<, ModuleA8Xs = X - 0.5<, ‰-Xs.XsEE, grid, 83<E, -CompiledCode-E

This defines a function that takes advantage of the fact that Exp has the Listable attribute to
find the values on the grid.

In[25]:= fgrid@grid_D :=
Apply@f, Transpose@grid, RotateLeft@Range@TensorRank@gridDD, 1DDD

This compares timings for the three methods. The commands are repeated several times to get
more accurate timings.

In[26]:= Module@
8repeats = 100, grid = fddf@“Grid“D, n = Length@fddf@“DerivativeOrder“DD<,
8First@Timing@Do@Apply@f, grid, 8n<D, 8repeats<DDD,
First@Timing@Do@cf@gridD, 8repeats<DDD,
First@Timing@Do@fgrid@gridD, 8repeats<DDD<D

Out[26]= 81.766, 0.125, 0.047<

The example timings show that using the CompiledFunction is typically much faster than using

Apply and taking advantage of listability is a little faster yet.

Pseudospectral Derivatives

The maximum value the difference order can take on is determined by the number of points in

the grid. If you exceed this, a warning message will be given and the order reduced

automatically.

194 Advanced Numerical Differential Equation Solving in Mathematica

An even better approach, when possible, is to take advantage of listability when your function

consists of operations and functions which have the Listable attribute. The trick is to separate

the x, y, and z values at each of the points on the tensor product grid. The fastest

way to do this is using Transpose@ fddf@"Grid"DD, RotateLeft@Range@n + 1DDD, where

n = Length@ fddf@"DerivativeOrder "DD is the dimensionality of the space in which you are

approximating the derivative. This will return a list of length n, which has the values on the grid

for each of the component dimensions separately. With the Listable attribute, functions

applied to this will thread over the grid.

This uses maximal order to approximate the first derivative of the sine function on a random
grid.

In[50]:= NDSolve`FiniteDifferenceDerivative@1,
rgrid, Sin@rgridD, “DifferenceOrder“ Ø Length@rgridDD

NDSolve`FiniteDifferenceDerivative::ordred : There are insufficient points in dimension 1
to achieve the requested approximation order. Order will be reduced to 11.

Out[50]= 81.00001, 0.586821, 0.536089, 0.463614, -0.149161, -0.215265,
-0.747934, -0.795838, -0.978214, -0.264155, 0.997089, 0.999941<

Using a limiting order is commonly referred to as a pseudospectral derivative. A common prob-

lem with these is that artificial oscillations (Runge's phenomena) can be extreme. However,

there are two instances where this is not the case: a uniform grid with periodic repetition and a

grid with points at the zeros of the Chebyshev polynomials, Tn, or Chebyshev|Gauss|Lobatto

points [F96a], [QV94]. The computation in both of these cases can be done using a fast Fourier

transform, which is efficient and minimizes roundoff error.

“DifferenceOrder“->n use nth-order finite differences to approximate the
derivative

“DifferenceOrder“->Length@gridD use the highest possible order finite differences to approxi-
mate the derivative on the grid (not generally
recommended)

“DifferenceOrder“->
“Pseudospectral“

use a pseudospectral derivative approximation; only
applicable when the grid points are spaced corresponding
to the Chebyshev|Gauss|Lobatto points or when the grid is
uniform with PeriodicInterpolation -> True

“DifferenceOrder“->8n1,n2,…< use difference orders n1, n2, … in dimensions 1, 2, …
respectively

Settings for the “DifferenceOrder“ option.

This gives a pseudospectral approximation for the second derivative of the sine function on a
uniform grid.

In[27]:= ugrid = N@2 p Range@0, 10D ê 10D;
NDSolve`FiniteDifferenceDerivative@1, ugrid, Sin@ugridD,
PeriodicInterpolation Ø True, “DifferenceOrder“ -> “Pseudospectral“D

Out[28]= 81., 0.809017, 0.309017, -0.309017, -0.809017, -1., -0.809017, -0.309017, 0.309017, 0.809017, 1.<

Advanced Numerical Differential Equation Solving in Mathematica 195

This computes the error at each point. The approximation is accurate to roundoff because the
effective basis for the pseudospectral derivative on a uniform grid for a periodic function are the
trigonometric functions.

In[29]:= % - Cos@ugridD

Out[29]= 96.66134µ10-16, -7.77156µ10-16, 4.996µ10-16, 1.11022µ10-16, -3.33067µ10-16, 4.44089µ10-16,

-3.33067µ10-16, 3.33067µ10-16, -3.88578µ10-16, -1.11022µ10-16, 6.66134µ10-16=

This defines a simple function that generates a grid of n points with leftmost point at x0 and
interval length L having the spacing of the Chebyshev|Gauss|Lobatto points.

In[30]:= CGLGrid@x0_, L_, n_Integer ê; n > 1D :=

x0 +
1

2
L H1 - Cos@p Range@0, n - 1D ê Hn - 1LDL

This computes the pseudospectral derivative for a Gaussian function.

In[31]:= cgrid = CGLGrid@-5, 10., 16D; NDSolve`FiniteDifferenceDerivativeA
1, cgrid, ExpA-cgrid2E, “DifferenceOrder“ -> “Pseudospectral“E

Out[31]= 80.0402426, -0.0209922, 0.0239151, -0.0300589, 0.0425553, -0.0590871, 0.40663, 0.60336,
-0.60336, -0.40663, 0.0590871, -0.0425553, 0.0300589, -0.0239151, 0.0209922, -0.0402426<

This shows a plot of the approximation and the exact values.

In[32]:= ShowA9
ListPlot@Transpose@8cgrid, %<D, PlotStyle Ø PointSize@0.025DD,
PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[32]=
-4 -2 2 4

-0.5

0.5

196 Advanced Numerical Differential Equation Solving in Mathematica

The Chebyshev-Gauss-Lobatto points are the zeros of I1 - x2M Tn£HxL. Using the property

TnHxL = TnHcosHqLL == cosHn qL, these can be shown to be at x j = cosJ
p j
n
N.

This shows a plot of the derivative computed using a uniform grid with the same number of
points with maximal difference order.

In[35]:= ugrid = -5 + 10. Range@0, 15D ê 15;
ShowA9

ListPlotA
TransposeA9ugrid, NDSolve`FiniteDifferenceDerivativeA1, ugrid, ExpA-ugrid2E,

“DifferenceOrder“ Ø Length@ugridD - 1E=E, PlotStyle Ø PointSize@0.025DE,
PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[36]=
-4 -2 2 4

-20

-10

10

20

Even though the approximation is somewhat better in the center (because the points are more

closely spaced there in the uniform grid), the plot clearly shows the disastrous oscillation typical

of overly high-order finite difference approximations. Using the Chebyshev|Gauss|Lobatto

spacing has minimized this.

This shows a plot of the pseudospectral derivative approximation computed using a uniform grid
with periodic repetition.

In[70]:= ugrid = -5 + 10. Range@0, 15D ê 15;
ShowA 9

ListPlotATransposeA9ugrid, NDSolve`FiniteDifferenceDerivativeA
1, ugrid, ExpA-ugrid2E, “DifferenceOrder“ Ø “Pseudospectral“,
PeriodicInterpolation Ø TrueE=E, PlotStyle Ø PointSize@0.025DE,

PlotAEvaluateADAExpA-x2E, xEE, 8x, -5, 5<E=, PlotRange Ø AllE

Out[71]=
-4 -2 2 4

-0.5

0.5

Advanced Numerical Differential Equation Solving in Mathematica 197

With the assumption of periodicity, the approximation is significantly improved. The accuracy of

the periodic pseudospectral approximations is sufficiently high to justify, in some cases, using a

larger computational domain to simulate periodicity, say for a pulse like the example. Despite

the great accuracy of these approximations, they are not without pitfalls: one of the worst is

probably aliasing error, whereby an oscillatory function component with too great a frequency

can be misapproximated or disappear entirely.

Accuracy and Convergence of Finite Difference Approximations

When using finite differences, it is important to keep in mind that the truncation error, or the

asymptotic approximation error induced by cutting off the Taylor series approximation, is not

the only source of error. There are two other sources of error in applying finite difference

formulas; condition error and roundoff error [GMW81]. Roundoff error comes from roundoff in

the arithmetic computations required. Condition error comes from magnification of any errors in

the function values, typically from the division by a power of the step size, and so grows with

decreasing step size. This means that in practice, even though the truncation error approaches

zero as h does, the actual error will start growing beyond some point. The following figures

demonstrate the typical behavior as h becomes small for a smooth function.

100 1000 10000

1. µ 10-14

1. µ 10-11

1. µ 10-8

0.00001

0.01

10

A logarithmic plot of the maximum error for approximating the first derivative of the Gaussian
f HxL = ‰-H15 Hx-1ê2LL

2
 at points on a grid covering the interval @0, 1D as a function of the number of grid points,

n, using machine precision. Finite differences of order 2, 4, 6, and 8 on a uniform grid are shown in red,
green, blue, and magenta, respectively. Pseudospectral derivatives with uniform (periodic) and
Chebyshev spacing are shown in black and gray, respectively.

198 Advanced Numerical Differential Equation Solving in Mathematica

100 1000 10000

1. µ 10-24

1. µ 10-19

1. µ 10-14

1. µ 10-9

0.0001

10

A logarithmic plot of the truncation error (dotted) and the condition and roundoff error (solid line) for
approximating the first derivative of the Gaussian f HxL = ‰-H15 Hx-1ê2LL

2
 at points on a grid covering the

interval @0, 1D as a function of the number of grid points, n. Finite differences of order 2, 4, 6, and 8 on a
uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral derivatives with
uniform (periodic) and Chebyshev spacing are shown in black and gray, respectively. The truncation error
was computed by computing the approximations with very high precision. The roundoff and condition
error was estimated by subtracting the machine-precision approximation from the high-precision
approximation. The roundoff and condition error tends to increase linearly (because of the 1 êh factor
common to finite difference formulas for the first derivative) and tends to be a little bit higher for higher-
order derivatives. The pseudospectral derivatives show more variations because the error of the FFT
computations vary with length. Note that the truncation error for the uniform (periodic) pseudospectral
derivative does not decrease below about 10-22. This is because, mathematically, the Gaussian is not a
periodic function; this error in essence gives the deviation from periodicity.

0 0.2 0.4 0.6 0.8 1
1. µ 10-16

1. µ 10-13

1. µ 10-10

1. µ 10-7

0.0001

0.1

A semilogarithmic plot of the error for approximating the first derivative of the Gaussian f HxL = ‰-Hx-1ê2L
2
 as

a function of x at points on a 45-point grid covering the interval @0, 1D. Finite differences of order 2, 4, 6,
and 8 on a uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral
derivatives with uniform (periodic) and Chebyshev spacing are shown in black and gray, respectively. All
but the pseudospectral derivative with Chebyshev spacing were computed using uniform spacing 1 ê45. It
is apparent that the error for the pseudospectral derivatives is not so localized; not surprising since the
approximation at any point is based on the values over the whole grid. The error for the finite difference
approximations are localized and the magnitude of the errors follows the size of the Gaussian (which is
parabolic on a semilogarithmic plot).

Advanced Numerical Differential Equation Solving in Mathematica 199

From the second plot, it is apparent that there is a size for which the best possible derivative

approximation is found; for larger h, the truncation error dominates, and for smaller h, the

condition and roundoff error dominate. The optimal h tends to give better approximations for

higher-order differences. This is not typically an issue for spatial discretization of PDEs because

computing to that level of accuracy would be prohibitively expensive. However, this error bal-

ance is a vitally important issue when using low-order differences to approximate, for example,

Jacobian matrices. To avoid extra function evaluations, first-order forward differences are

usually used, and the error balance is proportional to the square root of unit roundoff, so pick-

ing a good value of h is important [GMW81].

The plots showed the situation typical for smooth functions where there were no real boundary

effects. If the parameter in the Gaussian is changed so the function is flatter, boundary effects

begin to appear.

0 0.2 0.4 0.6 0.8 1

1. µ 10-13

1. µ 10-10

1. µ 10-7

0.0001

A semilogarithmic plot of the error for approximating the first derivative of the Gaussian f HxL = ‰-H15 Hx-1ê2LL
2

as a function of x at points on a 45-point grid covering the interval @0, 1D. Finite differences of order 2, 4,
6, and 8 on a uniform grid are shown in red, green, blue, and magenta, respectively. Pseudospectral
derivatives with uniform (nonperiodic) and Chebyshev spacing are shown in black and gray, respectively.
All but the pseudospectral derivative with Chebyshev spacing were computed using uniform spacing 1 ê45.
The error for the finite difference approximations are localized, and the magnitude of the errors follows
the magnitude of the first derivative of the Gaussian. The error near the boundary for the uniform spacing
pseudospectral (order-45 polynomial) approximation becomes enormous; as h decreases, this is not
bounded. On the other hand, the error for the Chebyshev spacing pseudospectral is more uniform and
overall quite small.

From what has so far been shown, it would appear that the higher the order of the approxima-

tion, the better. However, there are two additional issues to consider. The higher-order approxi-

mations lead to more expensive function evaluations, and if implicit iteration is needed (as for a

stiff problem), then not only is computing the Jacobian more expensive, but the eigenvalues of

the matrix also tend to be larger, leading to more stiffness and more difficultly for iterative

solvers. This is at an extreme for pseudospectral methods, where the Jacobian has essentially

no nonzero entries [F96a]. Of course, these problems are a trade-off for smaller system (and

hence matrix) size.

200 Advanced Numerical Differential Equation Solving in Mathematica

From what has so far been shown, it would appear that the higher the order of the approxima-

mations lead to more expensive function evaluations, and if implicit iteration is needed (as for a

stiff problem), then not only is computing the Jacobian more expensive, but the eigenvalues of

the matrix also tend to be larger, leading to more stiffness and more difficultly for iterative

solvers. This is at an extreme for pseudospectral methods, where the Jacobian has essentially

no nonzero entries [F96a]. Of course, these problems are a trade-off for smaller system (and

hence matrix) size.

The other issue is associated with discontinuities. Typically, the higher order the polynomial

approximation, the worse the approximation. To make matters even worse, for a true discontinu-

ity, the errors magnify as the grid spacing is reduced.

0.2 0.4 0.6 0.8 1

-75

-50

-25

25

50

75

A plot of approximations for the first derivative of the discontinuous unit step function
fHxL = UnitStep Hx - 1 ê 2L as a function of x at points on a 128-point grid covering the interval @0, 1D.
Finite differences of order 2, 4, 6, and 8 on a uniform grid are shown in red, green, blue, and magenta,
respectively. Pseudospectral derivatives with uniform (periodic) and Chebyshev spacing are shown in
black and gray, respectively. All but the pseudospectral derivative with Chebyshev spacing were
computed using uniform spacing 1 ê128. All show oscillatory behavior, but it is apparent that the
Chebyshev pseudospectral derivative does better in this regard.

There are numerous alternatives that are used around known discontinuities, such as front

tracking. First-order forward differences minimize oscillation, but introduce artificial viscosity

terms. One good alternative are the so-called essentially nonoscillatory (ENO) schemes, which

have full order away from discontinuities but introduce limits near discontinuities that limit the

approximation order and the oscillatory behavior. At this time, ENO schemes are not imple-

mented in NDSolve.

In summary, choosing an appropriate difference order depends greatly on the problem struc-

ture. The default of 4 was chosen to be generally reasonable for a wide variety of PDEs, but you

may want to try other settings for a particular problem to get better results.

Advanced Numerical Differential Equation Solving in Mathematica 201

Differentiation Matrices

Since differentiation, and naturally finite difference approximation, is a linear operation, an

alternative way of expressing the action of a FiniteDifferenceDerivativeFunction is with a

matrix. A matrix that represents an approximation to the differential operator is referred to as a

differentiation matrix [F96a]. While differentiation matrices may not always be the optimal way

of applying finite difference approximations (particularly in cases where an FFT can be used to

reduce complexity and error), they are invaluable as aids for analysis and, sometimes, for use

in the linear solvers often needed to solve PDEs.

Let FDDF represent an NDSolve`FiniteDifferenceDerivativeFunction@dataD object.

FDDFü“DifferentiationMatrix“ recast the linear operation of FDDF as a matrix that
represents the linear operator

Forming a differentiation matrix.

This creates a FiniteDifferenceDerivativeFunction object.

In[37]:= fdd = NDSolve`FiniteDifferenceDerivative@2, Range@0, 10DD

Out[37]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2D, <>D

This makes a matrix representing the underlying linear operator.

In[38]:= smat = fdd@“DifferentiationMatrix“D

Out[38]= SparseArray@<59>, 811, 11<D

The matrix is given in a sparse form because, in general, differentiation matrices have relatively

few nonzero entries.

202 Advanced Numerical Differential Equation Solving in Mathematica

This converts to a normal dense matrix and displays it using MatrixForm.

In[39]:= MatrixForm@mat = Normal@smatDD

Out[39]//MatrixForm=

15

4
-
77

6

107

6
-13 61

12
-
5

6
0 0 0 0 0

5

6
-
5

4
-
1

3

7

6
-
1

2

1

12
0 0 0 0 0

-
1

12

4

3
-
5

2

4

3
-

1

12
0 0 0 0 0 0

0 -
1

12

4

3
-
5

2

4

3
-

1

12
0 0 0 0 0

0 0 -
1

12

4

3
-
5

2

4

3
-

1

12
0 0 0 0

0 0 0 -
1

12

4

3
-
5

2

4

3
-

1

12
0 0 0

0 0 0 0 -
1

12

4

3
-
5

2

4

3
-

1

12
0 0

0 0 0 0 0 -
1

12

4

3
-
5

2

4

3
-

1

12
0

0 0 0 0 0 0 -
1

12

4

3
-
5

2

4

3
-

1

12

0 0 0 0 0 1

12
-
1

2

7

6
-
1

3
-
5

4

5

6

0 0 0 0 0 -
5

6

61

12
-13 107

6
-
77

6

15

4

This shows that all three of the representations are roughly equivalent in terms of their action
on data.

In[40]:= data = MapAExpA-Ò2E &, N@Range@0, 10DDE;
8fdd@dataD, smat.data, mat.data<

Out[41]= 99-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11=,
9-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11=,
9-0.646094, 0.367523, 0.361548, -0.00654414, -0.00136204, -0.0000101341,

-9.35941µ10-9, -1.15702µ10-12, -1.93287µ10-17, 1.15721µ10-12, -1.15721µ10-11==

As mentioned previously, the matrix form is useful for analysis. For example, it can be used in a

direct solver or to find the eigenvalues that could, for example, be used for linear stability

analysis.

This computes the eigenvalues of the differentiation matrix.

In[42]:= Eigenvalues@N@smatDD

Out[42]= 9-4.90697, -3.79232, -2.38895, -1.12435, -0.287414,

8.12317µ10-6 + 0.0000140698 Â, 8.12317µ10-6 - 0.0000140698 Â, -0.0000162463,
-8.45104µ10-6, 4.22552µ10-6 + 7.31779µ10-6 Â, 4.22552µ10-6 - 7.31779µ10-6 Â=

For pseudospectral derivatives, which can be computed using fast Fourier transforms, it may be

faster to use the differentiation matrix for small size, but ultimately, on a larger grid, the better

complexity and numerical properties of the FFT make this the much better choice.

Advanced Numerical Differential Equation Solving in Mathematica 203

For multidimensional derivatives, the matrix is formed so that it is operating on the flattened

data, the KroneckerProduct of the matrices for the one-dimensional derivatives. It is easiest

to understand this through an example.

This evaluates a Gaussian function on the grid that is the outer product of grids in the x and y
direction.

In[4]:= xgrid = N@Range@-2, 2, 1 ê 10DD;
ygrid = N@Range@-2, 2, 1 ê 8DD;
data = OuterAExpA-IHÒ1L2 + HÒ2L2ME &, xgrid, ygridE;

This defines an NDSolve`FiniteDifferenceDerivativeFunction which computes the
mixed x-y partial of the function using fourth-order differences.

In[7]:= fdd = NDSolve`FiniteDifferenceDerivative@81, 1<, 8xgrid, ygrid<D

Out[7]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@1, 1D, <>D

This computes the associated differentiation matrix.

In[8]:= dm = fdd@“DifferentiationMatrix“D

Out[8]= SparseArray@<22848>, 81353, 1353<D

Note that the differentiation matrix is a 1353×1353 matrix. The number 1353 is the total num-

ber of points on the tensor product grid, that, of course, is the product of the number of points

on the x and y grids. The differentiation matrix operates on a vector of data which comes from

flattening data on the tensor product grid. The matrix is also very sparse; only about one-half

of a percent of the entries are nonzero. This is easily seen with a plot of the positions with

nonzero values.

Show a plot of the positions with nonzero values for the differentiation matrix.

In[9]:= MatrixPlot@Unitize@dmDD

Out[9]=

1 500 1000 1353

1

500

1000

1353

1 500 1000 1353
1

500

1000

1353

204 Advanced Numerical Differential Equation Solving in Mathematica

This compares the computation of the mixed x-y partial with the two methods.

In[53]:= Max@dm.Flatten@dataD - Flatten@fdd@dataDDD

Out[53]= 3.60822µ10-15

The matrix is the KroneckerProduct, or direct matrix product of the 1-dimensional matrices.

Get the 1-dimensional differentiation matrices and form their direct matrix product.

In[16]:= fddx = NDSolve`FiniteDifferenceDerivative@81<, 8xgrid<D;
fddy = NDSolve`FiniteDifferenceDerivative@81<, 8ygrid<D;
dmk = KroneckerProduct@fddxü“DifferentiationMatrix“,

fddyü“DifferentiationMatrix“D; dmk ã dm
Out[17]= True

Using the differentiation matrix results in slightly different values for machine numbers because

the order of operations is different which, in turn, leads to different roundoff errors.

The differentation matrix can be advantageous when what is desired is a linear combination of

derivatives. For example, the computation of the Laplacian operator can be put into a single

matrix.

This makes a function that approximates the Laplacian operator on a the tensor product grid.

In[18]:= flap =
Function@Evaluate@NDSolve`FiniteDifferenceDerivative@82, 0<, 8xgrid, ygrid<D@ÒD +

NDSolve`FiniteDifferenceDerivative@80, 2<, 8xgrid, ygrid<D@ÒDDD
Out[18]= NDSolve`FiniteDifferenceDerivativeFunction@Derivative@0, 2D, <>D@Ò1D +

NDSolve`FiniteDifferenceDerivativeFunction@Derivative@2, 0D, <>D@Ò1D &

This computes the differentiation matrices associated with the derivatives in the x and y
direction.

In[19]:= dmlist = Map@HHead@ÒD@“DifferentiationMatrix“DL &, List üü First@flapDD

Out[19]= 8SparseArray@<6929>, 81353, 1353<D, SparseArray@<6897>, 81353, 1353<D<

This adds the two sparse matrices together resulting in a single matrix for the Laplacian
operator.

In[68]:= slap = Total@dmlistD

Out[68]= SparseArray@<12473>, 81353, 1353<D

Advanced Numerical Differential Equation Solving in Mathematica 205

This shows a plot of the positions with nonzero values for the differentiation matrix.

In[69]:= MatrixPlot@Unitize@slapDD

Out[69]=

1 500 1000 1353

1

500

1000

1353

1 500 1000 1353
1

500

1000

1353

This compares the values and timings for the two different ways of approximating the Laplacian.

In[64]:= Block@8repeats = 1000, l1, l2<,
data = Developer`ToPackedArray@dataD;
fdata = Flatten@dataD;
Map@First, 8

Timing@Do@l1 = flap@dataD, 8repeats<DD,
Timing@Do@l2 = slap.fdata, 8repeats<DD,
8Max@Flatten@l1D - l2D<

<D
D

Out[64]= 90.14, 0.047, 1.39888µ10-14=

Interpretation of Discretized Dependent Variables

When a dependent variable is given in a monitor (e.g. StepMonitor) option or in a method

where interpretation of the dependent variable is needed (e.g. EventLocator and Projection),

for ODEs, the interpretation is generally clear: at a particular value of time (or the independent

variable), use the value for that component of the solution for the dependent variable.

For PDEs, the interpretation to use is not so obvious. Mathematically speaking, the dependent

variable at a particular time is a function of space. This leads to the default interpretation,

which is to represent the dependent variable as an approximate function across the spatial

domain using an InterpolatingFunction.

206 Advanced Numerical Differential Equation Solving in Mathematica

Another possible interpretation for PDEs is to consider the dependent variable at a particular

time as representing the spatially discretized values at that time~that is, discretized both in

time and space. You can request that monitors and methods use this fully discretized interpreta-

tion by using the MethodOfLines option DiscretizedMonitorVariables -> True.

The best way to see the difference between the two interpretations is with an example.

This solves Burgers' equation. The StepMonitor is set so that it makes a plot of the solution
at the step time of every tenth time step, producing a sequence of curves of gradated color.
You can animate the motion by replacing Show with ListAnimate; note that the motion of the
wave in the animation does not reflect actual wave speed since it effectively includes the step
size used by NDSolve.

In[5]:= curves = Reap@Block@8count = 0<, Timing@
NDSolve@8D@u@t, xD , tD ã 0.01 D@u@t, xD, x, xD + u@t, xD D@u@t, xD, xD,

u@0, xD ã Cos@2 Pi xD, u@t, 0D ã u@t, 1D<, u, 8t, 0, 1<, 8x, 0, 1<,
StepMonitor ß If@Mod@count++, 10D ã 0, Sow@Plot@u@t, xD, 8x, 0, 1<,

PlotRange Ø 880, 1<, 8-1, 1<<, PlotStyle Ø Hue@tDDDD, Method Ø
8“MethodOfLines“, “SpatialDiscretization“ Ø 8“TensorProductGrid“,

“MinPoints“ Ø 100, “DifferenceOrder“ Ø “Pseudospectral“<<DDDD@@2, 1DD;

In[8]:= Show@curvesD

Out[6]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

In executing the command above, u@t, xD in the StepMonitor is effectively a function of x, so it

can be plotted with plot. You could do other operations on it, such as numerical integration.

This solves Burgers' equation. The StepMonitor is set so that it makes a list plot of the
spatially discretized solution at the step time every tenth step. You can animate the motion by
replacing Show with ListAnimate .

In[10]:= discretecurves =
Reap@Block@8count = 0<, Timing@NDSolve@8D@u@t, xD , tD ã 0.01 D@u@t, xD, x, xD +

u@t, xD D@u@t, xD, xD, u@0, xD ã Cos@2 Pi xD, u@t, 0D ã u@t, 1D<,
u, 8t, 0, 1<, 8x, 0, 1<, StepMonitor ß If@Mod@count++, 10D ã 0,

Sow@ListPlot@u@t, xD, PlotRange Ø 8-1, 1<, PlotStyle Ø Hue@tDDD;D,
Method Ø 8“MethodOfLines“, “DiscretizedMonitorVariables“ Ø True,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MinPoints“ Ø 100,
“DifferenceOrder“ Ø “Pseudospectral“<<DDDD@@2, 1DD;

In[11]:= Show@discretecurvesD

Out[11]=
20 40 60 80 100

-1.0

-0.5

0.5

1.0

Advanced Numerical Differential Equation Solving in Mathematica 207

In this case, u@t, xD is given at each step as a vector with the discretized values of the solution

on the spatial grid. Showing the discretization points makes for a more informative monitor in

this example since it allows you to see how well the front is resolved as it forms.

The vector of values contains no information about the grid itself; in the example, the plot is

made versus the index values, which shows the correct spacing for a uniform grid. Note that

when u is interpreted as a function, the grid will be contained in the InterpolatingFunction

used to represent the spatial solution, so if you need the grid, the easiest way to get it is to

extract it from the InterpolatingFunction, which represents u@t, xD.

Finally note that using the discretized representation is significantly faster. This may be an

important issue if you are using the representation in solution method such as Projection or

EventLocator. An example where event detection is used to prevent solutions from going

beyond a computational domain is computed much more quickly by using the discretized

interpretation.

Boundary Conditions

Often, with PDEs, it is possible to determine a good numerical way to apply boundary conditions

for a particular equation and boundary condition. The example given previously in the introduc-

tion of "The Numerical Method of Lines" is such a case. However, the problem of finding a

general algorithm is much more difficult and is complicated somewhat by the effect that bound-

ary conditions can have on stiffness and overall stability.

Periodic boundary conditions are particularly simple to deal with: periodic interpolation is used

for the finite differences. Since pseudospectral approximations are accurate with uniform grids,

solutions can often be found quite efficiently.

208 Advanced Numerical Differential Equation Solving in Mathematica

NDSolve@8eqn1,eqn2,…,u1@t,xminD==u1@t,xmaxD,u2@t,xminD==u2@t,xmaxD,…<,
8u1@t,xD,u2@t,xD,…<,8t,tmin,tmax<,8x,xmin,xmax<D

solve a system of partial differential equations for function
u1, u2, … with periodic boundary conditions in the spatial
variable x (assuming that t is a temporal variable)

NDSolve@8eqn1,eqn2,…,u1@t,x1min,x2,…D==u1@t,x1max x2,…D,
u2@t,x1min,x2,…D==u2@t,x1max x2,…D,…<,

8u1@t,x1,x2,…D,u2@t,x1,x2,…D,…<, 8t,tmin,tmax<,8x,xmin,xmax<D

solve a system of partial differential equations for function
u1, u2, … with periodic boundary conditions in the spatial
variable x1 (assuming that t is a temporal variable)

Giving boundary conditions for partial differential equations.

If you are solving for several functions u1, u2, … then for any of the functions to have periodic

boundary conditions, all of them must (the condition need only be specified for one function). If

you are working with more than one spatial dimension, you can have periodic boundary condi-

tions in some independent variable dimensions and not in others.

This solves a generalization of the sine-Gordon equation to two spatial dimensions with periodic
boundary conditions using a pseudospectral method. Without the pseudospectral method
enabled by the periodicity, the problem could take much longer to solve.

In[2]:= sol = NDSolveA9D@u@t, x, yD, t, tD ã
D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,

u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -10, yD ã u@t, 10, yD, u@t, x, -10D ã u@t, x, 10D=, u, 8t, 0, 6<,

8x, -10, 10<, 8y, -10, 10<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<<E

Out[2]= 88u Ø InterpolatingFunction@880., 6.<, 8-10., 10.<, 8-10., 10.<<, <>D<<

In the InterpolatingFunction object returned as a solution, the ellipses in the notation

8…, xmin, xmax, …< are used to indicate that this dimension repeats periodically

Advanced Numerical Differential Equation Solving in Mathematica 209

This makes a surface plot of a part of the solution derived from periodic continuation at t == 6.

In[7]:= Plot3D@First@u@6, x, yD ê. solD, 8x, 20, 40<,
8y, -15, 15<, PlotRange Ø All, PlotPoints Ø 40D

Out[7]=

NDSolve uses two methods for nonperiodic boundary conditions. Both have their merits and

drawbacks. The first method is to differentiate the boundary conditions with respect to the

temporal variable and solve for the resulting differential equation(s) at the boundary. The

second method is to discretize each boundary condition as it is. This typically results in an

algebraic equation for the boundary solution component, so the equations must be solved with

a DAE solver. This is controlled with the DifferentiateBoundaryConditions option to

MethodOfLines.

To see how the differentiation method works, consider again the simple example of the method

of lines introduction section. In the first formulation, the Dirichlet boundary condition at x == 0

was handled by differentiation with respect to t. The Neumann boundary condition was handled

using the idea of reflection, which worked fine for a second-order finite difference

approximation, but does not generalize quite as easily to higher order (though it can be done

easily for this problem by computing the entire reflection). The differentiation method,

however, can be used for any order differences on the Neumann boundary condition at x == 1.

As an example, a solution to the problem will be developed using fourth-order differences.

210 Advanced Numerical Differential Equation Solving in Mathematica

20

25

30

35

40

–10

0

10

–0.10
–0.05

0.00

0.05

0.10

This is a setting for the number of and spacing between spatial points. It is purposely set small
so you can see the resulting equations. You can change it later to improve the accuracy of the
approximations.

In[8]:= n = 10; hn = 1 ê n;

This defines the vector of ui.

In[9]:= U@t_D = Table@ui@tD, 8i, 0, n<D

Out[9]= 8u0@tD, u1@tD, u2@tD, u3@tD, u4@tD, u5@tD, u6@tD, u7@tD, u8@tD, u9@tD, u10@tD<

This discretizes the Neumann boundary condition at x == 1 in the spatial direction.

In[10]:= bc = Last@NDSolve`FiniteDifferenceDerivative@1, hn Range@0, nD, U@tDDD ã 0

Out[10]=
5 u6@tD

2
-
40 u7@tD

3
+ 30 u8@tD - 40 u9@tD +

125 u10@tD

6
ã 0

This differentiates the discretized boundary condition with respect to t.

In[11]:= bcprime = D@bc, tD

Out[11]=
5

2
u6

£@tD -
40

3
u7

£@tD + 30 u8
£@tD - 40 u9

£@tD +
125

6
u10

£@tD ã 0

Technically, it is not necessary that the discretization of the boundary condition be done with

the same difference order as the rest of the DE; in fact, since the error terms for the one-sided

derivatives are much larger, it may sometimes be desirable to increase the order near the

boundaries. NDSolve does not do this because it is desirable that the difference order and the

InterpolatingFunction interpolation order be consistent across the spatial direction.

Advanced Numerical Differential Equation Solving in Mathematica 211

This is another way of generating the equations using
NDSolve`FiniteDifferenceDerivative. The first and last will have to be replaced with the
appropriate equations from the boundary conditions.

In[12]:= eqns = ThreadB

D@U@tD, tD ã
1

8
NDSolve`FiniteDifferenceDerivative@2, hn Range@0, nD, U@tDDF

Out[12]= :u0
£@tD ã

1

8
375 u0@tD -

3850 u1@tD

3
+
5350 u2@tD

3
- 1300 u3@tD +

1525 u4@tD

3
-
250 u5@tD

3
,

u1
£@tD ã

1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

u10
£@tD ã

1

8
-
250

3
u5@tD +

1525 u6@tD

3
- 1300 u7@tD +

5350 u8@tD

3
-
3850 u9@tD

3
+ 375 u10@tD >

Now you can replace the first and last equation with the boundary condition.

In[13]:= eqns@@1, 2DD = D@Sin@2 p tD, tD;
eqns@@-1DD = bcprime;
eqns

Out[15]= :u0
£@tD ã 2 p Cos@2 p tD, u1

£@tD ã
1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

,

212 Advanced Numerical Differential Equation Solving in Mathematica

Out[15]=

u6
£@tD ã

8
-
3

u4@tD +
3

- 250 u6@tD +
3

-
3

,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

5

2
u6

£@tD -
40

3
u7

£@tD + 30 u8
£@tD - 40 u9

£@tD +
125

6
u10

£@tD ã 0>

NDSolve is capable of solving the system as is for the appropriate derivatives, so it is ready for
the ODEs.

In[16]:= diffsol = NDSolve@8eqns, Thread@U@0D ã Table@0, 811<DD<, U@tD, 8t, 0, 4<D

Out[16]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<

This shows a plot of how well the boundary condition at x == 1 was satisfied.

In[17]:= Plot@Evaluate@Apply@Subtract, bcD ê. diffsolD, 8t, 0, 4<D

Out[17]=

1 2 3 4

-5.µ 10-16

5.µ 10-16

1.µ 10-15

Treating the boundary conditions as algebraic conditions saves a couple of steps in the process-

ing at the expense of using a DAE solver.

Advanced Numerical Differential Equation Solving in Mathematica 213

This replaces the first and last equations (from before) with algebraic conditions corresponding
to the boundary conditions.

In[18]:= eqns@@1DD = u0@tD ã Sin@2 p tD;
eqns@@-1DD = bc;
eqns

Out[20]= :u0@tD ã Sin@2 p tD, u1
£@tD ã

1

8

250 u0@tD

3
- 125 u1@tD -

100 u2@tD

3
+
350 u3@tD

3
- 50 u4@tD +

25 u5@tD

3
,

u2
£@tD ã

1

8
-
25

3
u0@tD +

400 u1@tD

3
- 250 u2@tD +

400 u3@tD

3
-
25 u4@tD

3
,

u3
£@tD ã

1

8
-
25

3
u1@tD +

400 u2@tD

3
- 250 u3@tD +

400 u4@tD

3
-
25 u5@tD

3
,

u4
£@tD ã

1

8
-
25

3
u2@tD +

400 u3@tD

3
- 250 u4@tD +

400 u5@tD

3
-
25 u6@tD

3
,

u5
£@tD ã

1

8
-
25

3
u3@tD +

400 u4@tD

3
- 250 u5@tD +

400 u6@tD

3
-
25 u7@tD

3
,

u6
£@tD ã

1

8
-
25

3
u4@tD +

400 u5@tD

3
- 250 u6@tD +

400 u7@tD

3
-
25 u8@tD

3
,

u7
£@tD ã

1

8
-
25

3
u5@tD +

400 u6@tD

3
- 250 u7@tD +

400 u8@tD

3
-
25 u9@tD

3
,

u8
£@tD ã

1

8
-
25

3
u6@tD +

400 u7@tD

3
- 250 u8@tD +

400 u9@tD

3
-
25 u10@tD

3
,

u9
£@tD ã

1

8

25 u5@tD

3
- 50 u6@tD +

350 u7@tD

3
-
100 u8@tD

3
- 125 u9@tD +

250 u10@tD

3
,

5 u6@tD

2
-
40 u7@tD

3
+ 30 u8@tD - 40 u9@tD +

125 u10@tD

6
ã 0>

This solves the system of DAEs with NDSolve.

In[21]:= daesol = NDSolve@8eqns, Thread@U@0D ã Table@0, 811<DD<, U@tD, 8t, 0, 4<D

Out[21]= 88u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<<

214 Advanced Numerical Differential Equation Solving in Mathematica

This shows how well the boundary condition was satisfied.

In[22]:= Plot@Evaluate@Apply@Subtract, bcD ê. daesolD, 8t, 0, 4<, PlotRange Ø AllD

Out[22]=
1 2 3 4

-1.5µ 10-14

-1.µ 10-14

-5.µ 10-15

5.µ 10-15

1.µ 10-14

1.5µ 10-14

For this example, the boundary condition was satisfied well within tolerances in both cases, but

the differentiation method did very slightly better. This is not always true; in some cases, with

the differentiation method, the boundary condition can experience cumulative drift since the

error control in this case is only local. The Dirichlet boundary condition at x == 0 in this example

shows some drift.

This makes a plot that compares how well the Dirichlet boundary condition at x == 0 was satis-
fied with the two methods. The solution with the differentiated boundary condition is shown in
black.

In[23]:= Plot@Evaluate@8u0@tD ê. diffsol, u0@tD ê. daesol< - Sin@2 p tD D,
8t, 0, 4<, PlotStyle Ø 88Black<, 8Blue<<, PlotRange Ø AllD

Out[23]=

1 2 3 4

-2.µ 10-7

-1.µ 10-7

1.µ 10-7

2.µ 10-7

3.µ 10-7

4.µ 10-7

When using NDSolve, it is easy to switch between the two methods by using the

DifferentiateBoundaryConditions option. Remember that when you use

DifferentiateBoundaryConditions -> False, you are not as free to choose integration

methods; the method needs to be a DAE solver.

With systems of PDEs or equations with higher-order derivatives having more complicated

boundary conditions, both methods can be made to work in general. When there are multiple

boundary conditions at one end, it may be necessary to attach some conditions to interior

points. Here is an example of a PDE with two boundary conditions at each end of the spatial

interval.

Advanced Numerical Differential Equation Solving in Mathematica 215

Understanding the message about spatial error will be addressed in the next section. For now,

ignore the message and consider the boundary conditions.

This forms a list of InterpolatingFunctions differentiated to the same order as each of the
boundary conditions.

In[26]:=

This makes a logarithmic plot of how well each of the four boundary conditions is satisfied by
the solution computed with NDSolve as a function of t.

In[27]:=

It is clear that the boundary conditions are satisfied to well within the tolerances allowed by

AccuracyGoal and PrecisionGoal options. It is typical that conditions with higher-order deriva-

tives will not be satisfied as well as those with lower-order derivatives.

216 Advanced Numerical Differential Equation Solving in Mathematica

This solves a differential equation with two boundary conditions at each end of the spatial
interval. The StiffnessSwitching integration method is used to avoid potential problems
with stability from the fourth-order derivative.

In[25]:= dsol = NDSolveB:D@u@x, tD, t, tD ã -D@u@x, tD, x, x, x, xD,

:u@x, tD ã
x2

2
-
x3

3
+
x4

12
,

D@u@x, tD, tD ã 0> ê. t Ø 0,
Table@HD@u@x, tD, 8x, d<D ã 0L ê. x Ø b, 8b, 0, 1<, 8d, 2 b, 2 b + 1<D

>,

u, 8x, 0, 1<, 8t, 0, 2<, Method Ø "StiffnessSwitching", InterpolationOrder Ø AllF

Out[25]= 88u Ø InterpolatingFunction@880., 1.<, 80., 2.<<, <>D<<

bct =
Table@HD@u@x, tD, 8x, d<D ê. x Ø bL ê. First@dsolD, 8b, 0, 1<, 8d, 2 b, 2 b + 1<D

Out[26]= 88InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@0, tD,
InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@0, tD<,

8InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@1, tD,
InterpolatingFunction@880., 1.<, 80., 2.<<, <>D@1, tD<<

LogPlot@Evaluate@Map@Abs, bct, 82<DD, 8t, 0, 2<, PlotRange Ø AllD

Out[27]=

0.5 1.0 1.5 2.0

10-16

10-12

10-8

10-4

1

Inconsistent Boundary Conditions

It is important that the boundary conditions you specify be consistent with both the initial

condition and the PDE. If this is not the case, NDSolve will issue a message warning about the

inconsistency. When this happens, the solution may not satisfy the boundary conditions, and in

the worst cases, instability may appear.

In this example for the heat equation, the boundary condition at x == 0 is clearly inconsistent
with the initial condition.

In[2]:= sol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@t, 0D ã 1, u@t, 1D ã 0, u@0, xD ã .5<, u, 8t, 0, 1<, 8x, 0, 1<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[2]= 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<<

This shows a plot of the solution at x == 0 as a function of t. The boundary condition uHt, 0L = 1 is
clearly not satisfied.

In[3]:= Plot@Evaluate@First@u@t, 0D ê. solDD, 8t, 0, 1<D

Out[3]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The reason the boundary condition is not satisfied is because once it is differentiated, it

becomes utHt, 0L = 0, so the solution will be whatever constant value comes from the initial

condition.

Advanced Numerical Differential Equation Solving in Mathematica 217

When the boundary conditions are not differentiated, the DAE solver in effect modifies the initial
conditions so that the boundary condition is satisfied.

In[4]:= daesol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@t, 0D ã 1, u@t, 1D ã 0, u@0, xD ã 0<, u, 8t, 0, 1<, 8x, 0, 1<,

Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False<D;
Plot@First@u@t, 0D ê. daesolD - 1, 8t, 0, 1<, PlotRange Ø AllD

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

NDSolve::ivcon: The given initial conditions were not consistent with the
differential-algebraic equations. NDSolve will attempt to correct the values. à

NDSolve::ivres :
NDSolve has computed initial values that give a zero residual for the differential-algebraic system, but

some components are different from those specified. If you need those to be satisfied, it is
recommended that you give initial conditions for all dependent variables and derivatives of them.

Out[5]=
0.2 0.4 0.6 0.8 1.0

-1.µ 10-15

1.µ 10-15

2.µ 10-15

It is not always the case that the DAE solver will find good initial conditions that lead to an

effectively correct solution like this. A better way to handle this problem is to give an initial

condition that is consistent with the boundary conditions, even if it is discontinuous. In this case

the unit step function does what is needed.

This uses a discontinuous initial condition to match the boundary condition, giving a solution
correct to the resolution of the spatial discretization.

In[6]:= usol = NDSolve@8D@u@t, xD, tD ã D@u@t, xD, x, xD, u@t, 0D ã 1,
u@t, 1D ã 0, u@0, xD ã UnitStep@-xD<, u, 8t, 0, 1<, 8x, 0, 1<D;

Plot3D@Evaluate@First@u@t, xD ê. usolDD, 8x, 0, 1<, 8t, 0, 1<D

Out[7]=

218 Advanced Numerical Differential Equation Solving in Mathematica

0.0

0.5

1.0 0.0

0.5

1.0

0.0

0.5

1.0

In general, with discontinuous initial conditions, spatial error estimates cannot be satisfied,

since they are predicated on smoothness so, in general, it is best to choose how well you want

to model the effect of the discontinuity by either giving a smooth function which approximates

the discontinuity or by specifying explicitly the number of points to use in the spatial discretiza-

tion. More detail on spatial error estimates and discretization is given in "Spatial Error

Estimates".

A more subtle inconsistency arises when the temporal variable has higher-order derivatives and

boundary conditions may be differentiated more than once.

Consider the wave equation

utt = uxx
with initial conditions uH0, xL = sinHxL utH0, xL = 0

and boundary conditions uHt, 0L = 0 uxHt, 0L = ‰t

The initial condition sinHxL satisfies the boundary conditions, so you might be surprised that

NDSolve issues the NDSolve::ibcinc message.

In this example, the boundary and initial conditions appear to be consistent at first glance, but
actually have inconsistencies which show up under differentiation.

In[8]:= isol = NDSolve@
8D@u@t, xD, t, tD ã D@u@t, xD, x, xD, u@0, xD ã Sin@xD, HD@u@t, xD, tD ê. t Ø 0L ã 0,
u@t, 0D ã 0, HD@u@t, xD, xD ê. x Ø 0L ã Exp@tD<, u, 8t, 0, 1<, 8x, 0, 2 p<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[8]= 88u Ø InterpolatingFunction@880., 1.<, 80., 6.28319<<, <>D<<

The inconsistency appears when you differentiate the second initial condition with respect to x,

giving ut xHx, 0L = 0, and differentiate the second boundary condition with respect to t, giving

ux tH0, tL = ‰t. These two are inconsistent at x = t = 0.

Occasionally, NDSolve will issue the NDSolve::ibcinc message warning about inconsistent

boundary conditions when they are actually consistent. This happens due to discretization error

in approximating Neumann boundary conditions or any boundary condition that involves a

spatial derivative. The reason this happens is that spatial error estimates (see "Spatial Error

Estimates") used to determine how many points to discretize with are based on the PDE and

the initial condition, but not the boundary conditions. The one-sided finite difference formulas

that are used to approximate the boundary conditions also have larger error than a centered

formula of the same order, leading to additional discretization error at the boundary. Typically

this is not a problem, but it is possible to construct examples where it does occur.

Advanced Numerical Differential Equation Solving in Mathematica 219

In this example, because of discretization error, NDSolve incorrectly warns about inconsistent
boundary conditions.

In[9]:= sol = NDSolve@8D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã 1 - Sin@4 * Pi * xD ê H4 * PiL,
u@0, tD ã 1, u@1, tD + Derivative@1, 0D@uD@1, tD ã 0<, u, 8x, 0, 1<, 8t, 0, 1<D

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent. à

Out[9]= 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<<

A plot of the boundary condition shows that the error, while not large, is outside of the default
tolerances.

In[10]:= Plot@First@u@1, tD + Derivative@1, 0D@uD@1, tD ê. solD, 8t, 0, 1<D

Out[10]=

0.2 0.4 0.6 0.8 1.0

0.000234638

0.000234638

0.000234638

0.000234638

When the boundary conditions are consistent, a way to correct this error is to specify that

NDSolve use a finer spatial discretization.

With a finer spatial discretization, there is no message and the boundary condition is satisfied
better.

In[13]:= fsol =
NDSolve@8D@u@x, tD, tD ã D@u@x, tD, x, xD, u@x, 0D ã 1 - Sin@4 * Pi * xD ê H4 * PiL,

u@0, tD ã 1, u@1, tD + Derivative@1, 0D@uD@1, tD ã 0<,
u, 8x, 0, 1<, 8t, 0, 1<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MinPoints“ Ø 100<<D;
Plot@First@u@1, tD + Derivative@1, 0D@uD@1, tD ê. fsolD, 8t, 0, 1<, PlotRange Ø AllD

Out[14]=

0.2 0.4 0.6 0.8 1.0

1.385µ 10-6

1.3851µ 10-6

1.3852µ 10-6

1.3853µ 10-6

220 Advanced Numerical Differential Equation Solving in Mathematica

Spatial Error Estimates

Overview

When NDSolve solves a PDE, unless you have specified the spatial grid for it to use, by giving it

explicitly or by giving equal values for the MinPoints and MaxPoints options, NDSolve needs to

make a spatial error estimate.

Ideally, the spatial error estimates would be monitored over time and the spatial mesh updated

according to the evolution of the solution. The problem of grid adaptivity is difficult enough for

a specific type of PDE and certainly has not been solved in any general way. Furthermore,

techniques such as local refinement can be problematic with the method of lines since changing

the number of mesh points requires a complete restart of the ODE methods. There are moving

mesh techniques that appear promising for this approach, but at this point, NDSolve uses a

static grid. The grid to use is determined by an a priori error estimate based on the initial condi-

tion. An a posteriori check is done at the end of the temporal interval for reasonable consis-

tency and a warning message is given if that fails. This can, of course, be fooled, but in practice

it provides a reasonable compromise. The most common cause of failure is when initial condi-

tions have little variation, so the estimates are essentially meaningless. In this case, you may

need to choose some appropriate grid settings yourself.

Load a package that will be used for extraction of data from InterpolatingFunction objects.

In[1]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D

A priori Error Estimates

When NDSolve solves a PDE using the method of lines, a decision has to be made on an appro-

priate spatial grid. NDSolve does this using an error estimate based on the initial condition

(thus, a priori).

It is easiest to show how this works in the context of an example. For illustrative purposes,

consider the sine-Gordon equation in one dimension with periodic boundary conditions.

This solves the sine-Gordon equation with a Gaussian initial condition.

In[5]:= ndsol =
NDSolve@8D@u@x, tD, t, tD ã D@u@x, tD, x, xD - Sin@u@x, tDD, u@x, 0D ã Exp@-Hx^2LD,

Derivative@0, 1D@uD@x, 0D ã 0, u@-5, tD ã u@5, tD<, u, 8x, -5, 5<, 8t, 0, 5<D
Out[5]= 88u Ø InterpolatingFunction@88-5., 5.<, 80., 5.<<, <>D<<

Advanced Numerical Differential Equation Solving in Mathematica 221

This gives the number of spatial and temporal points used, respectively.

In[6]:= Map@Length, InterpolatingFunctionCoordinates@First@u ê. ndsolDDD

Out[6]= 897, 15<

The temporal points are chosen adaptively by the ODE method based on local error control.

NDSolve used 97 (98 including the periodic endpoint) spatial points. This choice will be illus-

trated through the steps that follow.

In the equation processing phase of NDSolve, one of the first things that happen is that equa-

tions with second- (or higher-) order temporal derivatives are replaced with systems with only

first-order temporal derivatives.

This is a first-order system equivalent to the sine-Gordon equation earlier.

In[7]:= 8D@u@x, tD, tD ã v@x, tD, D@v@x, tD, tD ã D@u@x, tD, x, xD + -Sin@u@x, tDD<

Out[7]= 9uH0,1L@x, tD ã v@x, tD, vH0,1L@x, tD ã -Sin@u@x, tDD + uH2,0L@x, tD=

The next stage is to solve for the temporal derivatives.

This is the solution for the temporal derivatives, with the right-hand side of the equations in
normal (ODE) form.

In[8]:= rhs = 8D@u@x, tD, tD, D@v@x, tD, tD< ê. Solve@%, 8D@u@x, tD, tD, D@v@x, tD, tD<D

Out[8]= 99v@x, tD, -Sin@u@x, tDD + uH2,0L@x, tD==

Now the problem is to choose a uniform grid that will approximate the derivative to within local

error tolerances as specified by AccuracyGoal and PrecisionGoal. For this illustration, use the

default “DifferenceOrder“ (4) and the default AccuracyGoal and PrecisionGoal (both 4 for

PDEs). The methods used to integrate the system of ODEs that results from discretization base

their own error estimates on the assumption of sufficiently accurate function values. The esti-

mates here have the goal of finding a spatial grid for which (at least with the initial condition)

the spatial error is somewhat balanced with the local temporal error.

This sets variables to reflect the default settings for “DifferenceOrder“, AccuracyGoal,
and PrecisionGoal.

In[9]:= p = 4;
atol = 1.*^-4;
rtol = 1.*^-4;

222 Advanced Numerical Differential Equation Solving in Mathematica

The error estimate is based on Richardson extrapolation. If you know that the error is OHhpL and

you have two approximations y1 and y2 at different values, h1 and h2 of h, then you can, in

effect, extrapolate to the limit h Ø 0 to get an error estimate

y1 - y2 = Ic h1
p
+ yM - Ic h2

p
+ yM = c h1

p 1 -
h2

h1

p

so the error in y1 is estimated to be

(1)°y1 - y¥ @ c h1
p
=

°y1-y2¥

1-
h2
h1

p

Here y1 and y2 are vectors of different length and y is a function, so you need to choose an

appropriate norm. If you choose h1 = 2 h2, then you can simply use a scaled norm on the compo-

nents common to both vectors, which is all of y1 and every other point of y2. This is a good

choice because it does not require any interpolation between grids.

For a given interval on which you want to set up a uniform grid, you can define a function

hHnL = L ên, where L is the length of the interval such that the grid is 8x0, x1, x1, …, xn<, where

x j ã x0 + j hHnL.

This defines functions that return the step size h and a list of grid points as a function of n for
the sine-Gordon equation.

In[12]:= Clear@h, gridD;

h@n_D :=
10

n
;

grid@n_D := N@-5 + Range@0, nD * h@nDD;

For a given grid, the equation can be discretized using finite differences. This is easily done

using NDSolve`FiniteDifferenceDerivative.

This defines a symbolic discretization of the right-hand side of the sine-Gordon equation as a
function of a grid. It returns a function of u and v, which gives the approximate values for ut and
vt in a list. (Note that in principle this works for any grid, uniform or not, though in the follow-
ing, only uniform grids will be used.)

In[15]:= sdrhs@grid_D := Block@8app, u, v<,
app = rhs ê.

Derivative@i_, 0D@var : Hu vLD@x, tD ß NDSolve`FiniteDifferenceDerivative@
i, grid, “DifferenceOrder“ Ø p, PeriodicInterpolation Ø TrueD@varD;

app = app ê. Hvar : Hu vLL@x, tD ß var;
Function@8u, v<, Evaluate@appDDD

For a given step size and grid, you can also discretize the initial conditions for u and v.

Advanced Numerical Differential Equation Solving in Mathematica 223

This defines a function that discretizes the initial conditions for u and v. The last grid point is
dropped because, by periodic continuation, it is considered the same as the first.

In[16]:= dinit@n_D := Transpose@Map@Function@8x<, 8Exp@-x^2D, 0<D, Drop@grid@nD, -1DDD

The quantity of interest is the approximation of the right-hand side for a particular value of n

with this initial condition.

This defines a function that returns a vector consisting of the approximation of the right-hand
side of the equation for the initial condition for a given step size and grid. The vector is flat-
tened to make subsequent analysis of it simpler.

In[17]:= rhsinit@n_D := Flatten@Apply@sdrhs@grid@nDD, dinit@nDDD

Starting with a particular value of n, you can obtain the error estimate by generating the right

hand side for n and 2 n points.

This gives an example of the right-hand side approximation vector for a grid with 10 points.

In[18]:= rhsinit@10D

Out[18]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0000202683, -0.00136216, -0.00666755,
0.343233, 0.0477511, -2.36351, 0.0477511, 0.343233, -0.00666755, -0.00136216<

This gives an example of the right-hand side approximation vector for a grid with 20 points.

In[19]:= rhsinit@20D

Out[19]= 90, -5.80538µ10-8,

-1.01297µ10-6, -0.0000168453, -0.0000373357, 0.00285852, 0.0419719, 0.248286,
0.640267, 0.337863, -1.48981, -2.77952, -1.48981, 0.337863, 0.640267,
0.248286, 0.0419719, 0.00285852, -0.0000373357, -0.0000168453, -1.01297µ10-6=

As mentioned earlier, every other point on the grid with 2 n points lies on the grid with n points.

Thus, for simplicity, you can use a norm that only compares points common to both grids.

Because the goal is to ultimately satisfy absolute and relative tolerance criteria, it is appropriate

to use a scaled norm. In addition to taking into account the size of the right-hand side for the

scaling, it is also important to include the size of the corresponding components of u and v on

the grid since error in the right-hand side is ultimately included in u and v.

This defines a norm function for the difference in the approximation of the right-hand side.

In[20]:= dnorm@rhsn_, rhs2n_, uv_D := Module@8rhs2 = Take@rhs2n, 81, -1, 2<D<,
NDSolve`ScaledVectorNorm@Infinity, 8rtol, atol<D@
rhsn - rhs2, Internal`MaxAbs@rhs2, uvDDD ê;

HHLength@rhs2nD ã 2 Length@rhsnDL && HLength@rhsnD ã Length@uvDLL

224 Advanced Numerical Differential Equation Solving in Mathematica

This applies the norm function to the two approximations found.

In[21]:= dnorm@rhsinit@10D, rhsinit@20D, Flatten@dinit@10DDD

Out[21]= 2168.47

To get the error estimate form the distance, according to the Richardson extrapolation formula

(3), this simply needs to be divided by H1 - Hh2 êh1LpL = H1 - 2-pL.

This computes the error estimate for n == 10. Since this is based on a scaled norm, the toler-
ance criteria are satisfied if the result is less than 1.

In[22]:= % ê H1 - 2-pL

Out[22]= 2313.04

This makes a function that combines the earlier functions to give an error estimate as a function
of n.

In[23]:= errest@n_D := dnorm@rhsinit@nD, rhsinit@2 nD, Flatten@dinit@nDDD ê H1 - 2-pL

The goal is to find the minimum value of n, such that the error estimate is less than or equal to

1 (since it is based on a scaled norm). In principle, it would be possible to use a root-finding

algorithm on this, but since n can only be an integer, this would be overkill and adjustments

would have to be made to the stopping conditions. An easier solution is simply to use the sim-

ple Richardson extrapolation formula to predict what value of n would be appropriate and repeat

the prediction process until the appropriate n is found.

The condition to satisfy is

c hopt
p

= 1

and you have estimated that

c hHnLp > errestHnL

so you can project that

hopt > hHnL
1

errestHnL

1êp

or in terms of n, which is proportional to the reciprocal of h,

nopt > en errestHnL1êpu

Advanced Numerical Differential Equation Solving in Mathematica 225

This computes the predicted optimal value of n based on the error estimate for n == 10 com-
puted earlier.

In[24]:= CeilingA10 errest@10D1êpE

Out[24]= 70

This computes the error estimate for the new value of n.

In[25]:= errest@%D

Out[25]= 3.75253

Often the case that a prediction based on a very coarse grid will be inadequate. A coarse grid

may completely miss some solution features that contribute to the error on a finer grid. Also,

the error estimate is based on an asymptotic formula, so for coarse spacings, the estimate itself

may not be very good, even when all the solution features are resolved to some extent.

In practice, it can be fairly expensive to compute these error estimates. Also, it is not necessary

to find the very optimal n, but one that satisfies the error estimate. Remember, everything can

change as the PDE evolves, so it is simply not worth a lot of extra effort to find an optimal

spacing for just the initial time. A simple solution is to include an extra factor greater than 1 in

the prediction formula for the new n. Even with an extra factor, it may still take a few iterations

to get to an acceptable value. It does, however, typically make the process faster.

This defines a function that gives a predicted value for the number of grid points, which should
satisfy the error estimate.

In[26]:= pred@n_D := CeilingA1.05 n errest@nD1êpE

This iterates the predictions until a value is found that satisfies the error estimate.

In[27]:= NestWhileList@pred, 10, Herrest@ÒD > 1L &D

Out[27]= 810, 73, 100<

It is important to note that this process must have a limiting value since it may not be possible

to satisfy the error tolerances, for example, with a discontinuous initial function. In NDSolve,

the MaxSteps option provides the limit; for spatial discretization, this defaults to a total of

10000 across all spatial dimensions.

Pseudospectral derivatives cannot use this error estimate since they have an exponential rather

than a polynomial convergence. An estimate can be made based on the formula used earlier in

the limit

226 Advanced Numerical Differential Equation Solving in Mathematica

Pseudospectral derivatives cannot use this error estimate since they have an exponential rather

the limit p -> Infinity. What this amounts to is considering the result on the finer grid to be

exact and basing the error estimate on the difference since 1 - 2-p approaches 1. A better

approach is to use the fact that on a given grid with n points, the pseudospectral method is

OHhnL. When comparing for two grids, it is appropriate to use the smaller n for p. This provides

an imperfect, but adequate estimate for the purpose of determining grid size.

This modifies the error estimation function so that it will work with pseudospectral derivatives.

In[28]:= errest@n_D :=
dnorm@rhsinit@nD, rhsinit@2 nD, Flatten@dinit@nDDD ë I1 - 2-If@p === “Pseudospectral“,n,pDM

The prediction formula can be modified to use n instead of p in a similar way.

This modifies the function predicting an appropriate value of n to work with pseudospectral
derivatives. This formulation does not try to pick an efficient FFT length.

In[29]:= pred@n_D := CeilingA1.05 n errest@nD1êIf@p === “Pseudospectral“,n,pDE

When finalizing the choice of n for a pseudospectral method, an additional consideration is to

choose a value that not only satisfies the tolerance conditions, but is also an efficient length for

computing FFTs. In Mathematica, an efficient FFT does not require a power of two length since

the Fourier command has a prime factor algorithm built in.

Typically, the difference order has a profound effect on the number of points required to satisfy

the error estimate.

This makes a table of the number of points required to satisfy the a priori error estimate as a
function of the difference order.

In[30]:= TableForm@Map@Block@8p = Ò<, 8p, NestWhile@pred, 10, Herrest@ÒD > 1L &D<D &,
82, 4, 6, 8, “Pseudospectral“<D,

TableHeadings Ø 88<, 8“DifferenceOrder“, “Number of points“<<D

Out[30]//TableForm=

DifferenceOrder Number of points
2 804
4 100
6 53
8 37
Pseudospectral 24

A table of the number of points required as a function of difference order goes a long way

toward explaining why the default setting for the method of lines is “DifferenceOrder“ -> 4:

the improvement from 2 to 4 is usually most dramatic and in the default tolerance range,

fourth-order differences do not tend to produce large roundoff errors, which can be the case

with higher orders. Pseudospectral differences are often a good choice, particularly with periodic

boundary conditions, but they are not a good choice for the default because they lead to full

Jacobian matrices, which can be expensive to generate and solve if needed for stiff equations.

Advanced Numerical Differential Equation Solving in Mathematica 227

For nonperiodic grids, the error estimate is done using only interior points. The reason is that

the error coefficients for the derivatives near the boundary are different. This may miss fea-

tures that are near the boundary, but the main idea is to keep the estimate simple and inexpen-

sive since the evolution of the PDE may change everything anyway.

For multiple spatial dimensions, the determination is made one dimension at a time. Since

better resolution in one dimension may change the requirements for another, the process is

repeated in reverse order to improve the choice.

A posteriori Error Estimates

When the solution of a PDE is computed with NDSolve, a final step is to do a spatial error esti-

mate on the evolved solution and issue a warning message if this is excessively large.

These error estimates are done in a manner similar to the a priori estimates described previ-

ously. The only real difference is that, instead of using grids with n and 2 n points to estimate

the error, grids with n ê2 and n points are used. This is because, while there is no way to gener-

ate the values on a grid of 2 n points without using interpolation, which would introduce its own

errors, values are readily available on a grid of n ê2 points simply by taking every other value.

This is easily done in the Richardson extrapolation formula by using h2 ã 2 h1, which gives

°y1 - y¥ @
°y1 - y2¥

H2p - 1L

This defines a function (based on functions defined in the previous section) that can compute an
error estimate on the solution of the sine-Gordon equation from solutions for u and v expressed
as vectors. The function has been defined to be a function of the grid since this is applied to a
grid already constructed. (Note, as defined here, this only works for grids of even length. It is
not difficult to handle odd length, but it makes the function somewhat more complicated.)

In[31]:= posterrest@8uvec_, vvec_<, grid_D := ModuleB8
huvec = Take@uvec, 81, -1, 2<D,
hvvec = Take@vvec, 81, -1, 2<D,
hgrid = Take@grid, 81, -1, 2<D<,

dnorm@Flatten@sdrhs@hgridD@huvec, hvvecDD,
Flatten@sdrhs@gridD@uvec, vvecDD, Flatten@8huvec, hvvec<DD í

J2IfAp === “Pseudospectral“,LengthAgridEë2,pE - 1NF

This solves the sine-Gordon equation with a Gaussian initial condition.

In[41]:=

228 Advanced Numerical Differential Equation Solving in Mathematica

ndsol = First@NDSolve@8D@u@x, tD, t, tD ã D@u@x, tD, x, xD + -Sin@u@x, tDD,
u@x, 0D ã Exp@-Hx^2LD, Derivative@0, 1D@uD@x, 0D ã 0, u@-5, tD ã u@5, tD<,

u, 8x, -5, 5<, 8t, 0, 5<, InterpolationOrder Ø AllDD
Out[41]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 5.<<, <>D<

This is the grid used in the spatial direction that is the first set of coordinates used in the
InterpolatingFunction. A grid with the last point dropped is used to obtain the values
because of periodic continuation.

In[42]:= ndgrid = InterpolatingFunctionCoordinates@u ê. ndsolD@@1DD
pgrid = Drop@ndgrid, -1D;

Out[42]= 8-5., -4.89583, -4.79167, -4.6875, -4.58333, -4.47917, -4.375, -4.27083, -4.16667, -4.0625,
-3.95833, -3.85417, -3.75, -3.64583, -3.54167, -3.4375, -3.33333, -3.22917, -3.125,
-3.02083, -2.91667, -2.8125, -2.70833, -2.60417, -2.5, -2.39583, -2.29167, -2.1875,
-2.08333, -1.97917, -1.875, -1.77083, -1.66667, -1.5625, -1.45833, -1.35417, -1.25,
-1.14583, -1.04167, -0.9375, -0.833333, -0.729167, -0.625, -0.520833, -0.416667,
-0.3125, -0.208333, -0.104167, 0., 0.104167, 0.208333, 0.3125, 0.416667, 0.520833, 0.625,
0.729167, 0.833333, 0.9375, 1.04167, 1.14583, 1.25, 1.35417, 1.45833, 1.5625, 1.66667,
1.77083, 1.875, 1.97917, 2.08333, 2.1875, 2.29167, 2.39583, 2.5, 2.60417, 2.70833, 2.8125,
2.91667, 3.02083, 3.125, 3.22917, 3.33333, 3.4375, 3.54167, 3.64583, 3.75, 3.85417,
3.95833, 4.0625, 4.16667, 4.27083, 4.375, 4.47917, 4.58333, 4.6875, 4.79167, 4.89583, 5.<

This makes a function that gives the a posteriori error estimate at a particular numerical value
of t.

In[44]:= peet@t_?NumberQD :=
posterrest@8 u@pgrid, tD, Derivative@0, 1D@uD@pgrid, tD< ê. ndsol, ndgridD

This makes a plot of the a posteriori error estimate as a function of t.

In[45]:=

The large amount of local variation seen in this function is typical. For that reason, NDSolve

does not warn about excessive error unless this estimate gets above 10 (rather than the value

of 1, which is used to choose the grid based on initial conditions). The extra factor of 10 is

further justified by the fact that the a posteriori error estimate is less accurate than the a priori

one. Thus, when NDSolve issues a warning message based on the a posteriori error estimate, it

is usually because new solution features have appeared or because there is instability in the

solution process.

Advanced Numerical Differential Equation Solving in Mathematica 229

Plot@peet@tD, 8t, 0, 5<, PlotRange Ø AllD

Out[45]=

1 2 3 4 5

2

3

4

5

6

This is an example with the same initial condition used in the earlier examples, but where
NDSolve gives a warning message based on the a posteriori error estimate.

In[46]:= bsol = FirstANDSolveA9D@u@x, tD, tD ã 0.01 D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ‰-x2, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 272.7279341590405` at t = 4.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 75 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[46]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

This shows a plot of the solution at t == 4. It is apparent that the warning message is appropri-
ate because the oscillations near the peak are not physical.

In[47]:= Plot@u@x, 4D ê. bsol, 8x, -5, 5<, PlotRange Ø AllD

Out[47]=

-4 -2 2 4

0.2

0.4

0.6

0.8

When the NDSolve::eerr message does show up, it may be necessary for you to use options

to control the grid selection process since it is likely that the default settings did not find an

accurate solution.

Controlling the Spatial Grid Selection

The NDSolve implementation of the method of lines has several ways to control the selection of

the spatial grid.

230 Advanced Numerical Differential Equation Solving in Mathematica

option name default value

AccuracyGoal Automatic the number of digits of absolute tolerance
for determining grid spacing

PrecisionGoal Automatic the number of digits of relative tolerance
for determining grid spacing

“DifferenceOrder“ Automatic the order of finite difference approximation
to use for spatial discretization

Coordinates Automatic the list of coordinates for each spatial
dimension 88x1,x2,…<,8y1,y2,…<,…<
for independent variable dimensions
x,y,…; this overrides the settings for all
the options following in this list

MinPoints Automatic the minimum number of points to be used
for each dimension in the grid; for
Automatic, value will be determined by
the minimum number of points needed to
compute an error estimate for the given
difference order

MaxPoints Automatic the maximum number of points to be used
in the grid

StartingPoints Automatic the number of points to begin the process
of grid refinement using the a priori error
estimates

MinStepSize Automatic the minimum grid spacing to use

MaxStepSize Automatic the maximum grid spacing to use

StartingStepSize Automatic the grid spacing to use to begin the pro-
cess of grid refinement using the a priori
error estimates

Tensor product grid options for the method of lines.

All the options for tensor product grid discretization can be given as a list with length equal to

the number of spatial dimensions, in which case the parameter for each spatial dimension is

determined by the corresponding component of the list.

With the exception of pseudospectral methods on nonperiodic problems, discretization is done

with uniform grids, so when solving a problem on interval length L, there is a direct correspon-

dence between the Points and StepSize options:

MaxPoints Ø n ó MaxStepSize Ø L ên
MinPoints Ø n ó MinStepSize Ø L ên

StartingPoints Ø n ó StartingStepSize Ø L ên

Advanced Numerical Differential Equation Solving in Mathematica 231

The StepSize options are effectively converted to the equivalent Points values. They are

simply provided for convenience since sometimes it is more natural to relate problem

specification to step size rather then the number of discretization points. When values other

then Automatic are specified for both the Points and corresponding StepSize option,

generally, the more stringent restriction is used.

In the previous section an example was shown where the solution was not resolved sufficiently

because the solution steepened as it evolved. The examples that follow will show some different

ways of modifying the grid parameters so that the near shock is better resolved.

One way to avoid the oscillations that showed up in the solution as the profile steepened is to

make sure that you use sufficient points to resolve the profile at its steepest. In the one-hump

solution of Burgers' equation,

ut + u ux = n uxx

it can be shown [W76] that the width of the shock profile is proportional to n as n Ø 0. More than

95% of the change is included in a layer of width 10 n. Thus, if you pick a maximum step size of

half the profile width, there will always be a point somewhere in the steep part of the profile,

and there is a hope of resolving it without significant oscillation.

This computes the solution to Burgers' equation, such that there are sufficient points to resolve
the shock profile.

In[48]:= n = 0.01;
bsol2 = FirstANDSolveA

9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD, u@x, 0D ã ‰-x2,
u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<, Method Ø 8“MethodOfLines“,
“SpatialDiscretization“ Ø 8“TensorProductGrid“, “MaxStepSize“ Ø 10 n ê 2<<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 82.77168552068868` at t = 4.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 201 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[49]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

Note that resolving the profile alone is by no means sufficient to meet the default tolerances of

NDSolve, which requires an accuracy of 10-4. However, once you have sufficient point to

resolve the basic profile, it is not unreasonable to project based on the a posteriori error esti-

mate shown in the NDSolve::eerr message (with an extra 10% since, after all, it is just a

projection).

232 Advanced Numerical Differential Equation Solving in Mathematica

This computes the solution to Burgers' equation with the maximum step size chosen so that it
should be small enough to meet the default error tolerances based on a projection from the
error of the previous calculation.

In[50]:= n = 0.01;
bsol3 = FirstBNDSolveB9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ‰-x2, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<,

8t, 0, 4<, Method Ø :“MethodOfLines“, “SpatialDiscretization“ Ø

:“TensorProductGrid“, “MaxStepSize“ Ø H10 n ê 2L ì H1.1L 85
1

4 >>FF

Out[51]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

To compare solutions like this, it is useful to look at a plot of the solution only at the spatial grid

points. Because the grid points are stored as a part of the InterpolatingFunction, it is fairly

simple to define a function that does this.

This defines a function that plots a solution only at the spatial grid points at a time t.

In[52]:= GridPointPlot@8u Ø if_InterpolatingFunction<, t_, opts___D :=
Module@8grid = InterpolatingFunctionCoordinates@ifD@@1DD<,
ListPlot@Transpose@8grid, if@grid, tD<D, optsDD

This makes a plot comparing the three solutions found at t = 4.

In[53]:= Show@Block@8 t = 4<, 8
GridPointPlot@bsol3, 4D,
GridPointPlot@bsol2, 4, PlotStyle Ø Hue@1 ê 3DD,
GridPointPlot@bsol, 4, PlotStyle Ø Hue@1DD

<
D, PlotRange Ø AllD

Out[53]=

-4 -2 2 4

0.2

0.4

0.6

0.8

In this example, the left-hand side of the domain really does not need so many points. The

points need to be clustered where the steep profile evolves, so it might make sense to consider

explicitly specifying a grid that has more points where the profile appears.

Advanced Numerical Differential Equation Solving in Mathematica 233

This solves Burgers' equation on a specified grid that has most of its points to the right of x = 1.

In[54]:= mygrid = Join@-5. + 10 Range@0, 48D ê 80, 1. + Range@1, 4 µ 70D ê 70D;
n = 0.01;
bsolg = FirstANDSolveA

9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD, u@x, 0D ã ‰-x2,
u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 0, 4<, Method Ø 8“MethodOfLines“,
“SpatialDiscretization“ Ø 8“TensorProductGrid“, “Coordinates“ Ø 8mygrid<<<EE

Out[56]= 8u Ø InterpolatingFunction@88-5., 5.<, 80., 4.<<, <>D<

This makes a plot of the values of the solution at the assigned spatial grid points.

In[57]:= GridPointPlot@bsolg, 4D

Out[57]=

-4 -2 2 4

0.2

0.4

0.6

0.8

Many of the same principles apply to multiple spatial dimensions. Burgers' equation in two

dimensions with anisotropy provides a good example.

This solves a variant of Burgers' equation in 2 dimensions with different velocities in the x and y
directions.

In[58]:= n = 0.075;
sol1 =
FirstANDSolveA9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL,
u@0, x, yD ã ExpA-Ix2 + y2ME, u@t, -4, yD ã u@t, 4, yD,
u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<, 8x, -4, 4<, 8y, -4, 4<EE

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 29.72177327883787` at t = 2.` in the direction

of independent variable x is much greater than prescribed error tolerance.
Grid spacing with 69 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options.

Out[59]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<

234 Advanced Numerical Differential Equation Solving in Mathematica

This shows a surface plot of the leading edge of the solution at t = 2.

In[60]:= Plot3D@u@2, x, yD ê. sol1, 8x, 0, 4<, 8y, -4, 0<, PlotRange Ø AllD

Out[60]=

Similar to the one-dimensional case, the leading edge steepens. Since the viscosity term (n) is

larger, the steepening is not quite so extreme, and this default solution actually resolves the

front reasonably well. Therefore it should be possible to project from the error estimate to meet

the default tolerances. A simple scaling argument indicates that the profile width in the x direc-

tion will be narrower than in the y direction by a factor of 2 . Thus, it makes sense that the

step sizes in the y direction can be larger than those in the x direction by this factor, or, corre-

spondingly, that the minimum number of points can be a factor of 1í 2 less.

This solves the 2-dimensional variant of Burgers' equation with appropriate step size restrictions
in the x and y direction projected from the a posteriori error estimate of the previous computa-
tion, which was done with 69 points in the x direction.

In[61]:= n = 0.075;
sol2 =

FirstBNDSolveB9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL, u@0, x, yD ã ExpA-Ix2 + y2ME,
u@t, -4, yD ã u@t, 4, yD, u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<,

8x, -4, 4<, 8y, -4, 4<, Method Ø :“MethodOfLines“, “SpatialDiscretization“ Ø

:“TensorProductGrid“, “MinPoints“ Ø CeilingB:1 , 1 í 2 > 69 31
1

4 F>>FF

Out[62]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<

This solution takes a substantial amount of time to compute, which is not surprising since the

solution involves solving a system of more than 18000 ODEs. In many cases, particularly in

more than one spatial dimension, the default tolerances may be unrealistic to achieve, so you

may have to reduce them by using AccuracyGoal and/or PrecisionGoal appropriately.

Sometimes, especially with the coarser grids that come with less stringent tolerances, the

systems are not stiff and it is possible to use explicit methods, that avoid the numerical linear

algebra, which can be problematic, especially for higher-dimensional problems. For this

example, using Method -> ExplicitRungeKutta gets the solution in about half the time.

Advanced Numerical Differential Equation Solving in Mathematica 235

0

1

2

3

4 –4

–3

–2

–1

0

0.0

0.2

0.4

This solution takes a substantial amount of time to compute, which is not surprising since the

solution involves solving a system of more than 18000 ODEs. In many cases, particularly in

may have to reduce them by using AccuracyGoal and/or PrecisionGoal appropriately.

Sometimes, especially with the coarser grids that come with less stringent tolerances, the

systems are not stiff and it is possible to use explicit methods, that avoid the numerical linear

algebra, which can be problematic, especially for higher-dimensional problems. For this

example, using Method -> ExplicitRungeKutta gets the solution in about half the time.

Any of the other grid options can be specified as a list giving the values for each dimension.

When only a single value is given, it is used for all the spatial dimensions. The two exceptions

to this are MaxPoints, where a single value is taken to be the total number of grid points in the

outer product, and Coordinates, where a grid must be specified explicitly for each dimension.

This chooses parts of the grid from the previous solutions so that it is more closely spaced
where the front is steeper.

In[63]:= n = 0.075;
xgrid = Join@Select@Part@u ê. sol1, 3, 2D, NegativeD,

80.<, Select@Part@u ê. sol2, 3, 2D, PositiveDD;
ygrid = Join@Select@Part@u ê. sol2, 3, 3D, NegativeD, 80.<,

Select@Part@u ê. sol1, 3, 3D, PositiveDD; sol3 =
FirstANDSolveA9D@u@t, x, yD, tD ã n HD@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -

u@t, x, yD H2 D@u@t, x, yD, xD - D@u@t, x, yD, yDL, u@0, x, yD ã ExpA-Ix2 + y2ME,
u@t, -4, yD ã u@t, 4, yD, u@t, x, -4D ã u@t, x, 4D=, u, 8t, 0, 2<,

8x, -4, 4<, 8y, -4, 4<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “Coordinates“ Ø 8xgrid, ygrid<<<EE

Out[65]= 8u Ø InterpolatingFunction@880., 2.<, 8-4., 4.<, 8-4., 4.<<, <>D<

It is important to keep in mind that the a posteriori spatial error estimates are simply estimates

of the local error in computing spatial derivatives and may not reflect the actual accumulated

spatial error for a given solution. One way to get an estimate on the actual spatial error is to

compute the solution to very stringent tolerances in time for different spatial grids. To show

how this works, consider again the simpler one-dimensional Burgers' equation.

This computes a list of solutions using 833, 65, …, 4097< spatial grid points to compute the
solution to Burgers' equation for difference orders 2, 4, 6, and pseudospectral. The temporal
accuracy and precision tolerances are set very high so that essentially all of the error comes
from the spatial discretization. Note that by specifying 8t, 4, 4< in NDSolve, only the solution at
t = 4 is saved. Without this precaution, some of the solutions for the finer grids (which take
many more time steps) could exhaust available memory. Even so, the list of solutions takes a
substantial amount of time to compute.

236 Advanced Numerical Differential Equation Solving in Mathematica

In[66]:= n = 0.01;
solutions = MapATableA

n = 2i + 1;
u ê.
FirstANDSolveA9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@x, 0D ã ExpA-x2E, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 4, 4<,
AccuracyGoal Ø 10, PrecisionGoal Ø 10, MaxSteps Ø Infinity,
Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø

8“TensorProductGrid“, “DifferenceOrder“ Ø Ò, AccuracyGoal Ø 0,
PrecisionGoal Ø 0, “MaxPoints“ Ø n, “MinPoints“ Ø n<<EE,

8i, 5, If@NumberQ@ÒD, 12, 11D<
E &, 82, 4, 6, “Pseudospectral“<E;

Given two solutions, a comparison needs to be done between the two. To keep out any sources

of error except for that in the solutions themselves, it is best to use the data that is interpolated

to make the InterpolatingFunction. This can be done by using points common to the two

solutions.

This defines a function to estimate error by comparing two different solutions at the points
common to both. The arguments coarse and fine should be the solutions on the coarser and
finer grids, respectively. This works for the solutions generated earlier with grid spacing varying
by powers of 2.

In[68]:= Clear@errfunD;
errfun@t_, coarse_InterpolatingFunction, fine_InterpolatingFunctionD :=
Module@8cgrid = InterpolatingFunctionCoordinates@coarseD@@1DD, c, f<,
c = coarse@cgrid, tD;
f = fine@cgrid, tD;
Norm@f - c, ¶D ê Length@cgridDD

To get an indication of the general trend in error (in cases of instability, solutions do not con-

verge, so this does not assume that), you can compare the difference of successive pairs of

solutions.

This defines a function that will plot a sequence of error estimates for the successive solutions
found for a given difference order and uses it to make a logarithmic plot of the estimated error
as a function of the number of grid points.

In[69]:= Clear@errplotD;
errplot@t_, sols : 8_InterpolatingFunction ..<, opts___D :=
Module@8errs, lens<,
errs = MapThread@errfun@t, ÒÒD &, Transpose@Partition@sols, 2, 1DDD;
lens = Map@Length, Drop@sols@@All, 3, 1DD, -1DD;
ListLogLogPlot@Transpose@8lens, errs<D, optsDD

Advanced Numerical Differential Equation Solving in Mathematica 237

In[71]:= colors = 8RGBColor@1, 0, 0D, RGBColor@0, 1, 0D,
RGBColor@0, 0, 1D, RGBColor@0, 0, 0D<; Show@Block@8c = -1 ê 3<,
MapThread@errplot@4, Ò1, PlotStyle Ø 8PointSize@0.015D, Ò2<D &,
8solutions, colors<DD, PlotRange Ø AllD

Out[71]= 100 1000500200 2000300150 1500700
10-6
10-5
10-4
0.001

0.01

A logarithmic plot of the maximum spatial error in approximating the solution of Burgers' equation at t = 4
as a function of the number of grid points. Finite differences of order 2, 4, and 6 on a uniform grid are
shown in red, green, and blue, respectively. Pseudospectral derivatives with uniform (periodic) spacing
are shown in black.

The upper-left part of the plot are the grids where the profile is not adequately resolved, so

differences are simply of magnitude order 1 (it would be a lot worse if there was instability).

However, once there are a sufficient number of points to resolve the profile without oscillation,

convergence becomes quite rapid. Not surprisingly, the slope of the logarithmic line is -4, which

corresponds to the difference order NDSolve uses by default. If your grid is fine enough to be in

the asymptotically converging part, a simpler error estimate could be effected by using Richard-

son extrapolation as in the previous two sections, but on the overall solution rather than the

local error. On the other hand, computing more values and viewing a plot gives a better indica-

tion of whether you are in the asymptotic regime or not.

It is fairly clear from the plot that the best solution computed is the pseudospectral one with

2049 points (the one with more points was not computed because its spatial accuracy far

exceeds the temporal tolerances that were set). This solution can, in effect, be treated almost

as an exact solution, at least up to error tolerances of 10-9or so.

To get a perspective of how best to solve the problem, it is useful to do the following: for each

solution found that was at least a reasonable approximation, recompute it with the temporal

accuracy tolerance set to be comparable to the possible spatial accuracy of the solution and plot

the resulting accuracy as a function of solution time. The following (somewhat complicated)

commands do this.

238 Advanced Numerical Differential Equation Solving in Mathematica

This identifies the "best" solution that will be used, in effect, as an exact solution in the computa-
tions that follow. It is dropped from the list of solutions to compare it to since the comparison
would be meaningless.

In[72]:= best = Last@Last@solutionsDD;
solutions@@-1DD = Drop@solutions@@-1DD, -1D;

This defines a function that, given a difference order, do, and a solution, sol, computed with
that difference order, recomputes it with local temporal tolerance slightly more stringent than
the actual spatial accuracy achieved if that accuracy is sufficient. The function output is a list of
{number of grid points, difference order, time to compute in seconds, actual error of the recom-
puted solution}.

In[74]:= TimeAccuracy@do_D@sol_D := BlockA8tol, ag, n, solt, Second = 1<,
tol = errfun@4, sol, bestD;
ag = -Log@10., tolD;
IfAag < 2,
$Failed,
n = Length@sol@@3, 1DDD;
secs = FirstATimingAsolt = FirstA

u ê. NDSolveA9D@u@x, tD, tD ã n D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,
u@x, 0D ã ExpA-x2E, u@-5, tD ã u@5, tD=, u, 8x, -5, 5<, 8t, 4, 4<,

AccuracyGoal Ø ag + 1, PrecisionGoal Ø Infinity, MaxSteps Ø Infinity,
Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø

8“TensorProductGrid“, “DifferenceOrder“ Ø do, AccuracyGoal Ø 0,
PrecisionGoal Ø 0, “MaxPoints“ Ø n, “MinPoints“ Ø n<<EEEE;

8n, do, secs, errfun@4, solt, bestD<
E

E

This applies the function to each of the previously computed solutions. (With the appropriate
difference order!)

In[75]:= results =
MapThread@Map@TimeAccuracy@Ò1D, Ò2D &, 882, 4, 6, “Pseudospectral“<, solutions<D

Out[75]= 99$Failed, $Failed, 8129, 2, 0.06, 0.00432122<, 8257, 2, 0.12, 0.000724265<,

8513, 2, 0.671, 0.0000661853<, 91025, 2, 1.903, 4.44696µ10-6=,

92049, 2, 5.879, 3.10464µ10-7=, 94097, 2, 17.235, 2.4643µ10-8==,
9$Failed, 865, 4, 0.02, 0.00979942<, 8129, 4, 0.1, 0.00300281<, 8257, 4, 0.161, 0.000213248<,

9513, 4, 1.742, 6.02345µ10-6=, 91025, 4, 5.438, 1.13695µ10-7=,

92049, 4, 43.793, 2.10218µ10-9=, 94097, 4, 63.551, 6.48318µ10-11==,
9$Failed, 865, 6, 0.03, 0.00853295<, 8129, 6, 0.14, 0.00212781<,

8257, 6, 0.37, 0.0000935051<, 9513, 6, 1.392, 1.1052µ10-6=, 91025, 6, 7.14, 6.38732µ10-9=,

92049, 6, 35.121, 3.22349µ10-11=, 94097, 6, 89.809, 2.15934µ10-11==,
9833, Pseudospectral, 0.02, 0.00610004<, 865, Pseudospectral, 0.03, 0.00287949<,

8129, Pseudospectral, 0.08, 0.000417946<, 9257, Pseudospectral, 0.22, 3.72935µ10-6=,

9513, Pseudospectral, 2.063, 2.28232µ10-9=, 91025, Pseudospectral, 544.974, 8.81844µ10-13===

Advanced Numerical Differential Equation Solving in Mathematica 239

This removes the cases that were not recomputed and makes a logarithmic plot of accuracy as
a function of computation time.

In[76]:= fres = Map@DeleteCases@Ò, $FailedD &, resultsD;
ListLogLogPlot@fres@@All, All, 83, 4<DD,
PlotRange Ø All, PlotStyle Ø White, Epilog Ø MapThread@

Function@8c, d<, 8c, Apply@Text@ToString@Ò1D, Log@8Ò3, Ò4<DD &, d, 1D<D,
88Red, Green, Blue, Black<, fres<DD

Out[76]=

0.1 1 10 100

10-10

10-8

10-6

10-4

0.01
129

257

513

1025

2049

4097

65
129

257

513

1025

2049

4097

65
129

257

513

1025

2049 4097

3365
129

257

513

1025

A logarithmic plot of the error in approximating the solution of Burgers' equation at t = 4 as a function of
the computation time. Each point shown indicates the number of spatial grid points used to compute the
solution. Finite differences of order 2, 4, and 6 on a uniform grid are shown in red, blue, and green,
respectively. Pseudospectral derivatives with uniform (periodic) spacing are shown in black. Note that the
cost of the pseudospectral method jumps dramatically from 513 to 1025. This is because the method has
switched to the stiff solver, which is very expensive with the dense Jacobian produced by the
discretization.

The resulting graph demonstrates quite forcefully that, when they work, as in this case, periodic

pseudospectral approximations are incredibly efficient. Otherwise, up to a point, the higher the

difference order, the better the approximation will generally be. These are all features of

smooth problems, which this particular instance of Burgers' equation is. However, the higher-

order solutions would generally be quite poor if you went toward the limit n Ø 0.

One final point to note is that the above graph was computed using the Automatic method for

the temporal direction. This uses LSODA, which switches between a stiff and nonstiff method

depending on how the solution evolves. For the coarser grids, strictly explicit methods are

typically a bit faster, and, except for the pseudospectral case, the implicit BDF methods are

faster for the finer grids. A variety of alternative ODE methods are available in NDSolve.

240 Advanced Numerical Differential Equation Solving in Mathematica

Error at the Boundaries

The a priori error estimates are computed in the interior of the computational region because

the differences used there all have consistent error terms that can be used to effectively esti-

mate the number of points to use. Including the boundaries in the estimates would complicate

the process beyond what is justified for such an a priori estimate. Typically, this approach is

successful in keeping the error under reasonable control. However, there are a few cases which

can lead to difficulties.

Occasionally it may occur that because the error terms are larger for the one-sided derivatives

used at the boundary, NDSolve will detect an inconsistency between boundary and initial

conditions, which is an artifact of the discretization error.

This solves the one-dimensional heat equation with the left end held at constant temperature
and the right end radiating into free space.

In[2]:= solution = FirstBNDSolveB:∂tu@x, tD == ∂x,xu@x, tD, u@x, 0D == 1 -
Sin@4 p xD

4 p
,

u@0, tD == 1, u@1, tD + uH1,0L@1, tD == 0>, u, 8x, 0, 1<, 8t, 0, 1<FF

NDSolve::ibcinc : Warning: Boundary and initial conditions are inconsistent.

Out[2]= 8u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<

The NDSolve:ibcinc message is issued, in this case, completely to the larger discretization

error at the right boundary. For this particular example, the extra error is not a problem

because it gets damped out due to the nature of the equation. However, it is possible to elimi-

nate the message by using just a few more spatial points.

This computes the solution to the same equation as above, but using a minimum of 50 points in
the x direction.

In[3]:= solution =

FirstBNDSolveB:∂tu@x, tD == ∂x,xu@x, tD, u@x, 0D == 1 -
Sin@4 p xD

4 p
, u@0, tD == 1,

u@1, tD + uH1,0L@1, tD == 0>, u, 8x, 0, 1<, 8t, 0, 1<, Method Ø 8“MethodOfLines“,

“SpatialDiscretization“ Ø 8“TensorProductGrid“, MinPoints Ø 50<<FF

Out[3]= 8u Ø InterpolatingFunction@880., 1.<, 80., 1.<<, <>D<

One other case where error problems at the boundary can affect the discretization unexpectedly

is when periodic boundary conditions are given with a function that is not truly periodic, so that

an unintended discontinuity is introduced into the computation.

Advanced Numerical Differential Equation Solving in Mathematica 241

This begins the computation of the solution to the sine-Gordon equation with a Gaussian initial
condition and periodic boundary conditions. The NDSolve command is wrapped with
TimeConstrained since solving the given problem can take a very long time and a large
amount of system memory.

In[4]:= L = 1;
TimeConstrained@
sol1 = First@NDSolve@8D@u@t, xD, t, tD ã D@u@t, xD, x, xD - Sin@u@t, xDD,

u@0, xD ã Exp@-x^2D, Derivative@1, 0D@uD@0, xD ã 0, u@t, -1D ã u@t, 1D<,
u, 8t, 0, 1<, 8x, -1, 1<, Method Ø StiffnessSwitchingDD, 10D

NDSolve::mxsst : Using maximum number of grid points 10000
allowed by the MaxPoints or MinStepSize options for independent variable x.

Out[5]= $Aborted

The problem here is that the initial condition is effectively discontinuous when the periodic

continuation is taken into account.

This shows a plot of the initial condition over the extent of three full periods.

In[6]:= Plot@Exp@-HMod@x + 1, 2D - 1L^2D, 8x, -3, 3<D

Out[6]=

-3 -2 -1 1 2 3

0.5

0.6

0.7

0.8

0.9

1.0

Since there is always a large derivative error at the cusps, NDSolve is forced to use the maxi-

mum number of points in an attempt to satisfy the a priori error bound. To make matters

worse, the extreme change makes solving the resulting ODEs more difficult, leading to a very

long solution time which uses a lot of memory.

If the discontinuity is really intended, you will typically want to specify a number of points or

spacing for the spatial grid that will be sufficient to handle the aspects of the discontinuity you

are interested in. To model discontinuities with high accuracy will typically take specialized

methods that are beyond the scope of the general methods that NDSolve provides.

On the other hand, if the discontinuity was unintended, say in this example by simply choosing

a computational domain that was too small, it can usually be fixed easily enough by extending

the domain or by adding in terms to smooth things between periods.

242 Advanced Numerical Differential Equation Solving in Mathematica

This solves the sine-Gordon problem on a computational domain large enough so that the
discontinuity in the initial condition is negligible compared to the error allowed by the default
tolerances.

In[7]:= L = 10;
Timing@sol2 = First@NDSolve@8D@u@t, xD, t, tD ã D@u@t, xD, x, xD - Sin@u@t, xDD,

u@0, xD ã Exp@-x^2D, Derivative@1, 0D@uD@0, xD ã 0,
u@t, -LD ã u@t, LD<, u, 8t, 0, 1<, 8x, -L, L<DDD

Out[8]= 80.031, 8u Ø InterpolatingFunction@880., 1.<, 8-10., 10.<<, <>D<<

Numerical Solution of Boundary Value
Problems

"Shooting" Method

The shooting method works by considering the boundary conditions as a multivariate function

of initial conditions at some point, reducing the boundary value problem to finding the initial

conditions that give a root. The advantage of the shooting method is that it takes advantage of

the speed and adaptivity of methods for initial value problems. The disadvantage of the method

is that it is not as robust as finite difference or collocation methods: some initial value problems

with growing modes are inherently unstable even though the BVP itself may be quite well posed

and stable.

Consider the BVP system

The shooting method looks for initial conditions XHt0L = c so that G = 0. Since you are varying the

initial conditions, it makes sense to think of X = Xc as a function of them, so shooting can be

thought of as finding c such that with

After setting up the function for G, the problem is effectively passed to FindRoot to find the

initial conditions c giving the root. The default method is to use Newton's method, which

involves computing the Jacobian. While the Jacobian can be computed using finite differences,

the sensitivity of solutions of an IVP to its initial conditions may be too much to get reasonably

accurate derivative values, so it is advantageous to compute the Jacobian as a solution to ODEs.

Advanced Numerical Differential Equation Solving in Mathematica 243

X£HtL = FHt, XHtLL;GHXHt1L, XHt2L, …, XHtnLL = 0, t1 < t2 <… < tn

Xc£HtL = FHt, XcHtLL; XcHt0L = c

GHXcHt1L, XcHt2L, …, XcHtnLL = 0

involves computing the Jacobian. While the Jacobian can be computed using finite differences,

the sensitivity of solutions of an IVP to its initial conditions may be too much to get reasonably

accurate derivative values, so it is advantageous to compute the Jacobian as a solution to ODEs.

Linearization and Newton's Method

Linear problems can be described by

Where JHtL is a matrix and F0HtL is a vector both possibly depending on t, B0 is a constant vector,

and B1, B2, …, Bn are constant matrices.

Let Y =
∂XcHtL
∂c

. Then, differentiating both the IVP and boundary conditions with respect to c gives

Since G is linear, when thought of as a function of c, you have GHcL = GHc0L + J
∂G
∂c
N Hc - c0L, so the

value of c for which GHcL = 0 satisfies

c = c0 +
∂G

∂c

-1

GHc0L

for any particular initial condition c0.

For nonlinear problems, let JHtL be the Jacobian for the nonlinear ODE system, and let Bi be the

Jacobian of the ith boundary condition. Then computation of ∂G
∂c

 for the linearized system gives

the Jacobian for the nonlinear system for a particular initial condition, leading to a Newton

iteration,

cn+1 = cn +
∂G

∂c
HcnL

-1

GHcnL

244 Advanced Numerical Differential Equation Solving in Mathematica

Xc£HtL = JHtL XcHtL + F0HtL; XcHt0L = c

GHXcHt1L, XcHt2L, …, XcHtnLL = B0 + B1 XcHt1L + B2 XcHt2L +… Bn XcHtnL

Y £HtL = JHtL YHtLL; YHt0L = I

∂G

∂c
= B1 YHt1L + B2 YHt2L +… Bn YHtnL = 0

"StartingInitialConditions"

For boundary value problems, there is no guarantee of uniqueness as there is in the initial value

problem case. “Shooting“ will find only one solution. Just as you can affect the particular

solution FindRoot gets for a system of nonlinear algebraic equations by changing the starting

values, you can change the solution that “Shooting“ finds by giving different initial conditions

to start the iterations from.

“StartingInitialConditions“ is an option of the “Shooting“ method that allows you to

specify the values and position of the initial conditions to start the shooting process from.

The shooting method by default starts with zero initial conditions so that if there is a zero

solution, it will be returned.

This computes a very simple solution to the boundary value problem

In[105]:= sols =
Map@First@NDSolve@8x‘‘@tD + Sin@x@tDD ã 0, x@0D ã x@10D ã 0<, x, t, Method Ø

8“Shooting“, “StartingInitialConditions“ Ø 8x@0D ã 0, x‘@0D ã Ò<<DD &,
81.5, 1.75, 2<D;

Plot@Evaluate@x@tD ê. solsD, 8t, 0, 10<, PlotStyle Ø 8Black, Blue, Green<D

Out[106]=

2 4 6 8 10

-2

-1

1

2

3

By default, “Shooting“ starts from the left side of the interval and shoots forward in time.

There are cases where is it advantageous to go backwards, or even from a point somewhere in

the middle of the interval.

Consider the linear boundary value problem

Advanced Numerical Differential Equation Solving in Mathematica 245

x″ + sinHxLã 0 with xH0L = xH1L = 0.

x£££HtL - 2 lx″HtL - l2 x£HtL + 2 l3 xHtL = Il2 + p2M H2 l cosHp tL + p sinHp tLL

xH0L = 1 +
1 + ‰-2 l + ‰-l

2 + ‰-l
, xH1L = 0, x ' H1L =

3 l - ‰-l l

2 + ‰-l

that has a solution

xHtL =
‰l Ht-1L + ‰2 l Ht-1L + ‰-l t

2 + ‰-l
+ cosHp tL

For moderate values of l, the initial value problem starting at t = 0 becomes unstable because of

the growing ‰l Ht-1L and ‰2 l Ht-1L terms. Similarly, starting at t = 1, instability arises from the ‰-l t

term, though this is not as large as the term in the forward direction. Beyond some value of l,

shooting will not be able to get a good solution because the sensitivity in either direction will be

too great. However, up to that point, choosing a point in the interval that balances the growth

in the two directions will give the best solution.

This gives the equation, boundary conditions, and exact solution as Mathematica input.

In[107]:= eqn =
x‘‘‘@tD - 2 l x‘‘@tD - l2 x‘@tD + 2 l3 x@tD ã Il2 + p2M H2 l Cos@p tD + p Sin@p tDL;

bcs = :x@0D ã 1 +
1 + ‰-2 l + ‰-l

2 + ‰-l
, x@1D ã 0, x‘@1D ã

3 l - ‰-l l

2 + ‰-l
>;

xsol@t_D =
‰l Ht-1L + ‰2 l Ht-1L + ‰-l t

2 + ‰-l
+ Cos@p tD;

This solves the system with l = 10 shooting from the default t = 0.

In[110]:= Block@8l = 10<,
sol = First@NDSolve@8eqn, bcs<, x, tDD;
Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DD

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

NDSolve::berr :
There are significant errors 9-1.11022µ10-16, 6.95123µ10-6, 0.000139029= in the boundary

value residuals. Returning the best solution found.

Out[110]=

0.2 0.4 0.6 0.8 1.0
-0.5

0.5

1.0

1.5

Shooting from t = 0, the “Shooting“ method gives warnings about an ill-conditioned matrix, and

further that the boundary conditions are not satisfied as well as they should be. This is because

a small error at t = 0 is amplified by e20 > 4ä108. Since the reciprocal of this is of the same order

of magnitude as the local truncation error, visible errors as those seen in the plot are not

surprising. In the reverse direction, the magnification will be much less:

246 Advanced Numerical Differential Equation Solving in Mathematica

 method gives warnings about an ill-conditioned matrix, and

further that the boundary conditions are not satisfied as well as they should be. This is because
20 8

of magnitude as the local truncation error, visible errors as those seen in the plot are not

surprising. In the reverse direction, the magnification will be much less: e10 > 2ä104, so the

solution should be much better.

This computes the solution using shooting from t = 1.

In[111]:= BlockB8l = 10<,

sol = FirstBNDSolveB8eqn, bcs<, x, t,

Method Ø :“Shooting“, “StartingInitialConditions“ Ø

:x@1D ã 0, x‘@1D ã
3 l - ‰-l l

2 + ‰-l
, x‘‘@1D ã 0>>FF;

Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DF

Out[111]=

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

1.5

A good point to choose is actually one that will balance the sensitivity in each direction, which is

about at t = 2 ê3. With this, the error with l = 15 will still be under reasonable control.

This computes the solution for l = 15 shooting from t = 2 ê3.
In[112]:= Block@8l = 15<,

sol = First@NDSolve@8eqn, bcs<, x, t,
Method Ø 8“Shooting“, “StartingInitialConditions“ Ø

8x@2 ê 3D ã 0, x‘@2 ê 3D ã 0, x‘‘@2 ê 3D ã 0<<DD;
Plot@8xsol@tD, x@tD ê. sol<, 8t, 0, 1<DD

Out[112]=

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

1.5

Advanced Numerical Differential Equation Solving in Mathematica 247

Option summary

option name default value

"StartingInitialConditions
"

Automatic the initial conditions to initiate the shooting
method from

"ImplicitSolver" Automatic the method to use for solving the implicit
equation defined by the boundary condi-
tions; this should be an acceptable value
for the Method option of FindRoot

"MaxIterations" Automatic how many iterations to use for the implicit
solver method

"Method" Automatic the method to use for integrating the
system of ODEs

"Shooting" method options.

"Chasing" Method

The method of chasing came from a manuscript of Gel'fand and Lokutsiyevskii first published in

English in [BZ65] and further described in [Na79]. The idea is to establish a set of auxiliary

problems that can be solved to find initial conditions at one of the boundaries. Once the initial

conditions are determined, the usual methods for solving initial value problems can be applied.

The chasing method is, in effect, a shooting method that uses the linearity of the problem to

good advantage.

Consider the linear ODE

(2)X£ HtL == AHtL XHtL + A0HtL

where XHtL = Hx1HtL, x2HtL, …, xnHtLL, AHtL is the coefficient matrix, and A0HtL is the inhomogeneous

coefficient vector, with n linear boundary conditions

(3)Bi.XHtiLã bi0, i = 1, 2, , n

where Bi = Hbi1, bi2, , binL is a coefficient vector. From this, construct the augmented homoge-

nous system

(4)X
£
HtL = AHtL XHtL, Bi.XHtiL = 0

248 Advanced Numerical Differential Equation Solving in Mathematica

where

XHtL =

1
x1HtL
x2HtL
ª

xnHtL

, AHtL =

a01HtL a11HtL a12HtL a1 nHtL
a02HtL a21HtL a22HtL a2 nHtL
ª ª ª ª

a0 nHtL an1HtL an2HtL annHtL
0 0 0 0

, and Bi =

bi0
bi1
bi2
ª

bin

The chasing method amounts to finding a vector function FiHtL such that FiHtiL = Bi and FiHtL XHtL = 0.

Once the function FiHtL is known, if there is a full set of boundary conditions, solving

(5)

F1Ht0L
F2Ht0L

ª

FnHt0L

XHt0L = 0

can be used to determine initial conditions Hx1Ht0L, x2Ht0L, , xnHt0LL that can be used with the usual

initial value problem solvers. Note that the solution to system (3) is nontrivial because the first

component of X is always 1.

Thus, solving the boundary value problem is reduced to solving the auxiliary problems for the

FiHtL. Differentiating the equation for Fi HtL gives

FiHtL X
£
HtL + XHtLFi£HtL = 0

Substituting the differential equation,

AHtL XHtLFiHtL + XHtLFi£HtL = 0

and transposing

XHtL JFi£HtL + A
T
HtLFiHtLN = 0

Since this should hold for all solutions X, you have the initial value problem for Fi,

(6)Fi
£HtL + A

T
HtLFiHtL = 0 with initial condition FiHtiL = Bi

Given t0 where you want to have solutions to all of the boundary value problems, Mathematica

just uses NDSolve to solve the auxiliary problems for F1, F2, …, Fm by integrating them to t0. The

results are then combined into the matrix of (3) that is solved for

Advanced Numerical Differential Equation Solving in Mathematica 249

t0. The

results are then combined into the matrix of (3) that is solved for XHt0L to obtain the initial value

problem that NDSolve integrates to give the returned solution.

This variant of the method is further described in and used by the MathSource package [R98],

which also allows you to solve linear eigenvalue problems.

There is an alternative, nonlinear way to set up the auxiliary problems that is closer to the

original method proposed by Gel'fand and Lokutsiyevskii. Assume that the boundary conditions

are linearly independent (if not, then the problem is insufficiently specified). Then in each Bi,

there is at least one nonzero component. Without loss of generality, assume that bij ≠ 0. Now

solve for Fij in terms of the other components of Fi, Fij = Bi
è

.Fi
è
, where

Fi
è
= I1, Fi1, , Fij-1, , Fij+1, , FinM and Bi

è
= Hbi0, bi1, , bij-1, , bij+1, , binMë-bij. Using (5) and

replacing Fij, and thinking of xnHtL in terms of the other components of xHtL you get the nonlinear

equation

Fi
è £
HtL = -A

è T
@tDFi

è
HtL + IA j.Fi

è
HtLMFi

è
HtL

where A
è
 is A with the jthcolumn removed and A j is the jth column of A. The nonlinear method

can be more numerically stable than the linear method, but it has the disadvantage that integra-

tion along the real line may lead to singularities. This problem can be eliminated by integrating

on a contour in the complex plane. However, the integration in the complex plane typically has

more numerical error than a simple integration along the real line, so in practice, the nonlinear

method does not typically give results better than the linear method. For this reason, and

because it is also generally faster, the default for Mathematica is to use the linear method.

This solves a two-point boundary value problem for a second-order equation.

In[113]:= nsol1 = NDSolve@8y‘‘@tD + y@tD ê 4 ã 8, y@0D ã 0, y@10D ã 0<, y, 8t, 0, 10<D

Out[113]= 88y Ø InterpolatingFunction@880., 10.<<, <>D<<

250 Advanced Numerical Differential Equation Solving in Mathematica

This shows a plot of the solution.

In[114]:= Plot@First@y@tD ê. nsol1D, 8t, 0, 10<D

Out[114]=

2 4 6 8 10

10

20

30

40

50

60

70

The solver can solve multipoint boundary value problems of linear systems of equations. (Note
that each boundary equation must be at one specific value of t.)

In[115]:= bconds = 8
x@0D + x‘@0D + y@0D + y‘@0D ã 1,
x@1D + 2 x‘@1D + 3 y@1D + 4 y‘@1D ã 5,
y@2D + 2 y‘@2D ã 4,
x@3D - x‘@3D ã 7<;

nsol2 = NDSolve@8
x‘‘@tD + x@tD + y@tD ã t, y‘‘@tD + y@tD ã Cos@tD,
bconds<,

8x, y<,
8t, 0, 4<D

Out[116]= 88x Ø InterpolatingFunction@880., 4.<<, <>D, y Ø InterpolatingFunction@880., 4.<<, <>D<<

In general, you cannot expect the boundary value equations to be satisfied to the close toler-

ance of Equal.

This checks to see if the boundary conditions are "satisfied".

In[117]:= bconds ê. First@nsol2D

Out[117]= 8True, False, False, False<

They are typically only be satisfied at most tolerances that come from the AccuracyGoal and

PrecisionGoal options of NDSolve. Usually, the actual accuracy and precision is less because

these are used for local, not global, error control.

This checks the residual error at each of the boundary conditions.

In[118]:= Apply@Subtract, bconds, 1D ê. First@nsol2D

Out[118]= 90., -2.5751µ10-7, -4.13357µ10-8, -2.95508µ10-8=

When you give NDSolve a problem that has no solution, numerical error may make it appear to

be a solvable problem. Typically, NDSolve will issue a warning message.

Advanced Numerical Differential Equation Solving in Mathematica 251

This is a boundary value problem that has no solution.

In[125]:= NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x@PiD ã 0<,
x, 8t, 0, Pi<, Method Ø “Chasing“D

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

Out[125]= 88x Ø InterpolatingFunction@880., 3.14159<<, <>D<<

In this case, it is not able to integrate over the entire interval because of nonexistence.

Another situation in which the equations can be ill-conditioned is when the boundary conditions

do not give a unique solution.

Here is a boundary value problem that does not have a unique solution. Its general solution is
shown as computed symbolically with DSolve.

In[120]:= dsol =
First@x ê. DSolve@8x‘‘@tD + x@tD ã t, x‘@0D ã 1, x@Pi ê 2D ã Pi ê 2<, x, tDD

DSolve::bvsing:
Unable to resolve some of the arbitrary constants in the general solution using the given boundary

conditions. It is possible that some of the conditions
have been specified at a singular point for the equation.

Out[120]= Function@8t<, t + C@1D Cos@tDD

NDSolve issues a warning message because the matrix to solve for the initial conditions is
singular, but has a solution.

In[122]:= onesol = First@x ê. NDSolve@8x‘‘@tD + x@tD ã t, x‘@0D ã 1, x@Pi ê 2D ã Pi ê 2<,
x, 8t, 0, Pi ê 2<, Method Ø “Chasing“DD

NDSolve::bvluc :
The equations derived from the boundary conditions are numerically ill-conditioned. The boundary

conditions may not be sufficient to uniquely define a solution. The
computed solution may match the boundary conditions poorly.

Out[122]= InterpolatingFunction@880., 1.5708<<, <>D

252 Advanced Numerical Differential Equation Solving in Mathematica

You can identify which solution it found by fitting it to the interpolating points. This makes a plot
of the error relative to the actual best fit solution.

In[126]:= ip = onesolü“Coordinates“@1D;
points = Transpose@8ip, onesol@ipD<D;
model = dsol@tD ê. C@1D Ø a;
fit = FindFit@points, model, a, tD;
ListPlot@Transpose@8ip, onesol@ipD - HHmodel ê. fitL ê. t Ø ipL<DD

Out[130]=

0.5 1.0 1.5

-3.µ 10-8

-2.µ 10-8

-1.µ 10-8

1.µ 10-8

2.µ 10-8

3.µ 10-8

4.µ 10-8

Typically the default values Mathematica uses work fine, but you can control the chasing

method by giving NDSolve the option Method -> 8“Chasing“, chasing options<. The possible

chasing options are shown in the following table.

option name default value

Method Automatic the numerical method to use for computing
the initial value problems generated by the
chasing algorithm

“ExtraPrecision“ 0 number of digits of extra precision to use
for solving the auxiliary initial value
problems

“ChasingType“ “LinearChasing“ the type of chasing to use, which can be
either “LinearChasing“ or
“NonlinearChasing“

Options for the “Chasing“ method of NDSolve.

Advanced Numerical Differential Equation Solving in Mathematica 253

The method “ChasingType“ -> “NonlinearChasing“ itself has two options.

option name default value

“ContourType“ Ellipse the shape of contour to use when integra-
tion in the complex plane is required, which
can either be “Ellipse“ or “Rectangle“

“ContourRatio“ 1ê10 the ratio of the width to the length of the
contour; typically a smaller number gives
more accurate results, but yields more
numerical difficulty in solving the equations

Options for the “NonlinearChasing“ option of the “Chasing“ method.

These options, especially “ExtraPrecision“ can be useful in cases where there is a strong

sensitivity to computed initial conditions.

Here is a boundary value problem with a simple solution computed symbolically using DSolve.

In[131]:= bvp = 8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<;
dsol = First@x ê. DSolve@bvp, x, tDD

Out[132]= FunctionB8t<, CscB10 10 F SinB10 10 tFF

This shows the error in the solution computed using the chasing method in NDSolve.

In[133]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø “Chasing“DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[134]=
0.2 0.4 0.6 0.8 1.0

-0.00002

-0.00001

0.00001

0.00002

254 Advanced Numerical Differential Equation Solving in Mathematica

Using extra precision to solve for the initial conditions reduces the error substantially.

In[135]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø 8“Chasing“, “ExtraPrecision“ Ø 10<DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[136]=
0.2 0.4 0.6 0.8 1.0

-6.µ 10-7

-4.µ 10-7

-2.µ 10-7

2.µ 10-7

4.µ 10-7

6.µ 10-7

Increasing the extra precision beyond this really will not help because a significant part of the

error results from computing the solution once the initial conditions are found. To reduce this,

you need to give more stringent AccuracyGoal and PrecisionGoal options to NDSolve.

This uses extra precision to compute the initial conditions along with more stringent settings for
the AccuracyGoal and PrecisionGoal options.

In[137]:= sol = First@x ê. NDSolve@8x‘‘@tD + 1000 x@tD ã 0, x@0D ã 0, x@1D ã 1<,
x, 8t, 0, 1<, Method Ø 8“Chasing“, “ExtraPrecision“ Ø 10<,
AccuracyGoal Ø 10, PrecisionGoal Ø 10DD;

Plot@sol@tD - dsol@tD, 8t, 0, 1<D

Out[138]=

Boundary Value Problems with Parameters

In many of the applications where boundary value problems arise, there may be undetermined

parameters, such as eigenvalues, in the problem itself that may be a part of the desired solu-

tion. By introducing the parameters as dependent variables, the problem can often be written

as a boundary value problem in standard form.

Advanced Numerical Differential Equation Solving in Mathematica 255

0.2 0.4 0.6 0.8 1.0

5. × 10-9

–5. × 10 -9

–1. × 10 -8

For example, the flow in a channel can be modeled by

This solves the flow problem with R = 1 for f and a, plots the solution f and returns the value of
a.

In[1]:= Block@8R = 1<,
sol = NDSolve@8f‘‘‘@tD - R HHf‘@tDL^2 - f@tD f‘‘@tDL + R a@tD ã 0, a‘@tD ã 0,

f@0D ã f‘@0D ã f‘@1D ã 0, f@1D ã 1<, 8f, a<, tD;
Column@8Plot@f@tD ê. First@solD, 8t, 0, 1<D,

a@0D ê. First@solD<DD

Out[1]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

14.3659

Numerical Solution of Differential-
Algebraic Equations

Introduction

In general, a system of ordinary differential equations (ODEs) can be expressed in the normal

form,

x£ = f Ht, xL.

The derivatives of the dependent variables x are expressed explicitly in terms of the indepen-

dent variable t and the dependent variables x. As long as the function f has sufficient continu-

ity, a unique solution can always be found for an initial value problem where the values of the

dependent variables are given at a specific value of the independent variable.

256 Advanced Numerical Differential Equation Solving in Mathematica

f £££ - RIH f £L2 - f f ″M + Ra = 0

f H0L = f £H0L = 0, f H1L = 1, f £H1L = 0

where R (the Reynolds number) is given, but a is to be determined.

To find the solution f and the value of a, just add the equation a£ = 0.

With differential-algebraic equations (DAEs), the derivatives are not, in general, expressed

explicitly. In fact, derivatives of some of the dependent variables typically do not appear in the

equations. The general form of a system of DAEs is

(7)FHt, x, x£L = 0,

where the Jacobian with respect to x£, ∂F ê∂x£ may be singular.

A system of DAEs can be converted to a system of ODEs by differentiating it with respect to the

independent variable t. The index of a DAE is effectively the number of times you need to

differentiate the DAEs to get a system of ODEs. Even though the differentiation is possible, it is

not generally used as a computational technique because properties of the original DAEs are

often lost in numerical simulations of the differentiated equations.

Thus, numerical methods for DAEs are designed to work with the general form of a system of

DAEs. The methods in NDSolve are designed to generally solve index-1 DAEs, but may work for

higher index problems as well.

This tutorial will show numerous examples that illustrate some of the differences between

solving DAEs and ODEs.

This loads packages that will be used in the examples and turns off a message.

In[10]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

The specification of initial conditions is quite different for DAEs than for ODEs. For ODEs, as

already mentioned, a set of initial conditions uniquely determines a solution. For DAEs, the

situation is not nearly so simple; it may even be difficult to find initial conditions that satisfy the

equations at all. To better understand this issue, consider the following example [AP98].

Here is a system of DAEs with three equations, but only one differential term.

In[11]:= DAE =

x1£@tD ã x3@tD
x2@tD H1 - x2@tDL ã 0

x1@tD x2@tD + x3@tD H1 - x2@tDL ã t
;

The initial conditions are clearly not free; the second equation requires that x2@t0D be either 0 or

1.

This solves the system of DAEs starting with a specified initial condition for the derivative of x1.

In[12]:= sol = NDSolve@8DAE, x1‘@0D ã 1<, 8x1, x2, x3<, 8t, 0, 1<D

Out[12]= 88x1 Ø InterpolatingFunction@880., 1.<<, <>D,
x2 Ø InterpolatingFunction@880., 1.<<, <>D, x3 Ø InterpolatingFunction@880., 1.<<, <>D<<

Advanced Numerical Differential Equation Solving in Mathematica 257

To get this solution, NDSolve first searches for initial conditions that satisfy the equations, using

a combination of Solve and a procedure much like FindRoot. Once consistent initial conditions

are found, the DAE is solved using the IDA method.

This shows the initial conditions found by NDSolve.

In[13]:= 88x1‘@0D<, 8x1@0D, x2@0D, x3@0D<< ê. First@solD

Out[13]= 881.<, 80., 1., 1.<<

This shows a plot of the solution. The solution x2@0D is obscured by the solution x3@0D, which
has the same constant value of 1.

In[15]:= Plot@Evaluate@8x1@tD, x2@tD, x3@tD< ê. First@solDD, 8t, 0, 1<,
PlotStyle Ø 8Red, Black, Blue<D

Out[15]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

However, there may not be a solution from all initial conditions that satisfy the equations.

This tries to find a solution with x2@0D starting from steady state with derivative 0.

In[16]:= sols = NDSolve@8DAE, x1‘@0D ã 0<, 8x1, x2, x3<, 8t, 0, 1<D

NDSolve::nderr : Error test failure at t == 0.`; unable to continue.

Out[16]= 88x1 Ø InterpolatingFunction@880., 0.<<, <>D,
x2 Ø InterpolatingFunction@880., 0.<<, <>D, x3 Ø InterpolatingFunction@880., 0.<<, <>D<<

This shows the initial conditions found by NDSolve.

In[17]:= 88x1‘@0D<, 8x1@0D, x2@0D, x3@0D<< ê. First@solsD

Out[17]= 880.<, 80., 1., 0.<<

If you look at the equations with x2 set to 1, you can see why it is not possible to advance

beyond t == 1.

Substitute x2@tD = 1 into the equations.

In[18]:= DAE ê. x2@tD Ø 1

Out[18]= 88x1
£@tD ã x3@tD<, 8True<, 8x1@tD ã t<<

258 Advanced Numerical Differential Equation Solving in Mathematica

The middle equation effectively drops out. If you differentiate the last equation with x2@tD = 1,

you get the condition x1‘@tD = 1, but then the first equation is inconsistent with the value of

x3@tD = 0 in the initial conditions.

It turns out that the only solution with x2@tD = 1 is 8x2@tD = t, x2@tD = 1, x3@tD = 1<, and along this

solution, the system has index 2.

The other set of solutions for the problem is when x2@tD = 0. You can find these by specifying

that as an initial condition.

This finds a solution with x2@tD = 0. It is also necessary to specify a value for x1@0D because it is
a differential variable.

In[19]:= sol0 = NDSolve@8DAE, x1@0D ã 1, x2@0D ã 0<, 8x1, x2, x3<, 8t, 0, 1<D

Out[19]= 88x1 Ø InterpolatingFunction@880., 1.<<, <>D,
x2 Ø InterpolatingFunction@880., 1.<<, <>D, x3 Ø InterpolatingFunction@880., 1.<<, <>D<<

This shows a plot of the nonzero components of the solution.

In[21]:= Plot@Evaluate@8x1@tD, x3@tD< ê. First@sol0DD, 8t, 0, 1<,
PlotStyle Ø 8Red, Blue<D

Out[21]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In general, you must specify initial conditions for the differential variables because typically

there is a parametrized general solution. For this problem with x2@tD = 0, the general solution is

8x1@tD = x1@0D + t2 ê 2, x2@tD = 0, x3@tD == t<, so it is necessary to give x1@0D to determine the

solution.

NDSolve cannot always find initial conditions consistent with the equations because sometimes

this is a difficult problem. "Often the most difficult part of solving a DAE system in applications

is to determine a consistent set of initial conditions with which to start the computation".

[BCP89]

Advanced Numerical Differential Equation Solving in Mathematica 259

NDSolve fails to find a consistent initial condition.

In[22]:= NDSolve@8DAE, x1@0D ã 1<, 8x1, x2, x3<, 8t, 0, 1<D

NDSolve::icfail :
Unable to find initial conditions that satisfy the residual function within specified tolerances.

Try giving initial conditions for both values and derivatives of the functions.
Out[22]= 8<

If NDSolve fails to find consistent initial conditions, you can use FindRoot with a good starting

value or some other procedure to obtain consistent initial conditions and supply them. If you

know values close to a good starting guess, NDSolve uses these values to start its search,

which may help. You may specify values of the dependent variables and their derivatives.

With index-1 systems of DAEs, it is often possible to differentiate and use an ODE solver to get

the solution.

Here is the Robertson chemical kinetics problem. Because of the large and small rate constants,
the problem is quite stiff.

In[23]:= kinetics =

:y1‘@tD ã -
1

25
y1@tD + 104 y2@tD y3@tD, y2‘@tD ã

1

25
y1@tD - 3 µ 107 y2@tD2 >;

balance = y1@tD + y2@tD + y3@tD ã 1;
start = 8y1@0D ã 1, y2@0D ã 0, y3@0D ã 0<;

This solves the Robertson kinetics problem as an ODE by differentiating the balance equation.

In[26]:= odesol =
First@NDSolve@8kinetics, D@balance, tD, start<, 8y1, y2, y3<, 8t, 0, 40000<DD

Out[26]= 8y1 Ø InterpolatingFunction@880., 40000.<<, <>D,
y2 Ø InterpolatingFunction@880., 40000.<<, <>D, y3 Ø InterpolatingFunction@880., 40000.<<, <>D<

The stiffness of the problem is supported by y1 and y2 having their main variation on two com-

pletely different time scales.

260 Advanced Numerical Differential Equation Solving in Mathematica

This shows the solutions y1 and y2.

In[27]:= GraphicsRow@8
Plot@y1@tD ê. odesol, 8t, 0, 25<, PlotRange Ø All, ImageSize Ø 200D,
Plot@y2@tD ê. odesol, 8t, 0, 0.01<, PlotRange Ø All, ImageSize Ø 200,
Ticks -> 880.0, 0.005, 0.01<, 80.0, 0.000005, 0.000015, 0.000025, 0.000035<<D

<D

Out[27]=

5 10 15 20 25

0.92

0.94

0.96

0.98

1.00

0.005 0.01

5.µ 10-6

0.000015

0.000025

0.000035

This solves the Robertson kinetics problem as a DAE.

In[33]:= daesol = First@NDSolve@8kinetics, balance, start<, 8y1, y2, y3<, 8t, 0, 40000<DD

Out[33]= 8y1 Ø InterpolatingFunction@880., 40000.<<, <>D,
y2 Ø InterpolatingFunction@880., 40000.<<, <>D, y3 Ø InterpolatingFunction@880., 40000.<<, <>D<

The solutions for a given component will appear quite close, but comparing the chemical bal-

ance constraint shows a difference between them.

Here is a graph of the error in the balance equation for the ODE and DAE solutions, shown in
black and blue respectively. A log-log scale is used because of the large variation in t and the
magnitude of the error.

In[34]:= berr@t_D = Abs@Apply@Subtract, balanceDD;
gode = First@InterpolatingFunctionCoordinates@y1 ê. odesolDD;
gdae = First@InterpolatingFunctionCoordinates@y1 ê. daesolDD;
Show@8

ListLogLogPlot@Transpose@8gode, berr@godeD ê. odesol<D, PlotStyle Ø BlackD,
ListLogLogPlot@
Transpose@8gdae, berr@gdaeD ê. daesol<D, PlotStyle Ø RGBColor@0, 0, 1DD

<, ImageSize Ø 400, PlotRange Ø AllD

Out[37]=

Advanced Numerical Differential Equation Solving in Mathematica 261

1.0 × 10-16

5.0 × 10-16

2.0 × 10-15
7.0 × 10-15

10-5 104100.01

In this case, both solutions satisfied the balance equations well beyond expected tolerances.

Note that even though the error in the balance equation was greater at some points for the DAE

solution, over the long term, the DAE solution is brought back to better satisfy the constraint

once the range of quick variation is passed.

You may want to solve some DAEs of the form

x£HtL = f Ht, xHtLL
gHt, xHtLL = 0,

such that the solution of the differential equation is required to satisfy a particular constraint.

NDSolve cannot handle such DAEs directly because the index is too high and NDSolve expects

the number of equations to be the same as the number of dependent variables. NDSolve does,

however, have a Projection method that will often solve the problem.

A very simple example of such a constrained system is a nonlinear oscillator modeling the

motion of a pendulum.

This defines the equation, invariant constraint, and starting condition for a simulation of the
motion of a pendulum.

In[55]:= equation = x‘‘@tD + Sin@x@tDD ã 0;
invariant = x‘@tD2 - 2 Cos@x@tDD;
start = 8x@0D ã 1, x‘@0D ã 0<;

Note that the differential equation is effectively the derivative of the invariant, so one way to

solve the equation is to use the invariant.

This solves for the motion of a pendulum using the invariant equation. The SolveDelayed
option tells NDSolve not to symbolically solve the quadratic equation for x£, but instead to solve
the system as a DAE.

In[58]:= isol = First@
NDSolve@8invariant ã -2 Cos@1D, start<, x, 8t, 0, 1000<, SolveDelayed Ø TrueDD

Out[58]= 8x Ø InterpolatingFunction@880., 1000.<<, <>D<

However, this solution may not be quite what you expect: the invariant equation has the solu-

tion x@tD == constant when it starts with x‘@tD == 0. In fact it does not have unique solutions

from this starting point. This is because if you do actually solve for x£, the function does not

satisfy the continuity requirements for uniqueness.

262 Advanced Numerical Differential Equation Solving in Mathematica

This solves for the motion of a pendulum using only the differential equation. The method
“ExplicitRungeKutta“ is used because it can also be a submethod of the projection method.

In[59]:= dsol =
First@NDSolve@8equation, start<, x, 8t, 0, 2000<, Method Ø “ExplicitRungeKutta“DD

Out[59]= 8x Ø InterpolatingFunction@880., 2000.<<, <>D<

This shows the solution plotted over the last several periods.

In[60]:= Plot@x@tD ê. dsol, 8t, 1950, 2000<D

Out[60]=
1960 1970 1980 1990 2000

-1.0

-0.5

0.5

1.0

This shows a plot of the invariant at the ends of the time steps NDSolve took.

In[61]:= ts = First@InterpolatingFunctionCoordinates@x ê. dsolDD;
ListPlot@Transpose@8ts, invariant + 2 Cos@1D ê. dsol ê. t Ø ts<D, PlotRange Ø AllD

Out[62]=

500 1000 1500 2000

-3.µ 10-7

-2.5µ 10-7

-2.µ 10-7

-1.5µ 10-7

-1.µ 10-7

-5.µ 10-8

The error in the invariant is not large, but it does show a steady and consistent drift. Eventu-

ally, it could be large enough to affect the fidelity of the solution.

This solves for the motion of the pendulum, constraining the motion at each step to lie on the
invariant.

In[63]:= psol = First@NDSolve@8equation, start<, x, 8t, 0, 2000<,
Method Ø 8Projection, Method Ø “ExplicitRungeKutta“, Invariants Ø invariant<DD

Out[63]= 8x Ø InterpolatingFunction@880., 2000.<<, <>D<

Advanced Numerical Differential Equation Solving in Mathematica 263

This shows a plot of the invariant at the ends of the time steps NDSolve took with the
projection method.

In[64]:= ts = First@InterpolatingFunctionCoordinates@x ê. psolDD;
ListPlot@Transpose@8ts, invariant + 2 Cos@1D ê. psol ê. t Ø ts<D, PlotRange Ø AllD

Out[65]=
500 1000 1500 2000

-6.µ 10-16

-4.µ 10-16

-2.µ 10-16

2.µ 10-16

4.µ 10-16

IDA Method for NDSolve

The IDA package is part of the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equa-

tion Solvers) developed at the Center for Applied Scientific Computing of Lawrence Livermore

National Laboratory. As described in the IDA user guide [HT99], “IDA is a general purpose

solver for the initial value problem for systems of differential-algebraic equations (DAEs). The

name IDA stands for Implicit Differential-Algebraic solver. IDA is based on DASPK ...” DASPK

[BHP94], [BHP98] is a Fortran code for solving large-scale differential-algebraic systems.

In Mathematica, an interface has been provided to the IDA package so that rather than needing

to write a function in C for evaluating the residual and compiling the program, Mathematica

generates the function automatically from the equations you input to NDSolve.

IDA solves the system (1) with Backward Differentiation Formula (BDF) methods of orders 1

through 5, implemented using a variable-step form. The BDF of order k is at time tn = tn-1 + hn is

given by the formula

‚
i=1

k

an,i xn-i = hn xn£.

The coefficients an,i depend on the order k and past step sizes. Applying the BDF to the DAE (1)

gives a system of nonlinear equations to solve:

F tn, xn,
1

hn
‚
i=1

k

an,i xn-i = 0.

264 Advanced Numerical Differential Equation Solving in Mathematica

The solution of the system is achieved by Newton-type methods, typically using an approxima-

tion to the Jacobian

(8)J = ∂F
∂x

+ cn
∂F
∂x‘

, where cn =
an,0
hn

.

 “Its [IDAs] most notable feature is that, in the solution of the underlying nonlinear system at

each time step, it offers a choice of Newton/direct methods or an Inexact Newton/Krylov

(iterative) method.” [HT99] In Mathematica, you can access these solvers using method

options or use the default Mathematica LinearSolve, which switches automatically to direct

sparse solvers for large problems.

At each step of the solution, IDA computes an estimate En of the local truncation error and the

step size and order are chosen so that the weighted norm Norm@En ê wnD is less than 1. The

jthcomponent, wn, j, of wn is given by

wn, j =
1

10-prec °xn, j• + 10-acc
.

The values prec and acc are taken from the NDSolve settings for the PrecisionGoal -> prec and

AccuracyGoal -> acc.

Because IDA provides a great deal of flexibility, particularly in the way nonlinear equations are

solved, there are a number of method options which allow you to control how this is done. You

can use the method options to IDA by giving NDSolve the option

Method -> 8IDA, ida method options<.

The options for the IDA method are associated with the symbol IDA in the NDSolve` context.

In[1]:= Options@NDSolve`IDAD

Out[1]= 8MaxDifferenceOrder Ø 5, ImplicitSolver Ø Newton<

IDA method option name default value

“ImplicitSolver“ “Newton“ how to solve the implicit equations

“MaxDifferenceOrder“ 5 the maximum order BDF to use

IDA method options.

Advanced Numerical Differential Equation Solving in Mathematica 265

When strict accuracy of intermediate values computed with the InterpolatingFunction object

returned from NDSolve is important, you will want to use the NDSolve method option setting

InterpolationOrder -> All that uses interpolation based on the order of the method, some-

times called dense output, to represent the solution between times steps. By default NDSolve

stores a minimal amount of data to represent the solution well enough for graphical purposes.

Keeping the amount of data small saves on both memory and time for more complicated solu-

tions.

As an example which highlights the difference between minimal output and full method interpola-

tion order, consider tracking a quantity, f HtL = xHtL2 + yHtL2 derived from the solution of a simple

linear equation where the exact solution can be computed using DSolve.

This defines the function f giving the quantity as a function of time based on solutions x@tD and
y@tD.

In[2]:= f@t_D := x@tD2 + y@tD2;

This defines the linear equations along with initial conditions.

In[3]:= eqns = 8x‘@tD ã x@tD - 2 y@tD, y‘@tD ã x@tD + y@tD<;
ics = 8x@0D ã 1, y@0D ã 1<;

The exact value of f as a function of time can be computed symbolically using DSolve.

In[4]:= fexact@t_D = First@f@tD ê. DSolve@8eqns, ics<, 8x, y<, tDD

Out[4]= ‰2 t CosB 2 tF - 2 SinB 2 tF
2

+
1

4
‰2 t 2 CosB 2 tF + 2 SinB 2 tF

2

The exact solution will be compared with solutions computed with and without dense output.

A simple way to track the quantity is to create a function which derives it from the numerical
solution of the differential equation.

In[5]:= f1@t_D = First@f@tD ê. NDSolve@8eqns, ics<, 8x, y<, 8t, 0, 1<DD

Out[5]= InterpolatingFunction@880., 1.<<, <>D@tD2 + InterpolatingFunction@880., 1.<<, <>D@tD2

It can also be computed with dense output.

In[6]:= f1dense@t_D =
First@f@tD ê. NDSolve@8eqns, ics<, 8x, y<, 8t, 0, 1<, InterpolationOrder Ø AllDD

Out[6]= InterpolatingFunction@880., 1.<<, <>D@tD2 + InterpolatingFunction@880., 1.<<, <>D@tD2

266 Advanced Numerical Differential Equation Solving in Mathematica

This plot shows the error in the two computed solutions. The computed solution at the time
steps are indicated by black dots. The default output error is shown in gray and the dense
output error in black.

In[7]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;
t1 = Cases@f1@tD, Hif_InterpolatingFunctionL@tD Ø

InterpolatingFunctionCoordinates@ifD, InfinityD@@1, 1DD;
pode = Show@Block@8$DisplayFunction = Identity<,

8ListPlot@Transpose@8t1, fexact@t1D - f1@t1D<D, PlotStyle Ø PointSize@.02DD,
Plot@fexact@tD - f1@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@.8, .8, .8DD,
Plot@fexact@tD - f1dense@tD, 8t, 0, 1<D<D, PlotRange Ø AllD

Out[7]=

From the plot, it is quite apparent that when the time steps get large, the default solution

output has much larger error between time steps. The dense output solution represents the

solution computed by the solver even between time steps. Keep in mind, however, that the

dense output solution takes up much more space.

This compares the sizes of the default and dense output solutions.

In[8]:= ByteCount êü 8f1@tD, f1dense@tD<

Out[8]= 83560, 17648<

When the quantity you want to derive from the solution is complicated, you can ensure that it is

locally kept within tolerances by giving it as an algebraic quantity, forcing the solver to keep its

error in control.

This adds a dependent variable with an algebraic equation that sets the dependent variable
equal to the quantity of interest.

In[9]:= f2@t_D = First@g@tD ê. NDSolve@8eqns, ics, g@tD ã f@tD<, 8x, y, g<, 8t, 0, 1<DD

Out[9]= InterpolatingFunction@880., 1.<<, <>D@tD

This computes the same solution with dense output.

In[10]:= f2dense@t_D = First@g@tD ê. NDSolve@8eqns, ics, g@tD ã f@tD<,
8x, y, g<, 8t, 0, 1<, InterpolationOrder Ø AllDD

Out[10]= InterpolatingFunction@880., 1.<<, <>D@tD

Advanced Numerical Differential Equation Solving in Mathematica 267

–8. × 10–6

–2. × 10–6

–6. × 10–6

–4. × 10–6

0.2 0.4 0.6 0.8 1.0

This makes a plot comparing the error for all four solutions. The time steps for IDA are shown
as blue points and the dense output from IDA is shown in blue with the default output shown in
light blue.

In[11]:= t2 = InterpolatingFunctionCoordinates@Head@f2@tDDD@@1DD;
Show@8pode, ListPlot@Transpose@8t2, fexact@t2D - f2@t2D<D,

PlotStyle Ø 8RGBColor@0, 0, 1D, PointSize@0.02D<D,
Plot@fexact@tD - f2@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@.7, .7, 1DD,
Plot@fexact@tD - f2dense@tD, 8t, 0, 1<, PlotStyle Ø RGBColor@0, 0, 1DD<,

PlotRange Ø 880, 1<, 1*^-7 8-1, 1<<D

Out[11]=

You can see from the plot that the error is somewhat smaller when the quantity is computed

algebraically along with the solution.

The remainder of this documentation will focus on suboptions of the two possible settings for

the “ImplicitSolver“ option, which can be “Newton“ or “GMRES“. With “Newton“, the Jacobian

or an approximation to it is computed and the linear system is solved to find the Newton step.

On the other hand, “GMRES“ is an iterative method and, rather than computing the entire Jaco-

bian, a directional derivative is computed for each iterative step.

The “Newton“ method has one method option, “LinearSolveMethod“, which you can use to tell

Mathematica how to solve the linear equations required to find the Newton step. There are

several possible values for this option.

Automatic this is the default, automatically switch between using the
Mathematica LinearSolve and Band methods depending
on the band width of the Jacobian; for systems with larger
band width, this will automatically switch to a direct sparse
solver for large systems with sparse Jacobians

“Band“ use the IDA band method (see the IDA user manual for
more information)

“Dense“ use the IDA dense method (see the IDA user manual for
more information)

Possible settings for the “LinearSolveMethod“ option.

268 Advanced Numerical Differential Equation Solving in Mathematica

0.2 0.4 0.6 0.8 1.0

–1. × 10–7

1. × 10–7

–5. × 10–8

5. × 10–8

The “GMRES“ method may be substantially faster, but is typically quite a bit more tricky to use

because to really be effective typically requires a preconditioner, which can be supplied via a

method option. There are also some other method options that control the Krylov subspace

process. To use these, refer to the IDA user guide [HT99].

“GMRES“ method options.

As an example problem, consider a two-dimensional Burgers’ equation.

ut = n Iuxx + uyyM -
1

2
JIu2Mx + Iu2MyN

This can typically be solved with an ordinary differential equation solver, but in this example

two things are achieved by using the DAE solver. First, boundary conditions are enforced as

algebraic conditions. Second, NDSolve is forced to use conservative differencing by using an

algebraic term. For comparison, a known exact solution will be used for initial and boundary

conditions.

This defines a function that satisfies Burger’s equation.

In[12]:= Bsol@t_, x_, y_D = 1 ê H1 + Exp@Hx + y - tL ê H2 nLDL;

This defines initial and boundary conditions for the unit square consistent with the exact
solution.

In[13]:= ic = u@0, x, yD ã Bsol@0, x, yD;
bc = 8

u@t, 0, yD ã Bsol@t, 0, yD, u@t, 1, yD ã Bsol@t, 1, yD,
u@t, x, 0D ã Bsol@t, x, 0D, u@t, x, 1D ã Bsol@t, x, 1D<;

This defines the differential equation.

In[14]:= de = D@u@t, x, yD, tD ã n H D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yDL -
u@t, x, yD HD@u@t, x, yD, xD + D@u@t, x, yD, yDL;

This sets the diffusion constant n to a value for which we can find a solution in a reasonable
amount of time and shows a plot of the solution at t == 1.

Advanced Numerical Differential Equation Solving in Mathematica 269

GMRES method option name default value

"Preconditioner" Automatic a Mathematica function that returns
another function that preconditions

"OrthogonalizationType" "ModifiedGramSÖ
chmidt"

this can also be
"ClassicalGramSchmidt" (see variable
gstype in the IDA user guide)

"MaxKrylovSubspaceDimensiÖ
on"

Automatic maximum susbspace dimension (see
variable maxl in the IDA user guide)

"MaxKrylovRestarts" Automatic maximum number of restarts (see variable
maxrs in the IDA user guide)

This sets the diffusion constant n to a value for which we can find a solution in a reasonable
amount of time and shows a plot of the solution at t == 1.

In[15]:= n = 0.025;
Plot3D@Bsol@1, x, yD, 8x, 0, 1<, 8y, 0, 1<D

Out[15]=

You can see from the plot that with n = 0.025, there is a fairly steep front. This moves with con-

stant speed.

This solves the problem using the default settings for NDSolve and the IDA method with the
exception of the “DifferentiateBoundaryConditions“ option for “MethodOfLines“,
which causes NDSolve to treat the boundary conditions as algebraic.

In[16]:= Timing@sol = NDSolve@8de, ic, bc<, u, 8t, 0, 1<, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False<DD

Out[16]= 82.233, 88u Ø InterpolatingFunction@880., 1.<, 80., 1.<, 80., 1.<<, <>D<<<

Since there is an exact solution to compare to, the overall solution accuracy can be compared

as well.

This defines a function that finds the maximum deviation between the exact and computed
solutions at the grid points at all of the time steps.

In[17]:= errfun@sol_D := Module@8ifun = First@u ê. solD, grid, exvals, gvals<,
grid = InterpolatingFunctionGrid@ifunD;
gvals = InterpolatingFunctionValuesOnGrid@ifunD;
exvals =
Apply@Bsol, Transpose@grid, RotateLeft@Range@ArrayDepth@gridDD, 1DDD;

Max@Abs@exvals - gvalsDDD

This computes the maximal error for the computed solution.

In[18]:= errfun@solD

Out[18]= 0.000749446

270 Advanced Numerical Differential Equation Solving in Mathematica

0.0

0.5

1.0 0.0

0.5

1.0

0.0

0.5

1.0

In the following, a comparison will be made with different settings for the options of the IDA

method. To emphasize the option settings, a function will be defined to time the computation of

the solution and give the maximal error.

This defines a function for comparing different IDA option settings.

In[19]:= TimeSolution@idaopts___D := Module@8time, err, steps<,
time =
First@Timing@sol = NDSolve@8de, ic, bc<, u, 8t, 0, 1<, 8x, 0, 1<, 8y, 0, 1<,

Method Ø 8“MethodOfLines“, “DifferentiateBoundaryConditions“ Ø False,
Method Ø 8IDA, idaopts<<DDD;

err = errfun@solD;
steps =
Length@First@InterpolatingFunctionCoordinates@First@u ê. solDDDD “Steps“;

8time, err, steps<D

No options use the previous defaults.

In[20]:= TimeSolution@D

Out[20]= 82.184, 0.000749446, 88 Steps<

This uses the “Band“ method.

In[21]:= TimeSolution@“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø “Band“<D

Out[21]= 88.543, 0.000749497, 88 Steps<

The “Band“ method is not very effective because the bandwidth of the Jacobian is relatively

large, partly because of the fourth-order derivatives used and partly because the one-sided

stencils used near the boundary add width at the top and bottom. You can specify the band-

width explicitly.

This uses the “Band“ method with the width set to include the stencil of the differences in only
one direction.

In[22]:= TimeSolution@
“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø 8“Band“, “BandWidth“ Ø 3<<D

Out[22]= 87.441, 0.000937962, 311 Steps<

While the solution time was smaller, notice that the error is slightly greater and the total num-

ber of time steps is a lot greater. If the problem was more stiff, the iterations likely would not

have converged because it was missing information from the other direction. Ideally, the band-

width should not eliminate information from an entire dimension.

Advanced Numerical Differential Equation Solving in Mathematica 271

This computes the grids used in the X and Y directions and shows the number of points used.

In[23]:= 8X, Y< = InterpolatingFunctionCoordinates@First@u ê. solDD@@82, 3<DD;
8nx, ny< = 8Length@XD, Length@YD<

Out[23]= 851, 51<

This uses the “Band“ method with the width set to include at least part of the stencil in both
directions.

In[24]:= TimeSolution@
“ImplicitSolver“ Ø 8“Newton“, “LinearSolveMethod“ Ø 8“Band“, “BandWidth“ Ø 51<<D

Out[24]= 82.273, 0.00085973, 88 Steps<

With the more appropriate setting of the bandwidth, the solution is still slightly slower than in

the default case. The “Band“ method can sometimes be effective on two-dimensional problems,

but is usually most effective on one-dimensional problems.

This computes the solution using the “GMRES“ implicit solver without a preconditioner.

In[25]:= TimeSolution@“ImplicitSolver“ Ø “GMRES“D

Out[25]= 826.137, 0.00435431, 672 Steps<

This is incredibly slow! Using the “GMRES“ method without a preconditioner is not recommended

for this very reason. However, finding a good preconditioner is not usually trivial. For this exam-

ple, a diagonal preconditioner will be used.

The setting of the “Preconditioner“ option should be a function f , which accepts four argu-

ments that will be given to it by NDSolve such that f@t, x, x‘, cD returns another function that

will apply the preconditioner to the residual vector. (See IDA user guide [HT99] for details on

how the preconditioner is used.) The arguments t, x, x‘, c are the current time, solution vector,

solution derivative vector, and the constant c in formula (2) above. For example, if you can

determine a procedure that would generate an appropriate preconditioner matrix P as a func-

tion of these arguments, you could use

“Preconditioner“ -> Function@8t, x, xp, c<, LinearSolve@P@t, x, xp, cDDD

to produce a LinearSolveFunction object which will effectively invert the preconditioner

matrix P. Typically, for each time the preconditioner function is set up, it is applied to the resid-

ual vector several times, so using some sort of factorization such as is contained in a

LinearSolveFunction is a good idea.

272 Advanced Numerical Differential Equation Solving in Mathematica

For the diagonal case, the inverse can be effected simply by using the reciprocal. The most

difficult part of setting up a diagonal preconditioner is keeping in mind that values on the bound-

ary should not be affected by it.

This finds the diagonal elements of the differentiation matrix for computing the preconditioner.

In[26]:= DM = NDSolve`FiniteDifferenceDerivative@82, 0<, 8X, Y<Dü“DifferentiationMatrix“ +
NDSolve`FiniteDifferenceDerivative@80, 2<, 8X, Y<Dü“DifferentiationMatrix“;

Short@diag = Tr@DM, ListDD
Out[26]//Short= 818750., 6250., 3125., 3125., á2593à, 3125., 3125., 6250., 18750.<

This gets the positions where elements at the boundary that satisfy a simple algebraic condition
are in the flattened solution vector.

In[27]:= bound = SparseArray@
88i_, 1< Ø 1., 8i_, ny< Ø 1., 81, i_< Ø 1., 8nx, i_< Ø 1.<, 8nx, ny<, 0.D;

Short@pos = Drop@ArrayRules@Flatten@boundDD, -1D@@All, 1, 1DDD
Out[27]//Short= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, á180à, 2592,

2593, 2594, 2595, 2596, 2597, 2598, 2599, 2600, 2601<

This defines the function that sets up the function called to get the effective inverse of the
preconditioner. For the diagonal case, the inverse is done simply by taking the reciprocal.

In[28]:= pfun@t_, x_, xp_, c_D := Module@8d, dd<,
d = 1. ê Hc - n diagL;
d@@posDD = 1.;
Function@Ò ddD ê. dd Ø dD

This uses the preconditioned “GMRES“ method to compute the solution.

In[29]:= TimeSolution@“ImplicitSolver“ Ø 8“GMRES“, “Preconditioner“ Ø pfun<D

Out[29]= 81.161, 0.000716006, 88 Steps<

Thus, even with a crude preconditioner, the “GMRES“ method computes the solution faster than

the using the direct sparse solvers.

For PDE discretizations with higher-order temporal derivatives or systems of PDEs, you may

need to look at the corresponding NDSolve`StateData object to determine how the variables

are ordered so that you can get the structural form of the preconditioner correctly.

Advanced Numerical Differential Equation Solving in Mathematica 273

Delay Differential Equations

A delay differential equation is a differential equation where the time derivatives at the current

time depend on the solution and possibly its derivatives at previous times:

Instead of a simple initial condition, an initial history function fHtL needs to be specified. The

quantities ti ¥ 0, i = 1, …, n and si ¥ 0, i = 1, …, k are called the delays or time lags. The delays

may be constants, functions tH tL and sH tL of t (time dependent delays), or functions tHt, XHtLL and

sH t, XHtLL (state dependent delays). Delay equations with delays s of the derivatives are

referred to as neutral delay differential equations (NDDEs).

The equation processing code in NDSolve has been designed so that you can input a delay

differential equation in essentially mathematical notation.

Inputting delays and initial history.

Currently, the implementation for DDEs in NDSolve only supports constant delays.

Solve a second order delay differential equation.

In[1]:= sol = NDSolve@8x‘‘@tD + x@t - 1D ã 0, x@t ê; t § 0D ã t^2<, x, 8t, -1, 5<D

Out[1]= 88x Ø InterpolatingFunction@88-1., 5.<<, <>D<<

Plot the solution and its first two derivatives.

In[2]:= Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. First@solDD, 8t, -1, 5<, PlotRange Ø AllD

Out[2]=
-1 1 2 3 4 5

-2

-1

1

2

274 Advanced Numerical Differential Equation Solving in Mathematica

x@t-tD dependent variable x with delay t

x@t ê; t§t0Dãf specification of initial history function as expression f for t
less than t0

X£HtL = F Ht, X HtL, X Ht - t1L, , X Ht - tnL, X£Ht - s1L, , X Ht - smL; t ¥ t0
X HtL = fHtL ; t § t0

For simplicity, this documentation is written assuming that integration always proceeds from

smaller to larger t. However, NDSolve supports integration in the other direction if the initial

history function is given for value above t0 and the delays are negative.

Solve a second order delay differential equation in the direction of negative t.

In[3]:= nsol = NDSolve@8x‘‘@tD + x@t + 1D ã 0, x@t ê; t ¥ 0D ã t^2<, x, 8t, -5, 1<D;
Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. First@nsolDD, 8t, -5, 1<, PlotRange Ø AllD

Out[3]=

-5 -4 -3 -2 -1 1

-1.0

-0.5

0.5

1.0

1.5

2.0

Comparison and Contrast with ODEs

While DDEs look a lot like ODEs the theory for them is quite a bit more complicated and there

are some surprising differences with ODEs. This section will show a few examples of the

differences.

Look at the solutions of x£HtL = xHt - 1L HxHtL - 1L for different initial history functions.

In[47]:= Manipulate@
Module@
8sol = NDSolve@8x‘@tD ã x@t - 1D H1 - x@tDL, x@t ê; t § 0D ã f<, x, 8t, -2, 2<D<,
Plot@Evaluate@x@tD ê. First@solDD, 8t, -2, 2<DD,

8f, 8Exp@tD, Cos@tD, 1 - t, 1 - Sin@tD<<D

Out[47]=

f ‰t Cos@tD 1- t 1- Sin@tD

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Advanced Numerical Differential Equation Solving in Mathematica 275

As long as the initial function satisfies fH0L = 1, the solution for t > 0 is always 1. [Z06] With

ODEs, you could always integrate backwards in time from a solution to obtain the initial

condition.

Investigate at the solutions of x£HtL = a xHtL H1 - xHt - 1LL for different values of the parameter a.

In[1]:= Manipulate@
Module@8T = 50, sol, x, t<, sol = First@x ê. NDSolve@

8x‘@tD ã a x@tD H1 - x@t - 1DL, x@t ê; t § 0D ã 0.1<, x, 8t, 0, T<DD;
If@pp, ParametricPlot@8sol@tD, sol@t - 1D<, 8t, 1, T<,

PlotRange Ø 880, 3<, 80, 3<<D,
Plot@sol@tD, 8t, 0, T<, PlotRange Ø 880, 50<, 80, 3<<DDD,

88pp, False, “Plot in Phase Plane“<, 8False, True<<, 88a, 1<, 0, 2<D

Out[1]=

Plot in Phase Plane

a

10 20 30 40 50

0.5

1.0

1.5

2.0

2.5

3.0

For a < 1
‰
, the solutions are monotonic, for 1

‰
§ a § p

2
 the solutions oscillate. and for a > p

2
 the

solutions approach a limit cycle. Of course, for the scalar ODE, solutions are monotonic inde-

pendent of a.

Solve the Ikeda delay differential equation, x£HtL sinHxHt - 2 pLL for two nearby constant initial
functions.

In[88]:= sol1 =
First@NDSolve@8x‘@tD ã Sin@x@t - 20DD, x@t ê; t § 0D ã .0001<, x, 8t, 0, 500<DD;

sol2 = First@NDSolve@8x‘@tD ã Sin@x@t - 20DD, x@t ê; t § 0D ã .00011<,
x, 8t, 0, 500<DD;

276 Advanced Numerical Differential Equation Solving in Mathematica

Plot the solutions.

In[90]:= Plot@Evaluate@x@tD ê. 8sol1, sol2<D, 8t, 0, 500<D

Out[90]=

100 200 300 400 500

10

20

30

40

50

This simple scalar delay differential equation has chaotic solutions and the motion shown above

looks very much like Brownian motion. [S07] As the delay t is increased beyond t = p ê2 a limit

cycle appears, followed eventually by a period doubling cascade leading to chaos before t = 5.

Advanced Numerical Differential Equation Solving in Mathematica 277

Compare solutions for t=4.9, 5.0, and 5.1

In[104]:= Grid@Table@sol = First@NDSolve@8x‘@tD ã Sin@x@t - tDD, x@t ê; t § 0D ã .1<,
x, 8t, 100 t, 200 t<, MaxSteps Ø InfinityDD;

8ParametricPlot@Evaluate@8x@t - 1D, x@tD< ê. solD, 8t, 101 t, 200 t<D.
Plot@Evaluate@x@tD ê. solD, 8t, 100 t, 200 t<D<, 8t, 4.9, 5.1, .1<DD

Out[104]=

Stability is much more complicated for delay equations as well. It is well known that the linear

ODE test equation x£HtL = lxHtL has asymptotically stable solutions if ReHlL < 0 and is unstable if

ReHlL > 0.

The closest corresponding DDE is x£HtL = l xHtL + m xHt - 1L. Even if you consider just real l and m the

situation is no longer so clear cut. Shown below are some plots of solutions indicating this.

278 Advanced Numerical Differential Equation Solving in Mathematica

1 2 3 4 5

1

2

3

4

5

.

600 700 800 900

1

2

3

4

5

5 10 15

5

10

15

.

600 700 800 900 1000

5

10

15

30 35 40

30

35

40

.

600 700 800 900 1000
25

30

35

40

The solution is stable with l = 1
2
 and m = -1

In[110]:= Block@8l = 1 ê 2, m = -1, T = 25<, Plot@
Evaluate@First@x@tD ê. NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<,

x, 8t, 0, T<DDD, 8t, 0, T<, PlotRange Ø AllDD

Out[110]=
5 10 15 20 25

-1.0

-0.5

0.5

1.0

The solution is unstable with l = - 7
2
 and m = 4

In[111]:= Block@8l = -7 ê 2, m = 4, T = 25<, Plot@
Evaluate@First@x@tD ê. NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<,

x, 8t, 0, T<DDD, 8t, 0, T<, PlotRange Ø AllDD

Out[111]=

5 10 15 20 25

10

15

20

So the solution can be stable with l > 0 and unstable with l < 0 depending on the value of m. A

Manipulate is set up below so that you can investigate the l-m plane.

Investigate by varying l and m

In[113]:= Manipulate@Module@8T = 25, x, t<, Plot@Evaluate@First@x@tD ê.
NDSolve@8x‘@tD ã l x@tD + m x@t - 1D, x@t ê; t § 0D ã 1 - t<, x, 8t, 0, T<DDD,

8t, 0, T<, PlotRange Ø AllDD, 8l, -5, 5<, 8m, -5, 5<D

Out[113]=

l

m

5 10 15 20 25

1.05

1.10

1.15

1.20

1.25

1.30

Advanced Numerical Differential Equation Solving in Mathematica 279

Propagation and Smoothing of Discontinuities

The way discontinuities are propagated by the delays is an important feature of DDEs and has a

profound effect on numerical methods for solving them.

Solve x£HtL xHt - 1L with xHtL = 1 for t § 0.

In[3]:= sol = First@NDSolve@8x‘@tD ã x@t - 1D, x@t ê; t § 0D ã 1<, x, 8t, -1, 3<DD

Out[3]= 8x Ø InterpolatingFunction@88-1., 3.<<, <>D<

In[4]:= Plot@Evaluate@8x@tD, x‘@tD, x‘‘@tD< ê. solD, 8t, -1, 3<D

Out[4]=

-1 1 2 3

1

2

3

4

5

6

In the example above, xHtL is continuous, but there is a jump discontinuity in x£HtL at t = 0 since

approaching from the left the value is 0, given by the derivative of the initial history function

x£HtL = f£HtL = 0 while approaching from the right the value is given by the DDE, giving

x£HtL = xHt - 1L = fHt - 1L = 1.

Differentiating the equation, we can conclude that Hx£L£HtL x£Ht - 1L so Hx£L£HtL has a jump

discontinuity at t = 1. Using essentially the same argument as above, we can conclude that at

t = 2 the second derivative is continuous.

Similarly, xHkLHtL is continuous at t = k or, in other words, at t = k, xHtL is k times differentiable. This

is referred to as smoothing and holds generally for non-neutral delay equations. In some cases

the smoothing can be faster than one order per interval.[Z06]

For neutral delay equations the situation is quite different.

Solve x£HtL x ‘ Ht - 1L with xHtL = -t for t § 0.

In[10]:= sol = First@NDSolve@8x‘@tD ã -x‘@t - 1D, x@t ê; t § 0D ã t<, x, 8t, -1, 3<DD

Out[10]= 8x Ø InterpolatingFunction@88-1., 3.<<, <>D<

280 Advanced Numerical Differential Equation Solving in Mathematica

Near t=1, we have by the continuity of x at 0 limtØ1- x£HtL = limtØ1- xHt - 1L = limzØ0- xHzL = limzØ0+ xHzL =

limtØ1+ x£HtL and so x£HtLis continuous at t = 1.

In[11]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, -1, 3<D

Out[11]=
-1 1 2 3

-1.0

-0.5

0.5

1.0

which has a discontinuity at every non negative integer.

In general, there is no smoothing of discontinuities for neutral DDEs.

The propagation of discontinuities is very important from the standpoint of numerical solvers.

If the possible discontinuity points are ignored, then the order of the solver will be reduced. If

a discontinuity point is known a more accurate solution can be found by integrating just up to

the discontinuity point and then restarting the method just past the point with the new function

values. This way, the integration method is used on smooth parts of the solution leading to

better accuracy and fewer rejected steps. From any given discontinuity points, future discontinu-

ity points can be determined from the delays and detected by treating them as events to be

located.

When there are multiple delays, the propagation of discontinuities can become quite

complicated.

Solve a neutral delay differential equation with two delays.

In[109]:= sol =
NDSolve@8x‘@tD ã x@tD Hx@t - PiD - x‘@t - 1DL, x@t ê; t § 0D ã Cos@tD<, x, 8t, -1, 8<D

Out[109]= 88x Ø InterpolatingFunction@88-1., 8.<<, <>D<<

Advanced Numerical Differential Equation Solving in Mathematica 281

It is easy to see that the solution is piecewise with x[t] continuous. However,

x£HtL =
- 1 0 <modHt, 2L < 1
1 1 <modHt, 2L < 2

Plot the solution.

In[110]:= Plot@Evaluate@8x@tD, x‘@tD< ê. First@solDD, 8t, -1, 8<, PlotRange Ø AllD

Out[110]= 2 4 6 8

-10

-5

5

10

It is clear from the plot that there is a discontinuity at each non negative integer as would be

expected from the neutral delay s = 1. However, looking at the second and third derivative, it is

clear that there are also discontinuities associated with points like t = p, 1 + p, 2 + p propagated

from the jump discontinuities in x£HtL.

Plot the second derivative

In[111]:= Plot@Evaluate@x‘‘@tD ê. First@solDD, 8t, 2.5, 5.5<, PlotRange Ø AllD

Out[111]= 3.0 3.5 4.0 4.5 5.0 5.5

-3

-2

-1

1

2

In fact, there is a whole tree of discontinuities that are propagated forward in time. A way of

determining and displaying the discontinuity tree for a solution interval is shown in the subsec-

tion below.

282 Advanced Numerical Differential Equation Solving in Mathematica

Discontinuity Tree

Define a command that gives the graph for the propagated discontinuities for a DDE with the
given delays

In[112]:= DiscontinuityTree@t0_, Tend_, delays_D :=
Module@8dt, next, ord<,
ord@t_D := Infinity;
ord@t0D = 0;
next@b_, order_, del_D := Map@dt@b, Ò, order , delD &, delD;
dt@t_ , 8d_, nq_<, order_, del_D := Module@8b = t + d<,

If@b § Tend,
o = order + Boole@! nqD;
ord@bD = Min@ord@bD, oD;
Sow@8t Ø b, d<D;
next@b, o, delDDD;

rules = Reap@next@t0, 0, delaysDD@@2, 1DD;
rules = Tally@rulesD@@All, 1DD;
f@x_?NumericQD := 8x, ord@xD<;
f@a_ Ø b_D := f@aD Ø f@bD;
rules@@All, 1DD = Map@f, rules@@All, 1DDD;
rulesD

Get the discontinuity tree for the example above up to t = 8.

In[113]:= tree = Tally@DiscontinuityTree@0, 8, 881, True<, 8p, False<<DD@@All, 1DD

Out[113]=

Define a command that shows a plot of xHkLHtL and xIk+1MHtL for a discontinuity of order k.
In[116]:= ShowDiscontinuity@8dt_, o_<, ifun_, D_D :=

Quiet@
Plot@Evaluate@8Derivative@oD@ifunD@tD, Derivative@o + 1D@ifunD@tD<D, 8t, dt - D,

dt + D<, Exclusions Ø 8dt<, ExclusionsStyle Ø Red, Frame Ø True, FrameLabel Ø
8None, None, 8Derivative@oD@xD@tD, Derivative@o + 1D@xD@tD<, None<DD

Advanced Numerical Differential Equation Solving in Mathematica 283

8880, 0< Ø 81, 0<, 1<, 881, 0< Ø 82, 0<, 1<, 882, 0< Ø 83, 0<, 1<, 883, 0< Ø 84, 0<, 1<,
884, 0< Ø 85, 0<, 1<, 885, 0< Ø 86, 0<, 1<, 886, 0< Ø 87, 0<, 1<, 887, 0< Ø 88, 0<, 1<,
884, 0< Ø 84 + p, 1<, p<, 883, 0< Ø 83 + p, 1<, p<, 883 + p, 1< Ø 84 + p, 1<, 1<,
882, 0< Ø 82 + p, 1<, p<, 882 + p, 1< Ø 83 + p, 1<, 1<, 881, 0< Ø 81 + p, 1<, p<,
881 + p, 1< Ø 82 + p, 1<, 1<, 881 + p, 1< Ø 81 + 2 p, 2<, p<, 880, 0< Ø 8p, 1<, p<,
88p, 1< Ø 81 + p, 1<, 1<, 88p, 1< Ø 82 p, 2<, p<, 882 p, 2< Ø 81 + 2 p, 2<, 1<<

Plot as a layered graph, showing the discontinuity plot as a tooltip for each discontinuity.

In[117]:= LayeredGraphPlot@tree, Left, VertexLabeling Ø True, VertexRenderingFunction Ø
Function@Tooltip@8White, EdgeForm@BlackD, Disk@Ò, .3D, Black, Text@Ò2@@1DD, Ò1D<,

ShowDiscontinuity@Ò2, First@x ê. solD, 1DDDD

Out[117]=

1

p

1

p

1

p

1

p

1

p

1 1 1

111

p

1

p

1

0

1 2 3 4 5 6 7 8

4+ p3+ p2+ p1+ p

1+ 2 p

p

2 p

Storing History Data

Once the solution has advanced beyond the first discontinuity point, some of the delayed values

that need to be computed are outside of the domain of the initial history function and the

computed solution needs to be used to get the values, typically be interpolating between steps

previously taken. For the DDE solution to be accurate it is essential that the interpolation be as

accurate as the method. This is achieved by using dense output for the ODE integration

method (the output you get if you use the option InterpolationOrder -> All in NDSolve).

NDSolve has a general algorithm for obtaining dense output from most methods, so you can

use just about any method as the integrator. Some methods, including the default for DDEs

have their own way of getting dense output which is usually more efficient than the general

method. Methods that are low enough order, such as “ExplicitRungeKutta“ with

“DifferenceOrder“ -> 3 can just use a cubic Hermite polynomial as the dense output so there

is essentially no extra cost in keeping the history.

Since the history data is accessed frequently, it needs to have a quick look up mechanism to

determine which step to interpolate within. In NDSolve, this is done with a binary search mecha-

nism and the search time is negligible compared with the cost of actual function evaluation.

The data for each successful step is saved before attempting the next step and is saved in a

data structure that can repeatedly be expanded efficiently. When NDSolve produces the solu-

tion, it simply takes this data and restructures it into an InterpolatingFunction object, so

DDE solutions are always returned with dense output.

284 Advanced Numerical Differential Equation Solving in Mathematica

The Method of Steps

For constant delays, it is possible to get the entire set of discontinuities as fixed time. The idea

of the method of steps is to simply integrate the smooth function over these intervals and

restart on the next interval, being sure to reevaluate the function from the right. As long as the

intervals do not get too small, the method works quite well in practice.

The method currently implemented for NDSolve is based on the method of steps.

Symbolic method of steps

This section defines a symbolic method of steps that illustrates how the method works. Note

that to keep the code simpler and more to the point, it does not do any real argument check-

ing. Also, the data structure and look up for the history is not done in an efficient way, but for

symbolic solutions this is a minor issue.

Use DSolve to integrate over an interval where the solution is smooth.

In[16]:= IntegrateSmooth@rhs_, history_, delayvars_, pfun_, dvars_, 8t_, t0_, t1_<D :=
Module@8delayvals, dvt, tau, hrule, dvrule, dvrules, oderhs, ode, init, sol<,
dvt@tau_D = Map@Ò@tauD &, dvarsD;
hrule@pos_D :=
Thread@dvars -> Map@Function@Evaluate@8t<D, ÒD &, history@@posDDDD;

dvrule@Hdv_L@z_DD := Module@8delay, pos<,
delay = t - z;
pos = pfun@t0 - delayD;
dv@zD Ø Hdv@zD ê. hrule@posDLD;

dvrules = Map@dvrule, delayvarsD;
oderhs = rhs ê. dvrules;
ode = Thread@D@dvt@tD, tD ã oderhsD;
init = Thread@dvt@t0D ã Hdvt@t0D ê. hrule@-1DLD;
sol = DSolve@8ode, init<, dvars, tD;
If@Head@solD === DSolve »» Length@solD ã 0,
Message@DDESteps::stuck, ode, initD;
Throw@$FailedDD;

dvt@tD ê. First@solD
D;

DDESteps::stuck =
“DSolve was not able to find a solution for `1` with initial conditions `2`.“;

Advanced Numerical Differential Equation Solving in Mathematica 285

Define a method of steps function that returns Piecewise functions.

In[21]:= DDESteps@rhsin_, phin_, dvarsin_, 8t_, tinit_, tend_<D :=
Module@8rhs = Listify@rhsinD, phi = Listify@phinD, dvars = Listify@dvarsinD,

history, delayvars, delays, dtree, intervals, p, pfun, next, pieces, hfuns<,
history = 8phi<;
delayvars = Cases@rhs, Hv : HHdv_@z_D Derivative@1D@dv_D@z_DL ê;

HMemberQ@dvars, dvD && UnsameQ@z, tDLLL Ø 8v, t - z<, InfinityD;
8delayvars, delays< = Map@Union, Transpose@delayvarsDD;
dtree = DiscontinuityTree@tinit, tend, Map@8Ò, True< &, delaysDD;
dtree = Union@Flatten@8tinit, tend, dtree@@All, 1, 2, 1DD<DD;
dtree = SortBy@dtree, ND;
intervals = Partition@dtree, 2, 1D;
p = 2;
pfun =
Join@881, t < tinit<<, Apply@Function@8p++, Ò1 § t < Ò2<D, intervals, 81<DD;

pfun = Function@Evaluate@8t<D, Evaluate@Piecewise@pfun, pDDD;
Catch@Do@

next = IntegrateSmooth@rhs,
history, delayvars, pfun, dvars, Prepend@interval, tDD;

history = Append@history, nextD,
8interval, intervals<DD;

pieces =
Flatten@8t < tinit, Apply@HÒ1 § t < Ò2L &, Drop@intervals, -1D, 81<D,

Apply@HÒ1 § t § Ò2L &, Last@intervalsDD<D;
pieces = Take@pieces, Length@historyDD;
hfuns = Map@Function@Evaluate@8t<D, Evaluate@Piecewise@

Transpose@8Ò, pieces<D, IndeterminateDDD &, Transpose@historyDD;
Thread@dvars Ø hfunsD

D;
Listify@x_ListD := x;
Listify@x_D := 8x<;

Find the solution for the DDE x£HtL xHt - 1L - xHtL with fHtL sinHtL
In[24]:= sol = DDESteps@x@t - 1D - x@tD, Sin@tD, x, 8t, 0, 3<D

Out[24]= :x Ø FunctionB8t<,

Sin@tD t < 0

-
1

2
‰-t I-Cos@1D + ‰t Cos@1 - tD - Sin@1D + ‰t Sin@1 - tDM 0 § t

-
1

2
‰-t I‰ - Cos@1D - ‰ t Cos@1D + ‰t Cos@2 - tD - Sin@1D + ‰ Sin@1D - ‰ t Sin@1DM 1 § t

-
1

4
‰-t I2 ‰ - 2 ‰2 + 2 ‰2 t - 2 Cos@1D - ‰2 Cos@1D - 2 ‰ t Cos@1D +

2 ‰2 t Cos@1D - ‰2 t2 Cos@1D + ‰t Cos@3 - tD - 2 Sin@1D + 2 ‰ Sin@1D -
3 ‰2 Sin@1D - 2 ‰ t Sin@1D + 4 ‰2 t Sin@1D - ‰2 t2 Sin@1D - ‰t Sin@3 - tDM

2 § t

Indeterminate True

F>

Plot the solution.

In[25]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 3<D

Out[25]=

286 Advanced Numerical Differential Equation Solving in Mathematica

.

0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[26]:= ndsol =
First@NDSolve@8x‘@tD ã -x@tD + x@t - 1D, x@t ê; t § 0D ã Sin@tD<, x, 8t, 0, 3<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 3<, PlotRange Ø AllD

Out[27]=

The method will also work for neutral DDEs.

Find the solution for the neutral DDE x£HtL x ‘ Ht - 1L - xHtL with fHtL sinHtL
In[28]:= sol = DDESteps@x‘@t - 1D - x@tD, Sin@tD, x, 8t, 0, 3<D

Out[28]= :x Ø FunctionB8t<,

Sin@tD t < 0
1

2
‰-t I-Cos@1D + ‰t Cos@1 - tD + Sin@1D - ‰t Sin@1 - tDM 0 § t

1

2
‰-t I‰ - Cos@1D - 2 ‰ Cos@1D + ‰ t Cos@1D + ‰t Cos@2 - tD + Sin@1D + ‰ Sin@1D - ‰ t Sin@1DM 1 § t

1

4
‰-t I2 ‰ + 6 ‰2 - 2 ‰2 t - 2 Cos@1D - 4 ‰ Cos@1D - 13 ‰2 Cos@1D +

2 ‰ t Cos@1D + 8 ‰2 t Cos@1D - ‰2 t2 Cos@1D + ‰t Cos@3 - tD + 2 Sin@1D + 2 ‰ Sin@1D +
7 ‰2 Sin@1D - 2 ‰ t Sin@1D - 6 ‰2 t Sin@1D + ‰2 t2 Sin@1D + ‰t Sin@3 - tDM

2 § t

Indeterminate Tru e

F>

Plot the solution.

In[29]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 3<D

Out[29]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[30]:= ndsol =
First@NDSolve@8x‘@tD ã -x@tD + x‘@t - 1D, x@t ê; t § 0D ã Sin@tD<, x, 8t, 0, 3<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 3<, PlotRange Ø AllD

Out[31]=

The symbolic method will also work with symbolic parameter values as long as DSolve is able

to still able to find the solution.

Advanced Numerical Differential Equation Solving in Mathematica 287

.

0.5 1.0 1.5 2.0 2.5 3.0

-2.µ10-8
-1.µ10-8

1.µ10-8
2.µ10-8
3.µ10-8
4.µ10-8

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5 3.0

5.µ10-8
1.µ10-7
1.5µ10-7

Find the solution to a simple linear DDE with symbolic coefficients.

In[32]:= sol = DDESteps@l x@tD + m x@t - 1D, t, x, 8t, 0, 2<D

Out[32]=

The reason the code was designed to take lists was so that it would work with systems

Solve a system of DDEs.

In[33]:= ssol = DDESteps@8y@tD, -x@t - 1D<, 8t^2, 2 t<, 8x, y<, 8t, 0, 5<D

Out[33]= :x Ø FunctionB8t<,

t2 t < 0
1

12
I-6 t2 + 4 t3 - t4M 0 § t

1

360
I52 - 216 t + 165 t2 - 140 t3 + 60 t4 - 12 t5 + t6M 1 § t

-3744+8640 t-18088 t2+11872 t3-5040 t4+1456 t5-252 t6+24 t7-t8

20160
2 § t

1

1814400
I804654 - 2371680 t + 2210265 t2 - 1643400 t3 +

771120 t4 - 236376 t5 + 51030 t6 - 7560 t7 + 720 t8 - 40 t9 + t10M

3 § t

1

239500800
I-168 512584 + 394727040 t - 534391836 t2 + 359788000 t3 - 165844800 t4 +

55576224 t5 - 13370280 t6 + 2347488 t7 - 300960 t8 + 27280 t9 - 1650 t10 + 60 t11 - t12M

4 § t

Indeterminate True

F, y Ø FunctionB8t<,

2 t t < 0
1

3
I-3 t + 3 t2 - t3M 0 § t

1

60
I-36 + 55 t - 70 t2 + 40 t3 - 10 t4 + t5M 1 § t

1080-4522 t+4452 t2-2520 t3+910 t4-189 t5+21 t6-t7

2520
2 § t

-237168+442 053 t-493 020 t2+308448 t3-118188 t4+30618 t5-5292 t6+576 t7-36 t8+t9

181440
3 § t

1

19958400
I32893920 - 89065306 t + 89947000 t2 - 55281600 t3 + 23156760 t4 -

6685140 t5 + 1369368 t6 - 200640 t7 + 20460 t8 - 1375 t9 + 55 t10 - t11M

4 § t

Indeterminate Tru e

F>

288 Advanced Numerical Differential Equation Solving in Mathematica

Plot the solution.

In[34]:= Plot@Evaluate@8x@tD, y@tD< ê. ssolD, 8t, 0, 5<D

Out[34]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[35]:= ndssol = First@NDSolve@8x‘@tD ã y@tD, y‘@tD ã -x@t - 1D,
x@t ê; t § 0D ã t^2, y@t ê; t § 0D ã 2 t<, 8x, y<, 8t, 0, 5<DD;

Plot@Evaluate@H8x@tD, y@tD< ê. ssolL - H8x@tD, y@tD< ê. ndssolLD, 8t, 0, 5<D

Out[36]=

Since the method computes the discontinuity tree, it will also work for multiple constant delays.

However, with multiple delays, the solution may become quite complicated quickly and DSolve

can bog down with huge expressions.

Solve a nonlinear neutral DDE with two delays.

In[37]:= sol = DDESteps@x@tD Hx@t - Log@2DD - x‘@t - 1DL, 1, x, 8t, 0, 2<D

Out[37]= :x Ø FunctionB8t<,

1 t < 0

‰t 0 § t < Log@2D

2 ‰
-1+

‰t

2 Log@2D § t < 1

2 ‰
1

2
H-2+‰L ‰-1+t

1 § t < 2 Log@2D

2 ‰
2-‰-1+t-

2 ExpIntegralEiA1E

‰
+
2 ExpIntegralEiB

‰t

4
F

‰ 2 Log@2D § t < 1 + Log@2D

2 ‰
2-2 ‰

-1+
‰-1+t

2 -
2 ExpIntegralEiA1E

‰
-2 ExpIntegralEiB

1

2
H-2+‰LF+

2 ExpIntegralEiB
‰

2
F

‰
+2 ExpIntegralEiB

1

4
H-2+‰L ‰-1+tF

1 + Log@2D § t § 2

Indeterminate True

F>

Advanced Numerical Differential Equation Solving in Mathematica 289

1 2 3 4 5

0.5

0.5

1.0

1 2 3 4 5
-5.µ10-8

5.µ10-8

1.µ10-7

Plot the solution.

In[38]:= Plot@Evaluate@8x@tD, x‘@tD< ê. solD, 8t, 0, 2<D

Out[38]=

Check the quality of the solution found by NDSolve by comparing to the exact solution.

In[39]:= ndsol = First@NDSolve@
8x‘@tD ã x@tD Hx@t - Log@2DD - x‘@t - 1DL, x@t ê; t § 0D ã 1<, x, 8t, 0, 2<DD;

Plot@Evaluate@Hx@tD ê. solL - Hx@tD ê. ndsolLD, 8t, 0, 2<, PlotRange Ø AllD

Out[40]=

Examples

Lotka-Volterra equations with delay

The Lotka-Volterra system models the growth and interaction of animal species assuming that

the effect of one species on another is continuous and immediate. A delayed effect of one

species on another can be modeled by introducing time lags in the interaction terms.

Consider the system

(9)Y1 ‘ HtL = Y1HtL HY2Ht - t2L - 1L, Y2 ‘ HtL = Y2HtL H2 - Y1Ht - t1L L.

With no delays, t1 = t2 = 0 the system (1) has an invariant HHtL = 2 ln Y1 - Y1 + ln Y2 - Y1 that is

constant for all t and there is a (neutrally) stable periodic solution.

290 Advanced Numerical Differential Equation Solving in Mathematica

0.5 1.0 1.5 2.0

-2
-1

1
2
3
4

0.5 1.0 1.5 2.0

-4.µ10-7
-3.µ10-7
-2.µ10-7
-1.µ10-7

Compare the solution with and without delays.

In[13]:= lvsystem@t1_, t2_D := 8
Y1‘@tD ã Y1@tD HY2@t - t1D - 1L, Y1@0D ã 1,
Y2‘@tD ã Y2@tD H2 - Y1@t - t2DL, Y2@0D ã 1<;

lv = First@NDSolve@lvsystem@0, 0D, 8Y1, Y2<, 8t, 0, 25<DD;
lvd = Quiet@First@NDSolve@lvsystem@.01, 0D, 8Y1, Y2<, 8t, 0, 25<DDD;
ParametricPlot@Evaluate@8Y1@tD, Y2@tD< ê. 8lv, lvd<D, 8t, 0, 25<D

Out[16]=

1.5 2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

In this example, the effect of even a small delay is to destabilize the periodic orbit. With differ-

ent parameters in the delayed Lotka-Volterra system it has been shown that there are globally

attractive equilibria.[TZ08]

Enzyme kinetics

Consider the system

(10)

y1£HtL Is - z y1HtL
y2£ HtL z y1 HtL - y2 HtL
y3£HtL y2HtL - y3 HtL

y2£HtL y3HtL -
1
2

y4HtL

z = k1
1+a Hy4Ht-tLLn

modeling enzyme kinetics where Is is a substrate supply maintained at a constant level and n

molecules of the end product y4 inhibits the reaction step y1 Ø y2. [HNW93]

The system has an equilibrium when 8y1 = Is êz, y2 = y3 = Is, y4 = 2 Is<.

Advanced Numerical Differential Equation Solving in Mathematica 291

Investigate solutions of (1) starting a small perturbation away from the equilibrium.

In[43]:= Manipulate@
Module@8t, y1, y2, y3, y4, z, sol<,
z = k1 ê H1 + a y4@t - tD^nL;
sol = First@NDSolve@8

y1‘@tD ã Is - z y1@tD, y1@t ê; t § 0D ã Is * H1 + a H2 IsL^nL + e,
y2‘@tD ã z y1@tD - y2@tD, y2@t ê; t § 0D ã Is,
y3‘@tD ã y2@tD - y3@tD, y3@t ê; t § 0D ã Is,
y4‘@tD ã y3@tD - y4@tD ê 2, y4@t ê; t § 0D ã 2 Is<,

8y1, y2, y3, y4<, 8t, 0, 200<DD;
Plot@Evaluate@8y1@tD, y2@tD, y3@tD, y4@tD< ê. solD, 8t, 0, 200<DD,

88Is, 10.5<, 1, 20<, 88a, 0.0005<, 0, .001<, 88k1, 1<, 0, 2<,
88n, 3<, 1, 10, 1<, 88t, 4<, 0, 10<, 88e, 0.1<, 0, .25<D

Mackey-Glass equation

The Mackey-Glass equation x'[t]=a x[t-t]/(1 + x[t-t]^n) - b x[t] was proposed to model the

production of white blood cells. There are both periodic and chaotic solutions.

Here is a periodic solution of the Mackey-Glass equation. The plot is only shown after t = 300 to
let transients die out.

In[31]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 15D ê H1 + x@t - 15D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 500<DD;

ParametricPlot@Evaluate@8x@tD, x@t - 15D< ê. solD, 8t, 300, 500<D

Out[32]=

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

Here is a chaotic solution of the Mackey-Glass equation.

In[44]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 500<DD;

ParametricPlot@Evaluate@8x@tD, x@t - 17D< ê. solD, 8t, 300, 500<D

Out[45]=

0.6 0.8 1.0 1.2 1.4 1.6

0.6

0.8

1.0

1.2

1.4

1.6

292 Advanced Numerical Differential Equation Solving in Mathematica

This shows an embedding of the solution above in 3D 8xHtL, xHt - tL, xHt - 2 tL<

In[14]:= sol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶DD;

ParametricPlot3D@Evaluate@8x@tD, x@t - 17D, x@t - 34D< ê. solD, 8t, 500, 5000<D

Out[15]=

0.5
1.0

1.5

0.5

1.0

1.5

0.5

1.0

1.5

It is interesting to check the accuracy of the chaotic solution.

Compute the chaotic solution with another method and plot log10 d for the difference d

between xHtL computed by the different methods.
In[16]:= solrk = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,

x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶,
Method Ø 8“ExplicitRungeKutta“, “DifferenceOrder“ Ø 3<DD;

ListPlot@Table@8t, RealExponent@Hx@tD ê. solL - Hx@tD ê. solrkLD<,
8t, 17, 5000, 17<DD

Out[17]=

1000 2000 3000 4000 5000

-8

-6

-4

-2

By the end of the interval, the differences between methods is order 1. Large deviation is

typical in chaotic systems and in practice it is not possible or even necessary to get a very

accurate solution for a large interval. However, if you do want a high quality solution, NDSolve

allows you to use higher precision. For DDEs with higher precision, the “StiffnessSwitching“

method is recommended.

Compute the chaotic solution with higher precision and tolerances.

In[18]:= hpsol = First@ NDSolve@8x‘@tD ã H1 ê 4L x@t - 17D ê H1 + x@t - 17D^10L - x@tD ê 10,
x@t ê; t § 0D ã 1 ê 2<, x, 8t, 0, 5000<, MaxSteps Ø ¶,

Method Ø “StiffnessSwitching“, WorkingPrecision Ø 32 DD;

Advanced Numerical Differential Equation Solving in Mathematica 293

.

Plot the three solutions near the final time.

In[19]:= Plot@Evaluate@x@tD ê. 8hpsol, sol, solrk<D, 8t, 4900, 5000<, PlotRange Ø AllD

Out[19]=

4920 4940 4960 4980 5000

0.6

0.8

1.0

1.2

1.4

1.6

Norms in NDSolve

NDSolve uses norms of error estimates to determine when solutions satisfy error tolerances. In

nearly all cases the norm has been weighted, or scaled, such that it is less than 1 if error toler-

ances have been satisfied and greater than one if error tolerances are not satisfied. One signifi-

cant advantage of such a scaled norm is that a given method can be written without explicit

reference to tolerances: the satisfaction of tolerances is found by comparing the scaled norm to

1, thus simplifying the code required for checking error estimates within methods.

Suppose that v is vector and u is a reference vector to compute weights with (typically u is an

approximate solution vector). Then the scaled vector w to which the norm is applied has

components:

(11)wi =
vi

ta+tr ui

where absolute and relative tolerances ta and tr are derived respectively from the

AccuracyGoal -> ag and PrecisionGoal -> pg options by ta = 10-ag and tr = 10-pg.

The actual norm used is determined by the setting for the NormFunction option given to

NDSolve.

option name default value

NormFunction Automatic a function to use to compute norms of
error estimates in NDSolve

NormFunction option to NDSolve.

294 Advanced Numerical Differential Equation Solving in Mathematica

The setting for the NormFunction option can be any function that returns a scalar for a vector

argument and satisfies the properties of a norm. If you specify a function that does not satisfy

the required properties of a norm, NDSolve will almost surely run into problems and give an

answer, if any, which is incorrect.

The default value of Automatic means that NDSolve may use different norms for different

methods. Most methods use an infinity-norm, but the IDA method for DAEs uses a 2-norm

because that helps maintain smoothness in the merit function for finding roots of the residual.

It is strongly recommended that you use Norm with a particular value of p. For this reason, you

can also use the shorthand NormFunction -> p in place of NormFunction -> HNorm@Ò, pD ê

Length@ÒD^H1 ê pL &L. The most commonly used implementations for p = 1, p = 2, and p =¶

have been specially optimized for speed.

This compares the overall error for computing the solution to the simple harmonic oscillator
over 100 cycles with different norms specified.

In[1]:= Map@
First@H1 - x@100 pDL ê. NDSolve@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x,

8t, 0, 100 p<, Method Ø ExplicitRungeKutta, NormFunction Ø ÒDD &, 81, 2, ¶<D

Out[1]= 98.62652µ10-8, 7.50564µ10-8, 5.81547µ10-8=

The reason that error decreases with increasing p is because the norms are normalized by

multiplying with 1ën1êp, where n is the length of the vector. This is often important in NDSolve

because in many cases, an attempt is being made to check the approximation to a function,

where more points should give a better approximation, or less error.

Consider a finite difference approximation to the first derivative of a periodic function u given by

ui‘ =
ui+1-ui

h
 where ui = uHxiL on a grid with uniform spacing h = xi+1 - xi. In Mathematica, this can

easily be computed using ListCorrelate.

This computes the error of the first derivative approximation for the cosine function on a grid
with 16 points covering the interval @0, 2 pD.

In[2]:= h = 2 p ê 16.;
grid = h Range@16D;
err16 = Sin@gridD - ListCorrelate@81, -1< ê h, Cos@gridD, 81, 1<D

Out[2]= 8-0.169324, -0.11903, -0.0506158, 0.0255046, 0.0977423, 0.1551, 0.188844, 0.193839,
0.169324, 0.11903, 0.0506158, -0.0255046, -0.0977423, -0.1551, -0.188844, -0.193839<

Advanced Numerical Differential Equation Solving in Mathematica 295

This computes the error of the first derivative approximation for the cosine function on a grid
with 32 points covering the interval @0, 2 pD.

In[3]:= h = 2 p ê 32.;
grid = h Range@32D;
err32 = Sin@gridD - ListCorrelate@81, -1< ê h, Cos@gridD, 81, 1<D

Out[3]= 8-0.0947283, -0.0879564, -0.0778045, -0.0646625, -0.0490356, -0.0315243, -0.0128016, 0.00641315,
0.0253814, 0.0433743, 0.0597003, 0.0737321, 0.0849304, 0.0928648, 0.0972306, 0.0978598,
0.0947283, 0.0879564, 0.0778045, 0.0646625, 0.0490356, 0.0315243, 0.0128016, -0.00641315,
-0.0253814, -0.0433743, -0.0597003, -0.0737321, -0.0849304, -0.0928648, -0.0972306, -0.0978598<

It is quite apparent that the pointwise error is significantly less with a larger number of points.

The 2 norms of the vectors are of the same order of magnitude.

In[4]:= 8Norm@err16, 2D, Norm@err32, 2D<

Out[4]= 80.552985, 0.392279<

The norms of the vectors are comparable because is because the number of components in the

vector has increased, so the usual linear algebra norm does not properly reflect the

convergence. Normalizing by multiplying by 1ën1êp reflects the convergence in the function

space properly.

The normalized 2 norms of the vectors reflect the convergence to the actual function. Since the
approximation is first order, doubling the number of grid points should approximately halve the
error.

In[5]:= 8Norm@err16, 2D ê Sqrt@16D, Norm@err32, 2D ê Sqrt@32D<

Out[5]= 80.138246, 0.0693457<

Note that if you specify a function an option value, and you intend to use it for PDE or function

approximation solutions, you should be sure to include a proper normalization in the function.

ScaledVectorNorm

Methods that have error control need to determine whether a step satisfies local error toler-

ances or not. To simplify the process of checking this, utility function ScaledVectorNorm does

the scaling (1) and computes the norm. The table includes the formulas for specific values of p

for reference.

296 Advanced Numerical Differential Equation Solving in Mathematica

ScaledVectorNorm@p,8tr,ta<D@v,uD compute the normalized p-norm of the vector v scaling
using scaling (1) with reference vector u and relative and
absolute tolerances ta and tr

ScaledVectorNorm@ fun,8tr,ta<D@
v,uD

compute the norm of the vector v using scaling (1) with
reference vector u and relative and absolute tolerances ta
and tr and the norm function fun

ScaledVectorNorm@2,8tr,ta<D@v,uD compute 1
n ⁄i=1

n J
vi

ta+tr ui
N
2

where n is the length of vectors

v and u

ScaledVectorNorm@¶,8tr,ta<D@v,uD compute maxJ
vi

ta+tr ui
N, 1 § i § n where n is the length of

vectors v and u

ScaledVectorNorm.

This sets up a scaled vector norm object with the default machine-precision tolerances used in
NDSolve.

In[10]:= svn = NDSolve`ScaledVectorNormA2, 910.-8, 10.-8=E

Out[10]= NDSolve`ScaledVectorNormA2, 91.µ10-8, 1.µ10-8=E

This applies the scaled norm object with a sample error and solution reference vector.

In[11]:= svnA99. µ 10.-9, 10.-8=, 82., 1.<E

Out[11]= 0.412311

Because of the absolute tolerance term, the value comes out reasonably even if some of the
components of the reference solution are zero.

In[12]:= svnA99. µ 10.-9, 10.-8, 2 µ 10-8=, 81., 0., 0.<E

Out[12]= 1.31688

When setting up a method for NDSolve, you can get the appropriate ScaledVectorNorm object

to use using the “Norm“ method function of the NDSolve`StateData object.

Here is an NDSolve`StateData object.

In[13]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + x@tD ã 0, x@0D ã 1, x‘@0D ã 0<, x, tDD

Out[13]= NDSolve`StateData@<0.>D

Advanced Numerical Differential Equation Solving in Mathematica 297

This gets the appropriate scaled norm to use from the state data.

In[14]:= svn = state@“Norm“D

Out[14]= NDSolve`ScaledVectorNormA¶, 91.05367µ10-8, 1.05367µ10-8=, NDSolveE

This applies it to a sample error vector using the initial condition as reference vector.

In[15]:= svnA910.-9, 10.-8=, stateü“SolutionVector“@“Forward“DE

Out[15]= 0.949063

Stiffness Detection

Overview

Many differential equations exhibit some form of stiffness which restricts the step-size and

hence effectiveness of explicit solution methods.

A number of implicit methods have been developed over the years to circumvent this problem.

For the same step size, implicit methods can be substantially less efficient than explicit meth-

ods, due to the overhead associated with the intrinsic linear algebra.

This cost can offset by the fact that, in certain regions, implicit methods can take substantially

larger step sizes.

Several attempts have been made to provide user-friendly codes that automatically attempt to

detect stiffness at runtime and switch between appropriate methods as necessary.

A number of strategies that have been proposed to automatically equip a code with a stiffness

detection device are outlined here.

Particular attention is given to the problem of estimation of the dominant eigenvalue of a matrix

in order to describe how stiffness detection is implemented in NDSolve.

Numerical examples illustrate the effectiveness of the strategy.

298 Advanced Numerical Differential Equation Solving in Mathematica

Initialization

Load some packages with predefined examples and utility functions.

In[1]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“FunctionApproximations`“D;

Introduction

Consider the numerical solution of initial value problems:

(12)

Stiffness is a combination of problem, solution method, initial condition and local error

tolerances.

Stiffness limits the effectiveness of explicit solution methods due to restrictions on the size of

steps that can be taken.

Stiffness arises in many practical systems as well as in the numerical solution of partial differen-

tial equations by the method of lines.

Example

The van der Pol oscillator is a non-conservative oscillator with nonlinear damping and is an

example of a stiff system of ordinary differential equations:

y1£HtL = y2HtL ,

ε y2£HtL = -y1HtL + I1 - y1HtL2M y2HtL ,

with ε = 3/1000.

Consider initial conditions.

y1H0L = 2, y2H0L = 0

and solve over the interval t œ [0, 10].

The method “StiffnessSwitching“ uses a pair of extrapolation methods by default:

† Explicit modified midpoint (Gragg smoothing), double-harmonic sequence 2, 4, 6,…

† Linearly implicit Euler, sub-harmonic sequence 2, 3, 4,…

Solution

Advanced Numerical Differential Equation Solving in Mathematica 299

y£HtL = f Ht, yHtLL, yH0L = y0, f : ä n # n

Solution

This loads the problem from a package.

In[4]:= system = GetNDSolveProblem@“VanderPol“D;

Solve the system numerically using a nonstiff method.

In[5]:= solns = NDSolve@system, 8T, 0, 10<, Method Ø “Extrapolation“D;

NDSolve::ndstf :
At T == 0.022920104414210326`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

Solve the system using a method that switches when stiffness occurs.

In[6]:= sols = NDSolve@system, 8T, 0, 10<,
Method Ø 8“StiffnessSwitching“, “NonstiffTest“ -> False<D;

Here is a plot of the two solution components. The sharp peaks (in blue) extend out to about
450 in magnitude and have been cropped.

In[7]:= Plot@Evaluate@Part@sols, 1, All, 2DD, 8T, 0, 10<,
PlotStyle -> 88Red<, 8Blue<<, Axes -> False, Frame -> TrueD

Out[7]=

0 2 4 6 8 10
-6
-4
-2
0
2
4
6

Stiffness can often occur in regions that follow rapid transients.

This plots the step sizes taken against time.

In[8]:= StepDataPlot@solsD

Out[8]=

0 2 4 6 8 10

0.002

0.005

0.010

0.020

0.050

The problem is that when the solution is changing rapidly, there is little point using a stiff

solver, since local accuracy is the dominant issue.

For efficiency, it would be useful if the method could automatically detect regions where local

accuracy (and not stability) is important.

300 Advanced Numerical Differential Equation Solving in Mathematica

Linear Stability

Linear stability theory arises from the study of Dahlquist's scalar linear test equation:

(13)

as a simplified model for studying the initial value problem (12).

Stability is characterized by analyzing a method applied to (1) to obtain

(14)yn+1 = RHzL yn

where z = h l and R(z) is the (rational) stability function.

The boundary of absolute stability is obtained by considering the region:

†RHzL§ = 1

Explicit Euler Method

The explicit or forward Euler method:

yn+1 = yn + h f Htn, ynL

applied to (1) gives:

RHzL = 1 + z.

The shaded region represents instability, where RHzL > 1.

In[9]:= OrderStarPlot@1 + z, 1, z, FrameTicks -> TrueD

Out[9]=

The Linear Stability Boundary is often taken as the intersection with the negative real axis.

For the explicit Euler method LSB = -2.

Advanced Numerical Differential Equation Solving in Mathematica 301

y£HtL = l yHtL, l œ , ReHlL < 0

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0

For an eigenvalue of l = -1, linear stability requirements mean that the step-size needs to satisfy

h < 2, which is a very mild restriction.

However, for an eigenvalue of l = -106, linear stability requirements mean that the step size

needs to satisfy h < 2ä10-6, which is a very severe restriction.

Example

This example shows the effect of stiffness on the step-size sequence when using an explicit

Runge-Kutta method to solve a stiff system.

This system models a chemical reaction.

In[10]:= system = GetNDSolveProblem@“Robertson“D;

The system is solved by disabling the built-in stiffness detection.

In[11]:= sol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “StiffnessTest“ -> False<D;

The step-size sequence starts to oscillate when the stability boundary is reached.

In[12]:= StepDataPlot@solD

Out[12]=

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0010

0.0020

0.0015

† A large number of step rejections often has a negative impact on performance.

† The large number of steps taken adversely affects the accuracy of the computed solution.

The built-in detection does an excellent job of locating when stiffness occurs.

In[13]:= sol = NDSolve@system, Method Ø 8“ExplicitRungeKutta“, “StiffnessTest“ -> True<D;

NDSolve::ndstf :
At T == 0.012555829610695773`, system appears to be stiff. Methods Automatic, BDF or

StiffnessSwitching may be more appropriate. à

302 Advanced Numerical Differential Equation Solving in Mathematica

Implicit Euler Method

The implicit or backward Euler method:

yn+1 = yn + h f Htn, yn+1L

applied to (1) gives:

RHzL =
1

1 - z

The method is unconditionally stable for the entire left half-plane.

In[14]:= OrderStarPlot@1 ê H1 - zL, 1, z, FrameTicks -> TrueD

Out[14]=

This means that to maintain stability there is no longer a restriction on the step size.

The drawback is that an implicit system of equations now has to be solved at each integration

step.

Type Insensitivity

A type-insensitive solver recognizes and responds efficiently to stiffness at each step and so is

insensitive to the (possibly changing) type of the problem.

One of the most established solvers of this class is LSODA [H83], [P83].

Later generations of LSODA such as CVODE no longer incorporate a stiffness detection device.

The reason is because LSODA use norm bounds to estimate the dominant eigenvalue and these

bounds, as will be seen later, can be quite inaccurate.

The low order of A(a)-stable BDF methods means that LSODA and CVODE are not very suitable

for solving systems with high accuracy or systems where the dominant eigenvalue has a large

imaginary part. Alternative methods, such as those based on extrapolation of linearly implicit

schemes, do not suffer from these issues.

Advanced Numerical Differential Equation Solving in Mathematica 303

–1.0 –0.5 0.0 0.5 1.0 1.5 2.0
–1.0

–0.5

0.0

0.5

1.0

The low order of A(a)-stable BDF methods means that LSODA and CVODE are not very suitable

imaginary part. Alternative methods, such as those based on extrapolation of linearly implicit

schemes, do not suffer from these issues.

Much of the work on stiffness detection was carried out in the 1980s and 1990s using stan-

dalone FORTRAN codes.

New linear algebra techniques and efficient software have since become available and these are

readily accessible in Mathematica.

Stiffness can be a transient phenomenon, so detecting nonstiffness is equally important [S77],

[B90].

"StiffnessTest" Method Option

There are several approaches that can be used to switch from a nonstiff to a stiff solver.

Direct Estimation

A convenient way of detecting stiffness is to directly estimate the dominant eigenvalue of the

Jacobian J of the problem (see [S77], [P83], [S83], [S84a], [S84c], [R87] and [HW96]).

Such an estimate is often available as a by-product of the numerical integration and so it is

reasonably inexpensive.

If v denotes an approximation to the eigenvector corresponding to dominant eigenvalue of the

Jacobian, with °v¥ sufficiently small, then by the mean value theorem a good approximation to

the leading eigenvalue is:

l
~
=

° f Ht, y + vL - f Ht, yL¥

°v¥
.

Richardson's extrapolation provides a sequence of refinements that yields a quantity of this

form, as do certain explicit Runge|Kutta methods.

Cost is at most two function evaluations, but often at least one of these is available as a by-

product of the numerical integration, so it is reasonably inexpensive.

Let LSB denote the linear stability boundary~the intersection of the linear stability region with

the negative real axis.

304 Advanced Numerical Differential Equation Solving in Mathematica

The product h l
~
 gives an estimate that can be compared to the linear stability boundary of a

method in order to detect stiffness:

(15)£h l
~
ß § s †LSB§

where s is a safety factor.

Description

The methods “DoubleStep“, “Extrapolation“, and “ExplicitRungeKutta“ have the option

“StiffnessTest“, which can be used to identify whether the method applied with the specified

AccuracyGoal and PrecisionGoal tolerances to a given problem is stiff.

The method option “StiffnessTest“ itself accepts a number of options that implement a weak

form of (15) where the test is allowed to fail a specified number of times.

The reason for this is that some problems can be only mildly stiff in a certain region and an

explicit integration method may still be efficient.

"NonstiffTest" Method Option

The “StiffnessSwitching“ method has the option “NonstiffTest“, which is used to switch

back from a stiff method to a nonstiff method.

The following settings are allowed for the option “NonstiffTest“

† None or False (perform no test).

† "NormBound".

† "Direct".

† "SubspaceIteration".

† "KrylovIteration".

† "Automatic".

Advanced Numerical Differential Equation Solving in Mathematica 305

Switching to a Nonstiff Solver

An approach that is independent of the stiff method is used.

Given the Jacobian J (or an approximation) compute one of:

Norm Bound: ° J ¥

Spectral Radius: rHJL = max li

Dominant Eigenvalue li : li > l j

Many linear algebra techniques focus on solving a single problem to high accuracy.

For stiffness detection, a succession of problems with solutions to one or two digits are

adequate.

For a numerical discretization

0 = t0 < t1 < < tn = T

consider a sequence k of matrices in some sub-interval(s)

Jti , Jti+1 , … Jti+k-1

The spectra of the succession of matrices often changes very slowly from step to step.

The goal is to find a way of estimating (bounds on) dominant eigenvalues

of a succession of matrices Jti that:

† Costs less than the work carried out in the linear algebra at each step in the stiff solver.

† Takes account of the step-to-step nature of the solver.

NormBound

A simple and efficient technique of obtaining a bound on the dominant eigenvalue is to use the

norm of the Jacobian ° J ¥p where typically p = 1 or p = ¶.

306 Advanced Numerical Differential Equation Solving in Mathematica

The method has complexity OIn2M, which is less than the work carried out in the stiff solver.

This is the approach used by LSODA.

† Norm bounds for dense matrices overestimate and the bounds become worse as the dimen-
sion increases.

† Norm bounds can be tight for sparse or banded matrices of quite large dimension.

The setting “NormBound“ of the option “NonstiffTest“ computes ° J ¥1 and ° J ¥¶ and returns

the smaller of the two values.

Example

The following Jacobian matrix arises in the numerical solution of the van der Pol system using a
stiff solver.

In[18]:= a = 880., 1.<, 82623.532160943381, -69.56342161343568<<;

Bounds based on norms overestimate the spectral radius by more than an order of magnitude.

In[19]:= 8Abs@First@Eigenvalues@aDDD, Norm@a, 1D, Norm@a, InfinityD<

Out[19]= 896.6954, 2623.53, 2693.1<

Direct Eigenvalue Computation

For small problems (n § 32) it can be efficient just to compute the dominant eigenvalue directly.

† Hermitian matrices use the LAPACK function xgeev

† General matrices use the LAPACK function xsyevr

The setting “Direct“ of the option “NonstiffTest“ computes the dominant eigenvalue of J

using the same LAPACK routines as Eigenvalues.

For larger problems the cost of direct eigenvalue computation is OIn3Mwhich becomes prohibitive

when compared to the cost of the linear algebra work in a stiff solver.

A number of iterative schemes have been implemented for this purpose. These effectively work

by approximating the dominant eigenspace in a smaller subspace and using dense eigenvalue

methods for the smaller problem.

Advanced Numerical Differential Equation Solving in Mathematica 307

The Power Method

Shampine has proposed the use of the power method for estimating the dominant eigenvalue of

the Jacobian [S91].

The power method is perhaps not a very well-respected method, but has received a resurgence

of interest due to its use in Google's page ranking.

The power method can be used when

† A œ n ä n has n linearly independent eigenvectors (diagonalizable)

† The eigenvalues can be ordered in magnitude as † l1§ > † l2 § ¥ ¥ †ln§

† l1 is the dominant eigenvalue of A.

Description

Given a starting vector v0 œ n compute

vk = A vk-1

The Rayleigh quotient is used to compute an approximation to the dominant eigenvalue:

l1
HkL =

vk-1* A vk-1

vk-1* vk-1
=

vk* vk-1

vk-1* vk-1

In practice, the approximate eigenvector is scaled at each step:

v`k =
vk

° vk ¥

Properties

The power method converges linearly with rate:

l1

l2

which can be slow.

In particular, the method does not converge when applied to a matrix with a dominant complex

conjugate pair of eigenvalues.

308 Advanced Numerical Differential Equation Solving in Mathematica

Generalizations

The power method can be adapted to overcome the issue of equimodular eigenvalues (e.g.

NAPACK)

However the modification does not generally address the issue of the slow rate of convergence

for clustered eigenvalues.

There are two main approaches to generalizing the power method:

† Subspace iteration for small to medium dimensions

† Arnoldi iteration for large dimensions

Although the methods work quite differently, there are a number of core components that can

be shared and optimized.

Subspace and Krylov iteration cost OIn2 mM operations.

They project an nän matrix to an mäm matrix, where m << n.

The small matrix represents the dominant eigenspace and approximation uses dense eigen-

value routines.

Subspace Iteration

Subspace (or simultaneous) iteration generalizes the ideas in the power method by acting on m

vectors at each step.

Start with an orthonormal set of vectors V H0L = n äm, where usually m << n:

V H0L = @v1, …, vmD

Form the product with the matrix A:

ZHkL = A V Hk-1L

Advanced Numerical Differential Equation Solving in Mathematica 309

In order to prevent all vectors from converging to multiples of the same dominant eigenvector

v1 of A, they are orthonormalized:

QHkL RHkL = ZHkL reduced QR factorization

V HkL = QHkL

The orthonormalization step is expensive compared to the matrix product.

Rayleigh-Ritz Projection

Input: matrix A and an orthonormal set of vectors V

† Compute the Rayleigh quotient S = V* A V

† Compute the Schur decomposition U* S U = T

The matrix S has small dimension m ä m.

Note that the Schur decomposition can be computed in real arithmetic when S œm äm using a

quasi upper-triangular matrix T.

Convergence

Subspace (or simultaneous) iteration generalizes the ideas in the power method by acting on m

vectors at each step.

SRRIT converges linearly with rate:

li

lm+1
, i = 1, …, m

In particular the rate for the dominant eigenvalue is:

l1

lm+1

Therefore it can be beneficial to take e.g. m = 3 or more even if we are only interested in the

dominant eigenvalue.

310 Advanced Numerical Differential Equation Solving in Mathematica

Error Control

A relative error test on successive approximations, dominant eigenvalue is:

l1
HkL - l1

Hk-1L

l1
HkL

§ tol

This is not sufficient since it can be satisfied when convergence is slow.

If †li§ = †li-1§ or †li§ = †li+1§ then the ith column of QHkL is not uniquely determined.

The residual test used in SRRIT is:

rHkL = A q` i
HkL

- Q
` HkL

ti
HkL, ± rHkL µ2 § tol

where Q
` HkL

= QHkL UHkL, q` i
HkL is the ith column of Q

` HkL
 and ti

HkL is the ith column of T HkL.

This is advantageous since it works for equimodular eigenvalues.

The first column position of the upper triangular matrix T HkL is tested because of the use of an

ordered Schur decomposition.

Implementation

There are several implementations of subspace iteration.

† LOPSI [SJ81]

† Subspace iteration with Chebyshev acceleration [S84b], [DS93]

† Schur Rayleigh|Ritz iteration ([BS97] and [SLEPc05])

The implementation for use in “NonstiffTest“ is based on:

† Schur Rayleigh|Ritz iteration [BS97]

"An attractive feature of SRRIT is that it displays monotonic consistency, that is, as the conver-

gence tolerance decreases so does the size of the computed residuals" [LS96].

SRRIT makes use of an ordered Schur decomposition where eigenvalues of largest modulus

appear in the upper-left entries.

Modified Gram|Schmidt with reorthonormalization is used to form QHkL, which is faster than

Householder transformations.

Advanced Numerical Differential Equation Solving in Mathematica 311

The approximate dominant subspace Vti
HkL at integration time ti is used to start the iteration at

the next integration step ti+1:

Vti+1
H0L = Vti

HkL

KrylovIteration

Given an n ä m matrix V whose columns vi comprise an orthogonal basis of a given subspace :

VT V = I and span 8v1, v2, …, vm< =

The Rayleigh|Ritz procedure consists of computing H = VT A V and solving the associated eigen-

problem H yi = qi yi.

The approximate eigenpairs of the original problem l
è
i, xè i satisfy l

è
= qi and xè i = V yi, which are

called Ritz values and Ritz vectors.

The process works best when the subspace approximates an invariant subspace of A.

This process is effective when is equal to the Krylov subspace associated with a matrix A and

a given initial vector x as:

KmHA, xL = span 9x, A x, A2 x, …, Am-1 x=.

Description

The method of Arnoldi is a Krylov-based projection algorithm that computes an orthogonal

basis of the Krylov subspace and produces a projected m ä m matrix H with m << n.

Input: matrix A, the number of steps m, an initial vector v1 of norm 1

Output: HVm, Hm, f , b L with b = ° f ¥2

For j = 1, 2, …, m - 1
w = A v j
Orthogonalize w with respect to V j to obtain hi, j for i = 1, …, j
h j+1, j = w (if h j+1, j = 0 stop)
v j+1 = wëh j+1, j

end
f = A vm
Orthogonalize f with respect to Vm to obtain hi, m for i = 1, …, m
b = ° f ¥2

312 Advanced Numerical Differential Equation Solving in Mathematica

In the case of Arnoldi, H has an unreduced upper Hessenberg form (upper triangular with an

additional nonzero subdiagonal).

Orthogonalization is usually carried out by means of a Gram-Schmidt procedure.

The quantities computed by the algorithm satisfy:

A Vm = Vm Hm + f em*

The residual f gives an indication of proximity to an invariant subspace and the associated

norm b indicates the accuracy of the computed Ritz pairs:

±A xè i - l
è
i xè iµ2 = ±A Vm yi - qi Vm xè iµ2 = ±IA Vm - Vm xè iM yi µ2 = b ° em* yi•

Restarting

The Ritz pairs converge quickly if the initial vector x is rich in the direction of the desired

eigenvalues.

When this is not the case then a restarting strategy is required in order to avoid excessive

growth in both work and memory.

There are a several of strategies for restarting, in particular:

† Explicit restart ~ a new starting vector is a linear combination of a subset of the Ritz
vectors.

† Implicit restart ~ a new starting vector is formed from the Arnoldi process combined with
an implicitly shifted QR algorithm.

Explicit restart is relatively simple to implement, but implicit restart is more efficient since it

retains the relevant eigeninformation of the larger problem. However implicit restart is difficult

to implement in a numerically stable way.

An alternative which is much simpler to implement, but achieves the same effect as implicit

restart, is a Krylov|Schur method [S01].

Implementation

A number of software implementations are available, in particular:

† ARPACK [ARPACK98]

† SLEPc [SLEPc05]

The implementation in “NonstiffTest“ is based on Krylov|Schur Iteration.

Advanced Numerical Differential Equation Solving in Mathematica 313

Automatic Strategy

The “Automatic“ setting uses an amalgamation of the methods as follows.

† For n § 2*m direct eigenvalue computation is used. Either m = minHn, msiL or m = minHn, mkiL is
used depending on which method is active.

† For n > 2*m subspace iteration is used with a default basis size of msi = 8. If the method
succeeds then the resulting basis is used to start the method at the next integration step.

† If subspace iteration fails to converge after maxsi iterations then the dominant vector is used
to start the Krylov method with a default basis size of mki = 16. Subsequent integration
steps use the Krylov method, starting with the resulting vector from the previous step.

† If Krylov iteration fails to converge after maxki iterations then norm bounds are used for the
current step. The next integration step will continue to try to use Krylov iteration.

† Since they are so inexpensive, norm bounds are always computed when subspace or Krylov
iteration is used and the smaller of the absolute values is used.

Step Rejections

Caching of the time of evaluation ensures that the dominant eigenvalue estimate is not recom-

puted for rejected steps.

Stiffness detection is also performed for rejected steps since:

† Step rejections often occur for nonstiff solvers when working near the stability boundary

† Step rejections often occur for stiff solvers when resolving fast transients

Iterative Method Options

The iterative methods of “NonstiffTest“ have options that can be modified:

In[20]:= Options@NDSolve`SubspaceIterationD

Out[20]= :BasisSize Ø Automatic, MaxIterations Ø Automatic, Tolerance Ø
1

10
>

In[21]:= Options@NDSolve`KrylovIterationD

Out[21]= :BasisSize Ø Automatic, MaxIterations Ø Automatic, Tolerance Ø
1

10
>

314 Advanced Numerical Differential Equation Solving in Mathematica

The default tolerance aims for just one correct digit, but often obtains substantially more accu-

rate values~especially after a few successful iterations at successive steps.

The default values limiting the number of iterations are:

† For subspace iteration maxsi = max H25, n ê H2 msi)).

† For Krylov iteration maxki = maxH50, n êmki).

If these values are set too large then a convergence failure becomes too costly.

In difficult problems, it is better to share the work of convergence across steps. Since the

methods effectively refine the basis vectors from the previous step, there is a reasonable

chance of convergence in subsequent steps.

Latency and Switching

It is important to incorporate some form of latency in order to avoid a cycle where the

“StiffnessSwitching“ method continually tries to switch between stiff and nonstiff methods.

The options “MaxRepetitions“ and “SafetyFactor“ of “StiffnessTest“ and “NonstiffTest“

are used for this purpose.

The default settings allow switching to be quite reactive, which is appropriate for one-step

integration methods.

† “StiffnessTest“ is carried out at the end of a step with a nonstiff method. When either
value of the option “MaxRepetitions“ is reached, a step rejection occurs and the step is
recomputed with a stiff method.

† “NonstiffTest“ is preemptive. It is performed before a step is taken with a stiff solve
using the Jacobian matrix from the previous step.

Examples

Van der Pol

Select an example system.

In[22]:= system = GetNDSolveProblem@“VanderPol“D;

Advanced Numerical Differential Equation Solving in Mathematica 315

StiffnessTest

The system is integrated successfully with the given method and the default option settings for
“StiffnessTest“.

In[23]:= NDSolve@system, Method Ø “ExplicitRungeKutta“D

Out[23]= 88Y1@TD Ø InterpolatingFunction@880., 2.5<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 2.5<<, <>D@TD<<

A longer integration is aborted and a message is issued when the stiffness test condition is not
satisfied.

In[24]:= NDSolve@system, 8T, 0, 10<, Method Ø “ExplicitRungeKutta“D

NDSolve::ndstf : At T == 4.353040548903924`, system appears to be stiff.
Methods Automatic, BDF or StiffnessSwitching may be more appropriate.

Out[24]= 88Y1@TD Ø InterpolatingFunction@880., 4.35304<<, <>D@TD,
Y2@TD Ø InterpolatingFunction@880., 4.35304<<, <>D@TD<<

Using a unit safety factor and specifying that only one stiffness failure is allowed effectively
gives a strict test. The specification uses the nested method option syntax.

In[25]:= NDSolve@system, Method Ø 8“ExplicitRungeKutta“,
“StiffnessTest“ Ø 8True, “MaxRepetitions“ Ø 81, 1<, “SafetyFactor“ Ø 1< <D

NDSolve::ndstf :
At T == 0.`, system appears to be stiff. Methods Automatic, BDF or StiffnessSwitching may

be more appropriate.
Out[25]= 88Y1@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD,

Y2@TD Ø InterpolatingFunction@880., 0.<<, <>D@TD<<

NonstiffTest

For such a small system, direct eigenvalue computation is used.

The example serves as a good test that the overall stiffness switching framework is behaving as

expected.

Set up a function to monitor the switch between stiff and nonstiff methods and the step size
taken. Data for the stiff and nonstiff solvers is put in separate lists by using a different tag for
"Sow".

In[26]:= SetAttributes@SowSwitchingData, HoldFirstD;

SowSwitchingData@told_, t_, method_NDSolve`StiffnessSwitchingD :=
HSow@8t, t - told<, method@“ActiveMethodPosition“DD;
told = t;L;

316 Advanced Numerical Differential Equation Solving in Mathematica

Solve the system and collect the data for the method switching.

In[28]:= T0 = 0;
data =

Last@
Reap@
sol = NDSolve@system, 8T, 0, 10<,

Method Ø StiffnessSwitching,
“MethodMonitor“ ß HSowSwitchingData@T0, T, NDSolve`SelfD;L

D;
D

D;

Plot the step sizes taken using an explicit solver (blue) and an implicit solver (red).

In[30]:= ListLogPlot@data, Axes Ø False, Frame Ø True, PlotStyle Ø 8Blue, Red<D

Out[30]=

0 2 4 6 8 10
0.002

0.005

0.010

0.020

0.050

Compute the number of nonstiff and stiff steps taken (including rejected steps).

In[31]:= Map@Length, dataD

Out[31]= 8266, 272<

CUSP

The cusp catastrophe model for the nerve impulse mechanism [Z72]:

Combining with the van der Pol oscillator gives rise to the CUSP system [HW96]:

∂y

∂ t
= -

1

ε
Iy3 + a y + bM + s

∂2 y

∂x2

∂a

∂ t
= -b +

7

100
v + s

∂2 a

∂x2

∂b

∂ t
= I1 - a2M b - a -

2

5
y +

7

200
v + s

∂2 b

∂x2

Advanced Numerical Differential Equation Solving in Mathematica 317

- ε y£HtL = yHtL3 + a yHtL + b

where

v =
u

u - 1 ê10
, u = Hy - 7 ê10L Hy - 13 ê10L

and s = 1 ê144 and ε = 10-4.

Discretization of the diffusion terms using the method of lines is used to obtain a system of

ODEs of dimension 3 n = 96.

Unlike the van der Pol system, because of the size of the problem, iterative methods are used

for eigenvalue estimation.

Step Size and Order Selection

Select the problem to solve.

In[32]:= system = GetNDSolveProblem@“CUSP-Discretized“D;

Set up a function to monitor the type of method used and step size. Additionally the order of
the method is included as a Tooltip.

In[33]:= SetAttributes@SowOrderData, HoldFirstD;

SowOrderData@told_, t_, method_NDSolve`StiffnessSwitchingD :=
HSow@

Tooltip@8t, t - told<, method@“DifferenceOrder“DD,
method@“ActiveMethodPosition“D

D;
told = t;L;

Collect the data for the order of the method as the integration proceeds.

In[35]:= T0 = 0;
data =

Last@
Reap@
sol = NDSolve@system,

Method Ø “StiffnessSwitching“,
“MethodMonitor“ ß HSowOrderData@T0, T, NDSolve`SelfD;L

D;
D

D;

318 Advanced Numerical Differential Equation Solving in Mathematica

Plot the step sizes taken using an explicit solver (blue) and an implicit solver (red). A Tooltip
shows the order of the method at each step.

In[37]:= ListLogPlot@data, Axes Ø False, Frame Ø True, PlotStyle Ø 8Blue, Red<D

Out[37]=

Compute the total number of nonstiff and stiff steps taken (including rejected steps).

In[39]:= Map@Length, dataD

Out[39]= 846, 120<

Jacobian Example

Define a function to collect the first few Jacobian matrices.

In[41]:= SetAttributes@StiffnessJacobianMonitor, HoldFirstD;

StiffnessJacobianMonitor@i_, method_NDSolve`StiffnessSwitchingD :=
If@SameQ@method@“ActiveMethodPosition“D, 2D && i < 5,
If@MatrixQ@ÒD,

Sow@ÒD;
i = i + 1

D & ü method@“Jacobian“D
D;

In[43]:= i = 0;
jacdata = Reap@sol = NDSolve@system, Method Ø “StiffnessSwitching“,

“MethodMonitor“ ß HStiffnessJacobianMonitor@i, NDSolve`SelfD;LD;
D@@
-1,
1DD;

A switch to a stiff method occurs near 0.00113425 and the first test for nonstiffness occurs at

the next step tk º 0.00127887.

Advanced Numerical Differential Equation Solving in Mathematica 319

0.0 0.2 0.4 0.6 0.8 1.0

1 ´ 10-4

5 ´ 10-4

0.001

0.005

0.010

0.050

0.100

Graphical illustration of the Jacobian Jtk .

In[45]:= MatrixPlot@First@jacdataDD

Out[45]=

1 20 40 60 80 96

1

20

40

60

80

96

1 20 40 60 80 96
1

20

40

60

80

96

Define a function to compute and display the first few eigenvalues of Jtk , Jtk+1 ,… and the norm

bounds.
In[46]:= DisplayJacobianData@jdata_D :=

Module@8evdata, hlabels, vlabels<,
evdata =
Map@
Join@Eigenvalues@Normal@ÒD, 4D, 8Norm@Ò, 1D, Norm@Ò, InfinityD<D &, jdataD;

vlabels = 88““<, 8“l1“<, 8“l2“<, 8“l3“<, 8“l4“<, 8“°Jtk¥1“<, 8“°Jtk¥¶“<<;
hlabels = Table@Jtk, 8k, Length@jdataD<D;
Grid@
MapThread@Join, 8vlabels, Join@8hlabels<, Transpose@evdataDD<D, Frame Ø AllD

D;

In[47]:= DisplayJacobianData@jacdataD

Out[47]=

Jt1 Jt2 Jt3 Jt4 Jt5
l1 -56013.2 -56009.7 -56000. -55988.2 -55959.6
l2 -56007.9 -56003.8 -55992.2 -55978. -55943.5
l3 -55671.3 -55670.7 -55669.1 -55667.1 -55662.2

l4 -55660.3 -55658.3 -55652.6 -55645.7 -55628.9
°Jtk¥1 56027.5 56024.1 56014.4 56002.6 55973.9

°Jtk¥¶ 81315.4 81311.3 81299.7 81285.6 81251.4

Norm bounds are quite sharp in this example.

Korteweg|deVries

The Korteweg|deVries partial differential equation is a mathematical model of waves on shallow

water surfaces:

∂U

∂ t
+ 6 U

∂U

∂x
+

∂3 U

∂x3
= 0

320 Advanced Numerical Differential Equation Solving in Mathematica

We consider boundary conditions:

UH0, xL = ‰-x
2 , UHt, -5L = UHt, 5L

and solve over the interval t œ [0, 1].

Discretization using the method of lines is used to form a system of 192 ODEs.

Step Sizes

Select the problem to solve.

In[48]:= system = GetNDSolveProblem@“Korteweg-deVries-PDE“D;

The Backward Differentiation Formula methods used in LSODA run into difficulties solving this
problem.

In[49]:= First@Timing@sollsoda = NDSolve@system, Method Ø LSODAD;DD

NDSolve::eerr :
Warning: Scaled local spatial error estimate of 806.6079731642326` at T = 1.` in the direction of

independent variable X is much greater than prescribed error tolerance. Grid
spacing with 193 points may be too large to achieve the desired accuracy
or precision. A singularity may have formed or you may want to specify a
smaller grid spacing using the MaxStepSize or MinPoints method options. à

Out[49]= 0.971852

A plot shows that the step sizes rapidly decrease.

In[50]:= StepDataPlot@sollsodaD

Out[50]=

In contrast StiffnessSwitching immediately switches to using the linearly implicit Euler method
which needs very few integration steps.

In[51]:= First@Timing@sol = NDSolve@system, Method -> “StiffnessSwitching“D;DD

Out[51]= 0.165974

Advanced Numerical Differential Equation Solving in Mathematica 321

In[52]:= StepDataPlot@solD

Out[52]=

The extrapolation methods never switch back to a nonstiff solver once the stiff solver is chosen

at the beginning of the integration.

Therefore this is a form of worst case example for the nonstiff detection.

Despite this, the cost of using subspace iteration is only a few percent of the total integration

time.

Compute the time taken with switching to a nonstiff method disabled.

In[53]:= First@Timing@sol = NDSolve@system,
Method -> 8“StiffnessSwitching“, “NonstiffTest“ -> False<D;DD

Out[53]= 0.160974

Jacobian Example

Collect data for the first few Jacobian matrices using the previously defined monitor function.

In[54]:= i = 0;
jacdata = Reap@sol = NDSolve@system, Method Ø “StiffnessSwitching“,

“MethodMonitor“ ß HStiffnessJacobianMonitor@i, NDSolve`SelfD;LD;
D@@
-1,
1DD;

Graphical illustration of the initial Jacobian Jt0 .

In[56]:= MatrixPlot@First@jacdataDD

Out[56]=

322 Advanced Numerical Differential Equation Solving in Mathematica

Compute and display the first few eigenvalues of Jtk , Jtk+1 ,… and the norm bounds.

In[57]:= DisplayJacobianData@jacdataD

Out[57]=

Jt1 Jt2 Jt3 Jt4 Jt5
l1 1.37916µ10-8 +

32608. Â
5.3745µ10-6 +
32608. Â

0.0000209094 +
32608. Â

0.0000428279 +
32608. Â

0.0000678117 +
32608.1 Â

l2 1.37916µ10-8 -
32608. Â

5.3745µ10-6 -
32608. Â

0.0000209094 -
32608. Â

0.0000428279 -
32608. Â

0.0000678117 -
32608.1 Â

l3 5.90398µ10-8 +
32575.5 Â

0.0000103621 +
32575.5 Â

0.0000406475 +
32575.5 Â

0.0000817789 +
32575.5 Â

0.000125286 +
32575.6 Â

l4 5.90398µ10-8 -
32575.5 Â

0.0000103621 -
32575.5 Â

0.0000406475 -
32575.5 Â

0.0000817789 -
32575.5 Â

0.000125286 -
32575.6 Â

°Jtk¥1 38928.4 38928.4 38928.4 38930. 38932.9

°Jtk¥¶ 38928.4 38928.4 38928.4 38930.1 38933.

Norm bounds overestimate slightly, but more importantly they give no indication of the relative

size of real and imaginary parts.

Option Summary

StiffnessTest

option name default value

“MaxRepetitions“ 83,5< specify the maximum number of successive
and total times that the stiffness test (15)
is allowed to fail

“SafetyFactor“ 4
5

specify the safety factor to use in the right-
hand side of the stiffness test (15)

Options of the method option “StiffnessTest“.

Advanced Numerical Differential Equation Solving in Mathematica 323

NonstiffTest

option name default value

“MaxRepetitions“ 82,¶< specify the maximum number of successive
and total times that the stiffness test (15)
is allowed to fail

“SafetyFactor“ 4
5

specify the safety factor to use in the right-
hand side of the stiffness test (15)

Options of the method option “NonstiffTest“.

Structured Systems

Numerical Methods for Solving the Lotka|Volterra
Equations

Introduction

The Lotka|Volterra system arises in mathematical biology and models the growth of animal

species. Consider two species where Y1HTL denotes the number of predators and Y2HTL denotes

the number of prey. A particular case of the Lotka|Volterra differential system is:

(1)Y1
°

= Y1 HY2 - 1L, Y2
°

= Y2 H2 - Y1L ,

where the dot denotes differentiation with respect to time T.

The Lotka|Volterra system (9) has an invariant H, which is constant for all T:

(2)HHY1, Y2L = 2 ln Y1 - Y1 + ln Y2 - Y2.

324 Advanced Numerical Differential Equation Solving in Mathematica

The level curves of the invariant (2) are closed so that the solution is periodic. It is desirable

that the numerical solution of (9) is also periodic, but this is not always the case. Note that (9)

is a Poisson system:

(3)Y
°

= BHYL“H HYL =
0 -Y1 Y2

Y1 Y2 0

2
Y1

- 1
1
Y2

- 1

where HHYL is defined in (2).

Poisson systems and Poisson integrators are discussed in Chapter VII.2 of [HLW02] and [MQ02].

Load a package with some predefined problems and select the Lotka|Volterra system.

In[10]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;
Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

system = GetNDSolveProblem@“LotkaVolterra“D;
invts = system@“Invariants“D;
time = system@“TimeData“D;
vars = system@“DependentVariables“D;
step = 3 ê 25;

Define a utility function for visualizing solutions.

In[18]:= LotkaVolterraPlot@sol_, vars_, time_, opts___?OptionQD :=
Module@8data, data1, data2, ifuns, lplot, pplot<,
ifuns = First@vars ê. solD;
data1 = Part@ifuns, 1, 0D@“ValuesOnGrid“D;
data2 = Part@ifuns, 2, 0D@“ValuesOnGrid“D;
data = Transpose@8data1, data2<D;
commonopts = Sequence@Axes Ø False, Frame Ø True, FrameLabel Ø

Join@Map@TraditionalForm, varsD, 8None, None<D, RotateLabel Ø FalseD;
lplot = ListPlot@data, Evaluate@FilterRules@8opts<, Options@ListPlotDDD,

PlotStyle Ø 8PointSize@0.02D, RGBColor@0, 1, 0D<, Evaluate@commonoptsDD;
pplot = ParametricPlot@Evaluate@ifunsD, time, Evaluate@

FilterRules@8opts<, Options@ParametricPlotDDD, Evaluate@commonoptsDD;
Show@lplot, pplotD

D;

Advanced Numerical Differential Equation Solving in Mathematica 325

Explicit Euler

Use the explicit or forward Euler method to solve the system (9).

In[19]:= fesol = NDSolve@system, Method Ø “ExplicitEuler“, StartingStepSize Ø stepD;

LotkaVolterraPlot@fesol, vars, timeD

Out[20]=

Backward Euler

Define the backward or implicit Euler method in terms of the RadauIIA implicit Runge|Kutta
method and use it to solve (9). The resulting trajectory spirals from the initial conditions toward
a fixed point at H2, 1L in a clockwise direction.

In[21]:= BackwardEuler = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“, “Coefficients“ Ø
“ImplicitRungeKuttaRadauIIACoefficients“, “DifferenceOrder“ Ø 1,

“ImplicitSolver“ Ø 8“FixedPoint“, AccuracyGoal Ø MachinePrecision,
PrecisionGoal Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

besol = NDSolve@system, Method Ø BackwardEuler, StartingStepSize Ø stepD;

LotkaVolterraPlot@besol, vars, timeD

Out[23]=

326 Advanced Numerical Differential Equation Solving in Mathematica

Projection

Projection of the forward Euler method using the invariant (2) of the Lotka|Volterra equations
gives a periodic solution.

In[24]:= pfesol = NDSolve@system,
Method Ø 8Projection, Method Ø “ExplicitEuler“, Invariants Ø invts<,
StartingStepSize Ø stepD;

LotkaVolterraPlot@pfesol, vars, timeD

Out[25]=

Splitting

Another approach for obtaining the correct qualitative behavior is to additively split (9) into two

systems:

(4)
Y1
°

= Y1 HY2 - 1 L Y2
°

= 0

Y1
°

= 0 Y2
°

= Y2 H2 - Y1L.

By appropriately solving (4) it is possible to construct Poisson integrators.

Define the equations for splitting of the Lotka|Volterra equations.

In[26]:= eqs = system@“System“D;
Y1 = eqs;
Part@Y1, 2, 2D = 0;
Y2 = eqs;
Part@Y2, 1, 2D = 0;

Symplectic Euler

Define the symplectic Euler method in terms of a splitting method using the backward and
forward Euler methods for each system in (4).

In[31]:= SymplecticEuler = 8“Splitting“,
“DifferenceOrder“ Ø 1, “Equations“ Ø 8Y1, Y2<,
“Method“ Ø 8BackwardEuler, “ExplicitEuler“<<;

sesol = NDSolve@system, Method Ø SymplecticEuler, StartingStepSize Ø stepD;

Advanced Numerical Differential Equation Solving in Mathematica 327

The numerical solution using the symplectic Euler method is periodic.

In[33]:= LotkaVolterraPlot@sesol, vars, timeD

Out[33]=

Flows

Consider splitting the Lotka|Volterra equations and computing the flow (or exact solution) of

each system in (4). The solutions can be found as follows, where the constants should be

related to the initial conditions at each step.

In[34]:= DSolve@Y1, vars, TD

Out[34]= 99Y2@TD Ø C@1D, Y1@TD Ø ‰T H-1+C@1DL C@2D==

In[35]:= DSolve@Y2, vars, TD

Out[35]= 99Y1@TD Ø C@1D, Y2@TD Ø ‰T H2-C@1DL C@2D==

An advantage of locally computing the flow is that it yields an explicit, and hence very efficient,

integration procedure. The “LocallyExact“ method provides a general way of computing the

flow of each splitting using DSolve only during the initialization phase.

Set up a hybrid symbolic-numeric splitting method and use it to solve the Lotka|Volterra system.

In[36]:= SplittingLotkaVolterra = 8“Splitting“,
“DifferenceOrder“ Ø 1, “Equations“ Ø 8Y1, Y2<,
“Method“ Ø 8“LocallyExact“, “LocallyExact“<<;

spsol = NDSolve@system, Method Ø SplittingLotkaVolterra, StartingStepSize Ø stepD;

The numerical solution using the splitting method is periodic.

In[38]:= LotkaVolterraPlot@spsol, vars, timeD

Out[38]=

Rigid Body Solvers

328 Advanced Numerical Differential Equation Solving in Mathematica

Rigid Body Solvers

Introduction

The equations of motion for a free rigid body whose center of mass is at the origin are given by

the following Euler equations (see [MR99]).

y° 1
y° 2
y° 3

=

0 y3 ê I3 -y2 ê I2
-y3 ê I3 0 y1 ê I1
y2 ê I2 -y1 ê I1 0

y1
y2
y3

Two quadratic first integrals of the system are:

IHyL = y12 + y22 + y32

HHyL = 1
2
K
y12

I1
+

y22

I2
+

y32

I3
O

.

The first constraint effectively confines the motion from 3 to a sphere. The second constraint

represents the kinetic energy of the system and, in conjunction with the first invariant, effec-

tively confines the motion to ellipsoids on the sphere.

Numerical experiments for various methods are given in [HLW02] and a variety of NDSolve

methods will now be compared.

Manifold Generation and Utility Functions

Load some useful packages.

In[6]:= Needs@“DifferentialEquations`NDSolveProblems`“D;
Needs@“DifferentialEquations`NDSolveUtilities`“D;

Define Euler's equations for rigid body motion together with the invariants of the system.

In[8]:= system = GetNDSolveProblem@“RigidBody“D;
eqs = system@“System“D;
vars = system@“DependentVariables“D;
time = system@“TimeData“D;
invariants = system@“Invariants“D;

The equations of motion evolve as closed curves on the unit sphere. This generates a three-
dimensional graphics object to represent the unit sphere.

In[13]:= UnitSphere = Graphics3D@8EdgeForm@D, Sphere@D<, Boxed Ø FalseD;

This function superimposes a solution from NDSolve on a given manifold.

Advanced Numerical Differential Equation Solving in Mathematica 329

This function superimposes a solution from NDSolve on a given manifold.

In[14]:= PlotSolutionOnManifold@sol_, vars_, time_, manifold_, opts___?OptionQD :=
Module@8solplot<,
solplot = ParametricPlot3D@

Evaluate@vars ê. solD, time, opts, Boxed Ø False, Axes Ø FalseD;
Show@solplot, manifold, optsD

D

This function plots the various solution components.

In[15]:= PlotSolutionComponents@sols_, vars_, time_, opts___?OptionQD :=
Module@8ifuns, plotopts<,
ifuns = vars ê. First@solsD;
Table@plotopts = Sequence@PlotLabel Ø

StringForm@“`1` vs time“, Part@vars, iDD, Frame Ø True, Axes Ø FalseD;
Plot@Evaluate@Part@ifuns, iDD, time, opts, Evaluate@plotoptsDD,
8i, Length@varsD<D

D;

Method Comparison

Various integration methods can be used to solve Euler's equations and they each have differ-

ent associated costs and different dynamical properties.

Adams Multistep Method

Here an Adams method is used to solve the equations of motion.

In[21]:= AdamsSolution = NDSolve@system, Method Ø “Adams“D;

330 Advanced Numerical Differential Equation Solving in Mathematica

This shows the solution trajectory by superimposing it on the unit sphere.

In[22]:= PlotSolutionOnManifold@AdamsSolution, vars, time, UnitSphere, PlotRange Ø AllD

Out[22]=

The solution appears visually to give a closed curve on the sphere. However, a plot of the error
reveals that neither constraint is conserved particularly well.

In[23]:= InvariantErrorPlot@invariants, vars, T, AdamsSolution, PlotStyle Ø 8Red, Blue<D

Out[23]=

0 5 10 15 20 25 30
0

5.µ 10-8

1.µ 10-7

1.5µ 10-7

2.µ 10-7

2.5µ 10-7

3.µ 10-7

Euler and Implicit Midpoint Methods

This solves the equations of motion using Euler's method with a specified fixed step size.

In[16]:= EulerSolution = NDSolve@system,
Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<, StartingStepSize Ø 1 ê 20D;

Advanced Numerical Differential Equation Solving in Mathematica 331

This solves the equations of motion using the implicit midpoint method with a specified fixed
step size.

In[17]:= ImplicitMidpoint = 8“FixedStep“, Method Ø 8“ImplicitRungeKutta“,
“Coefficients“ Ø “ImplicitRungeKuttaGaussCoefficients“, DifferenceOrder Ø 2,
“ImplicitSolver“ Ø 8FixedPoint, “AccuracyGoal“ Ø MachinePrecision,

“PrecisionGoal“ Ø MachinePrecision, “IterationSafetyFactor“ Ø 1<<<;

IMPSolution =
NDSolve@system, Method Ø ImplicitMidpoint, StartingStepSize Ø 3 ê 10D;

This shows the superimposition on the unit sphere of the numerical solution of the equations of
motion for Euler's method (left) and the implicit midpoint rule (right).

In[19]:= EulerPlotOnSphere =
PlotSolutionOnManifold@EulerSolution, vars, time, UnitSphere, PlotRange Ø AllD;

IMPPlotOnSphere =
PlotSolutionOnManifold@IMPSolution, vars, time, UnitSphere, PlotRange Ø AllD;

GraphicsArray@8EulerPlotOnSphere, IMPPlotOnSphere<D

Out[21]=

This shows the components of the numerical solution using Euler's method (left) and the
implicit midpoint rule (right).

In[30]:= EulerSolutionPlots = PlotSolutionComponents@EulerSolution, vars, timeD;

IMPSolutionPlots = PlotSolutionComponents@IMPSolution, vars, timeD;

GraphicsArray@Transpose@8EulerSolutionPlots, IMPSolutionPlots<DD

Out[32]=

0 5 10 15 20 25 30

-0.4
-0.2
0.0
0.2
0.4
0.6

Y1HTL vs time

0 5 10 15 20 25 30
-0.4
-0.2
0.0
0.2
0.4

Y1HTL vs time

0 5 10 15 20 25 30

-0.5

0.0

0.5

Y2HTL vs time

0 5 10 15 20 25 30
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

Y2HTL vs time

0 5 10 15 20 25 30
0.75
0.80
0.85
0.90

Y3HTL vs time

0 5 10 15 20 25 30
0.78
0.80
0.82
0.84
0.86
0.88

Y3HTL vs time

332 Advanced Numerical Differential Equation Solving in Mathematica

Orthogonal Projection Method

Here the “OrthogonalProjection“ method is used to solve the equations.

In[33]:= OPSolution = NDSolve@system, Method Ø 8“OrthogonalProjection“,
Dimensions Ø 83, 1<, Method Ø “ExplicitEuler“<, StartingStepSize Ø 1 ê 20D;

Only the orthogonal constraint is conserved so the curve is not closed.

In[34]:= PlotSolutionOnManifold@OPSolution, vars, time, UnitSphere, PlotRange Ø AllD

Out[34]=

Plotting the error in the invariants against time, it can be seen that the orthogonal projection
method conserves only one of the two invariants.

In[35]:= InvariantErrorPlot@invariants, vars, T, OPSolution, PlotStyle Ø 8Red, Blue<D

Out[35]=

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Projection Method

The method “Projection“ takes a set of constraints and projects the solution onto a manifold

at the end of each integration step.

Advanced Numerical Differential Equation Solving in Mathematica 333

Generally all the invariants of the problem should be used in the projection; otherwise the

numerical solution may actually be qualitatively worse than the unprojected solution.

The following specifies the integration method and defers determination of the constraints until
the invocation of NDSolve.

In[36]:= ProjectionMethod = 8Projection,
Method Ø 8“FixedStep“, Method Ø “ExplicitEuler“<, “Invariants“ ß invts<;

Projecting One Constraint

This projects the first constraint onto the manifold.

In[37]:= invts = First@invariantsD;

projsol1 = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol1, vars, time, UnitSphere, PlotRange Ø AllD

Out[39]=

Only the first invariant is conserved.

In[40]:= InvariantErrorPlot@invariants, vars, T, projsol1, PlotStyle Ø 8Red, Blue<D

Out[40]=

0 5 10 15 20 25 30
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

334 Advanced Numerical Differential Equation Solving in Mathematica

This projects the second constraint onto the manifold.

In[41]:= invts = Last@invariantsD;

projsol2 = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol2, vars, time, UnitSphere, PlotRange Ø AllD

Out[43]=

Only the second invariant is conserved.

In[44]:= InvariantErrorPlot@invariants, vars, T, projsol2, PlotStyle Ø 8Red, Blue<D

Out[44]=

0 5 10 15 20 25 30
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Advanced Numerical Differential Equation Solving in Mathematica 335

Projecting Multiple Constraints

This projects both constraints onto the manifold.

In[45]:= invts = invariants;

projsol = NDSolve@system, Method Ø ProjectionMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@projsol, vars, time, UnitSphere, PlotRange Ø AllD

Out[47]=

Now both invariants are conserved.

In[48]:= InvariantErrorPlot@invariants, vars, T, projsol, PlotStyle Ø 8Red, Blue<D

Out[48]=

0 5 10 15 20 25 30
0

1.µ 10-16

2.µ 10-16

3.µ 10-16

4.µ 10-16

"Splitting" Method

A splitting that yields an efficient explicit integration method was derived independently by

McLachlan [M93] and Reich [R93].

Write the flow of an ODE y° = Y as yHtL = expHt YL HyH0L.

336 Advanced Numerical Differential Equation Solving in Mathematica

The differential system is split into three components, YH1, YH2, and YH3, each of which is

Hamiltonian and can be solved exactly.

The Hamiltonian systems are solved and recombined at each integration step as:

expHt YL º expH1 ê2 t YH1L expH1 ê2 t YH2L expHt YH3L expH1 ê2 t YH2L expH1 ê2 t YH1L.

This defines an appropriate splitting into Hamiltonian vector fields.

In[49]:= Grad@H_, x_?VectorQD := Map@D@H, ÒD &, xD;
isub = 8I1 -> 2, I2 -> 1, I3 -> 2 ê 3<;
H1 = Y1@TD^2 ê H2 I1L ê. isub;
H2 = Y2@TD^2 ê H2 I2L ê. isub;
H3 = Y3@TD^2 ê H2 I3L ê. isub;
JX = 880, -Y3@TD, Y2@TD<, 8Y3@TD, 0, -Y1@TD<, 8-Y2@TD, Y1@TD, 0<<;
YH1 = Thread@D@vars, TD == JX.Grad@H1, varsDD;
YH2 = Thread@D@vars, TD == JX.Grad@H2, varsDD;
YH3 = Thread@D@vars, TD == JX.Grad@H3, varsDD;

Here is the differential system for Euler's equations.

In[58]:= eqs

Out[58]= :Y1
£@TD ã

1

2
Y2@TD Y3@TD, Y2

£@TD ã -Y1@TD Y3@TD, Y3
£@TD ã

1

2
Y1@TD Y2@TD>

Here are the three split vector fields.

In[59]:= YH1

Out[59]= :Y1
£@TD ã 0, Y2

£@TD ã
1

2
Y1@TD Y3@TD, Y3

£@TD ã -
1

2
Y1@TD Y2@TD>

In[60]:= YH2

Out[60]= 8Y1
£@TD ã -Y2@TD Y3@TD, Y2

£@TD ã 0, Y3
£@TD ã Y1@TD Y2@TD<

In[61]:= YH3

Out[61]= :Y1
£@TD ã

3

2
Y2@TD Y3@TD, Y2

£@TD ã -
3

2
Y1@TD Y3@TD, Y3

£@TD ã 0>

Solution

This defines a symmetric second-order splitting method. The coefficients are automatically
determined from the structure of the equations and are an extension of the Strang splitting.

In[62]:= SplittingMethod =
8“Splitting“,
“DifferenceOrder“ Ø 2,
“Equations“ Ø 8YH1, YH2, YH3, YH2, YH1<,
“Method“ Ø 8“LocallyExact“<<;

Advanced Numerical Differential Equation Solving in Mathematica 337

This solves the system and graphically displays the solution.

In[63]:= splitsol = NDSolve@system, Method Ø SplittingMethod, StartingStepSize Ø 1 ê 20D;

PlotSolutionOnManifold@splitsol, vars, time, UnitSphere, PlotRange Ø AllD

Out[64]=

One of the invariants is preserved up to roundoff while the error in the second invariant remains
bounded.

In[65]:= InvariantErrorPlot@invariants, vars, T, splitsol, PlotStyle Ø 8Red, Blue<D

Out[65]=

0 5 10 15 20 25 30
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

338 Advanced Numerical Differential Equation Solving in Mathematica

Components and Data Structures in
NDSolve

Introduction

NDSolve is broken up into several basic steps. For advanced usage, it can sometimes be advan-

tageous to access components to carry out each of these steps separately.

† Equation processing and method selection

† Method initialization

† Numerical solution

† Solution processing

NDSolve performs each of these steps internally, hiding the details from a casual user. How-

ever, for advanced usage it can sometimes be advantageous to access components to carry out

each of these steps separately.

Here are the low-level functions that are used to break up these steps.

† NDSolve`ProcessEquations

† NDSolve`Iterate

† NDSolve`ProcessSolutions

NDSolve`ProcessEquations classifies the differential system into initial value problem, bound-

ary value problem, differential-algebraic problem, partial differential problem, etc. It also

chooses appropriate default integration methods and constructs the main NDSolve`StateData

data structure.

NDSolve`Iterate advances the numerical solution. The first invocation (there can be several)

initializes the numerical integration methods.

NDSolve`ProcessSolutions converts numerical data into an InterpolatingFunction to repre-

sent each solution.

Advanced Numerical Differential Equation Solving in Mathematica 339

Note that NDSolve`ProcessEquations can take a significant portion of the overall time to solve

a differential system. In such cases, it can be useful to perform this step only once and use

NDSolve`Reinitialize to repeatedly solve for different options or initial conditions.

Example

Process equations and set up data structures for solving the differential system.

In[1]:= ndssdata =
First@NDSolve`ProcessEquations@8y‘‘@tD + y@tD ã 0, y@0D ã 1, y‘@0D ã 0<,

8y, y‘<, t, Method Ø “ExplicitRungeKutta“DD
Out[1]= NDSolve`StateData@<0.>D

Initialize the method “ExplicitRungeKutta“ and integrate the system up to time 10. The
return value of NDSolve`Iterate is Null in order to avoid extra references, which would lead
to undesirable copying.

In[2]:= NDSolve`Iterate@ndssdata, 10D

Convert each set of solution data into an InterpolatingFunction.

In[3]:= ndsol = NDSolve`ProcessSolutions@ndssdataD

Out[3]= 8y Ø InterpolatingFunction@880., 10.<<, <>D, y£ Ø InterpolatingFunction@880., 10.<<, <>D<

Representing the solution as an InterpolatingFunction allows continuous output even for
points that are not part of the numerical solution grid.

In[4]:= ParametricPlot@8y@tD, y‘@tD< ê. ndsol, 8t, 0, 10<D

Out[4]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

340 Advanced Numerical Differential Equation Solving in Mathematica

Creating NDSolve`StateData Objects

ProcessEquations

The first stage of any solution using NDSolve is processing the equations specified into a form

that can be efficiently accessed by the actual integration algorithms. This stage minimally

involves determining the differential order of each variable, making substitutions needed to get

a first-order system, solving for the time derivatives of the functions in terms of the functions,

and forming the result into a “NumericalFunction“ object. If you want to save the time of

repeating this process for the same set of equations or if you want more control over the numeri-

cal integration process, the processing stage can be executed separately with

NDSolve`ProcessEquations.

NDSolve`ProcessEquations@8eqn1,eqn2,…<,8u1,u2,…<,tD

process the differential equations 8eqn1, eqn2, …< for the
functions 8u1, u2, …< into a normal form; return a list of
NDSolve`StateData objects containing the solution and
data associated with each solution for the time derivatives
of the functions in terms of the functions; t may be speci-
fied in a list with a range of values as in NDSolve

NDSolve`ProcessEquations@8eqn1,eqn2,…<,8u1,u2,…<,8x1,x1min,x1max<,8x2,x2min,x2max<,…D

process the partial differential equations 8eqn1, eqn2, …<
for the functions 8u1, u2, …< into a normal form; return a
list of NDSolve`StateData objects containing the solu-
tion and data associated with each solution for the time
derivatives of the functions in terms of the functions; if x j
is the temporal variable, it need not be specified with the
boundaries x j min, x j max

Processing equations for NDSolve.

This creates a list of two NDSolve`StateData objects because there are two possible solu-
tions for the y£ in terms of y.

In[1]:= NDSolve`ProcessEquations@8y‘@xD^2 ã y@xD + x, y@0D ã 1<, y, xD

Out[1]= 8NDSolve`StateData@<0.>D, NDSolve`StateData@<0.>D<

Advanced Numerical Differential Equation Solving in Mathematica 341

Reinitialize

It is not uncommon that the solution to a more sophisticated problem involves solving the same

differential equation repeatedly, but with different initial conditions. In some cases, processing

equations may be as time-consuming as numerically integrating the differential equations. In

these situations, it is a significant advantage to be able to simply give new initial values.

NDSolve`Reinitialize@
state,conditionsD

assuming the equations and variables are the same as the
ones used to create the NDSolve`StateData object state,
form a list of new NDSolve`StateData objects, one for
each of the possible solutions for the initial values of the
functions of the equations conditions

Reusing processed equations.

This creates an NDSolve`StateData object for the harmonic oscillator.

In[2]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + x@tD ã 0, x@0D ã 0, x‘@0D ã 1<, x, tDD

Out[2]= NDSolve`StateData@<0.>D

This creates three new NDSolve`StateData objects, each with a different initial condition.

In[3]:= newstate = NDSolve`Reinitialize@state, 8x@1D^3 ã 1, x‘@1D ã 0<D

Out[3]= 8NDSolve`StateData@<1.>D, NDSolve`StateData@<1.>D, NDSolve`StateData@<1.>D<

Using NDSolve`Reinitialize may save computation time when you need to solve the same

differential equation for many different initial conditions, as you might in a shooting method for

boundary value problems.

A subset of NDSolve options can be specified as options to NDSolve`Reinitialize.

This creates a new NDSolve`StateData object, specifying a starting step size.

In[3]:= newstate =
NDSolve`Reinitialize@state, 8x@0D ã 0, x‘@0D ã 1<, StartingStepSize Ø 1 ê 10D

Out[3]= 8NDSolve`StateData@<0.>D<

342 Advanced Numerical Differential Equation Solving in Mathematica

Iterating Solutions

One important use of NDSolve`StateData objects is to have more control of the integration.

For some problems, it is appropriate to check the solution and start over or change parameters,

depending on certain conditions.

NDSolve`Iterate@state,tD compute the solution of the differential equation in an
NDSolve`StateData object that has been assigned as
the value of the variable state from the current time up to
time t

Iterating solutions to differential equations.

This creates an NDSolve`StateData object that contains the information needed to solve the
equation for an oscillator with a varying coefficient using an explicit Runge|Kutta method.

In[4]:= state =
First@NDSolve`ProcessEquations@8x‘‘@tD + H1 + 4 UnitStep@Sin@tDDL x@tD ã 0,

x@0D ã 1, x‘@0D ã 0<, x, t, Method Ø “ExplicitRungeKutta“DD
Out[4]= NDSolve`StateData@<0.>D

Note that when you use NDSolve`ProcessEquations, you do not need to give the range of the

t variable explicitly because that information is not needed to set up the equations in a form

ready to solve. (For PDEs, you do have to give the ranges of all spatial variables, however,

since that information is essential for determining an appropriate discretization.)

This computes the solution out to time t = 1.

In[5]:= NDSolve`Iterate@state, 1D

NDSolve`Iterate does not return a value because it modifies the NDSolve`StateData object

assigned to the variable state. Thus, the command affects the value of the variable in a manner

similar to setting parts of a list, as described in "Manipulating Lists by Their Indices". You can

see that the value of state has changed since it now displays the current time to which it is

integrated.

The output form of state shows the range of times over which the solution has been integrated.

In[6]:= state

Out[6]= NDSolve`StateData@<0.,1.>D

Advanced Numerical Differential Equation Solving in Mathematica 343

If you want to integrate further, you can call NDSolve`Iterate again, but with a larger value

for time.

This computes the solution out to time t = 3.

In[7]:= NDSolve`Iterate@state, 3D

You can specify a time that is earlier than the first current time, in which case the integration

proceeds backwards with respect to time.

This computes the solution from the initial condition backwards to t = -p ê2.

In[8]:= NDSolve`Iterate@state, -Pi ê 2D

NDSolve`Iterate allows you to specify intermediate times at which to stop. This can be useful, for

example, to avoid discontinuities. Typically, this strategy is more effective with so-called one-step meth-

ods, such as the explicit Runge|Kutta method used in this example. However, it generally works with the
default NDSolve method as well.

This computes the solution out to t = 10 p, making sure that the solution does not have problems
with the points of discontinuity in the coefficients at t = p, 2 p, ….

In[9]:= NDSolve`Iterate@state, p Range@10DD

Getting Solution Functions

Once you have integrated a system up to a certain time, typically you want to be able to look at

the current solution values and to generate an approximate function representing the solution

computed so far. The command NDSolve`ProcessSolutions allows you to do both.

NDSolve`ProcessSolutions@stateD give the solutions that have been computed in state as a
list of rules with InterpolatingFunction objects

Getting solutions as InterpolatingFunction objects.

This extracts the solution computed in the previous section as an InterpolatingFunction
object.

In[10]:= sol = NDSolve`ProcessSolutions@stateD

Out[10]= 8x Ø InterpolatingFunction@88-1.5708, 31.4159<<, <>D<

344 Advanced Numerical Differential Equation Solving in Mathematica

This plots the solution.

In[11]:= Plot@Evaluate@x@tD ê. solD, 8t, 0, 10 Pi<D

Out[11]=
5 10 15 20 25 30

-1

1

2

Just as when using NDSolve directly, there will be a rule for each function you specified in the

second argument to NDSolve`ProcessEquations. Only the specified components of the solu-

tions are saved in such a way that an InterpolatingFunction object can be created.

NDSolve`ProcessSolutions@
state,dirD

give the solutions that have been most recently computed
in direction dir in state as a list of rules with values for both
the functions and their derivatives

Obtaining the current solution values.

This gives the current solution values and derivatives in the forward direction.

In[12]:= sol = NDSolve`ProcessSolutions@state, “Forward“D

Out[12]= 8x@31.4159D Ø 0.843755, x£@31.4159D Ø -1.20016, x££@31.4159D Ø -0.843755<

The choices you can give for the direction dir are “Forward“ and “Backward“, which refer to the

integration forward and backward from the initial condition.

“Forward“ integration in the direction of increasing values of the
temporal variable

“Backward“ integration in the direction of decreasing values of the
temporal variables

“Active“ integration in the direction that is currently being inte-
grated; typically, this value should only be called from
method initialization that is used during an active
integration

Integration direction specifications.

Advanced Numerical Differential Equation Solving in Mathematica 345

The output given by NDSolve`ProcessSolution is always given in terms of the dependent

variables, either at a specific value of the independent variable, or interpolated over all of the

saved values. This means that when a partial differential equation is being integrated, you will

get results representing the dependent variables over the spatial variables.

This computes the solution to the heat equation from time t = -1 ê4 to t = 2.

In[13]:= state = First@NDSolve`ProcessEquations@8D@u@t, xD, tD ã D@u@t, xD, x, xD,
u@0, xD ã Cos@p ê 2 xD, u@t, 0D ã 1 , u@t, 1D ã 0<, u, t, 8x, 0, 1<DD;

NDSolve`Iterate@state, 8-1 ê 4, 2<D

This gives the solution at t = 2.

In[15]:= NDSolve`ProcessSolutions@state, “Forward“D

Out[15]= 9u@2., xD Ø InterpolatingFunction@880., 1.<<, <>D@xD,

uH1,0L@2., xD Ø InterpolatingFunction@880., 1.<<, <>D@xD=

The solution is given as an InterpolatingFunction object that interpolates over the spatial

variable x.

This gives the solution at t = -1 ê4.

In[16]:= NDSolve`ProcessSolutions@state, “Backward“D

NDSolve::eerr : Warning: Scaled local spatial error estimate of 638.6378240455119`
at t = -0.25 in the direction of independent variable x
is much greater than prescribed error tolerance. Grid spacing with 15
points may be too large to achieve the desired accuracy or precision. A

singularity may have formed or you may want to specify a smaller
grid spacing using the MaxStepSize or MinPoints method options. à

Out[16]= 9u@-0.25, xD Ø InterpolatingFunction@880., 1.<<, <>D@xD,

uH1,0L@-0.25, xD Ø InterpolatingFunction@880., 1.<<, <>D@xD=

When you process the current solution for partial differential equations, the spatial error esti-

mate is checked. (It is not generally checked except when solutions are produced because

doing so would be quite time consuming.) Since it is excessive, the NDSolve::eerr message is

issued. The typical association of the word "backward" with the heat equation as implying

instability gives a clue to what is wrong in this example.

346 Advanced Numerical Differential Equation Solving in Mathematica

Here is a plot of the solution at t = 1 ê4.

In[17]:= Plot@Evaluate@u@-0.25, xD ê. %D, 8x, 0, 1<D

Out[17]=

The plot of the solution shows that instability is indeed the problem.

Even though the heat equation example is simple enough to know that the solution backward in

time is problematic, using NDSolve`Iterate and NDSolve`ProcessSolutions to monitor the

solution of a PDE can be used to save computing a solution that turns out not to be as accurate

as desired. Another simple form of monitoring follows.

Advanced Numerical Differential Equation Solving in Mathematica 347

0.2 0.4 0.6 0.8 1.0

1 × 10105

–1 × 10105

–2 × 10105

–3 × 10105

2 × 10105

3 × 10105

Entering the following commands generates a sequence of plots showing the solution of a
generalization of the sine-Gordon equation as it is being computed.

In[58]:= L = -10;
state = FirstANDSolve`ProcessEquationsA9D@u@t, x, yD, t, tD ã

D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD - Sin@u@t, x, yDD,
u@0, x, yD ã ExpA-Ix2 + y2ME, Derivative@1, 0, 0D@uD@0, x, yD ã 0,
u@t, -L, yD ã u@t, L, yD, u@t, x, -LD ã u@t, x, LD=, u, t, 8x, -L, L<,

8y, -L, L<, Method Ø 8“MethodOfLines“, “SpatialDiscretization“ Ø
8“TensorProductGrid“, “DifferenceOrder“ -> “Pseudospectral“<<EE;

GraphicsGrid@Partition@Table@
NDSolve`Iterate@state, tD;
Plot3D@Evaluate@u@t, x, yD ê. NDSolve`ProcessSolutions@state, “Forward“DD,
8x, -L, L<, 8y, -L, L<, PlotRange Ø 8-1 ê 4, 1 ê 4<D,

8t, 0., 20., 5.<D, 2DD

Out[60]=

When you monitor a solution in this way, it is usually possible to interrupt the computation if

you see that the solution found is sufficient. You can still use the NDSolve`StateData object to

get the solutions that have been computed.

NDSolve`StateData Methods

An NDSolve`StateData object contains a lot of information, but it is arranged in a manner

which makes it easy to iterate solutions, and not in a manner which makes it easy to under-

stand where the information is kept. However, sometimes you will want to get information from

the state data object: for this reason several method functions have been defined to make

accessing the information easy.

348 Advanced Numerical Differential Equation Solving in Mathematica

–10

0

10 –10

0

10

–0.2
0.0

0.2

–10

0

10 –10

0

10

–0.2
0.0

0.2

–10

0

10 –10

0

10

–0.2
0.0

0.2

–10

0

10 –10

0

10

–0.2
0.0

0.2

stateü“TemporalVariable“ give the independent variable that the dependent variables
(functions) depend on

stateü“DependentVariables“ give a list of the dependent variables (functions) to be
solved for

stateü“VariableDimensions“ give the dimensions of each of the dependent variables
(functions)

stateü“VariablePositions“ give the positions in the solution vector for each of the
dependent variables

stateü“VariableTransformation“ give the transformation of variables from the original
problem variables to the working variables

stateü“NumericalFunction“ give the “NumericalFunction“ object used to evaluate
the derivatives of the solution vector with respect to the
temporal variable t

stateü“ProcessExpression“@args,expr,dimsD

process the expression expr using the same variable
transformations that NDSolve used to generate state to
give a “NumericalFunction“ object for numerically
evaluating expr; args are the arguments for the numerical
function and should either be All or a list of arguments
that are dependent variables of the system; dims should be
Automatic or an explicit list giving the expected dimen-
sions of the numerical function result

stateü“SystemSize“ give the effective number of first-order ordinary differential
equations being solved

stateü“MaxSteps“ give the maximum number of steps allowed for iterating
the differential equations

stateü“WorkingPrecision“ give the working precision used to solve the equations

stateü“Norm“ the scaled norm to use for gauging error

General method functions for an NDSolve`StateData object state.

Much of the available information depends on the current solution values. Each

NDSolve`StateData object keeps solution information for solutions in both the forward and

backward direction. At the initial condition these are the same, but once the problem has been

iterated in either direction, these will be different.

Advanced Numerical Differential Equation Solving in Mathematica 349

stateü“CurrentTime“@dirD give the current value of the temporal variable in the
integration direction dir

stateü“SolutionVector“@dirD give the current value of the solution vector in the integra-
tion direction dir

stateü“SolutionDerivativeVector“@dirD

give the current value of the derivative with respect to the
temporal variable of the solution vector in the integration
direction dir

stateü“TimeStep“@dirD give the time step size for the next step in the integration
direction dir

stateü“TimeStepsUsed“@dirD give the number of time steps used to get to the current
time in the integration direction dir

stateü“MethodData“@dirD give the method data object used in the integration direc-
tion dir

Directional method functions for an NDSolve`StateData object state.

If the direction argument is omitted, the functions will return a list with the data for both

directions (a list with a single element at the initial condition). Otherwise, the direction can be

“Forward“, “Backward“, or “Active“ as specified in the previous subsection.

Here is an NDSolve`StateData object for a solution of the nonlinear Schrodinger equation
that has been computed up to t = 1.

In[24]:= state = First@NDSolve`ProcessEquations@
8I D@u@t, xD, tD ã D@u@t, xD, x, xD + Abs@u@t, xDD^2 u@t, xD,
u@0, xD ã Sech@xD Exp@p I xD, u@t, -15D ã u@t, 15D<,

u, t, 8x, -15, 15<, Method Ø StiffnessSwitchingDD;
NDSolve`Iterate@state, 1D;
state

Out[24]= NDSolve`StateData@<0.,1.>D

“Current” refers to the most recent point reached in the integration.

This gives the current time in both the forward and backward directions.

In[27]:= stateü“CurrentTime“

Out[27]= 80., 1.<

This gives the size of the system of ordinary differential equations being solved.

In[28]:= stateü“SystemSize“

Out[28]= 400

350 Advanced Numerical Differential Equation Solving in Mathematica

The method functions are relatively low-level hooks into the data structure; they do little pro-

cessing on the data returned to you. Thus, unlike NDSolve`ProcessSolutions, the solutions

given are simply vectors of data points relating to the system of ordinary differential equations

NDSolve is solving.

This makes a plot of the modulus of current solution in the forward direction.

In[29]:= ListPlot@Abs@stateüSolutionVector@“Forward“DDD

Out[29]=

100 200 300 400

0.2

0.4

0.6

0.8

This plot does not show the correspondence with the x-grid values correctly. To get the corre-

spondence with the spatial grid correctly, you must use NDSolve`ProcessSolutions.

There is a tremendous amount of control provided by these methods, but an exhaustive set of

examples is beyond the scope of this documentation.

One of the most important uses of the information from an NDSolve`StateData object is to

initialize integration methods. Examples are shown in "The NDSolve Method Plug-in Framework".

Utility Packages for Numerical Differential
Equation Solving

InterpolatingFunctionAnatomy

NDSolve returns solutions as InterpolatingFunction objects. Most of the time, simply using

these as functions does what is needed, but occasionally it is useful to access the data inside,

which includes the actual values and points NDSolve computed when taking steps. The exact

structure of an InterpolatingFunction object is arranged to make the data storage efficient

and evaluation at a given point fast. This structure may change between Mathematica versions,

so code that is written in terms of accessing parts of

Advanced Numerical Differential Equation Solving in Mathematica 351

and evaluation at a given point fast. This structure may change between Mathematica versions,

so code that is written in terms of accessing parts of InterpolatingFunction

objects may not work with new versions of Mathematica. The DifferentialEquations`InterÖ

polatingFunctionAnatomy` package provides an interface to the data in an

InterpolatingFunction object that will be maintained for future Mathematica versions.

Anatomy of InterpolatingFunction objects.

This loads the package.

In[21]:= Needs@“DifferentialEquations`InterpolatingFunctionAnatomy`“D;

One common situation where the InterpolatingFunctionAnatomy package is useful is when

NDSolve cannot compute a solution over the full range of values that you specified, and you

want to plot all of the solution that was computed to try to understand better what might have

gone wrong.

Here is an example of a differential equation which cannot be computed up to the specified
endpoint.

In[2]:= ifun = First@x ê. NDSolve@8x‘@tD ã Exp@x@tDD - x@tD, x@0D ã 1<, x, 8t, 0, 10<DD

NDSolve::ndsz :
At t == 0.5160191740198964`, step size is effectively zero; singularity or stiff system suspected. à

Out[2]= InterpolatingFunction@880., 0.516019<<, <>D

352 Advanced Numerical Differential Equation Solving in Mathematica

InterpolatingFunctionDomain@
ifunD

return a list with the domain of definition for each of the
dimensions of the InterpolatingFunction object ifun

InterpolatingFunctionCoordinaÖ
tes@ifunD

return a list with the coordinates at which data is specified
in each of the dimensions for the
InterpolatingFunction object ifun

InterpolatingFunctionGrid@ifunD return the grid of points at which data is specified for the
InterpolatingFunction object ifun

InterpolatingFunctionValuesOnÖ
Grid@ifunD

return the values that would be returned by evaluating the
InterpolatingFunction object ifun at each of its grid
points

InterpolatingFunctionInterpolÖ
ationOrder@ifunD

return the interpolation order used for each of the dimen -
sions for the InterpolatingFunction object ifun

InterpolatingFunctionDerivatiÖ
veOrder@ifunD

return the order of the derivative of the base function for
which values are specified when evaluating the
InterpolatingFunction object ifun

This gets the domain.

In[3]:= domain = InterpolatingFunctionDomain@ifunD

Out[3]= 880., 0.516019<<

Once the domain has been returned in a list, it is easy to use Part to get the desired endpoints
and make the plot.

In[4]:= 8begin, end< = domain@@1DD;
Plot@ifun@tD, 8t, begin, end<D

Out[5]=

0.1 0.2 0.3 0.4 0.5

1.5

2.0

2.5

3.0

3.5

4.0

From the plot, it is quite apparent that a singularity has formed and it will not be possible to

integrate the system any further.

Sometimes it is useful to see where NDSolve took steps. Getting the coordinates is useful for

doing this.

This shows the values that NDSolve computed at each step it took. It is quite apparent from
this that nearly all of the steps were used to try to resolve the singularity.

In[6]:= coords = First@InterpolatingFunctionCoordinates@ifunDD;
ListPlot@Transpose@8coords, ifun@coordsD<DD

Out[7]=

Advanced Numerical Differential Equation Solving in Mathematica 353

0.485 0.490 0.495 0.500 0.505 0.510 0.515

5

10

15

20

25

30

The package is particularly useful for analyzing the computed solutions of PDEs.

With this initial condition, Burgers' equation forms a steep front.

In[8]:= mdfun =
First@u ê. NDSolve@8D@u@x, tD, tD ã 0.01 D@u@x, tD, x, xD - u@x, tD D@u@x, tD, xD,

u@0, tD ã u@1, tD, u@x, 0D ã Sin@2 Pi xD<, u, 8x, 0, 1<, 8t, 0, 0.5<DD

NDSolve::ndsz :
At t == 0.472151168326526`, step size is effectively zero; singularity or stiff system suspected. à

NDSolve::eerr : Warning: Scaled local spatial error estimate of 9.135898727911074`*^12
at t = 0.472151168326526` in the direction of independent variable x
is much greater than prescribed error tolerance. Grid spacing with 27
points may be too large to achieve the desired accuracy or precision. A

singularity may have formed or you may want to specify a smaller
grid spacing using the MaxStepSize or MinPoints method options. à

Out[8]= InterpolatingFunction@88..., 0., 1., ...<, 80., 0.472151<<, <>D

This shows the number of points used in each dimension.

In[9]:= Map@Length, InterpolatingFunctionCoordinates@mdfunDD

Out[9]= 827, 312<

This shows the interpolation order used in each dimension.

In[10]:= InterpolatingFunctionInterpolationOrder@mdfunD

Out[10]= 85, 3<

This shows that the inability to resolve the front has manifested itself as numerical instability.

In[11]:= Max@Abs@InterpolatingFunctionValuesOnGrid@mdfunDDD

Out[11]= 1.14928µ1012

This shows the values computed at the spatial grid points at the endpoint of the temporal
integration.

In[12]:= end = InterpolatingFunctionDomain@mdfunD@@2, -1DD;
X = InterpolatingFunctionCoordinates@mdfunD@@1DD;
ListPlot@Transpose@8X, mdfun@X, endD<D,
PlotStyle Ø PointSize@.025D, PlotRange Ø 8-1, 1<D

Out[14]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

354 Advanced Numerical Differential Equation Solving in Mathematica

It is easily seen from the point plot that the front has not been resolved.

This makes a 3D plot showing the time evolution for each of the spatial grid points. The initial
condition is shown in red.

In[15]:= Show@Graphics3D@8Map@Line, MapThread@Append, 8InterpolatingFunctionGrid@mdfunD,
InterpolatingFunctionValuesOnGrid@mdfunD<, 2DD,

8RGBColor@1, 0, 0D, Line@Transpose@8X, 0. X, mdfun@X, 0.D<DD<<D,
BoxRatios Ø 81, 1, 1<, PlotRange Ø 8All, All, 8-1, 1<<D

Out[15]=

When a derivative of an InterpolatingFunction object is taken, a new

InterpolatingFunction object is returned that gives the requested derivative when evaluated

at a point. The InterpolatingFunctionDerivativeOrder is a way of determining what

derivative will be evaluated.

The derivative returns a new InterpolatingFunction object.

In[16]:= dmdfun = Derivative@0, 1D@mdfunD

Out[16]= InterpolatingFunction@88..., 0., 1., ...<, 80., 0.472151<<, <>D

This shows what derivative will be evaluated.

In[17]:= InterpolatingFunctionDerivativeOrder@dmdfunD

Out[17]= Derivative@0, 1D

Advanced Numerical Differential Equation Solving in Mathematica 355

NDSolveUtilities

A number of utility routines have been written to facilitate the investigation and comparison of

various NDSolve methods. These functions have been collected in the package

DifferentialEquations`NDSolveUtilities`.

Functions provided in the NDSolveUtilities package.

This loads the package.

In[18]:= Needs@“DifferentialEquations`NDSolveUtilities`“D

A useful means of analyzing Runge|Kutta methods is to study how they behave when applied to

a scalar linear test problem (see the package FunctionApproximations.m).

This assigns the (exact or infinitely precise) coefficients for the 2-stage implicit Runge|Kutta
Gauss method of order 4.

In[19]:= 8amat, bvec, cvec< = NDSolve`ImplicitRungeKuttaGaussCoefficients@4, InfinityD

Out[19]= :::
1

4
,

1

12
3 - 2 3 >, :

1

12
3 + 2 3 ,

1

4
>>, :

1

2
,
1

2
>, :

1

6
3 - 3 ,

1

6
3 + 3 >>

This computes the linear stability function, which corresponds to the (2,2) Padé approximation
to the exponential at the origin.

In[20]:= RungeKuttaLinearStabilityFunction@amat, bvec, zD

Out[20]=
1 +

z

2
+

z2

12

1 -
z

2
+

z2

12

356 Advanced Numerical Differential Equation Solving in Mathematica

CompareMethods@
sys,refsol,methods,optsD

return statistics for various methods applied to the system
sys

FinalSolutions@sys,solsD return the solution values at the end of the numerical
integration for various solutions sols corresponding to the
system sys

InvariantErrorPlot@
invts,dvars,ivar,sol,optsD

return a plot of the error in the invariants invts for the
solution sol

RungeKuttaLinearStabilityFuncÖ
tion@amat,bvec,varD

return the linear stability function for the Runge|Kutta
method with coefficient matrix amat and weight vector bvec
using the variable var

StepDataPlot@sols,optsD return plots of the step sizes taken for the solutions sols on
a logarithmic scale

Examples of the functions CompareMethods, FinalSolutions, RungeKuttaLinearStabilityÖ

Function, and StepDataPlot can be found within "ExplicitRungeKutta Method for NDSolve".

Examples of the function InvariantErrorPlot can be found within "Projection Method for

NDSolve".

InvariantErrorPlot Options

The function InvariantErrorPlot has a number of options that can be used to control the

form of the result.

option name default value

InvariantDimensions Automatic specify the dimensions of the invariants

InvariantErrorFunction AbsASubtract@
Ò1,Ò2DE&

specify the function to use for comparing
errors

InvariantErrorSampleRate Automatic specify how often errors are sampled

Options of the function InvariantErrorPlot.

The default value for InvariantDimensions is to determine the dimensions from the structure

of the input, Dimensions@invtsD.

The default value for InvariantErrorFunction is a function to compute the absolute error.

The default value for InvariantErrorSampleRate is to sample all points if there are less than

1000 steps taken. Above this threshold a logarithmic sample rate is used.

Advanced Numerical Differential Equation Solving in Mathematica 357

Advanced Numerical Differential Equation
Solving in Mathematica: References

[AP91] Ascher U. and L. Petzold. "Projected Implicit Runge|Kutta Methods for Differential

Algebraic Equations" SIAM J. Numer. Anal. 28 (1991): 1097|1120

[AP98] Ascher U. and L. Petzold. Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. SIAM Press (1998)

[ARPACK98] Lehoucq, R. B., D. C. Sorensen, and C. Yang. ARPACK Users’ Guide, Solution of

Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, SIAM (1998)

[ATLAS00] Whaley R. C., A. Petitet, and J. J. Dongarra. "Automated Empirical Optimization of

Software and the ATLAS Project" Available electronically from http://math-

atlas.sourceforge.net/

[BD83] Bader G. and P. Deuflhard. "A Semi-Implicit Mid-Point Rule for Stiff Systems of Ordinary

Differential Equations" Numer. Math 41 (1983): 373|398

[BS97] Bai Z. and G. W. Stewart. "SRRIT: a Fortran Subroutine to Calculate the Dominant

Invariant Subspace of a Nonsymmetric Matrix" ACM Trans. Math. Soft. 23 4 (1997): 494|513

[BG94] Benettin G. and A. Giorgilli. "On the Hamiltonian Interpolation of Near to the Identity

Symplectic Mappings with Application to Symplectic Integration Algorithms" J. Stat. Phys. 74

(1994): 1117|1143

[BZ65] Berezin I. S. and N. P. Zhidkov. Computing Methods, Volume 2. Pergamon (1965)

[BM02] Blanes S. and P. C. Moan. "Practical Symplectic Partitioned Runge|Kutta and Runge|

Kutta|Nyström Methods" J. Comput. Appl. Math. 142 (2002): 313|330

[BCR99a] Blanes S., F. Casas, and J. Ros. "Symplectic Integration with Processing: A General

Study" SIAM J. Sci. Comput. 21 (1999): 711|727

[BCR99b] Blanes S., F. Casas, and J. Ros. "Extrapolation of Symplectic Integrators" Report

DAMTP NA09, Cambridge University (1999)

[BS89a] Bogacki P. and L. F. Shampine. "A 3(2) Pair of Runge|Kutta Formulas" Appl. Math.

Letters 2 (1989): 1|9

358 Advanced Numerical Differential Equation Solving in Mathematica

[BS89b] Bogacki P. and L. F. Shampine. "An Efficient Runge|Kutta (4, 5) Pair" Report 89|20,

Math. Dept. Southern Methodist University, Dallas, Texas (1989)

[BGS93] Brankin R. W., I. Gladwell and L. F. Shampine. "RKSUITE: A Suite of Explicit Runge|

Kutta Codes" In Contributions to Numerical Mathematics, R. P. Agarwal, ed., 41|53 (1993)

[BCP89] Brenan K., S. Campbell, and L. Petzold. Numerical Solutions of Initial-Value Problems

in Differential-Algebraic Equations. Elsevier Science Publishing (1989)

[BHP94] Brown P. N., A. C. Hindmarsh, and L. R. Petzold. "Using Krylov Methods in the Solution

of Large-Scale Differential-Algebraic Systems" SIAM J. Sci. Comput. 15 (1994): 1467|1488

[BHP98] Brown P. N., A. C. Hindmarsh, and L. R. Petzold. "Consistent Initial Condition

Calculation for Differential-Algebraic Systems" SIAM J. Sci. Comput. 19 (1998): 1495|1512

[B87] Butcher J. C. The Numerical Analysis of Ordinary Differential Equations: Runge|Kutta and

General Linear Methods. John Wiley (1987)

[B90] Butcher J. C. "Order, Stepsize and Stiffness Switching" Computing. 44 3, (1990): 209|220

[BS64] Bulirsch R. and J. Stoer. "Fehlerabschätzungen und Extrapolation mit Rationalen

Funktionen bei Verfahren vom Richardson|Typus" Numer. Math. 6 (1964): 413|427

[CIZ97] Calvo M. P., A. Iserles, and A. Zanna. "Numerical Solution of Isospectral Flows" Math.

Comp. 66, no. 220 (1997): 1461|1486

[CIZ99] Calvo M. P., A. Iserles, and A. Zanna. "Conservative Methods for the Toda Lattice

Equations" IMA J. Numer. Anal. 19 (1999): 509|523

[CR91] Candy J. and R. Rozmus. "A Symplectic Integration Algorithm for Separable Hamiltonian

Functions" J. Comput. Phys. 92 (1991): 230|256

[CH94] Cohen S. D. and A. C. Hindmarsh. CVODE User Guide. Lawrence Livermore National

Laboratory report UCRL-MA-118618, September 1994

[CH96] Cohen S. D. and A. C. Hindmarsh. "CVODE, a Stiff/Nonstiff ODE Solver in C" Computers

in Physics 10, no. 2 (1996): 138|143

[C87] Cooper G. J. "Stability of Runge|Kutta Methods for Trajectory Problems" IMA J. Numer.

Anal. 7 (1987): 1|13

[DP80] Dormand J. R. and P. J. Prince. "A Family of Embedded Runge|Kutta Formulae" J. Comp.

Appl. Math. 6 (1980): 19|26

Advanced Numerical Differential Equation Solving in Mathematica 359

[DL01] Del Buono N. and L. Lopez. "Runge|Kutta Type Methods Based on Geodesics for

Systems of ODEs on the Stiefel Manifold" BIT 41 (5 (2001): 912|923

[D83] Deuflhard P. "Order and Step Size Control in Extrapolation Methods" Numer. Math. 41

(1983): 399|422

[D85] Deuflhard P. "Recent Progress in Extrapolation Methods for Ordinary Differential

Equations" SIAM Rev. 27 (1985): 505|535

[DN87] Deuflhard P. and U. Nowak. "Extrapolation Integrators for Quasilinear Implicit ODEs" In

Large-scale scientific computing, (P. Deuflhard and B. Engquist eds.) Birkhäuser, (1987)

[DS93] Duff I. S. and J. A. Scott. "Computing Selected Eigenvalues of Sparse Unsymmetric

Matrices Using Subspace Iteration" ACM Trans. Math. Soft. 19 2, (1993): 137|159

[DHZ87] Deuflhard P., E. Hairer, and J. Zugck. "One-Step and Extrapolation Methods for

Differential-Algebraic Systems" Numer. Math. 51 (1987): 501|516

[DRV94] Dieci L., R. D. Russel, and E. S. Van Vleck. "Unitary Integrators and Applications to

Continuous Orthonormalization Techniques" SIAM J. Num. Anal. 31 (1994): 261|281

[DV99] Dieci L. and E. S. Van Vleck. "Computation of Orthonormal Factors for Fundamental

Solution Matrices" Numer. Math. 83 (1999): 599|620

[DLP98a] Diele F., L. Lopez, and R. Peluso. "The Cayley Transform in the Numerical Solution of

Unitary Differential Systems" Adv. Comput. Math. 8 (1998): 317|334

[DLP98b] Diele F., L. Lopez, and T. Politi. "One Step Semi-Explicit Methods Based on the Cayley

Transform for Solving Isospectral Flows" J. Comput. Appl. Math. 89 (1998): 219|223

[ET92] Earn D. J. D. and S. Tremaine. "Exact Numerical Studies of Hamiltonian Maps: Iterating

without Roundoff Error" Physica D. 56 (1992): 1|22

[F69] Fehlberg E. "Low-Order Classical Runge|Kutta Formulas with Step Size Control and Their

Application to Heat Transfer Problems" NASA Technical Report 315, 1969 (extract published in

Computing 6 (1970): 61|71)

[FR90] Forest E. and R. D. Ruth. "Fourth Order Symplectic Integration" Physica D. 43 (1990):

105|117

[F92] Fornberg B. "Fast Generation of Weights in Finite Difference Formulas" In Recent

Developments in Numerical Methods and Software for ODEs/DAEs/PDEs (G. D. Byrne and W. E.

Schiesser eds.). World Scientific (1992)

360 Advanced Numerical Differential Equation Solving in Mathematica

[F96a] Fornberg B. A Practical Guide to Pseudospectral Methods. Cambridge University Press

(1996)

[F98] Fornberg B. "Calculation of Weights in Finite Difference Formulas" SIAM Review 40, no. 3

(1998): 685|691 (Available in PDF)

[F96b] Fukushima T. "Reduction of Round-off Errors in the Extrapolation Methods and its

Application to the Integration of Orbital Motion" Astron. J. 112, no. 3 (1996): 1298|1301

[G51] Gill S. "A Process for the Step-by-Step Integration of Differential Equations in an

Automatic Digital Computing Machine" Proc. Cambridge Philos. Soc. 47 (1951): 96|108

[G65] Gragg W. B. "On Extrapolation Algorithms for Ordinary Initial Value Problems" SIAM J.

Num. Anal. 2 (1965): 384|403

[GØ84] Gear C. W. and O. Østerby. "Solving Ordinary Differential Equations with

Discontinuities" ACM Trans. Math. Soft. 10 (1984): 23|44

[G91] Gustafsson K. "Control Theoretic Techniques for Stepsize Selection in Explicit Runge|

Kutta Methods" ACM Trans. Math. Soft. 17, (1991): 533|554

[G94] Gustafsson K. "Control Theoretic Techniques for Stepsize Selection in Implicit Runge|

Kutta Methods" ACM Trans. Math. Soft. 20, (1994): 496|517

[GMW81] Gill P., W. Murray, and M. Wright. Practical Optimization. Academic Press (1981)

[GDC91] Gladman B., M. Duncan, and J. Candy. "Symplectic Integrators for Long-Term

Integrations in Celestial Mechanics" Celest. Mech. 52 (1991): 221|240

[GSB87] Gladwell I., L. F. Shampine and R. W. Brankin. "Automatic Selection of the Initial Step

Size for an ODE Solver" J. Comp. Appl. Math. 18 (1987): 175|192

[GVL96] Golub G. H. and C. F. Van Loan. Matrix Computations, 3rd ed. Johns Hopkins

University Press (1996)

[H83] Hindmarsh A. C. "ODEPACK, A Systematized Collection of ODE Solvers" In Scientific

Computing (R. S. Stepleman et al. eds.) Vol. 1 of IMACS Transactions on Scientific Computation

(1983): 55|64

[H94] Hairer E. "Backward Analysis of Numerical Integrators and Symplectic Methods" Annals of

Numerical Mathematics 1 (1984): 107|132

[H97] Hairer E. "Variable Time Step integration with Symplectic Methods" Appl. Numer. Math.

25 (1997): 219|227

Advanced Numerical Differential Equation Solving in Mathematica 361

[H00] Hairer E. "Symmetric Projection Methods for Differential Equations on Manifolds" BIT 40,

no. 4 (2000): 726|734

[HL97] Hairer E. and Ch. Lubich. "The Life-Span of Backward Error Analysis for Numerical

Integrators" Numer. Math. 76 (1997): 441|462. Erratum:

http://www.unige.ch/math/folks/hairer

[HL88a] Hairer E. and Ch. Lubich. "Extrapolation at Stiff Differential Equations" Numer. Math.

52 (1988): 377|400

[HL88b] Hairer E. and Ch. Lubich. "On Extrapolation Methods for Stiff and Differential-Algebraic

Equations" Teubner Texte zur Mathematik 104 (1988): 64|73

[HO90] Hairer E. and A. Ostermann. "Dense Output for Extrapolation Methods" Numer. Math.

58 (1990): 419|439

[HW96] Hairer E. and G. Wanner, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, 2nd ed. Springer-Verlag (1996)

[HW99] Hairer E. and G. Wanner. "Stiff Differential Equations Solved by Radau Methods" J.

Comp. Appl. Math. 111 (1999): 93|111

[HLW02] Hairer E., Ch. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-

Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag (2002)

[HNW93] Hairer E., S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I:

Nonstiff Problems, 2nd ed. Springer-Verlag (1993)

[H97] Higham D. ""Time-Stepping and Preserving Orthonormality" BIT 37, no. 1 (1997): 24|36

[H89] Higham N. J. "Matrix Nearness Problems and Applications" In Applications of Matrix

Theory (M. J. C. Gover and S. Barnett eds.). Oxford University Press (1989): 1|27

[H96] Higham N. J. Accuracy and Stability of Numerical Algorithms. SIAM (1996)

[H83] Hindmarsh A. C. "ODEPACK, A Systematized Collection of ODE Solvers" In Scientific

Computing (R. S. Stepleman et al. eds). North-Holland (1983): 55|64

[HT99] Hindmarsh A. and A. Taylor. User Documentation for IDA: A Differential-Algebraic

Equation Solver for Sequential and Parallel Computers. Lawrence Livermore National Laboratory

report, UCRL-MA-136910, December 1999.

362 Advanced Numerical Differential Equation Solving in Mathematica

[KL97] Kahan W. H. and R. C. Li. "Composition Constants for Raising the Order of

Unconventional Schemes for Ordinary Differential Equations" Math. Comp. 66 (1997):

1089|1099

[K65] Kahan W. H. "Further Remarks on Reducing Truncation Errors" Comm. ACM. 8 (1965): 40

[K93] Koren I. Computer Arithmetic Algorithms. Prentice Hall (1993)

[L87] Lambert J. D. Numerical Methods for Ordinary Differential Equations. John Wiley (1987)

[LS96] Lehoucq, R. B and J. A. Scott. "An Evaluation of Software for Computing Eigenvalues of

Sparse Nonsymmetric Matrices." Preprint MCS-P547-1195, Argonne National Laboratory, (1996)

[LAPACK99] Anderson E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorenson. LAPACK Users' Guide, 3rd ed.

SIAM (1999)

[M68] Marchuk G. "Some Applications of Splitting-Up Methods to the Solution of Mathematical

Physics Problems" Aplikace Matematiky 13 (1968): 103|132

[MR99] Marsden J. E. and T. Ratiu. Introduction to Mechanics and Symmetry: Texts in Applied

Mathematics, Vol. 17, 2nd ed. Springer-Verlag (1999)

[M93] McLachlan R. I. "Explicit Lie|Poisson Integration and the Euler Equations" Phys. Rev. Lett.

71 (1993): 3043|3046

[M95a] McLachlan R. I. "On the Numerical Integration of Ordinary Differential Equations by

Symmetric Composition Methods" SIAM J. Sci. Comp. 16 (1995): 151|168

[M95b] McLachlan R. I. "Composition Methods in the Presence of Small Parameters" BIT 35

(1995): 258|268

[M01] McLachlan R. I. "Families of High-Order Composition Methods" Numerical Algorithms 31

(2002): 233|246

[MA92] McLachlan R. I. and P. Atela. "The Accuracy of Symplectic Integrators" Nonlinearity 5

(1992): 541|562

[MQ02] McLachlan R. I. and G. R. W. Quispel. "Splitting Methods" Acta Numerica 11 (2002):

341|434

[MG80] Mitchell A. and D. Griffiths. The Finite Difference Method in Partial Differential

Equations. John Wiley and Sons (1980)

Advanced Numerical Differential Equation Solving in Mathematica 363

[M65a] Møller O. "Quasi Double-Precision in Floating Point Addition" BIT 5 (1965): 37|50

[M65b] Møller O. "Note on Quasi Double-Precision" BIT 5 (1965): 251|255

[M97] Murua A. "On Order Conditions for Partitioned Symplectic Methods" SIAM J. Numer. Anal.

34, no. 6 (1997): 2204|2211

[MS99] Murua A. and J. M. Sanz-Serna. "Order Conditions for Numerical Integrators Obtained

by Composing Simpler Integrators" Phil. Trans. Royal Soc. A 357 (1999): 1079|1100

[M04] Moler C. B. Numerical Computing with MATLAB. SIAM (2004)

[Na79] Na T. Y. Computational Methods in Engineering: Boundary Value Problems. Academic

Press (1979)

[OS92] Okunbor D. I. and R. D. Skeel. "Explicit Canonical Methods for Hamiltonian Systems"

Math. Comp. 59 (1992): 439|455

[O95] Olsson H. "Practical Implementation of Runge|Kutta Methods for Initial Value Problems"

Licentiate thesis, Department of Computer Science, Lund University, 1995

[O98] Olsson H. "Runge|Kutta Solution of Initial Value Problems: Methods, Algorithms and

Implementation" PhD Thesis, Department of Computer Science, Lund University, 1998

[OS00] Olsson H. and G. Söderlind. "The Approximate Runge|Kutta Computational Process" BIT

40 (2 (2000): 351|373

[P83] Petzold L. R. "Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of

Ordinary Differential Equations" SIAM J. Sci. Stat. Comput. 4 (1983): 136|148

[QSS00] Quarteroni A., R. Sacco, and F. Saleri. Numerical Mathematics. Springer-Verlag (2000)

[QV94] Quarteroni A. and A. Valli. Numerical Approximation of Partial Differential Equations.

Springer-Verlag (1994)

[QT90] Quinn T. and S. Tremaine. "Roundoff Error in Long-Term Planetary Orbit Integrations"

Astron. J. 99, no. 3 (1990): 1016|1023

[R93] Reich S. "Numerical Integration of the Generalized Euler Equations" Tech. Rep. 93|20,

Dept. Comput. Sci. Univ. of British Columbia (1993)

[R99] Reich S. "Backward Error Analysis for Numerical Integrators" SIAM J. Num. Anal. 36

(1999): 1549|1570

364 Advanced Numerical Differential Equation Solving in Mathematica

[R98] Rubinstein B. "Numerical Solution of Linear Boundary Value Problems" Mathematica

MathSource package, http://library.wolfram.com/database/MathSource/2127/

[RM57] Richtmeyer R. and K. Morton. Difference Methods for Initial Value Problems. Krieger

Publishing Company (1994) (original edition 1957)

[R87] Robertson B. C. "Detecting Stiffness with Explicit Runge|Kutta Formulas" Report 193/87,

Dept. Comp. Sci. University of Toronto (1987)

[S84b] Saad Y. "Chebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue

Problems" Math. Comp. 42, (1984): 567|588

[SC94] Sanz-Serna J. M. and M. P. Calvo. Numerical Hamiltonian Problems: Applied

Mathematics and Mathematical Computation, no. 7. Chapman and Hall (1994)

[S91] Schiesser W. The Numerical Method of Lines. Academic Press (1991)

[S77] Shampine L. F." Stiffness and Non-Stiff Differential Equation Solvers II: Detecting

Stiffness with Runge-Kutta Methods" ACM Trans. Math. Soft. 3 1 (1977): 44|53

[S83] Shampine L. F. "Type-Insensitive ODE Codes Based on Extrapolation Methods" SIAM J.

Sci. Stat. Comput. 4 1 (1984): 635|644

[S84a] Shampine L. F. "Stiffness and the Automatic Selection of ODE Code" J. Comp. Phys. 54

1 (1984): 74|86

[S86] Shampine L. F. "Conservation Laws and the Numerical Solution of ODEs" Comp. Maths.

Appl. 12B (1986): 1287|1296

[S87] Shampine L. F. "Control of Step Size and Order in Extrapolation Codes" J. Comp. Appl.

Math. 18 (1987): 3|16

[S91] Shampine L. F. "Diagnosing Stiffness for Explicit Runge-Kutta Methods" SIAM J. Sci. Stat.

Comput. 12 2 (1991): 260|272

[S94] Shampine L. F. Numerical Solution of Ordinary Differential Equations. Chapman and Hall

(1994)

[SB83] Shampine L. F. and L. S. Baca. "Smoothing the Extrapolated Midpoint Rule" Numer.

Math. 41 (1983): 165|175

[SG75] Shampine L. F. and M. Gordon. Computer Solutions of Ordinary Differential Equations.

W. H. Freeman (1975)

Advanced Numerical Differential Equation Solving in Mathematica 365

[SR97] Shampine L. F. and M. W Reichelt. Solving ODEs with MATLAB. SIAM J. Sci. Comp.

18-1 (1997): 1|22

[ST00] Shampine L. F. and S. Thompson. "Solving Delay Differential Equations with dde23"

Available electronically from http://www.runet.edu/~thompson/webddes/tutorial.pdf

[ST01] Shampine L. F. and S. Thompson. "Solving DDEs in MATLAB" Appl. Numer. Math. 37

(2001): 441|458

[SGT03] Shampine L. F., I. Gladwell, and S. Thompson. Solving ODEs with MATLAB. Cambridge

University Press (2003)

[SBB83] Shampine L. F., L. S. Baca, and H. J. Bauer. "Output in Extrapolation Codes" Comp.

and Maths. with Appl. 9 (1983): 245|255

[SS03] Sofroniou M. and G. Spaletta. "Increment Formulations for Rounding Error Reduction in

the Numerical Solution of Structured Differential Systems" Future Generation Computer

Systems 19, no. 3 (2003): 375|383

[SS04] Sofroniou M. and G. Spaletta. "Construction of Explicit Runge|Kutta Pairs with Stiffness

Detection" Mathematical and Computer Modelling, special issue on The Numerical Analysis of

Ordinary Differential Equations, 40, no. 11|12 (2004): 1157|1169

[SS05] Sofroniou M. and G. Spaletta. "Derivation of Symmetric Composition Constants for

Symmetric Integrators" Optimization Methods and Software 20, no. 4|5 (2005): 597|613

[SS06] Sofroniou M. and G. Spaletta. "Hybrid Solvers for Splitting and Composition Methods" J.

Comp. Appl. Math., special issue from the International Workshop on the Technological Aspects

of Mathematics, 185, no. 2 (2006): 278|291

[S84c] Sottas G. "Dynamic Adaptive Selection Between Explicit and Implicit Methods When

Solving ODEs" Report, Sect. de math, University of Genève, 1984

[S07] Sprott J.C. "A Simple Chaotic Delay Differential Equation", Phys. Lett. A. 366 (2007):

397-402

[S68] Strang G. "On the Construction of Difference Schemes" SIAM J. Num. Anal. 5 (1968):

506|517

[S70] Stetter H. J. "Symmetric Two-Step Algorithms for Ordinary Differential Equations"

Computing 5 (1970): 267|280

366 Advanced Numerical Differential Equation Solving in Mathematica

[S01] Stewart G. W. "A Krylov-Schur Algorithm for Large Eigenproblems" SIAM J. Matrix Anal.

Appl. 23 3, (2001): 601-614

[SJ81] Stewart W. J. and A. Jennings. "LOPSI: A Simultaneous Iteration Method for Real

Matrices" ACM Trans. Math. Soft. 7 2, (1981): 184|198

[S90] Suzuki M. "Fractal Decomposition of Exponential Operators with Applications to Many-

Body Theories and Monte Carlo Simulations" Phys. Lett. A 146 (1990): 319|323

[SLEPc05] Hernandez V., J. E. Roman and V. Vidal"SRRIT: a Fortran Subroutine to Calculate

the Dominant Invariant Subspace of a Nonsymmetric Matrix" ACM Trans. Math. Soft. 31 3,

(2005): 351|362

[T59] Trotter H. F. "On the Product of Semi-Group Operators" Proc. Am. Math. Soc. 10 (1959):

545|551

[TZ08] Tang, Z. H. and Zou, X. "Global attractivity in a predator-prey System with Pure

Delays", Proc. Edinburgh Math. Soc. 51 (2008): 495-508

[V78] Verner J. H. "Explicit Runge|Kutta Methods with Estimates of The Local Truncation Error"

SIAM J. Num. Anal. 15 (1978): 772|790.

[V79] Vitasek E. "A-Stability and Numerical Solution of Evolution Problems" IAC 'Mauro Picone',

Series III 186 (1979): 42

[W76] Whitham G. B. Linear and Nonlinear Waves. John Wiley and Sons (1976)

[WH91] Wisdom J. and M. Holman. "Symplectic Maps for the N-Body Problem" Astron. J. 102

(1991): 1528|1538

[Y90] Yoshida H. "Construction of High Order Symplectic Integrators" Phys. Lett. A. 150

(1990): 262|268

[Z98] Zanna A. "On the Numerical Solution of Isospectral Flows" Ph.D. Thesis, Cambridge

University, 1998

[Z72] Zeeman E. C. "Differential Equations for the Heartbeat and Nerve Impulse". In Towards a

Theoretical Biology (C. H. Waddington, ed.). Edinburgh Univeristy Press, 4 (1972): 8|67

[Z06] Zennaro M. "The numerical solution of delay differential equations", Lecture notes,

Dobbiaco Summer Chool on Delay Differential Equations and Applications (2006)

Advanced Numerical Differential Equation Solving in Mathematica 367

