
Wolfram  Mathematica ® Tutorial Collection

MATHEMATICS AND ALGORITHMS



For use with Wolfram Mathematica® 7.0 and later. 

For the latest updates and corrections to this manual: 
visit reference.wolfram.com 

For information on additional copies of this documentation: 
visit the Customer Service website at www.wolfram.com/services/customerservice 
or email Customer Service at info@wolfram.com 

Comments on this manual are welcomed at: 
comments@wolfram.com 
 

Printed in the United States of America. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc. 

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright 
holder. 

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described 
in this document, including without limitation such aspects of the system as its code, structure, sequence, 
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless 
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement 
of the copyright. 

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express, 

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation, 

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of 

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet 

your requirements or that the operation of the Software will be uninterrupted or error free. As such, 

Wolfram does not recommend the use of the software described in this document for applications in 

which errors or omissions could threaten life, injury or significant loss. 

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM, 
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of 
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple 
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not 
associated with Mathematica Policy Research, Inc. 



Contents

Numbers
Types of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Numeric Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Digits in Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exact and Approximate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Numerical Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Arbitrary-Precision Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Arbitrary-Precision Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Machine-Precision Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Indeterminate and Infinite Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Controlling Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Algebraic Calculations
Symbolic Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Values for Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Transforming Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Simplifying Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Putting Expressions into Different Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Simplifying with Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Picking Out Pieces of Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Controlling the Display of Large Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Using Symbols to Tag Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Algebraic Manipulation
Structural Operations on Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Finding the Structure of a Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Structural Operations on Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Algebraic Operations on Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Polynomials Modulo Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Polynomials over Algebraic Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Trigonometric Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Expressions Involving Complex Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Logical and Piecewise Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Using Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Manipulating Equations and Inequalities
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

The Representation of Equations and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Equations in One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Counting and Isolating Polynomial Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Simultaneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Generic and Non-Generic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Eliminating Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Relational and Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Solving Logical Combinations of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Equations and Inequalities over Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
The Representation of Solution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Minimization and Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Linear Algebra
Constructing Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Getting and Setting Pieces of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Scalars, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Operations on Scalars, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Multiplying Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Basic Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Advanced Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Sparse Arrays: Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Series, Limits and Residues
Sums and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Making Power Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
The Representation of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Operations on Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



Operations on Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Composition and Inversion of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Converting Power Series to Normal Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Solving Equations Involving Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Summation of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Solving Recurrence Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Finding Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Padé Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Calculus
Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Total Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Derivatives of Unknown Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
The Representation of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Defining Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Integrals That Can and Cannot Be Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Integrals over Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Manipulating Integrals in Symbolic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Integral Transforms and Related Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Generalized Functions and Related Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Numerical Operations on Functions
Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Numerical Mathematics in Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
The Uncertainties of Numerical Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Introduction to Numerical Sums, Products, and Integrals . . . . . . . . . . . . . . . . . . . . . . . 264
Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Numerical Evaluation of Sums and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Numerical Equation Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Numerical Solution of Polynomial Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Numerical Root Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Introduction to Numerical Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Numerical Solution of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Controlling the Precision of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Monitoring and Selecting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Functions with Sensitive Dependence on Their Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Numerical Operations on Data



Numerical Operations on Data
Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Partitioning Data into Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Using Nearest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Manipulating Numerical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Statistical Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Approximate Functions and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Discrete Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Convolutions and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Mathematical Functions
Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Generic and Nongeneric Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Numerical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Piecewise Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Pseudorandom Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Integer and Number Theoretic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Combinatorial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Elementary Transcendental Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Functions That Do Not Have Unique Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Mathematical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Elliptic Integrals and Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Mathieu and Related Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Working with Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458



Numbers

Types of Numbers

Four underlying types of numbers are built into Mathematica. 

Integer arbitrary-length exact integer

Rational integer/integer in lowest terms

Real approximate real number, with any specified precision

Complex complex number of the form number + number I

Intrinsic types of numbers in Mathematica.

Rational numbers always consist of a ratio of two integers, reduced to lowest terms. 

In[1]:= 12344 ê 2222

Out[1]= 
6172

1111

Approximate real numbers are distinguished by the presence of an explicit decimal point. 

In[2]:= 5456.

Out[2]= 5456.

An approximate real number can have any number of digits. 

In[3]:= 4.54543523454543523453452345234543

Out[3]= 4.5454352345454352345345234523454

Complex numbers can have integer or rational components. 

In[4]:= 4 + 7 ê 8 I

Out[4]= 4 +
7 Â

8

They can also have approximate real number components. 

In[5]:= 4 + 5.6 I

Out[5]= 4 + 5.6 Â



123 an exact integer

123. an approximate real number

123.0000000000000 an approximate real number with a certain precision

123.+0. I a complex number with approximate real number 
components

Several versions of the number 123. 

You  can  distinguish  different  types  of  numbers  in  Mathematica  by  looking  at  their  heads.

(Although numbers in Mathematica have heads like other expressions, they do not have explicit

elements which you can extract.)

The object 123 is taken to be an exact integer, with head Integer. 

In[6]:= Head@123D

Out[6]= Integer

The presence of an explicit decimal point makes Mathematica treat 123. as an approximate 
real number, with head Real. 

In[7]:= Head@123.D

Out[7]= Real

NumberQ@xD test whether x is any kind of number

IntegerQ@xD test whether x is an integer

EvenQ@xD test whether x is even

OddQ@xD test whether x is odd

PrimeQ@xD test whether x is a prime integer

Head@xD===type test the type of a number

Tests for different types of numbers.

NumberQ@xD tests for any kind of number. 

In[8]:= NumberQ@5.6D

Out[8]= True

5. is treated as a Real, so IntegerQ gives False. 

In[9]:= IntegerQ@5.D

Out[9]= False

If  you use complex numbers extensively,  there is  one subtlety you should be aware of.  When

you enter  a  number  like  123.,  Mathematica  treats  it  as  an  approximate  real  number,  but  as-

sumes that its imaginary part is  exactly zero. Sometimes you may want to enter approximate

complex numbers with imaginary parts that are zero, but only to a certain precision.

2     Mathematics and Algorithms



If  you use complex numbers extensively,  there is  one subtlety you should be aware of.  When

you enter  a  number  like  123.,  Mathematica  treats  it  as  an  approximate  real  number,  but  as-

sumes that its imaginary part is  exactly zero. Sometimes you may want to enter approximate

complex numbers with imaginary parts that are zero, but only to a certain precision.

When the imaginary part is the exact integer 0, Mathematica simplifies complex numbers to 
real ones. 

In[10]:= Head@123 + 0 ID

Out[10]= Integer

Here the imaginary part is only zero to a certain precision, so Mathematica retains the complex 
number form. 

In[11]:= Head@123. + 0. ID

Out[11]= Complex

The distinction between complex numbers whose imaginary parts are exactly zero, or are only

zero  to  a  certain  precision,  may  seem  like  a  pedantic  one.  However,  when  we  discuss,  for

example, the interpretation of powers and roots of complex numbers in "Functions That Do Not

Have Unique Values", the distinction will become significant. 

One  way  to  find  out  the  type  of  a  number  in  Mathematica  is  just  to  pick  out  its  head  using

Head@exprD.  For  many  purposes,  however,  it  is  better  to  use  functions  like  IntegerQ  which

explicitly test for particular types. Functions like this are set up to return True if their argument

is manifestly of the required type, and to return False  otherwise. As a result, IntegerQ@xD will

give False, unless x has an explicit integer value.

Complex Numbers

You can enter complex numbers in Mathematica just by including the constant I, equal to -1 .

Make sure that you type a capital I. 

If  you are using notebooks, you can also enter I  as Â  by typing Esc iiEsc (see "Mathematical

Notation in Notebooks: Numerical Calculations"). The form Â is normally what is used in output.

Note that an ordinary i means a variable named i, not -1 . 

Mathematics and Algorithms     3



This gives the imaginary number result 2 i. 
In[1]:= Sqrt@-4D

Out[1]= 2 Â

This gives the ratio of two complex numbers. 

In[2]:= H4 + 3 IL ê H2 - IL

Out[2]= 1 + 2 Â

Here is the numerical value of a complex exponential. 

In[3]:= Exp@2 + 9 ID êê N

Out[3]= -6.73239 + 3.04517 Â

x+I y the complex number x + i y

Re@zD real part

Im@zD imaginary part

Conjugate@zD complex conjugate z* or z

Abs@zD absolute value z

Arg@zD the argument j in z ei j

Complex number operations. 

Numeric Quantities

NumberQ@exprD test whether expr is explicitly a number

NumericQ@exprD test whether expr has a numerical value

Testing for numeric quantities. 

Pi is a symbol, so Pi + 3 is not explicitly a number. 

In[1]:= NumberQ@Pi + 3D

Out[1]= False

It does however have a numerical value. 

In[2]:= NumericQ@Pi + 3D

Out[2]= True

This finds the explicit numerical value of Pi + 3. 

4     Mathematics and Algorithms



This finds the explicit numerical value of Pi + 3. 

In[3]:= N@Pi + 3D

Out[3]= 6.14159

Mathematica knows that constants such as Pi  are numeric quantities. It also knows that stan-

dard mathematical functions such as Log and Sin have numerical values when their arguments

are numerical.

Log@2 + xD contains x, and is therefore not a numeric quantity. 

In[4]:= 8NumericQ@Log@2DD, NumericQ@Log@2 + xDD<

Out[4]= 8True, False<

Many functions implicitly use the numerical values of numeric quantities. 

In[5]:= Min@Exp@2D, Log@2D, Sqrt@2DD

Out[5]= Log@2D

In  general,  Mathematica  assumes  that  any  function  which  has  the  attribute  NumericFunction

will  yield numerical values when its arguments are numerical. All  standard mathematical func-

tions in Mathematica already have this attribute. But when you define your own functions, you

can  explicitly  set  the  attribute  to  tell  Mathematica  to  assume  that  these  functions  will  have

numerical values when their arguments are numerical.

Digits in Numbers

IntegerDigits@nD a list of the decimal digits in the integer n

IntegerDigits@n,bD the digits of n in base b

IntegerDigits@n,b,lenD the list of digits padded on the left with zeros to give total 
length len

IntegerLength@nD the number of decimal digits in n

IntegerLength@n,bD the number of base b digits in n

IntegerExponent@n,bD the number of zeros at the end of n in base b

RealDigits@xD a list of the decimal digits in the approximate real number 
x, together with the number of digits to the left of the 
decimal point

Mathematics and Algorithms     5



RealDigits@x,bD the digits of x in base b

RealDigits@x,b,lenD the first len digits of x in base b

RealDigits@x,b,len,nD the first len digits starting with the coefficient of bn

FromDigits@listD construct a number from its decimal digit sequence

FromDigits@list,bD construct a number from its digit sequence in base b

FromDigits@"string"D construct an integer from a string of digits

FromDigits@"string",bD construct an integer from a string of digits in base b

IntegerString@nD a string of the decimal digits in the integer n

IntegerString@n,bD a string of the digits of n in base b

Converting between numbers and lists or strings of digits. 

Here is the list of base 16 digits for an integer. 

In[1]:= IntegerDigits@1234135634, 16D

Out[1]= 84, 9, 8, 15, 6, 10, 5, 2<

This gives a list of digits, together with the number of digits that appear to the left of the 
decimal point. 

In[2]:= RealDigits@123.4567890123456D

Out[2]= 881, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6<, 3<

Here is the binary digit sequence for 56, padded with zeros so that it is of total length 8. 

In[3]:= IntegerDigits@56, 2, 8D

Out[3]= 80, 0, 1, 1, 1, 0, 0, 0<

This reconstructs the original number from its binary digit sequence. 

In[4]:= FromDigits@%, 2D

Out[4]= 56

Here is 56 as a binary string. 

In[5]:= IntegerString@56, 2D

Out[5]= 111000

This reconstructs the original number again. 

In[6]:= FromDigits@%, 2D

Out[6]= 56

6     Mathematics and Algorithms



b^^nnnn a number in base b

BaseForm@x,bD print with x in base b

IntegerString@n,bD a string representing n in base b

Numbers in other bases. 

When the base is larger than 10, extra digits are represented by letters a|z. 

The number 100 1012 in base 2 is 37 in base 10. 

In[7]:= 2^^100101

Out[7]= 37

This prints 37 in base 2. 

In[8]:= BaseForm@37, 2D

Out[8]//BaseForm= 1001012

This gives the base-2 representation as a string.

In[9]:= IntegerString@37, 2D

Out[9]= 100101

Here is a number in base 16. 

In[10]:= 16^^ffffaa00

Out[10]= 4294945280

You can do computations with numbers in base 16. Here the result is given in base 10. 

In[11]:= 16^^fffaa2 + 16^^ff - 1

Out[11]= 16776096

This gives the result in base 16. 

In[12]:= BaseForm@%, 16D

Out[12]//BaseForm= fffba016

You can give approximate real numbers, as well as integers, in other bases. 

In[13]:= 2^^101.100101

Out[13]= 5.57813

Here are the first few digits of 2  in octal. 

Mathematics and Algorithms     7



Here are the first few digits of 2  in octal. 
In[14]:= BaseForm@N@Sqrt@2D, 30D, 8D

Out[14]//BaseForm= 1.3240474631771674622042627661154678

This gives an explicit list of the first 15 octal digits. 

In[15]:= RealDigits@Sqrt@2D, 8, 15D

Out[15]= 881, 3, 2, 4, 0, 4, 7, 4, 6, 3, 1, 7, 7, 1, 6<, 1<

This gives 15 octal digits starting with the coefficient of 8-10. 
In[16]:= RealDigits@Sqrt@2D, 8, 15, -10D

Out[16]= 881, 7, 7, 1, 6, 7, 4, 6, 2, 2, 0, 4, 2, 6, 2<, -9<

"Output Formats for Numbers" describes how to print numbers in various formats. If you want

to  create  your  own  formats,  you  will  often  need  to  use  MantissaExponent  to  separate  the

pieces of real numbers. 

MantissaExponent@xD give a list containing the mantissa and exponent of x

MantissaExponent@x,bD give the mantissa and exponent in base b

Separating the mantissa and exponent of numbers.

This gives a list in which the mantissa and exponent of the number are separated. 

In[17]:= MantissaExponent@3.45 µ 10^125D

Out[17]= 80.345, 126<

Exact and Approximate Results

A  standard  electronic  calculator  does  all  your  calculations  to  a  particular  accuracy,  say  10

decimal digits. With Mathematica, however, you can often get exact results.

Mathematica gives an exact result for 2100, even though it has 31 decimal digits. 

In[1]:= 2^100

Out[1]= 1267650600228229401496703205376

You  can  tell  Mathematica  to  give  you  an  approximate  numerical  result,  just  as  a  calculator

would, by ending your input with êê N. The N stands for "numerical". It must be a capital letter.

"Special Ways to Input Expressions" will explain what the êê means. 

8     Mathematics and Algorithms



You  can  tell  Mathematica  to  give  you  an  approximate  numerical  result,  just  as  a  calculator

would, by ending your input with êê N. The N stands for "numerical". It must be a capital letter.

"Special Ways to Input Expressions" will explain what the êê means. 

This gives an approximate numerical result. 

In[2]:= 2^100 êê N

Out[2]= 1.26765µ1030

Mathematica can give results in terms of rational numbers.

In[3]:= 1 ê 3 + 2 ê 7

Out[3]= 
13

21

êê N always gives the approximate numerical result. 

In[4]:= 1 ê 3 + 2 ê 7 êê N

Out[4]= 0.619048

exprêêN give an approximate numerical value for expr

Getting numerical approximations. 

When  you  type  in  an  integer  like  7,  Mathematica  assumes  that  it  is  exact.  If  you  type  in  a

number like 4.5, with an explicit decimal point, Mathematica assumes that it is accurate only to

a fixed number of decimal places. 

This is taken to be an exact rational number, and reduced to its lowest terms. 

In[5]:= 452 ê 62

Out[5]= 
226

31

Whenever you give a number with an explicit decimal point, Mathematica produces an approxi-
mate numerical result. 

In[6]:= 452.3 ê 62

Out[6]= 7.29516

Mathematics and Algorithms     9



Here again, the presence of the decimal point makes Mathematica give you an approximate 
numerical result. 

In[7]:= 452. ê 62

Out[7]= 7.29032

When any number in an arithmetic expression is given with an explicit decimal point, you get an 
approximate numerical result for the whole expression. 

In[8]:= 1. + 452 ê 62

Out[8]= 8.29032

Numerical Precision

As  discussed  in  "Exact  and  Approximate  Results",  Mathematica  can  handle  approximate  real

numbers with any number of digits. In general, the precision of an approximate real number is

the effective number of decimal digits in it that are treated as significant for computations. The

accuracy  is  the effective number of  these digits  that  appear  to  the right  of  the decimal  point.

Note that to achieve full consistency in the treatment of numbers, precision and accuracy often

have values that do not correspond to integer numbers of digits. 

Precision@xD the total number of significant decimal digits in x

Accuracy@xD the number of significant decimal digits to the right of the 
decimal point in x

Precision and accuracy of real numbers. 

This generates a number with 30-digit precision. 

In[1]:= x = N@Pi^10, 30D

Out[1]= 93648.0474760830209737166901849

This gives the precision of the number. 

In[2]:= Precision@xD

Out[2]= 30.

The accuracy is lower since only some of the digits are to the right of the decimal point. 

In[3]:= Accuracy@xD

Out[3]= 25.0285

This number has all its digits to the right of the decimal point. 

10     Mathematics and Algorithms



This number has all its digits to the right of the decimal point. 

In[4]:= x ê 10^6

Out[4]= 0.0936480474760830209737166901849

Now the accuracy is larger than the precision. 

In[5]:= 8Precision@%D, Accuracy@%D<

Out[5]= 830., 31.0285<

An  approximate  real  number  always  has  some  uncertainty  in  its  value,  associated  with  digits

beyond those known. One can think of precision as providing a measure of the relative size of

this uncertainty. Accuracy gives a measure of the absolute size of the uncertainty. 

Mathematica is set up so that if a number x has uncertainty d, then its true value can lie any-

where in an interval of size d from x - d ê2 to x + d ê2. An approximate number with accuracy a is

defined  to  have  uncertainty  10-a,  while  a  nonzero  approximate  number  with  precision  p  is

defined to have uncertainty x 10-p. 

Precision@xD -log10Hd ê x L

Accuracy@xD -log10HdL

Definitions of precision and accuracy in terms of uncertainty. 

Adding or subtracting a quantity smaller than the uncertainty has no visible effect. 

In[6]:= 8x - 10^-26, x, x + 10^-26<

Out[6]= 893648.0474760830209737166901849,
93648.0474760830209737166901849, 93648.0474760830209737166901849<

N@expr,nD evaluate expr to n-digit precision using arbitrary-precision 
numbers

N@exprD evaluate expr numerically using machine-precision numbers

Numerical evaluation with arbitrary-precision and machine-precision numbers. 

Mathematica  distinguishes  two  kinds  of  approximate  real  numbers:  arbitrary-precision  num-

bers,  and  machine-precision  numbers  or  machine  numbers.  Arbitrary-precision  numbers  can

contain any number of digits, and maintain information on their precision. Machine numbers, on

the other hand, always contain the same number of digits, and maintain no information on their

precision. 

Here is a machine-number approximation to p. 

Mathematics and Algorithms     11



Here is a machine-number approximation to p. 

In[7]:= N@PiD

Out[7]= 3.14159

These are both arbitrary-precision numbers. 

In[8]:= 8N@Pi, 4D, N@Pi, 20D<

Out[8]= 83.142, 3.1415926535897932385<

As discussed in more detail below, machine numbers work by making direct use of the numeri-

cal  capabilities  of  your  underlying  computer  system.  As  a  result,  computations  with  them can

often be done more quickly. They are however much less flexible than arbitrary-precision num-

bers, and difficult numerical analysis can be needed to determine whether results obtained with

them are correct. 

MachinePrecision the precision specification used to indicate machine 
numbers

$MachinePrecision the effective precision for machine numbers on your 
computer system

MachineNumberQ@xD test whether x is a machine number

Machine numbers. 

This returns the symbol MachinePrecision to indicate a machine number. 

In[9]:= Precision@N@PiDD

Out[9]= MachinePrecision

On this computer, machine numbers have slightly less than 16 decimal digits. 

In[10]:= $MachinePrecision

Out[10]= 15.9546

When you enter an approximate real number, Mathematica has to decide whether to treat it as

a machine number or an arbitrary-precision number. Unless you specify otherwise, if  you give

less  than $MachinePrecision  digits,  Mathematica  will  treat  the number as machine precision,

and if you give more digits, it will treat the number as arbitrary precision.

12     Mathematics and Algorithms



123.4 a machine-precision number 

123.45678901234567890 an arbitrary-precision number on some computer systems 

123.45678901234567890` a machine-precision number on all computer systems 

123.456`200 an arbitrary-precision number with 200 digits of precision 

123.456``200 an arbitrary-precision number with 200 digits of accuracy 

1.234*^6 a machine-precision number in scientific notation 
(1.234µ106) 

1.234`200*^6 a number in scientific notation with 200 digits of precision 

2^^101.111`200 a number in base 2 with 200 binary digits of precision 

2^^101.111`200*^6 a number in base-2 scientific notation (101.1112µ26) 

Input forms for numbers. 

When Mathematica  prints  out  numbers,  it  usually  tries  to  give  them in  a  form that  will  be  as

easy as possible to read. But if you want to take numbers that are printed out by Mathematica,

and then later use them as input to Mathematica,  you need to make sure that no information

gets lost.

In standard output form, Mathematica prints a number like this to six digits. 

In[11]:= N@PiD

Out[11]= 3.14159

In input form, Mathematica prints all the digits it knows. 

In[12]:= InputForm@%D

Out[12]//InputForm= 3.141592653589793

Here is an arbitrary-precision number in standard output form. 

In[13]:= N@Pi, 20D

Out[13]= 3.1415926535897932385

In input form, Mathematica explicitly indicates the precision of the number, and gives extra 
digits to make sure the number can be reconstructed correctly. 

In[14]:= InputForm@%D

Out[14]//InputForm= 3.1415926535897932384626433832795028842`20.

Mathematics and Algorithms     13



This makes Mathematica not explicitly indicate precision. 

In[15]:= InputForm@%, NumberMarks -> FalseD

Out[15]//InputForm= 3.14159265358979323846

InputFormAexpr,NumberMarks->TrueE

use ` marks in all approximate numbers

InputFormAexpr,NumberMarks->AutomaticE

use ` only in arbitrary-precision numbers

InputFormAexpr,NumberMarks->FalseE

never use ` marks

Controlling printing of numbers. 

The  default  setting  for  the  NumberMarks  option,  both  in  InputForm  and  in  functions  such  as

ToString  and OpenWrite  is  given by the value of  $NumberMarks.  By resetting $NumberMarks,

therefore, you can globally change the way that numbers are printed in InputForm.

This makes Mathematica by default always include number marks in input form. 

In[16]:= $NumberMarks = True

Out[16]= True

Even a machine-precision number is now printed with an explicit number mark. 

In[17]:= InputForm@N@PiDD

Out[17]//InputForm= 3.141592653589793`

Even with no number marks, InputForm still uses * ^ for scientific notation. 

In[18]:= InputForm@N@Exp@600D, 20D, NumberMarks -> FalseD

Out[18]//InputForm= 3.7730203009299398234*^260

In  doing  numerical  computations,  it  is  inevitable  that  you  will  sometimes  end  up  with  results

that are less precise than you want. Particularly when you get numerical  results that are very

close to zero, you may well want to assume that the results should be exactly zero. The func-

tion Chop  allows you to replace approximate real  numbers that are close to zero by the exact

integer 0. 

14     Mathematics and Algorithms



Chop@exprD replace all approximate real numbers in expr with magni -

tude less than 10-10 by 0

Chop@expr,dxD replace numbers with magnitude less than dx by 0

Removing numbers close to zero. 

This computation gives a small imaginary part. 

In[19]:= Exp@N@2 Pi IDD

Out[19]= 1. - 2.44921µ10-16 Â

You can get rid of the imaginary part using Chop. 

In[20]:= Chop@%D

Out[20]= 1.

Arbitrary-Precision Calculations

When  you  use  êê N  to  get  a  numerical  result,  Mathematica  does  what  a  standard  calculator

would do: it gives you a result to a fixed number of significant figures. You can also tell Mathe-

matica exactly how many significant figures to keep in a particular calculation. This allows you

to get numerical results in Mathematica to any degree of precision. 

exprêêN   or  N@exprD approximate numerical value of expr

N@expr,nD numerical value of expr calculated with n-digit precision

Numerical evaluation functions. 

This gives the numerical value of p to a fixed number of significant digits. Typing N@PiD is 
exactly equivalent to Pi êê N. 

In[1]:= N@PiD

Out[1]= 3.14159

This gives p to 40 digits. 

In[2]:= N@Pi, 40D

Out[2]= 3.141592653589793238462643383279502884197

Mathematics and Algorithms     15



Here is 7  to 30 digits. 
In[3]:= N@Sqrt@7D, 30D

Out[3]= 2.64575131106459059050161575364

Doing  any  kind  of  numerical  calculation  can  introduce  small  roundoff  errors  into  your  results.

When  you  increase  the  numerical  precision,  these  errors  typically  become  correspondingly

smaller.  Making  sure  that  you  get  the  same answer  when you increase  numerical  precision  is

often a good way to check your results. 

The quantity ep 163  turns out to be very close to an integer. To check that the result is not, in 
fact, an integer, you have to use sufficient numerical precision. 

In[4]:= N@Exp@Pi Sqrt@163DD, 40D

Out[4]= 2.625374126407687439999999999992500725972µ1017

Arbitrary-Precision Numbers

When you do calculations with arbitrary-precision numbers,  Mathematica  keeps track of  preci-

sion  at  all  points.  In  general,  Mathematica  tries  to  give  you  results  which  have  the  highest

possible precision, given the precision of the input you provided. 

Mathematica  treats arbitrary-precision numbers as representing the values of quantities where

a  certain  number  of  digits  are  known,  and  the  rest  are  unknown.  In  general,  an  arbitrary-

precision number x is taken to have Precision@xD digits which are known exactly, followed by

an infinite number of digits which are completely unknown. 

This computes p to 10-digit precision. 

In[1]:= N@Pi, 10D

Out[1]= 3.141592654

After a certain point, all digits are indeterminate. 

In[2]:= RealDigits@%, 10, 13D

Out[2]= 883, 1, 4, 1, 5, 9, 2, 6, 5, 3, Indeterminate, Indeterminate, Indeterminate<, 1<

When you  do  a  computation,  Mathematica  keeps  track  of  which  digits  in  your  result  could  be

affected by unknown digits in your input. It sets the precision of your result so that no affected  

digits  are  ever  included.  This  procedure  ensures  that  all  digits  returned  by  Mathematica  are

correct, whatever the values of the unknown digits may be. 

16     Mathematics and Algorithms



digits  are  ever  included.  This  procedure  ensures  that  all  digits  returned  by  Mathematica  are

correct, whatever the values of the unknown digits may be. 

This evaluates GH1 ê7L to 30-digit precision. 

In[3]:= N@Gamma@1 ê 7D, 30D

Out[3]= 6.54806294024782443771409334943

The result has a precision of exactly 30 digits. 

In[4]:= Precision@%D

Out[4]= 30.

If you give input only to a few digits of precision, Mathematica cannot give you such high-
precision output. 

In[5]:= N@Gamma@0.142D, 30D

Out[5]= 6.58965

If you want Mathematica to assume that the argument is exactly 142 ê 1000, then you have to 
say so explicitly. 

In[6]:= N@Gamma@142 ê 1000D, 30D

Out[6]= 6.58964729492039788328481917496

In many computations, the precision of the results you get progressively degrades as a result of

"roundoff  error".  A  typical  case  of  this  occurs  if  you  subtract  two  numbers  that  are  close

together. The result you get depends on high-order digits in each number, and typically has far

fewer digits of precision than either of the original numbers. 

Both input numbers have a precision of around 20 digits, but the result has much lower preci-
sion. 

In[7]:= 1.11111111111111111111 - 1.11111111111111111000

Out[7]= 1.1µ10-18

Adding extra digits in one number but not the other is not sufficient to allow extra digits to be 
found in the result. 

In[8]:= 1.11111111111111111111345 - 1.11111111111111111000

Out[8]= 1.1µ10-18

The precision of the output from a function can depend in a complicated way on the precision of

the  input.  Functions  that  vary rapidly typically give less precise output, since the variation of 

the output associated with uncertainties in the input is larger. Functions that are close to con-

stants can actually give output that is more precise than their input.

Mathematics and Algorithms     17



the output associated with uncertainties in the input is larger. Functions that are close to con-

stants can actually give output that is more precise than their input.

Here is a case where the output is less precise than the input. 

In[9]:= Sin@111 111111.0000000000000000D

Out[9]= -0.2975351033349432

Here is e-40 evaluated to 20-digit precision. 

In[10]:= N@Exp@-40D, 20D

Out[10]= 4.2483542552915889953µ10-18

The result you get by adding the exact integer 1 has a higher precision. 

In[11]:= 1 + %

Out[11]= 1.0000000000000000042483542552915889953

It  is  worth  realizing  that  different  ways  of  doing  the  same  calculation  can  end  up  giving  you

results with very different precisions. Typically, if  you once lose precision in a calculation, it  is

essentially  impossible  to  regain  it;  in  losing  precision,  you  are  effectively  losing  information

about your result. 

Here is a 40-digit number that is close to 1. 

In[12]:= x = N@1 - 10^-30, 40D

Out[12]= 0.9999999999999999999999999999990000000000

Adding 1 to it gives another 40-digit number. 

In[13]:= 1 + x

Out[13]= 1.999999999999999999999999999999000000000

The original precision has been maintained. 

In[14]:= Precision@%D

Out[14]= 40.301

This way of computing 1 + x loses precision. 

In[15]:= Hx^2 - 1L ê Hx - 1L

Out[15]= 2.000000000

The result obtained in this way has quite low precision. 

18     Mathematics and Algorithms



The result obtained in this way has quite low precision. 

In[16]:= Precision@%D

Out[16]= 9.69897

The  fact  that  different  ways  of  doing  the  same  calculation  can  give  you  different  numerical

answers  means,  among  other  things,  that  comparisons  between  approximate  real  numbers

must  be  treated  with  care.  In  testing  whether  two  real  numbers  are  "equal",  Mathematica

effectively  finds  their  difference,  and  tests  whether  the  result  is  "consistent  with  zero"  to  the

precision given.

These numbers are equal to the precision given. 

In[17]:= 3 == 3.000000000000000000

Out[17]= True

The internal algorithms that Mathematica uses to evaluate mathematical functions are set up to

maintain as much precision as possible. In most cases, built-in Mathematica functions will give

you results that have as much precision as can be justified on the basis of your input. In some

cases,  however,  it  is  simply  impractical  to  do  this,  and Mathematica  will  give  you results  that

have lower precision.  If  you give higher-precision input,  Mathematica  will  use higher precision

in its internal calculations, and you will usually be able to get a higher-precision result. 

N@exprD evaluate expr numerically to machine precision

N@expr,nD evaluate expr numerically trying to get a result with n digits 
of precision

Numerical evaluation. 

If you start with an expression that contains only integers and other exact numeric quantities,

then N@expr, nD will in almost all cases succeed in giving you a result to n digits of precision. You

should realize, however, that to do this Mathematica sometimes has to perform internal interme-

diate calculations to much higher precision.

The global variable $MaxExtraPrecision specifies how many additional digits should be allowed

in such intermediate calculations. 

variable default value
$MaxExtraPrecision 50 maximum additional precision to use

Controlling precision in intermediate calculations. 

Mathematica automatically increases the precision that it uses internally in order to get the 
correct answer here. 

Mathematics and Algorithms     19



Mathematica automatically increases the precision that it uses internally in order to get the 
correct answer here. 

In[18]:= N@Sin@10^40D, 30D

Out[18]= -0.569633400953636327308034181574

Using the default setting $MaxExtraPrecision = 50, Mathematica cannot get the correct 
answer here. 

In[19]:= N@Sin@10^100D, 30D

N::meprec : Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating
Sin@100000000000000000000000000000000000000000000000000000000000000000000000Ö

00000000000000000000000000000D. à
Out[19]= 0.

This tells Mathematica that it can use more digits in its internal calculations. 

In[20]:= $MaxExtraPrecision = 200

Out[20]= 200

Now it gets the correct answer. 

In[21]:= N@Sin@10^100D, 30D

Out[21]= -0.372376123661276688262086695553

This resets $MaxExtraPrecision to its default value. 

In[22]:= $MaxExtraPrecision = 50

Out[22]= 50

Even  when  you  are  doing  computations  that  give  exact  results,  Mathematica  still  occasionally

uses  approximate  numbers  for  some  of  its  internal  calculations,  so  that  the  value  of

$MaxExtraPrecision can thus have an effect. 

Mathematica works this out using bounds from approximate numbers. 

In[23]:= Sin@Exp@100DD > 0

Out[23]= True

With the default value of $MaxExtraPrecision, Mathematica cannot work this out. 

In[24]:= Sin@Exp@200DD > 0

N::meprec : Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -SinA‰200E. à

Out[24]= SinA‰200E > 0

Temporarily resetting $MaxExtraPrecision allows Mathematica to get the result. 

20     Mathematics and Algorithms



Temporarily resetting $MaxExtraPrecision allows Mathematica to get the result. 

In[25]:= Block@8$MaxExtraPrecision = 100<, Sin@Exp@200DD > 0D

Out[25]= False

In doing calculations that degrade precision, it is possible to end up with numbers that have no

significant digits at all.  But even in such cases, Mathematica  still  maintains information on the

accuracy of the numbers. Given a number with no significant digits, but accuracy a, Mathemat-

ica  can  then  still  tell  that  the  actual  value  of  the  number  must  be  in  the  range

8-10-a, +10-a< ê 2. Mathematica by default prints such numbers in the form 0. µ 10e.

Here is a number with 20-digit precision. 

In[26]:= x = N@Exp@50D, 20D

Out[26]= 5.1847055285870724641µ1021

Here there are no significant digits left. 

In[27]:= Sin@xD ê x

Out[27]= 0.µ10-22

But Mathematica still keeps track of the accuracy of the result. 

In[28]:= Accuracy@%D

Out[28]= 21.7147

Adding the result to an exact 1 gives a number with quite high precision. 

In[29]:= 1 + %%

Out[29]= 1.000000000000000000000

One subtlety in characterizing numbers by their precision is that any number that is consistent

with zero must be treated as having zero precision. The reason for this is that such a number

has no digits that can be recognized as significant, since all its known digits are just zero. 

This gives a number whose value is consistent with zero. 

In[30]:= d = N@Pi, 20D - Pi

Out[30]= 0.µ10-20

Mathematics and Algorithms     21



The number has no recognizable significant digits of precision. 

In[31]:= Precision@dD

Out[31]= 0.

But it still has a definite accuracy, that characterizes the uncertainty in it. 

In[32]:= Accuracy@dD

Out[32]= 19.5029

If you do computations whose results are likely to be near zero, it can be convenient to specify

the accuracy, rather than the precision, that you want to get. 

N@expr,pD evaluate expr to precision p

N@expr,8p,a<D evaluate expr to at most precision p and accuracy a

NAexpr,9Infinity,a=E evaluate expr to any precision but to accuracy a

Specifying accuracy as well as precision. 

Here is a symbolic expression. 

In[33]:= u = ArcTan@1 ê 3D - ArcCot@3D

Out[33]= -ArcCot@3D + ArcTanB
1

3
F

This shows that the expression is equivalent to zero. 

In[34]:= FullSimplify@uD

Out[34]= 0

N cannot guarantee to get a result to precision 20. 

In[35]:= N@u, 20D

N::meprec :

Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating -ArcCot@3D+ArcTanB
1

3
F. à

Out[35]= 0.µ10-71

But it can get a result to accuracy 20. 

In[36]:= N@u, 8Infinity, 20<D

Out[36]= 0.µ10-20

When Mathematica works out the potential effect of unknown digits in arbitrary-precision num-

bers, it  assumes by default that these digits are completely independent in different numbers.

While this assumption will  never yield too high a precision in a result, it may lead to unneces-

sary loss of precision. 

22     Mathematics and Algorithms



When Mathematica works out the potential effect of unknown digits in arbitrary-precision num-

bers, it  assumes by default that these digits are completely independent in different numbers.

While this assumption will  never yield too high a precision in a result, it may lead to unneces-

sary loss of precision. 

In  particular,  if  two numbers  are  generated in  the  same way in  a  computation,  some of  their

unknown  digits  may  be  equal.  Then,  when  these  numbers  are,  for  example,  subtracted,  the

unknown  digits  may  cancel.  By  assuming  that  the  unknown  digits  are  always  independent,

however, Mathematica will miss such cancellations. 

Here is a number computed to 20-digit precision. 

In[37]:= d = N@3^-30, 20D

Out[37]= 4.8569357496188611379µ10-15

The quantity 1 + d has about 34-digit precision. 

In[38]:= Precision@1 + dD

Out[38]= 34.3136

This quantity has lower precision, since Mathematica assumes that the unknown digits in each 
number d are independent.

In[39]:= Precision@H1 + dL - dD

Out[39]= 34.0126

Numerical  algorithms  sometimes  rely  on  cancellations  between  unknown  digits  in  different

numbers yielding results of higher precision. If you can be sure that certain unknown digits will

eventually  cancel,  then you can explicitly  introduce fixed digits  in  place of  the unknown ones.

You  can  carry  these  fixed  digits  through  your  computation,  then  let  them  cancel,  and  get  a

result of higher precision. 

SetPrecision@x,nD create a number with n decimal digits of precision, padding 
with base-2 zeros if necessary

SetAccuracy@x,nD create a number with n decimal digits of accuracy

Functions for modifying precision and accuracy.

This introduces 10 more digits in d. 

In[40]:= d = SetPrecision@d, 30D

Out[40]= 4.85693574961886113790624266497µ10-15

The digits that were added cancel out here. 

Mathematics and Algorithms     23



The digits that were added cancel out here. 

In[41]:= H1 + dL - d

Out[41]= 1.00000000000000000000000000000000000000000000

The precision of the result is now about 44 digits, rather than 34. 

In[42]:= Precision@%D

Out[42]= 44.0126

SetPrecision works by adding digits which are zero in base 2. Sometimes, Mathematica stores

slightly  more  digits  in  an  arbitrary-precision  number  than  it  displays,  and  in  such  cases,

SetPrecision will use these extra digits before introducing zeros. 

This creates a number with a precision of 40 decimal digits. The extra digits come from conver-
sion to base 10. 

In[43]:= SetPrecision@0.400000000000000, 40D

Out[43]= 0.4000000000000000222044604925031308084726

variable default value
$MaxPrecision Infinity maximum total precision to be used
$MinPrecision 0 minimum precision to be used

Global precision-control parameters. 

By  making  the  global  assignment  $MinPrecision = n,  you  can  effectively  apply

SetPrecision@expr, nD at every step in a computation. This means that even when the number

of  correct  digits  in  an  arbitrary-precision  number  drops  below  n,  the  number  will  always  be

padded to have n digits. 

If  you  set  $MaxPrecision = n  as  well  as  $MinPrecision = n,  then  you  can  force  all  arbitrary-

precision  numbers  to  have  a  fixed  precision  of  n  digits.  In  effect,  what  this  does  is  to  make

Mathematica  treat  arbitrary-precision  numbers  in  much  the  same  way  as  it  treats  machine

numbers~but with more digits of precision.

Fixed-precision  computation  can  make  some  calculations  more  efficient,  but  without  careful

analysis you can never be sure how many digits are correct in the results you get.

24     Mathematics and Algorithms



Here is a small number with 20-digit precision. 

In[44]:= k = N@Exp@-60D, 20D

Out[44]= 8.7565107626965203385µ10-27

With Mathematica's usual arithmetic, this works fine. 

In[45]:= Evaluate@1 + kD - 1

Out[45]= 8.7565107626965203385µ10-27

This tells Mathematica to use fixed-precision arithmetic. 

In[46]:= $MinPrecision = $MaxPrecision = 20

Out[46]= 20

The first few digits are correct, but the rest are wrong. 

In[47]:= Evaluate@1 + kD - 1

Out[47]= 8.7565107626963908935µ10-27

Machine-Precision Numbers

Whenever machine-precision numbers appear in a calculation, the whole calculation is typically

done in machine precision. Mathematica will then give machine-precision numbers as the result. 

Whenever the input contains any machine-precision numbers, Mathematica does the computa-
tion to machine precision. 

In[1]:= 1.4444444444444444444^5.7

Out[1]= 8.13382

Zeta@5.6D yields a machine-precision result, so the N is irrelevant. 

In[2]:= N@Zeta@5.6D, 30D

Out[2]= 1.02338

This gives a higher-precision result. 

In[3]:= N@Zeta@56 ê 10D, 30D

Out[3]= 1.02337547922702991086041788103

When you do calculations with arbitrary-precision numbers, as discussed in "Arbitrary-Precision

Numbers",  Mathematica  always  keeps  track  of  the  precision  of  your  results,  and  gives  only

those  digits  which  are  known  to  be  correct,  given  the  precision  of  your  input.  When  you  do

calculations  with  machine-precision  numbers,  however,  Mathematica  always  gives  you  a

machine-precision result, whether or not all the digits in the result can, in fact, be determined

to be correct on the basis of your input. 

Mathematics and Algorithms     25



When you do calculations with arbitrary-precision numbers, as discussed in "Arbitrary-Precision

Numbers",  Mathematica  always  keeps  track  of  the  precision  of  your  results,  and  gives  only

those  digits  which  are  known  to  be  correct,  given  the  precision  of  your  input.  When  you  do

calculations  with  machine-precision  numbers,  however,  Mathematica  always  gives  you  a

machine-precision result, whether or not all the digits in the result can, in fact, be determined

to be correct on the basis of your input. 

This subtracts two machine-precision numbers. 

In[4]:= diff = 1.11111111 - 1.11111000

Out[4]= 1.11µ10-6

The result is taken to have machine precision. 

In[5]:= Precision@diffD

Out[5]= MachinePrecision

Here are all the digits in the result. 

In[6]:= InputForm@diffD

Out[6]//InputForm= 1.1099999999153454`*^-6

The fact that you can get spurious digits in machine-precision numerical calculations with Mathe-

matica is in many respects quite unsatisfactory. The ultimate reason, however, that Mathemat-

ica uses fixed precision for these calculations is a matter of computational efficiency. 

Mathematica is usually set up to insulate you as much as possible from the details of the com-

puter  system  you  are  using.  In  dealing  with  machine-precision  numbers,  you  would  lose  too

much, however, if Mathematica did not make use of some specific features of your computer. 

The important point is that almost all computers have special hardware or microcode for doing

floating-point  calculations  to  a  particular  fixed  precision.  Mathematica  makes  use  of  these

features when doing machine-precision numerical calculations. 

The typical arrangement is that all machine-precision numbers in Mathematica are represented

as  "double-precision  floating-point  numbers"  in  the  underlying  computer  system.  On  most

current computers, such numbers contain a total of 64 binary bits, typically yielding 16 decimal

digits of mantissa. 

The main advantage of using the built-in floating-point capabilities of  your computer is  speed.

Arbitrary-precision numerical calculations, which do not make such direct use of these capabili-

ties, are usually many times slower than machine-precision calculations. 

26     Mathematics and Algorithms



The main advantage of using the built-in floating-point capabilities of  your computer is  speed.

Arbitrary-precision numerical calculations, which do not make such direct use of these capabili-

ties, are usually many times slower than machine-precision calculations. 

There  are  several  disadvantages  of  using  built-in  floating-point  capabilities.  One  already

mentioned is that it forces all numbers to have a fixed precision, independent of what precision

can be justified for them. 

A  second  disadvantage  is  that  the  treatment  of  machine-precision  numbers  can  vary  slightly

from one computer system to another. In working with machine-precision numbers, Mathemat-

ica is at the mercy of the floating-point arithmetic system of each particular computer. If float-

ing-point arithmetic is done differently on two computers, you may get slightly different results

for machine-precision Mathematica calculations on those computers.

$MachinePrecision the number of decimal digits of precision

$MachineEpsilon the minimum positive machine-precision number which can 
be added to 1.0 to give a result distinguishable from 1.0

$MaxMachineNumber the maximum machine-precision number

$MinMachineNumber the minimum positive machine-precision number

$MaxNumber the maximum magnitude of an arbitrary-precision number

$MinNumber the minimum magnitude of a positive arbitrary-precision 
number

Properties of numbers on a particular computer system. 

Since  machine-precision  numbers  on  any  particular  computer  system  are  represented  by  a

definite  number  of  binary  bits,  numbers  which  are  too  close  together  will  have  the  same  bit

pattern,  and  so  cannot  be  distinguished.  The  parameter  $MachineEpsilon  gives  the  distance

between 1.0 and the closest number which has a distinct binary representation. 

This gives the value of $MachineEpsilon for the computer system on which these examples 
are run. 

In[7]:= $MachineEpsilon

Out[7]= 2.22045µ10-16

Although this prints as 1., Mathematica knows that the result is larger than 1. 

In[8]:= 1. + $MachineEpsilon

Out[8]= 1.

InputForm reveals that the result is not exactly 1.

Mathematics and Algorithms     27



InputForm reveals that the result is not exactly 1.

In[9]:= % êê InputForm

Out[9]//InputForm= 1.0000000000000002

Subtracting 1 gives $MachineEpsilon. 

In[10]:= % - 1.

Out[10]= 2.22045µ10-16

This prints as 1. also.

In[11]:= 1. + $MachineEpsilon ê 2

Out[11]= 1.

In this case, however, the result is not distinguished from 1. to machine precision.

In[12]:= % êê InputForm

Out[12]//InputForm= 1.

Subtracting 1 from the result yields 0. 

In[13]:= % - 1.

Out[13]= 0.

Machine numbers have not only limited precision, but also limited magnitude. If you generate a

number which lies outside the range specified by $MinMachineNumber and $MaxMachineNumber,

Mathematica will automatically convert the number to arbitrary-precision form. 

This is the maximum machine-precision number which can be handled on the computer system 
used for this example. 

In[14]:= $MaxMachineNumber

Out[14]= 1.79769µ10308

Mathematica automatically converts any result larger than $MaxMachineNumber to arbitrary 
precision. 

In[15]:= 2 $MaxMachineNumber

Out[15]= 3.595386269724631µ10308

28     Mathematics and Algorithms



Here is another computation whose result is outside the range of machine-precision numbers.

In[16]:= Exp@1000.D

Out[16]= 1.970071114017µ10434

Interval Arithmetic

Interval@8min,max<D the interval from min to max

Interval@8min1,max1<,8min2,max2<,…D

the union of intervals from min1 to max1, min2 to max2, … 

Representations of real intervals. 

This represents all numbers between -2 and +5. 

In[1]:= Interval@8-2, 5<D

Out[1]= Interval@8-2, 5<D

The square of any number between -2 and +5 is always between 0 and 25.

In[2]:= Interval@8-2, 5<D^2

Out[2]= Interval@80, 25<D

Taking the reciprocal gives two distinct intervals. 

In[3]:= 1 ê Interval@8-2, 5<D

Out[3]= IntervalB:-¶, -
1

2
>, :

1

5
, ¶>F

Abs folds the intervals back together again. 

In[4]:= Abs@%D

Out[4]= IntervalB:
1

5
, ¶>F

You can use intervals in many kinds of functions. 

In[5]:= Solve@3 x + 2 == Interval@8-2, 5<D, xD

Out[5]= ::x Ø IntervalB:-
4

3
, 1>F>>

Mathematics and Algorithms     29



Some functions automatically generate intervals. 

In[6]:= Limit@Sin@1 ê xD, x -> 0D

Out[6]= Interval@8-1, 1<D

IntervalUnion@interval1,interval2,…D

find the union of several intervals

IntervalIntersection@interval1,interval2,…D

find the intersection of several intervals

IntervalMemberQ@interval,xD test whether the point x lies within an interval

IntervalMemberQ@interval1,interval2D

test whether interval2 lies completely within interval1

Operations on intervals. 

This finds the overlap of the two intervals. 

In[7]:= IntervalIntersection@Interval@83, 7<D, Interval@8-2, 5<DD

Out[7]= Interval@83, 5<D

You can use Max and Min to find the end points of intervals. 

In[8]:= Max@%D

Out[8]= 5

This finds out which of a list of intervals contains the point 7.

In[9]:= IntervalMemberQ@Table@Interval@8i, i + 1<D, 8i, 1, 20, 3<D, 7D

Out[9]= 8False, False, True, False, False, False, False<

You can use intervals not only with exact quantities but also with approximate numbers. Even

with machine-precision numbers, Mathematica always tries to do rounding in such a way as to

preserve the validity of results.

This shows explicitly the interval treated by Mathematica as the machine-precision number 0.

In[10]:= Interval@0.D

Out[10]= IntervalA9-2.22507µ10-308, 2.22507µ10-308=E

30     Mathematics and Algorithms



This shows the corresponding interval around 100., shifted back to zero. 

In[11]:= Interval@100.D - 100

Out[11]= IntervalA9-1.42109µ10-14, 1.42109µ10-14=E

The same kind of thing works with numbers of any precision. 

In[12]:= Interval@N@Pi, 50DD - Pi

Out[12]= IntervalA9-0.µ10-50, 0.µ10-50=E

With ordinary machine-precision arithmetic, this computation gives an incorrect result. 

In[13]:= Sin@N@PiDD

Out[13]= 1.22461µ10-16

The interval generated here, however, includes the correct value of 0. 

In[14]:= Sin@Interval@N@PiDDD

Out[14]= IntervalA9-3.21629µ10-16, 5.6655µ10-16=E

Indeterminate and Infinite Results

If you type in an expression like 0 ê 0, Mathematica prints a message, and returns the result 
Indeterminate. 

In[1]:= 0 ê 0

Power::infy : Infinite expression
1

0
encountered. à

¶::indet : Indeterminate expression 0ComplexInfinity encountered. à

Out[1]= Indeterminate

An expression like 0 ê 0 is an example of an indeterminate numerical result. If you type in 0 ê 0,

there is no way for Mathematica to know what answer you want. If you got 0 ê 0 by taking the

limit  of  x ê x  as  xØ 0,  then  you  might  want  the  answer  1.  On  the  other  hand,  if  you  got  0 ê 0

instead as the limit of 2 x ê x,  then you probably want the answer 2.  The expression 0 ê 0  on its

own does not contain enough information to choose between these and other cases. As a result,

its value must be considered indeterminate.

Whenever  an  indeterminate  result  is  produced  in  an  arithmetic  computation,  Mathematica

prints a warning message, and then returns Indeterminate as the result of the computation. If  

you  ever  try  to  use  Indeterminate  in  an  arithmetic  computation,  you  always  get  the  result

Indeterminate. A single indeterminate expression effectively "poisons" any arithmetic computa-

tion.  (The  symbol  Indeterminate  plays  a  role  in  Mathematica  similar  to  the  "not  a  number"

object in the IEEE Floating Point Standard.)

Mathematics and Algorithms     31



you  ever  try  to  use  Indeterminate  in  an  arithmetic  computation,  you  always  get  the  result 

Indeterminate. A single indeterminate expression effectively "poisons" any arithmetic computa-

tion.  (The  symbol  Indeterminate  plays  a  role  in  Mathematica  similar  to  the  "not  a  number"

object in the IEEE Floating Point Standard.)

The usual laws of arithmetic simplification are suspended in the case of Indeterminate. 

In[2]:= Indeterminate - Indeterminate

Out[2]= Indeterminate

Indeterminate "poisons" any arithmetic computation, and leads to an indeterminate result. 

In[3]:= 2 Indeterminate - 7

Out[3]= Indeterminate

When you do arithmetic computations inside Mathematica programs, it is often important to be

able to tell whether indeterminate results were generated in the computations. You can do this

by  using  the  function  Check  discussed  in  "Messages"  to  test  whether  any  warning  messages

associated with indeterminate results were produced. 

You can use Check inside a program to test whether warning messages are generated in a 
computation. 

In[4]:= Check@H7 - 7L ê H8 - 8L, meaninglessD

Power::infy : Infinite expression
1

0
encountered. à

¶::indet : Indeterminate expression 0ComplexInfinity encountered. à

Out[4]= meaningless

Indeterminate an indeterminate numerical result

Infinity a positive infinite quantity

-Infinity a negative infinite quantity (DirectedInfinity@-1D)

DirectedInfinity@rD an infinite quantity with complex direction r

ComplexInfinity an infinite quantity with an undetermined direction

DirectedInfinity@D equivalent to ComplexInfinity

Indeterminate and infinite quantities. 

There  are  many  situations  where  it  is  convenient  to  be  able  to  do  calculations  with  infinite

quantities. The symbol Infinity in Mathematica represents a positive infinite quantity. You can  

use it  to specify such things as limits of  sums and integrals.  You can also do some arithmetic

calculations with it. 

32     Mathematics and Algorithms



use it  to specify such things as limits of  sums and integrals.  You can also do some arithmetic 

calculations with it. 

Here is an integral with an infinite limit. 

In[5]:= Integrate@1 ê x^3, 8x, 1, Infinity<D

Out[5]=
1

2

Mathematica knows that 1 ê¶= 0. 

In[6]:= 1 ê Infinity

Out[6]= 0

If you try to find the difference between two infinite quantities, you get an indeterminate result. 

In[7]:= Infinity - Infinity

¶::indet : Indeterminate expression -¶+¶ encountered. à

Out[7]= Indeterminate

There  are  a  number  of  subtle  points  that  arise  in  handling  infinite  quantities.  One  of  them

concerns the "direction"  of  an infinite  quantity.  When you do an infinite  integral,  you typically

think  of  performing  the  integration  along  a  path  in  the  complex  plane  that  goes  to  infinity  in

some  direction.  In  this  case,  it  is  important  to  distinguish  different  versions  of  infinity  that

correspond to different directions in the complex plane. +¶  and -¶  are two examples, but for

some purposes one also needs i¶ and so on.

In  Mathematica,  infinite  quantities  can  have  a  "direction",  specified  by  a  complex  number.

When  you  type  in  the  symbol  Infinity,  representing  a  positive  infinite  quantity,  this  is  con-

verted internally to the form DirectedInfinity@1D, which represents an infinite quantity in the

+1  direction. Similarly, -Infinity  becomes DirectedInfinity@-1D,  and I Infinity  becomes

DirectedInfinity@ID.  Although  the  DirectedInfinity  form  is  always  used  internally,  the

standard output format for DirectedInfinity@rD is r Infinity.

Infinity is converted internally to DirectedInfinity@1D. 

In[8]:= Infinity êê FullForm

Out[8]//FullForm= DirectedInfinity@1D

Although the notion of a "directed infinity" is often useful, it is not always available. If you type

in 1 ê 0, you get an infinite result, but there is no way to determine the "direction" of the infinity

ity.  Mathematica  represents  the  result  of  1 ê 0  as  DirectedInfinity@D.  In  standard  output

form, this undirected infinity is printed out as ComplexInfinity. 

Mathematics and Algorithms     33



 Mathematica  represents  the  result  of  1 ê 0  as  DirectedInfinity @D.  In  standard  output 

form, this undirected infinity is printed out as ComplexInfinity. 

1 ê 0 gives an undirected form of infinity. 

In[9]:= 1 ê 0

Power::infy : Infinite expression
1

0
encountered. à

Out[9]= ComplexInfinity

Controlling Numerical Evaluation

NHoldAll prevent any arguments of a function from being affected 
by N

NHoldFirst prevent the first argument from being affected

NHoldRest prevent all but the first argument from being affected

Attributes for controlling numerical evaluation. 

Usually N goes inside functions and gets applied to each of their arguments. 

In[1]:= N@f@2 ê 3, PiDD

Out[1]= f@0.666667, 3.14159D

This tells Mathematica not to apply N to the first argument of f. 

In[2]:= SetAttributes@f, NHoldFirstD

Now the first argument of f is left in its exact form. 

In[3]:= N@f@2 ê 3, PiDD

Out[3]= fB
2

3
, 3.14159F

34     Mathematics and Algorithms



Algebraic Calculations

Symbolic Computation

One of  the important features of  Mathematica  is  that it  can do symbolic,  as well  as numerical

calculations. This means that it can handle algebraic formulas as well as numbers. 

Here is a typical numerical computation. 

In[1]:= 3 + 62 - 1

Out[1]= 64

This is a symbolic computation. 

In[2]:= 3 x - x + 2

Out[2]= 2 + 2 x

Numerical computation 62 + 3 - 1ö64
Symbolic computation 3 x + 2 x - x + 2ö2

Numerical and symbolic computations. 

You can type any algebraic expression into Mathematica. 

In[3]:= -1 + 2 x + x^3

Out[3]= -1 + 2 x + x3

Mathematica automatically carries out basic algebraic simplifications. Here it combines x2 and 
-4 x2 to get -3 x2.

In[4]:= x^2 + x - 4 x^2

Out[4]= x - 3 x2

You  can  type  in  any  algebraic  expression,  using  the  operators  listed  in  "Arithmetic".  You  can

use spaces to denote multiplication. Be careful not to forget the space in x y. If you type in xy

with no space, Mathematica  will  interpret this  as a single symbol,  with the name xy,  not as a

product of the two symbols x and y. 

Mathematics and Algorithms     35



Mathematica rearranges and combines terms using the standard rules of algebra. 

In[5]:= x y + 2 x^2 y + y^2 x^2 - 2 y x

Out[5]= -x y + 2 x2 y + x2 y2

Here is another algebraic expression. 

In[6]:= Hx + 2 y + 1L Hx - 2L^2

Out[6]= H-2 + xL2 H1 + x + 2 yL

The function Expand multiplies out products and powers. 

In[7]:= Expand@%D

Out[7]= 4 - 3 x2 + x3 + 8 y - 8 x y + 2 x2 y

Factor does essentially the inverse of Expand. 

In[8]:= Factor@%D

Out[8]= H-2 + xL2 H1 + x + 2 yL

When you type in more complicated expressions, it is important that you put parentheses in the

right places. Thus, for example, you have to give the expression x4 y in the form x^H4 yL. If you

leave out the parentheses, you get x4 y instead. It never hurts to put in too many parentheses,

but to find out exactly when you need to use parentheses, look at "Operator Input Forms". 

Here is a more complicated formula, requiring several parentheses. 

In[9]:= Sqrt@2D ê 9801 H4 nL! H1103 + 26390 nL ê Hn!^4 396^H4 nLL

Out[9]= 
2

1

2
-8 n 99-2-4 n H1103 + 26390 nL H4 nL!

Hn!L4

When you type in an expression, Mathematica automatically applies its large repertoire of rules

for transforming expressions. These rules include the standard rules of algebra, such as x - x = 0,

together with much more sophisticated rules involving higher mathematical functions. 

Mathematica uses standard rules of algebra to replace J 1 + x N
4
 by H1 + xL2.

In[10]:= Sqrt@1 + xD^4

Out[10]= H1 + xL2

36     Mathematics and Algorithms



Mathematica knows no rules for this expression, so it leaves the expression in the original form 
you gave. 

In[11]:= Log@1 + Cos@xDD

Out[11]= Log@1 + Cos@xDD

The notion of transformation rules is a very general one. In fact, you can think of the whole of

Mathematica  as  simply  a  system  for  applying  a  collection  of  transformation  rules  to  many

different kinds of expressions. 

The general  principle  that  Mathematica  follows is  simple to state.  It  takes any expression you

input,  and  gets  results  by  applying  a  succession  of  transformation  rules,  stopping  when  it

knows no more transformation rules that can be applied. 

† Take any expression, and apply transformation rules until the result no longer changes.

The fundamental principle of Mathematica. 

Values for Symbols

When Mathematica transforms an expression such as x + x into 2 x, it is treating the variable x

in  a  purely  symbolic  or  formal  fashion.  In  such  cases,  x  is  a  symbol  which  can  stand  for  any

expression. 

Often,  however,  you  need  to  replace  a  symbol  like  x  with  a  definite  "value".  Sometimes  this

value will be a number; often it will be another expression. 

To take an expression such as 1 + 2 x and replace the symbol x that appears in it with a definite

value, you can create a Mathematica transformation rule, and then apply this rule to the expres-

sion. To replace x with the value 3, you would create the transformation rule x -> 3. You must

type ->  as a pair  of  characters,  with no space in between. You can think of  x -> 3  as being a

rule in which "x goes to 3". 

To apply a transformation rule to a particular Mathematica expression, you type expr ê. rule. The

"replacement operator" ê. is typed as a pair of characters, with no space in between. 

This uses the transformation rule x -> 3 in the expression 1 + 2 x. 

In[1]:= 1 + 2 x ê. x -> 3

Out[1]= 7

You can replace x with any expression. Here every occurrence of x is replaced by 2 - y. 

Mathematics and Algorithms     37



You can replace x with any expression. Here every occurrence of x is replaced by 2 - y. 

In[2]:= 1 + x + x^2 ê. x -> 2 - y

Out[2]= 3 + H2 - yL2 - y

Here is a transformation rule. Mathematica treats it like any other symbolic expression. 

In[3]:= x -> 3 + y

Out[3]= x Ø 3 + y

This applies the transformation rule on the previous line to the expression x^2 - 9. 

In[4]:= x^2 - 9 ê. %

Out[4]= -9 + H3 + yL2

exprê.x->value replace x by value in the expression expr

exprê.8x->xval,y->yval< perform several replacements

Replacing symbols by values in expressions. 

You can apply rules together by putting the rules in a list. 

In[5]:= Hx + yL Hx - yL^2 ê. 8x -> 3, y -> 1 - a<

Out[5]= H4 - aL H2 + aL2

The  replacement  operator  ê.  allows  you  to  apply  transformation  rules  to  a  particular  expres-

sion. Sometimes, however, you will  want to define transformation rules that should always  be

applied. For example, you might want to replace x with 3 whenever x occurs. 

As discussed in "Defining Variables", you can do this by assigning the value 3 to x using x = 3.

Once  you  have  made  the  assignment  x = 3,  x  will  always  be  replaced  by  3,  whenever  it

appears. 

This assigns the value 3 to x. 

In[6]:= x = 3

Out[6]= 3

Now x will automatically be replaced by 3 wherever it appears. 

In[7]:= x^2 - 1

Out[7]= 8

This assigns the expression 1 + a to be the value of x. 

38     Mathematics and Algorithms



This assigns the expression 1 + a to be the value of x. 

In[8]:= x = 1 + a

Out[8]= 1 + a

Now x is replaced by 1 + a. 

In[9]:= x^2 - 1

Out[9]= -1 + H1 + aL2

You  can  define  the  value  of  a  symbol  to  be  any  expression,  not  just  a  number.  You  should

realize that once you have given such a definition, the definition will continue to be used when-

ever the symbol appears, until you explicitly change or remove the definition. For most people,

forgetting to remove values you have assigned to symbols is the single most common source of

mistakes in using Mathematica. 

x=value define a value for x which will always be used

x=. remove any value defined for x

Assigning values to symbols. 

The symbol x still has the value you assigned to it. 

In[10]:= x + 5 - 2 x

Out[10]= 6 + a - 2 H1 + aL

This removes the value you assigned to x. 

In[11]:= x =.

Now x has no value defined, so it can be used as a purely symbolic variable. 

In[12]:= x + 5 - 2 x

Out[12]= 5 - x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the

flexibility  of  Mathematica  comes from being  able  to  mix  these  purposes  at  will.  However,  you

need to  keep some of  the different  uses of  x  straight  in  order  to  avoid  making mistakes.  The

most important distinction is between the use of x as a name for another expression, and as a

symbolic variable that stands only for itself. 

Traditional programming languages that do not support symbolic computation allow variables to

be  used  only  as  names  for  objects,  typically  numbers,  that  have  been  assigned  as  values  for

them.  In  Mathematica,  however,  x  can  also  be  treated  as  a  purely  formal  variable,  to  which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable. 

Mathematics and Algorithms     39



Traditional programming languages that do not support symbolic computation allow variables to

be  used  only  as  names  for  objects,  typically  numbers,  that  have  been  assigned  as  values  for

them.  In  Mathematica,  however,  x  can  also  be  treated  as  a  purely  formal  variable,  to  which

various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable. 

You should understand that explicit definitions such as x = 3 have a global effect. On the other

hand, a replacement such as expr ê. x -> 3 affects only the specific expression expr. It is usually

much  easier  to  keep  things  straight  if  you  avoid  using  explicit  definitions  except  when  abso-

lutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to

expressions in which you want to do replacements, or to rules that you want to use to do the

replacements. 

This assigns a value to the symbol t. 

In[13]:= t = 1 + x^2

Out[13]= 1 + x2

This finds the value of t, and then replaces x by 2 in it. 

In[14]:= t ê. x -> 2

Out[14]= 5

This finds the value of t for a different value of x. 

In[15]:= t ê. x -> 5 a

Out[15]= 1 + 25 a2

This finds the value of t when x is replaced by Pi, and then evaluates the result numerically. 

In[16]:= t ê. x -> Pi êê N

Out[16]= 10.8696

Transforming Algebraic Expressions

There are often many different ways to write the same algebraic expression. As one example,

the  expression  H1 + xL2  can  be  written  as  1 + 2 x + x2.  Mathematica  provides  a  large  collection  of

functions for converting between different forms of algebraic expressions.

40     Mathematics and Algorithms



Expand@exprD multiply out products and powers, writing the result as a 
sum of terms

Factor@exprD write expr as a product of minimal factors

Two common functions for transforming algebraic expressions. 

Expand gives the "expanded form", with products and powers multiplied out. 

In[1]:= Expand@H1 + xL^2D

Out[1]= 1 + 2 x + x2

Factor recovers the original form.

In[2]:= Factor@%D

Out[2]= H1 + xL2

It is easy to generate complicated expressions with Expand. 

In[3]:= Expand@H1 + x + 3 yL^4D

Out[3]= 1 + 4 x + 6 x2 + 4 x3 + x4 + 12 y + 36 x y + 36 x2 y + 12 x3 y + 54 y2 + 108 x y2 + 54 x2 y2 + 108 y3 + 108 x y3 + 81 y4

Factor often gives you simpler expressions. 

In[4]:= Factor@%D

Out[4]= H1 + x + 3 yL4

There are some cases, though, where Factor can give you more complicated expressions. 

In[5]:= Factor@x^10 - 1D

Out[5]= H-1 + xL H1 + xL I1 - x + x2 - x3 + x4M I1 + x + x2 + x3 + x4M

In this case, Expand gives the "simpler" form. 

In[6]:= Expand@%D

Out[6]= -1 + x10

Simplifying Algebraic Expressions

There  are  many  situations  where  you  want  to  write  a  particular  algebraic  expression  in  the

simplest  possible  form.  Although  it  is difficult to know exactly what one means in all cases by  

the "simplest  form",  a worthwhile  practical  procedure is  to look at  many different forms of  an

expression, and pick out the one that involves the smallest number of parts.

Mathematics and Algorithms     41



the "simplest  form",  a worthwhile  practical  procedure is  to look at  many different forms of  an 

expression, and pick out the one that involves the smallest number of parts.

Simplify@exprD try to find the simplest form of expr by applying various 
standard algebraic transformations

FullSimplify@exprD try to find the simplest form by applying a wide range of 
transformations

Simplifying algebraic expressions. 

Simplify writes x2 + 2 x + 1 in factored form. 

In[1]:= Simplify@x^2 + 2 x + 1D

Out[1]= H1 + xL2

Simplify leaves x10 - 1 in expanded form, since for this expression, the factored form is 
larger. 

In[2]:= Simplify@x^10 - 1D

Out[2]= -1 + x10

You can often use Simplify  to "clean up" complicated expressions that you get as the results

of computations. 

Here is the integral of 1ëIx4 - 1M. Integrals are discussed in more detail in "Integration". 

In[3]:= Integrate@1 ê Hx^4 - 1L, xD

Out[3]= -
ArcTan@xD

2
+
1

4
Log@-1 + xD -

1

4
Log@1 + xD

Differentiating the result from Integrate should give back your original expression. In this 
case, as is common, you get a more complicated version of the expression. 

In[4]:= D@%, xD

Out[4]= 
1

4 H-1 + xL
-

1

4 H1 + xL
-

1

2 I1 + x2M

Simplify succeeds in getting back the original, simpler, form of the expression. 

In[5]:= Simplify@%D

Out[5]= 
1

-1 + x4

Simplify  is  set  up  to  try  various  standard  algebraic  transformations  on  the  expressions  you

give. Sometimes, however, it can take more sophisticated transformations to make progress in

finding the simplest form of an expression. 

42     Mathematics and Algorithms



Simplify  is  set  up  to  try  various  standard  algebraic  transformations  on  the  expressions  you

give. Sometimes, however, it can take more sophisticated transformations to make progress in

finding the simplest form of an expression. 

FullSimplify  tries  a  much wider  range of  transformations,  involving  not  only  algebraic  func-

tions, but also many other kinds of functions. 

Simplify does nothing to this expression. 

In[6]:= Simplify@Gamma@xD Gamma@1 - xDD

Out[6]= Gamma@1 - xD Gamma@xD

FullSimplify, however, transforms it to a simpler form. 

In[7]:= FullSimplify@Gamma@xD Gamma@1 - xDD

Out[7]= p Csc@p xD

For  fairly  small  expressions,  FullSimplify  will  often  succeed  in  making  some  remarkable

simplifications. But for larger expressions, it can become unmanageably slow. 

The reason for  this  is  that  to  do  its  job,  FullSimplify  effectively  has  to  try  combining  every

part  of  an expression with  every  other,  and for  large expressions  the number  of  cases  that  it

has to consider can be astronomically large.

Simplify  also has a difficult task to do, but it is set up to avoid some of the most time-consum-

ing  transformations  that  are  tried  by  FullSimplify.  For  simple  algebraic  calculations,  there-

fore, you may often find it convenient to apply Simplify quite routinely to your results. 

In more complicated calculations, however, even Simplify,  let  alone FullSimplify,  may end

up needing to try a very large number of different forms, and therefore taking a long time. In

such cases, you typically need to do more controlled simplification, and use your knowledge of

the form you want to get to guide the process.

Putting Expressions into Different Forms

Complicated algebraic expressions can usually be written in many different ways. Mathematica

provides a variety of functions for converting expressions from one form to another. 

In many applications, the most common of these functions are Expand, Factor  and Simplify. 

Mathematics and Algorithms     43



However, particularly when you have rational expressions that contain quotients, you may need

to use other functions.

Expand@exprD multiply out products and powers

ExpandAll@exprD apply Expand everywhere

Factor@exprD reduce to a product of factors

Together@exprD put all terms over a common denominator

Apart@exprD separate into terms with simple denominators

Cancel@exprD cancel common factors between numerators and 
denominators

Simplify@exprD try a sequence of algebraic transformations and give the 
smallest form of expr found

Functions for transforming algebraic expressions. 

Here is a rational expression that can be written in many different forms. 

In[1]:= e = Hx - 1L^2 H2 + xL ê HH1 + xL Hx - 3L^2L

Out[1]=
H-1 + xL2 H2 + xL

H-3 + xL2 H1 + xL

Expand expands out the numerator, but leaves the denominator in factored form. 

In[2]:= Expand@eD

Out[2]=
2

H-3 + xL2 H1 + xL
-

3 x

H-3 + xL2 H1 + xL
+

x3

H-3 + xL2 H1 + xL

ExpandAll expands out everything, including the denominator. 

In[3]:= ExpandAll@eD

Out[3]=
2

9 + 3 x - 5 x2 + x3
-

3 x

9 + 3 x - 5 x2 + x3
+

x3

9 + 3 x - 5 x2 + x3

Together collects all the terms together over a common denominator.

In[4]:= Together@%D

Out[4]=
2 - 3 x + x3

H-3 + xL2 H1 + xL

44     Mathematics and Algorithms



Apart breaks the expression apart into terms with simple denominators. 

In[5]:= Apart@%D

Out[5]= 1 +
5

H-3 + xL2
+

19

4 H-3 + xL
+

1

4 H1 + xL

Factor factors everything, in this case reproducing the original form. 

In[6]:= Factor@%D

Out[6]=
H-1 + xL2 H2 + xL

H-3 + xL2 H1 + xL

According to Simplify, this is the simplest way to write the original expression. 

In[7]:= Simplify@eD

Out[7]=
H-1 + xL2 H2 + xL

H-3 + xL2 H1 + xL

Getting  expressions  into  the  form  you  want  is  something  of  an  art.  In  most  cases,  it  is  best

simply to experiment,  trying different transformations until  you get what you want.  Often you

will be able to use palettes in the front end to do this. 

When  you  have  an  expression  with  a  single  variable,  you  can  choose  to  write  it  as  a  sum of

terms, a product, and so on. If you have an expression with several variables, there is an even

wider selection of possible forms. You can, for example, choose to group terms in the expres-

sion so that one or another of the variables is "dominant".

Collect@expr,xD group together powers of x

FactorTerms@expr,xD pull out factors that do not depend on x

Rearranging expressions in several variables. 

Here is an algebraic expression in two variables. 

In[8]:= v = Expand@H3 + 2 xL^2 Hx + 2 yL^2D

Out[8]= 9 x2 + 12 x3 + 4 x4 + 36 x y + 48 x2 y + 16 x3 y + 36 y2 + 48 x y2 + 16 x2 y2

This groups together terms in v that involve the same power of x.

In[9]:= Collect@v, xD

Out[9]= 4 x4 + 36 y2 + x3 H12 + 16 yL + x2 I9 + 48 y + 16 y2M + x I36 y + 48 y2M

This groups together powers of y. 

Mathematics and Algorithms     45



This groups together powers of y. 

In[10]:= Collect@v, yD

Out[10]= 9 x2 + 12 x3 + 4 x4 + I36 x + 48 x2 + 16 x3M y + I36 + 48 x + 16 x2M y2

This factors out the piece that does not depend on y. 

In[11]:= FactorTerms@v, yD

Out[11]= I9 + 12 x + 4 x2M Ix2 + 4 x y + 4 y2M

As  we  have  seen,  even  when  you  restrict  yourself  to  polynomials  and  rational  expressions,

there are many different ways to write any particular expression. If you consider more compli-

cated expressions, involving, for example, higher mathematical functions, the variety of possi-

ble  forms  becomes  still  greater.  As  a  result,  it  is  totally  infeasible  to  have  a  specific  function

built  into Mathematica  to produce each possible form. Rather, Mathematica  allows you to con-

struct arbitrary sets of transformation rules for converting between different forms. Many Mathe-

matica packages include such rules; the details of how to construct them for yourself are given

in "Transformation Rules and Definitions". 

There  are  nevertheless  a  few  additional  built-in  Mathematica  functions  for  transforming

expressions.

TrigExpand@exprD expand out trigonometric expressions into a sum of terms

TrigFactor@exprD factor trigonometric expressions into products of terms

TrigReduce@exprD reduce trigonometric expressions using multiple angles

TrigToExp@exprD convert trigonometric functions to exponentials

ExpToTrig@exprD convert exponentials to trigonometric functions

FunctionExpand@exprD expand out special and other functions

ComplexExpand@exprD perform expansions assuming that all variables are real

PowerExpand@exprD transform Hx yLp into xp yp, etc.

Some other functions for transforming expressions. 

This expands out the trigonometric expression, writing it so that all functions have argument x.

In[12]:= TrigExpand@Tan@xD Cos@2 xDD

Out[12]=
3

2
Cos@xD Sin@xD -

Tan@xD

2
-
1

2
Sin@xD2 Tan@xD

46     Mathematics and Algorithms



This uses trigonometric identities to generate a factored form of the expression. 

In[13]:= TrigFactor@%D

Out[13]= 2 SinB
p

4
- xF SinB

p

4
+ xF Tan@xD

This reduces the expression by using multiple angles. 

In[14]:= TrigReduce@%D

Out[14]= -
1

2
Sec@xD HSin@xD - Sin@3 xDL

This expands the sine assuming that x and y are both real. 

In[15]:= ComplexExpand@Sin@x + I yDD

Out[15]= Cosh@yD Sin@xD + Â Cos@xD Sinh@yD

This does the expansion allowing x and y to be complex. 

In[16]:= ComplexExpand@Sin@x + I yD, 8x, y<D

Out[16]= -Cosh@Im@xD + Re@yDD Sin@Im@yD - Re@xDD + Â Cos@Im@yD - Re@xDD Sinh@Im@xD + Re@yDD

The  transformations  on  expressions  done  by  functions  like  Expand  and  Factor  are  always

correct,  whatever  values  the  symbolic  variables  in  the  expressions  may  have.  Sometimes,

however, it is useful to perform transformations that are only correct for some possible values

of symbolic variables. One such transformation is performed by PowerExpand. 

Mathematica does not automatically expand out non-integer powers of products. 

In[17]:= Sqrt@x yD

Out[17]= x y

PowerExpand  does the expansion. 

In[18]:= PowerExpand@%D

Out[18]= x y

Mathematics and Algorithms     47



Simplifying with Assumptions

Simplify@expr,assumD simplify expr with assumptions

Simplifying with assumptions. 

Mathematica does not automatically simplify this, since it is only true for some values of x. 

In[1]:= Simplify@Sqrt@x^2DD

Out[1]= x2

x2  is equal to x for x ¥ 0, but not otherwise. 

In[2]:= 8Sqrt@4^2D, Sqrt@H-4L^2D<

Out[2]= 84, 4<

This tells Simplify to make the assumption x > 0, so that simplification can proceed. 

In[3]:= Simplify@Sqrt@x^2D, x > 0D

Out[3]= x

No automatic simplification can be done on this expression. 

In[4]:= 2 a + 2 Sqrt@a - Sqrt@-bDD Sqrt@a + Sqrt@-bDD

Out[4]= 2 a + 2 a - -b a + -b

If a and b are assumed to be positive, the expression can however be simplified. 

In[5]:= Simplify@%, a > 0 && b > 0D

Out[5]= 2 a + a2 + b

Here is a simple example involving trigonometric functions. 

In[6]:= Simplify@ArcSin@Sin@xDD, -Pi ê 2 < x < Pi ê 2D

Out[6]= x

48     Mathematics and Algorithms



Element@x,domD state that x is an element of the domain dom

Element@8x1,x2,…<,domD state that all the xi are elements of the domain dom

Reals real numbers

Integers integers

Primes prime numbers

Some domains used in assumptions. 

This simplifies x2  assuming that x is a real number. 

In[7]:= Simplify@Sqrt@x^2D, Element@x, RealsDD

Out[7]= Abs@xD

This simplifies the sine assuming that n is an integer. 

In[8]:= Simplify@Sin@x + 2 n PiD, Element@n, IntegersDD

Out[8]= Sin@xD

With the assumptions given, Fermat’s little theorem can be used.

In[9]:= Simplify@Mod@a^p, pD, Element@a, IntegersD && Element@p, PrimesDD

Out[9]= Mod@a, pD

This uses the fact that sin HxL, but not arcsin HxL, is real when x is real. 

In[10]:= Simplify@Re@8Sin@xD, ArcSin@xD<D, Element@x, RealsDD

Out[10]= 8Sin@xD, Re@ArcSin@xDD<

Picking Out Pieces of Algebraic Expressions

Coefficient@expr, formD coefficient of form in expr

Exponent@expr, formD maximum power of form in expr

Part@expr,nD  or expr@@nDD nth term of expr

Functions to pick out pieces of polynomials. 

Mathematics and Algorithms     49



Here is an algebraic expression. 

In[1]:= e = Expand@H1 + 3 x + 4 y^2L^2D

Out[1]= 1 + 6 x + 9 x2 + 8 y2 + 24 x y2 + 16 y4

This gives the coefficient of x in e. 

In[2]:= Coefficient@e, xD

Out[2]= 6 + 24 y2

Exponent@expr, yD gives the highest power of y that appears in expr. 

In[3]:= Exponent@e, yD

Out[3]= 4

This gives the fourth term in e. 

In[4]:= Part@e, 4D

Out[4]= 8 y2

You  may  notice  that  the  function  Part@expr, nD  used  to  pick  out  the  nth  term in  a  sum is  the

same as the function described in "Manipulating Elements of Lists" for picking out elements in

lists. This is no coincidence. In fact, as discussed in "Manipulating Expressions like Lists," every

Mathematica expression can be manipulated structurally much like a list. However, as discussed

in "Manipulating Expressions like Lists," you must be careful, because Mathematica often shows

algebraic expressions in a form that is different from the way it treats them internally. 

Coefficient  works even with polynomials that are not explicitly expanded out. 

In[5]:= Coefficient@H1 + 3 x + 4 y^2L^2, xD

Out[5]= 6 + 24 y2

Numerator@exprD numerator of expr

Denominator@exprD denominator of expr

Functions to pick out pieces of rational expressions. 

Here is a rational expression. 

In[6]:= r = H1 + xL ê H2 H2 - yLL

Out[6]= 
1 + x

2 H2 - yL

Denominator  picks out the denominator. 

50     Mathematics and Algorithms



Denominator  picks out the denominator. 

In[7]:= Denominator@%D

Out[7]= 2 H2 - yL

Denominator  gives 1 for expressions that are not explicit quotients. 

In[8]:= Denominator@1 ê x + 2 ê yD

Out[8]= 1

Controlling the Display of Large Expressions

When you do symbolic calculations, it is quite easy to end up with extremely complicated expres -

sions. Often, you will not even want to see the complete result of a computation. 

If you end your input with a semicolon, Mathematica will do the computation you asked for, but

will not display the result. You can nevertheless use % or Out@nD to refer to the result.

By default, the Mathematica front end will display any outputs which are excessively large in a

shortened form inside an interface which allows you to refine the display of the output.

Mathematica shows this output with 5138 of the terms omitted.

In[1]:= Expand@Hx + 2 y + 1L^100D

Out[1]=

A very large output was generated. Here is a sample of it:

1 + 100 x + 4950 x2 + 161700 x3 + 3921225 x4 + 75287520 x5 + 1192052400 x6 + á5138à +
1568717617782433884352170216652800 y98 + 3137435235564867768704340433305600 x y98 +
1568717617782433884352170216652800 x2 y98 + 63382530011411470074835160268800 y99 +
63382530011411470074835160268800 x y99 + 1267650600228229401496703205376 y100

Show Less Show More Show Full Output Set Size Limit...

The Show Less and Show More buttons allow you to decrease or increase the level of detail to which 

Mathematica shows the expression. The Show Full Output button removes the interface entirely and 
displays the full result, but the result may take considerable time to display. The default threshold size at 

which this feature starts working may be set using the Set Size Limit option, which opens the Prefer-
ences dialog to the panel with the appropriate setting.

The  large  output  suppression  feature  is  implemented  using  the  Mathematica  function  Short.

You can use Short  directly for finer control over the display of expressions. You can also use it

for outputs which are not large enough to be suppressed by the default suppression scheme.

Ending your input with ; stops Mathematica from displaying the complicated result of the 
computation. 

Mathematics and Algorithms     51



Ending your input with ; stops Mathematica from displaying the complicated result of the 
computation. 

In[2]:= Expand@Hx + 5 y + 10L^8D;

You can still refer to the result as %. êê Short displays a one-line outline of the result. The 
<< n >> stands for n terms that have been left out. 

In[3]:= % êê Short

Out[3]//Short= 100000000 + 80000000 x + 28000000 x2 + á39à + 6250000 y7 + 625000 x y7 + 390625 y8

This shows a three-line version of the expression. More parts are now visible. 

In[4]:= Short@%, 3D

Out[4]//Short= 100000000 + 80000000 x + 28000000 x2 + 5600000 x3 + 700000 x4 +

56000 x5 + 2800 x6 + 80 x7 + x8 + á28à + 5250000 x2 y5 + 175000 x3 y5 +

43750000 y6 + 8750000 x y6 + 437500 x2 y6 + 6250000 y7 + 625000 x y7 + 390625 y8

This gives the total number of terms in the sum.

In[5]:= Length@%D

Out[5]= 45

command; execute command, but do not print the result

exprêêShort show a one-line outline form of expr

Short@expr,nD show an n-line outline of expr

Some ways to shorten your output. 

Using Symbols to Tag Objects

There are many ways to use symbols in Mathematica. Here we use symbols as "tags" for differ-

ent types of objects. 

Working  with  physical  units  gives  one  simple  example.  When  you  specify  the  length  of  an

object, you want to give not only a number, but also the units in which the length is measured.

In standard notation, you might write a length as 12 meters. 

You can imitate this notation almost directly in Mathematica. You can for example simply use a

symbol meters to indicate the units of your measurement. 

52     Mathematics and Algorithms



The symbol meters here acts as a tag, which indicates the units used. 

In[1]:= 12 meters

Out[1]= 12 meters

You can add lengths like this. 

In[2]:= % + 5.3 meters

Out[2]= 17.3 meters

This gives a speed. 

In[3]:= % ê H25 secondsL

Out[3]= 
0.692 meters

seconds

This converts to a speed in feet per second. 

In[4]:= % ê. meters -> 3.28084 feet

Out[4]= 
2.27034 feet

seconds

There is in fact a Mathematica package that allows you to work with units. The package defines

many symbols that represent standard types of units. 

Load the Mathematica package for handling units. 

In[5]:= << Units`

The package uses standardized names for units. 

In[6]:= 12 Meter ê Second

Out[6]= 
12 Meter

Second

Mathematics and Algorithms     53



The function Convert@expr, unitsD converts to the specified units. 

In[7]:= Convert@%, Mile ê HourD

Out[7]= 
37500 Mile

1397 Hour

Usually you have to give prefixes for units as separate words.

In[8]:= Convert@3 Kilo Meter ê Hour, Inch ê MinuteD

Out[8]= 
250000 Inch

127 Minute

54     Mathematics and Algorithms



Algebraic Manipulation

Structural Operations on Polynomials

Expand@polyD expand out products and powers

Factor@polyD factor completely

FactorTerms@polyD pull out any overall numerical factor

FactorTerms@poly,8x,y,…<D pull out any overall factor that does not depend on x, y, …
Collect@poly,xD arrange a polynomial as a sum of powers of x

Collect@poly,8x,y,…<D arrange a polynomial as a sum of powers of x, y, …

Structural operations on polynomials. 

Here is a polynomial in one variable. 

In[1]:= H2 + 4 x^2L^2 Hx - 1L^3

Out[1]= H-1 + xL3 I2 + 4 x2M
2

Expand expands out products and powers, writing the polynomial as a simple sum of terms. 

In[2]:= t = Expand@%D

Out[2]= -4 + 12 x - 28 x2 + 52 x3 - 64 x4 + 64 x5 - 48 x6 + 16 x7

Factor performs complete factoring of the polynomial. 

In[3]:= Factor@tD

Out[3]= 4 H-1 + xL3 I1 + 2 x2M
2

FactorTerms  pulls out the overall numerical factor from t. 

In[4]:= FactorTerms@tD

Out[4]= 4 I-1 + 3 x - 7 x2 + 13 x3 - 16 x4 + 16 x5 - 12 x6 + 4 x7M

There  are  several  ways  to  write  any  polynomial.  The  functions  Expand,  FactorTerms  and

Factor give three common ways. Expand writes a polynomial as a simple sum of terms, with all

products  expanded out.  FactorTerms  pulls  out  common factors  from each term.  Factor  does

complete  factoring,  writing  the  polynomial  as  a  product  of  terms,  each  of  as  low  degree  as

possible. 

When you have a polynomial in more than one variable, you can put the polynomial in different

forms  by  essentially  choosing  different  variables  to  be  "dominant".  Collect@poly, xD  takes  a

polynomial in several variables and rewrites it as a sum of terms containing different powers of

the "dominant variable" x.

Mathematics and Algorithms     55



When you have a polynomial in more than one variable, you can put the polynomial in different

forms  by  essentially  choosing  different  variables  to  be  "dominant".  Collect@poly, xD  takes  a

polynomial in several variables and rewrites it as a sum of terms containing different powers of

the "dominant variable" x.

Here is a polynomial in two variables. 

In[5]:= Expand@H1 + 2 x + yL^3D

Out[5]= 1 + 6 x + 12 x2 + 8 x3 + 3 y + 12 x y + 12 x2 y + 3 y2 + 6 x y2 + y3

Collect reorganizes the polynomial so that x is the "dominant variable". 

In[6]:= Collect@%, xD

Out[6]= 1 + 8 x3 + 3 y + 3 y2 + y3 + x2 H12 + 12 yL + x I6 + 12 y + 6 y2M

If you specify a list of variables, Collect will effectively write the expression as a polynomial 
in these variables. 

In[7]:= Collect@Expand@H1 + x + 2 y + 3 zL^3D, 8x, y<D

Out[7]= 1 + x3 + 8 y3 + 9 z + 27 z2 + 27 z3 + x2 H3 + 6 y + 9 zL +

y2 H12 + 36 zL + y I6 + 36 z + 54 z2M + x I3 + 12 y2 + 18 z + 27 z2 + y H12 + 36 zLM

Expand@poly,pattD expand out poly avoiding those parts which do not contain 
terms matching patt

Controlling polynomial expansion. 

This avoids expanding parts which do not contain x. 

In[8]:= Expand@Hx + 1L^2 Hy + 1L^2, xD

Out[8]= H1 + yL2 + 2 x H1 + yL2 + x2 H1 + yL2

This avoids expanding parts which do not contain objects matching b@_D. 

In[9]:= Expand@Ha@1D + a@2D + 1L^2 H1 + b@1DL^2, b@_DD

Out[9]= H1 + a@1D + a@2DL2 + 2 H1 + a@1D + a@2DL2 b@1D + H1 + a@1D + a@2DL2 b@1D2

PowerExpand@exprD expand out Ha bLc and IabMc in expr

PowerExpandAexpr,Assumptions->assumE

expand out expr assuming assum

Expanding powers and logarithms.  

Mathematica does not automatically expand out expressions of the form Ha bL^c except when c is

an integer. In general it is only correct to do this expansion if a and b are positive reals. Never-

theless,  the  function  PowerExpand  does  the  expansion,  effectively  assuming  that  a  and  b  are

indeed positive reals. 

56     Mathematics and Algorithms



Mathematica does not automatically expand out expressions of the form Ha bL^c except when c is

an integer. In general it is only correct to do this expansion if a and b are positive reals. Never-

theless,  the  function  PowerExpand  does  the  expansion,  effectively  assuming  that  a  and  b  are

indeed positive reals. 

Mathematica does not automatically expand out this expression. 

In[10]:= Hx yL^n

Out[10]= Hx yLn

PowerExpand  does the expansion, effectively assuming that x and y are positive reals. 

In[11]:= PowerExpand@%D

Out[11]= xn yn

Log is not automatically expanded out. 

In[12]:= Log@%D

Out[12]= LogAxn ynE

PowerExpand  does the expansion. 

In[13]:= PowerExpand@%D

Out[13]= n Log@xD + n Log@yD

PowerExpand  returns a result correct for the given assumptions. 

In[14]:= PowerExpand@%%, Assumptions Ø 8x > 0, n < 0<D

Out[14]= 2 Â p FloorB
1

2
-
Im@n Log@xDD

2 p
-
Im@n Log@yDD

2 p
F + n Log@xD + n Log@yD

Collect@poly,pattD collect separately terms involving each object that matches 
patt

Collect@poly,patt,hD apply h to each final coefficient obtained

Ways of collecting terms. 

Here is an expression involving various functions f. 

In[15]:= t = 3 + x f@1D + x^2 f@1D + y f@2D^2 + z f@2D^2

Out[15]= 3 + x f@1D + x2 f@1D + y f@2D2 + z f@2D2

Mathematics and Algorithms     57



This collects terms that match f@_D. 

In[16]:= Collect@t, f@_DD

Out[16]= 3 + Ix + x2M f@1D + Hy + zL f@2D2

This applies Factor to each coefficient obtained. 

In[17]:= Collect@t, f@_D, FactorD

Out[17]= 3 + x H1 + xL f@1D + Hy + zL f@2D2

HornerForm@expr,xD puts expr into Horner form with respect to x

Horner form. 

Horner  form  is  a  way  of  arranging  a  polynomial  that  allows  numerical  values  to  be  computed

more efficiently by minimizing the number of multiplications.

This gives the Horner form of a polynomial.

In[18]:= HornerForm@1 + 2 x + 3 x^2 + 4 x^3, xD

Out[18]= 1 + x H2 + x H3 + 4 xLL

Finding the Structure of a Polynomial

PolynomialQ@expr,xD test whether expr is a polynomial in x

PolynomialQ@expr,8x1,x2,…<D test whether expr is a polynomial in the xi

Variables@polyD a list of the variables in poly

Exponent@poly,xD the maximum exponent with which x appears in poly

Coefficient@poly,exprD the coefficient of expr in poly

Coefficient@poly,expr,nD the coefficient of exprn in poly

Coefficient@poly,expr,0D the term in poly independent of expr

CoefficientList@poly,8x1,x2,…<D generate an array of the coefficients of the xi in poly

CoefficientRules@poly,8x1,x2,…<D get exponent vectors and coefficients of monomials

Finding the structure of polynomials written in expanded form. 

Here is a polynomial in two variables. 

In[1]:= t = H1 + xL^3 H1 - y - xL^2

Out[1]= H1 + xL3 H1 - x - yL2

This is the polynomial in expanded form. 

58     Mathematics and Algorithms



This is the polynomial in expanded form. 

In[2]:= Expand@tD

Out[2]= 1 + x - 2 x2 - 2 x3 + x4 + x5 - 2 y - 4 x y + 4 x3 y + 2 x4 y + y2 + 3 x y2 + 3 x2 y2 + x3 y2

PolynomialQ  reports that t is a polynomial in x. 

In[3]:= PolynomialQ@t, xD

Out[3]= True

This expression, however, is not a polynomial in x. 

In[4]:= PolynomialQ@x + Sin@xD, xD

Out[4]= False

Variables gives a list of the variables in the polynomial t. 

In[5]:= Variables@tD

Out[5]= 8x, y<

This gives the maximum exponent with which x appears in the polynomial t. For a polynomial 
in one variable, Exponent gives the degree of the polynomial. 

In[6]:= Exponent@t, xD

Out[6]= 5

Coefficient@poly, exprD gives the total coefficient with which expr appears in poly. In this 
case, the result is a sum of two terms. 

In[7]:= Coefficient@t, x^2D

Out[7]= -2 + 3 y2

This is equivalent to Coefficient@t, x^2D. 

In[8]:= Coefficient@t, x, 2D

Out[8]= -2 + 3 y2

This picks out the coefficient of x0 in t. 

In[9]:= Coefficient@t, x, 0D

Out[9]= 1 - 2 y + y2

Mathematics and Algorithms     59



CoefficientList gives a list of the coefficients of each power of x, starting with x0. 
In[10]:= CoefficientList@1 + 3 x^2 + 4 x^4, xD

Out[10]= 81, 0, 3, 0, 4<

For multivariate polynomials, CoefficientList gives an array of the coefficients for each 
power of each variable. 

In[11]:= CoefficientList@t, 8x, y<D

Out[11]= 881, -2, 1<, 81, -4, 3<, 8-2, 0, 3<, 8-2, 4, 1<, 81, 2, 0<, 81, 0, 0<<

CoefficientRules includes only those monomials that have nonzero coefficients.

In[12]:= CoefficientRules@t, 8x, y<D

Out[12]= 885, 0< Ø 1, 84, 1< Ø 2, 84, 0< Ø 1, 83, 2< Ø 1, 83, 1< Ø 4, 83, 0< Ø -2, 82, 2< Ø 3,
82, 0< Ø -2, 81, 2< Ø 3, 81, 1< Ø -4, 81, 0< Ø 1, 80, 2< Ø 1, 80, 1< Ø -2, 80, 0< Ø 1<

It  is  important to notice that the functions in this tutorial  will  often work even on polynomials

that are not explicitly given in expanded form. 

Many of the functions also work on expressions that are not strictly polynomials. 

Without giving specific integer values to a, b and c, this expression cannot strictly be consid-
ered a polynomial. 

In[13]:= x^a + x^b + y^c

Out[13]= xa + xb + yc

Exponent@expr, xD still gives the maximum exponent of x in expr, but here has to write the 
result in symbolic form. 

In[14]:= Exponent@%, xD

Out[14]= Max@0, a, bD

Structural Operations on Rational Expressions

For  ordinary  polynomials,  Factor  and  Expand  give  the  most  important  forms.  For  rational

expressions, there are many different forms that can be useful. 

60     Mathematics and Algorithms



ExpandNumerator@exprD expand numerators only

ExpandDenominator@exprD expand denominators only

Expand@exprD expand numerators, dividing the denominator into each 
term

ExpandAll@exprD expand numerators and denominators completely

Different kinds of expansion for rational expressions. 

Here is a rational expression. 

In[1]:= t = H1 + xL^2 ê H1 - xL + 3 x^2 ê H1 + xL^2 + H2 - xL^2

Out[1]= H2 - xL2 +
3 x2

H1 + xL2
+

H1 + xL2

1 - x

ExpandNumerator writes the numerator of each term in expanded form. 

In[2]:= ExpandNumerator@tD

Out[2]= 4 - 4 x + x2 +
3 x2

H1 + xL2
+
1 + 2 x + x2

1 - x

Expand expands the numerator of each term, and divides all the terms by the appropriate 
denominators. 

In[3]:= Expand@tD

Out[3]= 4 +
1

1 - x
- 4 x +

2 x

1 - x
+ x2 +

x2

1 - x
+

3 x2

H1 + xL2

ExpandDenominator expands out the denominator of each term. 

In[4]:= ExpandDenominator@tD

Out[4]= H2 - xL2 +
H1 + xL2

1 - x
+

3 x2

1 + 2 x + x2

ExpandAll does all possible expansions in the numerator and denominator of each term. 

In[5]:= ExpandAll@tD

Out[5]= 4 +
1

1 - x
- 4 x +

2 x

1 - x
+ x2 +

x2

1 - x
+

3 x2

1 + 2 x + x2

ExpandAllAexpr,pattE ,  etc. avoid expanding parts which contain no terms matching patt

Controlling expansion. 

This avoids expanding the term which does not contain z. 

Mathematics and Algorithms     61



This avoids expanding the term which does not contain z. 

In[6]:= ExpandAll@Hx + 1L^2 ê y^2 + Hz + 1L^2 ê z^2, zD

Out[6]= 1 +
H1 + xL2

y2
+

1

z2
+
2

z

Together@exprD combine all terms over a common denominator

Apart@exprD write an expression as a sum of terms with simple 
denominators

Cancel@exprD cancel common factors between numerators and 
denominators

Factor@exprD perform a complete factoring

Structural operations on rational expressions. 

Here is a rational expression. 

In[7]:= u = H-4 x + x^2L ê H-x + x^2L + H-4 + 3 x + x^2L ê H-1 + x^2L

Out[7]= 
-4 x + x2

-x + x2
+

-4 + 3 x + x2

-1 + x2

Together puts all terms over a common denominator. 

In[8]:= Together@uD

Out[8]= 
2 I-4 + x2M

H-1 + xL H1 + xL

You can use Factor to factor the numerator and denominator of the resulting expression. 

In[9]:= Factor@%D

Out[9]= 
2 H-2 + xL H2 + xL

H-1 + xL H1 + xL

Apart writes the expression as a sum of terms, with each term having as simple a denomina-
tor as possible. 

In[10]:= Apart@uD

Out[10]= 2 -
3

-1 + x
+

3

1 + x

62     Mathematics and Algorithms



Cancel cancels any common factors between numerators and denominators. 

In[11]:= Cancel@uD

Out[11]= 
-4 + x

-1 + x
+
4 + x

1 + x

Factor first puts all terms over a common denominator, then factors the result. 

In[12]:= Factor@%D

Out[12]= 
2 H-2 + xL H2 + xL

H-1 + xL H1 + xL

In mathematical terms, Apart decomposes a rational expression into "partial fractions". 

In expressions with several variables, you can use Apart@expr, varD to do partial fraction decom-

positions with respect to different variables. 

Here is a rational expression in two variables. 

In[13]:= v = Hx^2 + y^2L ê Hx + x yL

Out[13]= 
x2 + y2

x + x y

This gives the partial fraction decomposition with respect to x. 

In[14]:= Apart@v, xD

Out[14]= 
x

1 + y
+

y2

x H1 + yL

Here is the partial fraction decomposition with respect to y. 

In[15]:= Apart@v, yD

Out[15]= -
1

x
+
y

x
+

1 + x2

x H1 + yL

Algebraic Operations on Polynomials

For many kinds of practical calculations, the only operations you will need to perform on polyno-

mials are essentially the structural ones already discussed. 

If you do more advanced algebra with polynomials, however, you will have to use the algebraic

operations discussed in this tutorial.

You should realize that most of the operations discussed in this tutorial  work only on ordinary

polynomials, with integer exponents and rational-number coefficients for each term.

Mathematics and Algorithms     63



You should realize that most of the operations discussed in this tutorial  work only on ordinary

polynomials, with integer exponents and rational-number coefficients for each term.

PolynomialQuotient@poly1,poly2,xD find the result of dividing the polynomial poly1 in x by poly2, 
dropping any remainder term

PolynomialRemainder@
poly1,poly2,xD

find the remainder from dividing the polynomial poly1 in x 
by poly2

PolynomialQuotientRemainder@poly1,poly2,xD

give the quotient and remainder in a list

PolynomialMod@poly,mD reduce the polynomial poly modulo m

PolynomialGCD@poly1,poly2D find the greatest common divisor of two polynomials

PolynomialLCM@poly1,poly2D find the least common multiple of two polynomials

PolynomialExtendedGCD@
poly1,poly2D

find the extended greatest common divisor of two 
polynomials

Resultant@poly1,poly2,xD find the resultant of two polynomials

Subresultants@poly1,poly2,xD find the principal subresultant coefficients of two 
polynomials

Discriminant@poly,xD find the discriminant of the polynomial poly

GroebnerBasis@8poly1,poly2,…<,8x1,x2,…<D

find the Gröbner basis for the polynomials polyi

GroebnerBasis@8poly1,poly2,…<,8x1,x2,…<,8y1,y2,…<D

find the Gröbner basis eliminating the yi

PolynomialReduce@poly,8poly1,poly2,…<,8x1,x2,…<D

find a minimal representation of poly in terms of the polyi

Reduction of polynomials. 

Given  two  polynomials  pHxL  and  qHxL,  one  can  always  uniquely  write  pHxL
qHxL

= aHxL + bHxL
qHxL

,  where  the

degree of bHxL  is less than the degree of qHxL. PolynomialQuotient  gives the quotient aHxL, and

PolynomialRemainder gives the remainder bHxL. 

This gives the remainder from dividing x2 by 1 + x. 
In[1]:= PolynomialRemainder@x^2, x + 1, xD

Out[1]= 1

64     Mathematics and Algorithms



Here is the quotient of x2 and x + 1, with the remainder dropped. 

In[2]:= PolynomialQuotient@x^2, x + 1, xD

Out[2]= -1 + x

This gives back the original expression. 

In[3]:= Simplify@Hx + 1L % + %%D

Out[3]= x2

Here the result depends on whether the polynomials are considered to be in x or y. 

In[4]:= 8PolynomialRemainder@x + y, x - y, xD, PolynomialRemainder@x + y, x - y, yD<

Out[4]= 82 y, 2 x<

PolynomialMod  is essentially the analog for polynomials of the function Mod for integers. When

the  modulus  m  is  an  integer,  PolynomialMod@poly, mD  simply  reduces  each  coefficient  in  poly

modulo the integer m. If m is a polynomial, then PolynomialMod@poly, mD effectively tries to get

a polynomial with as low a degree as possible by subtracting from poly appropriate multiples q m

of m. The multiplier q can itself be a polynomial, but its degree is always less than the degree of

poly. PolynomialMod  yields a final polynomial whose degree and leading coefficient are both as

small as possible. 

This reduces x2 modulo x + 1. The result is simply the remainder from dividing the polynomials. 

In[5]:= PolynomialMod@x^2, x + 1D

Out[5]= 1

In this case, PolynomialMod and PolynomialRemainder do not give the same result. 

In[6]:= 8PolynomialMod@x^2, a x + 1D, PolynomialRemainder@x^2, a x + 1, xD<

Out[6]= :x2,
1

a2
>

The  main  difference  between  PolynomialMod  and  PolynomialRemainder  is  that  while  the

former  works  simply  by  multiplying  and  subtracting  polynomials,  the  latter  uses  division  in

getting its results. In addition, PolynomialMod  allows reduction by several moduli at the same

time. A typical case is reduction modulo both a polynomial and an integer. 

Mathematics and Algorithms     65



This reduces the polynomial x2 + 1 modulo both x + 1 and 2. 

In[7]:= PolynomialMod@x^2 + 1, 8x + 1, 2<D

Out[7]= 0

PolynomialGCD@poly1, poly2D  finds the highest  degree polynomial  that  divides the polyi  exactly.

It gives the analog for polynomials of the integer function GCD.

PolynomialGCD gives the greatest common divisor of the two polynomials. 

In[8]:= PolynomialGCD@H1 - xL^2 H1 + xL H2 + xL, H1 - xL H2 + xL H3 + xLD

Out[8]= H-1 + xL H2 + xL

PolynomialExtendedGCD gives the extended greatest common divisor of the two polynomi-
als. 

In[9]:= 8g, 8r, s<< = PolynomialExtendedGCD@x^3 + 2 x^2 - x + 1, x^4 + x + 2, xD

Out[9]= :1, :
29

215
-
26 x

215
-
23 x2

215
+
21 x3

215
,

93

215
-
19 x

215
-
21 x2

215
>>

The returned polynomials r and s can be used to represent the GCD in terms of the original 
polynomials.

In[10]:= r Hx^3 + 2 x^2 - x + 1L + s Hx^4 + x + 2L êê Expand

Out[10]= 1

The  function  Resultant@poly1, poly2, xD  is  used  in  a  number  of  classical  algebraic  algorithms.

The  resultant  of  two  polynomials  a  and  b,  both  with  leading  coefficient  one,  is  given  by  the

product of all  the differences ai - b j  between the roots of the polynomials. It  turns out that for

any pair of polynomials, the resultant is always a polynomial in their coefficients. By looking at

when  the  resultant  is  zero,  you  can  tell  for  what  values  of  their  parameters  two  polynomials

have  a  common  root.  Two  polynomials  with  leading  coefficient  one  have  k  common  roots  if

exactly the first k elements in the list Subresultants@poly1, poly2, xD are zero. 

Here is the resultant with respect to y of two polynomials in x and y. The original polynomials 
have a common root in y only for values of x at which the resultant vanishes. 

In[11]:= Resultant@Hx - yL^2 - 2, y^2 - 3, yD

Out[11]= 1 - 10 x2 + x4

The function Discriminant@poly, xD is the product of the squares of the differences of its roots.

It can be used to determine whether the polynomial has any repeated roots. The discriminant is

equal  to  the  resultant  of  the  polynomial  and  its  derivative,  up  to  a  factor  independent  of  the

variable. 

66     Mathematics and Algorithms



The function Discriminant@poly, xD is the product of the squares of the differences of its roots.

It can be used to determine whether the polynomial has any repeated roots. The discriminant is

equal  to  the  resultant  of  the  polynomial  and  its  derivative,  up  to  a  factor  independent  of  the

variable. 

This polynomial has a repeated root, so its discriminant vanishes. 

In[12]:= Discriminant@Hx - 1L^2, xD

Out[12]= 0

This polynomial has distinct roots, so its discriminant is nonzero. 

In[13]:= Discriminant@x^4 - 1, xD

Out[13]= -256

Gröbner  bases  appear  in  many  modern  algebraic  algorithms  and  applications.  The  function

GroebnerBasis@8poly1, poly2, …<, 8x1, x2, …<D takes a set of polynomials, and reduces this set

to  a  canonical  form  from  which  many  properties  can  conveniently  be  deduced.  An  important

feature  is  that  the  set  of  polynomials  obtained  from  GroebnerBasis  always  has  exactly  the

same collection of common roots as the original set.

The Hx + yL2 is effectively redundant, and so does not appear in the Gröbner basis. 

In[14]:= GroebnerBasis@8Hx + yL, Hx + yL^2<, 8x, y<D

Out[14]= 8x + y<

The polynomial 1 has no roots, showing that the original polynomials have no common roots. 

In[15]:= GroebnerBasis@8x + y, x^2 - 1, y^2 - 2 x<, 8x, y<D

Out[15]= 81<

The polynomials are effectively unwound here, and can now be seen to have exactly five com-
mon roots. 

In[16]:= GroebnerBasis@8x y^2 + 2 x y + x^2 + 1, x y + y^2 + 1<, 8x, y<D

Out[16]= 9-1 - y2 + y3 + y4 + y5, x + y2 + y3 + y4=

PolynomialReduce@poly, 8p1, p2, …<, 8x1, x2, …<D  yields  a  list  88a1, a2, …<, b<  of  polynomials

with the property that b is minimal and a1 p1 + a2 p2 + … + b is exactly poly.

Mathematics and Algorithms     67



This writes x2 + y2 in terms of x - y and y + a, leaving a remainder that depends only on a. 
In[17]:= PolynomialReduce@x^2 + y^2, 8x - y, y + a<, 8x, y<D

Out[17]= 98x + y, -2 a + 2 y<, 2 a2=

Factor@polyD factor a polynomial

FactorSquareFree@polyD write a polynomial as a product of powers of square-free 
factors

FactorTerms@poly,xD factor out terms that do not depend on x

FactorList@polyD , FactorSquareFreeList@polyD , FactorTermsList@polyD

give results as lists of factors

Functions for factoring polynomials. 

Factor, FactorTerms  and FactorSquareFree perform various degrees of factoring on polynomi-

als.  Factor  does  full  factoring  over  the  integers.  FactorTerms  extracts  the  "content"  of  the

polynomial. FactorSquareFree pulls out any multiple factors that appear. 

Here is a polynomial, in expanded form. 

In[18]:= t = Expand@2 H1 + xL^2 H2 + xL H3 + xLD

Out[18]= 12 + 34 x + 34 x2 + 14 x3 + 2 x4

FactorTerms  pulls out only the factor of 2 that does not depend on x. 

In[19]:= FactorTerms@t, xD

Out[19]= 2 I6 + 17 x + 17 x2 + 7 x3 + x4M

FactorSquareFree factors out the 2 and the term H1 + xL^2, but leaves the rest unfactored. 

In[20]:= FactorSquareFree@tD

Out[20]= 2 H1 + xL2 I6 + 5 x + x2M

Factor does full factoring, recovering the original form. 

In[21]:= Factor@tD

Out[21]= 2 H1 + xL2 H2 + xL H3 + xL

Particularly when you write programs that work with polynomials,  you will  often find it  conve-

nient to pick out pieces of polynomials in a standard form. The function FactorList  gives a list

of all the factors of a polynomial, together with their exponents. The first element of the list is

always the overall numerical factor for the polynomial.

The  form  that  FactorList  returns  is  the  analog  for  polynomials  of  the  form  produced  by

FactorInteger for integers. 

68     Mathematics and Algorithms



The  form  that  FactorList  returns  is  the  analog  for  polynomials  of  the  form  produced  by

FactorInteger for integers. 

Here is a list of the factors of the polynomial in the previous set of examples. Each element of 
the list gives the factor, together with its exponent. 

In[22]:= FactorList@tD

Out[22]= 882, 1<, 81 + x, 2<, 82 + x, 1<, 83 + x, 1<<

FactorApoly,GaussianIntegers->TrueE

factor a polynomial, allowing coefficients that are Gaussian 
integers

Factoring polynomials with complex coefficients. 

Factor  and related functions usually handle only polynomials with ordinary integer or rational-

number  coefficients.  If  you  set  the  option  GaussianIntegers -> True,  however,  then  Factor

will allow polynomials with coefficients that are complex numbers with rational real and imagi-

nary parts. This often allows more extensive factorization to be performed. 

This polynomial is irreducible when only ordinary integers are allowed. 

In[23]:= Factor@1 + x^2D

Out[23]= 1 + x2

When Gaussian integer coefficients are allowed, the polynomial factors. 

In[24]:= Factor@1 + x^2, GaussianIntegers -> TrueD

Out[24]= H-Â + xL HÂ + xL

IrreduciblePolynomialQ@polyD test whether poly is an irreducible polynomial over the 
rationals

IrreduciblePolynomialQApoly,
GaussianIntegersØTrueE

test whether poly is irreducible over the Gaussian rationals

IrreduciblePolynomialQA
poly,ExtensionØAutomaticE

test irreducibility over the rationals extended by the 
algebraic number coefficients of poly

Irreducibility testing.

Mathematics and Algorithms     69



A polynomial is irreducible over a field F if it cannot be represented as a product of two noncon-

stant polynomials with coefficients in F. 

This polynomial is irreducible over the rationals. 

In[25]:= IrreduciblePolynomialQ@x^2 + 4D

Out[25]= True

Over the Gaussian rationals, the polynomial is reducible. 

In[26]:= IrreduciblePolynomialQ@x^2 + 4, GaussianIntegers -> TrueD

Out[26]= False

By default, algebraic numbers are treated as independent variables. 

In[27]:= IrreduciblePolynomialQ@x^2 + 2 Sqrt@2D x + 2D

Out[27]= True

Over the rationals extended by Sqrt@2D, the polynomial is reducible. 

In[28]:= IrreduciblePolynomialQ@x^2 + 2 Sqrt@2D x + 2, Extension Ø AutomaticD

Out[28]= False

Cyclotomic@n,xD give the cyclotomic polynomial of order n in x

Cyclotomic polynomials. 

Cyclotomic polynomials  arise as "elementary polynomials"  in various algebraic  algorithms. The

cyclotomic  polynomials  are  defined  by  CnHxL =¤k Ix - e2 p i kênM,  where  k  runs  over  all  positive  inte-

gers less than n that are relatively prime to n.

This is the cyclotomic polynomial C6 HxL. 

In[29]:= Cyclotomic@6, xD

Out[29]= 1 - x + x2

C6HxL appears in the factors of x6 - 1. 

In[30]:= Factor@x^6 - 1D

Out[30]= H-1 + xL H1 + xL I1 - x + x2M I1 + x + x2M

70     Mathematics and Algorithms



Decompose@poly,xD decompose poly, if possible, into a composition of a list of 
simpler polynomials

Decomposing polynomials. 

Factorization  is  one  important  way  of  breaking  down  polynomials  into  simpler  parts.  Another,

quite  different,  way  is  decomposition.  When  you  factor  a  polynomial  PHxL,  you  write  it  as  a

product p1HxL p2HxL ... of polynomials piHxL. Decomposing a polynomial QHxL consists of writing it as

a composition of polynomials of the form q1Hq2H ... HxL ...LL.

Here is a simple example of Decompose. The original polynomial x4 + x2 + 1 can be written as 
the polynomial x2 + x + 1, where x is the polynomial x2. 

In[31]:= Decompose@x^4 + x^2 + 1, xD

Out[31]= 91 + x + x2, x2=

Here are two polynomial functions. 

In[32]:= Hq1@x_D = 1 - 2 x + x^4; q2@x_D = 5 x + x^3;L

This gives the composition of the two functions. 

In[33]:= Expand@q1@q2@xDDD

Out[33]= 1 - 10 x - 2 x3 + 625 x4 + 500 x6 + 150 x8 + 20 x10 + x12

Decompose recovers the original functions. 

In[34]:= Decompose@%, xD

Out[34]= 91 - 2 x + x4, 5 x + x3=

Decompose@poly, xD  is  set  up  to  give  a  list  of  polynomials  in  x,  which,  if  composed,  reproduce

the  original  polynomial.  The  original  polynomial  can  contain  variables  other  than  x,  but  the

sequence  of  polynomials  that  Decompose  produces  are  all  intended  to  be  considered  as  func-

tions of x. 

Unlike factoring,  the decomposition of  polynomials  is  not  completely  unique.  For  example,  the

two  sets  of  polynomials  pi  and  qi,  related  by  q1HxL = p1Hx - aL  and  q2HxL = p2HxL + a  give  the  same

result on composition, so that p1Hp2HxLL = q1Hq2HxLL. Mathematica follows the convention of absorb-

ing any constant terms into the first polynomial in the list produced by Decompose. 

Mathematics and Algorithms     71



InterpolatingPolynomial@8 f1, f2,…<,xD

give a polynomial in x which is equal to fi when x is the 
integer i

InterpolatingPolynomial@88x1, f1<,8x2, f2<,…<,xD

give a polynomial in x which is equal to fi when x is xi

Generating interpolating polynomials. 

This yields a quadratic polynomial which goes through the specified three points. 

In[35]:= InterpolatingPolynomial@88-1, 4<, 80, 2<, 81, 6<<, xD

Out[35]= 4 + H1 + xL H-2 + 3 xL

When x is 0, the polynomial has value 2. 

In[36]:= % ê. x -> 0

Out[36]= 2

Polynomials Modulo Primes

Mathematica  can work with polynomials whose coefficients are in the finite field Zp  of  integers

modulo a prime p.

PolynomialMod@poly,pD reduce the coefficients in a polynomial modulo p

ExpandApoly,Modulus->pE expand poly modulo p

FactorApoly,Modulus->pE factor poly modulo p

PolynomialGCDApoly1,poly2,Modulus->pE

find the GCD of the polyi modulo p

GroebnerBasisApolys,vars,Modulus->pE

find the Gröbner basis modulo p

Functions for manipulating polynomials over finite fields. 

Here is an ordinary polynomial. 

In[1]:= Expand@H1 + xL^6D

Out[1]= 1 + 6 x + 15 x2 + 20 x3 + 15 x4 + 6 x5 + x6

72     Mathematics and Algorithms



This reduces the coefficients modulo 2. 

In[2]:= PolynomialMod@%, 2D

Out[2]= 1 + x2 + x4 + x6

Here are the factors of the resulting polynomial over the integers. 

In[3]:= Factor@%D

Out[3]= I1 + x2M I1 + x4M

If you work modulo 2, further factoring becomes possible. 

In[4]:= Factor@%, Modulus -> 2D

Out[4]= H1 + xL6

Symmetric Polynomials

A  symmetric  polynomial  in  variables  x1, …, xn  is  a  polynomial  that  is  invariant  under  arbitrary

permutations of x1, …, xn. Polynomials

s1 = x1 + x2 + … + xn
s2 = x1 x2 + x1 x3 + … + xn-1 xn
…
sn = x1 x2 … xn

are called elementary symmetric polynomials in variables x1, …, xn.

The  fundamental  theorem of  symmetric  polynomials  says  that  every  symmetric  polynomial  in

x1, …, xn can be represented as a polynomial in elementary symmetric polynomials in x1, …, xn.

When the ordering of variables is fixed, an arbitrary polynomial f  can be uniquely represented

as a sum of a symmetric polynomial p, called the symmetric part of f , and a remainder q that

does  not  contain  descending  monomials.  A  monomial  c x1
e1 … xnen  is  called  descending  iff

e1 ¥ … ¥ en. 

Mathematics and Algorithms     73



SymmetricPolynomial@
k,8x1,…,xn<D

give the kth elementary symmetric polynomial in the 
variables x1, …, xn

SymmetricReduction@ f,8x1,…,xn<D give a pair of polynomials 8p, q< in x1, …, xn such that 
f == p + q, where p is the symmetric part and q is the 
remainder

SymmetricReduction@ f,8x1,…,xn<,8s1,…,sn<D

give the pair 8p, q< with the elementary symmetric polynomi -
als in p replaced by s1, …, sn

Functions for symmetric polynomial computations.

Here is the elementary symmetric polynomial of degree three in four variables. 

In[1]:= SymmetricPolynomial@3, 8x, y, z, t<D

Out[1]= t x y + t x z + t y z + x y z

This writes the polynomial Hx + yL2 + Hx + zL2 + Hz + yL2 in terms of elementary symmetric polynomi-
als. The input polynomial is symmetric, so the remainder is zero. 

In[2]:= SymmetricReductionAHx + yL2 + Hx + zL2 + Hz + yL2, 8x, y, z<E

Out[2]= 92 Hx + y + zL2 - 2 Hx y + x z + y zL, 0=

Here the elementary symmetric polynomials in the symmetric part are replaced with variables 
s1, s2, s3. The polynomial is not symmetric, so the remainder is not zero.

In[3]:= SymmetricReductionAx5 + y5 + z4, 8x, y, z<, 8s1, s2, s3<E

Out[3]= :s1
5 - 5 s1

3 s2 + 5 s1 s2
2 + 5 s1

2 s3 - 5 s2 s3, z4 - z5>

SymmetricReduction can be applied to polynomials with symbolic coefficients.

In[4]:= SymmetricReductionAx5 + y5 + z4 + a x4 + b y4 + c z5, 8x, y, z<, 8s1, s2, s3<E

Out[4]= :a s1
4 + s1

5 - 4 a s1
2 s2 - 5 s1

3 s2 + 2 a s2
2 + 5 s1 s2

2 + 4 a s1 s3 + 5 s1
2 s3 - 5 s2 s3, H-a + bL y4 + H1 - aL z4 + H-1 + cL z5>

Polynomials over Algebraic Number Fields

Functions like Factor usually assume that all coefficients in the polynomials they produce must

involve only rational numbers. But by setting the option Extension you can extend the domain

of coefficients that will be allowed. 

74     Mathematics and Algorithms



FactorApoly,Extension->9a1,a2,…=E

factor poly allowing coefficients that are rational combina -
tions of the ai

Factoring polynomials over algebraic number fields. 

Allowing only rational number coefficients, this polynomial cannot be factored. 

In[1]:= Factor@1 + x^4D

Out[1]= 1 + x4

With coefficients that can involve 2 , the polynomial can now be factored. 
In[2]:= Factor@1 + x^4, Extension -> 8Sqrt@2D<D

Out[2]= - -1 + 2 x - x2 1 + 2 x + x2

The polynomial can also be factored if one allows coefficients involving -1 . 
In[3]:= Factor@1 + x^4, Extension -> 8Sqrt@-1D<D

Out[3]= I-Â + x2M IÂ + x2M

GaussianIntegers -> True is equivalent to Extension -> Sqrt@-1D. 

In[4]:= Factor@1 + x^4, GaussianIntegers -> TrueD

Out[4]= I-Â + x2M IÂ + x2M

If one allows coefficients that involve both 2  and -1  the polynomial can be factored com-
pletely. 

In[5]:= Factor@1 + x^4, Extension -> 8Sqrt@2D, Sqrt@-1D<D

Out[5]= 
1

4
2 - H1 + ÂL x 2 - H1 - ÂL x 2 + H1 - ÂL x 2 + H1 + ÂL x

Expand gives the original polynomial back again. 

In[6]:= Expand@%D

Out[6]= 1 + x4

Mathematics and Algorithms     75



FactorApoly,Extension->AutomaticE

factor poly allowing algebraic numbers in poly to appear in 
coefficients

Factoring polynomials with algebraic number coefficients. 

Here is a polynomial with a coefficient involving 2 . 
In[7]:= t = Expand@HSqrt@2D + xL^2D

Out[7]= 2 + 2 2 x + x2

By default, Factor will not factor this polynomial. 

In[8]:= Factor@tD

Out[8]= 2 + 2 2 x + x2

But now the field of coefficients is extended by including 2 , and the polynomial is factored. 
In[9]:= Factor@t, Extension -> AutomaticD

Out[9]= 2 + x
2

Other  polynomial  functions  work  much  like  Factor.  By  default,  they  treat  algebraic  number

coefficients  just  like  independent  symbolic  variables.  But  with  the  option

Extension -> Automatic they perform operations on these coefficients. 

By default, Cancel does not reduce these polynomials.

In[10]:= Cancel@t ê Hx^2 - 2LD

Out[10]= 
2 + 2 2 x + x2

-2 + x2

But now it does. 

In[11]:= Cancel@t ê Hx^2 - 2L, Extension -> AutomaticD

Out[11]= 
- 2 - x

2 - x

By default, PolynomialLCM pulls out no common factors.

In[12]:= PolynomialLCM@t, x^2 - 2D

Out[12]= I-2 + x2M 2 + 2 2 x + x2

But now it does. 

76     Mathematics and Algorithms



But now it does. 

In[13]:= PolynomialLCM@t, x^2 - 2, Extension -> AutomaticD

Out[13]= -2 2 - 2 x + 2 x2 + x3

IrreduciblePolynomialQA
poly,ExtensionØAutomaticE

test whether poly is an irreducible polynomial over the 
rationals extended by the coefficients of poly

IrreduciblePolynomialQA
poly,Extension->8a1,a2,…<E

test whether poly is irreducible over the rationals extended 
by the coefficients of poly and by a1, a2, …

IrreduciblePolynomialQA
poly,ExtensionØAllE

test irreducibility over the field of all complex numbers

Irreducibility testing.

A polynomial is irreducible over a field F if it cannot be represented as a product of two noncon-

stant polynomials with coefficients in F. 

By default, algebraic numbers are treated as independent variables. 

In[14]:= IrreduciblePolynomialQ@x^2 + 2 Sqrt@2D x + 2D

Out[14]= True

Over the rationals extended by Sqrt@2D, the polynomial is reducible. 

In[15]:= IrreduciblePolynomialQ@x^2 + 2 Sqrt@2D x + 2, Extension Ø AutomaticD

Out[15]= False

This polynomial is irreducible over the rationals. 

In[16]:= IrreduciblePolynomialQ@x^2 - 3D

Out[16]= True

Over the rationals extended by Sqrt@3D, the polynomial is reducible. 

In[17]:= IrreduciblePolynomialQ@x^2 - 3, Extension Ø 8Sqrt@3D<D

Out[17]= False

This polynomial is irreducible over the field of all complex numbers. 

In[18]:= IrreduciblePolynomialQ@x^3 - 5 x y + 7, Extension Ø AllD

Out[18]= True

Trigonometric Expressions

Mathematics and Algorithms     77



Trigonometric Expressions

TrigExpand@exprD expand trigonometric expressions out into a sum of terms

TrigFactor@exprD factor trigonometric expressions into products of terms

TrigFactorList@exprD give terms and their exponents in a list

TrigReduce@exprD reduce trigonometric expressions using multiple angles

Functions for manipulating trigonometric expressions. 

This expands out a trigonometric expression. 

In[1]:= TrigExpand@Sin@2 xD Cos@2 yDD

Out[1]= 2 Cos@xD Cos@yD2 Sin@xD - 2 Cos@xD Sin@xD Sin@yD2

This factors the expression. 

In[2]:= TrigFactor@%D

Out[2]= 4 Cos@xD Sin@xD SinB
p

4
- yF SinB

p

4
+ yF

And this reduces the expression to a form that is linear in the trigonometric functions. 

In[3]:= TrigReduce@%D

Out[3]=
1

2
HSin@2 x - 2 yD + Sin@2 x + 2 yDL

TrigExpand works on hyperbolic as well as circular functions. 

In[4]:= TrigExpand@Tanh@x + yDD

Out[4]=
Cosh@yD Sinh@xD

Cosh@xD Cosh@yD + Sinh@xD Sinh@yD
+

Cosh@xD Sinh@yD

Cosh@xD Cosh@yD + Sinh@xD Sinh@yD

TrigReduce reproduces the original form again. 

In[5]:= TrigReduce@%D

Out[5]= Tanh@x + yD

Mathematica automatically uses functions like Tan whenever it can. 

In[6]:= Sin@xD^2 ê Cos@xD

Out[6]= Sin@xD Tan@xD

With TrigFactorList, however, you can see the parts of functions like Tan. 

78     Mathematics and Algorithms



With TrigFactorList, however, you can see the parts of functions like Tan. 

In[7]:= TrigFactorList@%D

Out[7]= 881, 1<, 8Sin@xD, 2<, 8Cos@xD, -1<<

TrigToExp@exprD write trigonometric functions in terms of exponentials

ExpToTrig@exprD write exponentials in terms of trigonometric functions

Converting to and from exponentials. 

TrigToExp writes trigonometric functions in terms of exponentials. 

In[8]:= TrigToExp@Tan@xDD

Out[8]=
Â I‰-Â x - ‰Â xM

‰-Â x + ‰Â x

TrigToExp also works with hyperbolic functions. 

In[9]:= TrigToExp@Tanh@xDD

Out[9]=
-‰-x + ‰x

‰-x + ‰x

ExpToTrig does the reverse, getting rid of explicit complex numbers whenever possible. 

In[10]:= ExpToTrig@%D

Out[10]= Tanh@xD

ExpToTrig deals with hyperbolic as well as circular functions. 

In[11]:= ExpToTrig@Exp@xD - Exp@-xDD

Out[11]= 2 Sinh@xD

You can also use ExpToTrig on purely numerical expressions.

In[12]:= ExpToTrig@H-1L^H1 ê 17LD

Out[12]= CosB
p

17
F + Â SinB

p

17
F

Mathematics and Algorithms     79



Expressions Involving Complex Variables

Mathematica  usually  pays  no  attention  to  whether  variables  like  x  stand  for  real  or  complex

numbers. Sometimes, however, you may want to make transformations which are appropriate

only if particular variables are assumed to be either real or complex. 

The  function  ComplexExpand  expands  out  algebraic  and  trigonometric  expressions,  making

definite assumptions about the variables that appear. 

ComplexExpand@exprD expand expr assuming that all variables are real

ComplexExpand@expr,8x1,x2,…<D

expand expr assuming that the xi are complex

Expanding complex expressions. 

This expands the expression, assuming that x and y are both real. 

In[1]:= ComplexExpand@Tan@x + I yDD

Out[1]= 
Sin@2 xD

Cos@2 xD + Cosh@2 yD
+

Â Sinh@2 yD

Cos@2 xD + Cosh@2 yD

In this case, a is assumed to be real, but x is assumed to be complex, and is broken into 
explicit real and imaginary parts. 

In[2]:= ComplexExpand@a + x^2, 8x<D

Out[2]= a - Im@xD2 + 2 Â Im@xD Re@xD + Re@xD2

With several complex variables, you quickly get quite complicated results. 

In[3]:= ComplexExpand@Sin@xD Exp@yD, 8x, y<D

Out[3]= ‰Re@yD Cos@Im@yDD Cosh@Im@xDD Sin@Re@xDD - ‰Re@yD Cos@Re@xDD Sin@Im@yDD Sinh@Im@xDD +
Â I‰Re@yD Cosh@Im@xDD Sin@Im@yDD Sin@Re@xDD + ‰Re@yD Cos@Im@yDD Cos@Re@xDD Sinh@Im@xDDM

There are several ways to write a complex variable z in terms of real parameters. As above, for

example,  z  can  be  written  in  the  "Cartesian  form"  Re@zD + I Im@zD.  But  it  can  equally  well  be

written in the "polar form" Abs@zD Exp@I Arg@zDD. 

The  option  TargetFunctions  in  ComplexExpand  allows  you  to  specify  how  complex  variables

should  be  written.  TargetFunctions  can  be  set  to  a  list  of  functions  from  the  set 

8Re, Im, Abs, Arg, Conjugate, Sign<.  ComplexExpand  will  try  to  give  results  in  terms  of

whichever of these functions you request. The default is typically to give results in terms of Re

and Im. 

80     Mathematics and Algorithms



The  option  TargetFunctions  in  ComplexExpand  allows  you  to  specify  how  complex  variables

8Re, Im, Abs, Arg, Conjugate, Sign<.  ComplexExpand  will  try  to  give  results  in  terms  of

whichever of these functions you request. The default is typically to give results in terms of Re

and Im. 

This gives an expansion in Cartesian form. 

In[4]:= ComplexExpand@Re@z^2D, 8z<D

Out[4]= -Im@zD2 + Re@zD2

Here is an expansion in polar form. 

In[5]:= ComplexExpand@Re@z^2D, 8z<, TargetFunctions -> 8Abs, Arg<D

Out[5]= Abs@zD2 Cos@Arg@zDD2 - Abs@zD2 Sin@Arg@zDD2

Here is another form of expansion. 

In[6]:= ComplexExpand@Re@z^2D, 8z<, TargetFunctions -> ConjugateD

Out[6]= 
z2

2
+
Conjugate@zD2

2

Logical and Piecewise Functions

Nested logical and piecewise functions can be expanded out much like nested arithmetic func-

tions. You can do this using LogicalExpand and PiecewiseExpand. 

LogicalExpand@exprD expand out logical functions in expr

PiecewiseExpand@exprD expand out piecewise functions in expr

PiecewiseExpand@expr,assumD expand out with the specified assumptions

Expanding out logical and piecewise functions. 

LogicalExpand  puts logical expressions into a standard disjunctive normal form (DNF), consist-

ing of an OR of ANDs.

By default, Mathematica leaves this expression unchanged. 

In[1]:= Ha »» bL && c

Out[1]= Ha »» bL && c

Mathematics and Algorithms     81



LogicalExpand expands this into an OR of ANDs. 

In[2]:= LogicalExpand@%D

Out[2]= Ha && cL »» Hb && cL

LogicalExpand  works  on  all  logical  functions,  always  converting  them  into  a  standard  OR  of

ANDs form. Sometimes the results are inevitably quite large. 

Xor can be expressed as an OR of ANDs. 

In[3]:= LogicalExpand@Xor@a, b, cDD

Out[3]= Ha && b && cL »» Ha && ! b && ! cL »» Hb && ! a && ! cL »» Hc && ! a && ! bL

Any collection of  nested conditionals  can always in effect  be flattened into a piecewise normal

form  consisting  of  a  single  Piecewise  object.  You  can  do  this  in  Mathematica  using

PiecewiseExpand. 

By default, Mathematica leaves this expression unchanged. 

In[4]:= If@x > 0, If@x < 1, a, bD, cD

Out[4]= If@x > 0, If@x < 1, a, bD, cD

PiecewiseExpand flattens it into a single Piecewise object. 

In[5]:= PiecewiseExpand@%D

Out[5]= 
a 0 < x < 1
b x ¥ 1
c True

Functions like Max  and Abs,  as well  as Clip  and UnitStep,  implicitly involve conditionals,  and

combinations  of  them  can  again  be  reduced  to  a  single  Piecewise  object  using

PiecewiseExpand. 

This gives a result as a single Piecewise object. 

In[6]:= PiecewiseExpand@Max@Min@a, bD, cDD

Out[6]= 
a a - c > 0 && a - b § 0
b a - b > 0 && b - c > 0
c True

With x assumed real, this can also be written as a Piecewise object. 

In[7]:= PiecewiseExpand@Abs@xD, x œ RealsD

Out[7]= 
-x x < 0
x True

Functions  like  Floor,  Mod  and  FractionalPart  can  also  be  expressed  in  terms  of  Piecewise

objects, though in principle they can involve an infinite number of cases. 

82     Mathematics and Algorithms



Functions  like  Floor,  Mod  and  FractionalPart  can  also  be  expressed  in  terms  of  Piecewise

objects, though in principle they can involve an infinite number of cases. 

Without a bound on x, this would yield an infinite number of cases. 

In[8]:= PiecewiseExpand@Floor@x^2D, 0 < x < 2D

Out[8]= 

1 1 § x < 2

2 2 § x < 3

3 x ¥ 3

Mathematica  by default limits the number of cases that Mathematica  will  explicitly generate in

the  expansion  of  any  single  piecewise  function  such  as  Floor  at  any  stage  in  a  computation.

You can change this limit by resetting the value of $MaxPiecewiseCases. 

Simplification

Simplify@exprD try various algebraic and trigonometric transformations to 
simplify an expression

FullSimplify@exprD try a much wider range of transformations

Simplifying expressions. 

Mathematica does not automatically simplify an algebraic expression like this. 

In[1]:= H1 - xL ê H1 - x^2L

Out[1]= 
1 - x

1 - x2

Simplify performs the simplification. 

In[2]:= Simplify@%D

Out[2]= 
1

1 + x

Simplify performs standard algebraic and trigonometric simplifications. 

In[3]:= Simplify@Sin@xD^2 + Cos@xD^2D

Out[3]= 1

Mathematics and Algorithms     83



It does not, however, do more sophisticated transformations that involve, for example, special 
functions. 

In[4]:= Simplify@Gamma@1 + nD ê nD

Out[4]= 
Gamma@1 + nD

n

FullSimplify does perform such transformations. 

In[5]:= FullSimplify@%D

Out[5]= Gamma@nD

FullSimplifyAexpr,ExcludedForms->patternE

try to simplify expr, without touching subexpressions that 
match pattern

Controlling simplification. 

Here is an expression involving trigonometric functions and square roots. 

In[6]:= t = H1 - Sin@xD^2L Sqrt@Expand@H1 + Sqrt@2DL^20DD

Out[6]= 22619537 + 15994428 2 I1 - Sin@xD2M

By default, FullSimplify will try to simplify everything. 

In[7]:= FullSimplify@tD

Out[7]= 3363 + 2378 2 Cos@xD2

This makes FullSimplify avoid simplifying the square roots. 

In[8]:= FullSimplify@t, ExcludedForms -> Sqrt@_DD

Out[8]= 22619537 + 15994428 2 Cos@xD2

84     Mathematics and Algorithms



FullSimplifyAexpr,TimeConstraint->tE

try to simplify expr, working for at most t seconds on each 
transformation

FullSimplifyAexpr,TransformationFunctions->9 f1, f2,…=E

use only the functions fi in trying to transform parts of expr

FullSimplifyAexpr,TransformationFunctions->9Automatic, f1, f2,…=E

use built-in transformations as well as the fi

SimplifyAexpr,ComplexityFunction->cE
 and FullSimplifyAexpr,ComplexityFunction->cE

simplify using c to determine what form is considered 
simplest

Further control of simplification. 

In both Simplify  and FullSimplify  there is always an issue of what counts as the "simplest"

form of an expression. You can use the option ComplexityFunction -> c  to provide a function

to  determine  this.  The  function  will  be  applied  to  each  candidate  form of  the  expression,  and

the one that gives the smallest numerical value will be considered simplest.

With its default definition of simplicity, Simplify leaves this unchanged. 

In[9]:= Simplify@4 Log@10DD

Out[9]= 4 Log@10D

This now tries to minimize the number of elements in the expression. 

In[10]:= Simplify@4 Log@10D, ComplexityFunction -> LeafCountD

Out[10]= Log@10 000D

Using Assumptions

Mathematica  normally  makes  as  few  assumptions  as  possible  about  the  objects  you  ask  it  to

manipulate.  This  means  that  the  results  it  gives  are  as  general  as  possible.  But  sometimes

these results are considerably more complicated than they would be if more assumptions were

made. 

Mathematics and Algorithms     85



Refine@expr,assumD refine expr using assumptions

Simplify@expr,assumD simplify with assumptions

FullSimplify@expr,assumD full simplify with assumptions

FunctionExpand@expr,assumD function expand with assumptions

Doing operations with assumptions. 

Simplify by default does essentially nothing with this expression. 

In[1]:= Simplify@1 ê Sqrt@xD - Sqrt@1 ê xDD

Out[1]= -
1

x
+

1

x

The reason is that its value is quite different for different choices of x. 

In[2]:= % ê. x -> 8-3, -2, -1, 1, 2, 3<

Out[2]= :-
2 Â

3
, -Â 2 , -2 Â, 0, 0, 0>

With the assumption x > 0, Simplify can immediately reduce the expression to 0. 

In[3]:= Simplify@1 ê Sqrt@xD - Sqrt@1 ê xD, x > 0D

Out[3]= 0

Without making assumptions about x and y, nothing can be done. 

In[4]:= FunctionExpand@Log@x yDD

Out[4]= Log@x yD

If x and y are both assumed positive, the log can be expanded. 

In[5]:= FunctionExpand@Log@x yD, x > 0 && y > 0D

Out[5]= Log@xD + Log@yD

By  applying  Simplify  and  FullSimplify  with  appropriate  assumptions  to  equations  and

inequalities you can in effect establish a vast range of theorems.

Without making assumptions about x the truth or falsity of this equation cannot be determined. 

In[6]:= Simplify@Abs@xD == xD

Out[6]= x ã Abs@xD

Now Simplify can prove that the equation is true. 

86     Mathematics and Algorithms



Now Simplify can prove that the equation is true. 

In[7]:= Simplify@Abs@xD == x, x > 0D

Out[7]= True

This establishes the standard result that the arithmetic mean is larger than the geometric one. 

In[8]:= Simplify@Hx + yL ê 2 >= Sqrt@x yD, x >= 0 && y >= 0D

Out[8]= True

This proves that erfHxL lies in the range H0, 1L for all positive arguments. 

In[9]:= FullSimplify@0 < Erf@xD < 1, x > 0D

Out[9]= True

Simplify  and FullSimplify  always try to find the simplest forms of expressions. Sometimes,

however,  you  may  just  want  Mathematica  to  follow  its  ordinary  evaluation  process,  but  with

certain  assumptions  made.  You  can  do  this  using  Refine.  The  way  it  works  is  that

Refine@expr, assumD performs the same transformations as Mathematica would perform automat -

ically if the variables in expr were replaced by numerical expressions satisfying the assumptions

assum.

There is no simpler form that Simplify can find. 

In[10]:= Simplify@Log@xD, x < 0D

Out[10]= Log@xD

Refine just evaluates Log@xD as it would for any explicit negative number x. 

In[11]:= Refine@Log@xD, x < 0D

Out[11]= Â p + Log@-xD

An  important  class  of  assumptions  is  those  which  assert  that  some object  is  an  element  of  a

particular  domain.  You can set  up such assumptions using x œ dom,  where the œ  character  can

be entered as ÇelÇ or î @ElementD. 

xœdom   or  Element@x,domD assert that x is an element of the domain dom

8x1,x2,…<œdom assert that all the xi are elements of the domain dom

pattœdom assert that any expression which matches patt is an ele -
ment of the domain dom

Asserting that objects are elements of domains. 

This confirms that p is an element of the domain of real numbers. 

Mathematics and Algorithms     87



This confirms that p is an element of the domain of real numbers. 

In[12]:= Pi œ Reals

Out[12]= True

These numbers are all elements of the domain of algebraic numbers. 

In[13]:= 81, Sqrt@2D, 3 + Sqrt@5D< œ Algebraics

Out[13]= True

Mathematica knows that p is not an algebraic number. 

In[14]:= Pi œ Algebraics

Out[14]= False

Current mathematics has not established whether e + p is an algebraic number or not. 

In[15]:= E + Pi œ Algebraics

Out[15]= ‰ + p œ Algebraics

This represents the assertion that the symbol x is an element of the domain of real numbers. 

In[16]:= x œ Reals

Out[16]= x œ Reals

Complexes the domain of complex numbers 

Reals the domain of real numbers 

Algebraics the domain of algebraic numbers 

Rationals the domain of rational numbers 

Integers the domain of integers 

Primes the domain of primes 

Booleans the domain of Booleans (True and False) 

Domains supported by Mathematica. 

If n is assumed to be an integer, sinHnpL is zero. 

In[17]:= Simplify@Sin@n PiD, n œ IntegersD

Out[17]= 0

88     Mathematics and Algorithms



This establishes the theorem coshHxL ¥ 1 if x is assumed to be a real number. 

In[18]:= Simplify@Cosh@xD >= 1, x œ RealsD

Out[18]= True

If you say that a variable satisfies an inequality, Mathematica will automatically assume that it 
is real. 

In[19]:= Simplify@x œ Reals, x > 0D

Out[19]= True

By  using  Simplify,  FullSimplify  and  FunctionExpand  with  assumptions  you  can  access

many of Mathematica's vast collection of mathematical facts. 

This uses the periodicity of the tangent function. 

In[20]:= Simplify@Tan@x + Pi kD, k œ IntegersD

Out[20]= Tan@xD

The assumption k ê 2 œ Integers implies that k must be even. 

In[21]:= Simplify@Tan@x + Pi k ê 2D, k ê 2 œ IntegersD

Out[21]= Tan@xD

Mathematica knows that logHxL < expHxL for positive x. 

In[22]:= Simplify@Log@xD < Exp@xD, x > 0D

Out[22]= True

FullSimplify accesses knowledge about special functions. 

In[23]:= FullSimplify@Im@BesselJ@0, xDD, x œ RealsD

Out[23]= 0

Mathematica  knows  about  discrete  mathematics  and  number  theory  as  well  as  continuous

mathematics. 

This uses Wilson's theorem to simplify the result. 

In[24]:= FunctionExpand@Mod@Hp - 1L!, pD, p œ PrimesD

Out[24]= -1 + p

Mathematics and Algorithms     89



This uses the multiplicative property of the Euler phi function. 

In[25]:= FunctionExpand@EulerPhi@m nD, 8m, n< œ Integers && GCD@m, nD == 1D

Out[25]= EulerPhi@mD EulerPhi@nD

In something like Simplify@expr, assumD or Refine@expr, assumD you explicitly give the assump-

tions you want to use. But sometimes you may want to specify one set of assumptions to use in

a whole collection of operations. You can do this by using Assuming. 

Assuming@assum,exprD use assumptions assum in the evaluation of expr

$Assumptions the default assumptions to use

Specifying assumptions with larger scopes. 

This tells Simplify to use the default assumption x > 0. 

In[26]:= Assuming@x > 0, Simplify@Sqrt@x^2DDD

Out[26]= x

This combines the two assumptions given. 

In[27]:= Assuming@x > 0, Assuming@x œ Integers, Refine@Floor@Sqrt@x^2DDDDD

Out[27]= x

Functions like Simplify  and Refine take the option Assumptions, which specifies what default

assumptions  they  should  use.  By  default,  the  setting  for  this  option  is

Assumptions :> $Assumptions.  The  way  Assuming  then  works  is  to  assign  a  local  value  to

$Assumptions, much as in Block.

In  addition  to  Simplify  and  Refine,  a  number  of  other  functions  take  Assumptions  options,

and  thus  can  have  assumptions  specified  for  them  by  Assuming.  Examples  are

FunctionExpand, Integrate, Limit, Series, LaplaceTransform. 

The assumption is automatically used in Integrate. 

In[28]:= Assuming@n > 0, 1 + Integrate@x^n, 8x, 0, 1<D^2D

Out[28]= 1 +
1

H1 + nL2

90     Mathematics and Algorithms



Manipulating Equations and Inequalities

Equations

"Defining Variables" discussed assignments such as x = y which set x equal to y. Here we discuss

equations, which test equality. The equation x == y tests whether x is equal to y.

This tests whether 2 + 2 and 4 are equal. The result is the symbol True. 

In[1]:= 2 + 2 == 4

Out[1]= True

It is very important that you do not confuse x = y with x == y. While x = y is an imperative state-

ment  that  actually  causes  an assignment  to  be  done,  x == y  merely  tests  whether  x  and y  are

equal,  and  causes  no  explicit  action.  If  you  have  used  the  C  programming  language,  you  will

recognize that the notation for assignment and testing in Mathematica is the same as in C.

x=y assigns x to have value y

x==y tests whether x and y are equal

Assignments and tests. 

This assigns x to have value 4. 

In[2]:= x = 4

Out[2]= 4

If you ask for x, you now get 4. 

In[3]:= x

Out[3]= 4

This tests whether x is equal to 4. In this case, it is. 

In[4]:= x == 4

Out[4]= True

Mathematics and Algorithms     91



x is equal to 4, not 6. 

In[5]:= x == 6

Out[5]= False

This removes the value assigned to x. 

In[6]:= x =.

The tests we have used so far involve only numbers, and always give a definite answer, either

True or False. You can also do tests on symbolic expressions. 

Mathematica cannot get a definite result for this test unless you give x a specific numerical 
value. 

In[7]:= x == 5

Out[7]= x ã 5

If you replace x by the specific numerical value 4, the test gives False. 

In[8]:= % ê. x -> 4

Out[8]= False

Even  when  you  do  tests  on  symbolic  expressions,  there  are  some  cases  where  you  can  get

definite  results.  An  important  one  is  when  you  test  the  equality  of  two  expressions  that  are

identical. Whatever the numerical values of the variables in these expressions may be, Mathe-

matica knows that the expressions must always be equal. 

The two expressions are identical, so the result is True, whatever the value of x may be. 

In[9]:= 2 x + x^2 == 2 x + x^2

Out[9]= True

Mathematica does not try to tell whether these expressions are equal. In this case, using 
Expand would make them have the same form. 

In[10]:= 2 x + x^2 == x H2 + xL

Out[10]= 2 x + x2 ã x H2 + xL

Expressions like x == 4 represent equations in Mathematica. There are many functions in Mathe-

matica for manipulating and solving equations. 

92     Mathematics and Algorithms



This is an equation in Mathematica. "Solving Equations" discusses how to solve it for x. 

In[11]:= x^2 + 2 x - 7 == 0

Out[11]= -7 + 2 x + x2 ã 0

You can assign a name to the equation. 

In[12]:= eqn = %

Out[12]= -7 + 2 x + x2 ã 0

If you ask for eqn, you now get the equation. 

In[13]:= eqn

Out[13]= -7 + 2 x + x2 ã 0

Solving Equations

An expression like x^2 + 2 x - 7 == 0 represents an equation in Mathematica. You will often need

to solve equations like this, to find out for what values of x they are true.

This gives the two solutions to the quadratic equation x2 + 2 x - 7 = 0. The solutions are given as 
replacements for x. 

In[1]:= Solve@x^2 + 2 x - 7 == 0, xD

Out[1]= ::x Ø -1 - 2 2 >, :x Ø -1 + 2 2 >>

Here are the numerical values of the solutions.

In[2]:= N@%D

Out[2]= 88x Ø -3.82843<, 8x Ø 1.82843<<

You can get a list of the actual solutions for x by applying the rules generated by Solve to x 
using the replacement operator. 

In[3]:= x ê. %

Out[3]= 8-3.82843, 1.82843<

You can equally well apply the rules to any other expression involving x. 

In[4]:= x^2 + 3 x ê. %%

Out[4]= 83.17157, 8.82843<

Mathematics and Algorithms     93



Solve@lhs==rhs,xD solve an equation, giving a list of rules for x

xê.solution use the list of rules to get values for x

exprê.solution use the list of rules to get values for an expression

Finding and using solutions to equations. 

Solve  always tries to give you explicit formulas for the solutions to equations. However, it is a

basic  mathematical  result  that,  for  sufficiently complicated equations,  explicit  algebraic  formu-

las in terms of radicals cannot be given. If you have an algebraic equation in one variable, and

the highest power of the variable is at most four, then Mathematica can always give you formu-

las for  the solutions.  However,  if  the highest  power is  five or more,  it  may be mathematically

impossible to give explicit algebraic formulas for all the solutions. 

Mathematica can always solve algebraic equations in one variable when the highest power is 
less than five. 

In[5]:= Solve@x^4 - 5 x^2 - 3 == 0, xD

Out[5]= ::x Ø -
5

2
+

37

2
>, :x Ø

5

2
+

37

2
>, :x Ø -Â

1

2
-5 + 37 >, :x Ø Â

1

2
-5 + 37 >>

It can solve some equations that involve higher powers. 

In[6]:= Solve@x^6 == 1, xD

Out[6]= 98x Ø -1<, 8x Ø 1<, 9x Ø -H-1L1ë3=, 9x Ø H-1L1ë3=, 9x Ø -H-1L2ë3=, 9x Ø H-1L2ë3==

There are some equations, however, for which it is mathematically impossible to find explicit 
formulas for the solutions. Mathematica uses Root objects to represent the solutions in this 
case.

In[7]:= Solve@2 - 4 x + x^5 == 0, xD

Out[7]= 99x Ø RootA2 - 4 Ò1 + Ò15 &, 1E=, 9x Ø RootA2 - 4 Ò1 + Ò15 &, 2E=,

9x Ø RootA2 - 4 Ò1 + Ò15 &, 3E=, 9x Ø RootA2 - 4 Ò1 + Ò15 &, 4E=, 9x Ø RootA2 - 4 Ò1 + Ò15 &, 5E==

Even though you cannot get explicit formulas, you can still evaluate the solutions numerically. 

In[8]:= N@%D

Out[8]= 88x Ø -1.51851<, 8x Ø 0.508499<, 8x Ø 1.2436<, 8x Ø -0.116792 - 1.43845 Â<, 8x Ø -0.116792 + 1.43845 Â<<

In addition to being able to solve purely algebraic equations, Mathematica can also solve some

equations involving other functions. 

94     Mathematics and Algorithms



After printing a warning, Mathematica returns one solution to this equation. 

In[9]:= Solve@Sin@xD == a, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

Out[9]= 88x Ø ArcSin@aD<<

It  is  important  to  realize  that  an  equation  such  as  sinHxL = a  actually  has  an  infinite  number  of

possible solutions, in this case differing by multiples of 2 p.  However, Solve  by default returns

just one solution, but prints a message telling you that other solutions may exist. You can use

Reduce to get more information. 

There is no explicit "closed form" solution for a transcendental equation like this. 

In[10]:= Solve@Cos@xD == x, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way. à

Out[10]= Solve@Cos@xD ã x, xD

You can find an approximate numerical solution using FindRoot, and giving a starting value 
for x. 

In[11]:= FindRoot@Cos@xD == x, 8x, 0<D

Out[11]= 8x Ø 0.739085<

Solve  can also handle equations involving symbolic  functions.  In such cases,  it  again prints  a

warning, then gives results in terms of formal inverse functions. 

Mathematica returns a result in terms of the formal inverse function of f. 

In[12]:= Solve@f@x^2D == a, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

Out[12]= ::x Ø - fH-1L@aD >, :x Ø fH-1L@aD >>

Mathematics and Algorithms     95



Solve@8lhs1==rhs1,lhs2==rhs2,…<,8x,y,…<D

solve a set of simultaneous equations for x, y, …

Solving sets of simultaneous equations. 

You can also use Mathematica to solve sets of simultaneous equations. You simply give the list

of equations, and specify the list of variables to solve for. 

Here is a list of two simultaneous equations, to be solved for the variables x and y. 

In[13]:= Solve@8a x + y == 0, 2 x + H1 - aL y == 1<, 8x, y<D

Out[13]= ::x Ø -
1

-2 + a - a2
, y Ø -

a

2 - a + a2
>>

Here are some more complicated simultaneous equations. The two solutions are given as two 
lists of replacements for x and y. 

In[14]:= Solve@8x^2 + y^2 == 1, x + 3 y == 0<, 8x, y<D

Out[14]= ::x Ø -
3

10
, y Ø

1

10
>, :x Ø

3

10
, y Ø -

1

10
>>

This uses the solutions to evaluate the expression x + y. 

In[15]:= x + y ê. %

Out[15]= :-
2

5
,

2

5
>

Mathematica can solve any set of simultaneous linear or polynomial equations. 

When  you  are  working  with  sets  of  equations  in  several  variables,  it  is  often  convenient  to

reorganize the equations by eliminating some variables between them.

This eliminates y between the two equations, giving a single equation for x. 

In[16]:= Eliminate@8a x + y == 0, 2 x + H1 - aL y == 1<, yD

Out[16]= I2 - a + a2M x ã 1

If  you have several  equations,  there  is  no  guarantee that  there  exists  any  consistent  solution

for a particular variable.

96     Mathematics and Algorithms



There is no consistent solution to these equations, so Mathematica returns 8<, indicating that 
the set of solutions is empty. 

In[17]:= Solve@8x == 1, x == 2<, xD

Out[17]= 8<

There is also no consistent solution to these equations for almost all values of a. 

In[18]:= Solve@8x == 1, x == a<, xD

Out[18]= 8<

The general question of whether a set of equations has any consistent solution is quite a subtle

one.  For  example,  for  most  values  of  a,  the  equations  8x == 1, x == a<  are  inconsistent,  so

there  is  no  possible  solution  for  x.  However,  if  a  is  equal  to  1,  then  the  equations  do  have  a

solution.  Solve  is  set  up  to  give  you  generic  solutions  to  equations.  It  discards  any  solutions

that exist only when special constraints between parameters are satisfied.

If you use Reduce instead of Solve, Mathematica will however keep all the possible solutions to

a set of equations, including those that require special conditions on parameters.

This shows that the equations have a solution only when a == 1. The notation a == 1 && x == 1 
represents the requirement that both a == 1 and x == 1 should be True. 

In[19]:= Reduce@8x == a, x == 1<, xD

Out[19]= a ã 1 && x ã 1

This gives the complete set of possible solutions to the equation. The answer is stated in terms 
of a combination of simpler equations. && indicates equations that must simultaneously be true; 
»» indicates alternatives. 

In[20]:= Reduce@a x - b == 0, xD

Out[20]= Hb ã 0 && a ã 0L »» a ≠ 0 && x ã
b

a

This gives a more complicated combination of equations. 

In[21]:= Reduce@a x^2 - b == 0, xD

Out[21]= Hb ã 0 && a ã 0L »» a ≠ 0 && x ã -
b

a
»» x ã

b

a

This gives a symbolic representation of all solutions. 

In[22]:= Reduce@Sin@xD == a, xD

Out[22]= C@1D œ Integers && Hx ã p - ArcSin@aD + 2 p C@1D »» x ã ArcSin@aD + 2 p C@1DL

Mathematics and Algorithms     97



Solve@lhs==rhs,xD solve an equation for x

Solve@8lhs1==rhs1,lhs2==rhs2,…<,8x,y,…<D

solve a set of simultaneous equations for x, y, …
Eliminate@8lhs1==rhs1,lhs2==rhs2,…<,8x,…<D

eliminate x, … in a set of simultaneous equations

Reduce@8lhs1==rhs1,lhs2==rhs2,…<,8x,y,…<D

give a set of simplified equations, including all possible 
solutions

Functions for solving and manipulating equations. 

Reduce  also  has  powerful  capabilities  for  handling  equations  specifically  over  real  numbers  or

integers. "Equations and Inequalities over Domains" discusses this in more detail. 

This reduces the equation assuming x and y are complex. 

In[23]:= Reduce@x^2 + y^2 == 1, yD

Out[23]= y ã - 1 - x2 »» y ã 1 - x2

This includes the conditions for x and y to be real. 

In[24]:= Reduce@x^2 + y^2 == 1, y, RealsD

Out[24]= -1 § x § 1 && y ã - 1 - x2 »» y ã 1 - x2

This gives only the integer solutions. 

In[25]:= Reduce@x^2 + y^2 == 1, y, IntegersD

Out[25]= Hx ã -1 && y ã 0L »» Hx ã 0 && y ã -1L »» Hx ã 0 && y ã 1L »» Hx ã 1 && y ã 0L

The Representation of Equations and Solutions

Mathematica  treats  equations  as  logical  statements.  If  you  type  in  an  equation  like

x^2 + 3 x == 2, Mathematica interprets this as a logical statement which asserts that x^2 + 3 x is

equal to 2. If you have assigned an explicit value to x, say x = 4, then Mathematica can explic-

itly determine that the logical statement x^2 + 3 x == 2 is False. 

If  you  have  not  assigned  any  explicit  value  to  x,  however,  Mathematica  cannot  work  out

whether x^2 + 3 x == 2 is True or False. As a result, it leaves the equation in the symbolic form

x^2 + 3 x == 2. 

You can manipulate symbolic equations in Mathematica in many ways. One common goal is to

rearrange the equations so as to "solve" for a particular set of variables. 

98     Mathematics and Algorithms



You can manipulate symbolic equations in Mathematica in many ways. One common goal is to

rearrange the equations so as to "solve" for a particular set of variables. 

Here is a symbolic equation. 

In[1]:= x^2 + 3 x == 2

Out[1]= 3 x + x2 ã 2

You can use the function Reduce to reduce the equation so as to give "solutions" for x. The 
result, like the original equation, can be viewed as a logical statement. 

In[2]:= Reduce@%, xD

Out[2]= x ã
1

2
-3 - 17 »» x ã

1

2
-3 + 17

The  quadratic  equation  x^2 + 3 x == 2  can  be  thought  of  as  an  implicit  statement  about  the

value  of  x.  As  shown  in  the  example  above,  you  can  use  the  function  Reduce  to  get  a  more

explicit  statement  about  the  value  of  x.  The  expression  produced  by  Reduce  has  the  form

x ==r1 »» x ==r2. This expression is again a logical statement, which asserts that either x is equal

to r1, or x is equal to r2. The values of x that are consistent with this statement are exactly the

same as the ones that are consistent with the original quadratic equation. For many purposes,

however, the form that Reduce gives is much more useful than the original equation. 

You  can  combine  and  manipulate  equations  just  like  other  logical  statements.  You  can  use

logical connectives such as »» and && to specify alternative or simultaneous conditions. You can

use  functions  like  LogicalExpand,  as  well  as  FullSimplify,  to  simplify  collections  of  equa-

tions. 

For many purposes, you will find it convenient to manipulate equations simply as logical state-

ments.  Sometimes,  however,  you  will  actually  want  to  use  explicit  solutions  to  equations  in

other  calculations.  In  such  cases,  it  is  convenient  to  convert  equations  that  are  stated  in  the

form lhs == rhs into transformation rules of the form lhs -> rhs. Once you have the solutions to an

equation  in  the  form  of  explicit  transformation  rules,  you  can  substitute  the  solutions  into

expressions by using the ê. operator.

Reduce produces a logical statement about the values of x corresponding to the roots of the 
quadratic equation. 

In[3]:= Reduce@x^2 + 3 x == 2, xD

Out[3]= x ã
1

2
-3 - 17 »» x ã

1

2
-3 + 17

ToRules converts the logical statement into an explicit list of transformation rules. 

Mathematics and Algorithms     99



ToRules converts the logical statement into an explicit list of transformation rules. 

In[4]:= 8ToRules@%D<

Out[4]= ::x Ø
1

2
-3 - 17 >, :x Ø

1

2
-3 + 17 >>

You can now use the transformation rules to substitute the solutions for x into expressions 
involving x. 

In[5]:= x^2 + a x ê. %

Out[5]= :
1

4
-3 - 17

2

+
1

2
-3 - 17 a,

1

4
-3 + 17

2

+
1

2
-3 + 17 a>

The function Solve produces transformation rules for solutions directly. 

In[6]:= Solve@x^2 + 3 x == 2, xD

Out[6]= ::x Ø
1

2
-3 - 17 >, :x Ø

1

2
-3 + 17 >>

Equations in One Variable

The  main  equations  that  Solve  and  related  Mathematica  functions  deal  with  are  polynomial

equations. 

It is easy to solve a linear equation in x. 

In[1]:= Solve@a x + b == c, xD

Out[1]= ::x Ø
-b + c

a
>>

One can also solve quadratic equations just by applying a simple formula. 

In[2]:= Solve@x^2 + a x + 2 == 0, xD

Out[2]= ::x Ø
1

2
-a - -8 + a2 >, :x Ø

1

2
-a + -8 + a2 >>

Mathematica can also find exact solutions to cubic equations. Here is the first solution to a 
comparatively simple cubic equation. 

In[3]:= Solve@x^3 + 34 x + 1 == 0, xD@@1DD

Out[3]= :x Ø -34
2

3 J-9 + 471729 N

1ë3

+

J
1

2
J-9 + 471729 NN

1ë3

32ë3
>

For  cubic  and  quartic  equations  the  results  are  often  complicated,  but  for  all  equations  with

degrees up to four Mathematica is always able to give explicit formulas for the solutions. 

100     Mathematics and Algorithms



For  cubic  and  quartic  equations  the  results  are  often  complicated,  but  for  all  equations  with

degrees up to four Mathematica is always able to give explicit formulas for the solutions. 

An important  feature of  these formulas is  that  they involve only  radicals:  arithmetic  combina-

tions of square roots, cube roots and higher roots. 

It is a fundamental mathematical fact, however, that for equations of degree five or higher, it is

no longer possible in general to give explicit formulas for solutions in terms of radicals.

There  are  some  specific  equations  for  which  this  is  still  possible,  but  in  the  vast  majority  of

cases it is not. 

This constructs a degree six polynomial. 

In[4]:= Expand@Product@x^2 - 2 i, 8i, 3<DD

Out[4]= -48 + 44 x2 - 12 x4 + x6

For a polynomial that factors in the way this one does, it is straightforward for Solve to find 
the roots. 

In[5]:= Solve@% == 0, xD

Out[5]= :8x Ø -2<, 8x Ø 2<, :x Ø - 2 >, :x Ø 2 >, :x Ø - 6 >, :x Ø 6 >>

This constructs a polynomial of degree eight. 

In[6]:= Expand@x^2 - 2 ê. x -> x^2 - 3 ê. x -> x^2 - 5D

Out[6]= 482 - 440 x2 + 144 x4 - 20 x6 + x8

The polynomial does not factor, but it can be decomposed into nested polynomials, so Solve 
can again find explicit formulas for the roots. 

In[7]:= Solve@% == 0, xD

Out[7]= ::x Ø - 5 - 3 - 2 >, :x Ø 5 - 3 - 2 >, :x Ø - 5 + 3 - 2 >, :x Ø 5 + 3 - 2 >,

:x Ø - 5 - 3 + 2 >, :x Ø 5 - 3 + 2 >, :x Ø - 5 + 3 + 2 >, :x Ø 5 + 3 + 2 >>

Root@ f,kD the kth root of the equation f@xD == 0

Implicit representation for roots. 

Mathematics and Algorithms     101



No explicit formulas for the solution to this equation can be given in terms of radicals, so 
Mathematica uses an implicit symbolic representation.

In[8]:= Solve@x^5 - x + 11 == 0, xD

Out[8]= 99x Ø RootA11 - Ò1 + Ò15 &, 1E=, 9x Ø RootA11 - Ò1 + Ò15 &, 2E=,

9x Ø RootA11 - Ò1 + Ò15 &, 3E=, 9x Ø RootA11 - Ò1 + Ò15 &, 4E=, 9x Ø RootA11 - Ò1 + Ò15 &, 5E==

This finds a numerical approximation to each root. 

In[9]:= N@%D

Out[9]= 88x Ø -1.66149<, 8x Ø -0.46194 - 1.565 Â<,
8x Ø -0.46194 + 1.565 Â<, 8x Ø 1.29268 - 0.903032 Â<, 8x Ø 1.29268 + 0.903032 Â<<

If what you want in the end is a numerical solution, it is usually much faster to use NSolve 
from the outset. 

In[10]:= NSolve@x^5 - x + 11 == 0, xD

Out[10]= 88x Ø -1.66149<, 8x Ø -0.46194 - 1.565 Â<,
8x Ø -0.46194 + 1.565 Â<, 8x Ø 1.29268 - 0.903032 Â<, 8x Ø 1.29268 + 0.903032 Â<<

Root  objects  provide  an  exact,  though  implicit,  representation  for  the  roots  of  a  polynomial.

You can work with  them much as  you would  work with  Sqrt@2D  or  any other  expression that

represents an exact numerical quantity. 

Here is the Root object representing the first root of the polynomial discussed above. 

In[11]:= r = Root@Ò^5 - Ò + 11 &, 1D

Out[11]= RootA11 - Ò1 + Ò15 &, 1E

This is a numerical approximation to its value. 

In[12]:= N@rD

Out[12]= -1.66149

Round does an exact computation to find the closest integer to the root. 

In[13]:= Round@rD

Out[13]= -2

If you substitute the root into the original polynomial, and then simplify the result, you get 
zero. 

In[14]:= FullSimplify@x^5 - x + 11 ê. x -> rD

Out[14]= 0

102     Mathematics and Algorithms



This finds the product of all the roots of the original polynomial. 

In[15]:= FullSimplify@Product@Root@11 - Ò + Ò^5 &, kD, 8k, 5<DD

Out[15]= -11

The complex conjugate of the third root is the second root. 

In[16]:= Conjugate@Root@11 - Ò + Ò^5 &, 3DD

Out[16]= RootA11 - Ò1 + Ò15 &, 2E

If  the  only  symbolic  parameter  that  exists  in  an  equation  is  the  variable  that  you  are  solving

for, then all the solutions to the equation will just be numbers. But if there are other symbolic

parameters in the equation, then the solutions will typically be functions of these parameters.

The solution to this equation can again be represented by Root objects, but now each Root 
object involves the parameter a. 

In[17]:= Solve@x^5 + x + a == 0, xD

Out[17]= 99x Ø RootAa + Ò1 + Ò15 &, 1E=, 9x Ø RootAa + Ò1 + Ò15 &, 2E=,

9x Ø RootAa + Ò1 + Ò15 &, 3E=, 9x Ø RootAa + Ò1 + Ò15 &, 4E=, 9x Ø RootAa + Ò1 + Ò15 &, 5E==

When a is replaced with 1, the Root objects can be simplified, and some are given as explicit 
radicals. 

In[18]:= Simplify@% ê. a -> 1D

Out[18]= :9x Ø RootA1 - Ò12 + Ò13 &, 1E=, :x Ø -
1

2
Â -Â + 3 >,

:x Ø
1

2
Â Â + 3 >, 9x Ø RootA1 - Ò12 + Ò13 &, 2E=, 9x Ø RootA1 - Ò12 + Ò13 &, 3E=>

This shows the behavior of the first root as a function of a. 

In[19]:= Plot@Root@Ò^5 + Ò + a &, 1D, 8a, -2, 2<D

Out[19]= 

This finds the derivative of the first root with respect to a. 

In[20]:= D@Root@Ò^5 + Ò + a &, 1D, aD

Out[20]= -
1

1 + 5 RootAa + Ò1 + Ò15 &, 1E
4

If you give Solve  any nth-degree polynomial equation, then it will always return exactly n solu-

tions,  although  some  of  these  may  be  represented  by  Root  objects.  If  there  are  degenerate

solutions,  then  the  number  of  times  that  each  particular  solution  appears  will  be  equal  to  its

multiplicity.

Mathematics and Algorithms     103

-2 -1 1 2

-1.0

-0.5

0.5

1.0



If you give Solve  any nth-degree polynomial equation, then it will always return exactly n solu-

tions,  although  some  of  these  may  be  represented  by  Root  objects.  If  there  are  degenerate

solutions,  then  the  number  of  times  that  each  particular  solution  appears  will  be  equal  to  its

multiplicity.

Solve gives two identical solutions to this equation. 

In[21]:= Solve@Hx - 1L^2 == 0, xD

Out[21]= 88x Ø 1<, 8x Ø 1<<

Here are the first four solutions to a tenth-degree equation. The solutions come in pairs. 

In[22]:= Take@Solve@Hx^5 - x + 11L^2 == 0, xD, 4D

Out[22]= 99x Ø RootA11 - Ò1 + Ò15 &, 1E=, 9x Ø RootA11 - Ò1 + Ò15 &, 1E=,

9x Ø RootA11 - Ò1 + Ò15 &, 2E=, 9x Ø RootA11 - Ò1 + Ò15 &, 2E==

Mathematica also knows how to solve equations which are not explicitly in the form of polynomi-

als. 

Here is an equation involving square roots. 

In[23]:= Solve@Sqrt@xD + Sqrt@1 + xD == a, xD

Out[23]= ::x Ø
1 - 2 a2 + a4

4 a2
>>

And here is one involving logarithms. 

In[24]:= Solve@Log@xD + Log@1 - xD == a, xD

Out[24]= ::x Ø
1

2
1 - 1 - 4 ‰a >, :x Ø

1

2
1 + 1 - 4 ‰a >>

So long as it can reduce an equation to some kind of polynomial form, Mathematica will always

be able  to  represent  its  solution  in  terms of  Root  objects.  However,  with  more  general  equa-

tions, involving say transcendental functions, there is no systematic way to use Root objects, or

even necessarily to find numerical approximations.

Here is a simple transcendental equation for x. 

In[25]:= Solve@ArcSin@xD == a, xD

Out[25]= 88x Ø Sin@aD<<

104     Mathematics and Algorithms



There is no solution to this equation in terms of standard functions. 

In[26]:= Solve@Cos@xD == x, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Out[26]= Solve@Cos@xD ã x, xD

Mathematica can nevertheless find a numerical solution even in this case. 

In[27]:= FindRoot@Cos@xD == x, 8x, 0<D

Out[27]= 8x Ø 0.739085<

Polynomial equations in one variable only ever have a finite number of solutions. But transcen-

dental  equations  often  have  an  infinite  number.  Typically  the  reason  for  this  is  that  functions

like  Sin  in  effect  have  infinitely  many  possible  inverses.  With  the  default  option  setting

InverseFunctions -> True, Solve  will nevertheless assume that there is a definite inverse for

any such function. Solve  may then be able to return particular solutions in terms of this inverse

function. 

Mathematica returns a particular solution in terms of ArcSin, but prints a warning indicating 
that other solutions are lost. 

In[28]:= Solve@Sin@xD == a, xD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information.

Out[28]= 88x Ø ArcSin@aD<<

Here the answer comes out in terms of ProductLog. 

In[29]:= Solve@Exp@xD + x + 1 == 0, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses.

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information.

Out[29]= ::x Ø -1 - ProductLogB
1

‰
F>>

If you ask Solve  to solve an equation involving an arbitrary function like f, it will by default try

to construct a formal solution in terms of inverse functions. 

Mathematics and Algorithms     105



Solve by default uses a formal inverse for the function f. 

In[30]:= Solve@f@xD == a, xD

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses.

Out[30]= 99x Ø fH-1L@aD==

This is the structure of the inverse function. 

In[31]:= InputForm@%D

Out[31]//InputForm= {{x -> InverseFunction[f, 1, 1][a]}}

InverseFunction@ fD the inverse function of f

InverseFunction@ f,k,nD the inverse function of the n-argument function f  with 
respect to its kth argument

Inverse functions. 

This returns an explicit inverse function. 

In[32]:= InverseFunction@TanD

Out[32]= ArcTan

Mathematica can do formal operations on inverse functions. 

In[33]:= D@InverseFunction@fD@x^2D, xD

Out[33]= 
2 x

f£AfH-1LAx2EE

While Solve  can only give specific solutions to an equation, Reduce can give a representation of

a  whole  solution  set.  For  transcendental  equations,  it  often  ends  up  introducing  new parame-

ters, say with values ranging over all possible integers. 

This is a complete representation of the solution set. 

In[34]:= Reduce@Sin@xD == a, xD

Out[34]= C@1D œ Integers && Hx ã p - ArcSin@aD + 2 p C@1D »» x ã ArcSin@aD + 2 p C@1DL

106     Mathematics and Algorithms



Here again is a representation of the general solution. 

In[35]:= Reduce@Exp@xD + x + 1 == 0, xD

Out[35]= C@1D œ Integers && x ã -1 - ProductLogBC@1D,
1

‰
F

As discussed at  more length in "Equations and Inequalities  over Domains",  Reduce  allows you

to  restrict  the  domains  of  variables.  Sometimes this  will  let  you generate  definite  solutions  to

transcendental equations~or show that they do not exist. 

With the domain of x restricted, this yields definite solutions. 

In[36]:= Reduce@8Sin@xD == 1 ê 2, Abs@xD < 4<, xD

Out[36]= x ã -
7 p

6
»» x ã

p

6
»» x ã

5 p

6

With x constrained to be real, only one solution is possible. 

In[37]:= Reduce@Exp@xD + x + 1 == 0, x, RealsD

Out[37]= x ã -1 - ProductLogB
1

‰
F

Reduce knows there can be no solution here. 

In[38]:= Reduce@8Sin@xD == x, x > 1<, xD

Out[38]= False

Counting and Isolating Polynomial Roots

Counting Roots of Polynomials

CountRoots@poly,xD give the number of real roots of the polynomial poly in x

CountRoots@poly,8x,a,b<D give the number of roots of the polynomial poly in x with 
ReHaL § ReHrL § ReHbL Ï ImHaL § ImHrL § ImHbL

Counting roots of polynomials.

CountRoots  accepts  polynomials  with  Gaussian  rational  coefficients.  The  root  count  includes

multiplicities.

Mathematics and Algorithms     107



This gives the number of real roots of Ix2 - 2M Ix2 - 3M Ix2 - 4M. 

In[1]:= CountRootsAIx2 - 2M Ix2 - 3M Ix2 - 4M, xE

Out[1]= 6

This counts the roots of Ix2 - 2M Ix2 - 3M Ix2 - 4M in the closed interval @1, 2D. 

In[2]:= CountRootsAIx2 - 2M Ix2 - 3M Ix2 - 4M, 8x, 1, 2<E

Out[2]= 3

The roots of Ix2 + 1M x3 in the vertical axis segment between 0 and 2 Â consist of a triple root at 0 
and a single root at Â. 

In[3]:= CountRootsAIx2 + 1M x3, 8x, 0, 2 Â<E

Out[3]= 4

This counts 17th-degree roots of unity in the closed unit square. 

In[4]:= CountRootsAx17 - 1, 8x, 0, 1 + Â<E

Out[4]= 5

The coefficients of the polynomial can be Gaussian rationals.

In[5]:= CountRootsBx3 - Â x +
3 Â

4
- 1, 8x, 0, 1 + Â<F

Out[5]= 1

Isolating Intervals

A set S Œ K, where K  is  or , is an isolating set for a root a of a polynomial f  if a is the only

root  of  f  in  S.  Isolating  roots  of  a  polynomial  means  finding  disjoint  isolating  sets  for  all  the

roots of the polynomial. 

RootIntervals@8poly1,poly2,…<D give a list of disjoint isolating intervals for the real roots of 
any of the polyi, together with a list of which polynomials 

actually have each successive root

RootIntervals@polyD give disjoint isolating intervals for real roots of a single 
polynomial

108     Mathematics and Algorithms



RootIntervalsApolys,ComplexesE give disjoint isolating intervals or rectangles for complex 
roots of polys

IsolatingInterval@aD give an isolating interval for the algebraic number a

IsolatingInterval@a,dxD give an isolating interval of width at most dx

Functions for isolating roots of polynomials.

RootIntervals accepts polynomials with rational number coefficients.

For  a  real  root  r  the  returned  isolating  interval  is  a  pair  of  rational  numbers  8a, b<,  such  that

either a < r < b or a b r. For a nonreal root r the isolating rectangle returned is a pair of Gaus-

sian  rational  numbers  8a, b<,  such that  ReHaL < ReHrL < ReHbL Ï ImHaL < ImHrL < ImHbL  and either  ImHaL ¥ 0

or ImHbL § 0.

Here are isolating intervals for the real roots of f . 

In[6]:= f = Ix2 - 2M Ix2 - 3M Ix2 - 4M; RootIntervals@fD

Out[6]= ::8-2, -2<, :-2, -
3

2
>, :-

3

2
, -1>, :1,

3

2
>, :

3

2
, 2>, 82, 2<>, 881<, 81<, 81<, 81<, 81<, 81<<>

The second list shows which interval contains a root of which polynomial. 

In[7]:= RootIntervals@8f + 3, f + 5, f + 7<D

Out[7]= :::-
5

4
, -

9

8
>, :-

9

8
, -1>, 8-1, 0<, 80, 1<, :1,

9

8
>, :

9

8
,
5

4
>>, 881<, 82<, 83<, 83<, 82<, 81<<>

This gives isolating intervals for all complex roots of f + 3. 

In[8]:= RootIntervals@f + 3, ComplexesD

Out[8]= ::8-2, -1<, 81, 2<, :-7 - 7 Â, -
7

4
>, :-7, -

7

4
+ 7 Â>, :-

7

4
- 7 Â,

7

2
>, :-

7

4
,
7

2
+ 7 Â>>,

881<, 81<, 81<, 81<, 81<, 81<<>

Here are isolating intervals for the third- and fourth-degree roots of unity. The second interval 
contains a root common to both polynomials. 

In[9]:= RootIntervalsA9x3 - 1, x4 - 1=, ComplexesE

Out[9]= ::8-1, -1<, 80, 2<, :-
3

4
-
3 Â

2
, -

3

16
-
3 Â

4
>, :-

3

4
+
3 Â

4
, -

3

16
+
3 Â

2
>,

:-
3

16
-
3 Â

2
,
3

8
-
3 Â

4
>, :-

3

16
+
3 Â

4
,
3

8
+
3 Â

2
>>, 882<, 81, 2<, 81<, 81<, 82<, 82<<>

Mathematics and Algorithms     109



Here is an isolating interval for a root of a polynomial of degree seven. 

In[10]:= IsolatingInterval@Root@Ò^7 - 11 Ò + 3 &, 5DD

Out[10]= 8-4, 4 Â<

This gives an isolating interval of width at most 10-10.
In[11]:= IsolatingInterval@Root@Ò^7 - 11 Ò + 3 &, 5D, 10^-10D

Out[11]= :-
866877392461

1099511627776
+
355978878543 Â

274877906944
, -

3467509569843

4398046511104
+
5695662056689 Â

4398046511104
>

All numbers in the interval have the first ten decimal digits in common. 

In[12]:= N@%, 10D

Out[12]= 8-0.788420396 + 1.295043616 Â, -0.788420396 + 1.295043616 Â<

Algebraic Numbers

Root@ f,kD the kth root of the polynomial equation f@xD == 0

The representation of algebraic numbers. 

When you enter a Root object, the polynomial that appears in it is automatically reduced to a 
minimal form. 

In[1]:= Root@24 - 2 Ò + 4 Ò^5 &, 1D

Out[1]= RootA12 - Ò1 + 2 Ò15 &, 1E

This extracts the pure function which represents the polynomial, and applies it to x. 

In[2]:= First@%D@xD

Out[2]= 12 - x + 2 x5

Root  objects  are  the  way  that  Mathematica  represents  algebraic  numbers.  Algebraic  numbers

have the property that when you perform algebraic operations on them, you always get a single

algebraic number as the result. 

Here is the square root of an algebraic number. 

In[3]:= Sqrt@Root@2 - Ò + Ò^5 &, 1DD

Out[3]= RootA2 - Ò1 + Ò15 &, 1E

RootReduce reduces this to a single Root object. 

110     Mathematics and Algorithms



RootReduce reduces this to a single Root object. 

In[4]:= RootReduce@%D

Out[4]= RootA2 - Ò12 + Ò110 &, 6E

Here is a more complicated expression involving an algebraic number. 

In[5]:= Sqrt@2D + Root@2 - Ò + Ò^5 &, 1D^2

Out[5]= 2 + RootA2 - Ò1 + Ò15 &, 1E
2

Again this can be reduced to a single Root object, albeit a fairly complicated one. 

In[6]:= RootReduce@%D

Out[6]= RootA14 - 72 Ò1 + 25 Ò12 - 144 Ò13 - 88 Ò14 - 8 Ò15 + 62 Ò16 - 14 Ò18 + Ò110 &, 2E

RootReduce@exprD attempt to reduce expr to a single Root object

ToRadicals@exprD attempt to transform Root objects to explicit radicals

Operations on algebraic numbers. 

In this simple case the Root object is automatically expressed in terms of radicals. 

In[7]:= Root@Ò^2 - Ò - 1 &, 1D

Out[7]= 
1

2
1 - 5

When cubic polynomials are involved, Root objects are not automatically expressed in terms of 
radicals. 

In[8]:= Root@Ò^3 - 2 &, 1D

Out[8]= RootA-2 + Ò13 &, 1E

ToRadicals attempts to express all Root objects in terms of radicals. 

In[9]:= ToRadicals@%D

Out[9]= 21ë3

If  Solve  and ToRadicals  do not succeed in expressing the solution to a particular polynomial

equation in terms of radicals,  then it  is  a good guess that this fundamentally cannot be done.

However, you should realize that there are some special cases in which a reduction to radicals

is  in  principle  possible,  but  Mathematica  cannot  find  it.  The  simplest  example  is  the  equation

x5 + 20 x + 32 = 0,  but  here  the  solution  in  terms  of  radicals  is  very  complicated.  The  equation

x6 - 9 x4 - 4 x3 + 27 x2 - 36 x - 23 is another example, where now x = 2
1

3 + 3
1

2  is a solution. 

Mathematics and Algorithms     111



If  Solve  and ToRadicals  do not succeed in expressing the solution to a particular polynomial

equation in terms of radicals,  then it  is  a good guess that this fundamentally cannot be done.

However, you should realize that there are some special cases in which a reduction to radicals

x5 + 20 x + 32 = 0,  but  here  the  solution  in  terms  of  radicals  is  very  complicated.  The  equation

x6 - 9 x4 - 4 x3 + 27 x2 - 36 x - 23 is another example, where now x = 2
1

3 + 3
1

2  is a solution. 

This gives a Root object involving a degree-six polynomial. 

In[10]:= RootReduce@2^H1 ê 3L + Sqrt@3DD

Out[10]= RootA-23 - 36 Ò1 + 27 Ò12 - 4 Ò13 - 9 Ò14 + Ò16 &, 2E

Even though a simple form in terms of radicals does exist, ToRadicals does not find it. 

In[11]:= ToRadicals@%D

Out[11]= RootA-23 - 36 Ò1 + 27 Ò12 - 4 Ò13 - 9 Ò14 + Ò16 &, 2E

Beyond degree four, most polynomials do not have roots that can be expressed at all in terms

of  radicals.  However,  for  degree  five  it  turns  out  that  the  roots  can  always  be  expressed  in

terms  of  elliptic  or  hypergeometric  functions.  The  results,  however,  are  typically  much  too

complicated to be useful in practice. 

RootSum@ f, formD the sum of form@xD for all x satisfying the polynomial 
equation f@xD == 0

Normal@exprD the form of expr with RootSum replaced by explicit sums of 
Root objects

Sums of roots. 

This computes the sum of the reciprocals of the roots of 1 + 2 x + x5. 
In[12]:= RootSum@H1 + 2 Ò + Ò^5L &, H1 ê ÒL &D

Out[12]= -2

Now no explicit result can be given in terms of radicals. 

In[13]:= RootSum@H1 + 2 Ò + Ò^5L &, HÒ Log@1 + ÒDL &D

Out[13]= RootSumA1 + 2 Ò1 + Ò15 &, Log@1 + Ò1D Ò1 &E

This expands the RootSum into an explicit sum involving Root objects. 

In[14]:= Normal@%D

Out[14]= LogA1 + RootA1 + 2 Ò1 + Ò15 &, 1EE RootA1 + 2 Ò1 + Ò15 &, 1E +

LogA1 + RootA1 + 2 Ò1 + Ò15 &, 2EE RootA1 + 2 Ò1 + Ò15 &, 2E +

LogA1 + RootA1 + 2 Ò1 + Ò15 &, 3EE RootA1 + 2 Ò1 + Ò15 &, 3E +

LogA1 + RootA1 + 2 Ò1 + Ò15 &, 4EE RootA1 + 2 Ò1 + Ò15 &, 4E +

LogA1 + RootA1 + 2 Ò1 + Ò15 &, 5EE RootA1 + 2 Ò1 + Ò15 &, 5E

112     Mathematics and Algorithms



RootApproximant@xD converts the number x to one of the "simplest" algebraic 
numbers that approximates it well

RootApproximant@x,nD finds an algebraic number of degree at most n that approxi -
mates x

This recovers 2  from a numerical approximation.
In[15]:= RootApproximant@N@Sqrt@2DDD

Out[15]= 2

In this case, the result has degree at most 4.

In[16]:= RootApproximant@N@Sqrt@2D + Sqrt@3DD, 4D

Out[16]= RootA1 - 10 Ò12 + Ò14 &, 4E

This confirms that the Root expression does correspond to 2  + 3 .
In[17]:= RootReduce@Sqrt@2D + Sqrt@3DD

Out[17]= RootA1 - 10 Ò12 + Ò14 &, 4E

Simultaneous Equations

You can give Solve  a list of simultaneous equations to solve. Solve  can find explicit  solutions

for a large class of simultaneous polynomial equations. 

Here is a simple linear equation with two unknowns. 

In[1]:= Solve@8a x + b y == 1, x - y == 2<, 8x, y<D

Out[1]= ::x Ø -
-1 - 2 b

a + b
, y Ø -

-1 + 2 a

a + b
>>

Here is a more complicated example. The result is a list of solutions, with each solution consist -
ing of a list of transformation rules for the variables. 

In[2]:= Solve@8x^2 + y^2 == 1, x + y == a<, 8x, y<D

Out[2]= ::x Ø
1

2
a - 2 - a2 , y Ø

1

2
a + 2 - a2 >, :x Ø

a

2
+

2 - a2

2
, y Ø

1

2
a - 2 - a2 >>

Mathematics and Algorithms     113



You can use the list of solutions with the ê. operator. 

In[3]:= x^3 + y^4 ê. % ê. a -> 0.7

Out[3]= 80.846577, 0.901873<

Even when Solve cannot find explicit solutions, it often can "unwind" simultaneous equations 
to produce a symbolic result in terms of Root objects. 

In[4]:= First@Solve@8x^2 + y^3 == x y, x + y + x y == 1<, 8x, y<DD

Out[4]= :x Ø
1

2
J1 - RootA1 - 3 Ò1 + Ò12 + 2 Ò13 + 2 Ò14 + Ò15 &, 1E

2
- RootA1 - 3 Ò1 + Ò12 + 2 Ò13 + 2 Ò14 + Ò15 &, 1E

3
-

RootA1 - 3 Ò1 + Ò12 + 2 Ò13 + 2 Ò14 + Ò15 &, 1E
4
N, y Ø RootA1 - 3 Ò1 + Ò12 + 2 Ò13 + 2 Ò14 + Ò15 &, 1E>

You can then use N to get a numerical result. 

In[5]:= N@%D

Out[5]= 8x Ø -3.4875, y Ø -1.80402<

The variables that you use in Solve  do not need to be single symbols. Often when you set up

large  collections  of  simultaneous  equations,  you  will  want  to  use  expressions  like  a@iD  as

variables.

Here is a list of three equations for the a@iD. 

In[6]:= Table@2 a@iD + a@i - 1D == a@i + 1D, 8i, 3<D

Out[6]= 8a@0D + 2 a@1D ã a@2D, a@1D + 2 a@2D ã a@3D, a@2D + 2 a@3D ã a@4D<

This solves for some of the a@iD. 

In[7]:= Solve@%, 8a@1D, a@2D, a@3D<D

Out[7]= ::a@1D Ø
1

12
H-5 a@0D + a@4DL, a@2D Ø

1

6
Ha@0D + a@4DL, a@3D Ø

1

12
H-a@0D + 5 a@4DL>>

Solve@eqns,8x1,x2,…<D solve eqns for the specific objects xi

Solve@eqnsD try to solve eqns for all the objects that appear in them

Solving simultaneous equations. 

If you do not explicitly specify objects to solve for, Solve will try to solve for all the variables. 

In[8]:= Solve@8x + y == 1, x - 3 y == 2<D

Out[8]= ::x Ø
5

4
, y Ø -

1

4
>>

114     Mathematics and Algorithms



† Solve@8lhs1==rhs1,lhs2==rhs2,…<,varsD

† Solve@lhs1==rhs1&&lhs2==rhs2&&…,varsD

† Solve@8lhs1,lhs2,…<==8rhs1,rhs2,…<,varsD

Ways to present simultaneous equations to Solve. 

If you construct simultaneous equations from matrices, you typically get equations between 
lists of expressions. 

In[9]:= 883, 1<, 82, -5<<.8x, y< == 87, 8<

Out[9]= 83 x + y, 2 x - 5 y< ã 87, 8<

Solve converts equations involving lists to lists of equations. 

In[10]:= Solve@%, 8x, y<D

Out[10]= ::x Ø
43

17
, y Ø -

10

17
>>

You can use LogicalExpand to do the conversion explicitly.

In[11]:= LogicalExpand@%%D

Out[11]= 2 x - 5 y ã 8 && 3 x + y ã 7

In  some kinds  of  computations,  it  is  convenient  to  work  with  arrays  of  coefficients  instead  of

explicit equations. You can construct such arrays from equations by using CoefficientArrays. 

Generic and Non-Generic Solutions

If  you  have  an  equation  like  2 x == 0,  it  is  perfectly  clear  that  the  only  possible  solution  is

x -> 0. However, if you have an equation like a x == 0, things are not so clear. If a is not equal

to zero, then x -> 0  is again the only solution. However, if  a  is in fact equal to zero, then any

value of x is a solution. You can see this by using Reduce.

Solve implicitly assumes that the parameter a does not have the special value 0. 

In[1]:= Solve@a x == 0, xD

Out[1]= 88x Ø 0<<

Mathematics and Algorithms     115



Reduce, on the other hand, gives you all the possibilities, without assuming anything about the 
value of a. 

In[2]:= Reduce@a x == 0, xD

Out[2]= a ã 0 »» x ã 0

A basic difference between Reduce and Solve  is that Reduce gives all the possible solutions to a

set of equations, while Solve  gives only the generic ones. Solutions are considered "generic" if

they  involve  conditions  only  on  the  variables  that  you  explicitly  solve  for,  and  not  on  other

parameters in the equations. Reduce and Solve  also differ in that Reduce always returns combi-

nations of equations, while Solve gives results in the form of transformation rules. 

Solve@eqns,varsD find generic solutions to equations

Reduce@eqns,varsD reduce equations, maintaining all solutions

Solving equations. 

This is the solution to an arbitrary linear equation given by Solve. 

In[3]:= Solve@a x + b == 0, xD

Out[3]= ::x Ø -
b

a
>>

Reduce gives the full version, which includes the possibility a == b == 0. In reading the output, 
note that && has higher precedence than »». 

In[4]:= Reduce@a x + b == 0, xD

Out[4]= Hb ã 0 && a ã 0L »» a ≠ 0 && x ã -
b

a

Here is the full solution to a general quadratic equation. There are three alternatives. If a is 
nonzero, then there are two solutions for x, given by the standard quadratic formula. If a is 
zero, however, the equation reduces to a linear one. Finally, if a, b and c are all zero, there is 
no restriction on x. 

In[5]:= Reduce@a x^2 + b x + c == 0, xD

Out[5]= a ≠ 0 && x ã
-b - b2 - 4 a c

2 a
»» x ã

-b + b2 - 4 a c

2 a
»»

a ã 0 && b ≠ 0 && x ã -
c

b
»» Hc ã 0 && b ã 0 && a ã 0L

116     Mathematics and Algorithms



When  you  have  several  simultaneous  equations,  Reduce  can  show you  under  what  conditions

the equations have solutions. Solve shows you whether there are any generic solutions.

This shows there can never be any solution to these equations. 

In[6]:= Reduce@8x == 1, x == 2<, xD

Out[6]= False

There is a solution to these equations, but only when a has the special value 1. 

In[7]:= Reduce@8x == 1, x == a<, xD

Out[7]= a ã 1 && x ã 1

The solution is not generic, and is rejected by Solve. 

In[8]:= Solve@8x == 1, x == a<, xD

Out[8]= 8<

But if a is constrained to have value 1, then Solve again returns a solution. 

In[9]:= Solve@8x == 1, x == a, a == 1<, xD

Out[9]= 88x Ø 1<<

This equation is true for any value of x. 

In[10]:= Reduce@x == x, xD

Out[10]= True

This is the kind of result Solve returns when you give an equation that is always true. 

In[11]:= Solve@x == x, xD

Out[11]= 88<<

When you work with systems of linear equations, you can use Solve  to get generic solutions,

and Reduce to find out for what values of parameters solutions exist. 

Here is a matrix whose i, jth element is i + j. 
In[12]:= m = Table@i + j, 8i, 3<, 8j, 3<D

Out[12]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

Mathematics and Algorithms     117



The matrix has determinant zero. 

In[13]:= Det@mD

Out[13]= 0

This makes a set of three simultaneous equations. 

In[14]:= eqn = m.8x, y, z< == 8a, b, c<

Out[14]= 82 x + 3 y + 4 z, 3 x + 4 y + 5 z, 4 x + 5 y + 6 z< ã 8a, b, c<

Solve reports that there are no generic solutions. 

In[15]:= Solve@eqn, 8x, y, z<D

Out[15]= 8<

Reduce, however, shows that there would be a solution if the parameters satisfied the special 
condition a == 2 b - c. 

In[16]:= Reduce@eqn, 8x, y, z<D

Out[16]= a ã 2 b - c && y ã -6 b + 5 c - 2 x && z ã 5 b - 4 c + x

For nonlinear equations, the conditions for the existence of solutions can be much more compli-

cated. 

Here is a very simple pair of nonlinear equations. 

In[17]:= eqn = 8x y == a, x^2 y^2 == b<

Out[17]= 9x y ã a, x2 y2 ã b=

Solve shows that the equations have no generic solutions. 

In[18]:= Solve@eqn, 8x, y<D

Out[18]= 8<

Reduce gives the complete conditions for a solution to exist. 

In[19]:= Reduce@eqn, 8x, y<D

Out[19]= Hb ã 0 && a ã 0 && x ã 0L »» a ã - b »» a ã b && x ≠ 0 && y ã
a

x

118     Mathematics and Algorithms



Eliminating Variables

When  you  write  down  a  set  of  simultaneous  equations  in  Mathematica,  you  are  specifying  a

collection  of  constraints  between  variables.  When  you  use  Solve,  you  are  finding  values  for

some  of  the  variables  in  terms  of  others,  subject  to  the  constraints  represented  by  the

equations.

Solve@eqns,vars,elimsD find solutions for vars, eliminating the variables elims

Eliminate@eqns,elimsD rearrange equations to eliminate the variables elims

Eliminating variables. 

Here are two equations involving x, y and the "parameters" a and b. 

In[1]:= eqn = 8x + y == 6 a + 3 b, y == 9 a + 2 x<

Out[1]= 8x + y ã 6 a + 3 b, y ã 9 a + 2 x<

If you solve for both x and y, you get results in terms of a and b. 

In[2]:= Solve@eqn, 8x, y<D

Out[2]= 88x Ø -a + b, y Ø 7 a + 2 b<<

Similarly, if you solve for x and a, you get results in terms of y and b. 

In[3]:= Solve@eqn, 8x, a<D

Out[3]= ::x Ø
1

7
H9 b - yL, a Ø

1

7
H-2 b + yL>>

If you only want to solve for x, however, you have to specify whether you want to eliminate y 
or a or b. This eliminates y, and so gives the result in terms of a and b. 

In[4]:= Solve@eqn, x, yD

Out[4]= 88x Ø -a + b<<

If you eliminate a, then you get a result in terms of y and b. 

In[5]:= Solve@eqn, x, aD

Out[5]= ::x Ø
1

7
H9 b - yL>>

Mathematics and Algorithms     119



In  some  cases,  you  may  want  to  construct  explicitly  equations  in  which  variables  have  been

eliminated. You can do this using Eliminate. 

This combines the two equations in the list eqn, by eliminating the variable a. 

In[6]:= Eliminate@eqn, aD

Out[6]= 9 b - y ã 7 x

This is what you get if you eliminate y instead of a. 

In[7]:= Eliminate@eqn, yD

Out[7]= b - x ã a

As a more sophisticated example of Eliminate, consider the problem of writing x5 + y5  in terms

of the "symmetric polynomials" x + y and x y.

To solve the problem, we simply have to write f in terms of a and b, eliminating the original 
variables x and y. 

In[8]:= Eliminate@8f == x^5 + y^5, a == x + y, b == x y<, 8x, y<D

Out[8]= f ã a5 - 5 a3 b + 5 a b2

In dealing with sets of equations, it is common to consider some of the objects that appear as

true "variables",  and others as "parameters".  In some cases,  you may need to know for what

values of parameters a particular relation between the variables is always satisfied. 

SolveAlways@eqns,varsD solve for the values of parameters for which the eqns are 
satisfied for all values of the vars

Solving for parameters that make relations always true. 

This finds the values of parameters that make the equation hold for all x. 

In[9]:= SolveAlways@a + b x + c x^2 == H1 + xL^2, xD

Out[9]= 88a Ø 1, b Ø 2, c Ø 1<<

This equates two series. 

In[10]:= Series@a Cos@xD + b Cos@2 xD + Cos@3 xD, 8x, 0, 3<D == Series@Cosh@xD, 8x, 0, 3<D

Out[10]= H1 + a + bL + -
9

2
-
a

2
- 2 b x2 + O@xD4 ã 1 +

x2

2
+ O@xD4

120     Mathematics and Algorithms



This finds values of the undetermined coefficients. 

In[11]:= SolveAlways@%, xD

Out[11]= ::a Ø
10

3
, b Ø -

10

3
>>

Relational and Logical Operators

x==y equal (also input as x ã y)

x!=y unequal (also input as x ≠ y)

x>y greater than

x>=y greater than or equal to (also input as x ¥ y)

x<y less than

x<=y less than or equal to (also input as x § y)

x==y==z all equal

x!=y!=z all unequal (distinct)

x>y>z , etc. strictly decreasing, etc.

Relational operators. 

This tests whether 10 is less than 7. The result is False. 

In[1]:= 10 < 7

Out[1]= False

Not all of these numbers are unequal, so this gives False. 

In[2]:= 3 != 2 != 3

Out[2]= False

You can mix < and <=. 

In[3]:= 3 < 5 <= 6

Out[3]= True

Since both of the quantities involved are numeric, Mathematica can determine that this is true. 

In[4]:= Pi^E < E^Pi

Out[4]= True

Mathematica does not know whether this is true or false. 

Mathematics and Algorithms     121



Mathematica does not know whether this is true or false. 

In[5]:= x > y

Out[5]= x > y

!p not (also input as Ÿp)

p&&q&&… and (also input as p fl q fl … )

p»»q»»… or (also input as p fi q fi … )

Xor@p,q,…D exclusive or (also input as p  q  … )

Nand@p,q,…D   and  Nor@p,q,…D

nand and nor (also input as  and )

If@p,then,elseD give then if p is True, and else if p is False

LogicalExpand@exprD expand out logical expressions

Logical operations. 

Both tests give True, so the result is True. 

In[6]:= 7 > 4 && 2 != 3

Out[6]= True

You  should  remember  that  the  logical  operations  ==,  &&  and  »»  are  all  double  characters  in

Mathematica.  If  you  have  used  a  programming  language  such  as  C,  you  will  be  familiar  with

this notation.

Mathematica does not know whether this is true or false. 

In[7]:= p && q

Out[7]= p && q

Mathematica leaves this expression unchanged. 

In[8]:= Hp »» qL && ! Hr »» sL

Out[8]= Hp »» qL && ! Hr »» sL

You can use LogicalExpand to expand out the terms. 

In[9]:= LogicalExpand@%D

Out[9]= Hp && ! r && ! sL »» Hq && ! r && ! sL

Solving Logical Combinations of Equations

122     Mathematics and Algorithms



Solving Logical Combinations of Equations

When you give a list  of  equations to Solve,  it  assumes that  you want all  the equations to be

satisfied simultaneously. It is also possible to give Solve  more complicated logical combinations

of equations. 

Solve assumes that the equations x + y == 1 and x - y == 2 are simultaneously valid. 

In[1]:= Solve@8x + y == 1, x - y == 2<, 8x, y<D

Out[1]= ::x Ø
3

2
, y Ø -

1

2
>>

Here is an alternative form, using the logical connective && explicitly. 

In[2]:= Solve@x + y == 1 && x - y == 2, 8x, y<D

Out[2]= ::x Ø
3

2
, y Ø -

1

2
>>

This specifies that either x + y == 1 or x - y == 2. Solve gives two solutions for x, correspond-
ing to these two possibilities. 

In[3]:= Solve@x + y == 1 »» x - y == 2, xD

Out[3]= 88x Ø 1 - y<, 8x Ø 2 + y<<

Solve gives three solutions to this equation. 

In[4]:= Solve@x^3 == x, xD

Out[4]= 88x Ø -1<, 8x Ø 0<, 8x Ø 1<<

If you explicitly include the assertion that x != 0, one of the previous solutions is suppressed. 

In[5]:= Solve@x^3 == x && x != 0, xD

Out[5]= 88x Ø -1<, 8x Ø 1<<

Here is a slightly more complicated example. Note that the precedence of »» is lower than the 
precedence of &&, so the equation is interpreted as Hx^3 == x && x != 1L »» x^2 == 2, not 
x^3 == x && Hx != 1 »» x^2 == 2L. 

In[6]:= Solve@x^3 == x && x != 1 »» x^2 == 2, xD

Out[6]= :8x Ø -1<, 8x Ø 0<, :x Ø - 2 >, :x Ø 2 >>

When you use Solve,  the final  results  you get  are in  the form of  transformation rules.  If  you

use Reduce  or  Eliminate,  on  the other  hand,  then your  results  are  logical  statements,  which

you can manipulate further. 

Mathematics and Algorithms     123



When you use Solve,  the final  results  you get  are in  the form of  transformation rules.  If  you

use Reduce  or  Eliminate,  on  the other  hand,  then your  results  are  logical  statements,  which

you can manipulate further. 

This gives a logical statement representing the solutions of the equation x^2 == x. 

In[7]:= Reduce@x^2 == x, xD

Out[7]= x ã 0 »» x ã 1

This finds values of x which satisfy x^5 == x but do not satisfy the statement representing the 
solutions of x^2 == x. 

In[8]:= Reduce@x^5 == x && ! %, xD

Out[8]= x ã -1 »» x ã -Â »» x ã Â

The logical statements produced by Reduce can be thought of as representations of the solution

set for your equations. The logical connectives &&, »» and so on then correspond to operations

on these sets. 

eqns1»»eqns2 union of solution sets

eqns1&&eqns2 intersection of solution sets

!eqns complement of a solution set

Implies@eqns1,eqns2D the part of eqns1 that contains eqns2

Operations on solution sets. 

You may often find it convenient to use special notations for logical connectives, as discussed in

"Operators". 

The input uses special notations for Implies and Or. 

In[9]:= Reduce@x^2 == 1 fl Hx == 1 Í x == -1L, xD

Out[9]= True

Inequalities

Just  as  the  equation  x^2 + 3 x == 2  asserts  that  x^2 + 3 x  is  equal  to  2,  so  also  the  inequality

x^2 + 3 x > 2 asserts that x^2 + 3 x is greater than 2. In Mathematica, Reduce works not only on

equations, but also on inequalities.

124     Mathematics and Algorithms



Reduce@8ineq1,ineq2,…<,xD reduce a collection of inequalities in x

Manipulating univariate inequalities. 

This pair of inequalities reduces to a single inequality. 

In[1]:= Reduce@80 < x < 2, 1 < x < 4<, xD

Out[1]= 1 < x < 2

These inequalities can never simultaneously be satisfied. 

In[2]:= Reduce@8x < 1, x > 3<, xD

Out[2]= False

When applied to an equation, Reduce@eqn, xD tries to get a result consisting of simple equations

for  x  of  the  form  x ==r1,  … .  When  applied  to  an  inequality,  Reduce@ineq, xD  does  the  exactly

analogous  thing,  and  tries  to  get  a  result  consisting  of  simple  inequalities  for  x  of  the  form

l1 < x <r1, … . 

This reduces a quadratic equation to two simple equations for x. 

In[3]:= Reduce@x^2 + 3 x == 2, xD

Out[3]= x ã
1

2
-3 - 17 »» x ã

1

2
-3 + 17

This reduces a quadratic inequality to two simple inequalities for x. 

In[4]:= Reduce@x^2 + 3 x > 2, xD

Out[4]= x <
1

2
-3 - 17 »» x >

1

2
-3 + 17

You can think of the result  generated by Reduce@ineq, xD  as representing a series of intervals,

described by inequalities. Since the graph of a polynomial of degree n  can go up and down as

many as n times, a polynomial inequality of degree n can give rise to as many as n ê2 + 1 distinct

intervals. 

This inequality yields three distinct intervals. 

In[5]:= Reduce@Hx - 1L Hx - 2L Hx - 3L Hx - 4L > 0, xD

Out[5]= x < 1 »» 2 < x < 3 »» x > 4

Mathematics and Algorithms     125



The ends of the intervals are at roots and poles. 

In[6]:= Reduce@1 < Hx^2 + 3 xL ê Hx + 1L < 2, xD

Out[6]= -1 - 2 < x < -2 »» -1 + 2 < x < 1

Solving this inequality requires introducing ProductLog. 

In[7]:= Reduce@x - 2 < Log@xD < x, xD

Reduce::ztest : Unable to decide whether numeric quantities

:-2-Log@-ProductLog@-Power@á2àDDD-ProductLogB-
1

‰2
F, -2-Log@-ProductLog@-1, -Power@á2àDD

D-ProductLogB-1, -
1

‰2
F> are equal to zero. Assuming they are.

Out[7]= -ProductLogB-
1

‰2
F < x < -ProductLogB-1, -

1

‰2
F

Transcendental functions like sin HxL have graphs that go up and down infinitely many times, so

that infinitely many intervals can be generated. 

The second inequality allows only finitely many intervals. 

In[8]:= Reduce@8Sin@xD > 0, 0 < x < 20<, xD

Out[8]= 0 < x < p »» 2 p < x < 3 p »» 4 p < x < 5 p »» 6 p < x < 20

This is how Reduce represents infinitely many intervals. 

In[9]:= Reduce@8Sin@xD > 0, 0 < x<, xD

Out[9]= C@1D œ Integers && H0 < x < p »» HC@1D ¥ 1 && 2 p C@1D < x < p + 2 p C@1DLL

Fairly simple inputs can give fairly complicated results. 

In[10]:= Reduce@8Sin@xD^2 + Sin@3 xD > 0, x^2 + 2 < 20<, xD

Out[10]= -3 2 < x < -p »» 2 ArcTanB
1

3
-4 - 7 F < x < 2 ArcTanB

1

3
-4 + 7 F »»

0 < x <
p

2
»»

p

2
< x < p »» 2 p + 2 ArcTanB

1

3
-4 - 7 F < x < 3 2

If  you  have  inequalities  that  involve  <=  as  well  as  <,  there  may  be  isolated  points  where  the

inequalities can be satisfied. Reduce represents such points by giving equations. 

126     Mathematics and Algorithms



This inequality can be satisfied at just two isolated points. 

In[11]:= Reduce@Hx^2 - 3 x + 1L^2 <= 0, xD

Out[11]= x ã
1

2
3 - 5 »» x ã

1

2
3 + 5

This yields both intervals and isolated points. 

In[12]:= Reduce@8Max@Sin@2 xD, Cos@3 xDD <= 0, 0 < x < 10<, xD

Out[12]= x ã
p

2
»»

5 p

6
§ x § p »»

3 p

2
§ x §

11 p

6
»» x ã

5 p

2
»»

17 p

6
§ x § 3 p

ReduceA8ineq1,ineq2,…<,
9x1 , x2 , … }]

reduce a collection of inequalities in several variables

Multivariate inequalities. 

For inequalities involving several variables, Reduce in effect yields nested collections of interval

specifications, in which later variables have bounds that depend on earlier variables. 

This represents the unit disk as nested inequalities for x and y. 

In[13]:= Reduce@x^2 + y^2 < 1, 8x, y<D

Out[13]= -1 < x < 1 && - 1 - x2 < y < 1 - x2

In geometrical terms, any linear inequality divides space into two halves. Lists of linear inequali-

ties thus define polyhedra, sometimes bounded, sometimes not. Reduce represents such polyhe-

dra  in  terms  of  nested  inequalities.  The  corners  of  the  polyhedra  always  appear  among  the

endpoints of these inequalities. 

This defines a triangular region in the plane. 

In[14]:= Reduce@8x > 0, y > 0, x + y < 1<, 8x, y<D

Out[14]= 0 < x < 1 && 0 < y < 1 - x

Even a single triangle may need to be described as two components. 

In[15]:= Reduce@8x > y - 1, y > 0, x + y < 1<, 8x, y<D

Out[15]= H-1 < x § 0 && 0 < y < 1 + xL »» H0 < x < 1 && 0 < y < 1 - xL

Mathematics and Algorithms     127



Lists of inequalities in general represent regions of overlap between geometrical objects. Often

the description of these can be quite complicated. 

This represents the part of the unit disk on one side of a line. 

In[16]:= Reduce@8x^2 + y^2 < 1, x + 3 y > 2<, 8x, y<D

Out[16]=
1

10
2 - 3 6 < x <

1

10
2 + 3 6 &&

2 - x

3
< y < 1 - x2

Here is the intersection between two disks. 

In[17]:= Reduce@8Hx - 1L^2 + y^2 < 2, x^2 + y^2 < 2<, 8x, y<D

Out[17]= 1 - 2 < x §
1

2
&& - 1 + 2 x - x2 < y < 1 + 2 x - x2 »»

1

2
< x < 2 && - 2 - x2 < y < 2 - x2

If the disks are too far apart, there is no intersection. 

In[18]:= Reduce@8Hx - 4L^2 + y^2 < 2, x^2 + y^2 < 2<, 8x, y<D

Out[18]= False

Here is an example involving a transcendental inequality. 

In[19]:= Reduce@8Sin@x yD > 1 ê 2, x^2 + y^2 < 3 ê 2<, 8x, y<D

Out[19]= -
3

4
+

1

12
81 - 4 p2 < x < -

1

2

1

3
9 - 81 - 4 p2 && -

3 - 2 x2

2
< y <

p

6 x
»»

1

2

1

3
9 - 81 - 4 p2 < x <

3

4
+

1

12
81 - 4 p2 &&

p

6 x
< y <

3 - 2 x2

2

If  you  have  inequalities  that  involve  parameters,  Reduce  automatically  handles  the  different

cases that can occur, just as it does for equations. 

The form of the intervals depends on the value of a. 

In[20]:= Reduce@Hx - 1L Hx - aL > 0, xD

Out[20]= Ha § 1 && Hx < a »» x > 1LL »» Ha > 1 && Hx < 1 »» x > aLL

128     Mathematics and Algorithms



One gets a hyperbolic or an elliptical region, depending on the value of a. 

In[21]:= Reduce@x^2 + a y^2 < 1, 8x, y<D

Out[21]= y œ Reals && a < 0 && x § -1 && y < -
1 - x2

a
»» y >

1 - x2

a
»»

-1 < x < 1 »» x ¥ 1 && y < -
1 - x2

a
»» y >

1 - x2

a
»»

Ha ã 0 && -1 < x < 1L »» a > 0 && -1 < x < 1 && -
1 - x2

a
< y <

1 - x2

a

Reduce  tries  to  give you a complete description of  the region defined by a  set  of  inequalities.

Sometimes, however, you may just want to find individual instances of values of variables that

satisfy the inequalities. You can do this using FindInstance.

FindInstance@ineqs,8x1,x2,…<D try to find an instance of the xi satisfying ineqs

FindInstance@ineqs,vars,nD try to find n instances

Finding individual points that satisfy inequalities. 

This finds a specific instance that satisfies the inequalities. 

In[22]:= FindInstance@8Sin@x yD > 1 ê 2, x^2 + y^2 < 3 ê 2<, 8x, y<D

Out[22]= ::x Ø -
88

151
, y Ø -

543

566
>>

This shows that there is no way to satisfy the inequalities. 

In[23]:= FindInstance@8Sin@x yD > 1 ê 2, x^2 + y^2 < 1 ê 4<, 8x, y<D

Out[23]= 8<

FindInstance is in some ways an analog for inequalities of Solve  for equations. For like Solve,

it returns a list of rules giving specific values for variables. But while for equations these values

can  generically  give  an  accurate  representation  of  all  solutions,  for  inequalities  they  can  only

correspond to isolated sample points within the regions described by the inequalities. 

Every  time you  call  FindInstance  with  specific  input,  it  will  give  the  same output.  And  when

there are instances that correspond to special, limiting, points of some kind, it will preferentially

return these.  But  in  general,  the distribution of  instances returned by FindInstance  will  typi- 

Mathematics and Algorithms     129



Every  time you  call  FindInstance  with  specific  input,  it  will  give  the  same output.  And  when

there are instances that correspond to special, limiting, points of some kind, it will preferentially

cally seem somewhat random. Each instance is, however, in effect a constructive proof that the

inequalities you have given can in fact be satisfied. 

If you ask for one point in the unit disk, FindInstance gives the origin. 

In[24]:= FindInstance@x^2 + y^2 <= 1, 8x, y<D

Out[24]= 88x Ø 0, y Ø 0<<

This finds 500 points in the unit disk. 

In[25]:= FindInstance@x^2 + y^2 <= 1, 8x, y<, 500D;

Their distribution seems somewhat random. 

In[26]:= ListPlot@8x, y< ê. %, AspectRatio -> AutomaticD

Out[26]=

Equations and Inequalities over Domains

Mathematica normally assumes that variables which appear in equations can stand for arbitrary

complex numbers. But when you use Reduce, you can explicitly tell Mathematica that the vari-

ables stand for objects in more restricted domains. 

Reduce@expr,vars,domD reduce eqns over the domain dom

Complexes complex numbers 

Reals real numbers 

Integers integers 

Solving over domains. 

Reduce by default assumes that x can be complex, and gives all five complex solutions. 

In[1]:= Reduce@x^6 - x^4 - 4 x^2 + 4 == 0, xD

Out[1]= x ã -1 »» x ã 1 »» x ã - 2 »» x ã -Â 2 »» x ã Â 2 »» x ã 2

But here it assumes that x is real, and gives only the real solutions. 

130     Mathematics and Algorithms

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0



But here it assumes that x is real, and gives only the real solutions. 

In[2]:= Reduce@x^6 - x^4 - 4 x^2 + 4 == 0, x, RealsD

Out[2]= x ã -1 »» x ã 1 »» x ã - 2 »» x ã 2

And here it assumes that x is an integer, and gives only the integer solutions. 

In[3]:= Reduce@x^6 - x^4 - 4 x^2 + 4 == 0, x, IntegersD

Out[3]= x ã -1 »» x ã 1

A single polynomial equation in one variable will  always have a finite set of discrete solutions.

And  in  such  a  case  one  can  think  of  Reduce@eqns, vars, domD  as  just  filtering  the  solutions  by

selecting the ones that happen to lie in the domain dom. 

But as soon as there are more variables, things can become more complicated, with solutions

to equations corresponding to parametric curves or surfaces in which the values of some vari-

ables  can  depend  on  the  values  of  others.  Often  this  dependence  can  be  described  by  some

collection of equations or inequalities, but the form of these can change significantly when one

goes from one domain to another. 

This gives solutions over the complex numbers as simple formulas. 

In[4]:= Reduce@x^2 + y^2 == 1, 8x, y<D

Out[4]= y ã - 1 - x2 »» y ã 1 - x2

To represent solutions over the reals requires introducing an inequality. 

In[5]:= Reduce@x^2 + y^2 == 1, 8x, y<, RealsD

Out[5]= -1 § x § 1 && y ã - 1 - x2 »» y ã 1 - x2

Over the integers, the solution can be represented as equations for discrete points. 

In[6]:= Reduce@x^2 + y^2 == 1, 8x, y<, IntegersD

Out[6]= Hx ã -1 && y ã 0L »» Hx ã 0 && y ã -1L »» Hx ã 0 && y ã 1L »» Hx ã 1 && y ã 0L

If your input involves only equations, then Reduce will by default assume that all variables are

complex.  But  if  your  input  involves  inequalities,  then  Reduce  will  assume  that  any  algebraic

variables appearing in them are real, since inequalities can only compare real quantities. 

Mathematics and Algorithms     131



Since the variables appear in an inequality, they are assumed to be real. 

In[7]:= Reduce@8x + y + z == 1, x^2 + y^2 + z^2 < 1<, 8x, y, z<D

Out[7]= -
1

3
< x < 1 &&

1 - x

2
-
1

2
1 + 2 x - 3 x2 < y <

1 - x

2
+
1

2
1 + 2 x - 3 x2 && z ã 1 - x - y

Complexes polynomial != 0, xi == Root@…D

Reals Root@…D < xi < Root@…D, xi == Root@…D

Integers arbitrarily complicated

Schematic building blocks for solutions to polynomial equations and inequalities. 

For  systems  of  polynomials  over  real  and  complex  domains,  the  solutions  always  consist  of  a

finite number of components, within which the values of variables are given by algebraic num-

bers or functions. 

Here the components are distinguished by equations and inequations on x. 

In[8]:= Reduce@x y^3 + y == 1, 8x, y<, ComplexesD

Out[8]= Hx ã 0 && y ã 1L »»

Ix ≠ 0 && Iy ã RootA-1 + Ò1 + x Ò13 &, 1E »» y ã RootA-1 + Ò1 + x Ò13 &, 2E »» y ã RootA-1 + Ò1 + x Ò13 &, 3EMM

And here the components are distinguished by inequalities on x. 

In[9]:= Reduce@x y^3 + y == 1, 8x, y<, RealsD

Out[9]= x < -
4

27
&& y ã RootA-1 + Ò1 + x Ò13 &, 1E »» x ã -

4

27
&& y ã -3 »» y ã

3

2
»» -

4

27
< x < 0 &&

Iy ã RootA-1 + Ò1 + x Ò13 &, 1E »» y ã RootA-1 + Ò1 + x Ò13 &, 2E »» y ã RootA-1 + Ò1 + x Ò13 &, 3EM »»

Ix ¥ 0 && y ã RootA-1 + Ò1 + x Ò13 &, 1EM

While in principle Reduce  can always find the complete solution to any collection of polynomial

equations  and  inequalities  with  real  or  complex  variables,  the  results  are  often  very  compli-

cated,  with  the  number  of  components  typically  growing exponentially  as  the  number  of  vari-

ables increases. 

With 3 variables, the solution here already involves 8 components. 

In[10]:= Reduce@x^2 == y^2 == z^2 == 1, 8x, y, z<D

Out[10]= Hz ã -1 && y ã -1 && x ã -1L »» Hz ã -1 && y ã -1 && x ã 1L »»
Hz ã -1 && y ã 1 && x ã -1L »» Hz ã -1 && y ã 1 && x ã 1L »» Hz ã 1 && y ã -1 && x ã -1L »»
Hz ã 1 && y ã -1 && x ã 1L »» Hz ã 1 && y ã 1 && x ã -1L »» Hz ã 1 && y ã 1 && x ã 1L

As soon as one introduces functions like Sin  or  Exp,  even equations in single real  or  complex

variables can have solutions with an infinite number of components. Reduce labels these compo-

nents  by  introducing  additional  parameters.  By  default,  the  nth  parameter  in  a  given  solution

will  be  named  C@nD.  In  general  you  can  specify  that  it  should  be  named  f@nD  by  giving  the

option setting GeneratedParameters -> f . 

132     Mathematics and Algorithms



As soon as one introduces functions like Sin  or  Exp,  even equations in single real  or  complex

variables can have solutions with an infinite number of components. Reduce labels these compo-

nents  by  introducing  additional  parameters.  By  default,  the  nth  parameter  in  a  given  solution

will  be  named  C@nD.  In  general  you  can  specify  that  it  should  be  named  f@nD  by  giving  the

option setting GeneratedParameters -> f . 

The components here are labeled by the integer parameter c1. 

In[11]:= Reduce@Exp@xD == 2, x, GeneratedParameters -> HSubscript@c, ÒD &LD

Out[11]= c1 œ Integers && x ã Log@2D + 2 Â p c1

Reduce  can handle equations not only over real and complex variables, but also over integers.

Solving such Diophantine equations can often be a very difficult problem. 

Describing the solution to this equation over the reals is straightforward. 

In[12]:= Reduce@x y == 8, 8x, y<, RealsD

Out[12]= Hx < 0 »» x > 0L && y ã
8

x

The solution over the integers involves the divisors of 8. 

In[13]:= Reduce@x y == 8, 8x, y<, IntegersD

Out[13]= Hx ã -8 && y ã -1L »» Hx ã -4 && y ã -2L »» Hx ã -2 && y ã -4L »» Hx ã -1 && y ã -8L »»
Hx ã 1 && y ã 8L »» Hx ã 2 && y ã 4L »» Hx ã 4 && y ã 2L »» Hx ã 8 && y ã 1L

Solving an equation like this effectively requires factoring a large number. 

In[14]:= Reduce@8x y == 7777777, x > y > 0<, 8x, y<, IntegersD

Out[14]= Hx ã 4649 && y ã 1673L »» Hx ã 32543 && y ã 239L »» Hx ã 1111111 && y ã 7L »» Hx ã 7777777 && y ã 1L

Reduce can solve any system of linear equations or inequalities over the integers. With m linear

equations in n variables, n -m parameters typically need to be introduced. But with inequalities,

a much larger number of parameters may be needed. 

Three parameters are needed here, even though there are only two variables. 

In[15]:= Reduce@83 x - 2 y > 1, x > 0, y > 0<, 8x, y<, IntegersD

Out[15]= HC@1D C@2D C@3DL œ Integers && C@1D ¥ 0 && C@2D ¥ 0 &&
C@3D ¥ 0 && HHx ã 2 + 2 C@1D + C@2D + C@3D && y ã 2 + 3 C@1D + C@2DL »»

Hx ã 2 + 2 C@1D + C@2D + C@3D && y ã 1 + 3 C@1D + C@2DLL

With two variables, Reduce  can solve any quadratic equation over the integers. The result can

be a Fibonacci-like sequence, represented in terms of powers of quadratic irrationals. 

Here is the solution to a Pell equation. 

Mathematics and Algorithms     133



Here is the solution to a Pell equation. 

In[16]:= Reduce@8x^2 == 13 y^2 + 1, x > 0, y > 0<, 8x, y<, IntegersD

Out[16]= C@1D œ Integers && C@1D ¥ 1 && x ã
1

2
649 - 180 13

C@1D

+ 649 + 180 13
C@1D

&&

y ã -

J649 - 180 13 N
C@1D

- J649 + 180 13 N
C@1D

2 13

The actual values for specific C@1D as integers, as they should be. 

In[17]:= FullSimplify@% ê. Table@8C@1D -> i<, 8i, 4<DD

Out[17]= 8x ã 649 && y ã 180, x ã 842401 && y ã 233640,
x ã 1093435849 && y ã 303264540, x ã 1419278889601 && y ã 393637139280<

Reduce can handle many specific classes of equations over the integers. 

Here Reduce finds the solution to a Thue equation. 

In[18]:= Reduce@x^3 - 4 x y^2 + y^3 == 1, 8x, y<, IntegersD

Out[18]= Hx ã -2 && y ã 1L »» Hx ã 0 && y ã 1L »» Hx ã 1 && y ã 0L »»
Hx ã 1 && y ã 4L »» Hx ã 2 && y ã 1L »» Hx ã 508 && y ã 273L

Changing the right-hand side to 3, the equation now has no solution. 

In[19]:= Reduce@x^3 - 4 x y^2 + y^3 == 3, 8x, y<, IntegersD

Out[19]= False

Equations  over  the  integers  sometimes  have  seemingly  quite  random  collections  of  solutions.

And even small changes in equations can often lead them to have no solutions at all. 

For polynomial equations over real and complex numbers, there is a definite decision procedure

for determining whether or not any solution exists. But for polynomial equations over the inte-

gers,  the  unsolvability  of  Hilbert's  tenth  problem  demonstrates  that  there  can  never  be  any

such general procedure. 

For  specific  classes  of  equations,  however,  procedures  can  be  found,  and  indeed  many  are

implemented in  Reduce.  But  handling different  classes of  equations can often seem to require

whole  different  branches  of  number  theory,  and  quite  different  kinds  of  computations.  And  in

fact it is known that there are universal integer polynomial equations, for which filling in some

variables  can  make  solutions  for  other  variables  correspond  to  the  output  of  absolutely  any

possible program. This then means that for  such equations there can never in general  be any

closed-form solution built from fixed elements like algebraic functions. 

If one includes functions like Sin, then even for equations involving real and complex numbers

the same issues can arise. 

134     Mathematics and Algorithms



If one includes functions like Sin, then even for equations involving real and complex numbers

the same issues can arise. 

Reduce here effectively has to solve an equation over the integers. 

In[20]:= Reduce@Sin@Pi xD^2 + Sin@Pi yD^2 + Hx^2 + y^2 - 25L^2 == 0, 8x, y<, RealsD

Out[20]= Hx ã -5 && y ã 0L »» Hx ã -4 && Hy ã -3 »» y ã 3LL »» Hx ã -3 && Hy ã -4 »» y ã 4LL »»
Hx ã 0 && Hy ã -5 »» y ã 5LL »» Hx ã 3 && Hy ã -4 »» y ã 4LL »» Hx ã 4 && Hy ã -3 »» y ã 3LL »» Hx ã 5 && y ã 0L

ReduceAeqns,vars,Modulus->nE find solutions modulo n

Handling equations involving integers modulo n. 

Since there are only ever a finite number of possible solutions for integer equations modulo n,

Reduce can systematically find them. 

This finds all solutions modulo 4. 

In[21]:= Reduce@x^5 == y^4 + x y + 1, 8x, y<, Modulus -> 4D

Out[21]= Hx ã 1 && y ã 0L »» Hx ã 1 && y ã 3L »» Hx ã 2 && y ã 1L »» Hx ã 2 && y ã 3L »» Hx ã 3 && y ã 2L »» Hx ã 3 && y ã 3L

Reduce can also handle equations that involve several different moduli. 

Here is an equation involving two different moduli. 

In[22]:= Reduce@Mod@2 x + 1, 5D == Mod@x, 7D && 0 < x < 50, xD

Out[22]= x ã 4 »» x ã 7 »» x ã 15 »» x ã 23 »» x ã 31 »» x ã 39 »» x ã 42

Reduce@expr,vars,domD specify a default domain for all variables

Reduce@8expr1,…,x1œdom1,…<,varsD explicitly specify individual domains for variables

Different ways to specify domains for variables. 

This assumes that x is an integer, but y is a real. 

In[23]:= Reduce@8x^2 + 2 y^2 == 1, x œ Integers, y œ Reals<, 8x, y<D

Out[23]= Hx ã -1 && y ã 0L »» x ã 0 && y ã -
1

2
»» y ã

1

2
»» Hx ã 1 && y ã 0L

Reduce  normally  treats  complex  variables  as  single  objects.  But  in  dealing  with  functions  that

are not analytic or have branch cuts, it sometimes has to break them into pairs of real variables

Re@zD and Im@zD.

Mathematics and Algorithms     135



The result involves separate real and imaginary parts. 

In[24]:= Reduce@Abs@zD == 1, zD

Out[24]= -1 § Re@zD § 1 && Im@zD ã - 1 - Re@zD2 »» Im@zD ã 1 - Re@zD2

Here again there is a separate condition on the imaginary part. 

In[25]:= Reduce@Log@zD == a, 8a, z<D

Out[25]= -p < Im@aD § p && z ã ‰a

Reduce  by default assumes that variables that appear algebraically in inequalities are real. But

you can override this by explicitly specifying Complexes as the default domain. It is often useful

in such cases to be able to specify that certain variables are still real. 

Reduce by default assumes that x is a real. 

In[26]:= Reduce@x^2 < 1, xD

Out[26]= -1 < x < 1

This forces Reduce to consider the case where x can be complex. 

In[27]:= Reduce@x^2 < 1, x, ComplexesD

Out[27]= H-1 < Re@xD < 0 && Im@xD ã 0L »» Re@xD ã 0 »» H0 < Re@xD < 1 && Im@xD ã 0L

Since x does not appear algebraically, Reduce immediately assumes that it can be complex. 

In[28]:= Reduce@Abs@xD < 1, xD

Out[28]= -1 < Re@xD < 1 && - 1 - Re@xD2 < Im@xD < 1 - Re@xD2

Here x is a real, but y can be complex. 

In[29]:= Reduce@8Abs@yD < Abs@xD, x œ Reals<, 8x, y<D

Out[29]= x < 0 && - x2 < Re@yD < x2 && - x2 - Re@yD2 < Im@yD < x2 - Re@yD2 »»

x > 0 && - x2 < Re@yD < x2 && - x2 - Re@yD2 < Im@yD < x2 - Re@yD2

FindInstance@expr,8x1,x2,…<,domD try to find an instance of the xi in dom satisfying expr

FindInstance@expr,vars,dom,nD try to find n instances

Complexes the domain of complex numbers 

136     Mathematics and Algorithms



Reals the domain of real numbers 

Integers the domain of integers 

Booleans the domain of Booleans (True and False) 

Finding particular solutions in domains. 

Reduce  always  returns  a  complete  representation  of  the  solution  to  a  system of  equations  or

inequalities.  Sometimes,  however,  you  may  just  want  to  find  particular  sample  solutions.  You

can do this using FindInstance. 

If  FindInstance@expr, vars, domD  returns  8<  then  this  means  that  Mathematica  has  effectively

proved that  expr  cannot be satisfied for  any values of  variables in  the specified domain.  When

expr  can  be  satisfied,  FindInstance  will  normally  pick  quite  arbitrarily  among  values  that  do

this, as discussed for inequalities in "Inequalities: Manipulating Equations and Inequalities". 

Particularly for integer equations, FindInstance can often find particular solutions to equations

even when Reduce  cannot find a complete solution. In such cases it usually returns one of the

smallest solutions to the equations. 

This finds the smallest integer point on an elliptic curve. 

In[30]:= FindInstance@8x^2 == y^3 + 12, x > 0, y > 0<, 8x, y<, IntegersD

Out[30]= 88x Ø 47, y Ø 13<<

One  feature  of  FindInstance  is  that  it  also  works  with  Boolean  expressions  whose  variables

can have values True  or False.  You can use FindInstance  to determine whether a particular

expression  is  satisfiable,  so  that  there  is  some  choice  of  truth  values  for  its  variables  that

makes the expression True.

This expression cannot be satisfied for any choice of p and q. 

In[31]:= FindInstance@p && ! Hp »» ! qL, 8p, q<, BooleansD

Out[31]= 8<

But this can. 

In[32]:= FindInstance@p && ! H! p »» ! qL, 8p, q<, BooleansD

Out[32]= 88p Ø True, q Ø True<<

Mathematics and Algorithms     137



The Representation of Solution Sets

Any combination of equations or inequalities can be thought of as implicitly defining a region in

some kind of space. The fundamental function of Reduce is to turn this type of implicit descrip-

tion into an explicit one. 

An implicit description in terms of equations or inequalities is sufficient if one just wants to test

whether a point specified by values of variables is in the region. But to understand the structure

of the region, or to generate points in it, one typically needs a more explicit description, of the

kind obtained from Reduce. 

Here are inequalities that implicitly define a semicircular region. 

In[1]:= semi = x > 0 && x^2 + y^2 < 1

Out[1]= x > 0 && x2 + y2 < 1

This shows that the point H1 ê2, 1 ê2L lies in the region. 

In[2]:= semi ê. 8x -> 1 ê 2, y -> 1 ê 2<

Out[2]= True

Reduce gives a more explicit representation of the region. 

In[3]:= Reduce@semi, 8x, y<D

Out[3]= 0 < x < 1 && - 1 - x2 < y < 1 - x2

If we pick a value for x consistent with the first inequality, we then immediately get an explicit 
inequality for y. 

In[4]:= % ê. x -> 1 ê 2

Out[4]= -
3

2
< y <

3

2

Reduce@expr, 8x1, x2, …<D  is  set  up  to  describe  regions  by  first  giving  fixed  conditions  for  x1,

then giving conditions for x2  that depend on x1, then conditions for x3  that depend on x1  and x2,

and so on. This structure has the feature that it allows one to pick points by successively choos-

ing values for each of the xi in turn~in much the same way as when one uses iterators in func-

tions like Table. 

138     Mathematics and Algorithms



This gives a representation for the region in which one first picks a value for y, then x. 

In[5]:= Reduce@semi, 8y, x<D

Out[5]= -1 < y < 1 && 0 < x < 1 - y2

In  some simple  cases  the  region  defined  by  a  system of  equations  or  inequalities  will  end  up

having  only  one  component.  In  such  cases,  the  output  from  Reduce  will  be  of  the  form

e1 && e2 … where each of the ei is an equation or inequality involving variables up to xi. 

In  most  cases,  however,  there  will  be  several  components,  represented  by  output  containing

forms such as u1 »» u2 »» …. Reduce  typically tries to minimize the number of components used

in describing a region. But in some cases multiple parametrizations may be needed to cover a

single connected component, and each one of these will appear as a separate component in the

output from Reduce. 

In  representing  solution  sets,  it  is  common to  find  that  several  components  can  be  described

together  by  using  forms  such  as  … && Hu1 »» u2L && ….  Reduce  by  default  does  this  so  as  to

return  its  results  as  compactly  as  possible.  You  can  use  LogicalExpand  to  generate  an

expanded form in which each component appears separately. 

In generating the most compact results, Reduce sometimes ends up making conditions on later

variables xi  depend on more of the earlier xi  than is strictly necessary. You can force Reduce to

generate results in which a particular xi only has minimal dependence on earlier xi by giving the

option Backsubstitution -> True. Usually this will lead to much larger output, although some-

times it may be easier to interpret.

By default, Reduce expresses the condition on y in terms of x.

In[6]:= Reduce@x^2 + y == 4 && x^3 - 4 y == 8, 8x, y<D

Out[6]= x ã 2 »» x ã -3 - Â 3 »» x ã -3 + Â 3 && y ã 4 - x2

Backsubstituting allows conditions for y to be given without involving x. 

In[7]:= Reduce@x^2 + y == 4 && x^3 - 4 y == 8, 8x, y<, Backsubstitution -> TrueD

Out[7]= Hx ã 2 && y ã 0L »» x ã -Â -3 Â + 3 && y ã -2 Â -Â + 3 3 »» x ã Â 3 Â + 3 && y ã 2 Â Â + 3 3

Mathematics and Algorithms     139



CylindricalDecomposition@expr,8x1,x2,…<D

generate the cylindrical algebraic decomposition of the 
region defined by expr

GenericCylindricalDecomposition@expr,8x1,x2,…<D

find the full-dimensional part of the decomposition of the 
region defined by expr, together with any hypersurfaces 
containing the rest of the region

SemialgebraicComponentInstances@expr,8x1,x2,…<D

give at least one point in each connected component of the 
region defined by expr 

Cylindrical algebraic decomposition. 

For polynomial equations or inequalities over the reals, the structure of the result returned by

Reduce is typically a cylindrical algebraic decomposition or CAD. Sometimes Reduce can yield a

simpler  form.  But  in  all  cases  you  can  get  the  complete  CAD  by  using

CylindricalDecomposition.  For  systems  containing  inequalities  only,

GenericCylindricalDecomposition gives you "most" of the solution set and is often faster.

Here is the cylindrical algebraic decomposition of a region bounded by a hyperbola.

In[8]:= CylindricalDecomposition@x^2 - y^2 >= 1, 8x, y<D

Out[8]= x < -1 && - -1 + x2 § y § -1 + x2 »» Hx ã -1 && y ã 0L »»

Hx ã 1 && y ã 0L »» x > 1 && - -1 + x2 § y § -1 + x2

This gives the two-dimensional part of the solution set along with a curve containing the 
boundary.

In[9]:= GenericCylindricalDecomposition@x^2 - y^2 >= 1, 8x, y<D

Out[9]= : x < -1 && - -1 + x2 < y < -1 + x2 »» x > 1 && - -1 + x2 < y < -1 + x2 , 1 - x2 + y2 ã 0>

This finds solutions from both parts of the solution set.

In[10]:= SemialgebraicComponentInstances@x^2 - y^2 >= 1, 8x, y<D

Out[10]= :8x Ø -2, y Ø -1<, 8x Ø -2, y Ø 1<, 8x Ø -1, y Ø 0<, 8x Ø 1, y Ø 0<,

8x Ø 2, y Ø -1<, 8x Ø 2, y Ø 1<, :x Ø - 2 , y Ø -1>, :x Ø - 2 , y Ø 0>,

:x Ø - 2 , y Ø 1>, :x Ø 2 , y Ø -1>, :x Ø 2 , y Ø 0>, :x Ø 2 , y Ø 1>>

140     Mathematics and Algorithms



The results include a few points from each piece of the solution set.

In[11]:= Show@
8RegionPlot@x^2 - y^2 >= 1, 8x, -3, 3<, 8y, -3, 3<D, Graphics@Point@8x, y<D ê. %D<D

Out[11]=

Quantifiers

In  a  statement  like  x^4 + x^2 > 0,  Mathematica  treats  the  variable  x  as  having  a  definite,

though  unspecified,  value.  Sometimes,  however,  it  is  useful  to  be  able  to  make  statements

about whole collections of possible values for x. You can do this using quantifiers. 

ForAll@x,exprD expr holds for all values of x

ForAll@8x1,x2,…<,exprD expr holds for all values of all the xi
ForAll@8x1,x2,…<,cond,exprD expr holds for all xi satisfying cond

Exists@x,exprD there exists a value of x for which expr holds

Exists@8x1,x2,…<,exprD there exist values of the xi for which expr holds

Exists@8x1,…<,cond,exprD there exist values of the xi satisfying cond for which expr 
holds

The structure of quantifiers. 

You can work with quantifiers in Mathematica much as you work with equations, inequalities or

logical  connectives. In most cases, the quantifiers will  not immediately be changed by evalua-

tion. But they can be simplified or reduced by functions like FullSimplify and Reduce. 

This asserts that an x exists that makes the inequality true. The output here is just a formatted 
version of the input. 

In[1]:= Exists@x, x^4 + x^2 > 0D

Out[1]= $x x2 + x4 > 0

Mathematics and Algorithms     141

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



FullSimplify establishes that the assertion is true. 

In[2]:= FullSimplify@%D

Out[2]= True

This gives False, since the inequality fails when x is zero. 

In[3]:= FullSimplify@ForAll@x, x^4 + x^2 > 0DD

Out[3]= False

Mathematica supports a version of the standard notation for quantifiers used in predicate logic

and pure mathematics. You can input " as î@ForAllD or ÇfaÇ, and you can input $ as î@ExistsD

or  ÇexÇ.  To  make  the  notation  precise,  however,  Mathematica  makes  the  quantified  variable  a

subscript.  The  conditions  on  the  variable  can  also  be  given  in  the  subscript,  separated  by  a

comma. 

"xexpr ForAll@x,exprD

"8x1,x2,…<expr ForAll@8x1,x2,…<,exprD

"x,condexpr ForAll@x,cond,exprD

$xexpr Exists@x,exprD

$8x1,x2,…<expr Exists@8x1,x2,…<,exprD

$x,condexpr Exists@x,cond,exprD

Notation for quantifiers. 

Given a statement that involves quantifiers, there are certain important cases where it is possi-

ble  to  resolve  it  into  an  equivalent  statement  in  which  the  quantifiers  have  been  eliminated.

Somewhat  like  solving  an  equation,  such  quantifier  elimination  turns  an  implicit  statement

about what is true for all x or for some x into an explicit statement about the conditions under

which this holds. 

Resolve@exprD attempt to eliminate quantifiers from expr

Resolve@expr,domD attempt to eliminate quantifiers with all variables assumed 
to be in domain dom

Quantifier elimination. 

142     Mathematics and Algorithms



This shows that an x exists that makes the equation true. 

In[4]:= Resolve@Exists@x, x^2 == x^3DD

Out[4]= True

This shows that the equations can only be satisfied if c obeys a certain condition. 

In[5]:= Resolve@Exists@x, x^2 == c && x^3 == c + 1DD

Out[5]= -1 - 2 c - c2 + c3 ã 0

Resolve  can  always  eliminate  quantifiers  from  any  collection  of  polynomial  equations  and

inequations over complex numbers, and from any collection of polynomial equations and inequal -

ities over real numbers. It can also eliminate quantifiers from Boolean expressions. 

This finds the conditions for a quadratic form over the reals to be positive. 

In[6]:= Resolve@ForAll@x, a x^2 + b x + c > 0D, RealsD

Out[6]= Ia > 0 && -a b2 + 4 a2 c > 0M »» Ha ã 0 && b ã 0 && c > 0L »» Ia ¥ 0 && b ã 0 && c > 0 && -a b2 + 4 a2 c > 0M

This shows that there is a way of assigning truth values to p and q that makes the expression 
true. 

In[7]:= Resolve@Exists@8p, q<, p »» q && ! qD, BooleansD

Out[7]= True

You can also use quantifiers with Reduce. If you give Reduce a collection of equations or inequali -

ties, then it will try to produce a detailed representation of the complete solution set. But some-

times you may want to address a more global question, such as whether the solution set covers

all values of x, or whether it covers none of these values. Quantifiers provide a convenient way

to specify such questions. 

This gives the complete structure of the solution set. 

In[8]:= Reduce@x^2 + x + c == 0, 8c, x<, RealsD

Out[8]= c <
1

4
&& x ã -

1

2
-
1

2
1 - 4 c »» x ã -

1

2
+
1

2
1 - 4 c »» c ã

1

4
&& x ã -

1

2

This instead just gives the condition for a solution to exist. 

In[9]:= Reduce@Exists@x, x^2 + x + c == 0D, 8c<, RealsD

Out[9]= c §
1

4

It is possible to formulate a great many mathematical questions in terms of quantifiers. 

Mathematics and Algorithms     143



It is possible to formulate a great many mathematical questions in terms of quantifiers. 

This finds the conditions for a circle to be contained within an arbitrary conic section. 

In[10]:= Reduce@ForAll@8x, y<, x^2 + y^2 < 1, a x^2 + b y^2 < cD, 8a, b, c<, RealsD

Out[10]= Ha § 0 && HHb § 0 && c > 0L »» Hb > 0 && c ¥ bLLL »» Ha > 0 && HHb < a && c ¥ aL »» Hb ¥ a && c ¥ bLLL

This finds the conditions for a line to intersect a circle. 

In[11]:= Reduce@Exists@8x, y<, x^2 + y^2 < 1, r x + s y == 1D, 8r, s<, RealsD

Out[11]= r < -1 »» -1 § r § 1 && s < - 1 - r2 »» s > 1 - r2 »» r > 1

This defines q to be a general monic quartic. 

In[12]:= q@x_D := x^4 + b x^3 + c x^2 + d x + e

This finds the condition for all pairs of roots to the quartic to be equal. 

In[13]:= Reduce@ForAll@8x, y<, q@xD == 0 && q@yD == 0, x == yD, 8b, c, d, e<D

Out[13]= c ã
3 b2

8
&& d ã

b3

16
&& e ã

b4

256
»» Hb ã 0 && c ã 0 && d ã 0 && e ã 0L

Although  quantifier  elimination  over  the  integers  is  in  general  a  computationally  impossible

problem, Mathematica can do it in specific cases. 

This shows that 2  cannot be a rational number. 
In[14]:= Resolve@Exists@8x, y<, x^2 == 2 y^2 && y > 0D, IntegersD

Out[14]= False

9 ê4  is, though. 

In[15]:= Resolve@Exists@8x, y<, 4 x^2 == 9 y^2 && y > 0D, IntegersD

Out[15]= True

144     Mathematics and Algorithms



Minimization and Maximization

Minimize@expr,8x1,x2,…<D minimize expr

Minimize@8expr,cons<,8x1,x2,…<D minimize expr subject to the constraints cons

Maximize@expr,8x1,x2,…<D maximize expr

Maximize@8expr,cons<,8x1,x2,…<D maximize expr subject to the constraints cons

Minimization and maximization. 

Minimize  and  Maximize  yield  lists  giving  the  value  attained  at  the  minimum  or  maximum,

together with rules specifying where the minimum or maximum occurs. 

This finds the minimum of a quadratic function. 

In[1]:= Minimize@x^2 - 3 x + 6, xD

Out[1]= :
15

4
, :x Ø

3

2
>>

Applying the rule for x gives the value at the minimum. 

In[2]:= x^2 - 3 x + 6 ê. Last@%D

Out[2]= 
15

4

This maximizes with respect to x and y. 

In[3]:= Maximize@5 x y - x^4 - y^4, 8x, y<D

Out[3]= :
25

8
, :x Ø -

5

2
, y Ø -

5

2
>>

Minimize@expr, xD  minimizes  expr  allowing  x  to  range  over  all  possible  values  from -¶  to  +¶.

Minimize@8expr, cons<, xD  minimizes  expr  subject  to  the  constraints  cons  being  satisfied.  The

constraints can consist of any combination of equations and inequalities. 

This finds the minimum subject to the constraint x ¥ 3. 

In[4]:= Minimize@8x^2 - 3 x + 6, x >= 3<, xD

Out[4]= 86, 8x Ø 3<<

Mathematics and Algorithms     145



This finds the maximum within the unit circle. 

In[5]:= Maximize@85 x y - x^4 - y^4, x^2 + y^2 <= 1<, 8x, y<D

Out[5]= :2, :x Ø -
1

2
, y Ø -

1

2
>>

This finds the maximum within an ellipse. The result is fairly complicated. 

In[6]:= Maximize@85 x y - x^4 - y^4, x^2 + 2 y^2 <= 1<, 8x, y<D

Out[6]= 9-RootA-811 219 + 320160 Ò1 + 274624 Ò12 - 170240 Ò13 + 25600 Ò14 &, 1E,

9x Ø RootA25 - 102 Ò12 + 122 Ò14 - 70 Ò16 + 50 Ò18 &, 2E,

y Ø RootA25 - 264 Ò12 + 848 Ò14 - 1040 Ò16 + 800 Ò18 &, 1E==

This finds the maximum along a line. 

In[7]:= Maximize@85 x y - x^4 - y^4, x + y == 1<, 8x, y<D

Out[7]= :
9

8
, :x Ø

1

2
, y Ø

1

2
>>

Minimize  and Maximize  can solve any linear programming problem in which both the objective

function expr and the constraints cons involve the variables xi only linearly.

Here is a typical linear programming problem. 

In[8]:= Minimize@8x + 3 y, x - 3 y <= 7 && x + 2 y >= 10<, 8x, y<D

Out[8]= :
53

5
, :x Ø

44

5
, y Ø

3

5
>>

They  can  also  in  principle  solve  any  polynomial  programming  problem  in  which  the  objective

function  and  the  constraints  involve  arbitrary  polynomial  functions  of  the  variables.  There  are

many important geometrical and other problems that can be formulated in this way. 

This solves the simple geometrical problem of maximizing the area of a rectangle with fixed 
perimeter. 

In[9]:= Maximize@8x y, x + y == 1<, 8x, y<D

Out[9]= :
1

4
, :x Ø

1

2
, y Ø

1

2
>>

This finds the maximal volume of a cuboid that fits inside the unit sphere. 

In[10]:= Maximize@88 x y z, x^2 + y^2 + z^2 <= 1<, 8x, y, z<D

Out[10]= :
8

3 3
, :x Ø

1

3
, y Ø -

1

3
, z Ø -

1

3
>>

An  important  feature  of  Minimize  and  Maximize  is  that  they  always  find  global  minima  and

maxima. Often functions will  have various local minima and maxima at which derivatives van-

ish.  But  Minimize  and Maximize  use global  methods to  find absolute  minima or  maxima,  not

just local extrema. 

146     Mathematics and Algorithms



An  important  feature  of  Minimize  and  Maximize  is  that  they  always  find  global  minima  and

maxima. Often functions will  have various local minima and maxima at which derivatives van-

ish.  But  Minimize  and Maximize  use global  methods to  find absolute  minima or  maxima,  not

just local extrema. 

Here is a function with many local maxima and minima. 

In[11]:= Plot@x + 2 Sin@xD, 8x, -10, 10<D

Out[11]= 

Maximize finds the global maximum. 

In[12]:= Maximize@8x + 2 Sin@xD, -10 <= x <= 10<, xD

Out[12]= : 3 +
8 p

3
, :x Ø

8 p

3
>>

If you give functions that are unbounded, Minimize  and Maximize  will return -¶ and +¶ as the

minima and maxima. And if you give constraints that can never be satisfied, they will return +¶

and -¶ as the minima and maxima, and Indeterminate as the values of variables.

One  subtle  issue  is  that  Minimize  and  Maximize  allow  both  nonstrict  inequalities  of  the  form

x <= v,  and  strict  ones  of  the  form x < v.  With  nonstrict  inequalities  there  is  no  problem with  a

minimum or maximum lying exactly on the boundary x -> v. But with strict inequalities, a mini-

mum or maximum must in principle be at least infinitesimally inside the boundary. 

With a strict inequality, Mathematica prints a warning, then returns the point on the boundary. 

In[13]:= Minimize@8x^2 - 3 x + 6, x > 3<, xD

Minimize::wksol : Warning: There is no minimum in the
region described by the contraints; returning a result on the boundary.

Out[13]= 86, 8x Ø 3<<

Minimize  and Maximize  normally assume that all  variables you give are real.  But by giving a

constraint such as x œ Integers you can specify that a variable must in fact be an integer. 

Mathematics and Algorithms     147

-10 -5 5 10

-10

-5

5

10



This does maximization only over integer values of x and y. 

In[14]:= Maximize@8x y, x^2 + y^2 < 120 && Hx yL œ Integers<, 8x, y<D

Out[14]= 856, 8x Ø -8, y Ø -7<<

Minimize  and Maximize  can compute maxima and minima of linear functions over the integers

in bounded polyhedra. This is known as integer linear programming.

This does maximization over integer values of x and y in a triangle.

In[15]:= Maximize@85 + 3 y + 7 x, x >= 0 && y >= 0 && 3 x + 4 y <= 100 && Hx yL œ Integers<, 8x, y<D

Out[15]= 8236, 8x Ø 33, y Ø 0<<

Minimize  and Maximize  can produce exact  symbolic  results  for  polynomial  optimization prob-

lems with parameters.

This finds the minimum of a general quadratic polynomial.

In[16]:= Minimize@a x^2 + b x + c, xD

Out[16]=

MinValue@8 f,cons<,8x,y,…<D give the minimum value of f  subject to the constraints cons

MaxValue@8 f,cons<,8x,y,…<D give the maximum value of f  subject to the constraints cons

ArgMin@8 f,cons<,8x,y,…<D give a position at which f  is minimized subject to the 
constraints cons

ArgMax@8 f,cons<,8x,y,…<D give a position at which f  is maximized subject to the 
constraints cons

Computing values and positions of minima and maxima.

Maximize gives both the value and the position of a maximum.

In[17]:= Maximize@8x + 2 y, x^2 + y^2 § 1<, 8x, y<D

Out[17]= : 5 , :x Ø -
4

5
+ 5 , y Ø

2

5
>>

148     Mathematics and Algorithms



Use MaxValue if you only need the maximum value.

In[18]:= MaxValue@8x + 2 y, x^2 + y^2 § 1<, 8x, y<D

Out[18]= 5

For strict polynomial inequality constraints computing only the maximum value may be much 
faster.

In[19]:= TimeConstrained@
Maximize@8-x^2 + 2 x y - z - 1, x^2 y < z^3 && x - z^2 > y^2 + 2<, 8x, y, z<D, 300D

Out[19]= $Aborted

In[20]:= MaxValue@8-x^2 + 2 x y - z - 1, x^2 y < z^3 && x - z^2 > y^2 + 2<, 8x, y, z<D êê Timing

Out[20]= 90.312, -1 - RootA-6 674484057677824 + 27190416613703680 Ò1 -

9845871213297967104 Ò12 + 30310812947042320384 Ò13 - 38968344650849575680 Ò14 +

27943648095748511616 Ò15 - 13622697129083140957 Ò16 + 5905344357450294480 Ò17 -

2872859681127251424 Ò18 + 1484592492626145792 Ò19 - 567863224101551360 Ò110 +

100879538475737088 Ò111 + 303891741605888 Ò112 - 2224545911472128 Ò113 +

70301735976960 Ò114 + 25686756556800 Ò115 + 1786706395136 Ò116 + 73014444032 Ò117 &, 1E=

ArgMax gives a position at which the maximum value is attained.

In[21]:= ArgMax@8x + 2 y, x^2 + y^2 § 1<, 8x, y<D

Out[21]= :-
4

5
+ 5 ,

2

5
>

Linear Algebra

Constructing Matrices

Table@ f,8i,m<,8 j,n<D build an m×n matrix where f  is a function of i and j that 
gives the value of the i, jth entry

Array@ f,8m,n<D build an m×n matrix whose i, jth entry is f@i, jD

ConstantArray@a,8m,n<D build an m×n matrix with all entries equal to a

DiagonalMatrix@listD generate a diagonal matrix with the elements of list on the 
diagonal

IdentityMatrix@nD generate an n×n identity matrix

Normal@SparseArray@88i1, j1<->
v1,8i2, j2<->v2,…<,8m,n<DD

make a matrix with nonzero values vk at positions 8ik, jk<

Functions for constructing matrices. 

This generates a 2×2 matrix whose i, jth entry is a@i, jD. 

Mathematics and Algorithms     149



This generates a 2×2 matrix whose i, jth entry is a@i, jD. 

In[1]:= Table@a@i, jD, 8i, 2<, 8j, 2<D

Out[1]= 88a@1, 1D, a@1, 2D<, 8a@2, 1D, a@2, 2D<<

Here is another way to produce the same matrix. 

In[2]:= Array@a, 82, 2<D

Out[2]= 88a@1, 1D, a@1, 2D<, 8a@2, 1D, a@2, 2D<<

This creates a 3×2 matrix of zeros.

In[3]:= ConstantArray@0, 83, 2<D

Out[3]= 880, 0<, 80, 0<, 80, 0<<

DiagonalMatrix makes a matrix with zeros everywhere except on the leading diagonal. 

In[4]:= DiagonalMatrix@8a, b, c<D

Out[4]= 88a, 0, 0<, 80, b, 0<, 80, 0, c<<

IdentityMatrix@nD produces an n×n identity matrix. 

In[5]:= IdentityMatrix@3D

Out[5]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This makes a 3×4 matrix with two nonzero values filled in. 

In[6]:= Normal@SparseArray@882, 3< -> a, 83, 2< -> b<, 83, 4<DD

Out[6]= 880, 0, 0, 0<, 80, 0, a, 0<, 80, b, 0, 0<<

MatrixForm prints the matrix in a two-dimensional form. 

In[7]:= MatrixForm@%D

Out[7]//MatrixForm=
0 0 0 0
0 0 a 0
0 b 0 0

Table@0,8m<,8n<D a matrix of zeros

Table@If@i>= j,1,0D,8i,m<,8 j,n<D a lower-triangular matrix

RandomReal@80,1<,8m,n<D a matrix with random numerical entries

Constructing special types of matrices. 

Table evaluates If@i ¥ j, a++, 0D separately for each element, to give a matrix with 
sequentially increasing entries in the lower-triangular part. 

150     Mathematics and Algorithms



Table evaluates If@i ¥ j, a++, 0D separately for each element, to give a matrix with 
sequentially increasing entries in the lower-triangular part. 

In[8]:= a = 1; Table@If@i ¥ j, a++, 0D, 8i, 3<, 8j, 3<D

Out[8]= 881, 0, 0<, 82, 3, 0<, 84, 5, 6<<

SparseArray@8<,8n,n<D a zero matrix

SparseArray@8i _,i _<->1,8n,n<D an n µ n identity matrix

SparseArray@8i _, j
_<ê; i>= j->1,8n,n<D

a lower-triangular matrix

Constructing special types of matrices with SparseArray .

This sets up a general lower-triangular matrix. 

In[9]:= SparseArray@8i_, j_< ê; i >= j -> f@i, jD, 83, 3<D êê MatrixForm

Out[9]//MatrixForm=
f@1, 1D 0 0
f@2, 1D f@2, 2D 0
f@3, 1D f@3, 2D f@3, 3D

Getting and Setting Pieces of Matrices

m@@i, jDD the i, jth entry

m@@iDD the ith row

mAAAll,iEE the ith column

Take@m,8i0,i1<,8 j0, j1<D the submatrix with rows i0 through i1 and columns j0 
through j1

m@@i0;;i1, j0;; j1DD the submatrix with rows i0 through i1 and columns j0 
through j1

mAA9i1,…,ir }, { j1 , … , js }]] the r×s submatrix with elements having row indices ik and 
column indices jk

TrAm,ListE elements on the diagonal

ArrayRules@mD positions of nonzero elements

Ways to get pieces of matrices. 

Matrices in Mathematica are represented as lists of lists. You can use all the standard Mathemat-

ica list-manipulation operations on matrices. 

Mathematics and Algorithms     151



Here is a sample 3×3 matrix. 

In[1]:= t = Array@a, 83, 3<D

Out[1]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<, 8a@3, 1D, a@3, 2D, a@3, 3D<<

This picks out the second row of the matrix. 

In[2]:= t@@2DD

Out[2]= 8a@2, 1D, a@2, 2D, a@2, 3D<

Here is the second column of the matrix. 

In[3]:= t@@All, 2DD

Out[3]= 8a@1, 2D, a@2, 2D, a@3, 2D<

This picks out a submatrix. 

In[4]:= Take@t, 81, 2<, 82, 3<D

Out[4]= 88a@1, 2D, a@1, 3D<, 8a@2, 2D, a@2, 3D<<

m=88a11,a12,…<,8a21,a22,…<,…< assign m to be a matrix

m@@i, jDD=a reset element 8i, j< to be a

m@@iDD=a reset all elements in row i to be a

m@@iDD=8a1,a2,…< reset elements in row i to be 8a1, a2, …<

m@@i0;;i1DD=8v1,v2,…< reset rows i0 through i1 to be vectors 8v1, v2, …<

mAAAll, jEE=a reset all elements in column j to be a

mAAAll, jEE=8a1,a2,…< reset elements in column j to be 8a1, a2, …<

m@@i0;;i1, j0;; j1DD=
88a11,a12,…<,8a21,a22,…<,…<

reset the submatrix with rows i0 through i1 and columns j0 
through j1 to new values 

Resetting parts of matrices. 

Here is a 3×3 matrix. 

In[5]:= m = 88a, b, c<, 8d, e, f<, 8g, h, i<<

Out[5]= 88a, b, c<, 8d, e, f<, 8g, h, i<<

This resets the 2, 2 element to be x, then shows the whole matrix. 

In[6]:= m@@2, 2DD = x; m

Out[6]= 88a, b, c<, 8d, x, f<, 8g, h, i<<

This resets all elements in the second column to be z. 

152     Mathematics and Algorithms



This resets all elements in the second column to be z. 

In[7]:= m@@All, 2DD = z; m

Out[7]= 88a, z, c<, 8d, z, f<, 8g, z, i<<

This separately resets the three elements in the second column. 

In[8]:= m@@All, 2DD = 8i, j, k<; m

Out[8]= 88a, i, c<, 8d, j, f<, 8g, k, i<<

This increments all the values in the second column. 

In[9]:= m@@All, 2DD++; m

Out[9]= 88a, 1 + i, c<, 8d, 1 + j, f<, 8g, 1 + k, i<<

A range of indices can be specified by using ;; (Span). 

This resets the first two rows to be new vectors. 

In[10]:= m@@1 ;; 2DD = 88u, v, w<, 8x, y, z<<; m

Out[10]= 88u, v, w<, 8x, y, z<, 8g, 1 + k, i<<

This resets elements in the first and third columns of each row. 

In[11]:= m@@All, 1 ;; 3 ;; 2DD = 881, 2<, 83, 4<, 85, 6<<; m

Out[11]= 881, v, 2<, 83, y, 4<, 85, 1 + k, 6<<

This resets elements in the first and third columns of rows 2 through 3. 

In[12]:= m@@2 ;; 3, 1 ;; 3 ;; 2DD = 88a, b<, 8c, d<<; m

Out[12]= 881, v, 2<, 8a, y, b<, 8c, 1 + k, d<<

Scalars, Vectors and Matrices

Mathematica represents matrices and vectors using lists. Anything that is not a list Mathematica

considers as a scalar. 

A vector in Mathematica consists of a list of scalars. A matrix consists of a list of vectors, repre-

senting each of its rows. In order to be a valid matrix, all the rows must be the same length, so

that the elements of the matrix effectively form a rectangular array.

Mathematics and Algorithms     153



VectorQ@exprD give True if expr has the form of a vector, and False 
otherwise

MatrixQ@exprD give True if expr has the form of a matrix, and False 
otherwise

Dimensions@exprD a list of the dimensions of a vector or matrix

Functions for testing the structure of vectors and matrices. 

The list 8a, b, c< has the form of a vector. 

In[1]:= VectorQ@8a, b, c<D

Out[1]= True

Anything that is not manifestly a list is treated as a scalar, so applying VectorQ gives False. 

In[2]:= VectorQ@x + yD

Out[2]= False

This is a 2×3 matrix. 

In[3]:= Dimensions@88a, b, c<, 8ap, bp, cp<<D

Out[3]= 82, 3<

For a vector, Dimensions gives a list with a single element equal to the result from Length. 

In[4]:= Dimensions@8a, b, c<D

Out[4]= 83<

This object does not count as a matrix because its rows are of different lengths. 

In[5]:= MatrixQ@88a, b, c<, 8ap, bp<<D

Out[5]= False

Operations on Scalars, Vectors and Matrices

Most mathematical functions in Mathematica are set up to apply themselves separately to each

element in a list. This is true in particular of all functions that carry the attribute Listable. 

A consequence is that most mathematical functions are applied element by element to matrices

and vectors. 

154     Mathematics and Algorithms



The Log applies itself separately to each element in the vector. 

In[1]:= Log@8a, b, c<D

Out[1]= 8Log@aD, Log@bD, Log@cD<

The same is true for a matrix, or, for that matter, for any nested list. 

In[2]:= Log@88a, b<, 8c, d<<D

Out[2]= 88Log@aD, Log@bD<, 8Log@cD, Log@dD<<

The differentiation function D also applies separately to each element in a list. 

In[3]:= D@8x, x^2, x^3<, xD

Out[3]= 91, 2 x, 3 x2=

The sum of two vectors is carried out element by element. 

In[4]:= 8a, b< + 8ap, bp<

Out[4]= 8a + ap, b + bp<

If you try to add two vectors with different lengths, you get an error. 

In[5]:= 8a, b, c< + 8ap, bp<

Thread::tdlen : Objects of unequal length in 8a, b, c<+ 8ap, bp< cannot be combined. à

Out[5]= 8ap, bp< + 8a, b, c<

This adds the scalar 1 to each element of the vector. 

In[6]:= 1 + 8a, b<

Out[6]= 81 + a, 1 + b<

Any object that is not manifestly a list is treated as a scalar. Here c is treated as a scalar, and 
added separately to each element in the vector. 

In[7]:= 8a, b< + c

Out[7]= 8a + c, b + c<

This multiplies each element in the vector by the scalar k.

In[8]:= k 8a, b<

Out[8]= 8a k, b k<

It is important to realize that Mathematica treats an object as a vector in a particular operation

only if the object is explicitly a list at the time when the operation is done. If the object is not

explicitly a list, Mathematica always treats it as a scalar. This means that you can get different

results, depending on whether you assign a particular object to be a list before or after you do

a particular operation. 

Mathematics and Algorithms     155



It is important to realize that Mathematica treats an object as a vector in a particular operation

only if the object is explicitly a list at the time when the operation is done. If the object is not

explicitly a list, Mathematica always treats it as a scalar. This means that you can get different

results, depending on whether you assign a particular object to be a list before or after you do

a particular operation. 

The object p is treated as a scalar, and added separately to each element in the vector. 

In[9]:= 8a, b< + p

Out[9]= 8a + p, b + p<

This is what happens if you now replace p by the list 8c, d<. 

In[10]:= % ê. p -> 8c, d<

Out[10]= 88a + c, a + d<, 8b + c, b + d<<

You would have got a different result if you had replaced p by 8c, d< before you did the first 
operation. 

In[11]:= 8a, b< + 8c, d<

Out[11]= 8a + c, b + d<

Multiplying Vectors and Matrices

c v , c m ,  etc. multiply each element by a scalar

u.v , v.m , m.v , m1.m2 ,  etc. vector and matrix multiplication

Cross@u,vD vector cross product (also input as u µ v)

OuterATimes,t,uE outer product

KroneckerProduct@m1,m2,…D Kronecker product

Different kinds of vector and matrix multiplication. 

This multiplies each element of the vector by the scalar k. 

In[1]:= k 8a, b, c<

Out[1]= 8a k, b k, c k<

156     Mathematics and Algorithms



The "dot" operator gives the scalar product of two vectors. 

In[2]:= 8a, b, c<.8ap, bp, cp<

Out[2]= a ap + b bp + c cp

You can also use dot to multiply a matrix by a vector. 

In[3]:= 88a, b<, 8c, d<<.8x, y<

Out[3]= 8a x + b y, c x + d y<

Dot is also the notation for matrix multiplication in Mathematica. 

In[4]:= 88a, b<, 8c, d<<.881, 2<, 83, 4<<

Out[4]= 88a + 3 b, 2 a + 4 b<, 8c + 3 d, 2 c + 4 d<<

It is important to realize that you can use "dot" for both left- and right-multiplication of vectors

by matrices.  Mathematica  makes no distinction between "row" and "column" vectors.  Dot car-

ries  out  whatever  operation  is  possible.  (In  formal  terms,  a.b  contracts  the  last  index  of  the

tensor a with the first index of b.)

Here are definitions for a matrix m and a vector v. 

In[5]:= m = 88a, b<, 8c, d<<; v = 8x, y<

Out[5]= 8x, y<

This left-multiplies the vector v by m. The object v is effectively treated as a column vector in 
this case. 

In[6]:= m.v

Out[6]= 8a x + b y, c x + d y<

You can also use dot to right-multiply v by m. Now v is effectively treated as a row vector. 

In[7]:= v.m

Out[7]= 8a x + c y, b x + d y<

You can multiply m by v on both sides, to get a scalar. 

In[8]:= v.m.v

Out[8]= x Ha x + c yL + y Hb x + d yL

For  some  purposes,  you  may  need  to  represent  vectors  and  matrices  symbolically,  without

explicitly  giving  their  elements.  You  can  use  dot  to  represent  multiplication  of  such  symbolic

objects.

Mathematics and Algorithms     157



For  some  purposes,  you  may  need  to  represent  vectors  and  matrices  symbolically,  without

explicitly  giving  their  elements.  You  can  use  dot  to  represent  multiplication  of  such  symbolic

objects.

Dot effectively acts here as a noncommutative form of multiplication. 

In[9]:= a.b.a

Out[9]= a.b.a

It is, nevertheless, associative. 

In[10]:= Ha.bL.Ha.bL

Out[10]= a.b.a.b

Dot products of sums are not automatically expanded out. 

In[11]:= Ha + bL.c.Hd + eL

Out[11]= Ha + bL.c.Hd + eL

You can apply the distributive law in this case using the function Distribute, as discussed in 
"Structural Operations". 

In[12]:= Distribute@%D

Out[12]= a.c.d + a.c.e + b.c.d + b.c.e

The  "dot"  operator  gives  "inner  products"  of  vectors,  matrices,  and  so  on.  In  more  advanced

calculations, you may also need to construct outer or Kronecker products of vectors and matri-

ces. You can use the general function Outer or KroneckerProduct to do this.

The outer product of two vectors is a matrix. 

In[13]:= Outer@Times, 8a, b<, 8c, d<D

Out[13]= 88a c, a d<, 8b c, b d<<

The outer product of a matrix and a vector is a rank three tensor.

In[14]:= Outer@Times, 881, 2<, 83, 4<<, 8x, y, z<D

Out[14]= 888x, y, z<, 82 x, 2 y, 2 z<<, 883 x, 3 y, 3 z<, 84 x, 4 y, 4 z<<<

158     Mathematics and Algorithms



Outer products are discussed in more detail in "Tensors". 

The Kronecker product of a matrix and a vector is a matrix.

In[15]:= KroneckerProduct@881, 2<, 83, 4<<, 8x, y, z<D

Out[15]= 88x, y, z, 2 x, 2 y, 2 z<, 83 x, 3 y, 3 z, 4 x, 4 y, 4 z<<

The Kronecker product of a pair of 2×2 matrices is a 4×4 matrix. 

In[16]:= KroneckerProduct@881, 2<, 83, 4<<, 88a, b<, 8c, d<<D

Out[16]= 88a, b, 2 a, 2 b<, 8c, d, 2 c, 2 d<, 83 a, 3 b, 4 a, 4 b<, 83 c, 3 d, 4 c, 4 d<<

Vector Operations

v@@iDD  or Part@v,iD give the ith element in the vector v

c v scalar multiplication of c times the vector v

u.v dot product of two vectors

Norm@vD give the norm of v

Normalize@vD give a unit vector in the direction of v

Standardize@vD shift v to have zero mean and unit sample variance

Standardize@v, f1D shift v by f1@vD and scale to have unit sample variance

Basic vector operations.

This is a vector in three dimensions.

In[1]:= v = 81, 3, 2<

Out[1]= 81, 3, 2<

This gives a vector u  in the direction opposite to v with twice the magnitude.

In[2]:= u = -2 v

Out[2]= 8-2, -6, -4<

This reassigns the first component of u to be its negative.

In[3]:= u@@1DD = -u@@1DD; u

Out[3]= 82, -6, -4<

Mathematics and Algorithms     159



This gives the dot product of u and v.

In[4]:= u.v

Out[4]= -24

This is the norm of v.

In[5]:= Norm@vD

Out[5]= 14

This is the unit vector in the same direction as v.

In[6]:= Normalize@vD

Out[6]= :
1

14
,

3

14
,

2

7
>

This verifies that the norm is 1.

In[7]:= Norm@%D

Out[7]= 1

Transform v to have zero mean and unit sample variance.

In[8]:= Standardize@vD

Out[8]= 8-1, 1, 0<

This shows the transformed values have mean 0 and variance 1.

In[9]:= 8Mean@%D, Variance@%D<

Out[9]= 80, 1<

Two vectors are orthogonal if  their dot product is zero. A set of vectors is orthonormal if  they

are all unit vectors and are pairwise orthogonal.

Projection@u,vD give the orthogonal projection of u onto v

OrthogonalizeA9v1,v2, …=E generate an orthonormal set from the given list of vectors

Orthogonal vector operations.

160     Mathematics and Algorithms



This gives the projection of u onto v.

In[10]:= p = Projection@u, vD

Out[10]= :-
12

7
, -

36

7
, -

24

7
>

p is a scalar multiple of v.

In[11]:= p ê v

Out[11]= :-
12

7
, -

12

7
, -

12

7
>

u - p is orthogonal to v.

In[12]:= Hu - pL.v

Out[12]= 0

Starting from the set of vectors 8u, v<, this finds an orthonormal set of two vectors.

In[13]:= Orthogonalize@8u, v<D

Out[13]= ::
1

14
, -

3

14
, -

2

7
>, :

13

14
,

3

182
,

2

91
>>

When one of the vectors is linearly dependent on the vectors preceding it, the corresponding 
position in the result will be a zero vector.

In[14]:= Orthogonalize@8v, p, u<D

Out[14]= ::
1

14
,

3

14
,

2

7
>, 80, 0, 0<, :

13

14
, -

3

182
, -

2

91
>>

Matrix Inversion

Inverse@mD find the inverse of a square matrix

Matrix inversion. 

Here is a simple 2×2 matrix.

In[1]:= m = 88a, b<, 8c, d<<

Out[1]= 88a, b<, 8c, d<<

This gives the inverse of m. In producing this formula, Mathematica implicitly assumes that the 
determinant a d - b c is nonzero.

Mathematics and Algorithms     161



This gives the inverse of m. In producing this formula, Mathematica implicitly assumes that the 
determinant a d - b c is nonzero.

In[2]:= Inverse@mD

Out[2]= ::
d

-b c + a d
, -

b

-b c + a d
>, :-

c

-b c + a d
,

a

-b c + a d
>>

Multiplying the inverse by the original matrix should give the identity matrix. 

In[3]:= %.m

Out[3]= ::-
b c

-b c + a d
+

a d

-b c + a d
, 0>, :0, -

b c

-b c + a d
+

a d

-b c + a d
>>

You have to use Together to clear the denominators, and get back a standard identity matrix. 

In[4]:= Together@%D

Out[4]= 881, 0<, 80, 1<<

Here is a matrix of rational numbers. 

In[5]:= hb = Table@1 ê Hi + jL, 8i, 4<, 8j, 4<D

Out[5]= ::
1

2
,
1

3
,
1

4
,
1

5
>, :

1

3
,
1

4
,
1

5
,
1

6
>, :

1

4
,
1

5
,
1

6
,
1

7
>, :

1

5
,
1

6
,
1

7
,
1

8
>>

Mathematica finds the exact inverse of the matrix. 

In[6]:= Inverse@hbD

Out[6]= 88200, -1200, 2100, -1120<, 8-1200, 8100, -15120, 8400<,
82100, -15120, 29400, -16800<, 8-1120, 8400, -16800, 9800<<

Multiplying by the original matrix gives the identity matrix. 

In[7]:= %.hb

Out[7]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

If you try to invert a singular matrix, Mathematica prints a warning message, and returns the 
input unchanged.

In[8]:= Inverse@881, 2<, 81, 2<<D

Inverse::sing : Matrix 881, 2<, 81, 2<< is singular. à

Out[8]= Inverse@881, 2<, 81, 2<<D

162     Mathematics and Algorithms



If  you  give  a  matrix  with  exact  symbolic  or  numerical  entries,  Mathematica  gives  the  exact

inverse.  If,  on the other  hand,  some of  the entries  in  your  matrix  are  approximate real  num-

bers, then Mathematica finds an approximate numerical result. 

Here is a matrix containing approximate real numbers. 

In[9]:= m = 881.2, 5.7<, 81.3, 5.6<<

Out[9]= 881.2, 5.7<, 81.3, 5.6<<

This finds the numerical inverse. 

In[10]:= Inverse@%D

Out[10]= 88-8.11594, 8.26087<, 81.88406, -1.73913<<

Multiplying by the original matrix gives you an identity matrix with small round-off errors. 

In[11]:= %.m

Out[11]= 991., 1.66187µ10-15=, 93.27429µ10-16, 1.==

You can get rid of small off-diagonal terms using Chop. 

In[12]:= Chop@%D

Out[12]= 881., 0<, 80, 1.<<

When  you  try  to  invert  a  matrix  with  exact  numerical  entries,  Mathematica  can  always  tell

whether or not the matrix is singular. When you invert an approximate numerical matrix, Mathe-

matica can usually not tell for certain whether or not the matrix is singular: all it can tell is, for

example, that the determinant is small compared to the entries of the matrix. When Mathemat-

ica suspects that you are trying to invert a singular numerical matrix, it prints a warning.

Mathematica prints a warning if you invert a numerical matrix that it suspects is singular. 

In[13]:= Inverse@881., 2.<, 81., 2.<<D

Inverse::sing : Matrix 881., 2.<, 81., 2.<< is singular. à

Out[13]= Inverse@881., 2.<, 81., 2.<<D

Mathematics and Algorithms     163



This matrix is singular, but the warning is different, and the result is useless.

In[14]:= Inverse@N@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<DD

Inverse::luc : Result for Inverse of badly conditioned matrix
881., 2., 3.<, 84., 5., 6.<, 87., 8., 9.<< may contain significant numerical errors. à

Out[14]= 993.15221µ1015, -6.30442µ1015, 3.15221µ1015=,

9-6.30442µ1015, 1.26088µ1016, -6.30442µ1015=, 93.15221µ1015, -6.30442µ1015, 3.15221µ1015==

If  you  work  with  high-precision  approximate  numbers,  Mathematica  will  keep  track  of  the

precision of matrix inverses that you generate.

This generates a 6×6 numerical matrix with entries of 20-digit precision. 

In[15]:= m = N@Table@GCD@i, jD + 1, 8i, 6<, 8j, 6<D, 20D;

This takes the matrix, multiplies it by its inverse, and shows the first row of the result. 

In[16]:= Hm.Inverse@mDL@@1DD

Out[16]= 91.000000000000000000, 0.µ10-19, 0.µ10-19, 0.µ10-20, 0.µ10-20, 0.µ10-20=

This generates a 20-digit numerical approximation to a 6×6 Hilbert matrix. Hilbert matrices are 
notoriously hard to invert numerically. 

In[17]:= m = N@Table@1 ê Hi + j - 1L, 8i, 6<, 8j, 6<D, 20D;

The result is still correct, but the zeros now have lower accuracy. 

In[18]:= Hm.Inverse@mDL@@1DD

Out[18]= 91.000000000000000, 0.µ10-15, 0.µ10-14, 0.µ10-14, 0.µ10-14, 0.µ10-14=

Inverse  works  only  on  square  matrices.  "Advanced  Matrix  Operations"  discusses  the  function

PseudoInverse, which can also be used with nonsquare matrices. 

Basic Matrix Operations

Transpose@mD transpose m

ConjugateTranspose@mD conjugate transpose mæ (Hermitian conjugate)

Inverse@mD matrix inverse

Det@mD determinant

Minors@mD matrix of minors

164     Mathematics and Algorithms



Minors@m,kD kth minors

Tr@mD trace

MatrixRank@mD rank of matrix

Some basic matrix operations. 

Transposing  a  matrix  interchanges  the  rows  and  columns  in  the  matrix.  If  you  transpose  an

m×n matrix, you get an n×m matrix as the result. 

Transposing a 2×3 matrix gives a 3×2 result. 

In[1]:= Transpose@88a, b, c<, 8ap, bp, cp<<D

Out[1]= 88a, ap<, 8b, bp<, 8c, cp<<

Det@mD  gives  the  determinant  of  a  square  matrix  m.  Minors@mD  is  the  matrix  whose  Hi, jLth

element gives the determinant of the submatrix obtained by deleting the Hn - i + 1Lth row and the

Hn - j + 1Lth  column of m. The Hi, jLth  cofactor of m is H-1Li+ j  times the Hn - i + 1, n - j + 1Lth  element of

the matrix of minors. 

Minors@m, kD gives the determinants of the k×k submatrices obtained by picking each possible

set of k rows and k columns from m. Note that you can apply Minors to rectangular, as well as

square, matrices. 

Here is the determinant of a simple 2×2 matrix. 

In[2]:= Det@88a, b<, 8c, d<<D

Out[2]= -b c + a d

This generates a 3×3 matrix, whose i, jth entry is a@i, jD. 

In[3]:= m = Array@a, 83, 3<D

Out[3]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<, 8a@3, 1D, a@3, 2D, a@3, 3D<<

Here is the determinant of m. 

In[4]:= Det@mD

Out[4]= -a@1, 3D a@2, 2D a@3, 1D + a@1, 2D a@2, 3D a@3, 1D + a@1, 3D a@2, 1D a@3, 2D -
a@1, 1D a@2, 3D a@3, 2D - a@1, 2D a@2, 1D a@3, 3D + a@1, 1D a@2, 2D a@3, 3D

Mathematics and Algorithms     165



The trace or spur of a matrix Tr@mD is the sum of the terms on the leading diagonal.

This finds the trace of a simple 2×2 matrix. 

In[5]:= Tr@88a, b<, 8c, d<<D

Out[5]= a + d

The rank of a matrix is the number of linearly independent rows or columns.

This finds the rank of a matrix.

In[6]:= MatrixRank@881, 2<, 81, 2<<D

Out[6]= 1

MatrixPower@m,nD nth matrix power

MatrixExp@mD matrix exponential

Powers and exponentials of matrices. 

Here is a 2×2 matrix. 

In[7]:= m = 880.4, 0.6<, 80.525, 0.475<<

Out[7]= 880.4, 0.6<, 80.525, 0.475<<

This gives the third matrix power of m. 

In[8]:= MatrixPower@m, 3D

Out[8]= 880.465625, 0.534375<, 80.467578, 0.532422<<

It is equivalent to multiplying three copies of the matrix. 

In[9]:= m.m.m

Out[9]= 880.465625, 0.534375<, 80.467578, 0.532422<<

Here is the millionth matrix power. 

In[10]:= MatrixPower@m, 10^6D

Out[10]= 880.466667, 0.533333<, 80.466667, 0.533333<<

166     Mathematics and Algorithms



The matrix exponential of a matrix m is ⁄k=0
¶ mk ëk !, where mk indicates a matrix power.

This gives the matrix exponential of m. 

In[11]:= MatrixExp@mD

Out[11]= 881.7392, 0.979085<, 80.8567, 1.86158<<

Here is an approximation to the exponential of m, based on a power series approximation. 

In[12]:= Sum@MatrixPower@m, kD ê k!, 8k, 0, 5<D

Out[12]= 881.73844, 0.978224<, 80.855946, 1.86072<<

Solving Linear Systems

Many  calculations  involve  solving  systems  of  linear  equations.  In  many  cases,  you  will  find  it

convenient to write down the equations explicitly, and then solve them using Solve. 

In some cases, however, you may prefer to convert the system of linear equations into a matrix

equation,  and  then  apply  matrix  manipulation  operations  to  solve  it.  This  approach  is  often

useful when the system of equations arises as part of a general algorithm, and you do not know

in advance how many variables will be involved. 

A  system of  linear  equations  can be  stated in  matrix  form as  m.x = b,  where  x  is  the  vector  of

variables. 

Note that if your system of equations is sparse, so that most of the entries in the matrix m are

zero, then it is best to represent the matrix as a SparseArray  object. As discussed in "Sparse

Arrays:  Linear  Algebra",  you  can  convert  from  symbolic  equations  to  SparseArray  objects

using  CoefficientArrays.  All  the  functions  described  here  work  on  SparseArray  objects  as

well as ordinary matrices. 

LinearSolve@m,bD a vector x which solves the matrix equation m.x == b
NullSpace@mD a list of linearly independent vectors whose linear combina-

tions span all solutions to the matrix equation m.x == 0

MatrixRank@mD the number of linearly independent rows or columns of m

RowReduce@mD a simplified form of m obtained by making linear combina-
tions of rows

Solving and analyzing linear systems. 

Here is a 2x2 matrix. 

Mathematics and Algorithms     167



Here is a 2x2 matrix. 

In[1]:= m = 881, 5<, 82, 1<<

Out[1]= 881, 5<, 82, 1<<

This gives two linear equations. 

In[2]:= m.8x, y< == 8a, b<

Out[2]= 8x + 5 y, 2 x + y< ã 8a, b<

You can use Solve directly to solve these equations. 

In[3]:= Solve@%, 8x, y<D

Out[3]= ::x Ø
1

9
H-a + 5 bL, y Ø

1

9
H2 a - bL>>

You can also get the vector of solutions by calling LinearSolve . The result is equivalent to the 
one you get from Solve. 

In[4]:= LinearSolve@m, 8a, b<D

Out[4]= :
1

9
H-a + 5 bL,

1

9
H2 a - bL>

Another way to solve the equations is to invert the matrix m, and then multiply 8a, b< by the 
inverse. This is not as efficient as using LinearSolve . 

In[5]:= Inverse@mD.8a, b<

Out[5]= :-
a

9
+
5 b

9
,
2 a

9
-
b

9
>

RowReduce performs a version of Gaussian elimination and can also be used to solve the 
equations. 

In[6]:= RowReduce@881, 5, a<, 82, 1, b<<D

Out[6]= ::1, 0,
1

9
H-a + 5 bL>, :0, 1,

1

9
H2 a - bL>>

If you have a square matrix m with a nonzero determinant, then you can always find a unique

solution  to  the  matrix  equation  m.x = b  for  any  b.  If,  however,  the  matrix  m  has  determinant

zero, then there may be either no vector, or an infinite number of vectors x which satisfy m.x = b

for a particular b. This occurs when the linear equations embodied in m are not independent.

When m has determinant zero, it is nevertheless always possible to find nonzero vectors x that

satisfy m.x = 0. The set of vectors x satisfying this equation form the null space or kernel of the

matrix m.  Any of these vectors can be expressed as a linear combination of a particular set of

basis vectors, which can be obtained using NullSpace@mD. 

168     Mathematics and Algorithms



When m has determinant zero, it is nevertheless always possible to find nonzero vectors x that

satisfy m.x = 0. The set of vectors x satisfying this equation form the null space or kernel of the

matrix m.  Any of these vectors can be expressed as a linear combination of a particular set of

basis vectors, which can be obtained using NullSpace@mD. 

Here is a simple matrix, corresponding to two identical linear equations. 

In[7]:= m = 881, 2<, 81, 2<<

Out[7]= 881, 2<, 81, 2<<

The matrix has determinant zero. 

In[8]:= Det@mD

Out[8]= 0

LinearSolve  cannot find a solution to the equation m.xã b in this case. 

In[9]:= LinearSolve@m, 8a, b<D

LinearSolve::nosol : Linear equation encountered that has no solution. à

Out[9]= LinearSolve@881, 2<, 81, 2<<, 8a, b<D

There is a single basis vector for the null space of m. 

In[10]:= NullSpace@mD

Out[10]= 88-2, 1<<

Multiplying the basis vector for the null space by m gives the zero vector. 

In[11]:= m.%@@1DD

Out[11]= 80, 0<

There is only 1 linearly independent row in m. 

In[12]:= MatrixRank@mD

Out[12]= 1

NullSpace  and  MatrixRank  have  to  determine  whether  particular  combinations  of  matrix

elements are zero.  For approximate numerical  matrices,  the Tolerance  option can be used to

specify  how  close  to  zero  is  considered  good  enough.  For  exact  symbolic  matrices,  you  may

sometimes  need  to  specify  something  like  ZeroTest -> HFullSimplify@ÒD == 0 &L  to  force

more to be done to test whether symbolic expressions are zero.

Here is a simple symbolic matrix with determinant zero. 

Mathematics and Algorithms     169



Here is a simple symbolic matrix with determinant zero. 

In[13]:= m = 88a, b, c<, 82 a, 2 b, 2 c<, 83 a, 3 b, 3 c<<

Out[13]= 88a, b, c<, 82 a, 2 b, 2 c<, 83 a, 3 b, 3 c<<

The basis for the null space of m contains two vectors. 

In[14]:= NullSpace@mD

Out[14]= ::-
c

a
, 0, 1>, :-

b

a
, 1, 0>>

Multiplying m by any linear combination of these vectors gives zero. 

In[15]:= Simplify@m.Hx %@@1DD + y %@@2DDLD

Out[15]= 80, 0, 0<

An  important  feature  of  functions  like  LinearSolve  and  NullSpace  is  that  they  work  with

rectangular, as well as square, matrices.

When you represent a system of linear equations by a matrix equation of the form m.x = b, the

number of columns in m gives the number of variables, and the number of rows gives the num-

ber of equations. There are a number of cases. 

Underdetermined number of equations less than the number of variables; no 
solutions or many solutions may exist

Overdetermined number of equations more than the number of variables; 
solutions may or may not exist

Nonsingular number of independent equations equal to the number of 
variables, and determinant nonzero; a unique solution 
exists

Consistent at least one solution exists

Inconsistent no solutions exist

Classes of linear systems represented by rectangular matrices. 

This asks for the solution to the inconsistent set of equations x = 1 and x = 0. 

In[16]:= LinearSolve@881<, 81<<, 81, 0<D

LinearSolve::nosol : Linear equation encountered that has no solution. à

Out[16]= LinearSolve@881<, 81<<, 81, 0<D

170     Mathematics and Algorithms



This matrix represents two equations, for three variables. 

In[17]:= m = 881, 3, 4<, 82, 1, 3<<

Out[17]= 881, 3, 4<, 82, 1, 3<<

LinearSolve  gives one of the possible solutions to this underdetermined set of equations. 

In[18]:= v = LinearSolve@m, 81, 1<D

Out[18]= :
2

5
,
1

5
, 0>

When a matrix represents an underdetermined system of equations, the matrix has a nontrivial 
null space. In this case, the null space is spanned by a single vector. 

In[19]:= NullSpace@mD

Out[19]= 88-1, -1, 1<<

If you take the solution you get from LinearSolve , and add any linear combination of the 
basis vectors for the null space, you still get a solution. 

In[20]:= m.Hv + 4 %@@1DDL

Out[20]= 81, 1<

The number of independent equations is the rank of the matrix MatrixRank@mD. The number of

redundant equations is Length@NullSpace@mDD. Note that the sum of these quantities is always

equal to the number of columns in m.

LinearSolve@mD generate a function for solving equations of the form m.x = b

Generating LinearSolveFunction objects. 

In some applications, you will  want to solve equations of the form m.x = b many times with the

same m, but different b. You can do this efficiently in Mathematica by using LinearSolve@mD to

create a single LinearSolveFunction that you can apply to as many vectors as you want. 

This creates a LinearSolveFunction. 

In[21]:= f = LinearSolve@881, 4<, 82, 3<<D

Out[21]= LinearSolveFunction@82, 2<, <>D

Mathematics and Algorithms     171



You can apply this to a vector. 

In[22]:= f@85, 7<D

Out[22]= :
13

5
,
3

5
>

You get the same result by giving the vector as an explicit second argument to LinearSolve . 

In[23]:= LinearSolve@881, 4<, 82, 3<<, 85, 7<D

Out[23]= :
13

5
,
3

5
>

But you can apply f to any vector you want. 

In[24]:= f@8-5, 9<D

Out[24]= :
51

5
, -

19

5
>

LeastSquares@m,bD give a vector x that solves the least-squares problem 
m.x == b

Solving least-squares problems.

This linear system is inconsistent. 

In[25]:= LinearSolve@881, 2<, 83, 4<, 85, 6<<, 8-1, 0, 2<D

LinearSolve::nosol : Linear equation encountered that has no solution. à

Out[25]= LinearSolve@881, 2<, 83, 4<, 85, 6<<, 8-1, 0, 2<D

LeastSquares finds a vector x that minimizes m.x - b in the least-squares sense. 

In[26]:= LeastSquares@881, 2<, 83, 4<, 85, 6<<, 8-1, 0, 2<D

Out[26]= :
8

3
, -

23

12
>

Eigenvalues and Eigenvectors

Eigenvalues@mD a list of the eigenvalues of m

Eigenvectors@mD a list of the eigenvectors of m

172     Mathematics and Algorithms



Eigensystem@mD a list of the form 8eigenvalues, eigenvectors<

EigenvaluesAN@mDE , etc. numerical eigenvalues

EigenvaluesAN@m,pDE , etc. numerical eigenvalues, starting with p-digit precision

CharacteristicPolynomial@m,xD

the characteristic polynomial of m

Eigenvalues and eigenvectors. 

The eigenvalues of a matrix m are the values li  for which one can find nonzero vectors vi  such

that m.vi = li vi. The eigenvectors are the vectors vi. 

The characteristic polynomial CharacteristicPolynomial@m, xD  for an nän  matrix is given by

Det@m - x IdentityMatrix@nDD. The eigenvalues are the roots of this polynomial. 

Finding  the  eigenvalues  of  an  nän  matrix  in  general  involves  solving  an  nth-degree  polynomial

equation.  For  n ¥ 5,  therefore,  the  results  cannot  in  general  be  expressed  purely  in  terms  of

explicit  radicals.  Root  objects  can  nevertheless  always  be  used,  although  except  for  fairly

sparse or otherwise simple matrices the expressions obtained are often unmanageably complex.

Even for a matrix as simple as this, the explicit form of the eigenvalues is quite complicated. 

In[1]:= Eigenvalues@88a, b<, 8-b, 2 a<<D

Out[1]= :
1

2
3 a - a2 - 4 b2 ,

1

2
3 a + a2 - 4 b2 >

If you give a matrix of approximate real numbers, Mathematica will find the approximate numeri -

cal eigenvalues and eigenvectors. 

Here is a 2×2 numerical matrix. 

In[2]:= m = 882.3, 4.5<, 86.7, -1.2<<

Out[2]= 882.3, 4.5<, 86.7, -1.2<<

The matrix has two eigenvalues, in this case both real. 

In[3]:= Eigenvalues@mD

Out[3]= 86.31303, -5.21303<

Here are the two eigenvectors of m. 

In[4]:= Eigenvectors@mD

Out[4]= 880.746335, 0.66557<, 8-0.513839, 0.857886<<

Eigensystem  computes the eigenvalues and eigenvectors at the same time. The assignment 
sets vals to the list of eigenvalues, and vecs to the list of eigenvectors. 

Mathematics and Algorithms     173



Eigensystem  computes the eigenvalues and eigenvectors at the same time. The assignment 
sets vals to the list of eigenvalues, and vecs to the list of eigenvectors. 

In[5]:= 8vals, vecs< = Eigensystem@mD

Out[5]= 886.31303, -5.21303<, 880.746335, 0.66557<, 8-0.513839, 0.857886<<<

This verifies that the first eigenvalue and eigenvector satisfy the appropriate condition. 

In[6]:= m.vecs@@1DD == vals@@1DD vecs@@1DD

Out[6]= True

This finds the eigenvalues of a random 4×4 matrix. For nonsymmetric matrices, the eigenvalues 
can have imaginary parts.

In[7]:= Eigenvalues@Table@RandomReal@D, 84<, 84<DD

Out[7]= 82.30022, 0.319764 + 0.547199 Â, 0.319764 - 0.547199 Â, 0.449291<

The function Eigenvalues  always gives you a list of n eigenvalues for an n×n matrix. The eigen-

values  correspond  to  the  roots  of  the  characteristic  polynomial  for  the  matrix,  and  may  not

necessarily be distinct. Eigenvectors, on the other hand, gives a list of eigenvectors which are

guaranteed  to  be  independent.  If  the  number  of  such  eigenvectors  is  less  than  n,  then

Eigenvectors  appends zero vectors to the list  it  returns, so that the total  length of the list  is

always n. 

Here is a 3×3 matrix. 

In[8]:= mz = 880, 1, 0<, 80, 0, 1<, 80, 0, 0<<

Out[8]= 880, 1, 0<, 80, 0, 1<, 80, 0, 0<<

The matrix has three eigenvalues, all equal to zero. 

In[9]:= Eigenvalues@mzD

Out[9]= 80, 0, 0<

There is, however, only one independent eigenvector for the matrix. Eigenvectors appends 
two zero vectors to give a total of three vectors in this case. 

In[10]:= Eigenvectors@mzD

Out[10]= 881, 0, 0<, 80, 0, 0<, 80, 0, 0<<

174     Mathematics and Algorithms



This gives the characteristic polynomial of the matrix.

In[11]:= CharacteristicPolynomial@mz, xD

Out[11]= -x3

Eigenvalues@m,kD the largest k eigenvalues of m

Eigenvectors@m,kD the corresponding eigenvectors of m

Eigensystem@m,kD the largest k eigenvalues with corresponding eigenvectors

Eigenvalues@m,-kD the smallest k eigenvalues of m

Eigenvectors@m,-kD the corresponding eigenvectors of m

Eigensystem@m,-kD the smallest k eigenvalues with corresponding eigenvectors

Finding largest and smallest eigenvalues. 

Eigenvalues  sorts numeric eigenvalues so that the ones with large absolute value come first.

In  many  situations,  you  may  be  interested  only  in  the  largest  or  smallest  eigenvalues  of  a

matrix. You can get these efficiently using Eigenvalues@m, kD and Eigenvalues@m, -kD. 

This computes the exact eigenvalues of an integer matrix. 

In[12]:= Eigenvalues@881, 2<, 83, 4<<D

Out[12]= :
1

2
5 + 33 ,

1

2
5 - 33 >

The eigenvalues are sorted in decreasing order of size. 

In[13]:= N@%D

Out[13]= 85.37228, -0.372281<

This gives the three eigenvalues with largest absolute value. 

In[14]:= Eigenvalues@Table@N@Tan@i ê jDD, 8i, 10<, 8j, 10<D, 3D

Out[14]= 810.044, 2.94396 + 6.03728 Â, 2.94396 - 6.03728 Â<

Eigenvalues@8m,a<D the generalized eigenvalues of m with respect to a

Eigenvectors@8m,a<D the generalized eigenvectors of m with respect to a

Eigensystem@8m,a<D the generalized eigensystem of m with respect to a

CharacteristicPolynomial@8m,a<,xD

the generalized characteristic polynomial of m with respect 
to a

Generalized eigenvalues, eigenvectors, and characteristic polynomial. 

The generalized eigenvalues for a matrix m with respect to a matrix a are defined to be those li

for which m.vi = li a.vi. 

Mathematics and Algorithms     175



The generalized eigenvalues for a matrix m with respect to a matrix a are defined to be those li

for which m.vi = li a.vi. 

The  generalized  eigenvalues  correspond  to  zeros  of  the  generalized  characteristic  polynomial

Det@m - x aD. 

Note  that  while  ordinary  matrix  eigenvalues  always  have  definite  values,  some  generalized

eigenvalues will always be Indeterminate  if the generalized characteristic polynomial vanishes,

which  happens  if  m  and  a  share  a  null  space.  Note  also  that  generalized  eigenvalues  can  be

infinite.

These two matrices share a one-dimensional null space, so one generalized eigenvalue is 
Indeterminate. 

In[15]:= Eigenvalues@8881.5, 0<, 80, 0<<, 882, 0<, 81, 0<<<D

Out[15]= 80., Indeterminate<

This gives a generalized characteristic polynomial.

In[16]:= CharacteristicPolynomial@8881.5, 0<, 80, 1<<, 882, 0<, 81, 0<<<, xD

Out[16]= 1.5 - 2. x

Advanced Matrix Operations

SingularValueList@mD the list of nonzero singular values of m

SingularValueList@m,kD the k largest singular values of m

SingularValueList@8m,a<D the generalized singular values of m with respect to a

Norm@m,pD the p-norm of m

Norm@m,"Frobenius"D the Frobenius norm of m

Finding singular values and norms of matrices. 

The  singular  values  of  a  matrix  m  are  the  square  roots  of  the  eigenvalues  of  m.m*,  where  *

denotes  Hermitian  transpose.  The  number  of  such  singular  values  is  the  smaller  dimension  of

the  matrix.  SingularValueList  sorts  the  singular  values  from largest  to  smallest.  Very  small

singular  values  are  usually  numerically  meaningless.  With  the  option  setting  Tolerance -> t,

SingularValueList drops singular values that are less than a fraction t  of the largest singular

value. For approximate numerical matrices, the tolerance is by default slightly greater than zero.

If  you  multiply  the  vector  for  each  point  in  a  unit  sphere  in  n-dimensional  space  by  an  m×n

matrix m, then you get an m-dimensional ellipsoid, whose principal axes have lengths given by

the singular values of m. 

176     Mathematics and Algorithms



If  you  multiply  the  vector  for  each  point  in  a  unit  sphere  in  n-dimensional  space  by  an  m×n 

matrix m, then you get an m-dimensional ellipsoid, whose principal axes have lengths given by

the singular values of m.  

The  2-norm  of  a  matrix  Norm@m, 2D  is  the  largest  principal  axis  of  the  ellipsoid,  equal  to  the

largest  singular  value  of  the  matrix.  This  is  also  the  maximum  2-norm  length  of  m.v  for  any

possible unit vector v.

The p-norm of a matrix Norm@m, pD is in general the maximum p-norm length of m.v that can be

attained. The cases most often considered are p = 1, p = 2 and p =¶. Also sometimes considered

is the Frobenius norm Norm@m, "Frobenius"D, which is the square root of the trace of m.m*.

LUDecomposition@mD the LU decomposition

CholeskyDecomposition@mD the Cholesky decomposition

Decomposing square matrices into triangular forms. 

When you create a LinearSolveFunction  using LinearSolve@mD, this often works by decom-

posing  the  matrix  m  into  triangular  forms,  and  sometimes  it  is  useful  to  be  able  to  get  such

forms explicitly. 

LU  decomposition  effectively  factors  any  square  matrix  into  a  product  of  lower-  and  upper-

triangular  matrices.  Cholesky  decomposition  effectively  factors  any  Hermitian  positive-definite

matrix  into  a  product  of  a  lower-triangular  matrix  and  its  Hermitian  conjugate,  which  can  be

viewed as the analog of finding a square root of a matrix. 

PseudoInverse@mD the pseudoinverse

QRDecomposition@mD the QR decomposition

SingularValueDecomposition@mD the singular value decomposition

SingularValueDecomposition@
8m,a<D

the generalized singular value decomposition

Orthogonal decompositions of matrices. 

The standard definition for the inverse of a matrix fails if the matrix is not square or is singular.

The pseudoinverse mH-1L  of a matrix m can however still be defined. It is set up to minimize the

sum of the squares of all entries in m.mH-1L - I, where I is the identity matrix. The pseudoinverse

is sometimes known as the generalized inverse, or the Moore|Penrose inverse. It is particularly

used for problems related to least-squares fitting.

QR decomposition  writes  any  matrix  m  as  a  product  q*.r,  where  q  is  an  orthonormal  matrix,  *

denotes Hermitian transpose, and r is a triangular matrix, in which all entries below the leading

diagonal are zero. 

Mathematics and Algorithms     177



QR decomposition  writes  any  matrix  m  as  a  product  q*.r,  where  q  is  an  orthonormal  matrix,  *

denotes Hermitian transpose, and r is a triangular matrix, in which all entries below the leading

diagonal are zero. 

Singular  value  decomposition,  or  SVD,  is  an  underlying  element  in  many  numerical  matrix

algorithms. The basic idea is to write any matrix m  in the form u.s.v*,  where s  is a matrix with

the singular values of m on its diagonal, u and v are orthonormal matrices, and v*  is the Hermi-

tian transpose of v. 

JordanDecomposition@mD the Jordan decomposition

SchurDecomposition@mD the Schur decomposition

SchurDecomposition@8m,a<D the generalized Schur decomposition

HessenbergDecomposition@mD the Hessenberg decomposition

Functions related to eigenvalue problems. 

Most square matrices can be reduced to a diagonal matrix of eigenvalues by applying a matrix

of their eigenvectors as a similarity transformation. But even when there are not enough eigen-

vectors to do this, one can still reduce a matrix to a Jordan form in which there are both eigen-

values  and Jordan blocks  on  the  diagonal.  Jordan decomposition  in  general  writes  any  square

matrix in the form s. j.s-1. 

Numerically  more stable  is  the Schur  decomposition,  which writes  any square matrix  m  in  the

form q.t.q*, where q is an orthonormal matrix, and t is block upper-triangular. Also related is the

Hessenberg  decomposition,  which  writes  a  square  matrix  m  in  the  form  p.h.p*,  where  p  is  an

orthonormal matrix, and h can have nonzero elements down to the diagonal below the leading

diagonal. 

Tensors

Tensors  are mathematical objects that give generalizations of vectors and matrices. In Mathe-

matica,  a  tensor  is  represented  as  a  set  of  lists,  nested  to  a  certain  number  of  levels.  The

nesting level is the rank of the tensor. 

178     Mathematics and Algorithms



rank 0 scalar

rank 1 vector

rank 2 matrix

rank k rank k tensor

Interpretations of nested lists. 

A tensor of rank k  is essentially a k-dimensional table of values. To be a true rank k  tensor, it

must be possible to arrange the elements in the table in a k-dimensional cuboidal array. There

can be no holes or protrusions in the cuboid. 

The indices that specify a particular element in the tensor correspond to the coordinates in the

cuboid. The dimensions of the tensor correspond to the side lengths of the cuboid. 

One simple way that a rank k  tensor can arise is in giving a table of values for a function of k

variables. In physics, the tensors that occur typically have indices which run over the possible

directions in space or spacetime. Notice,  however,  that there is  no built-in notion of  covariant

and  contravariant  tensor  indices  in  Mathematica:  you  have  to  set  these  up  explicitly  using

metric tensors.

Table@ f,8i1,n1<,8i2,n2<,…,8ik,nk<D

create an n1×n2×…×nk tensor whose elements are the 
values of f

Array@a,8n1,n2,…,nk<D create an n1×n2×…×nk tensor with elements given by 
applying a to each set of indices

ArrayQ@t,nD test whether t is a tensor of rank n

Dimensions@tD give a list of the dimensions of a tensor

ArrayDepth@tD find the rank of a tensor

MatrixForm@tD print with the elements of t arranged in a two-dimensional 
array

Functions for creating and testing the structure of tensors. 

Here is a 2×3×2 tensor. 

In[1]:= t = Table@i1 + i2 i3, 8i1, 2<, 8i2, 3<, 8i3, 2<D

Out[1]= 8882, 3<, 83, 5<, 84, 7<<, 883, 4<, 84, 6<, 85, 8<<<

Mathematics and Algorithms     179



This is another way to produce the same tensor. 

In[2]:= Array@HÒ1 + Ò2 Ò3L &, 82, 3, 2<D

Out[2]= 8882, 3<, 83, 5<, 84, 7<<, 883, 4<, 84, 6<, 85, 8<<<

MatrixForm displays the elements of the tensor in a two-dimensional array. You can think of 
the array as being a 2×3 matrix of column vectors. 

In[3]:= MatrixForm@tD

Out[3]//MatrixForm=

Dimensions gives the dimensions of the tensor. 

In[4]:= Dimensions@tD

Out[4]= 82, 3, 2<

Here is the 111 element of the tensor. 

In[5]:= t@@1, 1, 1DD

Out[5]= 2

ArrayDepth gives the rank of the tensor. 

In[6]:= ArrayDepth@tD

Out[6]= 3

The rank of a tensor is equal to the number of indices needed to specify each element. You can

pick out subtensors by using a smaller number of indices. 

Transpose@tD transpose the first two indices in a tensor

Transpose@t,8p1,p2,…<D transpose the indices in a tensor so that the kth becomes 
the pkth

Tr@t, fD form the generalized trace of the tensor t

Outer@ f,t1,t2D form the generalized outer product of the tensors t1 and t2 
with "multiplication operator" f

t1.t2 form the dot product of t1 and t2 (last index of t1 contracted 
with first index of t2)

Inner@ f,t1,t2,gD form the generalized inner product, with "multiplication 
operator" f  and "addition operator" g

Tensor manipulation operations. 

You  can  think  of  a  rank  k  tensor  as  having  k  "slots"  into  which  you  insert  indices.  Applying

Transpose is effectively a way of reordering these slots. If you think of the elements of a tensor

as forming a k-dimensional cuboid, you can view Transpose as effectively rotating (and possibly

reflecting) the cuboid. 

180     Mathematics and Algorithms

2

3

3

5

4

7

3

4

4

6

5

8



You  can  think  of  a  rank  k  tensor  as  having  k  "slots"  into  which  you  insert  indices.  Applying

Transpose is effectively a way of reordering these slots. If you think of the elements of a tensor

as forming a k-dimensional cuboid, you can view Transpose as effectively rotating (and possibly

reflecting) the cuboid. 

In the most general  case, Transpose  allows you to specify an arbitrary reordering to apply to

the indices of a tensor. The function Transpose@T, 8p1, p2, …, pk<D gives you a new tensor T£

such that the value of T£
i1 i2 … ik  is given by Tip1 ip2 … ipk

. 

If  you  originally  had  an  np1µnp2µ…µnpk  tensor,  then  by  applying  Transpose,  you  will  get  an

n1µn2µ…µnk tensor. 

Here is a matrix that you can also think of as a 2×3 tensor. 

In[7]:= m = 88a, b, c<, 8ap, bp, cp<<

Out[7]= 88a, b, c<, 8ap, bp, cp<<

Applying Transpose gives you a 3×2 tensor. Transpose effectively interchanges the two 
"slots" for tensor indices. 

In[8]:= mt = Transpose@mD

Out[8]= 88a, ap<, 8b, bp<, 8c, cp<<

The element m@@2, 3DD in the original tensor becomes the element m@@3, 2DD in the trans-
posed tensor. 

In[9]:= 8m@@2, 3DD, mt@@3, 2DD<

Out[9]= 8cp, cp<

This produces a 2×3×1×2 tensor. 

In[10]:= t = Array@a, 82, 3, 1, 2<D

Out[10]= 8888a@1, 1, 1, 1D, a@1, 1, 1, 2D<<, 88a@1, 2, 1, 1D, a@1, 2, 1, 2D<<,
88a@1, 3, 1, 1D, a@1, 3, 1, 2D<<<, 888a@2, 1, 1, 1D, a@2, 1, 1, 2D<<,
88a@2, 2, 1, 1D, a@2, 2, 1, 2D<<, 88a@2, 3, 1, 1D, a@2, 3, 1, 2D<<<<

This transposes the first two levels of t. 

In[11]:= tt1 = Transpose@tD

Out[11]= 8888a@1, 1, 1, 1D, a@1, 1, 1, 2D<<, 88a@2, 1, 1, 1D, a@2, 1, 1, 2D<<<,
888a@1, 2, 1, 1D, a@1, 2, 1, 2D<<, 88a@2, 2, 1, 1D, a@2, 2, 1, 2D<<<,
888a@1, 3, 1, 1D, a@1, 3, 1, 2D<<, 88a@2, 3, 1, 1D, a@2, 3, 1, 2D<<<<

Mathematics and Algorithms     181



The result is a 3×2×1×2 tensor. 

In[12]:= Dimensions@tt1D

Out[12]= 83, 2, 1, 2<

If you have a tensor that contains lists of the same length at different levels, then you can use

Transpose to effectively collapse different levels.

This collapses all three levels, giving a list of the elements on the "main diagonal". 

In[13]:= Transpose@Array@a, 83, 3, 3<D, 81, 1, 1<D

Out[13]= 8a@1, 1, 1D, a@2, 2, 2D, a@3, 3, 3D<

This collapses only the first two levels. 

In[14]:= Transpose@Array@a, 82, 2, 2<D, 81, 1<D

Out[14]= 88a@1, 1, 1D, a@1, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<

You can also use Tr to extract diagonal elements of a tensor. 

This forms the ordinary trace of a rank 3 tensor. 

In[15]:= Tr@Array@a, 83, 3, 3<DD

Out[15]= a@1, 1, 1D + a@2, 2, 2D + a@3, 3, 3D

Here is a generalized trace, with elements combined into a list. 

In[16]:= Tr@Array@a, 83, 3, 3<D, ListD

Out[16]= 8a@1, 1, 1D, a@2, 2, 2D, a@3, 3, 3D<

This combines diagonal elements only down to level 2. 

In[17]:= Tr@Array@a, 83, 3, 3<D, List, 2D

Out[17]= 88a@1, 1, 1D, a@1, 1, 2D, a@1, 1, 3D<,
8a@2, 2, 1D, a@2, 2, 2D, a@2, 2, 3D<, 8a@3, 3, 1D, a@3, 3, 2D, a@3, 3, 3D<<

Outer products, and their generalizations, are a way of building higher-rank tensors from lower-

rank ones. Outer products are also sometimes known as direct, tensor or Kronecker products.

From  a  structural  point  of  view,  the  tensor  you  get  from  Outer@ f, t, uD  has  a  copy  of  the

structure  of  u  inserted  at  the  "position"  of  each  element  in  t.  The  elements  in  the  resulting

structure are obtained by combining elements of t and u using the function f . 

182     Mathematics and Algorithms



This gives the "outer f" of two vectors. The result is a matrix. 

In[18]:= Outer@f, 8a, b<, 8ap, bp<D

Out[18]= 88f@a, apD, f@a, bpD<, 8f@b, apD, f@b, bpD<<

If you take the "outer f" of a length 3 vector with a length 2 vector, you get a 3×2 matrix. 

In[19]:= Outer@f, 8a, b, c<, 8ap, bp<D

Out[19]= 88f@a, apD, f@a, bpD<, 8f@b, apD, f@b, bpD<, 8f@c, apD, f@c, bpD<<

The result of taking the "outer f" of a 2×2 matrix and a length 3 vector is a 2×2×3 tensor. 

In[20]:= Outer@f, 88m11, m12<, 8m21, m22<<, 8a, b, c<D

Out[20]= 888f@m11, aD, f@m11, bD, f@m11, cD<, 8f@m12, aD, f@m12, bD, f@m12, cD<<,
88f@m21, aD, f@m21, bD, f@m21, cD<, 8f@m22, aD, f@m22, bD, f@m22, cD<<<

Here are the dimensions of the tensor. 

In[21]:= Dimensions@%D

Out[21]= 82, 2, 3<

If  you take the generalized outer  product  of  an m1µm2µ…µmr  tensor  and an n1µn2µ…µns  tensor,

you get an m1µ…µmrµn1µ…µns  tensor. If the original tensors have ranks r and s, your result will

be a rank r + s tensor. 

In terms of indices, the result of applying Outer  to two tensors Ti1 i2 … ir  and U j1 j2 … js  is the tensor

Vi1 i2 … ir j1 j2 … js with elements f@Ti1 i2 … ir, U j1 j2 … jsD. 

In  doing standard tensor  calculations,  the most  common function f  to  use in  Outer  is  Times,

corresponding to the standard outer product. 

Particularly in doing combinatorial  calculations, however, it  is often convenient to take f  to be

List. Using Outer, you can then get combinations of all possible elements in one tensor, with

all possible elements in the other.

In  constructing  Outer@ f, t, uD  you  effectively  insert  a  copy  of  u  at  every  point  in  t.  To  form

Inner@ f, t, uD, you effectively combine and collapse the last dimension of t and the first dimen-

sion of u. The idea is to take an m1µm2µ…µmr  tensor and an n1µn2µ…µns  tensor, with mr = n1, and

get an m1µm2µ…µmr-1µn2µ…µns tensor as the result. 

The simplest examples are with vectors. If you apply Inner  to two vectors of equal length, you

get  a  scalar.  Inner@ f, v1, v2, gD  gives  a  generalization  of  the  usual  scalar  product,  with  f

playing the role of multiplication, and g playing the role of addition.

Mathematics and Algorithms     183



The simplest examples are with vectors. If you apply Inner  to two vectors of equal length, you

get  a  scalar.  Inner@ f, v1, v2, gD  gives  a  generalization  of  the  usual  scalar  product,  with  f

playing the role of multiplication, and g playing the role of addition.

This gives a generalization of the standard scalar product of two vectors.

In[22]:= Inner@f, 8a, b, c<, 8ap, bp, cp<, gD

Out[22]= g@f@a, apD, f@b, bpD, f@c, cpDD

This gives a generalization of a matrix product. 

In[23]:= Inner@f, 881, 2<, 83, 4<<, 88a, b<, 8c, d<<, gD

Out[23]= 88g@f@1, aD, f@2, cDD, g@f@1, bD, f@2, dDD<, 8g@f@3, aD, f@4, cDD, g@f@3, bD, f@4, dDD<<

Here is a 3×2×2 tensor. 

In[24]:= a = Array@1 &, 83, 2, 2<D

Out[24]= 8881, 1<, 81, 1<<, 881, 1<, 81, 1<<, 881, 1<, 81, 1<<<

Here is a 2×3×1 tensor. 

In[25]:= b = Array@2 &, 82, 3, 1<D

Out[25]= 8882<, 82<, 82<<, 882<, 82<, 82<<<

This gives a 3×2×3×1 tensor. 

In[26]:= a.b

Out[26]= 88884<, 84<, 84<<, 884<, 84<, 84<<<,
8884<, 84<, 84<<, 884<, 84<, 84<<<, 8884<, 84<, 84<<, 884<, 84<, 84<<<<

Here are the dimensions of the result. 

In[27]:= Dimensions@%D

Out[27]= 83, 2, 3, 1<

You can think of  Inner  as  performing a "contraction" of  the last  index of  one tensor  with the

first index of another. If you want to perform contractions across other pairs of indices, you can

do  so  by  first  transposing  the  appropriate  indices  into  the  first  or  last  position,  then  applying

Inner, and then transposing the result back. 

In  many  applications  of  tensors,  you  need  to  insert  signs  to  implement  antisymmetry.  The

function Signature@8i1, i2, …<D, which gives the signature of a permutation, is often useful for

this purpose. 

184     Mathematics and Algorithms



Outer@ f,t1,t2,…D form a generalized outer product by combining the lowest-
level elements of t1, t2, …

Outer@ f,t1,t2,…,nD treat only sublists at level n as separate elements

Outer@ f,t1,t2,…,n1,n2,…D treat only sublists at level ni in ti as separate elements

Inner@ f,t1,t2,gD form a generalized inner product using the lowest-level 
elements of t1

Inner@ f,t1,t2,g,nD contract index n of the first tensor with the first index of 
the second tensor

Treating only certain sublists in tensors as separate elements. 

Here every single symbol is treated as a separate element. 

In[28]:= Outer@f, 88i, j<, 8k, l<<, 8x, y<D

Out[28]= 888f@i, xD, f@i, yD<, 8f@j, xD, f@j, yD<<, 88f@k, xD, f@k, yD<, 8f@l, xD, f@l, yD<<<

But here only sublists at level 1 are treated as separate elements. 

In[29]:= Outer@f, 88i, j<, 8k, l<<, 8x, y<, 1D

Out[29]= 88f@8i, j<, xD, f@8i, j<, yD<, 8f@8k, l<, xD, f@8k, l<, yD<<

ArrayFlatten@t,rD create a flat rank r tensor from a rank r tensor of rank r 
tensors

ArrayFlatten@tD flatten a matrix of matrices (equivalent to 
ArrayFlatten@t, 2D)

Flattening block tensors. 

Here is a block matrix (a matrix of matrices that can be viewed as blocks that fit edge to edge 
within a larger matrix). 

In[30]:= TableForm@88 881, 2<, 84, 5<<, 883<, 86<< <, 8 887, 8<<, 889<< <<D

Out[30]//TableForm=

Here is the matrix formed by piecing the blocks together.

In[31]:= TableForm@ArrayFlatten@%DD

Out[31]//TableForm=
1 2 3
4 5 6
7 8 9

Sparse Arrays: Linear Algebra

Mathematics and Algorithms     185

1 2
4 5

3
6

7 8 9



Sparse Arrays: Linear Algebra

Many large-scale applications of linear algebra involve matrices that have many elements, but

comparatively  few  that  are  nonzero.  You  can  represent  such  sparse  matrices  efficiently  in

Mathematica  using  SparseArray  objects,  as  discussed  in  "Sparse  Arrays:  Manipulating  Lists".

SparseArray objects work by having lists of rules that specify where nonzero values appear.

SparseArray@listD a SparseArray  version of an ordinary list

SparseArray@88i1, j1<->v1,8i2, j2<->v2,…<,8m,n<D

an m×n sparse array with element 8ik, jk< having value vk

SparseArray@88i1, j1<,8i2, j2<,…<->8v1,v2,…<,8m,n<D

the same sparse array

Normal@arrayD the ordinary list corresponding to a SparseArray

Specifying sparse arrays. 

As discussed in "Sparse Arrays: Manipulating Lists", you can use patterns to specify collections

of elements in sparse arrays. You can also have sparse arrays that correspond to tensors of any

rank. 

This makes a 50×50 sparse numerical matrix, with 148 nonzero elements. 

In[1]:= m = SparseArray@8830, _< -> 11.5, 8_, 30< -> 21.5, 8i_, i_< -> i<, 850, 50<D

Out[1]= SparseArray@<148>, 850, 50<D

This shows a visual representation of the matrix elements. 

In[2]:= ArrayPlot@mD

Out[2]=

Here are the four largest eigenvalues of the matrix. 

186     Mathematics and Algorithms



Here are the four largest eigenvalues of the matrix. 

In[3]:= Eigenvalues@m, 4D

Out[3]= 8129.846, -92.6878, 49.7867, 48.7478<

Dot gives a SparseArray  result. 

In[4]:= m.m

Out[4]= SparseArray@<2500>, 850, 50<D

You can extract parts just like in an ordinary array. 

In[5]:= %@@20, 20DD

Out[5]= 647.25

You can apply most standard structural operations directly to SparseArray  objects, just as you

would to ordinary lists. When the results are sparse, they typically return SparseArray objects. 

Dimensions@mD the dimensions of an array

ArrayRules@mD the rules for nonzero elements in an array

m@@i, jDD element i, j

m@@iDD the ith row

mAAAll, jEE the ith column

m@@i, jDD=v reset element i, j

A few structural operations that can be done directly on SparseArray  objects. 

This gives the first column of m. It has only 2 nonzero elements. 

In[6]:= m@@All, 1DD

Out[6]= SparseArray@<2>, 850<D

This adds 3 to each element in the first column of m. 

In[7]:= m@@All, 1DD = 3 + m@@All, 1DD

Out[7]= SparseArray@<2>, 850<, 3D

Now all the elements in the first column are nonzero. 

In[8]:= m@@All, 1DD

Out[8]= SparseArray@<50>, 850<D

This gives the rules for the nonzero elements on the second row. 

Mathematics and Algorithms     187



This gives the rules for the nonzero elements on the second row. 

In[9]:= ArrayRules@m@@2DDD

Out[9]= 881< Ø 3, 82< Ø 2, 830< Ø 21.5, 8_< Ø 0<

SparseArray@rulesD generate a sparse array from rules

CoefficientArrays@8eqns1,eqns2,…<,8x1,x2,…<D

get arrays of coefficients from equations

Import@" file.mtx"D import a sparse array from a file

Typical ways to get sparse arrays. 

This generates a tridiagonal random matrix. 

In[10]:= SparseArray@8i_, j_< ê; Abs@i - jD <= 1 :> RandomReal@D, 8100, 100<D

Out[10]= SparseArray@<298>, 8100, 100<D

Even the tenth power of the matrix is still fairly sparse. 

In[11]:= MatrixPower@%, 10D

Out[11]= SparseArray@<1990>, 8100, 100<D

This extracts the coefficients as sparse arrays. 

In[12]:= s = CoefficientArrays@8c + x - z == 0, x + 2 y + z == 0<, 8x, y, z<D

Out[12]= 8SparseArray@<1>, 82<D, SparseArray@<5>, 82, 3<D<

Here are the corresponding ordinary arrays. 

In[13]:= Normal@%D

Out[13]= 88c, 0<, 881, 0, -1<, 81, 2, 1<<<

This reproduces the original forms. 

In[14]:= s@@1DD + s@@2DD.8x, y, z<

Out[14]= 8c + x - z, x + 2 y + z<

CoefficientArrays can handle general polynomial equations. 

In[15]:= s = CoefficientArrays@8c + x^2 - z == 0, x^2 + 2 y + z^2 == 0<, 8x, y, z<D

Out[15]= 8SparseArray@<1>, 82<D, SparseArray@<2>, 82, 3<D, SparseArray@<3>, 82, 3, 3<D<

188     Mathematics and Algorithms



The coefficients of the quadratic part are given in a rank 3 tensor. 

In[16]:= Normal@%D

Out[16]= 88c, 0<, 880, 0, -1<, 80, 2, 0<<,
8881, 0, 0<, 80, 0, 0<, 80, 0, 0<<, 881, 0, 0<, 80, 0, 0<, 80, 0, 1<<<<

This reproduces the original forms. 

In[17]:= s@@1DD + s@@2DD.8x, y, z< + s@@3DD.8x, y, z<.8x, y, z<

Out[17]= 9c + x2 - z, x2 + 2 y + z2=

For  machine-precision  numerical  sparse  matrices,  Mathematica  supports  standard  file  formats

such as Matrix Market (.mtx) and Harwell|Boeing. You can import and export matrices in these

formats using Import and Export.

Series, Limits and Residues

Sums and Products

This constructs the sum ⁄i=1
7 xi

i
. 

In[1]:= Sum@x^i ê i, 8i, 1, 7<D

Out[1]= x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7

You can leave out the lower limit if it is equal to 1. 

In[2]:= Sum@x^i ê i, 8i, 7<D

Out[2]= x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7

This makes i increase in steps of 2, so that only odd-numbered values are included. 

In[3]:= Sum@x^i ê i, 8i, 1, 5, 2<D

Out[3]= x +
x3

3
+
x5

5

Mathematics and Algorithms     189



Products work just like sums. 

In[4]:= Product@x + i, 8i, 1, 4<D

Out[4]= H1 + xL H2 + xL H3 + xL H4 + xL

Sum@ f,8i,imin,imax<D the sum ⁄i=imin
imax f

Sum@ f,8i,imin,imax,di<D the sum with i increasing in steps of di

Sum@ f,8i,imin,imax<,8 j, jmin, jmax<D

the nested sum ⁄i=imin
imax

⁄j= jmin
jmax f

Product@ f,8i,imin,imax<D the product ¤i=imin
imax f

Sums and products. 

This sum is computed symbolically as a function of n. 

In[5]:= Sum@i^2, 8i, 1, n<D

Out[5]= 
1

6
n H1 + nL H1 + 2 nL

Mathematica can also give an exact result for this infinite sum.

In[6]:= Sum@1 ê i^4, 8i, 1, Infinity<D

Out[6]= 
p4

90

As with integrals, simple sums can lead to complicated results.

In[7]:= Sum@x^Hi Hi + 1LL, 8i, 1, Infinity<D

Out[7]= 
-2 x1ë4 + EllipticTheta@2, 0, xD

2 x1ë4

This sum cannot be evaluated exactly using standard mathematical functions. 

In[8]:= Sum@1 ê Hi! + H2 iL!L, 8i, 1, Infinity<D

Out[8]= ‚

i=1

¶ 1

i! + H2 iL!

You can nevertheless find a numerical approximation to the result. 

In[9]:= N@%D

Out[9]= 0.373197

Mathematica  also  has  a  notation  for  multiple  sums  and  products.

Sum@ f, 8i, imin, imax<, 8 j, jmin, jmax<D  represents  a  sum over  i  and  j,  which  would  be  written  in

standard  mathematical  notation  as  ⁄i=imin
imax

⁄j= jmin
jmax f .  Notice  that  in  Mathematica  notation,  as  in

standard mathematical notation, the range of the outermost variable is given first.

190     Mathematics and Algorithms



Mathematica  also  has  a  notation  for  multiple  sums  and  products.

Sum@ f, 8i, imin, imax<, 8 j, jmin, jmax<D  represents  a  sum over  i  and  j,  which  would  be  written  in

standard  mathematical  notation  as  ⁄i=imin
imax

⁄j= jmin
jmax f .  Notice  that  in  Mathematica  notation,  as  in

standard mathematical notation, the range of the outermost variable is given first.

This is the multiple sum ⁄i=1
3

⁄j=1
i xi y j. Notice that the outermost sum over i is given first, just 

as in the mathematical notation. 
In[10]:= Sum@x^i y^j, 8i, 1, 3<, 8j, 1, i<D

Out[10]= x y + x2 y + x3 y + x2 y2 + x3 y2 + x3 y3

The way the ranges of variables are specified in Sum  and Product  is an example of the rather

general  iterator  notation  that  Mathematica  uses.  You  will  see  this  notation  again  when  we

discuss  generating  tables  and  lists  using  Table  ("Making  Tables  of  Values"),  and  when  we

describe Do loops ("Repetitive Operations").

8imax< iterate imax times, without incrementing any variables

8i,imax< i goes from 1 to imax in steps of 1

8i,imin,imax< i goes from imin to imax in steps of 1

8i,imin,imax,di< i goes from imin to imax in steps of di

8i,imin,imax<,8 j, jmin, jmax<,… i goes from imin to imax, and for each such value, j goes 
from jmin to jmax, etc.

Mathematica iterator notation. 

Power Series

The  mathematical  operations  we  have  discussed  so  far  are  exact.  Given  precise  input,  their

results are exact formulas. 

In  many situations,  however,  you  do  not  need  an  exact  result.  It  may be  quite  sufficient,  for

example, to find an approximate formula that is valid, say, when the quantity x is small.

This gives a power series approximation to H1 + xLn for x close to 0, up to terms of order x3. 
In[1]:= Series@H1 + xL^n, 8x, 0, 3<D

Out[1]= 1 + n x +
1

2
H-1 + nL n x2 +

1

6
H-2 + nL H-1 + nL n x3 + O@xD4

Mathematica knows the power series expansions for many mathematical functions. 

Mathematics and Algorithms     191



Mathematica knows the power series expansions for many mathematical functions. 

In[2]:= Series@Exp@-a tD H1 + Sin@2 tDL, 8t, 0, 4<D

Out[2]= 1 + H2 - aL t + -2 a +
a2

2
t2 + -

4

3
+ a2 -

a3

6
t3 +

1

24
I32 a - 8 a3 + a4M t4 + O@tD5

If you give it a function that it does not know, Series writes out the power series in terms of 
derivatives. 

In[3]:= Series@1 + f@tD, 8t, 0, 3<D

Out[3]= H1 + f@0DL + f£@0D t +
1

2
f££@0D t2 +

1

6
fH3L@0D t3 + O@tD4

Power series are approximate formulas that play much the same role with respect to algebraic

expressions as approximate numbers play with respect to numerical  expressions. Mathematica

allows you to perform operations on power series, in all cases maintaining the appropriate order

or "degree of precision" for the resulting power series. 

Here is a simple power series, accurate to order x5. 
In[4]:= Series@Exp@xD, 8x, 0, 5<D

Out[4]= 1 + x +
x2

2
+
x3

6
+
x4

24
+

x5

120
+ O@xD6

When you do operations on a power series, the result is computed only to the appropriate order 
in x. 

In[5]:= %^2 H1 + %L

Out[5]= 2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24
+ O@xD6

This turns the power series back into an ordinary expression. 

In[6]:= Normal@%D

Out[6]= 2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24

Now the square is computed exactly. 

In[7]:= %^2

Out[7]= 2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24

2

192     Mathematics and Algorithms



Applying Expand gives a result with 11 terms. 

In[8]:= Expand@%D

Out[8]= 4 + 20 x + 51 x2 +
265 x3

3
+
467 x4

4
+
1505 x5

12
+
7883 x6

72
+
1385 x7

18
+
24809 x8

576
+
5335 x9

288
+
3025 x10

576

Series@expr,8x,x0,n<D find the power series expansion of expr about the point 
x = x0 to at most nth order

Normal@seriesD truncate a power series to give an ordinary expression

Power series operations. 

Making Power Series Expansions

Series@expr,8x,x0,n<D find the power series expansion of expr about the point 
x = x0 to order at most Hx - x0Ln

SeriesAexpr,9x,x0,nx=,9y,y0,ny=E

find series expansions with respect to y then x

Functions for creating power series. 

Here is the power series expansion for expHxL about the point x = 0 to order x4. 

In[1]:= Series@Exp@xD, 8x, 0, 4<D

Out[1]= 1 + x +
x2

2
+
x3

6
+
x4

24
+ O@xD5

Here is the series expansion of expHxL about the point x = 1. 

In[2]:= Series@Exp@xD, 8x, 1, 4<D

Out[2]= ‰ + ‰ Hx - 1L +
1

2
‰ Hx - 1L2 +

1

6
‰ Hx - 1L3 +

1

24
‰ Hx - 1L4 + O@x - 1D5

If Mathematica does not know the series expansion of a particular function, it writes the result 
symbolically in terms of derivatives. 

In[3]:= Series@f@xD, 8x, 0, 3<D

Out[3]= f@0D + f£@0D x +
1

2
f££@0D x2 +

1

6
fH3L@0D x3 + O@xD4

In mathematical terms, Series  can be viewed as a way of constructing Taylor series for func-

tions. 

Mathematics and Algorithms     193



In mathematical terms, Series  can be viewed as a way of constructing Taylor series for func-

tions. 

The  standard  formula  for  the  Taylor  series  expansion  about  the  point  x = x0  of  a  function  gHxL

with  kth  derivative  gHkLHxL  is  gHxL =⁄k=0
¶ gHkLHx0L

Ix-x0M
k

k!
.  Whenever  this  formula  applies,  it  gives  the

same results as Series. (For common functions, Series nevertheless internally uses somewhat

more efficient algorithms.) 

Series  can also  generate  some power  series  that  involve  fractional  and negative  powers,  not

directly covered by the standard Taylor series formula. 

Here is a power series that contains negative powers of x. 

In[4]:= Series@Exp@xD ê x^2, 8x, 0, 4<D

Out[4]=
1

x2
+
1

x
+
1

2
+
x

6
+
x2

24
+

x3

120
+

x4

720
+ O@xD5

Here is a power series involving fractional powers of x. 

In[5]:= Series@Exp@Sqrt@xDD, 8x, 0, 2<D

Out[5]= 1 + x +
x

2
+
x3ë2

6
+
x2

24
+ O@xD5ë2

Series can also handle series that involve logarithmic terms.

In[6]:= Series@Exp@2 xD Log@xD, 8x, 0, 2<D

Out[6]= Log@xD + 2 Log@xD x + 2 Log@xD x2 + O@xD3

There are, of course, mathematical functions for which no standard power series exist. Mathe-

matica recognizes many such cases. 

Series sees that expJ 1
x
N has an essential singularity at x = 0, and does not produce a power 

series.
In[7]:= Series@Exp@1 ê xD, 8x, 0, 2<D

Out[7]= ‰
1

x

194     Mathematics and Algorithms



Series can nevertheless give you the power series for expJ 1
x
N about the point x =¶.

In[8]:= Series@Exp@1 ê xD, 8x, Infinity, 3<D

Out[8]= 1 +
1

x
+
1

2

1

x

2

+
1

6

1

x

3

+ OB
1

x
F

4

Especially when negative powers occur, there is some subtlety in exactly how many terms of a

particular power series the function Series will generate. 

One way to understand what happens is to think of the analogy between power series taken to

a certain order,  and real  numbers taken to a certain precision. Power series are "approximate

formulas" in much the same sense as finite-precision real numbers are approximate numbers.

The  procedure  that  Series  follows  in  constructing  a  power  series  is  largely  analogous  to  the

procedure that N follows in constructing a real-number approximation. Both functions effectively

start  by  replacing  the  smallest  pieces  of  your  expression  by  finite-order,  or  finite-precision,

approximations, and then evaluating the resulting expression. If there are, for example, cancella -

tions, this procedure may give a final result whose order or precision is less than the order or

precision  that  you  originally  asked  for.  Like  N,  however,  Series  has  some  ability  to  retry  its

computations so as to get results to the order you ask for. In cases where it does not succeed,

you can usually still get results to a particular order by asking for a higher order than you need. 

Series compensates for cancellations in this computation, and succeeds in giving you a result 
to order x3. 

In[9]:= Series@Sin@xD ê x^2, 8x, 0, 3<D

Out[9]=
1

x
-
x

6
+

x3

120
+ O@xD4

When you make a power series expansion in a variable x, Mathematica assumes that all objects

that do not explicitly contain x are in fact independent of x. Series thus does partial derivatives

(effectively using D) to build up Taylor series. 

Both a and n are assumed to be independent of x.

In[10]:= Series@Ha + xL^n, 8x, 0, 2<D

Out[10]= an + a-1+n n x +
1

2
a-2+n H-1 + nL n x2 + O@xD3

Mathematics and Algorithms     195



a@xD is now given as an explicit function of x. 

In[11]:= Series@Ha@xD + xL^n, 8x, 0, 2<D

Out[11]= a@0Dn + n a@0D-1+n H1 + a£@0DL x +
1

2
H-1 + nL n a@0D-2+n H1 + a£@0DL2 +

1

2
n a@0D-1+n a££@0D x2 + O@xD3

You can use Series to generate power series in a sequence of different variables. Series works

like Integrate, Sum  and so on, and expands first with respect to the last variable you specify.

Series performs a series expansion successively with respect to each variable. The result in 
this case is a series in x, whose coefficients are series in y. 

In[12]:= Series@Exp@x yD, 8x, 0, 3<, 8y, 0, 3<D

Out[12]= 1 + Iy + O@yD4M x +
y2

2
+ O@yD4 x2 +

y3

6
+ O@yD4 x3 + O@xD4

The Representation of Power Series

Power series are represented in Mathematica as SeriesData objects.

The power series is printed out as a sum of terms, ending with O@xD raised to a power. 

In[1]:= Series@Cos@xD, 8x, 0, 4<D

Out[1]= 1 -
x2

2
+
x4

24
+ O@xD5

Internally, however, the series is stored as a SeriesData object. 

In[2]:= InputForm@%D

Out[2]//InputForm= SeriesData[x, 0, {1, 0, -1/2, 0, 1/24}, 0, 5, 1]

By  using  SeriesData  objects,  rather  than  ordinary  expressions,  to  represent  power  series,

Mathematica can keep track of the order and expansion point, and do operations on the power

series  appropriately.  You  should  not  normally  need  to  know  the  internal  structure  of

SeriesData objects. 

You can recognize a power series that is printed out in standard output form by the presence of

an O@xD term. This term mimics the standard mathematical notation OHxL, and represents omit-

ted terms of order x. For various reasons of consistency, Mathematica uses the notation O@xD^n

for omitted terms of order xn, corresponding to the mathematical notation OHxLn, rather than the

slightly more familiar, though equivalent, form OHxnL.

Any time that an object like O@xD  appears in a sum of terms, Mathematica  will  in fact convert

the whole sum into a power series. 

196     Mathematics and Algorithms



Any time that an object like O@xD  appears in a sum of terms, Mathematica  will  in fact convert

the whole sum into a power series. 

The presence of O@xD makes Mathematica convert the whole sum to a power series. 

In[3]:= a x + Exp@xD + O@xD^3

Out[3]= 1 + H1 + aL x +
x2

2
+ O@xD3

Series objects can involve fractional powers.

In[4]:= Series@Sqrt@1 - x^3D, 8x, 1, 5<D

Out[4]= Â 3 x - 1 +
1

2
Â 3 Hx - 1L3ë2 +

Â Hx - 1L5ë2

8 3
+ -

Â Hx - 1L7ë2

16 3
+
11 Â Hx - 1L9ë2

384 3
+ O@x - 1D11ë2

Here is the series' internal representation.

In[5]:= % êê InputForm

Out[5]//InputForm= SeriesData[x, 1, {I*Sqrt[3], 0, (I/2)*Sqrt[3], 0, (I/8)/Sqrt[3], 0, (-I/16)/Sqrt[3], 0, ((11*I)/384)/Sqrt[3]}, 1, 11, 
 2]

Series can involve logarithmic terms.

In[6]:= Series@x^x, 8x, 0, 4<D

Out[6]= 1 + Log@xD x +
1

2
Log@xD2 x2 +

1

6
Log@xD3 x3 +

1

24
Log@xD4 x4 + O@xD5

The logarithmic factors appear explicitly inside the SeriesData coefficient list.

In[7]:= % êê InputForm

Out[7]//InputForm= SeriesData[x, 0, {1, Log[x], Log[x]^2/2, Log[x]^3/6, Log[x]^4/24}, 0, 5, 1]

Operations on Power Series

Mathematica allows you to perform many operations on power series. In all cases, Mathematica

gives results only to as many terms as can be justified from the accuracy of your input. 

Here is a power series accurate to fourth order in x. 

In[1]:= Series@Exp@xD, 8x, 0, 4<D

Out[1]= 1 + x +
x2

2
+
x3

6
+
x4

24
+ O@xD5

When you square the power series, you get another power series, also accurate to fourth order. 

Mathematics and Algorithms     197



When you square the power series, you get another power series, also accurate to fourth order. 

In[2]:= %^2

Out[2]= 1 + 2 x + 2 x2 +
4 x3

3
+
2 x4

3
+ O@xD5

Taking the logarithm gives you the result 2 x, but only to order x4. 
In[3]:= Log@%D

Out[3]= 2 x + O@xD5

Mathematica keeps track of the orders of power series in much the same way as it keeps track

of  the  precision  of  approximate  real  numbers.  Just  as  with  numerical  calculations,  there  are

operations  on  power  series  which  can  increase,  or  decrease,  the  precision  (or  order)  of  your

results. 

Here is a power series accurate to order x10. 
In[4]:= Series@Cos@xD, 8x, 0, 10<D

Out[4]= 1 -
x2

2
+
x4

24
-

x6

720
+

x8

40320
-

x10

3628800
+ O@xD11

This gives a power series that is accurate only to order x6. 
In[5]:= 1 ê H1 - %L

Out[5]=
2

x2
+
1

6
+

x2

120
+

x4

3024
+

x6

86400
+ O@xD7

Mathematica also allows you to do calculus with power series.

Here is a power series for tan HxL. 

In[6]:= Series@Tan@xD, 8x, 0, 10<D

Out[6]= x +
x3

3
+
2 x5

15
+
17 x7

315
+
62 x9

2835
+ O@xD11

Here is its derivative with respect to x. 

In[7]:= D@%, xD

Out[7]= 1 + x2 +
2 x4

3
+
17 x6

45
+
62 x8

315
+ O@xD10

198     Mathematics and Algorithms



Integrating with respect to x gives back the original power series. 

In[8]:= Integrate@%, xD

Out[8]= x +
x3

3
+
2 x5

15
+
17 x7

315
+
62 x9

2835
+ O@xD11

When  you  perform  an  operation  that  involves  both  a  normal  expression  and  a  power  series,

Mathematica "absorbs" the normal expression into the power series whenever possible. 

The 1 is automatically absorbed into the power series. 

In[9]:= 1 + Series@Exp@xD, 8x, 0, 4<D

Out[9]= 2 + x +
x2

2
+
x3

6
+
x4

24
+ O@xD5

The x^2 is also absorbed into the power series. 

In[10]:= % + x^2

Out[10]= 2 + x +
3 x2

2
+
x3

6
+
x4

24
+ O@xD5

If you add Sin@xD, Mathematica generates the appropriate power series for Sin@xD, and 
combines it with the power series you have. 

In[11]:= % + Sin@xD

Out[11]= 2 + 2 x +
3 x2

2
+
x4

24
+ O@xD5

Mathematica also absorbs expressions that multiply power series. The symbol a is assumed to 
be independent of x. 

In[12]:= Ha + xL %^2

Out[12]= 4 a + H4 + 8 aL x + H8 + 10 aL x2 + H10 + 6 aL x3 + 6 +
29 a

12
x4 + O@xD5

Mathematica  knows how to apply a wide variety of  functions to power series.  However,  if  you

apply an arbitrary function to a power series, it is impossible for Mathematica to give you any-

thing but a symbolic result.

Mathematica does not know how to apply the function f to a power series, so it just leaves the 
symbolic result. 

In[13]:= f@Series@Exp@xD, 8x, 0, 3<DD

Out[13]= fB1 + x +
x2

2
+
x3

6
+ O@xD4F

Composition and Inversion of Power Series

Mathematics and Algorithms     199



Composition and Inversion of Power Series

When you manipulate power series, it is sometimes convenient to think of the series as repre-

senting functions, which you can, for example, compose or invert. 

ComposeSeries@series1,series2,…D compose power series

InverseSeries@series,xD invert a power series

Composition and inversion of power series. 

Here is the power series for expHxL to order x5. 

In[1]:= Series@Exp@xD, 8x, 0, 5<D

Out[1]= 1 + x +
x2

2
+
x3

6
+
x4

24
+

x5

120
+ O@xD6

This replaces the variable x in the power series for expHxL by a power series for sinHxL. 
In[2]:= ComposeSeries@%, Series@Sin@xD, 8x, 0, 5<DD

Out[2]= 1 + x +
x2

2
-
x4

8
-
x5

15
+ O@xD6

The result is the power series for expHsinHxLL. 
In[3]:= Series@Exp@Sin@xDD, 8x, 0, 5<D

Out[3]= 1 + x +
x2

2
-
x4

8
-
x5

15
+ O@xD6

If  you  have  a  power  series  for  a  function  f HyL,  then  it  is  often  possible  to  get  a  power  series

approximation  to  the  solution  for  y  in  the  equation  f HyL = x.  This  power  series  effectively  gives

the inverse function f -1HxL such that f I f -1HxLM = x. The operation of finding the power series for an

inverse function is sometimes known as reversion of power series.

Here is the series for sinHyL. 
In[4]:= Series@Sin@yD, 8y, 0, 5<D

Out[4]= y -
y3

6
+

y5

120
+ O@yD6

200     Mathematics and Algorithms



Inverting the series gives the series for sin-1HxL. 
In[5]:= InverseSeries@%, xD

Out[5]= x +
x3

6
+
3 x5

40
+ O@xD6

This agrees with the direct series for sin-1HxL. 
In[6]:= Series@ArcSin@xD, 8x, 0, 5<D

Out[6]= x +
x3

6
+
3 x5

40
+ O@xD6

Composing the series with its inverse gives the identity function.

In[7]:= ComposeSeries@%, %%%D

Out[7]= y + O@yD6

Converting Power Series to Normal Expressions

Normal@exprD convert a power series to a normal expression

Converting power series to normal expressions. 

Power  series  in  Mathematica  are  represented  in  a  special  internal  form,  which  keeps  track  of

such attributes as their expansion order. 

For  some  purposes,  you  may  want  to  convert  power  series  to  normal  expressions.  From  a

mathematical point of view, this corresponds to truncating the power series, and assuming that

all higher-order terms are zero. 

This generates a power series, with four terms. 

In[1]:= t = Series@ArcTan@xD, 8x, 0, 8<D

Out[1]= x -
x3

3
+
x5

5
-
x7

7
+ O@xD9

Squaring the power series gives you another power series, with the appropriate number of 
terms. 

In[2]:= t^2

Out[2]= x2 -
2 x4

3
+
23 x6

45
-
44 x8

105
+ O@xD10

Normal truncates the power series, giving a normal expression. 

Mathematics and Algorithms     201



Normal truncates the power series, giving a normal expression. 

In[3]:= Normal@%D

Out[3]= x2 -
2 x4

3
+
23 x6

45
-
44 x8

105

You can now apply standard algebraic operations. 

In[4]:= Factor@%D

Out[4]= -
1

315
x2 I-315 + 210 x2 - 161 x4 + 132 x6M

SeriesCoefficient@series,nD give the coefficient of the nth-order term in a power series

Extracting coefficients of terms in power series. 

This gives the coefficient of x7 in the original power series. 

In[5]:= SeriesCoefficient@t, 7D

Out[5]= -
1

7

This gives the coefficient for the term xn in the Taylor expansion of the function ex2  about zero. 
In[6]:= SeriesCoefficient@E^x^2, 8x, 0, n<D

Out[6]=
KroneckerDelta@Mod@n, 2DD

n

2
!

Solving Equations Involving Power Series

LogicalExpand@series1==series2D give the equations obtained by equating corresponding 
coefficients in the power series

Solve@series1==series2,8a1,a2,…<D solve for coefficients in power series

Solving equations involving power series. 

Here is a power series. 

In[1]:= y = 1 + Sum@a@iD x^i, 8i, 3<D + O@xD^4

Out[1]= 1 + a@1D x + a@2D x2 + a@3D x3 + O@xD4

202     Mathematics and Algorithms



This gives an equation involving the power series. 

In[2]:= D@y, xD^2 - y == x

Out[2]= I-1 + a@1D2M + H-a@1D + 4 a@1D a@2DL x + I-a@2D + 4 a@2D2 + 6 a@1D a@3DM x2 + O@xD3 ã x

LogicalExpand generates a sequence of equations for each power of x. 

In[3]:= LogicalExpand@%D

Out[3]= -1 + a@1D2 ã 0 && -1 - a@1D + 4 a@1D a@2D ã 0 && -a@2D + 4 a@2D2 + 6 a@1D a@3D ã 0

This solves the equations for the coefficients a@iD. You can also feed equations involving power 
series directly to Solve. 

In[4]:= Solve@%D

Out[4]= ::a@3D Ø -
1

12
, a@1D Ø 1, a@2D Ø

1

2
>, 8a@3D Ø 0, a@1D Ø -1, a@2D Ø 0<>

Some  equations  involving  power  series  can  also  be  solved  using  the  InverseSeries  function

discussed in "Composition and Inversion of Power Series". 

Summation of Series

Sum@expr,8n,nmin,nmax<D find the sum of expr as n goes from nmin to nmax

Evaluating sums. 

Mathematica recognizes this as the power series expansion of ex.

In[1]:= Sum@x^n ê n!, 8n, 0, Infinity<D

Out[1]= ‰x

This sum comes out in terms of a Bessel function.

In[2]:= Sum@x^n ê Hn!^2L, 8n, 0, Infinity<D

Out[2]= BesselIB0, 2 x F

Here is another sum that can be done in terms of common special functions. 

In[3]:= Sum@n! x^n ê H2 nL!, 8n, 1, Infinity<D

Out[3]=
1

2
‰xë4 p x ErfB

x

2
F

Generalized hypergeometric functions are not uncommon in sums.

Mathematics and Algorithms     203



Generalized hypergeometric functions are not uncommon in sums.

In[4]:= Sum@x^n ê Hn!^4L, 8n, 0, Infinity<D

Out[4]= HypergeometricPFQ@8<, 81, 1, 1<, xD

There are many analogies between sums and integrals. And just as it is possible to have indefi-

nite integrals, so indefinite sums can be set up by using symbolic variables as upper limits.

This is effectively an indefinite sum. 

In[5]:= Sum@k, 8k, 0, n<D

Out[5]=
1

2
n H1 + nL

This sum comes out in terms of incomplete gamma functions.

In[6]:= Sum@x^k ê k!, 8k, 0, n<D

Out[6]=
‰x H1 + nL Gamma@1 + n, xD

Gamma@2 + nD

This sum involves polygamma functions.

In[7]:= Sum@1 ê Hk + 1L^4, 8k, 0, n<D

Out[7]=
p4

90
-
1

6
PolyGamma@3, 2 + nD

Taking the difference between results for successive values of n gives back the original sum-
mand. 

In[8]:= FullSimplify@% - H% ê. n -> n - 1LD

Out[8]=
1

H1 + nL4

Mathematica  can do essentially all  sums that are found in books of tables. Just as with indefi-

nite  integrals,  indefinite  sums  of  expressions  involving  simple  functions  tend  to  give  answers

that involve more complicated functions. Definite sums, like definite integrals,  often, however,

come out in terms of simpler functions. 

This indefinite sum gives a quite complicated result. 

In[9]:= Sum@Binomial@2 k, kD ê 3^H2 kL, 8k, 0, n<D

Out[9]=
3

5
-

J
9

4
N
-1-n

GammaB 3

2
+ nF Hypergeometric2F1B1, 3

2
+ n, 2 + n, 4

9
F

p Gamma@2 + nD

The definite form is much simpler. 

204     Mathematics and Algorithms



The definite form is much simpler. 

In[10]:= Sum@Binomial@2 k, kD ê 3^H2 kL, 8k, 0, Infinity<D

Out[10]=
3

5

Here is a slightly more complicated definite sum. 

In[11]:= Sum@PolyGamma@kD ê k^2, 8k, 1, Infinity<D

Out[11]=
1

6
I-EulerGamma p2 + 6 Zeta@3DM

Solving Recurrence Equations

If you represent the nth term in a sequence as a@nD, you can use a recurrence equation to specify

how it is related to other terms in the sequence.

RSolve takes recurrence equations and solves them to get explicit formulas for a@nD. 

This solves a simple recurrence equation. 

In[1]:= RSolve@8a@nD == 2 a@n - 1D, a@1D == 1<, a@nD, nD

Out[1]= 99a@nD Ø 2-1+n==

This takes the solution and makes an explicit table of the first ten a@nD. 

In[2]:= Table@a@nD ê. First@%D, 8n, 10<D

Out[2]= 81, 2, 4, 8, 16, 32, 64, 128, 256, 512<

RSolve@eqn,a@nD,nD solve a recurrence equation

Solving a recurrence equation. 

This solves a recurrence equation for a geometric series. 

In[3]:= RSolve@8a@nD == r a@n - 1D + 1, a@1D == 1<, a@nD, nD

Out[3]= ::a@nD Ø
-1 + rn

-1 + r
>>

Mathematics and Algorithms     205



This gives the same result. 

In[4]:= RSolve@8a@n + 1D == r a@nD + 1, a@1D == 1<, a@nD, nD

Out[4]= ::a@nD Ø
-1 + rn

-1 + r
>>

This gives an algebraic solution to a recurrence equation. 

In[5]:= RSolve@8a@nD == 4 a@n - 1D + a@n - 2D<, a@nD, nD

Out[5]= ::a@nD Ø 2 - 5
n

C@1D + 2 + 5
n

C@2D>>

This solves the Fibonacci recurrence equation. 

In[6]:= RSolve@8a@nD == a@n - 1D + a@n - 2D, a@1D == a@2D == 1<, a@nD, nD

Out[6]= 88a@nD Ø Fibonacci@nD<<

RSolve  can be thought of  as a discrete analog of  DSolve.  Many of  the same functions gener-

ated  in  solving  differential  equations  also  appear  in  finding  symbolic  solutions  to  recurrence

equations. 

This generates a gamma function, which generalizes the factorial. 

In[7]:= RSolve@8a@nD == n a@n - 1D, a@1D == 1<, a@nD, nD

Out[7]= 88a@nD Ø Gamma@1 + nD<<

This second-order recurrence equation comes out in terms of Bessel functions. 

In[8]:= RSolve@8a@n + 1D == n a@nD + a@n - 1D, a@1D == 0, a@2D == 1<, a@nD, nD

Out[8]= ::a@nD Ø
BesselI@n, -2D BesselK@1, 2D + BesselI@1, 2D BesselK@n, 2D

BesselI@2, 2D BesselK@1, 2D + BesselI@1, 2D BesselK@2, 2D
>>

RSolve  does not require you to specify explicit  values for terms such as a@1D.  Like DSolve,  it

automatically introduces undetermined constants C@iD to give a general solution. 

This gives a general solution with one undetermined constant. 

In[9]:= RSolve@a@nD == n a@n - 1D, a@nD, nD

Out[9]= 88a@nD Ø C@1D Gamma@1 + nD<<

206     Mathematics and Algorithms



RSolve  can  solve  equations  that  do  not  depend only  linearly  on  a@nD.  For  nonlinear  equations,

however, there are sometimes several distinct solutions that must be given. Just as for differen-

tial  equations,  it  is  a  difficult  matter  to  find  symbolic  solutions  to  recurrence  equations,  and

standard mathematical functions only cover a limited set of cases. 

Here is the general solution to a nonlinear recurrence equation. 

In[10]:= RSolve@8a@nD == a@n + 1D a@n - 1D<, a@nD, nD

Out[10]= ::a@nD Ø ‰
C@1D CosB

n p

3
F+C@2D SinB

n p

3
F
>>

This gives two distinct solutions. 

In[11]:= RSolve@a@nD == Ha@n + 1D a@n - 1DL^2, a@nD, nD

Out[11]= ::a@nD Ø ‰
C@2D CosBn ArcTanB 15 FF+C@1D SinBn ArcTanB 15 FF

>, :a@nD Ø ‰
2 Â p

3
+C@2D CosBn ArcTanB 15 FF+C@1D SinBn ArcTanB 15 FF

>>

RSolve  can solve not only ordinary difference equations  in which the arguments of  a  differ  by

integers, but also q-difference equations in which the arguments of a are related by multiplica-

tive factors.

This solves the q-difference analog of the factorial equation. 

In[12]:= RSolve@a@q nD == n a@nD, a@nD, nD

Out[12]= ::a@nD Ø n
1

2
K-1+

Log@nD

Log@qD
O
C@1D>>

Here is a second-order q-difference equation. 

In[13]:= RSolve@a@nD == a@q nD + a@n ê qD, a@nD, nD

Out[13]= ::a@nD Ø C@1D CosB
p Log@nD

3 Log@qD
F + C@2D SinB

p Log@nD

3 Log@qD
F>>

RSolve@8eqn1,eqn2,…<,8a1@nD,a2@nD,…<,nD

solve a coupled system of recurrence equations

Solving systems of recurrence equations. 

This solves a system of two coupled recurrence equations. 

In[14]:= RSolve@8a@nD == b@n - 1D + n, b@nD == a@n - 1D - n, a@1D == b@1D == 1<, 8a@nD, b@nD<, nD

Out[14]= ::a@nD Ø
1

4
I4 + 3 H-1Ln + H-1L2 n + 2 H-1L2 n nM, b@nD Ø

1

4
I4 - 3 H-1Ln - H-1L2 n - 2 H-1L2 n nM>>

Mathematics and Algorithms     207



RSolve@eqns,a@n1,n2,…D,8n1,n2,…<D

solve partial recurrence equations

Solving partial recurrence equations. 

Just as one can set up partial differential equations that involve functions of several variables,

so  one  can  also  set  up  partial  recurrence  equations  that  involve  multidimensional  sequences.

Just as in the differential equations case, general solutions to partial  recurrence equations can

involve undetermined functions.

This gives the general solution to a simple partial recurrence equation. 

In[15]:= RSolve@a@i + 1, j + 1D == i j a@i, jD, a@i, jD, 8i, j<D

Out[15]= ::a@i, jD Ø
Gamma@iD Gamma@jD C@1D@i - jD

Gamma@1 - i + jD
>>

Finding Limits

In doing many kinds of calculations, you need to evaluate expressions when variables take on

particular  values.  In  many  cases,  you  can  do  this  simply  by  applying  transformation  rules  for

the variables using the ê. operator. 

You can get the value of cos Ix2M at 0 just by explicitly replacing x with 0, and then evaluating 
the result. 

In[1]:= Cos@x^2D ê. x -> 0

Out[1]= 1

In some cases, however, you have to be more careful. 

Consider, for example, finding the value of the expression sin HxL
x

 when x = 0. If you simply replace

x  by 0  in this expression, you get the indeterminate result  0
0
.  To find the correct value of sin HxL

x

when x = 0, you need to take the limit. 

Limit@expr,x->x0D find the limit of expr when x approaches x0

Finding limits. 

208     Mathematics and Algorithms



This gives the correct value for the limit of sin HxL
x

 as xØ 0. 

In[2]:= Limit@Sin@xD ê x, x -> 0D

Out[2]= 1

No finite limit exists in this case. 

In[3]:= Limit@Sin@xD ê x^2, x -> 0D

Out[3]= ¶

Limit can find this limit, even though you cannot get an ordinary power series for x log HxL at 
x = 0. 

In[4]:= Limit@x Log@xD, x -> 0D

Out[4]= 0

The same is true here. 

In[5]:= Limit@H1 + 2 xL^H1 ê xL, x -> 0D

Out[5]= ‰2

The value of Sign@xD at x = 0 is 0.

In[6]:= Sign@0D

Out[6]= 0

Its limit, however, is 1. The limit is by default taken from above. 

In[7]:= Limit@Sign@xD, x -> 0D

Out[7]= 1

Not  all  functions  have  definite  limits  at  particular  points.  For  example,  the  function  sinH1 ê xL

oscillates  infinitely  often  near  x = 0,  so  it  has  no  definite  limit  there.  Nevertheless,  at  least  so

long as x remains real, the values of the function near x = 0 always lie between -1 and 1. Limit

represents values with bounded variation using Interval  objects. In general, Interval@8xmin,

xmax<D represents an uncertain value which lies somewhere in the interval xmin to xmax. 

Limit returns an Interval object, representing the range of possible values of sin H1 ê xL near 
its essential singularity at x = 0. 

In[8]:= Limit@Sin@1 ê xD, x -> 0D

Out[8]= Interval@8-1, 1<D

Mathematica can do arithmetic with Interval objects. 

Mathematics and Algorithms     209



Mathematica can do arithmetic with Interval objects. 

In[9]:= H1 + %L^3

Out[9]= Interval@80, 8<D

Mathematica represents this limit symbolically in terms of an Interval object. 

In[10]:= Limit@Exp@Sin@xDD, x -> InfinityD

Out[10]= IntervalB:
1

‰
, ‰>F

Some functions may have different limits at particular points, depending on the direction from

which you approach those points.  You can use the Direction  option for  Limit  to  specify  the

direction you want. 

LimitAexpr,x->x0,Direction->1E find the limit as x approaches x0 from below

LimitAexpr,x->x0,Direction->-1E find the limit as x approaches x0 from above

Directional limits. 

The function 1 ê x has a different limiting value at x = 0, depending on whether you approach 
from above or below. 

In[11]:= Plot@1 ê x, 8x, -1, 1<D

Out[11]=

Approaching from below gives a limiting value of -¶. 

In[12]:= Limit@1 ê x, x -> 0, Direction -> 1D

Out[12]= -¶

Approaching from above gives a limiting value of ¶. 

In[13]:= Limit@1 ê x, x -> 0, Direction -> -1D

Out[13]= ¶

Limit  makes  no  assumptions  about  functions  like  f@xD  about  which  it  does  not  have  definite

knowledge. As a result, Limit remains unevaluated in most cases involving symbolic functions. 

Limit has no definite knowledge about f, so it leaves this limit unevaluated. 

210     Mathematics and Algorithms

Limit has no definite knowledge about f, so it leaves this limit unevaluated. 

-1.0 -0.5 0.5 1.0

-10

-5

5

10



Limit has no definite knowledge about f, so it leaves this limit unevaluated. 

In[14]:= Limit@x f@xD, x -> 0D

Out[14]= Limit@x f@xD, x Ø 0D

Residues

Limit@expr, x -> x0D  tells  you what  the value of  expr  is  when x  tends to  x0.  When this  value is

infinite,  it  is  often  useful  instead to  know the  residue  of  expr  when x  equals  x0.  The residue is

given by the coefficient of Hx - x0L-1 in the power series expansion of expr about the point x0. 

Residue@expr,8x,x0<D the residue of expr when x equals x0

Computing residues. 

The residue here is equal to 1. 

In[1]:= Residue@1 ê x, 8x, 0<D

Out[1]= 1

The residue here is zero. 

In[2]:= Residue@1 ê x^2, 8x, 0<D

Out[2]= 0

Residues can be computed at the point at infinity.

In[3]:= Residue@1 ê x, 8x, ComplexInfinity<D

Out[3]= -1

Padé Approximation

The  Padé  approximation  is  a  rational  function  that  can  be  thought  of  as  a  generalization  of  a

Taylor polynomial. A rational function is the ratio of polynomials. Because these functions only

use  the  elementary  arithmetic  operations,  they  are  very  easy  to  evaluate  numerically.  The

polynomial  in  the  denominator  allows  you  to  approximate  functions  that  have  rational

singularities.

Mathematics and Algorithms     211



PadeApproximant@ f,8x,x0,8n,m<<D give the Padé approximation to f  centered at x0 of order 
Hn, mL

PadeApproximant@ f,8x,x0,n<D give the diagonal Padé approximation to f  centered at x0 
of order n

Padé approximations.

More  precisely,  a  Padé  approximation  of  order  Hn, mL  to  an  analytic  function  f HxL  at  a  regular

point or pole x0 is the rational function p HxL
q HxL

 where pHxL is a polynomial of degree n, qHxL is a polyno -

mial of degree m, and the formal power series of f HxL qHxL - pHxL about the point x0 begins with the

term Hx - x0Ln+m+1. If m is equal to n, the approximation is called a diagonal Padé approximation of

order n.

Here is the Padé approximation of order H2, 4L to cosHxL at x = 0. 

In[1]:= PadeApproximant@Cos@xD, 8x, 0, 82, 4<<D

Out[1]=

1 -
61 x2

150

1 +
7 x2

75
+

x4

200

This gives another Padé approximation of the same order. 

In[2]:= pd = PadeApproximant@‰x, 8x, 1, 82, 4<<D

Out[2]=

‰ +
1

3
‰ H-1 + xL +

1

30
‰ H-1 + xL2

1 -
2

3
H-1 + xL +

1

5
H-1 + xL2 -

1

30
H-1 + xL3 +

1

360
H-1 + xL4

The initial terms of this series vanish. This is the property that characterizes the Padé approxima -
tion. 

In[3]:= Series@‰x Denominator@pdD - Numerator@pdD, 8x, 1, 8<D

Out[3]=
‰ Hx - 1L7

75600
+

‰ Hx - 1L8

120960
+ O@x - 1D9

212     Mathematics and Algorithms



This plots the difference between the approximation and the true function. Notice that the 
approximation is very good near the center of expansion, but the error increases rapidly as you 
move away. 

In[4]:= Plot@pd - ‰x, 8x, 0, 2<D

Out[4]=

In Mathematica PadeApproximant is generalized to allow expansion about branch points.

This gives the diagonal Padé approximation of order 1 to a generalized rational function at x = 0. 

In[5]:= PadeApproximantB
Sqrt@xD

H1 + Sqrt@xDL^3
, 8x, 0, 1<F

Out[5]=

x -
x

3

1 +
8 x

3
+ 2 x

This gives the diagonal Padé approximation of order 5 to the logarithm of a rational function at 
the branch point x = 0.

In[6]:= PadeApproximantBLogB
x

1 + x
F, 8x, 0, 5<F

Out[6]=

-x - 2 x2 -
47 x3

36
-

11 x4

36
-

137 x5

7560

1 +
5 x

2
+

20 x2

9
+

5 x3

6
+

5 x4

42
+

x5

252

+ Log@xD

The series expansion of the function agrees with the diagonal Padé approximation up to order 
10.

In[7]:= SeriesB% - LogB
x

1 + x
F, 8x, 0, 11<F

Out[7]=
x11

698544
+ O@xD12

Mathematics and Algorithms     213

0.5 1.0 1.5 2.0

-0.00001

-5. ´ 10-6

5. ´ 10-6

0.00001



Calculus

Differentiation

D@ f,xD partial derivative ∂

∂x
f

D@ f,x,y,…D multiple derivative ∂

∂x
∂

∂y
… f  

D@ f 8x,n<D nth derivative ∂n

∂xn
f

DA f,x,NonConstants->8v1,v2,…<E

∂

∂x
f  with the vi taken to depend on x 

Partial differentiation operations. 

This gives ∂

∂x
xn. 

In[1]:= D@x^n, xD

Out[1]= n x-1+n

This gives the third derivative. 

In[2]:= D@x^n, 8x, 3<D

Out[2]= H-2 + nL H-1 + nL n x-3+n

You can differentiate with respect to any expression that does not involve explicit mathematical 
operations.

In[3]:= D@x@1D^2 + x@2D^2, x@1DD

Out[3]= 2 x@1D

D does partial differentiation. It assumes here that y is independent of x. 

In[4]:= D@x^2 + y^2, xD

Out[4]= 2 x

214     Mathematics and Algorithms



If y does in fact depend on x, you can use the explicit functional form y@xD. "The Representa-
tion of Derivatives" describes how objects like y'@xD work. 

In[5]:= D@x^2 + y@xD^2, xD

Out[5]= 2 x + 2 y@xD y£@xD

Instead of giving an explicit function y@xD, you can tell D that y implicitly depends on x. 

D@y, x, NonConstants -> 8y<D then represents 
∂y
∂x

, with y implicitly depending on x.

In[6]:= D@x^2 + y^2, x, NonConstants -> 8y<D

Out[6]= 2 x + 2 y D@y, x, NonConstants Ø 8y<D

D@ f,88x1,x2,…<<D the gradient of a scalar function f H∂ f ê∂x1, ∂ f ê∂x2, … L

D@ f,88x1,x2,…<,2<D the Hessian matrix for f

D@ f,88x1,x2,…<,n<D the nth-order Taylor series coefficient

D@8 f1, f2,…<,88x1,x2,…<<D the Jacobian for a vector function f

Vector derivatives. 

This gives the gradient of the function x2 + y2. 
In[7]:= D@x^2 + y^2, 88x, y<<D

Out[7]= 82 x, 2 y<

This gives the Hessian. 

In[8]:= D@x^2 + y^2, 88x, y<, 2<D

Out[8]= 882, 0<, 80, 2<<

This gives the Jacobian for a vector function. 

In[9]:= D@8x^2 + y^2, x y<, 88x, y<<D

Out[9]= 882 x, 2 y<, 8y, x<<

Mathematics and Algorithms     215



Total Derivatives

Dt@ fD total differential d f

Dt@ f,xD total derivative 
d f
d x

Dt@ f,x,y,…D multiple total derivative d
d x

d
d y

… f

DtA f,x,Constants->8c1,c2,…<E

total derivative with ci constant (i.e., d ci = 0)

yê:Dt@y,xD=0 set 
d y
d x

= 0

SetAttributesAc,ConstantE define c to be a constant in all cases

Total differentiation operations. 

When you find the derivative of some expression f  with respect to x, you are effectively finding

out  how  fast  f  changes  as  you  vary  x.  Often  f  will  depend  not  only  on  x,  but  also  on  other

variables,  say y  and z.  The results that you get then depend on how you assume that y  and z

vary as you change x. 

There are two common cases. Either y and z are assumed to stay fixed when x changes, or they

are  allowed  to  vary  with  x.  In  a  standard  partial  derivative  ∂ f
∂x

,  all  variables  other  than  x  are

assumed fixed. On the other hand, in the total derivative d f
d x

, all variables are allowed to change

with x. 

In  Mathematica,  D@ f, xD  gives  a  partial  derivative,  with  all  other  variables  assumed  indepen-

dent of x. Dt@ f, xD gives a total derivative, in which all variables are assumed to depend on x.

In both cases, you can add an argument to give more information on dependencies.

This gives the partial derivative ∂

∂x
Ix2 + y2M. y is assumed to be independent of x. 

In[1]:= D@x^2 + y^2, xD

Out[1]= 2 x

This gives the total derivative d
d x

Ix2 + y2M. Now y is assumed to depend on x. 

In[2]:= Dt@x^2 + y^2, xD

Out[2]= 2 x + 2 y Dt@y, xD

You can make a replacement for 
d y
d x

. 

216     Mathematics and Algorithms



You can make a replacement for 
d y
d x

. 

In[3]:= % ê. Dt@y, xD -> yp

Out[3]= 2 x + 2 y yp

You can also make an explicit definition for 
d y
d x

. You need to use y ê: to make sure that the 

definition is associated with y. 
In[4]:= y ê: Dt@y, xD = 0

Out[4]= 0

With this definition made, Dt treats y as independent of x. 

In[5]:= Dt@x^2 + y^2 + z^2, xD

Out[5]= 2 x + 2 z Dt@z, xD

This removes your definition for the derivative of y. 

In[6]:= Clear@yD

This takes the total derivative, with z held fixed. 

In[7]:= Dt@x^2 + y^2 + z^2, x, Constants -> 8z<D

Out[7]= 2 x + 2 y Dt@y, x, Constants Ø 8z<D

This specifies that c is a constant under differentiation. 

In[8]:= SetAttributes@c, ConstantD

The variable c is taken as a constant. 

In[9]:= Dt@a^2 + c x^2, xD

Out[9]= 2 c x + 2 a Dt@a, xD

The function c is also assumed to be a constant.

In[10]:= Dt@a^2 + c@xD x^2, xD

Out[10]= 2 x c@xD + 2 a Dt@a, xD

This gives the total differential d Ix2 + c y2M.

In[11]:= Dt@x^2 + c y^2D

Out[11]= 2 x Dt@xD + 2 c y Dt@yD

You can make replacements and assignments for total differentials. 

Mathematics and Algorithms     217



You can make replacements and assignments for total differentials. 

In[12]:= % ê. Dt@yD -> dy

Out[12]= 2 c dy y + 2 x Dt@xD

Derivatives of Unknown Functions

Differentiating a known function gives an explicit result. 

In[1]:= D@Log@xD^2, xD

Out[1]= 
2 Log@xD

x

Differentiating an unknown function f gives a result in terms of f'. 

In[2]:= D@f@xD^2, xD

Out[2]= 2 f@xD f£@xD

Mathematica applies the chain rule for differentiation, and leaves the result in terms of f'. 

In[3]:= D@x f@x^2D, xD

Out[3]= fAx2E + 2 x2 f£Ax2E

Differentiating again gives a result in terms of f, f' and f''. 

In[4]:= D@%, xD

Out[4]= 6 x f£Ax2E + 4 x3 f££Ax2E

When a function has more than one argument, superscripts are used to indicate how many 
times each argument is being differentiated. 

In[5]:= D@g@x^2, y^2D, xD

Out[5]= 2 x gH1,0LAx2, y2E

This represents ∂

∂x
∂

∂x
∂

∂y
g Hx, yL. Mathematica assumes that the order in which derivatives are 

taken with respect to different variables is irrelevant. 
In[6]:= D@g@x, yD, x, x, yD

Out[6]= gH2,1L@x, yD

218     Mathematics and Algorithms



You can find the value of the derivative when x = 0 by replacing x with 0. 

In[7]:= % ê. x -> 0

Out[7]= gH2,1L@0, yD

f '[x] first derivative of a function of one variable 

f HnL[x] nth derivative of a function of one variable 

f Hn1,n2,… L[x] derivative of a function of several variables, ni times with 
respect to variable i 

Output forms for derivatives of unknown functions. 

The Representation of Derivatives

Derivatives  in  Mathematica  work  essentially  the  same  as  in  standard  mathematics.  The  usual

mathematical  notation,  however,  often hides many details.  To understand how derivatives are

represented in Mathematica, we must look at these details. 

The  standard  mathematical  notation  f £H0L  is  really  a  shorthand  for  d
d t
f HtL t=0,  where  t  is  a

"dummy variable". Similarly, f £Ix2M is a shorthand for d
d t
f HtL t=x2. As suggested by the notation f £,

the  object  d
d t
f HtL  can in  fact  be  viewed as  a  "pure  function",  to  be  evaluated with  a  particular

choice of its parameter t. You can think of the operation of differentiation as acting on a func-

tion f , to give a new function, usually called f £.

With functions of more than one argument, the simple notation based on primes breaks down.

You cannot tell for example whether g£H0, 1L stands for d
d t
gHt, 1L t=0  or d

d t
gH0, tL t=1, and for almost

any g, these will have totally different values. Once again, however, t is just a dummy variable,

whose sole purpose is to show with respect to which "slot" g is to be differentiated. 

In Mathematica, as in some branches of mathematics, it is convenient to think about a kind of

differentiation that acts on functions, rather than expressions. We need an operation that takes

the  function  f ,  and  gives  us  the  derivative  function  f £.  Operations  such  as  this  that  act  on

functions, rather than variables, are known in mathematics as operators. 

The object f' in Mathematica is the result of applying the differentiation operator to the func-

tion  f.  The  full  form  of  f'  is  in  fact  Derivative@1D@fD.  Derivative@1D  is  the  Mathematica

differentiation operator. 

Mathematics and Algorithms     219



The object f' in Mathematica is the result of applying the differentiation operator to the func-

tion  f.  The  full  form  of  f'  is  in  fact  Derivative@1D@fD.  Derivative@1D  is  the  Mathematica

differentiation operator. 

The arguments in the operator Derivative@n1, n2, …D specify how many times to differentiate

with  respect  to  each  "slot"  of  the  function  on  which  it  acts.  By  using  operators  to  represent

differentiation, Mathematica avoids any need to introduce explicit "dummy variables". 

This is the full form of the derivative of the function f. 

In[1]:= f' êê FullForm

Out[1]//FullForm= Derivative@1D@fD

Here an argument x is supplied. 

In[2]:= f'@xD êê FullForm

Out[2]//FullForm= Derivative@1D@fD@xD

This is the second derivative. 

In[3]:= f''@xD êê FullForm

Out[3]//FullForm= Derivative@2D@fD@xD

This gives a derivative of the function g with respect to its second "slot". 

In[4]:= D@g@x, yD, yD

Out[4]= gH0,1L@x, yD

Here is the full form. 

In[5]:= % êê FullForm

Out[5]//FullForm= Derivative@0, 1D@gD@x, yD

Here is the second derivative with respect to the variable y, which appears in the second slot of 
g. 

In[6]:= D@g@x, yD, 8y, 2<D êê FullForm

Out[6]//FullForm= Derivative@0, 2D@gD@x, yD

This is a mixed derivative. 

In[7]:= D@g@x, yD, x, y, yD êê FullForm

Out[7]//FullForm= Derivative@1, 2D@gD@x, yD

Since Derivative only specifies how many times to differentiate with respect to each slot, the 
order of the derivatives is irrelevant. 

220     Mathematics and Algorithms



Since Derivative only specifies how many times to differentiate with respect to each slot, the 
order of the derivatives is irrelevant. 

In[8]:= D@g@x, yD, y, y, xD êê FullForm

Out[8]//FullForm= Derivative@1, 2D@gD@x, yD

Here is a more complicated case, in which both arguments of g depend on the differentiation 
variable. 

In[9]:= D@g@x, xD, xD

Out[9]= gH0,1L@x, xD + gH1,0L@x, xD

This is the full form of the result. 

In[10]:= % êê FullForm

Out[10]//FullForm= Plus@Derivative@0, 1D@gD@x, xD, Derivative@1, 0D@gD@x, xDD

The object f' behaves essentially like any other function in Mathematica. You can evaluate the

function  with  any  argument,  and  you  can  use  standard  Mathematica  ê.  operations  to  change

the argument.  (This  would not  be possible  if  explicit  dummy variables had been introduced in

the course of the differentiation.) 

This is the Mathematica representation of the derivative of a function f, evaluated at the origin. 

In[11]:= f'@0D êê FullForm

Out[11]//FullForm= Derivative@1D@fD@0D

The result of this derivative involves f' evaluated with the argument x^2. 

In[12]:= D@f@x^2D, xD

Out[12]= 2 x f£Ax2E

You can evaluate the result at the point x = 2 by using the standard Mathematica replacement 
operation. 

In[13]:= % ê. x -> 2

Out[13]= 4 f£@4D

Mathematics and Algorithms     221



There is some slight subtlety when you need to deduce the value of f' based on definitions for

objects like f@x_D.

Here is a definition for a function h. 

In[14]:= h@x_D := x^4

When you take the derivative of h@xD, Mathematica first evaluates h@xD, then differentiates 
the result. 

In[15]:= D@h@xD, xD

Out[15]= 4 x3

You can get the same result by applying the function h' to the argument x. 

In[16]:= h'@xD

Out[16]= 4 x3

Here is the function h' on its own. 

In[17]:= h'

Out[17]= 4 Ò13 &

The function f' is completely determined by the form of the function f. Definitions for objects

like  f@x_D  do  not  immediately  apply  however  to  expressions  like  f'@xD.  The  problem  is  that

f'@xD has the full form Derivative@1D@fD@xD, which nowhere contains anything that explicitly

matches the pattern f@x_D. In addition, for many purposes it is convenient to have a representa -

tion of the function f' itself, without necessarily applying it to any arguments. 

What Mathematica does is to try and find the explicit form of a pure function which represents

the  object  f'.  When  Mathematica  gets  an  expression  like  Derivative@1D@fD,  it  effectively

converts  it  to  the  explicit  form D@f@ÒD, ÒD &  and  then  tries  to  evaluate  the  derivative.  In  the

explicit  form, Mathematica  can immediately use values that have been defined for objects like

f@x_D.  If  Mathematica  succeeds  in  doing  the  derivative,  it  returns  the  explicit  pure-function

result. If it does not succeed, it leaves the derivative in the original f' form. 

This gives the derivative of Tan in pure-function form. 

In[18]:= Tan'

Out[18]= Sec@Ò1D2 &

222     Mathematics and Algorithms



Here is the result of applying the pure function to the specific argument y. 

In[19]:= %@yD

Out[19]= Sec@yD2

Defining Derivatives

You  can  define  the  derivative  in  Mathematica  of  a  function  f  of  one  argument  simply  by  an

assignment like f'@x_D = fp@xD.

This defines the derivative of f HxL to be f pHxL. In this case, you could have used = instead of :=. 

In[1]:= f'@x_D := fp@xD

The rule for f'@x_D is used to evaluate this derivative. 

In[2]:= D@f@x^2D, xD

Out[2]= 2 x fpAx2E

Differentiating again gives derivatives of f p. 

In[3]:= D@%, xD

Out[3]= 2 fpAx2E + 4 x2 fp£Ax2E

This defines a value for the derivative of g at the origin. 

In[4]:= g'@0D = g0

Out[4]= g0

The value for g'@0D is used. 

In[5]:= D@g@xD^2, xD ê. x -> 0

Out[5]= 2 g0 g@0D

This defines the second derivative of g, with any argument. 

In[6]:= g''@x_D = gpp@xD

Out[6]= gpp@xD

Mathematics and Algorithms     223



The value defined for the second derivative is used. 

In[7]:= D@g@xD^2, 8x, 2<D

Out[7]= 2 g@xD gpp@xD + 2 g£@xD2

To define derivatives of functions with several arguments, you have to use the general represen-

tation of derivatives in Mathematica. 

f'@x _D:=rhs define the first derivative of f

Derivative@nD@ fD@x _D:=rhs define the nth derivative of f

Derivative@m,n,…D@gD@x _,_,…D:=rhs

define derivatives of g with respect to various arguments

Defining derivatives. 

This defines the second derivative of g with respect to its second argument. 

In[8]:= Derivative@0, 2D@gD@x_, y_D := g2p@x, yD

This uses the definition just given. 

In[9]:= D@g@a^2, x^2D, x, xD

Out[9]= 4 x2 g2pAa2, x2E + 2 gH0,1LAa2, x2E

Integration

Here is the integral Ÿ xn d x in Mathematica. 

In[1]:= Integrate@x^n, xD

Out[1]= 
x1+n

1 + n

Here is a slightly more complicated example. 

In[2]:= Integrate@1 ê Hx^4 - a^4L, xD

Out[2]= -

ArcTanB x

a
F

2 a3
+
Log@a - xD

4 a3
-
Log@a + xD

4 a3

Mathematica knows how to do almost any integral that can be done in terms of standard mathe-

matical functions. But you should realize that even though an integrand may contain only fairly

simple  functions,  its  integral  may  involve  much  more  complicated  functions~or  may  not  be

expressible at all in terms of standard mathematical functions.

224     Mathematics and Algorithms



Mathematica knows how to do almost any integral that can be done in terms of standard mathe-

matical functions. But you should realize that even though an integrand may contain only fairly

simple  functions,  its  integral  may  involve  much  more  complicated  functions~or  may  not  be

expressible at all in terms of standard mathematical functions.

Here is a fairly straightforward integral. 

In[3]:= Integrate@Log@1 - x^2D, xD

Out[3]= -2 x - Log@-1 + xD + Log@1 + xD + x LogA1 - x2E

This integral can be done only in terms of a dilogarithm function. 

In[4]:= Integrate@Log@1 - x^2D ê x, xD

Out[4]= -
1

2
PolyLogA2, x2E

This integral involves Erf. 

In[5]:= Integrate@Exp@1 - x^2D, xD

Out[5]= 
1

2
‰ p Erf@xD

And this one involves a Fresnel function. 

In[6]:= Integrate@Sin@x^2D, xD

Out[6]= 
p

2
FresnelSB

2

p
xF

Even this integral requires a hypergeometric function. 

In[7]:= Integrate@H1 - x^2L^n, xD

Out[7]= x Hypergeometric2F1B
1

2
, -n,

3

2
, x2F

This integral simply cannot be done in terms of standard mathematical functions. As a result, 
Mathematica just leaves it undone. 

In[8]:= Integrate@x^x, xD

Out[8]= ‡ x
x „x

Mathematics and Algorithms     225



Integrate@ f,xD the indefinite integral Ÿ f d x

Integrate@ f,x,yD the multiple integral Ÿd x d y f

Integrate@ f,8x,xmin,xmax<D the definite integral Ÿxmin
xmax f d x

Integrate@ f,8x,xmin,xmax<,8y,ymin,ymax<D

the multiple integral Ÿxmin
xmaxd x Ÿymin

ymaxd y f

Integration. 

Here is the definite integral Ÿa
bsin2 HxL d x. 

In[9]:= Integrate@Sin@xD^2, 8x, a, b<D

Out[9]= 
1

2
H-a + b + Cos@aD Sin@aD - Cos@bD Sin@bDL

Here is another definite integral. 

In[10]:= Integrate@Exp@-x^2D, 8x, 0, Infinity<D

Out[10]= 
p

2

Mathematica cannot give you a formula for this definite integral. 

In[11]:= Integrate@x^x, 8x, 0, 1<D

Out[11]= ‡
0

1
xx „x

You can still get a numerical result, though. 

In[12]:= N@%D

Out[12]= 0.783431

This evaluates the multiple integral Ÿ0
1d x Ÿ0

xd y Ix2 + y2M. The range of the outermost integration 

variable appears first. 
In[13]:= Integrate@x^2 + y^2, 8x, 0, 1<, 8y, 0, x<D

Out[13]= 
1

3

226     Mathematics and Algorithms



This integrates x10 over a circular region. 

In[14]:= Integrate@x^10 Boole@x^2 + y^2 <= 1D, 8x, -1, 1<, 8y, -1, 1<D

Out[14]= 
21 p

512

Indefinite Integrals

The  Mathematica  function  Integrate@ f, xD  gives  you  the  indefinite  integral  Ÿ f d x.  You  can

think of the operation of indefinite integration as being an inverse of differentiation. If you take

the result from Integrate@ f, xD, and then differentiate it, you always get a result that is mathe- 

matically equal to the original expression f . 

In general, however, there is a whole family of results which have the property that their deriva- 

tive  is  f .  Integrate@ f, xD  gives  you  an  expression  whose  derivative  is  f .  You  can  get  other

expressions  by  adding  an  arbitrary  constant  of  integration,  or  indeed  by  adding  any  function

that is constant except at discrete points.

If you fill in explicit limits for your integral, any such constants of integration must cancel out.

But even though the indefinite integral can have arbitrary constants added, it is still often very

convenient to manipulate it without filling in the limits. 

Mathematica applies standard rules to find indefinite integrals. 

In[1]:= Integrate@x^2, xD

Out[1]= 
x3

3

You can add an arbitrary constant to the indefinite integral, and still get the same derivative. 
Integrate simply gives you an expression with the required derivative. 

In[2]:= D@% + c, xD

Out[2]= x2

This gives the indefinite integral Ÿ
d x
x2-1

. 

In[3]:= Integrate@1 ê Hx^2 - 1L, xD

Out[3]= 
1

2
Log@-1 + xD -

1

2
Log@1 + xD

Mathematics and Algorithms     227



Differentiating should give the original function back again. 

In[4]:= D@%, xD

Out[4]= 
1

2 H-1 + xL
-

1

2 H1 + xL

You need to manipulate it to get it back into the original form. 

In[5]:= Simplify@%D

Out[5]= 
1

-1 + x2

The Integrate function assumes that any object that does not explicitly contain the integration

variable is independent of it, and can be treated as a constant. As a result, Integrate is like an

inverse of the partial differentiation function D.

The variable a is assumed to be independent of x. 

In[6]:= Integrate@a x^2, xD

Out[6]= 
a x3

3

The integration variable can be any expression that does not involve explicit mathematical 
operations.

In[7]:= Integrate@x b@xD^2, b@xDD

Out[7]= 
1

3
x b@xD3

Another assumption that Integrate  implicitly makes is that all  the symbolic quantities in your

integrand have "generic" values. Thus, for example, Mathematica will tell you that Ÿ xn „ x is x
n+1

n+1

even though this is not true in the special case n = -1.

Mathematica gives the standard result for this integral, implicitly assuming that n is not equal to 
-1. 

In[8]:= Integrate@x^n, xD

Out[8]= 
x1+n

1 + n

If you specifically give an exponent of -1, Mathematica produces a different result. 

In[9]:= Integrate@x^-1, xD

Out[9]= Log@xD

You should realize that the result for any particular integral can often be written in many differ-

ent forms. Mathematica tries to give you the most convenient form, following principles such as

avoiding explicit complex numbers unless your input already contains them. 

228     Mathematics and Algorithms



You should realize that the result for any particular integral can often be written in many differ-

ent forms. Mathematica tries to give you the most convenient form, following principles such as

avoiding explicit complex numbers unless your input already contains them. 

This integral is given in terms of ArcTan. 

In[10]:= Integrate@1 ê H1 + a x^2L, xD

Out[10]= 
ArcTanB a xF

a

This integral is given in terms of ArcTanh. 

In[11]:= Integrate@1 ê H1 - b x^2L, xD

Out[11]= 
ArcTanhB b xF

b

This is mathematically equal to the first integral, but is given in a somewhat different form. 

In[12]:= % ê. b -> -a

Out[12]= 
ArcTanhB -a xF

-a

The derivative is still correct. 

In[13]:= D@%, xD

Out[13]= 
1

1 + a x2

Even though they look quite different, both ArcTan@xD and -ArcTan@1 ê xD are indefinite 
integrals of 1ëI1 + x2M. 

In[14]:= Simplify@D@8ArcTan@xD, -ArcTan@1 ê xD<, xDD

Out[14]= :
1

1 + x2
,

1

1 + x2
>

Integrate chooses to use the simpler of the two forms. 

In[15]:= Integrate@1 ê H1 + x^2L, xD

Out[15]= ArcTan@xD

Mathematics and Algorithms     229



Integrals That Can and Cannot Be Done

Evaluating integrals is much more difficult than evaluating derivatives. For derivatives, there is

a  systematic  procedure  based  on  the  chain  rule  that  effectively  allows  any  derivative  to  be

worked out. But for integrals, there is no such systematic procedure. 

One of the main problems is that it is difficult to know what kinds of functions will be needed to

evaluate  a  particular  integral.  When you work  out  a  derivative,  you always  end up with  func-

tions that are of the same kind or simpler than the ones you started with. But when you work

out integrals, you often end up needing to use functions that are much more complicated than

the ones you started with. 

This integral can be evaluated using the same kind of functions that appeared in the input. 

In[1]:= Integrate@Log@xD^2, xD

Out[1]= 2 x - 2 x Log@xD + x Log@xD2

But for this integral the special function LogIntegral  is needed. 

In[2]:= Integrate@Log@Log@xDD, xD

Out[2]= x Log@Log@xDD - LogIntegral@xD

It is not difficult to find integrals that require all sorts of functions. 

In[3]:= Integrate@Sin@x^2D, xD

Out[3]= 
p

2
FresnelSB

2

p
xF

This integral involves an incomplete gamma function. Note that the power is carefully set up to 
allow any complex value of x. 

In[4]:= Integrate@Exp@-x^aD, xD

Out[4]= -

x HxaL-1ëa GammaB 1

a
, xaF

a

Mathematica  includes  a  very  wide  range  of  mathematical  functions,  and  by  using  these  func-

tions a great many integrals can be done. But it is still possible to find even fairly simple-look-

ing integrals that just cannot be done in terms of any standard mathematical functions. 

Here is a fairly simple-looking integral that cannot be done in terms of any standard mathemati-
cal functions. 

230     Mathematics and Algorithms



Here is a fairly simple-looking integral that cannot be done in terms of any standard mathemati-
cal functions. 

In[5]:= Integrate@Sin@xD ê Log@xD, xD

Out[5]= ‡
Sin@xD

Log@xD
„x

The main point  of  being able to do an integral  in  terms of  standard mathematical  functions is

that it lets one use the known properties of these functions to evaluate or manipulate the result

one gets. 

In  the  most  convenient  cases,  integrals  can  be  done  purely  in  terms  of  elementary  functions

such as exponentials,  logarithms and trigonometric functions. In fact,  if  you give an integrand

that  involves  only  such  elementary  functions,  then  one  of  the  important  capabilities  of

Integrate  is that if  the corresponding integral can be expressed in terms of elementary func-

tions, then Integrate will essentially always succeed in finding it.

Integrals of rational functions are straightforward to evaluate, and always come out in terms of 
rational functions, logarithms and inverse trigonometric functions. 

In[6]:= Integrate@x ê HHx - 1L Hx + 2LL, xD

Out[6]= 
1

3
Log@-1 + xD +

2

3
Log@2 + xD

The integral here is still of the same form, but now involves an implicit sum over the roots of a 
polynomial. 

In[7]:= Integrate@1 ê H1 + 2 x + x^3L, xD

Out[7]= RootSumB1 + 2 Ò1 + Ò13 &,
Log@x - Ò1D

2 + 3 Ò12
&F

This finds numerical approximations to all the root objects. 

In[8]:= N@%D

Out[8]= H-0.19108 - 0.088541 ÂL Log@H-0.226699 - 1.46771 ÂL + xD -
H0.19108 - 0.088541 ÂL Log@H-0.226699 + 1.46771 ÂL + xD + 0.38216 Log@0.453398 + xD

Integrals of trigonometric functions usually come out in terms of other trigonometric functions. 

In[9]:= Integrate@Sin@xD^3 Cos@xD^2, xD

Out[9]= -
Cos@xD

8
-

1

48
Cos@3 xD +

1

80
Cos@5 xD

Mathematics and Algorithms     231



This is a fairly simple integral involving algebraic functions. 

In[10]:= Integrate@Sqrt@xD Sqrt@1 + xD, xD

Out[10]= 
1

4
x 1 + x H1 + 2 xL - ArcSinhB x F

Here is an integral involving nested square roots. 

In[11]:= Integrate@Sqrt@x + Sqrt@xDD, xD

Out[11]= 
1

12
x + x J-3 + 2 x + 8 xN +

1

8
LogB1 + 2 x + 2 x + x F

By nesting elementary functions you sometimes get integrals that can be done in terms of 
elementary functions. 

In[12]:= Integrate@Cos@Log@xDD, xD

Out[12]= 
1

2
x Cos@Log@xDD +

1

2
x Sin@Log@xDD

But more often other kinds of functions are needed. 

In[13]:= Integrate@Log@Cos@xDD, xD

Out[13]= 
Â x2

2
- x LogA1 + ‰2 Â xE + x Log@Cos@xDD +

1

2
Â PolyLogA2, -‰2 Â xE

Integrals like this typically come out in terms of elliptic functions. 

In[14]:= Integrate@Sqrt@Cos@xDD, xD

Out[14]= 2 EllipticEB
x

2
, 2F

But occasionally one can get results in terms of elementary functions alone. 

In[15]:= Integrate@Sqrt@Tan@xDD, xD

Out[15]= 
1

2 2
-2 ArcTanB1 - 2 Tan@xD F + 2 ArcTanB1 + 2 Tan@xD F +

LogB-1 + 2 Tan@xD - Tan@xDF - LogB1 + 2 Tan@xD + Tan@xDF

Integrals like this can systematically be done using Piecewise. 

In[16]:= Integrate@2^Max@x, 1 - xD, xD

Out[16]= 

-
21-x

Log@2D
x §

1

2

-
2 2

Log@2D
+

2x

Log@2D
True

Beyond  working  with  elementary  functions,  Integrate  includes  a  large  number  of  algorithms

for dealing with special functions. Sometimes it uses a direct generalization of the procedure for

elementary functions. But more often its strategy is first to try to write the integrand in a form

that can be integrated in terms of certain sophisticated special functions, and then having done

this to try to find reductions of these sophisticated functions to more familiar functions. 

232     Mathematics and Algorithms



Beyond  working  with  elementary  functions,  Integrate  includes  a  large  number  of  algorithms

for dealing with special functions. Sometimes it uses a direct generalization of the procedure for

elementary functions. But more often its strategy is first to try to write the integrand in a form

that can be integrated in terms of certain sophisticated special functions, and then having done

this to try to find reductions of these sophisticated functions to more familiar functions. 

To integrate this Bessel function requires a generalized hypergeometric function. 

In[17]:= Integrate@BesselJ@0, xD, xD

Out[17]= x HypergeometricPFQB:
1

2
>, :1,

3

2
>, -

x2

4
F

Sometimes the integrals can be reduced to more familiar forms. 

In[18]:= Integrate@x^3 BesselJ@0, xD, xD

Out[18]= -x2 H-2 BesselJ@2, xD + x BesselJ@3, xDL

A large book of integral tables will list perhaps a few thousand indefinite integrals. Mathematica

can do essentially all of these integrals. And because it contains general algorithms rather than

just specific cases, Mathematica can actually do a vastly wider range of integrals.

You could expect to find this integral in any large book of integral tables. 

In[19]:= Integrate@Log@1 - xD ê x, xD

Out[19]= -PolyLog@2, xD

To do this integral, however, requires a more general algorithm, rather than just a direct table 
lookup. 

In[20]:= Integrate@Log@1 + 3 x + x^2D ê x, xD

Out[20]= Log@xD LogB
1

2
3 - 5 + xF - LogB1 +

2 x

3 - 5
F + Log@xD LogB

1

2
3 + 5 + xF - LogB1 +

2 x

3 + 5
F +

Log@xD -LogB
1

2
3 - 5 + xF - LogB

1

2
3 + 5 + xF + LogA1 + 3 x + x2E -

PolyLogB2, -
2 x

3 - 5
F - PolyLogB2, -

2 x

3 + 5
F

Particularly  if  you  introduce  new mathematical  functions  of  your  own,  you may want  to  teach

Mathematica  new  kinds  of  integrals.  You  can  do  this  by  making  appropriate  definitions  for

Integrate. 

In the case of differentiation, the chain rule allows one to reduce all  derivatives to a standard

form, represented in Mathematica using Derivative. But for integration, no such similar stan-

dard form exists,  and as a result  you often have to make definitions for several  different ver-

sions of the same integral. Changes of variables and other transformations can rarely be done

automatically by Integrate.

Mathematics and Algorithms     233



In the case of differentiation, the chain rule allows one to reduce all  derivatives to a standard

form, represented in Mathematica using Derivative. But for integration, no such similar stan-

dard form exists,  and as a result  you often have to make definitions for several  different ver-

sions of the same integral. Changes of variables and other transformations can rarely be done

automatically by Integrate.

This integral cannot be done in terms of any of the standard mathematical functions built into 
Mathematica. 

In[21]:= Integrate@Sin@Sin@xDD, xD

Out[21]= ‡ Sin@Sin@xDD „x

Before you add your own rules for integration, you have to remove write protection. 

In[22]:= Unprotect@IntegrateD

Out[22]= 8Integrate<

You can set up your own rule to define the integral to be, say, a "Jones" function. 

In[23]:= Integrate@Sin@Sin@a_. + b_. x_DD, x_D := Jones@a, xD ê b

Now Mathematica can do integrals that give Jones functions. 

In[24]:= Integrate@Sin@Sin@3 xDD, xD

Out[24]= 
1

3
Jones@0, xD

As it turns out, the integral Ÿ sinHsinHxLL „ x can in principle be represented as an infinite sum of 2 F1

hypergeometric functions, or as a suitably generalized Kampé de Fériet hypergeometric function

of two variables.

Definite Integrals

Integrate@ f,xD the indefinite integral Ÿ f dx

Integrate@ f,8x,xmin,xmax<D the definite integral Ÿxmin
xmax f dx

Integrate@ f,8x,xmin,xmax<,8y,ymin,ymax<D

the multiple integral Ÿxmin
xmaxd x Ÿymin

ymaxd y f

Integration functions. 

Here is the integral Ÿa
bx2 d x. 

234     Mathematics and Algorithms



Here is the integral Ÿa
bx2 d x. 

In[1]:= Integrate@x^2, 8x, a, b<D

Out[1]= -
a3

3
+
b3

3

This gives the multiple integral Ÿ0
ad x Ÿ0

bdyIx2 + y2M. 

In[2]:= Integrate@x^2 + y^2, 8x, 0, a<, 8y, 0, b<D

Out[2]=
1

3
a b Ia2 + b2M

The y integral is done first. Its limits can depend on the value of x. This ordering is the same as 
is used in functions like Sum  and Table. 

In[3]:= Integrate@x^2 + y^2, 8x, 0, a<, 8y, 0, x<D

Out[3]=
a4

3

In simple cases, definite integrals can be done by finding indefinite forms and then computing

appropriate limits. But there is a vast range of integrals for which the indefinite form cannot be

expressed in terms of standard mathematical functions, but the definite form still can be. 

This indefinite integral cannot be done in terms of standard mathematical functions. 

In[4]:= Integrate@Cos@Sin@xDD, xD

Out[4]= ‡ Cos@Sin@xDD „x

This definite integral, however, can be done in terms of a Bessel function. 

In[5]:= Integrate@Cos@Sin@xDD, 8x, 0, 2 Pi<D

Out[5]= 2 p BesselJ@0, 1D

Here is an integral where the indefinite form can be found, but it is much more efficient to work 
out the definite form directly. 

In[6]:= Integrate@Log@xD Exp@-x^2D, 8x, 0, Infinity<D

Out[6]= -
1

4
p HEulerGamma + Log@4DL

Mathematics and Algorithms     235



Just because an integrand may contain special functions, it does not mean that the definite 
integral will necessarily be complicated. 

In[7]:= Integrate@BesselK@0, xD^2, 8x, 0, Infinity<D

Out[7]=
p2

4

Special functions nevertheless occur in this result. 

In[8]:= Integrate@BesselK@0, xD BesselJ@0, xD, 8x, 0, Infinity<D

Out[8]=
GammaB 1

4
F
2

4 2 p

The integrand here is simple, but the definite integral is not. 

In[9]:= Integrate@Sin@x^2D Exp@-xD, 8x, 0, Infinity<D

Out[9]=
1

4
-2 HypergeometricPFQB81<, :

3

4
,
5

4
>, -

1

64
F + 2 p CosB

1

4
F + SinB

1

4
F

Even  when  you  can  find  the  indefinite  form  of  an  integral,  you  will  often  not  get  the  correct

answer for  the definite integral  if  you just  subtract  the values of  the limits  at  each end point.

The problem is  that  within  the domain of  integration there may be singularities  whose effects

are ignored if you follow this procedure. 

Here is the indefinite integral of 1ëx2. 

In[10]:= Integrate@1 ê x^2, xD

Out[10]= -
1

x

This subtracts the limits at each end point. 

In[11]:= Limit@%, x -> 2D - Limit@%, x -> -2D

Out[11]= -1

The true definite integral is divergent because of the double pole at x = 0. 

In[12]:= Integrate@1 ê x^2, 8x, -2, 2<D

Integrate::idiv : Integral of
1

x2
does not converge on 8-2, 2<. à

Out[12]= ‡
-2

2 1

x2
„x

Here is a more subtle example, involving branch cuts rather than poles. 

236     Mathematics and Algorithms



Here is a more subtle example, involving branch cuts rather than poles. 

In[13]:= Integrate@1 ê H1 + a Sin@xDL, xD

Out[13]=

2 ArcTanB
a+TanB

x

2
F

1-a2
F

1 - a2

Taking limits in the indefinite integral gives 0. 

In[14]:= Limit@%, x -> 2 PiD - Limit@%, x -> 0D

Out[14]= 0

The definite integral, however, gives the correct result which depends on a. The assumption 
assures convergence. 

In[15]:= Integrate@1 ê H1 + a Sin@xDL, 8x, 0, 2 Pi<, Assumptions -> -1 < a < 1D

Out[15]=
2 p

1 - a2

IntegrateA f,9x,xmin,xmax=,PrincipalValue->TrueE

the Cauchy principal value of a definite integral

Principal value integrals. 

Here is the indefinite integral of 1 ê x. 
In[16]:= Integrate@1 ê x, xD

Out[16]= Log@xD

Substituting in the limits -1 and +2 yields a strange result involving i p. 

In[17]:= Limit@%, x -> 2D - Limit@%, x -> -1D

Out[17]= -Â p + Log@2D

The ordinary Riemann definite integral is divergent. 

In[18]:= Integrate@1 ê x, 8x, -1, 2<D

Integrate::idiv : Integral of
1

x
does not converge on 8-1, 2<. à

Out[18]= ‡
-1

2 1

x
„x

The Cauchy principal value, however, is finite. 

Mathematics and Algorithms     237



The Cauchy principal value, however, is finite. 

In[19]:= Integrate@1 ê x, 8x, -1, 2<, PrincipalValue -> TrueD

Out[19]= Log@2D

When parameters appear in an indefinite integral, it is essentially always possible to get results

that  are  correct  for  almost  all  values  of  these  parameters.  But  for  definite  integrals  this  is  no

longer the case. The most common problem is that a definite integral may converge only when

the parameters that appear in it satisfy certain specific conditions. 

This indefinite integral is correct for all n ≠ -1. 

In[20]:= Integrate@x^n, xD

Out[20]=
x1+n

1 + n

For the definite integral, however, n must satisfy a condition in order for the integral to be 
convergent. 

In[21]:= Integrate@x^n, 8x, 0, 1<D

Out[21]= IfBRe@nD > -1,
1

1 + n
, IntegrateAxn, 8x, 0, 1<, Assumptions Ø Re@nD § -1EF

If n is replaced by 2, the condition is satisfied. 

In[22]:= % ê. n -> 2

Out[22]=
1

3

option name default value
GenerateConditions Automatic whether to generate explicit conditions
Assumptions $Assumptions what relations about parameters to assume

Options for Integrate. 

With the assumption n > 2, the result is always 1 ê H1 + nL. 

In[23]:= Integrate@x^n, 8x, 0, 1<, Assumptions -> Hn > 2LD

Out[23]=
1

1 + n

Even  when  a  definite  integral  is  convergent,  the  presence  of  singularities  on  the  integration

path can lead to discontinuous changes when the parameters vary. Sometimes a single formula

containing functions  like  Sign  can be used to  summarize  the  result.  In  other  cases,  however,

an explicit If is more convenient. 

238     Mathematics and Algorithms



Even  when  a  definite  integral  is  convergent,  the  presence  of  singularities  on  the  integration

path can lead to discontinuous changes when the parameters vary. Sometimes a single formula

containing functions  like  Sign  can be used to  summarize  the  result.  In  other  cases,  however,

an explicit If is more convenient. 

The If here gives the condition for the integral to be convergent. 

In[24]:= Integrate@Sin@a xD ê x, 8x, 0, Infinity<D

Out[24]= IfBa œ Reals,
1

2
p Sign@aD, IntegrateB

Sin@a xD

x
, 8x, 0, ¶<, Assumptions Ø a ≠ Re@aDFF

Here is the result assuming that a is real. 

In[25]:= Integrate@Sin@a xD ê x, 8x, 0, Infinity<, Assumptions -> Im@aD == 0D

Out[25]=
1

2
p Sign@aD

The result is discontinuous as a function of a. The discontinuity can be traced to the essential 
singularity of sinHxL at x =¶. 

In[26]:= Plot@%, 8a, -5, 5<D

Out[26]=

There is no convenient way to represent this answer in terms of Sign, so Mathematica gener-
ates an explicit If. 

In[27]:= Integrate@Sin@xD BesselJ@0, a xD ê x, 8x, 0, Infinity<, Assumptions -> Im@aD == 0D

Out[27]= IfBa < -1 »» a > 1,
a ArcSinB 1

a
F

Abs@aD
,

p

2
F

Here is a plot of the resulting function of a. 

In[28]:= Plot@Evaluate@%D, 8a, -5, 5<D

Out[28]=

Integrals over Regions

Mathematics and Algorithms     239

Integrals over Regions

-4 -2 2 4

-1.5

-1.0

-0.5

0.5

1.0

1.5

-4 -2 2 4

0.5

1.0

1.5



Integrals over Regions

This does an integral over the interior of the unit circle. 

In[1]:= Integrate@If@x^2 + y^2 < 1, 1, 0D, 8x, -1, 1<, 8y, -1, 1<D

Out[1]= p

Here is an equivalent form. 

In[2]:= Integrate@Boole@x^2 + y^2 < 1D, 8x, -1, 1<, 8y, -1, 1<D

Out[2]= p

Even  though  an  integral  may  be  straightforward  over  a  simple  rectangular  region,  it  can  be

significantly more complicated even over a circular region. 

This gives a Bessel function. 

In[3]:= Integrate@Exp@xD Boole@x^2 + y^2 < 1D, 8x, -1, 1<, 8y, -1, 1<D

Out[3]= 2 p BesselI@1, 1D

Integrate@ f Boole@condD,8x,xmin,xmax<,8y,ymin,ymax<D

integrate f  over the region where cond is True

Integrals over regions. 

Particularly  if  there  are  parameters  inside  the  conditions  that  define  regions,  the  results  for

integrals over regions may break into several cases. 

This gives a piecewise function of a. 

In[4]:= Integrate@Boole@a x < yD, 8x, 0, 1<, 8y, 0, 1<D

Out[4]= 

1 a § 0
2-a

2
0 < a § 1

1

2 a
True

With two parameters even this breaks into quite a few cases. 

In[5]:= Integrate@Boole@a x < bD, 8x, 0, 1<D

Out[5]= 

1 Ha > 0 && a - b § 0L »» Ha § 0 && b > 0L
a-b

a
a § 0 && a - b < 0 && b § 0

b

a
a > 0 && b > 0 && a - b > 0

This involves intersecting a circle with a square. 

240     Mathematics and Algorithms



This involves intersecting a circle with a square. 

In[6]:= Integrate@Boole@x^2 + y^2 < aD, 8x, 0, 1<, 8y, 0, 1<D

Out[6]= 

1 a ¥ 2
a p

4
0 < a § 1

1

2
J2 -1 + a + a ArcCotB -1 + a F - a ArcTanB -1 + a FN 1 < a < 2

The region can have an infinite number of components. 

In[7]:= Integrate@Boole@Sin@xD > 1 ê 2D Exp@-xD, 8x, 0, Infinity<D

Out[7]=
‰7 pë6

1 + ‰2 pë3 + ‰4 pë3

Manipulating Integrals in Symbolic Form

When Mathematica cannot give you an explicit result for an integral, it leaves the integral in a

symbolic form. It is often useful to manipulate this symbolic form.

Mathematica cannot give an explicit result for this integral, so it leaves the integral in symbolic 
form. 

In[1]:= Integrate@x^2 f@xD, xD

Out[1]= ‡ x
2 f@xD „x

Differentiating the symbolic form gives the integrand back again. 

In[2]:= D@%, xD

Out[2]= x2 f@xD

Here is a definite integral which cannot be done explicitly. 

In[3]:= Integrate@f@xD, 8x, a@xD, b@xD<D

Out[3]= ‡
a@xD

b@xD
f@xD „x

This gives the derivative of the definite integral. 

In[4]:= D@%, xD

Out[4]= -f@a@xDD a£@xD + f@b@xDD b£@xD

Mathematics and Algorithms     241



Here is a definite integral with end points that do not explicitly depend on x. 

In[5]:= defint = Integrate@f@xD, 8x, a, b<D

Out[5]= ‡
a

b
f@xD „x

The partial derivative of this with respect to u is zero. 

In[6]:= D@defint, uD

Out[6]= 0

There is a non-trivial total derivative, however. 

In[7]:= Dt@defint, uD

Out[7]= -Dt@a, uD f@aD + Dt@b, uD f@bD

Differential Equations

You can use the Mathematica function DSolve to find symbolic solutions to ordinary and partial

differential equations. 

Solving a differential  equation consists  essentially  in finding the form of  an unknown function.

In  Mathematica,  unknown functions  are  represented by expressions  like  y@xD.  The derivatives

of such functions are represented by y'@xD, y''@xD and so on. 

The  Mathematica  function  DSolve  returns  as  its  result  a  list  of  rules  for  functions.  There  is  a

question  of  how  these  functions  are  represented.  If  you  ask  DSolve  to  solve  for  y@xD,  then

DSolve will indeed return a rule for y@xD. In some cases, this rule may be all you need. But this

rule, on its own, does not give values for y'@xD  or even y@0D.  In many cases, therefore, it  is

better  to ask DSolve  to  solve not  for  y@xD,  but  instead for  y  itself.  In this  case,  what DSolve

will return is a rule which gives y as a pure function, in the sense discussed in "Pure Functions". 

If you ask DSolve to solve for y@xD, it will give a rule specifically for y@xD. 

In[1]:= DSolve@y'@xD + y@xD == 1, y@xD, xD

Out[1]= 99y@xD Ø 1 + ‰-x C@1D==

The rule applies only to y@xD itself, and not, for example, to objects like y@0D or y'@xD. 

In[2]:= y@xD + 2 y'@xD + y@0D ê. %

Out[2]= 91 + ‰-x C@1D + y@0D + 2 y£@xD=

If you ask DSolve to solve for y, it gives a rule for the object y on its own as a pure function. 

242     Mathematics and Algorithms



If you ask DSolve to solve for y, it gives a rule for the object y on its own as a pure function. 

In[3]:= DSolve@y'@xD + y@xD == 1, y, xD

Out[3]= 99y Ø FunctionA8x<, 1 + ‰-x C@1DE==

Now the rule applies to all occurrences of y. 

In[4]:= y@xD + 2 y'@xD + y@0D ê. %

Out[4]= 92 + C@1D - ‰-x C@1D=

Substituting the solution into the original equation yields True. 

In[5]:= y'@xD + y@xD == 1 ê. %%

Out[5]= 8True<

DSolve@eqn,y@xD,xD solve a differential equation for y@xD

DSolve@eqn,y,xD solve a differential equation for the function y

Getting solutions to differential equations in different forms. 

In  standard  mathematical  notation,  one  typically  represents  solutions  to  differential  equations

by  explicitly  introducing  "dummy  variables"  to  represent  the  arguments  of  the  functions  that

appear. If all you need is a symbolic form for the solution, then introducing such dummy vari-

ables  may  be  convenient.  However,  if  you  actually  intend  to  use  the  solution  in  a  variety  of

other computations, then you will usually find it better to get the solution in pure-function form,

without dummy variables. Notice that this form, while easy to represent in Mathematica, has no

direct analog in standard mathematical notation. 

DSolve@8eqn1,eqn2,…<,8y1,y2,…<,xD

solve a list of differential equations

Solving simultaneous differential equations. 

This solves two simultaneous differential equations. 

In[6]:= DSolve@8y@xD == -z'@xD, z@xD == -y'@xD<, 8y, z<, xD

Out[6]= ::z Ø FunctionB8x<,
1

2
‰-x I1 + ‰2 xM C@1D -

1

2
‰-x I-1 + ‰2 xM C@2DF,

y Ø FunctionB8x<, -
1

2
‰-x I-1 + ‰2 xM C@1D +

1

2
‰-x I1 + ‰2 xM C@2DF>>

Mathematics and Algorithms     243



Mathematica returns two distinct solutions for y in this case. 

In[7]:= DSolve@y@xD y'@xD == 1, y, xD

Out[7]= ::y Ø FunctionB8x<, - 2 x + C@1D F>, :y Ø FunctionB8x<, 2 x + C@1D F>>

You  can  add  constraints  and  boundary  conditions  for  differential  equations  by  explicitly  giving

additional equations such as y@0D == 0. 

This asks for a solution which satisfies the condition y@0D == 1. 

In[8]:= DSolve@8y'@xD == a y@xD, y@0D == 1<, y@xD, xD

Out[8]= 99y@xD Ø ‰a x==

If  you  ask  Mathematica  to  solve  a  set  of  differential  equations  and  you  do  not  give  any  con-

straints  or  boundary  conditions,  then  Mathematica  will  try  to  find  a  general  solution  to  your

equations. This general solution will involve various undetermined constants. One new constant

is introduced for each order of derivative in each equation you give. 

The  default  is  that  these  constants  are  named  C@nD,  where  the  index  n  starts  at  1  for  each

invocation of DSolve.  You can override this choice, by explicitly giving a setting for the option

GeneratedParameters. Any function you give is applied to each successive index value n to get

the constants to use for each invocation of DSolve. 

The general solution to this fourth-order equation involves four undetermined constants. 

In[9]:= DSolve@y''''@xD == y@xD, y@xD, xD

Out[9]= 99y@xD Ø ‰x C@1D + ‰-x C@3D + C@2D Cos@xD + C@4D Sin@xD==

Each independent initial or boundary condition you give reduces the number of undetermined 
constants by one. 

In[10]:= DSolve@8y''''@xD == y@xD, y@0D == y'@0D == 0<, y@xD, xD

Out[10]= 99y@xD Ø ‰-x IC@3D + ‰2 x C@3D - ‰2 x C@4D - 2 ‰x C@3D Cos@xD + ‰x C@4D Cos@xD + ‰x C@4D Sin@xDM==

You  should  realize  that  finding  exact  formulas  for  the  solutions  to  differential  equations  is  a

difficult matter. In fact, there are only fairly few kinds of equations for which such formulas can

be found, at least in terms of standard mathematical functions. 

The most widely investigated differential  equations are linear ones, in which the functions you

are solving for, as well as their derivatives, appear only linearly. 

244     Mathematics and Algorithms



This is a homogeneous first-order linear differential equation, and its solution is quite simple. 

In[11]:= DSolve@y'@xD - x y@xD == 0, y@xD, xD

Out[11]= ::y@xD Ø ‰
x2

2 C@1D>>

Making the equation inhomogeneous leads to a significantly more complicated solution. 

In[12]:= DSolve@y'@xD - x y@xD == 1, y@xD, xD

Out[12]= ::y@xD Ø ‰
x2

2 C@1D + ‰
x2

2

p

2
ErfB

x

2
F>>

If you have only a single linear differential equation, and it involves only a first derivative of the

function  you  are  solving  for,  then  it  turns  out  that  the  solution  can  always  be  found  just  by

doing integrals. 

But as soon as you have more than one differential equation, or more than a first-order deriva-

tive, this is no longer true. However, some simple second-order linear differential equations can

nevertheless be solved using various special functions from "Special Functions". Indeed, histori-

cally many of these special functions were first introduced specifically in order to represent the

solutions to such equations.

This is Airy’s equation, which is solved in terms of Airy functions.

In[13]:= DSolve@y''@xD - x y@xD == 0, y@xD, xD

Out[13]= 88y@xD Ø AiryAi@xD C@1D + AiryBi@xD C@2D<<

This equation comes out in terms of Bessel functions. 

In[14]:= DSolve@y''@xD - Exp@xD y@xD == 0, y@xD, xD

Out[14]= ::y@xD Ø BesselIB0, 2 ‰x F C@1D + 2 BesselKB0, 2 ‰x F C@2D>>

This requires Mathieu functions. 

In[15]:= DSolve@y''@xD + Cos@xD y@xD == 0, y, xD

Out[15]= ::y Ø FunctionB8x<, C@1D MathieuCB0, -2,
x

2
F + C@2D MathieuSB0, -2,

x

2
FF>>

Mathematics and Algorithms     245



And this Legendre functions. 

In[16]:= DSolve@y''@xD - Cot@xD^2 y@xD == 0, y@xD, xD

Out[16]= ::y@xD Ø C@1D I-1 + Cos@xD2M
1ë4

LegendrePB
1

2
,

5

2
, Cos@xDF +

C@2D I-1 + Cos@xD2M
1ë4

LegendreQB
1

2
,

5

2
, Cos@xDF>>

Occasionally second-order linear equations can be solved using only elementary functions. 

In[17]:= DSolve@x^2 y''@xD + y@xD == 0, y@xD, xD

Out[17]= ::y@xD Ø x C@1D CosB
1

2
3 Log@xDF + x C@2D SinB

1

2
3 Log@xDF>>

Beyond second order, the kinds of functions needed to solve even fairly simple linear differen-

tial equations become extremely complicated. At third order, the generalized Meijer G function

MeijerG can sometimes be used, but at fourth order and beyond absolutely no standard mathe-

matical functions are typically adequate, except in very special cases. 

Here is a third-order linear differential equation which can be solved in terms of generalized 
hypergeometric functions. 

In[18]:= DSolve@y'''@xD + x y@xD == 0, y@xD, xD

Out[18]= ::y@xD Ø

C@1D HypergeometricPFQB8<, :
1

2
,
3

4
>, -

x4

64
F +

1

2 2
x C@2D HypergeometricPFQB8<, :

3

4
,
5

4
>, -

x4

64
F +

1

8
x2 C@3D HypergeometricPFQB8<, :

5

4
,
3

2
>, -

x4

64
F>>

This requires more general Meijer G functions. 

In[19]:= DSolve@y'''@xD + Exp@xD y@xD == 0, y@xD, xD

Out[19]= 99y@xD Ø C@1D HypergeometricPFQA8<, 81, 1<, -‰xE +

C@2D MeijerGA88<, 8<<, 880, 0<, 80<<, -‰xE + C@3D MeijerGA88<, 8<<, 880, 0, 0<, 8<<, ‰xE==

For  nonlinear  differential  equations,  only  rather  special  cases  can  usually  ever  be  solved  in

terms of  standard mathematical  functions.  Nevertheless,  DSolve  includes fairly  general  proce-

dures  which  allow  it  to  handle  almost  all  nonlinear  differential  equations  whose  solutions  are

found in standard reference books. 

246     Mathematics and Algorithms



First-order nonlinear differential equations in which x does not appear on its own are fairly easy 
to solve. 

In[20]:= DSolve@y'@xD - y@xD^2 == 0, y@xD, xD

Out[20]= ::y@xD Ø
1

-x - C@1D
>>

This Riccati equation already gives a significantly more complicated solution.

In[21]:= DSolve@y'@xD - y@xD^2 == x, y@xD, xD êê FullSimplify

Out[21]= ::y@xD Ø x -BesselJB-
2

3
,
2 x3ë2

3
F + BesselJB

2

3
,
2 x3ë2

3
F C@1D ì

BesselJB
1

3
,
2 x3ë2

3
F + BesselJB-

1

3
,
2 x3ë2

3
F C@1D >>

This Bernoulli equation, however, has a fairly simple solution.

In[22]:= DSolve@y'@xD - x y@xD^2 - y@xD == 0, y@xD, xD

Out[22]= ::y@xD Ø -
‰x

-‰x + ‰x x - C@1D
>>

An nth order Bernoulli equation typically has n - 1 distinct solutions. 

In[23]:= DSolve@y'@xD - x y@xD^3 + y@xD == 0, y@xD, xD

Out[23]= ::y@xD Ø -
2

1 + 2 x + 2 ‰2 x C@1D

>, :y@xD Ø
2

1 + 2 x + 2 ‰2 x C@1D

>>

This Abel equation can be solved, but only implicitly.

In[24]:= DSolve@y'@xD + x y@xD^3 + y@xD^2 == 0, y@xD, xD

Solve::tdep:
The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Out[24]= SolveB
1

2

2 ArcTanhB -1-2 x y@xD

5

F

5
+ LogB

-1 - x y@xD H-1 - x y@xDL

x2 y@xD2
F ã C@1D - Log@xD, y@xDF

In practical applications, it is quite often convenient to set up differential equations that involve

piecewise functions. You can use DSolve to find symbolic solutions to such equations. 

Mathematics and Algorithms     247



This equation involves a piecewise forcing function. 

In[25]:= DSolve@y'@xD - y@xD == UnitStep@xD, y@xD, xD

Out[25]= 

Here the solution is explicitly broken into three cases. 

In[26]:= DSolve@y'@xD + Clip@xD y@xD == 0, y@xD, xD

Out[26]= ::y@xD Ø ‰

x x§-1

-
1

2
-
x2

2
-1<x§1

-x True C@1D>>

Beyond  ordinary  differential  equations,  one  can  consider  differential-algebraic  equations  that

involve a mixture of differential and algebraic equations.

This solves a differential-algebraic equation. 

In[27]:= DSolve@8y'@xD + 3 z'@xD == 4 y@xD + 1 ê x, y@xD + z@xD == 1<, 8y@xD, z@xD<, xD

Out[27]= ::y@xD Ø
3

2
+

1

18
I-‰-2 x C@1D - 9 ‰-2 x I3 ‰2 x + ExpIntegralEi@2 xDMM,

z@xD Ø -
1

2
+

1

18
I‰-2 x C@1D + 9 ‰-2 x I3 ‰2 x + ExpIntegralEi@2 xDMM>>

DSolve@eqn,y@x1,x2,…D,8x1,x2,…<D

solve a partial differential equation for y@x1, x2, …D

DSolve@eqn,y,8x1,x2,…<D solve a partial differential equation for the function y

Solving partial differential equations. 

DSolve is set up to handle not only ordinary differential equations in which just a single indepen-

dent variable appears, but also partial differential equations in which two or more independent

variables appear. 

This finds the general solution to a simple partial differential equation with two independent 
variables. 

In[28]:= DSolve@D@y@x1, x2D, x1D + D@y@x1, x2D, x2D == 1 ê Hx1 x2L, y@x1, x2D, 8x1, x2<D

Out[28]= ::y@x1, x2D Ø
1

x1 - x2
H-Log@x1D + Log@x2D + x1 C@1D@-x1 + x2D - x2 C@1D@-x1 + x2DL>>

248     Mathematics and Algorithms



Here is the result represented as a pure function. 

In[29]:= DSolve@D@y@x1, x2D, x1D + D@y@x1, x2D, x2D == 1 ê Hx1 x2L, y, 8x1, x2<D

Out[29]= ::y Ø FunctionB8x1, x2<,
1

x1 - x2
H-Log@x1D + Log@x2D + x1 C@1D@-x1 + x2D - x2 C@1D@-x1 + x2DLF>>

The  basic  mathematics  of  partial  differential  equations  is  considerably  more  complicated  than

that  of  ordinary  differential  equations.  One  feature  is  that  whereas  the  general  solution  to  an

ordinary differential equation involves only arbitrary constants, the general solution to a partial

differential  equation,  if  it  can be found at  all,  must involve arbitrary functions.  Indeed, with m

independent variables, arbitrary functions of m - 1 arguments appear. DSolve by default names

these functions C@nD. 

Here is a simple PDE involving three independent variables. 

In[30]:= HD@Ò, x1D + D@Ò, x2D + D@Ò, x3DL &@y@x1, x2, x3DD == 0

Out[30]= yH0,0,1L@x1, x2, x3D + yH0,1,0L@x1, x2, x3D + yH1,0,0L@x1, x2, x3D ã 0

The solution involves an arbitrary function of two variables. 

In[31]:= DSolve@%, y@x1, x2, x3D, 8x1, x2, x3<D

Out[31]= 88y@x1, x2, x3D Ø C@1D@-x1 + x2, -x1 + x3D<<

Here is the one-dimensional wave equation. 

In[32]:= Hc^2 D@Ò, x, xD - D@Ò, t, tDL &@y@x, tDD == 0

Out[32]= -yH0,2L@x, tD + c2 yH2,0L@x, tD ã 0

The solution to this second-order equation involves two arbitrary functions. 

In[33]:= DSolve@%, y@x, tD, 8x, t<D

Out[33]= ::y@x, tD Ø C@1DBt -
c2 x

c2
F + C@2DBt +

c2 x

c2
F>>

For  an  ordinary  differential  equation,  it  is  guaranteed that  a  general  solution  must  exist,  with

the  property  that  adding  initial  or  boundary  conditions  simply  corresponds  to  forcing  specific

choices  for  arbitrary  constants  in  the  solution.  But  for  partial  differential  equations  this  is  no

longer  true.  Indeed,  it  is  only  for  linear  partial  differential  and  a  few  other  special  types  that

such general solutions exist.

Other  partial  differential  equations can be solved only  when specific  initial  or  boundary values

are  given,  and  in  the  vast  majority  of  cases  no  solutions  can  be  found  as  exact  formulas  in

terms of standard mathematical functions. 

Mathematics and Algorithms     249



Other  partial  differential  equations can be solved only  when specific  initial  or  boundary values

are  given,  and  in  the  vast  majority  of  cases  no  solutions  can  be  found  as  exact  formulas  in

terms of standard mathematical functions. 

Since y and its derivatives appear only linearly here, a general solution exists. 

In[34]:= DSolve@x1 D@y@x1, x2D, x1D + x2 D@y@x1, x2D, x2D == Exp@x1 x2D, y@x1, x2D, 8x1, x2<D

Out[34]= ::y@x1, x2D Ø
1

2
ExpIntegralEi@x1 x2D + 2 C@1DB

x2

x1
F >>

This weakly nonlinear PDE turns out to have a general solution. 

In[35]:= DSolve@D@y@x1, x2D, x1D + D@y@x1, x2D, x2D == Exp@y@x1, x2DD, y@x1, x2D, 8x1, x2<D

Out[35]= 88y@x1, x2D Ø -Log@-x1 - C@1D@-x1 + x2DD<<

Here is a nonlinear PDE which has no general solution. 

In[36]:= DSolve@D@y@x1, x2D, x1D D@y@x1, x2D, x2D == a, y@x1, x2D, 8x1, x2<D

DSolve::nlpde :
Solution requested to nonlinear partial differential equation. Trying to build a complete integral.

Out[36]= ::y@x1, x2D Ø C@1D +
a x1

C@2D
+ x2 C@2D>>

Integral Transforms and Related Operations

Laplace Transforms

LaplaceTransform@expr,t,sD the Laplace transform of expr

InverseLaplaceTransform@expr,s,tD

the inverse Laplace transform of expr

One-dimensional Laplace transforms. 

The Laplace transform of a function f HtL is given by Ÿ0
¶ f HtL e-s t „ t. The inverse Laplace transform

of FHsL is given for suitable g by 1
2 p i Ÿg-i¶

g+i¶FHsL est „ s.

250     Mathematics and Algorithms



Here is a simple Laplace transform. 

In[1]:= LaplaceTransform@t^4 Sin@tD, t, sD

Out[1]= 
24 I1 - 10 s2 + 5 s4M

I1 + s2M
5

Here is the inverse. 

In[2]:= InverseLaplaceTransform@%, s, tD

Out[2]= t4 Sin@tD

Even simple transforms often involve special functions. 

In[3]:= LaplaceTransform@1 ê H1 + t^2L, t, sD

Out[3]= CosIntegral@sD Sin@sD +
1

2
Cos@sD Hp - 2 SinIntegral@sDL

Here the result involves a Meijer G function. 

In[4]:= LaplaceTransform@1 ê H1 + t^3L, t, sD

Out[4]= 

MeijerGB:: 2

3
>, 8<>, ::0, 1

3
, 2

3
, 2

3
>, 8<>, s3

27
F

2 3 p

InverseLaplaceTransform returns the original function.

In[6]:= InverseLaplaceTransform@%, s, tD

Out[6]=
1

1 + t3

The Laplace transform of this Bessel function just involves elementary functions. 

In[5]:= LaplaceTransform@BesselJ@n, tD, t, sD

Out[5]= 

s + 1 + s2
-n

1 + s2

Laplace transforms have the property that they turn integration and differentiation into essen-

tially algebraic operations. They are therefore commonly used in studying systems governed by

differential equations. 

Mathematics and Algorithms     251



Integration becomes multiplication by 1 ês when one does a Laplace transform. 

In[6]:= LaplaceTransform@Integrate@f@uD, 8u, 0, t<D, t, sD

Out[6]= 
LaplaceTransform@f@tD, t, sD

s

LaplaceTransform@expr,8t1,t2,…<,8s1,s2,…<D

the multidimensional Laplace transform of expr

InverseLaplaceTransform@expr,8s1,s2,…<,8t1,t2,…<D

the multidimensional inverse Laplace transform of expr

Multidimensional Laplace transforms. 

Fourier Transforms

FourierTransform@expr,t,wD the Fourier transform of expr

InverseFourierTransform@expr,w,tD

the inverse Fourier transform of expr

One-dimensional Fourier transforms. 

Integral transforms can produce results that involve "generalized functions" such as 
HeavisideTheta.

In[1]:= FourierTransform@1 ê H1 + t^4L, t, wD

Out[1]= 
1

4
+

Â

4
‰
-

I1+ÂM w

2 p ‰ 2 w -Â + ‰Â 2 w HeavisideTheta@-wD + 1 - Â ‰Â 2 w HeavisideTheta@wD

This finds the inverse. 

In[2]:= InverseFourierTransform@%, w, tD

Out[2]= 
1

1 + t4

In  Mathematica  the  Fourier  transform  of  a  function  f HtL  is  by  default  defined  to  be
1

2 p
Ÿ-¶
¶ f HtL eiw t „ t.  The  inverse  Fourier  transform  of  FHwL  is  similarly  defined  as

1

2 p
Ÿ-¶
¶ FHwL e-iw t „w. 

In  different  scientific  and  technical  fields  different  conventions  are  often  used  for  defining

Fourier transforms. The option FourierParameters in Mathematica allows you to choose any of

these conventions you want. 

252     Mathematics and Algorithms



In  different  scientific  and  technical  fields  different  conventions  are  often  used  for  defining

Fourier transforms. The option FourierParameters in Mathematica allows you to choose any of

these conventions you want. 

common convention setting Fourier transform inverse Fourier transform

Mathematica default 80, 1< 1

2 p
Ÿ-¶
¶ f HtL eiw t „ t 1

2 p
Ÿ-¶
¶ FHwL e-iw t „w

pure mathematics 81, -1< Ÿ-¶
¶ f HtL e-iw t „ t 1

2 p Ÿ-¶
¶ FHwL eiw t „w

classical physics 8-1, 1< 1
2 p Ÿ-¶

¶ f HtL eiw t „ t Ÿ-¶
¶ FHwL e-iw t „w

modern physics 80, 1< 1

2 p
Ÿ-¶
¶ f HtL eiw t „ t 1

2 p
Ÿ-¶
¶ FHwL e-iw t „w

systems engineering 81, -1< Ÿ-¶
¶ f HtL e-iw t „ t 1

2 p Ÿ-¶
¶ FHwL eiw t „w

signal processing 80, -2 Pi< Ÿ-¶
¶ f HtL e-2 p iw t „ t Ÿ-¶

¶ FHwL e2 p iw t „w

general case 8a, b< H b Lë H2 pL1-a

Ÿ-¶
¶ f HtL ei bw t „ t

b
H2 pL1+a Ÿ-¶

¶ FHwL e-i bw t „w

Typical settings for FourierParameters with various conventions. 

Here is a Fourier transform with the default choice of parameters. 

In[3]:= FourierTransform@Exp@-t^2D, t, wD

Out[3]= 
‰
-

w2

4

2

Here is the same Fourier transform with the choice of parameters typically used in signal 
processing. 

In[4]:= FourierTransform@Exp@-t^2D, t, w, FourierParameters -> 80, -2 Pi<D

Out[4]= ‰-p2 w2 p

FourierSinTransform@expr,t,wD

Fourier sine transform

FourierCosTransform@expr,t,wD

Fourier cosine transform

Mathematics and Algorithms     253



InverseFourierSinTransform@expr,w,tD

inverse Fourier sine transform

InverseFourierCosTransform@expr,w,tD

inverse Fourier cosine transform

Fourier sine and cosine transforms. 

In some applications of  Fourier  transforms,  it  is  convenient  to  avoid ever  introducing complex

exponentials.  Fourier  sine  and  cosine  transforms  correspond  to  integrating  respectively  with

sinHw tL and cosHw tL instead of expHiw tL, and using limits 0 and ¶ rather than -¶ and ¶. 

Here are the Fourier sine and cosine transforms of e-t. 

In[5]:= 8FourierSinTransform@Exp@-tD, t, wD, FourierCosTransform@Exp@-tD, t, wD<

Out[5]= :

2

p
w

1 + w2
,

2

p

1 + w2
>

FourierTransform@expr,8t1,t2,…<,8w1,w2,…<D

the multidimensional Fourier transform of expr

InverseFourierTransform@expr,8w1,w2,…<,8t1,t2,…<D

the multidimensional inverse Fourier transform of expr

FourierSinTransform@expr,8t1,t2,…<,8w1,w2,…<D ,
FourierCosTransform@expr,8t1,t2,…<,8w1,w2,…<D

the multidimensional sine and cosine Fourier transforms of 
expr

InverseFourierSinTransform@expr,8w1,w2,…<,8t1,t2,…<D ,
InverseFourierCosTransform@expr,8w1,w2,…<,8t1,t2,…<D

the multidimensional inverse Fourier sine and cosine 
transforms of expr

Multidimensional Fourier transforms. 

This evaluates a two-dimensional Fourier transform. 

In[6]:= FourierTransform@Hu vL^2 Exp@-u^2 - v^2D, 8u, v<, 8a, b<D

Out[6]= 
1

32
I-2 + a2M I-2 + b2M ‰

-
a2

4
-
b2

4

This inverts the transform. 

In[7]:= InverseFourierTransform@%, 8a, b<, 8u, v<D

Out[7]= ‰-u2-v2 u2 v2

Z Transforms

254     Mathematics and Algorithms



Z Transforms

ZTransform@expr,n,zD Z transform of expr

InverseZTransform@expr,z,nD inverse Z transform of expr

Z transforms. 

The Z transform of a function f HnL is given by ⁄n=0
¶ f HnL z-n. The inverse Z transform of FHzL is given

by the contour integral  1
2 p i ò FHzL z

n-1 „ z.  Z transforms are effectively discrete analogs of Laplace

transforms.  They  are  widely  used  for  solving  difference  equations,  especially  in  digital  signal

processing and control theory. They can be thought of as producing generating functions, of the

kind commonly used in combinatorics and number theory. 

This computes the Z transform of 2-n. 
In[1]:= ZTransform@2^-n, n, zD

Out[1]= 
2 z

-1 + 2 z

Here is the inverse Z transform. 

In[2]:= InverseZTransform@%, z, nD

Out[2]= 2-n

The generating function for 1 ên ! is an exponential function.

In[3]:= ZTransform@1 ê n!, n, zD

Out[3]= ‰
1

z

Generalized Functions and Related Objects

In many practical situations it is convenient to consider limits in which a fixed amount of some-

thing is  concentrated into  an infinitesimal  region.  Ordinary  mathematical  functions  of  the kind

normally encountered in calculus cannot readily represent such limits. However, it is possible to

introduce generalized functions or distributions which can represent these limits in integrals and

other types of calculations. 

Mathematics and Algorithms     255



–2 –1 1 2

1

2

3

4

5

DiracDelta@xD Dirac delta function dHxL

HeavisideTheta@xD Heaviside theta function qHxL, equal to 0 for x < 0 and 1 for 
x > 0

Dirac delta and Heaviside theta functions. 

Here is a function concentrated around x = 0. 

In[1]:= Plot@Sqrt@50 ê PiD Exp@-50 x^2D, 8x, -2, 2<, PlotRange -> AllD

Out[1]= 

As n gets larger, the functions become progressively more concentrated. 

In[2]:= Plot@Evaluate@Sqrt@n ê PiD Exp@-n x^2D ê. n -> 81, 10, 100<D,
8x, -2, 2<, PlotRange -> AllD

Out[2]= 

For any n > 0, their integrals are nevertheless always equal to 1. 

In[3]:= Integrate@Sqrt@n ê PiD Exp@-n x^2D, 8x, -Infinity, Infinity<, Assumptions -> n > 0D

Out[3]= 1

The limit of the functions for infinite n is effectively a Dirac delta function, whose integral is 
again 1. 

In[4]:= Integrate@DiracDelta@xD, 8x, -Infinity, Infinity<D

Out[4]= 1

DiracDelta evaluates to 0 at all real points except x = 0. 

In[5]:= Table@DiracDelta@xD, 8x, -3, 3<D

Out[5]= 80, 0, 0, DiracDelta@0D, 0, 0, 0<

Inserting a delta function in an integral  effectively causes the integrand to be sampled at dis-

crete points where the argument of the delta function vanishes. 

256     Mathematics and Algorithms

-2 -1 1 2

1

2

3

4



This samples the function f with argument 2. 

In[6]:= Integrate@DiracDelta@x - 2D f@xD, 8x, -4, 4<D

Out[6]= f@2D

Here is a slightly more complicated example. 

In[7]:= Integrate@DiracDelta@x^2 - x - 1D, 8x, 0, 2<D

Out[7]= 
1

5

This effectively counts the number of zeros of cosHxL in the region of integration. 

In[8]:= Integrate@DiracDelta@Cos@xDD, 8x, -30, 30<D

Out[8]= 20

The Heaviside function  HeavisideTheta@xD  is  the indefinite integral  of  the delta function.  It  is

variously  denoted HHxL,  qHxL,  mHxL,  and UHxL.  As a generalized function,  the Heaviside function is

defined  only  inside  an  integral.  This  distinguishes  it  from the  unit  step  function  UnitStep@xD,

which is a piecewise function.

The indefinite integral of the delta function is the Heaviside theta function. 

In[9]:= Integrate@DiracDelta@xD, xD

Out[9]= HeavisideTheta@xD

The value of this integral depends on whether a lies in the interval H-2, 2L. 
In[10]:= Integrate@f@xD DiracDelta@x - aD, 8x, -2, 2<, Assumptions -> a œ RealsD

Out[10]= f@aD HeavisideTheta@2 - aD HeavisideTheta@2 + aD

DiracDelta and HeavisideTheta often arise in doing integral transforms. 

The Fourier transform of a constant function is a delta function. 

In[11]:= FourierTransform@1, t, wD

Out[11]= 2 p DiracDelta@wD

Mathematics and Algorithms     257



The Fourier transform of cosHtL involves the sum of two delta functions. 

In[12]:= FourierTransform@Cos@tD, t, wD

Out[12]= 
p

2
DiracDelta@-1 + wD +

p

2
DiracDelta@1 + wD

Dirac delta functions can be used in DSolve to find the impulse response or Green's function of

systems represented by linear and certain other differential equations. 

This finds the behavior of a harmonic oscillator subjected to an impulse at t = 0. 

In[13]:= DSolve@8x''@tD + r x@tD == DiracDelta@tD, x@0D == 0, x'@0D == 1<, x@tD, tD

Out[13]= ::x@tD Ø
HeavisideTheta@tD SinB r tF

r
>>

DiracDelta@x1,x2,…D multidimensional Dirac delta function

HeavisideTheta@x1,x2,…D multidimensional Heaviside theta function

Multidimensional Dirac delta and Heaviside theta functions. 

Multidimensional  generalized  functions  are  essentially  products  of  univariate  generalized

functions.

Here is a derivative of a multidimensional Heaviside function.

In[14]:= D@HeavisideTheta@x, y, zD, xD

Out[14]= DiracDelta@xD HeavisideTheta@y, zD

Related  to  the  multidimensional  Dirac  delta  function  are  two  integer  functions:  discrete  delta

and Kronecker  delta.  Discrete  delta  dHn1, n2, …L  is  1  if  all  the  ni = 0,  and is  zero  otherwise.  Kro-

necker delta dn1 n2… is 1 if all the ni are equal, and is zero otherwise. 

DiscreteDelta@n1,n2,…D discrete delta dHn1, n2, …L

KroneckerDelta@n1,n2,…D Kronecker delta dn1 n2…

Integer delta functions. 

258     Mathematics and Algorithms



Numerical Operations on Functions

Arithmetic

You can do arithmetic with Mathematica just as you would on an electronic calculator. 

This is the sum of two numbers.

In[1]:= 2.3 + 5.63

Out[1]= 7.93

Here the ê stands for division, and the ^ stands for power.

In[2]:= 2.4 ê 8.9^2

Out[2]= 0.0302992

Spaces denote multiplication in Mathematica. The front end automatically replaces spaces 
between numbers with light gray multiplication signs. 

In[3]:= 2 µ 3 µ 4

Out[3]= 24

You can use a * for multiplication if you want to.

In[4]:= 2 * 3 * 4

Out[4]= 24

You can type arithmetic expressions with parentheses. 

In[5]:= H3 + 4L^2 - 2 H3 + 1L

Out[5]= 41

Spaces are not needed, though they often make your input easier to read. 

In[6]:= H3 + 4L^2 - 2 H3 + 1L

Out[6]= 41

Mathematics and Algorithms     259



x^y power

-x minus

xêy divide

x y z   or  x*y*z multiply

x+y+z add

Arithmetic operations in Mathematica. 

Arithmetic  operations  in  Mathematica  are  grouped  according  to  the  standard  mathematical

conventions.  As  usual,  2^3 + 4,  for  example,  means  H2^3L + 4,  and  not  2^H3 + 4L.  You  can

always control grouping by explicitly using parentheses.

This result is given in scientific notation. 

In[7]:= 2.4^45

Out[7]= 1.28678µ1017

You can enter numbers in scientific notation like this. 

In[8]:= 2.3 µ 10^70

Out[8]= 2.3µ1070

Or like this. 

In[9]:= 2.3*^70

Out[9]= 2.3µ1070

With Mathematica, you can perform calculations with a particular precision, usually higher than

an ordinary calculator. When given precise numbers, Mathematica does not convert them to an

approximate representation, but gives a precise result.

This gives the result in terms of rational numbers.

In[10]:= 1 ê 3 + 2 ê 7

Out[10]=
13

21

This gives the approximate numerical result.

In[11]:= 1 ê 3 + 2 ê 7 êê N

Out[11]= 0.619048

This gives the approximate numerical result with 40 significant digits.

260     Mathematics and Algorithms



This gives the approximate numerical result with 40 significant digits.

In[12]:= N@1 ê 3 + 2 ê 7, 40D

Out[12]= 0.6190476190476190476190476190476190476190

Numerical Mathematics in Mathematica

One of the important features of Mathematica is its ability to give you exact, symbolic, results

for computations. There are, however, computations where it is just mathematically impossible

to get exact "closed form" results. In such cases, you can still often get approximate numerical

results. 

There is no "closed form" result for Ÿ0
1sin Hsin HxLL „ x. Mathematica returns the integral in 

symbolic form. 
In[1]:= Integrate@Sin@Sin@xDD, 8x, 0, 1<D

Out[1]= ‡
0

1
Sin@Sin@xDD „x

You can now take the symbolic form of the integral, and ask for its approximate numerical 
value. 

In[2]:= N@%D

Out[2]= 0.430606

When Mathematica cannot find an explicit result for something like a definite integral, it returns

a  symbolic  form.  You  can  take  this  symbolic  form,  and  try  to  get  an  approximate  numerical

value by applying N. 

By giving a second argument to N, you can specify the numerical precision to use. 

In[3]:= N@Integrate@Sin@Sin@xDD, 8x, 0, 1<D, 40D

Out[3]= 0.4306061031206906049123773552484657864336

If  you  want  to  evaluate  an  integral  numerically  in  Mathematica,  then  using  Integrate  and

applying  N  to  the  result  is  not  the  most  efficient  way  to  do  it.  It  is  better  instead  to  use  the

function  NIntegrate,  which  immediately  gives  a  numerical  answer,  without  first  trying  to  get

an exact,  symbolic,  result.  You should  realize  that  even when Integrate  does  not  in  the  end

manage to give you an exact result, it may spend a lot of time trying to do so. 

Mathematics and Algorithms     261



NIntegrate evaluates numerical integrals directly, without first trying to get a symbolic result. 

In[4]:= NIntegrate@Sin@Sin@xDD, 8x, 0, 1<D

Out[4]= 0.430606

Integrate NIntegrate definite integrals
Sum NSum sums
Product NProduct products
Solve NSolve solutions of algebraic equations
DSolve NDSolve solutions of differential equations
Maximize NMaximize maximization

Symbolic and numerical versions of some Mathematica functions.

The Uncertainties of Numerical Mathematics

Mathematica  does  operations  like  numerical  integration  very  differently  from  the  way  it  does

their symbolic counterparts.

When you do a symbolic  integral,  Mathematica  takes the functional  form of the integrand you

have  given,  and  applies  a  sequence  of  exact  symbolic  transformation  rules  to  it,  to  try  and

evaluate the integral.

However, when Mathematica does a numerical integral, after some initial symbolic preprocess-

ing, the only information it has about your integrand is a sequence of numerical values for it. To

get a definite result for the integral, Mathematica then effectively has to make certain assump-

tions  about  the  smoothness  and  other  properties  of  your  integrand.  If  you  give  a  sufficiently

pathological integrand, these assumptions may not be valid, and as a result, Mathematica may

simply give you the wrong answer for the integral. 

This problem may occur, for example, if you try to integrate numerically a function which has a

very  thin  spike  at  a  particular  position.  Mathematica  samples  your  function  at  a  number  of

points, and then assumes that the function varies smoothly between these points. As a result, if

none of  the sample points come close to the spike,  then the spike will  go undetected, and its

contribution to the numerical integral will not be correctly included. 

262     Mathematics and Algorithms



Here is a plot of the function expI-x2M. 

In[1]:= Plot@Exp@-x^2D, 8x, -10, 10<, PlotRange -> AllD

Out[1]= 

NIntegrate gives the correct answer for the numerical integral of this function from -10 to 
+10. 

In[2]:= NIntegrate@Exp@-x^2D, 8x, -10, 10<D

Out[2]= 1.77245

If, however, you ask for the integral from -10000 to 10000, with its default settings 
NIntegrate will miss the peak near x = 0, and give the wrong answer. 

In[3]:= NIntegrate@Exp@-x^2D, 8x, -10000, 10000<D

NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy after 10 recursive bisections in x
near 8x< = 86670.<. NIntegrate obtained 0.` and 0.` for the integral and error estimates. à

Out[3]= 0.

NIntegrate  tries  to  make  the  best  possible  use  of  the  information  that  it  can  get  about  the

numerical values of the integrand. Thus, for example, by default, if NIntegrate notices that the

estimated error in the integral in a particular region is large, it  will  take more samples in that

region.  In  this  way,  NIntegrate  tries  to  "adapt"  its  operation  to  the  particular  integrand  you

have given.

The kind of adaptive procedure that NIntegrate  uses is similar, at least in spirit, to what Plot

does in trying to draw smooth curves for functions. In both cases, Mathematica  tries to go on

taking more samples in a particular region until it has effectively found a smooth approximation

to the function in that region. 

The  kinds  of  problems  that  can  appear  in  numerical  integration  can  also  arise  in  doing  other

numerical operations on functions. 

For example, if you ask for a numerical approximation to the sum of an infinite series, Mathemat -

ica samples a certain number of terms in the series, and then does an extrapolation to estimate

the contributions of other terms. If you insert large terms far out in the series, they may not be

detected when the extrapolation is done, and the result you get for the sum may be incorrect. 

A similar problem arises when you try to find a numerical approximation to the minimum of a

function. Mathematica samples only a finite number of values, then effectively assumes that the

actual function interpolates smoothly between these values. If in fact the function has a sharp

dip  in  a  particular  region,  then  Mathematica  may  miss  this  dip,  and  you  may  get  the  wrong

answer for the minimum. 

Mathematics and Algorithms     263

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0



A similar problem arises when you try to find a numerical approximation to the minimum of a

function. Mathematica samples only a finite number of values, then effectively assumes that the

actual function interpolates smoothly between these values. If in fact the function has a sharp

dip  in  a  particular  region,  then  Mathematica  may  miss  this  dip,  and  you  may  get  the  wrong

answer for the minimum. 

If you work only with numerical values of functions, there is simply no way to avoid the kinds of

problems  we  have  been  discussing.  Exact  symbolic  computation,  of  course,  allows  you  to  get

around these problems. 

In many calculations, it is therefore worthwhile to go as far as you can symbolically, and then

resort  to numerical  methods only at  the very end. This  gives you the best  chance of  avoiding

the problems that can arise in purely numerical computations. 

Introduction to Numerical Sums, Products and 
Integrals

NSumA f,9i,imin,Infinity=E numerical approximation to ⁄imin
¶ f

NProductA f,9i,imin,Infinity=E numerical approximation to ¤imin
¶ f

NIntegrate@ f,8x,xmin,xmax<D numerical approximation to Ÿxmin
xmax f dx

NIntegrate@ f,8x,xmin,xmax<,8y,ymin,ymax<D

the multiple integral Ÿxmin
xmaxd x Ÿymin

ymaxd y f

Numerical sums, products, and integrals. 

Here is a numerical approximation to ⁄i=1
¶ 1

i3
. 

In[1]:= NSum@1 ê i^3, 8i, 1, Infinity<D

Out[1]= 1.20206

264     Mathematics and Algorithms



NIntegrate can handle singularities in the integration region. 

In[2]:= NIntegrate@1 ê Sqrt@x H1 - xLD, 8x, 0, 1<D

Out[2]= 3.14159

You can do numerical integrals over infinite regions. 

In[3]:= NIntegrate@Exp@-x^2D, 8x, -Infinity, Infinity<D

Out[3]= 1.77245

Here is a double integral over a triangular domain. Note the order in which the variables are 
given.

In[4]:= NIntegrate@Sin@x yD, 8x, 0, 1<, 8y, 0, x<D

Out[4]= 0.119906

Here is a double integral over a more complicated domain.

In[5]:= NIntegrate@ Sin@x yD, 8x, 0, 1<, 8y, 0, Sqrt@x^3 + 3D<D

Out[5]= 0.727332

Numerical Integration

N@Integrate@expr,8x,xmin,xmax<DD try to perform an integral exactly, then find numerical 
approximations to the parts that remain

NIntegrate@expr,8x,xmin,xmax<D find a numerical approximation to an integral

NIntegrate@expr,8x,xmin,xmax<,8y,ymin,ymax<,…D

multidimensional numerical integral Ÿxmin
xmaxd x Ÿymin

ymaxdy… expr

NIntegrate@expr,8x,xmin,x1,x2,…,xmax<D

do a numerical integral along a line, starting at xmin, going 
through the points xi, and ending at xmax

Numerical integration functions. 

This finds a numerical approximation to the integral Ÿ0
¶e-x3 „ x. 

In[1]:= NIntegrate@Exp@-x^3D, 8x, 0, Infinity<D

Out[1]= 0.89298

Here is the numerical value of the double integral Ÿ-1
1 d x Ÿ-1

1 d y Ix2 + y2M. 

Mathematics and Algorithms     265



Here is the numerical value of the double integral Ÿ-1
1 d x Ÿ-1

1 d y Ix2 + y2M. 

In[2]:= NIntegrate@x^2 + y^2, 8x, -1, 1<, 8y, -1, 1<D

Out[2]= 2.66667

An important feature of NIntegrate  is its ability to deal with functions that "blow up" at known

points. NIntegrate  automatically checks for such problems at the endpoints of the integration

region. 

The function 1ë x  blows up at x = 0, but NIntegrate still succeeds in getting the correct 
value for the integral. 

In[3]:= NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<D

Out[3]= 2.

Mathematica can find the integral of 1ë x  exactly. 

In[4]:= Integrate@1 ê Sqrt@xD, 8x, 0, 1<D

Out[4]= 2

NIntegrate detects that the singularity in 1 ê x at x = 0 is not integrable. 

In[5]:= NIntegrate@1 ê x, 8x, 0, 1<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 91.22413µ10-225=. NIntegrate obtained 191612.2902185145`
and 160378.51781028978` for the integral and error estimates. à

Out[5]= 191612.

NIntegrate does not automatically look for singularities except at the endpoints of your integra-

tion  region.  When  other  singularities  are  present,  NIntegrate  may  not  give  you  the  right

answer for the integral. Nevertheless, in following its adaptive procedure, NIntegrate  will often

detect the presence of potentially singular behavior, and will warn you about it. 

266     Mathematics and Algorithms



NIntegrate warns you of a possible problem due to the singularity in the middle of the integra-
tion region. The final result is numerically quite close to the correct answer. 

In[6]:= NIntegrate@x^2 Sin@1 ê xD, 8x, -1, 2<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[6]= 1.38755

If  you  know  that  your  integrand  has  singularities  at  particular  points,  you  can  explicitly  tell

NIntegrate  to deal with them. NIntegrate@expr, 8x, xmin, x1, x2, …, xmax<D integrates expr from

xmin to xmax, looking for possible singularities at each of the intermediate points xi.

This gives the same integral, but now explicitly deals with the singularity at x = 0. 

In[7]:= NIntegrate@x^2 Sin@1 ê xD, 8x, -1, 0, 2<D

Out[7]= 1.38755

You can also use the list of intermediate points xi  in NIntegrate  to specify an integration con-

tour to follow in the complex plane. The contour is taken to consist of a sequence of line seg-

ments, starting at xmin, going through each of the xi, and ending at xmax. 

This integrates 1 ê x around a closed contour in the complex plane, going from -1, through the 
points -i, 1 and i, then back to -1. 

In[8]:= NIntegrate@1 ê x, 8x, -1, -I, 1, I, -1<D

Out[8]= 0. + 6.28319 Â

The integral gives 2 p i, as expected from Cauchy's theorem.

In[9]:= N@2 Pi ID

Out[9]= 0. + 6.28319 Â

option name default value
MinRecursion 0 minimum number of recursions for the 

integration method
MaxRecursion Automatic maximum number of recursions for the 

integration method
MaxPoints Automatic maximum total number of times to sample 

the integrand

Special options for NIntegrate. 

When NIntegrate tries to evaluate a numerical integral, it samples the integrand at a sequence

of points. If it finds that the integrand changes rapidly in a particular region, then it recursively

takes  more  sample  points  in  that  region.  The  parameters  MinRecursion  and  MaxRecursion

specify  the  minimum  and  maximum  number  of  recursions  to  use.  Increasing  the  value  of

MinRecursion  guarantees  that  NIntegrate  will  use  a  larger  number  of  sample  points.

MaxPoints and MaxRecursion limit the number of sample points which NIntegrate will ever try

to use. Increasing MinRecursion or MaxRecursion will make NIntegrate work more slowly. 

Mathematics and Algorithms     267



When NIntegrate tries to evaluate a numerical integral, it samples the integrand at a sequence

of points. If it finds that the integrand changes rapidly in a particular region, then it recursively

takes  more  sample  points  in  that  region.  The  parameters  MinRecursion  and  MaxRecursion

specify  the  minimum  and  maximum  number  of  recursions  to  use.  Increasing  the  value  of

MinRecursion  guarantees  that  NIntegrate  will  use  a  larger  number  of  sample  points.

MaxPoints and MaxRecursion limit the number of sample points which NIntegrate will ever try

to use. Increasing MinRecursion or MaxRecursion will make NIntegrate work more slowly. 

With the default settings for all options, NIntegrate misses the peak in expI-Hx - 1L2M near 
x = 1, and gives the wrong answer for the integral. 

In[10]:= NIntegrate@Exp@-Hx - 1L^2D, 8x, -1000, 1000<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 83.87517<. NIntegrate obtained 1.6330510571683285` and
0.004736564243403896` for the integral and error estimates. à

Out[10]= 1.63305

With the option MinRecursion -> 3, NIntegrate samples enough points that it notices the 
peak around x = 1. With the default setting of MaxRecursion, however, NIntegrate cannot 
use enough sample points to be able to expect an accurate answer. 

In[11]:= NIntegrate@Exp@-Hx - 1L^2D, 8x, -50000, 1000<, MinRecursion Ø 3D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 8-8.44584<. NIntegrate obtained 1.8181913371063452`
and 1.165089629798181` for the integral and error estimates. à

Out[11]= 1.81819

With this setting of MaxRecursion, NIntegrate can get an accurate answer for the integral. 

In[12]:= NIntegrate@Exp@-Hx - 1L^2D, 8x, -50000, 1000<, MinRecursion Ø 3, MaxRecursion Ø 20D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
Out[12]= 1.77242

Another way to solve the problem is to make NIntegrate break the integration region into 
several pieces, with a small piece that explicitly covers the neighborhood of the peak. 

268     Mathematics and Algorithms



Another way to solve the problem is to make NIntegrate break the integration region into 
several pieces, with a small piece that explicitly covers the neighborhood of the peak. 

In[13]:= NIntegrate@Exp@-Hx - 1L^2D, 8x, -1000, -10, 10, 1000<D

Out[13]= 1.77245

For  integrals  in  many  dimensions,  it  can  take  a  long  time  for  NIntegrate  to  get  a  precise

answer. However, by setting the option MaxPoints, you can tell NIntegrate  to give you just a

rough estimate, sampling the integrand only a limited number of times. 

Here is a way to get a rough estimate for an integral that takes a long time to compute. 

In[14]:= NIntegrate@1 ê Sqrt@x + Log@y + zD^2D,
8x, 0, 1<, 8y, 0, 1<, 8z, 0, 1<, MaxPoints -> 1000D

NIntegrate::maxp: The integral failed to converge after 1023 integrand evaluations. NIntegrate obtained
1.4548878649546768` and 0.03247010762528413` for the integral and error estimates.

Out[14]= 1.45489

Numerical Evaluation of Sums and Products

NSum@ f,8i,imin,imax<D find a numerical approximation to the sum ⁄i=imin
imax f

NSum@ f,8i,imin,imaxdi<D use step di in the sum 

NProduct@ f,8i,imin,imax<D find a numerical approximation to the product ¤i=imin
imax f

Numerical sums and products. 

This gives a numerical approximation to ⁄i=1
¶ 1

i3+i!
. 

In[1]:= NSum@1 ê Hi^3 + i!L, 8i, 1, Infinity<D

Out[1]= 0.64703

There is no exact result for this sum, so Mathematica leaves it in a symbolic form. 

In[2]:= Sum@1 ê Hi^3 + i!L, 8i, 1, Infinity<D

Out[2]= ‚

i=1

¶ 1

i3 + i!

Mathematics and Algorithms     269



You can apply N explicitly to get a numerical result. 

In[3]:= N@%D

Out[3]= 0.64703

The  way  NSum  works  is  to  include  a  certain  number  of  terms  explicitly,  and  then  to  try  and

estimate the contribution of the remaining ones. There are three approaches to estimating this

contribution. The first uses the Euler|Maclaurin method, and is based on approximating the sum

by an integral. The second method, known as the Wynn epsilon method, samples a number of

additional terms in the sum, and then tries to fit them to a polynomial multiplied by a decaying

exponential. The third approach, useful for alternating series, uses an alternating signs method;

it  also  samples  a  number  of  additional  terms and approximates  their  sum by the  ratio  of  two

polynomials (Padé approximation).

option name default value
Method Automatic Automatic, "EulerMaclaurin", 

"WynnEpsilon", or 
"AlternatingSigns"

NSumTerms 15 number of terms to include explicitly
VerifyConvergence True whether the convergence of the series 

should be verified

Special options for NSum. 

If  you  do  not  explicitly  specify  the  method  to  use,  NSum  will  try  to  choose  between  the

EulerMaclaurin  or  WynnEpsilon  methods.  In  any  case,  some  implicit  assumptions  about  the

functions you are summing have to be made. If these assumptions are not correct, you may get

inaccurate answers. 

The most  common place to  use NSum  is  in  evaluating sums with  infinite  limits.  You can,  how-

ever,  also use it  for  sums with finite  limits.  By making implicit  assumptions about  the objects

you are evaluating, NSum  can often avoid doing as many function evaluations as an explicit Sum

computation would require. 

This finds the numerical value of ⁄n=0
100 e-n by extrapolation techniques. 

In[4]:= NSum@Exp@-nD, 8n, 0, 100<D

Out[4]= 1.58198

270     Mathematics and Algorithms



You can also get the result, albeit much less efficiently, by constructing the symbolic form of the 
sum, then evaluating it numerically. 

In[5]:= Sum@Exp@-nD, 8n, 0, 100<D êê N

Out[5]= 1.58198

NProduct works in essentially the same way as NSum, with analogous options. 

Numerical Equation Solving

NSolve@lhs==rhs,xD solve a polynomial equation numerically

NSolve@8lhs1==rhs1,lhs2==rhs2,…<,8x,y,…<D

solve a system of polynomial equations numerically

FindRoot@lhs==rhs,8x,x0<D search for a numerical solution to an equation, starting at 
x = x0

FindRoot@8lhs1==rhs1,lhs2==rhs2,…<,88x,x0<,8y,y0<,…<D

search for numerical solutions to simultaneous equations

Numerical root finding. 

NSolve gives you numerical approximations to all the roots of a polynomial equation. 

In[1]:= NSolve@x^5 + x + 1 == 0, xD

Out[1]= 88x Ø -0.754878<, 8x Ø -0.5 - 0.866025 Â<, 8x Ø -0.5 + 0.866025 Â<,
8x Ø 0.877439 - 0.744862 Â<, 8x Ø 0.877439 + 0.744862 Â<<

You can also use NSolve to solve sets of simultaneous equations numerically. 

In[2]:= NSolve@8x + y == 2, x - 3 y + z == 3, x - y + z == 0<, 8x, y, z<D

Out[2]= 88x Ø 3.5, y Ø -1.5, z Ø -5.<<

If your equations involve only linear functions or polynomials, then you can use NSolve  to get

numerical  approximations  to  all  the  solutions.  However,  when  your  equations  involve  more

complicated functions, there is in general no systematic procedure for finding all solutions, even

numerically.  In  such  cases,  you  can  use  FindRoot  to  search  for  solutions.  You  have  to  give

FindRoot a place to start its search. 

This searches for a numerical solution, starting at x = 1. 

In[3]:= FindRoot@3 Cos@xD == Log@xD, 8x, 1<D

Out[3]= 8x Ø 1.44726<

The equation has several solutions. If you start at a different x, FindRoot may return a differ-
ent solution. 

Mathematics and Algorithms     271



The equation has several solutions. If you start at a different x, FindRoot may return a differ-
ent solution. 

In[4]:= FindRoot@3 Cos@xD == Log@xD, 8x, 10<D

Out[4]= 8x Ø 13.1064<

You can search for solutions to sets of equations. Here the solution involves complex numbers. 

In[5]:= FindRoot@8x == Log@yD, y == Log@xD<, 88x, I<, 8y, 2<<D

Out[5]= 8x Ø 0.318132 + 1.33724 Â, y Ø 0.318132 + 1.33724 Â<

Numerical Solution of Polynomial Equations

When Solve cannot find solutions in terms of radicals to polynomial equations, it returns a 
symbolic form of the result in terms of Root objects. 

In[1]:= Solve@x^5 + 7 x + 1 == 0, xD

Out[1]= 99x Ø RootA1 + 7 Ò1 + Ò15 &, 1E=, 9x Ø RootA1 + 7 Ò1 + Ò15 &, 2E=,

9x Ø RootA1 + 7 Ò1 + Ò15 &, 3E=, 9x Ø RootA1 + 7 Ò1 + Ò15 &, 4E=, 9x Ø RootA1 + 7 Ò1 + Ò15 &, 5E==

You can get numerical solutions by applying N. 

In[2]:= N@%D

Out[2]= 88x Ø -0.142849<, 8x Ø -1.11308 - 1.15173 Â<,
8x Ø -1.11308 + 1.15173 Â<, 8x Ø 1.1845 - 1.15139 Â<, 8x Ø 1.1845 + 1.15139 Â<<

This gives the numerical solutions to 25-digit precision. 

In[3]:= N@%%, 25D

Out[3]= 88x Ø -0.1428486455250044341134116<,
8x Ø -1.113077976547710735600398 - 1.151734362151674305046770 Â<,
8x Ø -1.113077976547710735600398 + 1.151734362151674305046770 Â<,
8x Ø 1.184502299310212952657104 - 1.151390075408837074699147 Â<,
8x Ø 1.184502299310212952657104 + 1.151390075408837074699147 Â<<

You can use NSolve to get numerical solutions to polynomial equations directly, without first 
trying to find exact results. 

In[4]:= NSolve@x^7 + x + 1 == 0, xD

Out[4]= 88x Ø -0.796544<, 8x Ø -0.705298 - 0.637624 Â<,
8x Ø -0.705298 + 0.637624 Â<, 8x Ø 0.123762 - 1.05665 Â<,
8x Ø 0.123762 + 1.05665 Â<, 8x Ø 0.979808 - 0.516677 Â<, 8x Ø 0.979808 + 0.516677 Â<<

272     Mathematics and Algorithms



NSolve@poly==0,xD get approximate numerical solutions to a polynomial 
equation

NSolve@poly==0,x,nD get solutions using n-digit precision arithmetic

NSolve@8eqn1,eqn2,…<,8var1,var2,…<D

get solutions to a polynomial system

Numerical solution of polynomial equations and systems. 

NSolve  will  give  you  the  complete  set  of  numerical  solutions  to  any  polynomial  equation  or

system of polynomial equations.

NSolve can find solutions to sets of simultaneous polynomial equations.

In[5]:= NSolve@8x^2 + y^2 == 1, x^3 + y^3 == 2<, 8x, y<D

Out[5]= 88x Ø -1.09791 - 0.839887 Â, y Ø -1.09791 + 0.839887 Â<,
8x Ø -1.09791 + 0.839887 Â, y Ø -1.09791 - 0.839887 Â<,
8x Ø 1.22333 + 0.0729987 Â, y Ø -0.125423 + 0.712005 Â<,
8x Ø 1.22333 - 0.0729987 Â, y Ø -0.125423 - 0.712005 Â<,
8x Ø -0.125423 - 0.712005 Â, y Ø 1.22333 - 0.0729987 Â<,
8x Ø -0.125423 + 0.712005 Â, y Ø 1.22333 + 0.0729987 Â<<

Numerical Root Finding

NSolve gives you a general way to find numerical approximations to the solutions of polynomial

equations. Finding numerical solutions to more general equations, however, can be much more

difficult, as discussed in "Equations in One Variable". FindRoot  gives you a way to search for a

numerical root of a function or a numerical solution to an arbitrary equation, or set of equations.

FindRoot@ f,8x,x0<D search for a numerical root of f , starting with x = x0

FindRoot@lhs==rhs,8x,x0<D search for a numerical solution to the equation lhs == rhs, 
starting with x = x0

FindRoot@ f1, f2,…,88x,x0<,8y,y0<,…<D

search for a simultaneous numerical root of all the fi

FindRoot@8eqn1,eqn2,…<,88x,x0<,8y,y0<,…<D

search for a numerical solution to the simultaneous equa -
tions eqni

Numerical root finding. 

Mathematics and Algorithms     273



The curves for cos HxL and x intersect at one point. 

In[1]:= Plot@8Cos@xD, x<, 8x, -1, 1<D

Out[1]=

This finds a numerical approximation to the value of x at which the intersection occurs. The 0 
tells FindRoot what value of x to try first. 

In[2]:= FindRoot@Cos@xD == x, 8x, 0<D

Out[2]= 8x Ø 0.739085<

In trying to find a solution to your equation, FindRoot  starts at the point you specify, and then

progressively  tries  to  get  closer  and  closer  to  a  solution.  Even  if  your  equations  have  several

solutions, FindRoot  always returns the first solution it finds. Which solution this is will depend

on  what  starting  point  you  chose.  If  you  start  sufficiently  close  to  a  particular  solution,

FindRoot will usually return that solution. 

The function sinHxL has an infinite number of roots of the form x = n p. If you start sufficiently 
close to a particular root, FindRoot will give you that root. 

In[3]:= FindRoot@Sin@xD, 8x, 3<D

Out[3]= 8x Ø 3.14159<

If you start with x = 6, you get a numerical approximation to the root x = 2 p. 

In[4]:= FindRoot@Sin@xD, 8x, 6<D

Out[4]= 8x Ø 6.28319<

If you want FindRoot to search for complex solutions, then you have to give a complex 
starting value. 

In[5]:= FindRoot@Sin@xD == 2, 8x, I<D

Out[5]= 8x Ø 1.5708 + 1.31696 Â<

This finds a zero of the Riemann zeta function. 

In[6]:= FindRoot@Zeta@1 ê 2 + I tD, 8t, 12<D

Out[6]= 9t Ø 14.1347 - 2.54839µ10-15 Â=

This finds a solution to a set of simultaneous equations. 

274     Mathematics and Algorithms

This finds a solution to a set of simultaneous equations. 

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0



This finds a solution to a set of simultaneous equations. 

In[7]:= FindRoot@8Sin@xD == Cos@yD, x + y == 1<, 88x, 1<, 8y, 1<<D

Out[7]= 8x Ø -1.85619, y Ø 2.85619<

The variables used by FindRoot  can have values that are lists. This allows you to find roots of

functions that take vectors as arguments. 

This is a way to solve a linear equation for the variable x. 

In[8]:= FindRoot@881, 2<, 83, 4<<.x == 85, 6<, 8x, 81, 1<<D

Out[8]= 8x Ø 8-4., 4.5<<

This finds a normalized eigenvector x and eigenvalue a.

In[9]:= FindRoot@8881, 2<, 83, 4<<.x == a x, x.x == 1<, 88x, 81, 1<<, 8a, 1<<D

Out[9]= 8x Ø 80.415974, 0.909377<, a Ø 5.37228<

Introduction to Numerical Differential Equations

NDSolve@eqns,y,8x,xmin,xmax<D

solve numerically for the function y, with the independent 
variable x in the range xmin to xmax

NDSolve@eqns,8y1,y2,…<,8x,xmin,xmax<D

solve a system of equations for the yi

Numerical solution of differential equations. 

This generates a numerical solution to the equation y£HxL = yHxL with 0 < x < 2. The result is given 
in terms of an InterpolatingFunction. 

In[1]:= NDSolve@8y'@xD == y@xD, y@0D == 1<, y, 8x, 0, 2<D

Out[1]= 88y Ø InterpolatingFunction@880., 2.<<, <>D<<

Here is the value of y H1.5L. 
In[2]:= y@1.5D ê. %

Out[2]= 84.48169<

With an algebraic equation such as x2 + 3 x + 1 = 0, each solution for x is simply a single number.

For a differential equation, however, the solution is a function, rather than a single number. For

example, in the equation y£HxL = yHxL, you want to get an approximation to the function yHxL as the

independent variable x varies over some range. 

Mathematics and Algorithms     275



With an algebraic equation such as x2 + 3 x + 1 = 0, each solution for x is simply a single number.

For a differential equation, however, the solution is a function, rather than a single number. For

example, in the equation y£HxL = yHxL, you want to get an approximation to the function yHxL as the

independent variable x varies over some range. 

Mathematica  represents  numerical  approximations  to  functions  as  InterpolatingFunction

objects. These objects are functions which, when applied to a particular x,  return the approxi-

mate value of yHxL at that point. The InterpolatingFunction effectively stores a table of values

for  yHxiL,  then  interpolates  this  table  to  find  an  approximation  to  yHxL  at  the  particular  x  you

request. 

y@xDê.solution use the list of rules for the function y to get values for y@xD

InterpolatingFunction@dataD@xD evaluate an interpolated function at the point x

Plot@Evaluate@y@xDê.solutionD,8x,xmin,xmax<D

plot the solution to a differential equation

Using results from NDSolve. 

This solves a system of two coupled differential equations. 

In[3]:= NDSolve@8y'@xD == z@xD, z'@xD == -y@xD, y@0D == 0, z@0D == 1<, 8y, z<, 8x, 0, Pi<D

Out[3]= 88y Ø InterpolatingFunction@880., 3.14159<<, <>D, z Ø InterpolatingFunction@880., 3.14159<<, <>D<<

Here is the value of z@2D found from the solution. 

In[4]:= z@2D ê. %

Out[4]= 8-0.416147<

Here is a plot of the solution for z@xD found on line 3. Plot is discussed in "Basic Plotting". 

In[5]:= Plot@Evaluate@z@xD ê. %3D, 8x, 0, Pi<D

Out[5]= 

NDSolve@eqn,u,8x,xmin,xmax<,8t,tmin,tmax<,…D

solve a partial differential equation

Numerical solution of partial differential equations. 

Numerical Solution of Differential Equations

276     Mathematics and Algorithms

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0



Numerical Solution of Differential Equations

The function NDSolve  discussed in "Numerical Differential Equations" allows you to find numeri-

cal  solutions  to  differential  equations.  NDSolve  handles  both  single  differential  equations,  and

sets  of  simultaneous  differential  equations.  It  can  handle  a  wide  range of  ordinary  differential

equations  as  well  as  some  partial  differential  equations.  In  a  system  of  ordinary  differential

equations  there  can  be  any  number  of  unknown  functions  yi,  but  all  of  these  functions  must

depend  on  a  single  "independent  variable"  x,  which  is  the  same  for  each  function.  Partial

differential  equations  involve  two  or  more  independent  variables.  NDSolve  can  also  handle

differential-algebraic equations that mix differential equations with algebraic ones. 

NDSolve@8eqn1,eqn2,…<,y,8x,xmin,xmax<D

find a numerical solution for the function y with x in the 
range xmin to xmax

NDSolve@8eqn1,eqn2,…<,8y1,y2,…<,8x,xmin,xmax<D

find numerical solutions for several functions yi

Finding numerical solutions to ordinary differential equations. 

NDSolve  represents  solutions  for  the  functions  yi  as  InterpolatingFunction  objects.  The

InterpolatingFunction  objects provide approximations to the yi  over the range of values xmin

to xmax for the independent variable x. 

NDSolve  finds solutions iteratively. It starts at a particular value of x, then takes a sequence of

steps, trying eventually to cover the whole range xmin to xmax. 

In order to get started, NDSolve  has to be given appropriate initial  or boundary conditions for

the  yi  and  their  derivatives.  These  conditions  specify  values  for  yi@xD,  and  perhaps  derivatives

yi '@xD, at particular points x. In general, at least for ordinary differential equations, the conditions

you give can be at any x: NDSolve will automatically cover the range xmin to xmax.

This finds a solution for y with x in the range 0 to 2, using an initial condition for y@0D. 

In[1]:= NDSolve@8y'@xD == y@xD, y@0D == 1<, y, 8x, 0, 2<D

Out[1]= 88y Ø InterpolatingFunction@880., 2.<<, <>D<<

Mathematics and Algorithms     277



This still finds a solution with x in the range 0 to 2, but now the initial condition is for y@3D. 

In[2]:= NDSolve@8y'@xD == y@xD, y@3D == 1<, y, 8x, 0, 2<D

Out[2]= 88y Ø InterpolatingFunction@880., 2.<<, <>D<<

Here is a simple boundary value problem. 

In[3]:= NDSolve@8y''@xD + x y@xD == 0, y@0D == 1, y@1D == -1<, y, 8x, 0, 1<D

Out[3]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

When you use NDSolve, the initial or boundary conditions you give must be sufficient to deter-

mine  the  solutions  for  the  yi  completely.  When  you  use  DSolve  to  find  symbolic  solutions  to

differential  equations,  you can get  away with  specifying  fewer  initial  conditions.  The reason is

that  DSolve  automatically  inserts  arbitrary  constants  C@iD  to  represent  degrees  of  freedom

associated with initial conditions that you have not specified explicitly. Since NDSolve must give

a  numerical  solution,  it  cannot  represent  these  kinds  of  additional  degrees  of  freedom.  As  a

result,  you must explicitly  give all  the initial  or  boundary conditions that are needed to deter-

mine the solution. 

In a typical case, if you have differential equations with up to nth  derivatives, then you need to

give initial conditions for up to Hn - 1Lth derivatives, or give boundary conditions at n points. 

With a third-order equation, you need to give initial conditions for up to second derivatives. 

In[4]:= NDSolve@8y'''@xD + 8 y''@xD + 17 y'@xD + 10 y@xD == 0,
y@0D == 6, y'@0D == -20, y''@0D == 84<, y, 8x, 0, 1<D

Out[4]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

This plots the solution obtained.

In[5]:= Plot@Evaluate@y@xD ê. %D, 8x, 0, 1<D

Out[5]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

278     Mathematics and Algorithms



With a third-order equation, you can also give boundary conditions at three points. 

In[6]:= NDSolve@8y'''@xD + Sin@xD == 0, y@0D == 4, y@1D == 7, y@2D == 0<, y, 8x, 0, 2<D

Out[6]= 88y Ø InterpolatingFunction@880., 2.<<, <>D<<

Mathematica allows you to use any appropriate linear combination of function values and 
derivatives as boundary conditions. 

In[7]:= NDSolve@8y''@xD + y@xD == 12 x, 2 y@0D - y'@0D == -1, 2 y@1D + y'@1D == 9<, y, 8x, 0, 1<D

Out[7]= 88y Ø InterpolatingFunction@880., 1.<<, <>D<<

In most cases, all the initial conditions you give must involve the same value of x, say x0. As a

result, you can avoid giving both xmin  and xmax  explicitly. If you specify your range of x as 8x, x1<,

then Mathematica will automatically generate a solution over the range x0 to x1. 

This generates a solution over the range 0 to 2. 

In[8]:= NDSolve@8y'@xD == y@xD, y@0D == 1<, y, 8x, 2<D

Out[8]= 88y Ø InterpolatingFunction@880., 2.<<, <>D<<

You  can  give  initial  conditions  as  equations  of  any  kind.  In  some cases,  these  equations  may

have  multiple  solutions.  In  such  cases,  NDSolve  will  correspondingly  generate  multiple  solu-

tions. 

The initial conditions in this case lead to multiple solutions. 

In[9]:= NDSolve@8y'@xD^2 - y@xD^2 == 0, y@0D^2 == 4<, y@xD, 8x, 1<D

Out[9]= 88y@xD Ø InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD Ø InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD Ø InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD Ø InterpolatingFunction@880., 1.<<, <>D@xD<<

Here is a plot of all the solutions. 

In[10]:= Plot@Evaluate@y@xD ê. %D, 8x, 0, 1<D

Out[10]=

You can use NDSolve to solve systems of coupled differential equations. 

Mathematics and Algorithms     279

0.2 0.4 0.6 0.8 1.0

-4-4

-2-2

2

4



This finds a numerical solution to a pair of coupled equations. 

In[11]:= sol = NDSolve@
8x'@tD == -y@tD - x@tD^2, y'@tD == 2 x@tD - y@tD, x@0D == y@0D == 1<, 8x, y<, 8t, 10<D

Out[11]= 88x Ø InterpolatingFunction@880., 10.<<, <>D, y Ø InterpolatingFunction@880., 10.<<, <>D<<

This plots the solution for y from these equations. 

In[12]:= Plot@Evaluate@y@tD ê. solD, 8t, 0, 10<, PlotRange Ø AllD

Out[12]=

This generates a parametric plot using both x and y. 

In[13]:= ParametricPlot@Evaluate@8x@tD, y@tD< ê. solD, 8t, 0, 10<, PlotRange -> AllD

Out[13]=

Unknown functions in differential equations do not necessarily have to be represented by single

symbols. If  you have a large number of unknown functions, you will  often find it  more conve-

nient, for example, to give the functions names like y@iD. 

This constructs a set of five coupled differential equations and initial conditions. 

In[14]:= eqns = Join@Table@y@iD'@xD == y@i - 1D@xD - y@iD@xD, 8i, 2, 4<D,
8y@1D'@xD == -y@1D@xD, y@5D'@xD == y@4D@xD, y@1D@0D == 1<,
Table@y@iD@0D == 0, 8i, 2, 5<DD

Out[14]= 8y@2D£@xD ã y@1D@xD - y@2D@xD, y@3D£@xD ã y@2D@xD - y@3D@xD,
y@4D£@xD ã y@3D@xD - y@4D@xD, y@1D£@xD ã -y@1D@xD, y@5D£@xD ã y@4D@xD,
y@1D@0D ã 1, y@2D@0D ã 0, y@3D@0D ã 0, y@4D@0D ã 0, y@5D@0D ã 0<

This solves the equations. 

In[15]:= NDSolve@eqns, Table@y@iD, 8i, 5<D, 8x, 10<D

Out[15]= 88y@1D Ø InterpolatingFunction@880., 10.<<, <>D,
y@2D Ø InterpolatingFunction@880., 10.<<, <>D, y@3D Ø InterpolatingFunction@880., 10.<<, <>D,
y@4D Ø InterpolatingFunction@880., 10.<<, <>D, y@5D Ø InterpolatingFunction@880., 10.<<, <>D<<

Here is a plot of the solutions. 

280     Mathematics and Algorithms

2 4 6 8 10

-0.5

0.5

1.0

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0



Here is a plot of the solutions. 

In[16]:= Plot@Evaluate@Table@y@iD@xD, 8i, 5<D ê. %D, 8x, 0, 10<D

Out[16]=

NDSolve  can handle functions whose values are lists or arrays. If you give initial conditions like

y@0D == 8v1, v2, …, vn<, then NDSolve  will assume that y is a function whose values are lists of

length n. 

This solves a system of four coupled differential equations. 

In[17]:= NDSolve@8y''@xD == -RandomReal@80, 1<, 84, 4<D.y@xD,
y@0D == y'@0D == Table@1, 84<D<, y, 8x, 0, 8<D

Out[17]= 88y Ø InterpolatingFunction@880., 8.<<, <>D<<

Here are the solutions. 

In[18]:= With@8s = y@xD ê. First@%D<,
Plot@8s@@1DD, s@@2DD, s@@3DD, s@@4DD<, 8x, 0, 8<, PlotRange -> AllDD

Out[18]=

option name default value
MaxSteps Automatic maximum number of steps in x to take
StartingStepSize Automatic starting size of step in x to use
MaxStepSize Automatic maximum size of step in x to use
NormFunction Automatic the norm to use for error estimation

Special options for NDSolve. 

NDSolve  has  many  methods  for  solving  equations,  but  essentially  all  of  them  at  some  level

work by taking a sequence of steps in the independent variable x, and using an adaptive proce-

dure  to  determine  the  size  of  these  steps.  In  general,  if  the  solution  appears  to  be  varying

rapidly in a particular region, then NDSolve  will  reduce the step size or change the method so

as to be able to track the solution better. 

This solves a differential equation in which the derivative has a discontinuity. 

Mathematics and Algorithms     281

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

2 4 6 8

-10

-5

5



This solves a differential equation in which the derivative has a discontinuity. 

In[19]:= NDSolve@8y'@xD == If@x < 0, 1 ê Hx - 1L, 1 ê Hx + 1LD, y@-5D == 5<, y, 8x, -5, 5<D

Out[19]= 88y Ø InterpolatingFunction@88-5., 5.<<, <>D<<

NDSolve reduced the step size around x = 0 so as to reproduce the kink accurately. 

In[20]:= Plot@Evaluate@y@xD ê. %D, 8x, -5, 5<D

Out[20]=

Through its  adaptive procedure,  NDSolve  is  able  to  solve "stiff"  differential  equations in  which

there are several components which vary with x at very different rates. 

In these equations, y varies much more rapidly than z. 

In[21]:= sol =
NDSolve@8y'@xD == -40 y@xD, z'@xD == -z@xD ê 10, y@0D == z@0D == 1<, 8y, z<, 8x, 0, 1<D

Out[21]= 88y Ø InterpolatingFunction@880., 1.<<, <>D, z Ø InterpolatingFunction@880., 1.<<, <>D<<

NDSolve nevertheless tracks both components successfully. 

In[22]:= Plot@Evaluate@8y@xD, z@xD< ê. solD, 8x, 0, 1<, PlotRange -> AllD

Out[22]=

NDSolve  follows the general procedure of reducing step size until it tracks solutions accurately.

There  is  a  problem,  however,  when  the  true  solution  has  a  singularity.  In  this  case,  NDSolve

might  go  on  reducing  the  step  size  forever,  and  never  terminate.  To  avoid  this  problem,  the

option MaxSteps specifies the maximum number of steps that NDSolve will ever take in attempt-

ing  to  find  a  solution.  For  ordinary  differential  equations  the  default  setting  is

MaxSteps -> 10000. 

282     Mathematics and Algorithms

-4 -2 2 4

4.0

4.5

5.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



NDSolve stops after taking 10000 steps. 

In[23]:= NDSolve@8y'@xD == -1 ê x^2, y@-1D == -1<, y@xD, 8x, -1, 0<D

NDSolve::mxst : Maximum number of 10000 steps reached at the point x == -1.00413µ10-172. à

Out[23]= 99y@xD Ø InterpolatingFunctionA99-1., -1.00413µ10-172==, <>E@xD==

There is in fact a singularity in the solution at x = 0. 

In[24]:= Plot@Evaluate@y@xD ê. %D, 8x, -1, 0<D

Out[24]=

The default setting for MaxSteps  should be sufficient for most equations with smooth solutions.

When  solutions  have  a  complicated  structure,  however,  you  may  occasionally  have  to  choose

larger settings for MaxSteps. With the setting MaxSteps -> Infinity  there is no upper limit on

the number of steps used. 

To take the solution to the Lorenz equations this far, you need to remove the default bound on 
MaxSteps. 

In[25]:= NDSolve@8x'@tD == -3 Hx@tD - y@tDL, y'@tD == -x@tD z@tD + 26.5 x@tD - y@tD,
z'@tD == x@tD y@tD - z@tD, x@0D == z@0D == 0, y@0D == 1<,

8x, y, z<, 8t, 0, 200<, MaxSteps -> InfinityD
Out[25]= 88x Ø InterpolatingFunction@880., 200.<<, <>D,

y Ø InterpolatingFunction@880., 200.<<, <>D, z Ø InterpolatingFunction@880., 200.<<, <>D<<

Here is a parametric plot of the solution in three dimensions. 

In[26]:= ParametricPlot3D@Evaluate@8x@tD, y@tD, z@tD< ê. %D, 8t, 0, 200<,
PlotPoints -> 10000, ColorFunction Ø HColorData@"Rainbow"D@Ò4D &LD

Out[26]=

When NDSolve  solves a particular set of differential equations, it always tries to choose a step

size  appropriate  for  those  equations.  In  some  cases,  the  very  first  step  that  NDSolve  makes

may be too large, and it may miss an important feature in the solution. To avoid this problem,

you can explicitly set the option StartingStepSize to specify the size to use for the first step. 

Mathematics and Algorithms     283



When NDSolve  solves a particular set of differential equations, it always tries to choose a step

size  appropriate  for  those  equations.  In  some  cases,  the  very  first  step  that  NDSolve  makes

may be too large, and it may miss an important feature in the solution. To avoid this problem,

you can explicitly set the option StartingStepSize to specify the size to use for the first step. 

The equations you give to NDSolve  do not necessarily all have to involve derivatives; they can

also just be algebraic. You can use NDSolve to solve many such differential-algebraic equations. 

This solves a system of differential-algebraic equations. 

In[27]:= NDSolve@8x'@tD == y@tD^2 + x@tD y@tD,
2 x@tD^2 + y@tD^2 == 1, x@0D == 0, y@0D == 1<, 8x, y<, 8t, 0, 5<D

Out[27]= 88x Ø InterpolatingFunction@880., 5.<<, <>D, y Ø InterpolatingFunction@880., 5.<<, <>D<<

Here is the solution. 

In[28]:= Plot@Evaluate@8x@tD, y@tD< ê. %D, 8t, 0, 5<D

Out[28]=

NDSolve@8eqn1,eqn2,…<,u,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for u

NDSolve@8eqn1,eqn2,…<,8u1,u2,…<,8t,tmin,tmax<,8x,xmin,xmax<,…D

solve a system of partial differential equations for several 
functions ui

Finding numerical solutions to partial differential equations. 

This finds a numerical solution to the wave equation. The result is a two-dimensional interpolat-
ing function. 

In[29]:= NDSolve@8D@u@t, xD, t, tD == D@u@t, xD, x, xD, u@0, xD == Exp@-x^2D,
Derivative@1, 0D@uD@0, xD == 0, u@t, -6D == u@t, 6D<, u, 8t, 0, 6<, 8x, -6, 6<D

Out[29]= 88u Ø InterpolatingFunction@880., 6.<, 8..., -6., 6., ...<<, <>D<<

284     Mathematics and Algorithms

1 2 3 4 5

-0.5

0.5

1.0



This generates a plot of the result. 

In[30]:= Plot3D@Evaluate@u@t, xD ê. First@%DD, 8t, 0, 6<, 8x, -6, 6<, PlotPoints -> 50D

Out[30]= 

This finds a numerical solution to a nonlinear wave equation. 

In[31]:= NDSolve@8D@u@t, xD, t, tD == D@u@t, xD, x, xD + H1 - u@t, xD^2L H1 + 2 u@t, xDL,
u@0, xD == Exp@-x^2D, Derivative@1, 0D@uD@0, xD == 0,
u@t, -10D == u@t, 10D<, u, 8t, 0, 10<, 8x, -10, 10<D

Out[31]= 88u Ø InterpolatingFunction@880., 10.<, 8..., -10., 10., ...<<, <>D<<

Here is a 3D plot of the result. 

In[32]:= Plot3D@Evaluate@u@t, xD ê. First@%DD, 8t, 0, 10<, 8x, -10, 10<D

Out[32]=

This is a higher-resolution density plot of the solution. 

In[33]:= DensityPlot@Evaluate@u@10 - t, xD ê. First@%%DD,
8x, -10, 10<, 8t, 0, 10<, PlotPoints -> 200, Mesh -> FalseD

Out[33]=

Mathematics and Algorithms     285

0

2

4

6

8

10

–10 –5 0 5 10



Here is a version of the equation in 2+1 dimensions. 

In[34]:= eqn = D@u@t, x, yD, t, tD ==
D@u@t, x, yD, x, xD + D@u@t, x, yD, y, yD ê 2 + H1 - u@t, x, yD^2L H1 + 2 u@t, x, yDL

Out[34]= uH2,0,0L@t, x, yD ã H1 + 2 u@t, x, yDL I1 - u@t, x, yD2M +
1

2
uH0,0,2L@t, x, yD + uH0,2,0L@t, x, yD

This solves the equation. 

In[35]:= NDSolve@8eqn, u@0, x, yD == Exp@-Hx^2 + y^2LD, u@t, -5, yD == u@t, 5, yD,
u@t, x, -5D == u@t, x, 5D, Derivative@1, 0, 0D@uD@0, x, yD == 0<,

u, 8t, 0, 4<, 8x, -5, 5<, 8y, -5, 5<D
Out[35]= 88u Ø InterpolatingFunction@880., 4.<, 8..., -5., 5., ...<, 8..., -5., 5., ...<<, <>D<<

This generates a list of plots of the solution. 

In[36]:= Table@Plot3D@Evaluate@u@t, x, yD ê. First@%DD, 8x, -5, 5<, 8y, -5, 5<,
PlotRange -> All, PlotPoints -> 100, Mesh -> FalseD, 8t, 1, 4<D

Out[36]=

286     Mathematics and Algorithms



Numerical Optimization

FindMinimum@ f,8x,x0<D search for a local minimum of f , starting at x = x0

FindMinimum@ f,xD search for a local minimum of f

FindMinimum@ f,88x,x0<,8y,y0<,…<D

search for a local minimum in several variables

FindMinimum@8 f,cons<,88x,x0<,8y,y0<,…<D

search for a local minimum subject to the constraints cons 
starting at x = x0, y = y0, …

FindMinimum@8 f,cons<,8x,y,…<D search for a local minimum subject to the constraints cons

FindMaximum@ f,xD , etc. search for a local maximum

Searching for local minima and maxima. 

This finds the value of x which minimizes GHxL, starting at x = 2. 

In[1]:= FindMinimum@Gamma@xD, 8x, 2<D

Out[1]= 80.885603, 8x Ø 1.46163<<

The last element of the list gives the value at which the minimum is achieved. 

In[2]:= Gamma@xD ê. Last@%D

Out[2]= 0.885603

Like  FindRoot,  FindMinimum  and  FindMaximum  work  by  starting  from  a  point,  then  progres-

sively searching for a minimum or maximum. But since they return a result as soon as they find

anything, they may give only a local minimum or maximum of your function, not a global one. 

This curve has two local minima. 

In[3]:= Plot@x^4 - 3 x^2 + x, 8x, -3, 2<D

Out[3]= 

Mathematics and Algorithms     287

-3 -2 -1 1 2

5

10

15



Starting at x = 1, you get the local minimum on the right. 

In[4]:= FindMinimum@x^4 - 3 x^2 + x, 8x, 1<D

Out[4]= 8-1.07023, 8x Ø 1.1309<<

This gives the local minimum on the left, which in this case is also the global minimum. 

In[5]:= FindMinimum@x^4 - 3 x^2 + x, 8x, -1<D

Out[5]= 8-3.51391, 8x Ø -1.30084<<

You can specify variables without initial values.

In[6]:= FindMinimum@x^4 - 3 x^2 + x, xD

Out[6]= 8-1.07023, 8x Ø 1.1309<<

You can specify a constraint.

In[7]:= FindMinimum@8x^4 - 3 x^2 + x, x < 0<, xD

Out[7]= 8-3.51391, 8x Ø -1.30084<<

NMinimize@ f,xD try to find the global minimum of f

NMinimize@ f,8x,y,…<D try to find the global minimum over several variables

NMaximize@ f,xD try to find the global maximum of f

NMaximize@ f,8x,y,…<D try to find the global maximum over several variables

Finding global minima and maxima. 

This immediately finds the global minimum. 

In[8]:= NMinimize@x^4 - 3 x^2 + x, xD

Out[8]= 8-3.51391, 8x Ø -1.30084<<

NMinimize  and  NMaximize  are  numerical  analogs  of  Minimize  and  Maximize.  But  unlike

Minimize  and  Maximize  they  usually  cannot  guarantee  to  find  absolute  global  minima  and

maxima. Nevertheless, they typically work well when the function f  is fairly smooth, and has a

limited number of local minima and maxima. 

288     Mathematics and Algorithms



NMinimize@8 f,cons<,8x,y,…<D try to find the global minimum of f  subject to constraints 
cons

NMaximize@8 f,cons<,8x,y,…<D try to find the global maximum of f  subject to constraints 
cons

Finding global minima and maxima subject to constraints. 

With the constraint x > 0, NMinimize will give the local minimum on the right. 

In[9]:= NMinimize@8x^4 - 3 x^2 + x, x > 0<, xD

Out[9]= 8-1.07023, 8x Ø 1.1309<<

This finds the minimum of x + 2 y within the unit circle. 

In[10]:= NMinimize@8x + 2 y, x^2 + y^2 <= 1<, 8x, y<D

Out[10]= 8-2.23607, 8x Ø -0.447214, y Ø -0.894427<<

In this case Minimize can give an exact result. 

In[11]:= Minimize@8x + 2 y, x^2 + y^2 <= 1<, 8x, y<D

Out[11]= :- 5 , :x Ø
4

5
- 5 , y Ø -

2

5
>>

But in this case it cannot. 

In[12]:= Minimize@8Cos@x + 2 yD, x^2 + y^2 <= 1<, 8x, y<D

Out[12]= MinimizeA9Cos@x + 2 yD, x2 + y2 § 1=, 8x, y<E

This gives a numerical approximation, effectively using NMinimize. 

In[13]:= N@%D

Out[13]= 8-0.617273, 8x Ø 0.447214, y Ø 0.894427<<

If both the objective function f  and the constraints cons are linear in all variables, then minimiza-

tion and maximization correspond to a linear programming problem. Sometimes it is convenient

to state such problems not in terms of explicit equations, but instead in terms of matrices and

vectors. 

LinearProgramming@c,m,bD find the vector x which minimizes c.x subject to the con-
straints m.x ¥ b and x ¥ 0

LinearProgramming@c,m,b,lD use the constraints m.x ¥ b and x ¥ l

Linear programming in matrix form.  

Here is a linear programming problem in equation form. 

Mathematics and Algorithms     289



Here is a linear programming problem in equation form. 

In[14]:= Minimize@82 x + 3 y, x + 5 y >= 10, x - y >= 2, x >= 1<, 8x, y<D

Out[14]= :
32

3
, :x Ø

10

3
, y Ø

4

3
>>

Here is the corresponding problem in matrix form. 

In[15]:= LinearProgramming@82, 3<, 881, 5<, 81, -1<, 81, 0<<, 810, 2, 1<D

Out[15]= :
10

3
,
4

3
>

You  can  specify  a  mixture  of  equality  and  inequality  constraints  by  making  the  list  b  be  a

sequence of pairs 8bi, si<. If si  is 1, then the ith  constraint is mi .x ¥ bi. If si  is 0 then it is mi .x == bi,

and if si is -1 then it is mi.x § bi. 

This makes the first inequality use §. 

In[16]:= LinearProgramming@82, 3<, 881, 5<, 81, -1<, 81, 0<<, 8810, -1<, 82, 1<, 81, 1<<D

Out[16]= 82, 0<

In LinearProgramming@c, m, b, lD, you can make l be a list of pairs 88l1, u1<, 8l2, u2<, …< represent- 

ing lower and upper bounds on the xi. 

In  doing  large  linear  programming  problems,  it  is  often  convenient  to  give  the  matrix  m  as  a

SparseArray object. 

Controlling the Precision of Results

In  doing  numerical  operations  like  NDSolve  and  NMinimize,  Mathematica  by  default  uses

machine  numbers.  But  by  setting  the  option  WorkingPrecision -> n  you  can  tell  it  to  use

arbitrary-precision numbers with n-digit precision. 

This does a machine-precision computation of a numerical integral. 

In[1]:= NIntegrate@Sin@Sin@xDD, 8x, 0, 1<D

Out[1]= 0.430606

290     Mathematics and Algorithms



This does the computation with 30-digit arbitrary-precision numbers. 

In[2]:= NIntegrate@Sin@Sin@xDD, 8x, 0, 1<, WorkingPrecision -> 30D

Out[2]= 0.430606103120690604912377355248

When  you  give  a  setting  for  WorkingPrecision,  this  typically  defines  an  upper  limit  on  the

precision of the results from a computation. But within this constraint you can tell Mathematica

how much precision  and accuracy  you  want  it  to  try  to  get.  You  should  realize  that  for  many

kinds of numerical operations, increasing precision and accuracy goals by only a few digits can

greatly increase the computation time required. Nevertheless, there are many cases where it is

important to ensure that high precision and accuracy are obtained. 

WorkingPrecision the number of digits to use for computations

PrecisionGoal the number of digits of precision to try to get

AccuracyGoal the number of digits of accuracy to try to get

Options for controlling precision and accuracy. 

This gives a result to 25-digit precision. 

In[3]:= NIntegrate@Sin@Sin@xDD, 8x, 0, 1<, WorkingPrecision -> 30, PrecisionGoal -> 25D

Out[3]= 0.430606103120690604912377355248

50-digit precision cannot be achieved with 30-digit working precision. 

In[4]:= NIntegrate@Sin@Sin@xDD, 8x, 0, 1<,
WorkingPrecision -> 30, PrecisionGoal -> 50, MaxRecursion Ø 20D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::eincr :
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one
of the following: the difference between the values of PrecisionGoal and WorkingPrecision
is too small; the integrand is highly oscillatory or it is not a HpiecewiseL smooth function;
or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option
MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained
0.43060610312069060491237735524846578643219268469700477957788899453862440935Ö
086147`79.99999999999999 and

5.03891680239785224285840796406833800958006097055414813173023183082827274593Ö
35312`79.99999999999999*^-40 for the integral and error estimates.

Out[4]= 0.430606103120690604912377355248

Given a particular setting for WorkingPrecision, each of the functions for numerical operations

in  Mathematica  uses  certain  default  settings  for  PrecisionGoal  and  AccuracyGoal.  Typical  is

the  case  of  NDSolve,  in  which  these  default  settings  are  equal  to  half  the  settings  given  for

WorkingPrecision. 

Mathematics and Algorithms     291



Given a particular setting for WorkingPrecision, each of the functions for numerical operations

in  Mathematica  uses  certain  default  settings  for  PrecisionGoal  and  AccuracyGoal.  Typical  is

the  case  of  NDSolve,  in  which  these  default  settings  are  equal  to  half  the  settings  given  for

WorkingPrecision. 

The  precision  and  accuracy  goals  normally  apply  both  to  the  final  results  returned,  and  to

various norms or error estimates for them. Functions for numerical  operations in Mathematica

typically  try  to  refine  their  results  until  either  the  specified  precision  goal  or  accuracy  goal  is

reached. If the setting for either of these goals is Infinity, then only the other goal is consid-

ered. 

In  doing  ordinary  numerical  evaluation  with  N@expr, nD,  Mathematica  automatically  adjusts  its

internal  computations  to  achieve  n-digit  precision  in  the  result.  But  in  doing  numerical  opera-

tions  on  functions,  it  is  in  practice  usually  necessary  to  specify  WorkingPrecision  and

PrecisionGoal more explicitly. 

Monitoring and Selecting Algorithms

Functions  in  Mathematica  are  carefully  set  up so  that  you normally  do not  have to  know how

they  work  inside.  But  particularly  for  numerical  functions  that  use  iterative  algorithms,  it  is

sometimes useful to be able to monitor the internal progress of these algorithms. 

StepMonitor an expression to evaluate whenever a successful step is 
taken

EvaluationMonitor an expression to evaluate whenever functions from the 
input are evaluated

Options for monitoring progress of numerical functions. 

This prints the value of x every time a step is taken. 

In[1]:= FindRoot@Cos@xD == x, 8x, 1<, StepMonitor :> Print@xDD

0.750364

0.739113

0.739085

0.739085
Out[1]= 8x Ø 0.739085<

Note the importance of using option :> expr rather than option -> expr. You need a delayed rule :>

to make expr be evaluated each time it is used, rather than just when the rule is given. 

292     Mathematics and Algorithms



Note the importance of using option :> expr rather than option -> expr. You need a delayed rule :>

to make expr be evaluated each time it is used, rather than just when the rule is given. 

Reap and Sow provide a convenient way to make a list of the steps taken. 

In[2]:= Reap@FindRoot@Cos@xD == x, 8x, 1<, StepMonitor :> Sow@xDDD

Out[2]= 88x Ø 0.739085<, 880.750364, 0.739113, 0.739085, 0.739085<<<

This counts the steps. 

In[3]:= Block@8ct = 0<, 8FindRoot@Cos@xD == x, 8x, 1<, StepMonitor :> ct++D, ct<D

Out[3]= 88x Ø 0.739085<, 4<

To take a successful step toward an answer, iterative numerical algorithms sometimes have to

do several evaluations of the functions they have been given. Sometimes this is because each

step requires, say, estimating a derivative from differences between function values, and some-

times it is because several attempts are needed to achieve a successful step. 

This shows the successful steps taken in reaching the answer. 

In[4]:= Reap@FindRoot@Cos@xD == x, 8x, 5<, StepMonitor :> Sow@xDDD

Out[4]= 88x Ø 0.739085<, 88-1., -0.0283783, 1.02962, 0.752589, 0.739125, 0.739085, 0.739085<<<

This shows every time the function was evaluated. 

In[5]:= Reap@FindRoot@Cos@xD == x, 8x, 5<, EvaluationMonitor :> Sow@xDDD

Out[5]= 88x Ø 0.739085<,
885., -55., -1., 8.71622, -0.0283783, 1.02962, 0.752589, 0.739125, 0.739085, 0.739085<<<

The pattern of evaluations done by algorithms in Mathematica can be quite complicated. 

In[6]:= ListPlot@
Reap@NIntegrate@1 ê Sqrt@xD, 8x, -1, 0, 1<, EvaluationMonitor :> Sow@xDDD@@2, 1DDD

Out[6]=
50 100 150 200 250

-1.0

-0.5

0.5

1.0

Mathematics and Algorithms     293



Method->Automatic pick methods automatically (default)

Method->"name" specify an explicit method to use

Method->8"name",8"par1"->val1,…<<

specify more details of a method

Method options. 

There are often several different methods known for doing particular types of numerical compu-

tations.  Typically  Mathematica  supports  most  generally  successful  ones  that  have  been  dis-

cussed  in  the  literature,  as  well  as  many  that  have  not.  For  any  specific  problem,  it  goes  to

considerable effort to pick the best method automatically. But if you have sophisticated knowl-

edge  of  a  problem,  or  are  studying  numerical  methods  for  their  own  sake,  you  may  find  it

useful  to  tell  Mathematica  explicitly  what  method  it  should  use.  Function  reference  pages  list

some  of  the  methods  built  into  Mathematica;  others  are  discussed  in  "Numerical  and  Related

Functions" or in advanced documentation. 

This solves a differential equation using method m, and returns the number of steps and evalua-
tions needed. 

In[7]:= try@m_D := Block@8s = e = 0<, NDSolve@8y''@xD + Sin@y@xDD == 0, y'@0D == y@0D == 1<, y,
8x, 0, 100<, StepMonitor :> s++, EvaluationMonitor :> e++, Method -> mD; 8s, e<D

With the method selected automatically, this is the number of steps and evaluations that are 
needed. 

In[8]:= try@AutomaticD

Out[8]= 81118, 2329<

This shows what happens with several other possible methods. The Adams method that is 
selected automatically is the fastest. 

In[9]:= try êü
8"Adams", "BDF", "ExplicitRungeKutta", "ImplicitRungeKutta", "Extrapolation"<

Out[9]= 881118, 2329<, 82415, 2861<, 8287, 4595<, 8882, 13092<, 884, 4146<<

This shows what happens with the explicit Runge-Kutta method when the difference order 
parameter is changed. 

In[10]:= Table@try@8"ExplicitRungeKutta", "DifferenceOrder" -> n<D, 8n, 4, 9<D

Out[10]= 883519, 14078<, 8614, 4300<, 8849, 6794<, 8472, 4722<, 8288, 3746<, 8287, 4594<<

294     Mathematics and Algorithms



Functions with Sensitive Dependence on Their Input

Functions that are specified by simple algebraic formulas tend to be such that when their input

is changed only slightly, their output also changes only slightly. But functions that are instead

based  on  executing  procedures  quite  often  show  almost  arbitrarily  sensitive  dependence  on

their  input.  Typically  the  reason  this  happens  is  that  the  procedure  "excavates"  progressively

less and less significant digits in the input. 

This shows successive steps in a simple iterative procedure with input 0.1111. 

In[1]:= NestList@FractionalPart@2 ÒD &, 0.1111, 10D

Out[1]= 80.1111, 0.2222, 0.4444, 0.8888, 0.7776, 0.5552, 0.1104, 0.2208, 0.4416, 0.8832, 0.7664<

Here is the result with input 0.1112. Progressive divergence from the result with input 0.1111 is 
seen. 

In[2]:= NestList@FractionalPart@2 ÒD &, 0.1112, 10D

Out[2]= 80.1112, 0.2224, 0.4448, 0.8896, 0.7792, 0.5584, 0.1168, 0.2336, 0.4672, 0.9344, 0.8688<

The  action  of  FractionalPart@2 xD  is  particularly  simple  in  terms  of  the  binary  digits  of  the

number  x:  it  just  drops  the  first  one,  and  shifts  the  remaining  ones  to  the  left.  After  several

steps, this means that the results one gets are inevitably sensitive to digits that are far to the

right, and have an extremely small effect on the original value of x.

This shows the shifting process achieved by FractionalPart@2 xD in the first 8 binary digits 
of x.

In[3]:= RealDigits@Take@%, 5D, 2, 8, -1D

Out[3]= 8880, 0, 0, 1, 1, 1, 0, 0<, 0<, 880, 0, 1, 1, 1, 0, 0, 0<, 0<,
880, 1, 1, 1, 0, 0, 0, 1<, 0<, 881, 1, 1, 0, 0, 0, 1, 1<, 0<, 881, 1, 0, 0, 0, 1, 1, 1<, 0<<

If  you  give  input  only  to  a  particular  precision,  you  are  effectively  specifying  only  a  certain

number of digits. And once all these digits have been "excavated" you can no longer get accu-

rate results, since to do so would require knowing more digits of your original input. So long as

you  use  arbitrary-precision  numbers,  Mathematica  automatically  keeps  track  of  this  kind  of

degradation in precision, indicating a number with no remaining significant digits by 0. µ 10e, as

discussed in "Arbitrary-Precision Numbers". 

Mathematics and Algorithms     295



Successive steps yield numbers of progressively lower precision, and eventually no precision at 
all. 

In[4]:= NestList@FractionalPart@40 ÒD &, N@1 ê 9, 20D, 20D

Out[4]= 90.11111111111111111111, 0.4444444444444444444, 0.77777777777777778, 0.1111111111111111,
0.44444444444444, 0.777777777778, 0.11111111111, 0.444444444, 0.77777778, 0.111111,
0.4444, 0.778, 0.1, 0.µ10-1, 0.µ101, 0.µ103, 0.µ104, 0.µ106, 0.µ107, 0.µ109, 0.µ1011=

This asks for the precision of each number. Zero precision indicates that there are no correct 
significant digits. 

In[5]:= Map@Precision, %D

Out[5]= 820., 19., 17.641, 15.1938, 14.1938, 12.8348, 10.3876, 9.38764,
8.02862, 5.58146, 4.58146, 3.22244, 0.77528, 0., 0., 0., 0., 0., 0., 0., 0.<

This shows that the exact result is a periodic sequence. 

In[6]:= NestList@FractionalPart@40 ÒD &, 1 ê 9, 10D

Out[6]= :
1

9
,
4

9
,
7

9
,
1

9
,
4

9
,
7

9
,
1

9
,
4

9
,
7

9
,
1

9
,
4

9
>

It is important to realize that if you use approximate numbers of any kind, then in an example

like the one above you will always eventually run out of precision. But so long as you use arbi-

trary-precision numbers, Mathematica will  explicitly show you any decrease in precision that is

occurring.  However,  if  you  use  machine-precision  numbers,  then  Mathematica  will  not  keep

track of precision, and you cannot tell when your results become meaningless. 

If you use machine-precision numbers, Mathematica will no longer keep track of any degrada-
tion in precision. 

In[7]:= NestList@FractionalPart@40 ÒD &, N@1 ê 9D, 20D

Out[7]= 80.111111, 0.444444, 0.777778, 0.111111, 0.444444, 0.777778, 0.111111, 0.444445, 0.77781,
0.112405, 0.496185, 0.847383, 0.89534, 0.813599, 0.543945, 0.757813, 0.3125, 0.5, 0., 0., 0.<

By  iterating  the  operation  FractionalPart@2 xD  you  extract  successive  binary  digits  in  what-

ever number you start with. And if these digits are apparently random~as in a number like p~

then the results will  be correspondingly random. But if  the digits have a simple pattern~as in

any rational number~then the results you get will be correspondingly simple. 

By iterating an operation such as FractionalPart@3 ê 2 xD  it  turns out however to be possible

to get seemingly random sequences even from very simple input. This is an example of a very

general  phenomenon first  identified by Stephen Wolfram in the mid-1980s,  which has nothing

directly to do with sensitive dependence on input.

296     Mathematics and Algorithms



This generates a seemingly random sequence, even starting from simple input. 

In[8]:= NestList@FractionalPart@3 ê 2 ÒD &, 1, 15D

Out[8]= :1,
1

2
,
3

4
,
1

8
,

3

16
,

9

32
,
27

64
,

81

128
,
243

256
,
217

512
,

651

1024
,
1953

2048
,
1763

4096
,
5289

8192
,
15867

16384
,
14833

32768
>

After the values have been computed, one can safely find numerical approximations to them. 

In[9]:= N@%D

Out[9]= 81., 0.5, 0.75, 0.125, 0.1875, 0.28125, 0.421875, 0.632813, 0.949219,
0.423828, 0.635742, 0.953613, 0.43042, 0.64563, 0.968445, 0.452667<

Here are the last 5 results after 1000 iterations, computed using exact numbers. 

In[10]:= Take@N@NestList@FractionalPart@3 ê 2 ÒD &, 1, 1000DD, -5D

Out[10]= 80.0218439, 0.0327659, 0.0491488, 0.0737233, 0.110585<

Using machine-precision numbers gives completely incorrect results. 

In[11]:= Take@NestList@FractionalPart@3 ê 2 ÒD &, 1., 1000D, -5D

Out[11]= 80.670664, 0.0059966, 0.0089949, 0.0134924, 0.0202385<

Many kinds of iterative procedures yield functions that depend sensitively on their  input.  Such

functions also arise when one looks at solutions to differential equations. In effect, varying the

independent  parameter  in  the  differential  equation  is  a  continuous  analog  of  going  from  one

step to the next in an iterative procedure.

This finds a solution to the Duffing equation with initial condition 1. 

In[12]:= NDSolve@8x''@tD + 0.15 x'@tD - x@tD + x@tD^3 == 0.3 Cos@tD,
x@0D == -1, x'@0D == 1<, x, 8t, 0, 50<D

Out[12]= 88x Ø InterpolatingFunction@880., 50.<<, <>D<<

Here is a plot of the solution. 

In[13]:= Plot@Evaluate@x@tD ê. %D, 8t, 0, 50<D

Out[13]=

Mathematics and Algorithms     297

10 20 30 40 50

-1.5

-1.0

-0.5

0.5

1.0

1.5



Here is the same equation with initial condition 1.001. 

In[14]:= NDSolve@8x''@tD + 0.15 x'@tD - x@tD + x@tD^3 == 0.3 Cos@tD,
x@0D == -1, x'@0D == 1.001<, x, 8t, 0, 50<D

Out[14]= 88x Ø InterpolatingFunction@880., 50.<<, <>D<<

The solution progressively diverges from the one shown above. 

In[15]:= Plot@Evaluate@x@tD ê. %D, 8t, 0, 50<D

Out[15]=

298     Mathematics and Algorithms

10 20 30 40 50

-1.0

-0.5

0.5

1.0

1.5



Numerical Operations on Data

Basic Statistics

Mean@listD mean (average)

Median@listD median (central value)

Max@listD maximum value

Variance@listD variance

StandardDeviation@listD standard deviation

Quantile@list,qD qth quantile

Total@listD total

Basic descriptive statistics operations. 

Given a list with n elements xi, the mean Mean@listD is defined to be mHxL = x =⁄xi ên. 

The variance  Variance@listD  is defined to be varHxL = s2HxL =⁄Hxi - mHxLL2 ëHn - 1L,  for real data. (For

complex data var HxL = s2HxL =⁄Hxi - mHxLL Hxi - mHxLLë Hn - 1L.) 

The standard deviation StandardDeviation@listD is defined to be sHxL = varHxL . 

If the elements in list are thought of as being selected at random according to some probability

distribution, then the mean gives an estimate of where the center of the distribution is located,

while the standard deviation gives an estimate of how wide the dispersion in the distribution is. 

The median Median@listD effectively gives the value at the halfway point in the sorted version of

list. It is often considered a more robust measure of the center of a distribution than the mean,

since it depends less on outlying values.

The  qth  quantile  Quantile@list, qD  effectively  gives  the  value  that  is  q  of  the  way  through  the

sorted version of list. 

For a list of length n,  Mathematica  defines Quantile@list, qD  to be s@@Ceiling@n qDDD,  where s

is Sort@list, LessD. 

There are, however, about ten other definitions of quantile in use, all potentially giving slightly

different  results.  Mathematica  covers  the  common cases  by  introducing  four  quantile  parame-

ters  in  the  form  Quantile@list, q, 88a, b<, 8c, d<<D.  The  parameters  a  and  b  in  effect  define

where in the list should be considered a fraction q of the way through. If this corresponds to an

integer position, then the element at that position is taken to be the qth  quantile. If it is not an

integer position, then a linear combination of the elements on either side is used, as specified

by c and d. 

Mathematics and Algorithms     299



There are, however, about ten other definitions of quantile in use, all potentially giving slightly

different  results.  Mathematica  covers  the  common cases  by  introducing  four  quantile  parame-

ters  in  the  form  Quantile@list, q, 88a, b<, 8c, d<<D.  The  parameters  a  and  b  in  effect  define

where in the list should be considered a fraction q of the way through. If this corresponds to an

integer position, then the element at that position is taken to be the qth  quantile. If it is not an

integer position, then a linear combination of the elements on either side is used, as specified

by c and d. 

The position in a sorted list s for the qth  quantile is taken to be k = a + Hn + bL q. If k is an integer,

then the quantile is sk. Otherwise, it is sdkt + Hs`kp - sdktL Hc + d Hk - dktLL, with the indices taken to be 1

or n if they are out of range. 

880,0<,81,0<< inverse empirical CDF (default)

880,0<,80,1<< linear interpolation (California method)

881ê2,0<,80,0<< element numbered closest to qn

881ê2,0<,80,1<< linear interpolation (hydrologist method)

880,1<,80,1<< mean-based estimate (Weibull method)

881,-1<,80,1<< mode-based estimate

881ê3,1ê3<,80,1<< median-based estimate

883ê8,1ê4<,80,1<< normal distribution estimate

Common choices for quantile parameters. 

Whenever d = 0,  the value of the qth  quantile is always equal to some actual element in list,  so

that  the  result  changes  discontinuously  as  q  varies.  For  d = 1,  the  qth  quantile  interpolates  lin-

early between successive elements in list. Median is defined to use such an interpolation. 

Note that Quantile@list, qD yields quartiles when q =m ê4 and percentiles when q =m ê100.

Mean@8x1,x2,…<D the mean of the xi

Mean@88x1,y1,…<,8x2,y2,…<,…<D a list of the means of the xi, yi, …

Handling multidimensional data. 

Sometimes each item in your data may involve a list of values. The basic statistics functions in

Mathematica automatically apply to all corresponding elements in these lists. 

300     Mathematics and Algorithms



This separately finds the mean of each "column" of data. 

In[1]:= Mean@88x1, y1<, 8x2, y2<, 8x3, y3<<D

Out[1]= :
1

3
Hx1 + x2 + x3L,

1

3
Hy1 + y2 + y3L>

Note  that  you  can  extract  the  elements  in  the  ith  "column"  of  a  multidimensional  list  using

list@@All, iDD. 

Descriptive Statistics

Descriptive  statistics  refers  to  properties  of  distributions,  such  as  location,  dispersion,  and

shape.  The  functions  described  here  compute  descriptive  statistics  of  lists  of  data.  You  can

calculate some of the standard descriptive statistics for various known distributions by using the

functions described in "Continuous Distributions" and "Discrete Distributions".

The  statistics  are  calculated  assuming  that  each  value  of  data  xi  has  probability  equal  to  1
n
,

where n is the number of elements in the data. 

Mean@dataD average value 1
n ⁄i xi

Median@dataD median (central value)

Commonest@dataD list of the elements with highest frequency

GeometricMean@dataD geometric mean I¤i xiM
1

n  

HarmonicMean@dataD harmonic mean ní⁄i
1
xi

RootMeanSquare@dataD root mean square 1
n ⁄i xi2  

TrimmedMean@data, fD mean of remaining entries, when a fraction f  is removed 
from each end of the sorted list of data 

TrimmedMean@data,8 f1, f2<D mean of remaining entries, when fractions f1 and f2 are 
dropped from each end of the sorted data 

Quantile@data,qD qth quantile

Quartiles@dataD list of the 1
4
th, 1

2
th, 3

4
th quantiles of the elements in list

Location statistics. 

Location  statistics  describe  where  the  data  are  located.  The  most  common  functions  include

measures  of  central  tendency  like  the  mean,  median,  and  mode.  Quantile@data, qD  gives  the

location before which H100 qL  percent  of  the data lie.  In  other  words,  Quantile  gives  a  value z

such that the probability that Hxi < zL is less than or equal to q and the probability that Hxi § zL is

greater than or equal to q. 

Mathematics and Algorithms     301



Location  statistics  describe  where  the  data  are  located.  The  most  common  functions  include

measures  of  central  tendency  like  the  mean,  median,  and  mode.  Quantile@data, qD  gives  the

location before which H100 qL  percent  of  the data lie.  In  other  words,  Quantile  gives  a  value z

such that the probability that Hxi < zL is less than or equal to q and the probability that Hxi § zL is

greater than or equal to q. 

Here is a dataset. 

In[1]:= data = 86.5, 3.8, 6.6, 5.7, 6.0, 6.4, 5.3<

Out[1]= 86.5, 3.8, 6.6, 5.7, 6., 6.4, 5.3<

This finds the mean and median of the data. 

In[2]:= 8Mean@dataD, Median@dataD<

Out[2]= 85.75714, 6.<

This is the mean when the smallest entry in the list is excluded. TrimmedMean  allows you to 
describe the data with removed outliers. 

In[3]:= TrimmedMeanBdata, :
1

7
, 0>F

Out[3]= 6.08333

Variance@dataD unbiased estimate of variance, 1
n-1 ⁄i Hxi - xL2 

StandardDeviation@dataD unbiased estimate of standard deviation 

MeanDeviation@dataD mean absolute deviation, 1
n ⁄i xi - x  

MedianDeviation@dataD median absolute deviation, median of xi -median  values 

InterquartileRange@dataD difference between the first and third quartiles

QuartileDeviation@dataD half the interquartile range

Dispersion statistics. 

Dispersion  statistics  summarize  the  scatter  or  spread  of  the  data.  Most  of  these  functions

describe  deviation  from a  particular  location.  For  instance,  variance  is  a  measure  of  deviation

from the mean, and standard deviation is just the square root of the variance. 

This gives an unbiased estimate for the variance of the data with n - 1 as the divisor. 

In[4]:= Variance@dataD

Out[4]= 0.962857

This compares three types of deviation. 

302     Mathematics and Algorithms



This compares three types of deviation. 

In[5]:= 8StandardDeviation@dataD, MeanDeviation@dataD, MedianDeviation@dataD<

Out[5]= 80.981253, 0.706122, 0.5<

Covariance@v1,v2D covariance coefficient between lists v1 and v2
Covariance@mD covariance matrix for the matrix m

Covariance@m1,m2D covariance matrix for the matrices m1 and m2
Correlation@v1,v2D correlation coefficient between lists v1 and v2
Correlation@mD correlation matrix for the matrix m

Correlation@m1,m2D correlation matrix for the matrices m1 and m2

Covariance and correlation statistics.

Covariance is the multivariate extension of variance. For two vectors of equal length, the covari-

ance  is  a  number.  For  a  single  matrix  m,  the  i, jth  element  of  the  covariance  matrix  is  the

covariance between the ith  and jth  columns of m. For two matrices m1  and m2, the i, jth  element

of the covariance matrix is the covariance between the ith column of m1 and the jth column of m2.

While  covariance  measures  dispersion,  correlation  measures  association.  The  correlation

between two vectors is  equivalent to the covariance between the vectors divided by the stan-

dard deviations of the vectors. Likewise, the elements of a correlation matrix are equivalent to

the elements of the corresponding covariance matrix scaled by the appropriate column standard

deviations.

This gives the covariance between data and a random vector.

In[6]:= Covariance@data, RandomReal@1, Length@dataDDD

Out[6]= 0.0258505

Here is a random matrix.

In[7]:= m = RandomReal@10, 820, 2<D

Out[7]= 888.01573, 5.3642<, 86.70564, 0.352495<, 82.17328, 7.48353<, 81.33259, 3.27026<,
89.54907, 8.35172<, 81.56138, 9.4684<, 85.76737, 4.42373<, 88.65789, 6.66041<,
86.65159, 7.40813<, 83.38061, 6.22431<, 80.269599, 9.76406<, 85.23322, 4.58995<,
83.3881, 1.66902<, 85.66131, 6.06514<, 87.50919, 8.17705<, 85.92976, 0.803385<,
89.96, 1.18177<, 82.14364, 5.8279<, 88.13317, 8.79128<, 83.51722, 3.08246<<

This is the correlation matrix for the matrix m.

In[8]:= Correlation@mD

Out[8]= 881., -0.132314<, 8-0.132314, 1.<<

This is the covariance matrix.

Mathematics and Algorithms     303



This is the covariance matrix.

In[9]:= Covariance@mD

Out[9]= 888.48155, -1.13411<, 8-1.13411, 8.66215<<

Scaling the covariance matrix terms by the appropriate standard deviations gives the correla-
tion matrix.

In[10]:= With@8sd = StandardDeviation@mD<,
Transpose@Transpose@% ê sdD ê sdDD

Out[10]= 881., -0.132314<, 8-0.132314, 1.<<

CentralMoment@data,rD rth central moment 1
n ⁄i Hxi - xLr

Skewness@dataD coefficient of skewness 

Kurtosis@dataD kurtosis coefficient

QuartileSkewness@dataD quartile skewness coefficient

Shape statistics. 

You  can  get  some information  about  the  shape  of  a  distribution  using  shape  statistics.  Skew-

ness describes the amount of asymmetry. Kurtosis measures the concentration of data around

the peak and in the tails versus the concentration in the flanks. 

Skewness  is  calculated  by  dividing  the  third  central  moment  by  the  cube  of  the  population

standard deviation. Kurtosis  is calculated by dividing the fourth central moment by the square

of the population variance of the data, equivalent to CentralMoment@data, 2D.  (The population

variance  is  the  second  central  moment,  and  the  population  standard  deviation  is  its  square

root.)

QuartileSkewness  is  calculated  from  the  quartiles  of  data.  It  is  equivalent  to

Hq1 - 2 q2 + q3L ê Hq3 - q1L, where q1, q2, and q3 are the first, second, and third quartiles respectively.

Here is the second central moment of the data. 

In[11]:= CentralMoment@data, 2D

Out[11]= 0.825306

A negative value for skewness indicates that the distribution underlying the data has a long left- 
sided tail. 

In[12]:= Skewness@dataD

Out[12]= -1.20108

304     Mathematics and Algorithms



ExpectedValue@ f,listD expected value of the pure function f  with respect to the 
values in list

ExpectedValue@ f@xD,list,xD expected value of the function f  of x with respect to the 
values of list

Expected values.

The expected value of a function f  is 1
n ⁄i=1

n f HxiL for the list of values x1, x2, …, xn. Many descrip-

tive statistics are expected values. For instance, the mean is the expected value of x,  and the

rth central moment is the expected value of Hx - xLr where x is the mean of the xi.

Here is the expected value of the Log of the data.

In[13]:= ExpectedValue@Log, dataD

Out[13]= 1.73573

Discrete Distributions

The functions described here are among the most  commonly used discrete  statistical  distribu-

tions.  You  can  compute  their  densities,  means,  variances,  and  other  related  properties.  The

distributions  themselves  are  represented  in  the  symbolic  form name@param1, param2, …D.  Func-

tions such as Mean, which give properties of statistical distributions, take the symbolic represen-

tation of the distribution as an argument. "Continuous Distributions" describes many continuous

statistical distributions.

BernoulliDistribution@pD Bernoulli distribution with mean p

BetaBinomialDistribution@
a,b,nD

binomial distribution where the success probability is a 
BetaDistribution@a, bD random variable

BetaNegativeBinomialDistribution@a,b,nD

negative binomial distribution where the success probabil -
ity is a BetaDistribution@a, bD random variable 

BinomialDistribution@n,pD binomial distribution for the number of successes that 
occur in n trials, where the probability of success in a trial 
is p

DiscreteUniformDistribution@8imin,imax<D

Mathematics and Algorithms     305



discrete uniform distribution over the integers from imin to 
imax

GeometricDistribution@pD geometric distribution for the number of trials before the 
first success, where the probability of success in a trial is p

HypergeometricDistribution@n,nsucc,ntotD

hypergeometric distribution for the number of successes 
out of a sample of size n, from a population of size ntot 
containing nsucc successes 

LogSeriesDistribution@qD logarithmic series distribution with parameter q

NegativeBinomialDistribution@n,pD

negative binomial distribution with parameters n and p 

PoissonDistribution@mD Poisson distribution with mean m

ZipfDistribution@rD Zipf distribution with parameter r

Discrete statistical distributions.

Most  of  the  common  discrete  statistical  distributions  can  be  understood  by  considering  a

sequence of trials, each with two possible outcomes, for example, success and failure. 

The Bernoulli distribution BernoulliDistribution@pD is the probability distribution for a single

trial  in  which  success,  corresponding  to  value  1,  occurs  with  probability  p,  and  failure,  corre-

sponding to value 0, occurs with probability 1 - p. 

The  binomial  distribution  BinomialDistribution@n, pD  is  the  distribution  of  the  number  of

successes that occur in n independent trials, where the probability of success in each trial is p. 

The negative binomial distribution NegativeBinomialDistribution@n, pD for positive integer n

is the distribution of the number of failures that occur in a sequence of trials before n successes

have occurred, where the probability of success in each trial is p. The distribution is defined for

any positive n, though the interpretation of n as the number of successes and p as the success

probability no longer holds if n is not an integer. 

The  beta  binomial  distribution  BetaBinomialDistribution@a, b, nD  is  a  mixture  of  binomial

and  beta  distributions.  A  BetaBinomialDistribution@a, b, nD  random  variable  follows  a

BinomialDistribution@n, pD  distribution,  where  the  success  probability  p  is  itself  a  random

variable  following  the  beta  distribution  BetaDistribution@a, bD.  The  beta  negative  binomial

distribution BetaNegativeBinomialDistribution@a, b, nD is a similar mixture of the beta and

negative binomial distributions. 

The  geometric  distribution  GeometricDistribution@pD  is  the  distribution  of  the  total  number

of trials before the first success occurs, where the probability of success in each trial is p.  

The hypergeometric distribution HypergeometricDistribution@n, nsucc, ntotD is used in place of

the  binomial  distribution  for  experiments  in  which  the  n  trials  correspond  to  sampling  without

replacement from a population of size ntot with nsucc potential successes. 

306     Mathematics and Algorithms



The hypergeometric distribution HypergeometricDistribution@n, nsucc, ntotD is used in place of

the  binomial  distribution  for  experiments  in  which  the  n  trials  correspond  to  sampling  without

replacement from a population of size ntot with nsucc potential successes. 

The  discrete  uniform  distribution  DiscreteUniformDistribution@8imin, imax<D  represents  an

experiment with multiple equally probable outcomes represented by integers imin through imax. 

The Poisson distribution PoissonDistribution@mD describes the number of events that occur in

a given time period where m is the average number of events per period.

The terms in the series expansion of log H1 - qL about q = 0 are proportional to the probabilities of

a  discrete  random  variable  following  the  logarithmic  series  distribution

LogSeriesDistribution@qD. The distribution of the number of items of a product purchased by

a buyer in a specified interval is sometimes modeled by this distribution. 

The Zipf distribution ZipfDistribution@rD, sometimes referred to as the zeta distribution, was

first used in linguistics and its use has been extended to model rare events. 

PDF@dist,xD probability mass function at x 

CDF@dist,xD cumulative distribution function at x

InverseCDF@dist,qD the largest integer x such that CDF@dist, xD is at most q

Quantile@dist,qD qth quantile 

Mean@distD mean

Variance@distD variance

StandardDeviation@distD standard deviation 

Skewness@distD coefficient of skewness 

Kurtosis@distD coefficient of kurtosis 

CharacteristicFunction@dist,tD characteristic function fHtL 

ExpectedValue@ f,distD expected value of the pure function f  in dist

ExpectedValue@ f@xD,dist,xD expected value of f@xD for x in dist

Median@distD median

Quartiles@distD list of the 1
4
th, 1

2
th, 3

4
th quantiles for dist

InterquartileRange@distD difference between the first and third quartiles

QuartileDeviation@distD half the interquartile range

Mathematics and Algorithms     307



QuartileSkewness@distD quartile-based skewness measure

RandomInteger@distD pseudorandom number with specified distribution 

RandomInteger@dist,dimsD pseudorandom array with dimensionality dims, and ele-
ments from the specified distribution 

Functions of statistical distributions.

Distributions are represented in symbolic form. PDF@dist, xD evaluates the mass function at x if x

is  a  numerical  value,  and  otherwise  leaves  the  function  in  symbolic  form  whenever  possible.

Similarly,  CDF@dist, xD  gives  the  cumulative  distribution  and  Mean@distD  gives  the  mean  of  the

specified  distribution.  For  a  more  complete  description  of  the  various  functions  of  a  statistical

distribution, see the description of their continuous analogues in "Continuous Distributions".

Here is a symbolic representation of the binomial distribution for 34 trials, each having probabil-
ity 0.3 of success. 

In[1]:= bdist = BinomialDistribution@34, 0.3D

Out[1]= BinomialDistribution@34, 0.3D

This is the mean of the distribution. 

In[2]:= Mean@bdistD

Out[2]= 10.2

You can get the expression for the mean by using symbolic variables as arguments. 

In[3]:= Mean@BinomialDistribution@n, pDD

Out[3]= n p

Here is the 50% quantile, which is equal to the median. 

In[4]:= Quantile@bdist, 0.5D

Out[4]= 10

This gives the expected value of x3 with respect to the binomial distribution. 
In[5]:= ExpectedValue[x^3, bdist, x]

Out[5]= 1282.55

The elements of this matrix are pseudorandom numbers from the binomial distribution. 

In[6]:= RandomInteger@bdist, 82, 3<D

Out[6]= 8810, 7, 9<, 812, 10, 11<<

Continuous Distributions

308     Mathematics and Algorithms



Continuous Distributions

The functions described here are among the most commonly used continuous statistical distribu-

tions.  You  can  compute  their  densities,  means,  variances,  and  other  related  properties.  The

distributions  themselves  are  represented  in  the  symbolic  form name@param1, param2, …D.  Func-

tions such as Mean, which give properties of statistical distributions, take the symbolic represen-

tation  of  the  distribution  as  an  argument.  "Discrete  Distributions"  describes  many  discrete

statistical distributions.

NormalDistribution@m,sD normal (Gaussian) distribution with mean m and standard 
deviation s

HalfNormalDistribution@qD half-normal distribution with scale inversely proportional to 
parameter q

LogNormalDistribution@m,sD lognormal distribution based on a normal distribution with 
mean m and standard deviation s

InverseGaussianDistribution@
m,lD

inverse Gaussian distribution with mean m and scale l

Distributions related to the normal distribution. 

The  lognormal  distribution  LogNormalDistribution@m, sD  is  the  distribution  followed  by  the

exponential  of  a  normally  distributed  random  variable.  This  distribution  arises  when  many

independent random variables are combined in a multiplicative fashion. The half-normal distribu-

tion  HalfNormalDistribution@qD  is  proportional  to  the  distribution

NormalDistribution@0, 1 ê Hq Sqrt@2 ê pDLD limited to the domain @0, ¶L. 

The inverse  Gaussian distribution  InverseGaussianDistribution@m, lD,  sometimes called  the

Wald  distribution,  is  the  distribution  of  first  passage  times  in  Brownian  motion  with  positive

drift. 

ChiSquareDistribution@nD c2 distribution with n degrees of freedom

InverseChiSquareDistribution@
nD

inverse c2 distribution with n degrees of freedom

FRatioDistribution@n,mD F-ratio distribution with n numerator and m denominator 
degrees of freedom

StudentTDistribution@nD Student t distribution with n degrees of freedom

Mathematics and Algorithms     309



NoncentralChiSquareDistribuÖ
tion

@

n,lD

noncentral c2 distribution with n degrees of freedom and 
noncentrality parameter l

NoncentralStudentTDistributÖ
ion

@

n,dD

noncentral Student t distribution with n degrees of freedom 
and noncentrality parameter d

NoncentralFRatioDistribution@
n,m,lD

noncentral F-ratio distribution with n numerator degrees of 
freedom and m denominator degrees of freedom and 
numerator noncentrality parameter l

Distributions related to normally distributed samples. 

If  X1,…,  Xn  are  independent  normal  random variables  with  unit  variance  and  mean  zero,  then

⁄i=1
n Xi2  has a c2  distribution  with n  degrees of  freedom. If  a normal variable is  standardized by

subtracting  its  mean  and  dividing  by  its  standard  deviation,  then  the  sum of  squares  of  such

quantities  follows  this  distribution.  The  c2  distribution  is  most  typically  used  when  describing

the variance of normal samples. 

If Y  follows a c2  distribution  with n  degrees of freedom, 1 êY  follows the inverse c 2  distribution

InverseChiSquareDistribution@nD. A scaled inverse c 2 distribution with n degrees of freedom

and scale x can be given as InverseChiSquareDistribution@n, xD. Inverse c2 distributions are

commonly  used  as  prior  distributions  for  the  variance  in  Bayesian  analysis  of  normally  dis-

tributed samples.

A variable that has a Student t distribution can also be written as a function of normal random

variables. Let X and Z be independent random variables, where X is a standard normal distribu-

tion and Z  is a c2 variable with n degrees of freedom. In this case, Xì Z ên  has a t distribution

with n degrees of freedom. The Student t  distribution is symmetric about the vertical axis, and

characterizes the ratio of a normal variable to its standard deviation. Location and scale parame- 

ters can be included as m and s in StudentTDistribution@m, s, nD. When n = 1, the t  distribu-

tion is the same as the Cauchy distribution. 

The F-ratio distribution is the distribution of the ratio of two independent c2 variables divided by

their respective degrees of freedom. It is commonly used when comparing the variances of two

populations in hypothesis testing. 

Distributions that are derived from normal distributions with nonzero means are called noncen- 

tral distributions. 

The  sum  of  the  squares  of  n  normally  distributed  random  variables  with  variance  s2 = 1  and

nonzero means follows a  noncentral  c2  distribution  NoncentralChiSquareDistribution@n, lD.

The noncentrality parameter l is the sum of the squares of the means of the random variables

in the sum. Note that in various places in the literature, l ê2 or l  is used as the noncentrality

parameter. 

310     Mathematics and Algorithms



The  sum  of  the  squares  of  n  normally  distributed  random  variables  with  variance  s2 = 1  and

nonzero means follows a  noncentral  c2  distribution  NoncentralChiSquareDistribution@n, lD.

The noncentrality parameter l is the sum of the squares of the means of the random variables

in the sum. Note that in various places in the literature, l ê2 or l  is used as the noncentrality

parameter. 

The  noncentral  Student  t  distribution  NoncentralStudentTDistribution@n, dD  describes  the

ratio Xì cn
2 ën  where cn2 is a central c2 random variable with n degrees of freedom, and X is an

independent normally distributed random variable with variance s2 = 1 and mean d. 

The noncentral F-ratio distribution NoncentralFRatioDistribution@n, m, lD is the distribution

of the ratio of 1
n
cn
2HlL to 1

m
cm
2 , where cn2HlL is a noncentral c2  random variable with noncentrality

parameter l and n1 degrees of freedom and cm2  is a central c2 random variable with m degrees of

freedom. 

TriangularDistribution@8a,b<D symmetric triangular distribution on the interval 8a, b<

TriangularDistribution@8a,b<,cD triangular distribution on the interval 8a, b< with maxi -
mum at c

UniformDistribution@8min,max<D uniform distribution on the interval 8min, max<

Piecewise linear distributions. 

The  triangular  distribution  TriangularDistribution@8a, b<, cD  is  a  triangular  distribution  for

a < X < b  with  maximum  probability  at  c  and  a < c < b.  If  c  is  a+b
2

,

TriangularDistribution@8a, b<, cD  is  the  symmetric  triangular  distribution

TriangularDistribution@8a, b<D.

The  uniform  distribution  UniformDistribution@8min, max<D,  commonly  referred  to  as  the

rectangular  distribution,  characterizes  a  random  variable  whose  value  is  everywhere  equally

likely. An example of a uniformly distributed random variable is the location of a point chosen

randomly on a line from min to max. 

BetaDistribution@a,bD continuous beta distribution with shape parameters a and b

CauchyDistribution@a,bD Cauchy distribution with location parameter a and scale 
parameter b

Mathematics and Algorithms     311



ChiDistribution@nD c distribution with n degrees of freedom 

ExponentialDistribution@lD exponential distribution with scale inversely proportional to 
parameter l

ExtremeValueDistribution@a,bD extreme maximum value (Fisher|Tippett) distribution with 
location parameter a and scale parameter b

GammaDistribution@a,bD gamma distribution with shape parameter a and scale 
parameter b

GumbelDistribution@a,bD Gumbel minimum extreme value distribution with location 
parameter a and scale parameter b

InverseGammaDistribution@a,bD inverse gamma distribution with shape parameter a and 
scale parameter b

LaplaceDistribution@m,bD Laplace (double exponential) distribution with mean m and 
scale parameter b

LevyDistribution@m,sD Lévy distribution with location parameter m and dispersion 
parameter s

LogisticDistribution@m,bD logistic distribution with mean m and scale parameter b

MaxwellDistribution@sD Maxwell (Maxwell|Boltzmann) distribution with scale 
parameter s

ParetoDistribution@k,aD Pareto distribution with minimum value parameter k and 
shape parameter a

RayleighDistribution@sD Rayleigh distribution with scale parameter s

WeibullDistribution@a,bD Weibull distribution with shape parameter a and scale 
parameter b

Other continuous statistical distributions. 

If X is uniformly distributed on@-p, pD, then the random variable tanHXL follows a Cauchy distribu -

tion CauchyDistribution@a, bD, with a = 0 and b = 1. 

When a = n ê2 and l = 2, the gamma distribution GammaDistribution@a, lD describes the distribu-

tion of a sum of squares of n-unit normal random variables. This form of the gamma distribu-

tion  is  called  a  c2  distribution  with  n  degrees  of  freedom.  When a = 1,  the  gamma distribution

takes on the form of the exponential  distribution  ExponentialDistribution@lD,  often used in

describing the waiting time between events.

If  a  random variable  X  follows  the  gamma distribution  GammaDistribution@a, bD,  1 êX  follows

the  inverse  gamma distribution  InverseGammaDistribution@a, 1 ê bD.  If  a  random variable  X

follows  InverseGammaDistribution@1 ê 2, s ê 2D,  X + m  follows  a  Lévy  distribution

LevyDistribution@m, sD.

When X1  and X2  have independent  gamma distributions  with  equal  scale  parameters,  the ran-

dom  variable  X1
X1+X2

 follows  the  beta  distribution  BetaDistribution@a, bD,  where  a  and  b  are

the shape parameters of the gamma variables. 

312     Mathematics and Algorithms



When X1  and X2  have independent  gamma distributions  with  equal  scale  parameters,  the ran-

dom  variable  X1
X1+X2

 follows  the  beta  distribution  BetaDistribution@a, bD,  where  a  and  b  are

the shape parameters of the gamma variables. 

The c distribution ChiDistribution@nD is followed by the square root of a c2  random variable.

For  n = 1,  the c  distribution is  identical  to  HalfNormalDistribution@qD  with q = p

2
.  For  n = 2,

the c distribution is identical to the Rayleigh distribution RayleighDistribution@sD with s = 1.

For  n = 3,  the  c  distribution  is  identical  to  the  Maxwell|Boltzmann  distribution

MaxwellDistribution@sD with s = 1.

The Laplace distribution LaplaceDistribution@m, bD is the distribution of the difference of two

independent  random variables  with  identical  exponential  distributions.  The  logistic  distribution

LogisticDistribution@m, bD  is  frequently  used  in  place  of  the  normal  distribution  when  a

distribution with longer tails is desired. 

The  Pareto  distribution  ParetoDistribution@k, aD  may  be  used  to  describe  income,  with  k

representing the minimum income possible. 

The  Weibull  distribution  WeibullDistribution@a, bD  is  commonly  used  in  engineering  to

describe  the  lifetime  of  an  object.  The  extreme  value  distribution

ExtremeValueDistribution@a, bD  is  the  limiting  distribution  for  the  largest  values  in  large

samples  drawn  from  a  variety  of  distributions,  including  the  normal  distribution.  The  limiting

distribution  for  the  smallest  values  in  such  samples  is  the  Gumbel  distribution,

GumbelDistribution@a, bD.  The names "extreme value"  and "Gumbel  distribution"  are  some-

times used interchangeably because the distributions of  the largest  and smallest  extreme val-

ues are related by a linear change of variable. The extreme value distribution is also sometimes

referred  to  as  the  log-Weibull  distribution  because  of  logarithmic  relationships  between  an

extreme value-distributed random variable and a properly shifted and scaled Weibull-distributed

random variable. 

PDF@dist,xD probability density function at x

CDF@dist,xD cumulative distribution function at x

InverseCDF@dist,qD the value of x such that CDF@dist, xD equals q

Mathematics and Algorithms     313



Quantile@dist,qD qth quantile 

Mean@distD mean

Variance@distD variance

StandardDeviation@distD standard deviation 

Skewness@distD coefficient of skewness 

Kurtosis@distD coefficient of kurtosis 

CharacteristicFunction@dist,tD characteristic function fHtL 

ExpectedValue@ f,distD expected value of the pure function f  in dist

ExpectedValue@ f@xD,dist,xD expected value of f@xD for x in dist

Median@distD median

Quartiles@distD list of the 1
4
th, 1

2
th, 3

4
th quantiles for dist

InterquartileRange@distD difference between the first and third quartiles

QuartileDeviation@distD half the interquartile range

QuartileSkewness@distD quartile-based skewness measure

RandomReal@distD pseudorandom number with specified distribution 

RandomReal@dist,dimsD pseudorandom array with dimensionality dims, and ele-
ments from the specified distribution 

Functions of statistical distributions.

The cumulative distribution function (cdf) at x is given by the integral of the probability density

function (pdf) up to x. The pdf can therefore be obtained by differentiating the cdf (perhaps in a

generalized  sense).  In  this  package  the  distributions  are  represented  in  symbolic  form.

PDF@dist, xD evaluates the density at x if x is a numerical value, and otherwise leaves the func-

tion in symbolic form. Similarly, CDF@dist, xD gives the cumulative distribution.

The  inverse  cdf  InverseCDF@dist, qD  gives  the  value  of  x  at  which  CDF@dist, xD  reaches  q.  The

median  is  given  by  InverseCDF@dist, 1 ê 2D.  Quartiles,  deciles  and  percentiles  are  particular

values of the inverse cdf. Quartile skewness is equivalent to Hq1 - 2 q2 + q3L ê Hq3 - q1L,  where q1,  q2

and q3 are the first, second, and third quartiles, respectively. Inverse cdfs are used in construct-

ing  confidence  intervals  for  statistical  parameters.  InverseCDF@dist, qD  and  Quantile@dist, qD

are equivalent for continuous distributions. 

The mean Mean@distD is the expectation of the random variable distributed according to dist and

is usually denoted by m. The mean is given by y Ÿ x f HxL „ x, where f HxL is the pdf of the distribu-

tion. The variance Variance@distD is given by Ÿ Hx - mL2 f HxL „ x. The square root of the variance is

called the standard deviation, and is usually denoted by s. 

The Skewness@distD and Kurtosis@distD functions give shape statistics summarizing the asymme-

try  and  the  peakedness  of  a  distribution,  respectively.  Skewness  is  given  by  1
s3

Ÿ Hx - mL3 f HxL „ x

and kurtosis is given by 1
s4

Ÿ Hx - mL4 f HxL „ x. 

314     Mathematics and Algorithms



The Skewness@distD and Kurtosis@distD functions give shape statistics summarizing the asymme -

try  and  the  peakedness  of  a  distribution,  respectively.  Skewness  is  given  by  1
s3

Ÿ Hx - mL3 f HxL „ x

and kurtosis is given by 1
s4

Ÿ Hx - mL4 f HxL „ x. 

The  characteristic  function  CharacteristicFunction@dist, tD  is  given  by  f HtL = Ÿ f HxL expHi t xL „ x.

In  the  discrete  case,  f HtL =⁄ f HxL expHi t xL.  Each  distribution  has  a  unique  characteristic  function,

which is sometimes used instead of the pdf to define a distribution. 

The expected value ExpectedValue@g, distD  of  a  function g  is  given by Ÿ f HxL gHxL „ x.  In the dis-

crete case, the expected value of g is given by ⁄ f HxL gHxL. ExpectedValue@g@xD, dist, xD is equiva-

lent to ExpectedValue@g, distD.

RandomReal@distD gives pseudorandom numbers from the specified distribution.

This gives a symbolic representation of the gamma distribution with a = 3 and b = 1. 

In[1]:= gdist = GammaDistribution@3, 1D

Out[1]= GammaDistribution@3, 1D

Here is the cumulative distribution function evaluated at 10. 

In[2]:= CDF@gdist, 10D

Out[2]= GammaRegularized@3, 0, 10D

This is the cumulative distribution function. It is given in terms of the built-in function 
GammaRegularized. 

In[3]:= cdfunction = CDF@gdist, xD

Out[3]= GammaRegularized@3, 0, xD

Here is a plot of the cumulative distribution function. 

In[4]:= Plot@cdfunction, 8x, 0, 10<D

Out[4]=

Mathematics and Algorithms     315

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0



This is a pseudorandom array with elements distributed according to the gamma distribution. 

In[5]:= RandomReal@gdist, 5D

Out[5]= 81.46446, 8.56359, 2.70647, 1.97748, 2.97108<

Partitioning Data into Clusters

Cluster  analysis  is  an  unsupervised  learning  technique  used  for  classification  of  data.  Data

elements are partitioned into groups called clusters that represent proximate collections of data

elements  based  on  a  distance  or  dissimilarity  function.  Identical  element  pairs  have  zero  dis-

tance or dissimilarity, and all others have positive distance or dissimilarity.

FindClusters@dataD partition data into lists of similar elements

FindClusters@data,nD partition data into exactly n lists of similar elements

General clustering function.

The data argument of FindClusters  can be a list of data elements or rules indexing elements

and labels.

8e1,e2,…< data specified as a list of data elements ei

8e1Øv1,e2Øv2,…< data specified as a list of rules between data elements ei 
and labels vi

8e1,e2,…<Ø8v1,v2,…< data specified as a rule mapping data elements ei to labels 
vi

Ways of specifying data in FindClusters.

The data elements ei  can be numeric lists, matrices, tensors, lists of True  and False  elements,

or lists of strings. All data elements ei must have the same dimensions.

Here is a list of numbers.

In[1]:= data = 81.2, 9.1, 2.3, 15.4, 71.8<;

FindClusters clusters the numbers based on their proximity.

In[2]:= FindClusters@dataD

Out[2]= 881.2, 2.3<, 89.1, 15.4<, 871.8<<

The  rule-based  data  syntax  allows  for  clustering  data  elements  and  returning  labels  for  those

elements.

316     Mathematics and Algorithms



The  rule-based  data  syntax  allows  for  clustering  data  elements  and  returning  labels  for  those

elements.

Here two-dimensional points are clustered and labeled with their positions in the data list.

In[3]:= data1 = 881, 2<, 83, 7<, 80, 3<, 83, 1<< ;
FindClusters@data1 -> Range@Length@data1DDD

Out[3]= 881, 3, 4<, 82<<

The rule-based data syntax can also be used to cluster data based on parts of each data entry.

For instance, you might want to cluster data in a data table while ignoring particular columns in

the table. 

Here is a list of data entries.

In[4]:= datarecords = 88"Joe", "Smith", 158, 64.4<, 8"Mary", "Davis", 137, 64.4<,
8"Bob", "Lewis", 141, 62.8<, 8"John", "Thompson", 235, 71.1<,
8"Lewis", "Black", 225, 71.4<, 8"Sally", "Jones", 168, 62.<,
8"Tom", "Smith", 243, 70.9<, 8"Jane", "Doe", 225, 71.4<<;

This clusters the data while ignoring the first two elements in each data entry.

In[5]:= FindClusters@Drop@datarecords, None, 81, 2<D Ø datarecordsD

Out[5]= 888Joe, Smith, 158, 64.4<, 8Sally, Jones, 168, 62.<<,
88Mary, Davis, 137, 64.4<, 8Bob, Lewis, 141, 62.8<<, 88John, Thompson, 235, 71.1<,
8Lewis, Black, 225, 71.4<, 8Tom, Smith, 243, 70.9<, 8Jane, Doe, 225, 71.4<<<

In  principle,  it  is  possible  to  cluster  points  given  in  an  arbitrary  number  of  dimensions.  How-

ever, it is difficult at best to visualize the clusters above two or three dimensions. To compare

optional methods in this documentation, an easily visualizable set of two-dimensional data will

be used.

The following commands define a set of 300 two-dimensional data points chosen to group into 
four somewhat nebulous clusters.

In[6]:= GaussianRandomData@n_Integer, p_, sigma_D := TableAp + 8Re@ÒD, Im@ÒD< &A
RandomReal@NormalDistribution@0, sigmaDD ‰Â RandomReal@80,2 p<DE, 8n<E;

datapairs = BlockRandom@
SeedRandom@1234D;
Join@GaussianRandomData@100, 82, 1<, .3D,
GaussianRandomData@100, 81, 1.5<, .2D,
GaussianRandomData@100, 81, 1.1<, .4D,
GaussianRandomData@100, 81.75, 1.75<, 0.1DDD;

This clusters the data based on the proximity of points.

In[7]:= cl = FindClusters@datapairsD;

Mathematics and Algorithms     317



Here is a plot of the clusters.

In[8]:= ListPlot@clD

Out[8]=

With the default settings, FindClusters has found the four clusters of points. 

You can also direct FindClusters to find a specific number of clusters.

This shows the effect of choosing 3 clusters.

In[9]:= ListPlot@FindClusters@datapairs, 3DD

Out[9]=

This shows the effect of choosing 5 clusters.

In[10]:= ListPlot@FindClusters@datapairs, 5DD

Out[10]=

option name default value

DistanceFunction Automatic the distance or dissimilarity measure to use

Method Automatic the clustering method to use

Options for FindClusters.

Randomness  is  used  in  clustering  in  two  different  ways.  Some  of  the  methods  use  a  random

assignment  of  some  points  to  a  specific  number  of  clusters  as  a  starting  point.  Randomness

may  also  be  used  to  help  determine  what  seems  to  be  the  best  number  of  clusters  to  use.

Changing  the  random  seed  for  generating  the  randomness  by  using

FindClusters@8e1, e2, …<, Method Ø 8Automatic, "RandomSeed" -> s<D  may  lead  to  different

results for some cases.

318     Mathematics and Algorithms

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0



Randomness  is  used  in  clustering  in  two  different  ways.  Some  of  the  methods  use  a  random

assignment  of  some  points  to  a  specific  number  of  clusters  as  a  starting  point.  Randomness

may  also  be  used  to  help  determine  what  seems  to  be  the  best  number  of  clusters  to  use.

Changing  the  random  seed  for  generating  the  randomness  by  using

FindClusters@8e1, e2, …<, Method Ø 8Automatic, "RandomSeed" -> s<D  may  lead  to  different

results for some cases.

In  principle,  clustering  techniques  can  be  applied  to  any  set  of  data.  All  that  is  needed  is  a

measure  of  how far  apart  each  element  in  the  set  is  from other  elements,  that  is,  a  function

giving the distance between elements.

FindClusters@8e1, e2, …<, DistanceFunction -> fD  treats  pairs  of  elements  as  being  less

similar when their distances f@ei, e jD are larger. The function f  can be any appropriate distance

or dissimilarity function. A dissimilarity function f  satisfies the following:

f Hei, eiL = 0
f Iei, e jM ¥ 0
f Iei, e jM = f Ie j, eiM

If the ei are vectors of numbers, FindClusters by default uses a squared Euclidean distance. If

the ei are lists of Boolean True and False  (or 0 and 1) elements, FindClusters by default uses

a dissimilarity based on the normalized fraction of elements that disagree. If the ei  are strings,

FindClusters  by  default  uses  a  distance  function  based  on  the  number  of  point  changes

needed to get from one string to another.

EuclideanDistance@u,vD the Euclidean norm ⁄Hu - vL2

SquaredEuclideanDistance@u,vD squared Euclidean norm ⁄Hu - vL2

ManhattanDistance@u,vD the Manhattan distance ⁄†u - v§

ChessboardDistance@u,vD the chessboard or Chebyshev distance maxH†u - v§L
CanberraDistance@u,vD the Canberra distance ⁄†u - v§ ê H†u§ + †v§L

CosineDistance@u,vD the cosine distance 1 - u.v ê H°u¥ °v¥L
CorrelationDistance@u,vD the correlation distance 

1 - Hu - Mean@uDL.Hv - Mean@vDL ê
H°u - Mean@uD¥ °v - Mean@vD¥L

 

BrayCurtisDistance@u,vD the Bray|Curtis distance ⁄†u - v§ ê⁄†u + v§

Distance functions for numerical data.

This shows the clusters in datapairs found using a Manhattan distance.

Mathematics and Algorithms     319



This shows the clusters in datapairs found using a Manhattan distance.

In[11]:= ListPlot@FindClusters@datapairs, DistanceFunction Ø ManhattanDistanceDD

Out[11]=

Dissimilarities  for  Boolean  vectors  are  typically  calculated  by  comparing  the  elements  of  two

Boolean  vectors  u  and  v  pairwise.  It  is  convenient  to  summarize  each  dissimilarity  function  in

terms of ni j, where ni j  is the number of corresponding pairs of elements in u and v, respectively,

equal  to  i  and  j.  The  number  ni j  counts  the  pairs  8i, j<  in  8u1, v1<, 8u2, v2< …,  with  i  and  j  being

either 0 or 1. If the Boolean values are True  and False, True  is equivalent to 1 and False  is

equivalent to 0.

MatchingDissimilarity@u,vD simple matching Hn10 + n01L ê Length@uD

JaccardDissimilarity@u,vD the Jaccard dissimilarity Hn10 + n01L ê Hn11 + n10 + n01L

RussellRaoDissimilarity@u,vD the Russell|Rao dissimilarity Hn10 + n01 + n00L ê Length@uD

SokalSneathDissimilarity@u,vD the Sokal|Sneath dissimilarity 2 Hn10 + n01L ê Hn11 + 2 Hn10 + n01LL

RogersTanimotoDissimilarity@
u,vD

the Rogers|Tanimoto dissimilarity 
2 Hn10 + n01L ê Hn11 + 2 Hn10 + n01L + n00L

DiceDissimilarity@u,vD the dice dissimilarity Hn10 + n01L ê H2 n11 + n10 + n01L

YuleDissimilarity@u,vD the Yule dissimilarity 2 n10 n01 ê Hn11 n00 + n10 n01L

Dissimilarity functions for Boolean data.

Here is some Boolean data.

In[12]:= bdata = 88False, False, False, False, False, True, False, False, True, True<,
8True, False, False, False, False, False, False, False, False, True<,
8True, False, False, True, False, False, True, False, True, True<,
8True, True, False, False, True, False, False, False, True, True<,
8True, True, False, False, True, True, True, True, True, True<<;

These are the clusters found using the default dissimilarity for Boolean data.

In[13]:= FindClusters@bdataD

Out[13]= 888False, False, False, False, False, True, False, False, True, True<<,
88True, False, False, False, False, False, False, False, False, True<,
8True, False, False, True, False, False, True, False, True, True<,
8True, True, False, False, True, False, False, False, True, True<,
8True, True, False, False, True, True, True, True, True, True<<<

320     Mathematics and Algorithms

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0



EditDistance@u,vD the number of edits to transform u into string v

DamerauLevenshteinDistance@u,vD Damerau|Levenshtein distance between u and v

HammingDistance@u,vD the number of elements whose values disagree in u and v

Dissimilarity functions for string data.

The edit  distance is determined by counting the number of deletions, insertions, and substitu-

tions required to transform one string into another while preserving the ordering of characters.

In  contrast,  the  Damerau|Levenshtein  distance  counts  the  number  of  deletions,  insertions,

substitutions, and transpositions, while the Hamming distance counts only the number of substi-

tutions. 

Here is some string data.

In[14]:= sdata = 8"The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"<;

This clusters the string data using the edit distance.

In[15]:= FindClusters@sdataD

Out[15]= 88The, fox, over, the, lazy, dog<, 8quick, brown, jumps<<

The Method option can be used to specify different methods of clustering.

"Agglomerate" find clustering hierarchically

"Optimize" find clustering by local optimization

Explicit settings for the Method option.

The methods "Agglomerate" and "Optimize" determine how to cluster the data for a particular

number of  clusters  k.  "Agglomerate"  uses an agglomerative hierarchical  method starting with

each  member  of  the  set  in  a  cluster  of  its  own  and  fusing  nearest  clusters  until  there  are  k

remaining.  "Optimize"  starts  by  building  a  set  of  k  representative  objects  and  clustering

around  those,  iterating  until  a  (locally)  optimal  clustering  is  found.  The  default  "Optimize"

method is based on partitioning around medoids.

Additional Method  suboptions are available to allow for more control over the clustering. Avail-

able suboptions depend on the Method chosen.

"SignificanceTest" test for identifying the best number of clusters

Suboption for all methods.

For a given set of data and distance function, the choice of the best number of clusters k  may

be  unclear.  With  Method -> 8methodname, "SignificanceTest" -> "stest"<,  "stest"  is  used  to

determine  statistically  significant  clusters  to  help  choose  an  appropriate  number.  Possible

values  of  "stest"  are  "Silhouette"  and  "Gap".  The  "Silhouette"  test  uses  the  silhouette

statistic  to test  how well  the data is  clustered. The "Gap"  test  uses the gap statistic  to deter-

mine how well the data is clustered.

Mathematics and Algorithms     321



For a given set of data and distance function, the choice of the best number of clusters k  may

be  unclear.  With  Method -> 8methodname, "SignificanceTest" -> "stest"<,  "stest"  is  used  to

determine  statistically  significant  clusters  to  help  choose  an  appropriate  number.  Possible

values  of  "stest"  are  "Silhouette"  and  "Gap".  The  "Silhouette"  test  uses  the  silhouette

statistic  to test  how well  the data is  clustered. The "Gap"  test  uses the gap statistic  to deter-

mine how well the data is clustered.

The "Silhouette" test subdivides the data into successively more clusters looking for the first

minimum of the silhouette statistic.

The  "Gap"  test  compares  the  dispersion  of  clusters  generated  from  the  data  to  that  derived

from  a  sample  of  null  hypothesis  sets.  The  null  hypothesis  sets  are  uniformly  randomly  dis-

tributed  data  in  the  box  defined  by  the  principal  components  of  the  input  data.  The  "Gap"

method  takes  two  suboptions:  "NullSets"  and  "Tolerance".  The  suboption  "NullSets"  sets

the  number  of  null  hypothesis  sets  to  compare  with  the  input  data.  The  option  "Tolerance"

sets the sensitivity. Typically larger values of "Tolerance" will  favor fewer clusters being cho-

sen. The default settings are "NullSets" -> 5 and "Tolerance" -> 1.

This shows the result of clustering datapairs using the "Silhouette" test.

In[16]:= ListPlot@FindClusters@datapairs,
Method Ø 8Automatic, "SignificanceTest" -> "Silhouette"<DD

Out[16]=

Here are the clusters found using the "Gap" test with the tolerance parameter set to 3. The 
larger value leads to fewer clusters being selected.

In[17]:= ListPlot@FindClusters@datapairs,
Method Ø 8Automatic, "SignificanceTest" Ø 8"Gap", "Tolerance" Ø 3<<DD

Out[17]=

Note that the clusters found in these two examples are identical. The only difference is how the

number of clusters is chosen.

322     Mathematics and Algorithms

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0



Note that the clusters found in these two examples are identical. The only difference is how the

number of clusters is chosen.

"Linkage" the clustering linkage to use

Suboption for the "Agglomerate" method.

With Method -> 8"Agglomerate", "Linkage" -> f<,  the specified linkage function f  is  used for

agglomerative clustering. 

"Single" smallest intercluster dissimilarity

"Average" average intercluster dissimilarity

"Complete" largest intercluster dissimilarity

"WeightedAverage" weighted average intercluster dissimilarity

"Centroid" distance from cluster centroids

"Median" distance from cluster medians 

"Ward" Ward's minimum variance dissimilarity

f a pure function

Possible values for the "Linkage" suboption.

Linkage methods determine this intercluster dissimilarity,  or fusion level,  given the dissimilari-

ties between member elements. 

With Linkage -> f , f  is a pure function that defines the linkage algorithm. Distances or dissimi-

larities  between  clusters  are  determined  recursively  using  information  about  the  distances  or

dissimilarities  between  unmerged  clusters  to  determine  the  distances  or  dissimilarities  for  the

newly  merged  cluster.  The  function  f  defines  a  distance  from  a  cluster  k  to  the  new  cluster

formed  by  fusing  clusters  i  and  j.  The  arguments  supplied  to  f  are  dik,  d jk,  dij,  ni,  n j,  and  nk,

where d is the distance between clusters and n is the number of elements in a cluster.

These are the clusters found using complete linkage hierarchical clustering.

In[18]:= ListPlot@FindClusters@datapairs, Method Ø 8"Agglomerate", "Linkage" Ø "Complete"<DD

Out[18]=

Mathematics and Algorithms     323

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0



"Iterations" the maximum number of iterations to use

Suboption for the "Optimize" method.

Here are the clusters determined from a single iteration of the "Optimize" method.

In[19]:= ListPlot@FindClusters@datapairs, Method Ø 8"Optimize", "Iterations" Ø 1<DD

Out[19]=

Using Nearest

Nearest is used to find elements in a list that are closest to a given data point.

Nearest@8elem1,elem2,…<,xD give the list of elemi to which x is nearest

Nearest@8elem1->v1,elem2->v2,…<,xD

give the vi corresponding to the elemi to which x is nearest

Nearest@8elem1,elem2,…<->8v1,v2,…<,xD

give the same result

NearestA8elem1,elem2,…<->Automatic,xE

take the vi to be the integers 1, 2, 3, …

Nearest@data,x,nD give the n nearest elements to x

Nearest@data,x,8n,r<D give up to the n nearest elements to x within a radius r

Nearest@dataD generate a NearestFunction@…D which can be applied 
repeatedly to different x

Nearest function.

Nearest works with numeric lists, tensors, or a list of strings.

This finds the elements nearest to 4.5.

In[1]:= Nearest@81, 2, 3, 4, 5, 6, 7, 8<, 4.5D

Out[1]= 84, 5<

This finds 3 elements nearest to 4.5.

324     Mathematics and Algorithms

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0



This finds 3 elements nearest to 4.5.

In[2]:= Nearest@81, 2, 3, 4, 5, 6, 7, 8<, 4.5, 3D

Out[2]= 84, 5, 3<

This finds all elements nearest to 4.5 within a radius of 2.

In[3]:= Nearest@81, 2, 3, 4, 5, 6, 7, 8<, 4.5, 8Infinity, 2<D

Out[3]= 84, 5, 3, 6<

This finds the points nearest to 81, 2< in 2D.

In[4]:= Nearest@881, 1<, 82, 2<, 83, 3<<, 81, 2<D

Out[4]= 881, 1<, 82, 2<<

This finds the nearest string to "cat".

In[5]:= Nearest@8"bat", "sad", "cake"<, "cat"D

Out[5]= 8bat<

The rule-based data syntax lets you use nearest elements to return their labels.

Here two-dimensional points are labeled.

In[6]:= Nearest@881, 1< Ø a, 82, 2< Ø b, 83, 3< Ø c<, 81, 2<D

Out[6]= 8a, b<

In[7]:= Nearest@881, 1<, 82, 2<, 83, 3<< Ø 8a, b, c<, 81, 2<D

Out[7]= 8a, b<

This labels the elements using successive integers.

In[8]:= Nearest@881, 1<, 82, 2<, 83, 3<, 84, 5<, 87, 7<< Ø Automatic, 84, 4<D

Out[8]= 84<

If  Nearest  is  to  be  applied  repeatedly  to  the  same  numerical  data,  you  can  get  significant

performance gains by first generating a NearestFunction.

This generates a set of 10,000 points in 2D and a NearestFunction.

In[9]:= pts = RandomReal@1, 810000, 2<D;
nf = Nearest@ptsD

Out[9]= NearestFunction@810000, 2<, <>D

This finds points in the set that are closest to the 10 target points.

Mathematics and Algorithms     325



This finds points in the set that are closest to the 10 target points.

In[10]:= target = RandomReal@1, 810, 2<D;
res = Map@nf, targetD; êê Timing

Out[10]= 94.85723µ10-16, Null=

It takes much longer if NearestFunction is not used.

In[11]:= res2 = Map@Nearest@pts, ÒD &, targetD; êê Timing

Out[11]= 80.504032, Null<

In[12]:= res ã res2

Out[12]= True

option name default value

DistanceFunction Automatic the distance metric to use 

Option for Nearest.

For  numerical  data,  by  default  Nearest  uses  the  EuclideanDistance.  For  strings,

EditDistance is used.

Manipulating Numerical Data

When  you  have  numerical  data,  it  is  often  convenient  to  find  a  simple  formula  that  approxi-

mates it. For example, you can try to "fit" a line or curve through the points in your data. 

FitA9y1,y2,…=,9 f1 , f2,…=,xE fit the values yn to a linear combination of functions fi

FitA99x1,y1=,9x2,
y2=,…=,9 f1 , f2,…=,xE

fit the points Hxn, ynL to a linear combination of the fi

Fitting curves to linear combinations of functions. 

This generates a table of the numerical values of the exponential function. Table is discussed 
in "Making Tables of Values". 

In[1]:= data = Table@Exp@x ê 5.D, 8x, 7<D

Out[1]= 81.2214, 1.49182, 1.82212, 2.22554, 2.71828, 3.32012, 4.0552<

326     Mathematics and Algorithms



This finds a least-squares fit to data of the form c1 + c2 x + c3 x2. The elements of data are 
assumed to correspond to values 1, 2, ... of x. 

In[2]:= Fit@data, 81, x, x^2<, xD

Out[2]= 1.09428 + 0.0986337 x + 0.0459482 x2

This finds a fit of the form c1 + c2 x + c3 x3 + c4 x5. 
In[3]:= Fit@data, 81, x, x^3, x^5<, xD

Out[3]= 0.96806 + 0.246829 x + 0.00428281 x3 - 6.57948µ10-6 x5

This gives a table of x, y pairs. 

In[4]:= data = Table@8x, Exp@Sin@xDD<, 8x, 0., 1., 0.2<D

Out[4]= 880., 1.<, 80.2, 1.21978<, 80.4, 1.47612<, 80.6, 1.75882<, 80.8, 2.04901<, 81., 2.31978<<

This finds a fit to the new data, of the form c1 + c2 sin HxL + c3 sin H2 xL. 
In[5]:= Fit@%, 81, Sin@xD, Sin@2 xD<, xD

Out[5]= 0.989559 + 2.04199 Sin@xD - 0.418176 Sin@2 xD

FindFit@data, form,8p1,p2,…<,xD

find a fit to form with parameters pi

Fitting data to general forms. 

This finds the best parameters for a linear fit. 

In[6]:= FindFit@data, a + b x + c x^2, 8a, b, c<, xD

Out[6]= 8a Ø 0.991251, b Ø 1.16421, c Ø 0.174256<

This does a nonlinear fit. 

In[7]:= FindFit@data, a + b^Hc + d xL, 8a, b, c, d<, xD

Out[7]= 8a Ø -3.65199, b Ø 1.65838, c Ø 3.03496, d Ø 0.50107<

One common way of picking out "signals" in numerical data is to find the Fourier transform, or

frequency spectrum, of the data. 

Fourier@dataD numerical Fourier transform

InverseFourier@dataD inverse Fourier transform

Fourier transforms. 

Here is a simple square pulse. 

Mathematics and Algorithms     327



Here is a simple square pulse. 

In[8]:= data = 81, 1, 1, 1, -1, -1, -1, -1<

Out[8]= 81, 1, 1, 1, -1, -1, -1, -1<

This takes the Fourier transform of the pulse. 

In[9]:= Fourier@dataD

Out[9]= 80. + 0. Â, 0.707107 + 1.70711 Â, 0. + 0. Â, 0.707107 + 0.292893 Â,
0. + 0. Â, 0.707107 - 0.292893 Â, 0. + 0. Â, 0.707107 - 1.70711 Â<

Note  that  the  Fourier  function  in  Mathematica  is  defined  with  the  sign  convention  typically

used in the physical sciences~opposite to the one often used in electrical engineering. "Fourier

Transforms" gives more details. 

Curve Fitting

There are many situations where one wants to find a formula that best fits a given set of data.

One way to do this in Mathematica is to use Fit. 

Fit@8 f1, f2,…<,8 fun1, fun2,…<,xD find a linear combination of the funi that best fits the 

values fi

Basic linear fitting. 

Here is a table of the first 20 primes. 

In[1]:= fp = Table@Prime@xD, 8x, 20<D

Out[1]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71<

Here is a plot of this "data". 

In[2]:= gp = ListPlot@fpD

Out[2]=

5 10 15 20

10

20

30

40

50

60

70

This gives a linear fit to the list of primes. The result is the best linear combination of the 
functions 1 and x.

328     Mathematics and Algorithms



This gives a linear fit to the list of primes. The result is the best linear combination of the 
functions 1 and x.

In[3]:= Fit@fp, 81, x<, xD

Out[3]= -7.67368 + 3.77368 x

Here is a plot of the fit. 

In[4]:= Plot@%, 8x, 0, 20<D

Out[4]=

5 10 15 20

10

20

30

40

50

60

Here is the fit superimposed on the original data. 

In[5]:= Show@%, gpD

Out[5]=

5 10 15 20

10

20

30

40

50

60

This gives a quadratic fit to the data. 

In[6]:= Fit@fp, 81, x, x^2<, xD

Out[6]= -1.92368 + 2.2055 x + 0.0746753 x2

Mathematics and Algorithms     329



Here is a plot of the quadratic fit. 

In[7]:= Plot@%, 8x, 0, 20<D

Out[7]=

5 10 15 20

10

20

30

40

50

60

70

This shows the fit superimposed on the original data. The quadratic fit is better than the linear 
one. 

In[8]:= Show@%, gpD

Out[8]=

5 10 15 20

10

20

30

40

50

60

70

8 f1, f2,…< data points obtained when a single coordinate takes on 
values 1, 2, …

88x1, f1<,8x2, f2<,…< data points obtained when a single coordinate takes on 
values x1, x2, …

88x1,y1,…, f1<,8x2,y2,…, f2<,…< data points obtained with values xi, yi, … of a sequence of 
coordinates

Ways of specifying data. 

If you give data in the form 8 f1, f2, …< then Fit will assume that the successive fi  correspond to

values of  a function at  successive integer points  81, 2, …<.  But  you can also give Fit  data that

corresponds to the values of a function at arbitrary points, in one or more dimensions. 

Fit@data,8 fun1, fun2,…<,8x,y,…<D fit to a function of several variables

Multivariate fitting. 

This gives a table of the values of x, y and 1 + 5 x - x y. You need to use Flatten to get it in the 
right form for Fit. 

330     Mathematics and Algorithms



This gives a table of the values of x, y and 1 + 5 x - x y. You need to use Flatten to get it in the 
right form for Fit. 

In[9]:= Flatten@Table@8x, y, 1 + 5 x - x y<, 8x, 0, 1, 0.4<, 8y, 0, 1, 0.4<D, 1D

Out[9]= 880., 0., 1.<, 80., 0.4, 1.<, 80., 0.8, 1.<, 80.4, 0., 3.<, 80.4, 0.4, 2.84<,
80.4, 0.8, 2.68<, 80.8, 0., 5.<, 80.8, 0.4, 4.68<, 80.8, 0.8, 4.36<<

This produces a fit to a function of two variables. 

In[10]:= Fit@%, 81, x, y, x y<, 8x, y<D

Out[10]= 1. + 5. x + 5.21108µ10-15 y - 1. x y

Fit  takes  a  list  of  functions,  and  uses  a  definite  and  efficient  procedure  to  find  what  linear

combination of these functions gives the best least-squares fit  to your data. Sometimes, how-

ever, you may want to find a nonlinear fit that does not just consist of a linear combination of

specified  functions.  You  can  do  this  using  FindFit,  which  takes  a  function  of  any  form,  and

then searches for values of parameters that yield the best fit to your data. 

FindFit@data, form,
8par1,par2,…<,xD

search for values of the pari that make form best fit data

FindFit@data, form,pars,8x,y,…<D fit multivariate data

Searching for general fits to data. 

This fits the list of primes to a simple linear combination of terms. 

In[11]:= FindFit@fp, a + b x + c Exp@xD, 8a, b, c<, xD

Out[11]= 9a Ø -6.78932, b Ø 3.64309, c Ø 1.26883µ10-8=

The result is the same as from Fit. 

In[12]:= Fit@fp, 81, x, Exp@xD<, xD

Out[12]= -6.78932 + 1.26883µ10-8 ‰x + 3.64309 x

This fits to a nonlinear form, which cannot be handled by Fit. 

In[13]:= FindFit@fp, a x Log@b + c xD, 8a, b, c<, xD

Out[13]= 8a Ø 1.42076, b Ø 1.65558, c Ø 0.534645<

By default, both Fit and FindFit  produce least-squares fits, which are defined to minimize the

quantity c2 =⁄i ri 2, where the ri  are residuals giving the difference between each original data 

NormFunction -> u,  then  FindFit  will  attempt  to  find  the  fit  that  minimizes  the

quantity u@rD, where r is the list of residuals. The default is NormFunction -> Norm, correspond-

ing to a least-squares fit.

Mathematics and Algorithms     331



By default, both Fit and FindFit  produce least-squares fits, which are defined to minimize the

quantity c2 = r 2, where the ri  are residuals giving the difference between each original data

point and its fitted value. One can, however, also consider fits based on other norms. If you set

the  option  NormFunction -> u,  then  FindFit  will  attempt  to  find  the  fit  that  minimizes  the

quantity u@rD, where r is the list of residuals. The default is NormFunction -> Norm, correspond-

ing to a least-squares fit.

This uses the ¶-norm, which minimizes the maximum distance between the fit and the data. 
The result is slightly different from least-squares. 

In[14]:= FindFit@fp, a x Log@b + c xD, 8a, b, c<, x, NormFunction -> HNorm@Ò, InfinityD &LD

Out[14]= 8a Ø 1.15077, b Ø 1.0023, c Ø 1.04686<

FindFit  works  by  searching  for  values  of  parameters  that  yield  the  best  fit.  Sometimes  you

may have to tell it where to start in doing this search. You can do this by giving parameters in

the form 88a, a0<, 8b, b0<, …<.  FindFit  also has various options that you can set to control how it

does its search. 

FindFit@data,
8 form,cons<,pars,varsD

finds a best fit subject to the parameter constraints cons

Searching for general fits to data. 

This gives a best fit subject to constraints on the parameters.

In[15]:= FindFit@fp, 8a x Log@b + c xD, 80 <= a <= 1, 0 <= b § 1, c ¥ 1<<, 8a, b, c<, xD

Out[15]= 9a Ø 1., b Ø 1.34569µ10-9, c Ø 1.69145=

option name default value
NormFunction Norm the norm to use
AccuracyGoal Automatic number of digits of accuracy to try to get
PrecisionGoal Automatic number of digits of precision to try to get
WorkingPrecision Automatic precision to use in internal computations
MaxIterations Automatic maximum number of iterations to use
StepMonitor None expression to evaluate whenever a step is 

taken
EvaluationMonitor None expression to evaluate whenever form is 

evaluated
Method Automatic method to use

Options for FindFit.

332     Mathematics and Algorithms



Statistical Model Analysis

When fitting models of data, it is often useful to analyze how well the model fits the data and

how well the fitting meets assumptions of the fitting. For a number of common statistical mod-

els, this is accomplished in Mathematica by way of fitting functions that construct FittedModel

objects.

FittedModel represents a symbolic fitted model

Object for fitted model information.

FittedModel  objects can be evaluated at a point or queried for results and diagnostic informa-

tion. Diagnostics vary somewhat across model types. Available model fitting functions fit linear,

generalized linear, and nonlinear models.

LinearModelFit constructs a linear model

GeneralizedLinearModelFit constructs a generalized linear model

LogitModelFit constructs a binomial logistic regression model

ProbitModelFit constructs a binomial probit regression model

NonlinearModelFit constructs a nonlinear least-squares model

Functions that generate FittedModel  objects.

This fits a linear model assuming x values 1, 2, ….

In[1]:= lm = LinearModelFit@81.5, 3.4, 7.1, 8.3, 10.4<, x, xD

Out[1]= FittedModelB -0.67+2.27 x F

Here is the functional form of the fitted model.

In[2]:= Normal@lmD

Out[2]= -0.67 + 2.27 x

This evaluates the model for x = 2.5.

In[3]:= lm@2.5D

Out[3]= 5.005

Mathematics and Algorithms     333



Here is a shortened list of available results for the linear fitted model.

In[4]:= lm@"Properties"D êê Short

Out[4]//Short= 8AdjustedRSquared, AIC, á58à, StudentizedResiduals, VarianceInflationFactors<

The  major  difference  between  model  fitting  functions  such  as  LinearModelFit  and  functions

such  as  Fit  and  FindFit  is  the  ability  to  easily  obtain  diagnostic  information  from  the

FittedModel objects. The results are accessible without refitting the model.

This gives the residuals for the fitting.

In[5]:= lm@"FitResiduals"D

Out[5]= 8-0.1, -0.47, 0.96, -0.11, -0.28<

Here multiple results are obtained at once.

In[6]:= lm@8"BestFitParameters", "ANOVATable"<D

Out[6]= :8-0.67, 2.27<,

DF SS MS F Statistic P-Value

x 1 51.529 51.529 124.366 0.00154521
Error 3 1.243 0.414333
Total 4 52.772

>

Fitting  options  relevant  to  property  computations  can  be  passed  to  FittedModel  objects  to

override defaults.

This gives default 95% confidence intervals.

In[7]:= lm@"ParameterConfidenceIntervals"D

Out[7]= 88-2.81849, 1.47849<, 81.62221, 2.91779<<

Here 90% intervals are obtained.

In[8]:= lm@"ParameterConfidenceIntervals", ConfidenceLevel Ø .9D

Out[8]= 88-2.25877, 0.918767<, 81.79097, 2.74903<<

Typical data for these model fitting functions takes the same form as data in other fitting func-

tions such as Fit and FindFit. 

8y1,y2,…< data points with a single predictor variable taking values 1, 
2, …

88x11,x12,…,y1<,8x21,x22,…,y2<,…< data points with explicit coordinates

Data specifications.

Linear Models

334     Mathematics and Algorithms



Linear Models

Linear  models  with  assumed  independent  normally  distributed  errors  are  among  the  most

common models for data. Models of this type can be fitted using the LinearModelFit function.

LinearModelFit@
8y1,y2,…<,8 f1, f2,…<,xD

obtain a linear model with basis functions fi and a single 
predictor variable x

LinearModelFit@
88x11,x12,…,y1<,8x21,x22,…,y2<<,
8 f1, f2,…<,8x1,x2,…<D

obtain a linear model of multiple predictor variables xi

LinearModelFit@8m,v<D obtain a linear model based on a design matrix m and 
response vector v

Linear model fitting.

Linear models have the form y` = b0 + b1 f1 + b2 f2 + where y`  is the fitted or predicted value, the

bi  are parameters to be fitted, and the fi  are functions of the predictor variables xi. The models

are  linear  in  the  parameters  bi.  The  fi  can  be  any  functions  of  the  predictor  variables.  Quite

often the fi are simply the predictor variables xi.

This fits a linear model to the first 20 primes.

In[9]:= lm = LinearModelFit@Array@Prime, 20D, x, xD

Out[9]= FittedModelB -7.67368+3.77368 x F

Options for model specification and for model analysis are available.

option name default value
ConfidenceLevel 95ê100 confidence level to use for parameters and 

predictions
IncludeConstantBasis True whether to include a constant basis function
LinearOffsetFunction None known offset in the linear predictor
NominalVariables None variables considered as nominal or 

categorical
VarianceEstimatorFunction Automatic function for estimating the error variance
Weights Automatic weights for data elements
WorkingPrecision Automatic precision used in internal computations

Options for LinearModelFit.

The  Weights  option  specifies  weight  values  for  weighted  linear  regression.  The

NominalVariables  option  specifies  which  predictor  variables  should  be  treated  as  nominal  or

categorical.  With  NominalVariables -> All,  the  model  is  an  analysis  of  variance  (ANOVA)

model. With NominalVariables -> 8x1, …, xi-1, xi+1, …, xn< the model is an analysis of covari-

ance  (ANCOVA)  model  with  all  but  the  ith  predictor  treated  as  nominal.  Nominal  variables  are

represented by a collection of binary variables indicating equality and inequality to the observed

nominal categorical values for the variable.

Mathematics and Algorithms     335



The  Weights  option  specifies  weight  values  for  weighted  linear  regression.  The

NominalVariables  option  specifies  which  predictor  variables  should  be  treated  as  nominal  or

categorical.  With  NominalVariables -> All,  the  model  is  an  analysis  of  variance  (ANOVA)

model. With NominalVariables -> 8x1, …, xi-1, xi+1, …, xn< the model is an analysis of covari-

ance  (ANCOVA)  model  with  all  but  the  ith  predictor  treated  as  nominal.  Nominal  variables  are

represented by a collection of binary variables indicating equality and inequality to the observed

nominal categorical values for the variable.

ConfidenceLevel,  VarianceEstimatorFunction,  and  WorkingPrecision  are  relevant  to  the

computation of results after the initial fitting. These options can be set within LinearModelFit

to specify the default settings for results obtained from the FittedModel  object. These options

can also be set within an already constructed FittedModel  object to override the option values

originally given to LinearModelFit.

Here are the default and mean squared error variance estimates.

In[10]:= 8lm@"EstimatedVariance"D,
lm@"EstimatedVariance", VarianceEstimatorFunction Ø HMean@Ò^2D &LD<

Out[10]= 86.71608, 6.04447<

IncludeConstantBasis,  LinearOffsetFunction,  NominalVariables,  and  Weights  are  rele-

vant only to the fitting. Setting these options within an already constructed FittedModel  object

will have no further impact on the result.

A major feature of the model fitting framework is the ability to obtain results after the fitting.

The full list of available results can be obtained from the "Properties" value.

This is the number of properties available for linear models.

In[11]:= lm@"Properties"D êê Length

Out[11]= 62

The properties include basic information about the data, fitted model, and numerous results and

diagnostics.

"BestFit" fitted function

"BestFitParameters" parameter estimates

"Data" the input data or design matrix and response vector

336     Mathematics and Algorithms



"DesignMatrix" design matrix for the model

"Function" best-fit pure function

"Response" response values in the input data

Properties related to data and the fitted function.

The "BestFitParameters"  property gives the fitted parameter values 8b0, b1, …<.  "BestFit"

is  the  fitted  function   b0 + b1 f1 + b2 f2 +  and  "Function"  gives  the  fitted  function  as  a  pure

function. The "DesignMatrix" is the design or model matrix for the data. "Response" gives the

list of the response or y values from the original data.

"FitResiduals" difference between actual and predicted responses

"StandardizedResiduals" fit residuals divided by the standard error for each residual

"StudentizedResiduals" fit residuals divided by single deletion error estimates

Types of residuals.

Residuals give a measure of the point-wise difference between the fitted values and the original

responses.  "FitResiduals"  gives  the  differences  between  the  observed  and  fitted  values

8y1 - y
`
1, y2 - y

`
2, …<. "StandardizedResiduals" and "StudentizedResiduals" are scaled forms

of  the  residuals.  The  ith  standardized  residual  is  Hyi - y
`
iL ê s

`2
H1 - hiiL ê wi  where  s`2  is  the

estimated error variance, hii  is the ith  diagonal element of the hat matrix, and wi  is the weight

for  the  ith  data  point.  The  ith  studentized  residual  uses  the  same formula  with  s`2  replaced  by

s
`
HiL
2, the variance estimate omitting the ith data point.

"ANOVATable" analysis of variance table

"ANOVATableDegreesOfFreedom" degrees of freedom from the ANOVA table

"ANOVATableEntries" unformatted array of values from the table

"ANOVATableFStatistics" F statistics from the table

"ANOVATableMeanSquares" mean square errors from the table

"ANOVATablePValues" p-values from the table

"ANOVATableSumsOfSquares" sums of squares from the table

"CoefficientOfVariation" response mean divided by the estimated standard deviation

Mathematics and Algorithms     337



"EstimatedVariance" estimate of the error variance

"PartialSumOfSquares" changes in model sum of squares as nonconstant basis 
functions are removed

"SequentialSumOfSquares" the model sum of squares partitioned componentwise

Properties related to the sum of squared errors.

"ANOVATable"  gives  a  formatted  analysis  of  variance  table  for  the  model.

"ANOVATableEntries"  gives  the  numeric  entries  in  the  table  and  the  remaining  ANOVATable

properties give the elements of columns in the table so individual parts of the table can easily

be used in further computations.

This gives a formatted ANOVA table for the fitted model.

In[12]:= lm@"ANOVATable"D

Out[12]=

DF SS MS F Statistic P-Value

x 1 9470.06 9470.06 1410.06 1.49794µ10-18

Error 18 120.889 6.71608
Total 19 9590.95

Here are the elements of the MS column of the table.

In[13]:= lm@"ANOVATableMeanSquares"D

Out[13]= 89470.06, 6.71608<

"CorrelationMatrix" parameter correlation matrix

"CovarianceMatrix" parameter covariance matrix

"EigenstructureTable" eigenstructure of the parameter correlation matrix

"EigenstructureTableEigenvaluÖ
es"

eigenvalues from the table

"EigenstructureTableEntries" unformatted array of values from the table

"EigenstructureTableIndexes" index values from the table

"EigenstructureTablePartitions
"

partitioning from the table

"ParameterConfidenceIntervals" parameter confidence intervals

"ParameterConfidenceIntervalTÖ
able"

table of confidence interval information for the fitted 
parameters

"ParameterConfidenceIntervalTÖ
ableEntries"

unformatted array of values from the table

"ParameterConfidenceRegion" ellipsoidal parameter confidence region

338     Mathematics and Algorithms



"ParameterErrors" standard errors for parameter estimates

"ParameterPValues" p-values for parameter t statistics

"ParameterTable" table of fitted parameter information

"ParameterTableEntries" unformatted array of values from the table

"ParameterTStatistics" t statistics for parameter estimates

"VarianceInflationFactors" list of inflation factors for the estimated parameters

Properties and diagnostics for parameter estimates.

"CovarianceMatrix" gives the covariance between fitted parameters. The matrix is s` 2 HXW XN
-1

where  s` 2  is  the  variance  estimate,  X  is  the  design  matrix,  and  W  is  the  diagonal  matrix  of

weights.  "CorrelationMatrix"  is  the  associated  correlation  matrix  for  the  parameter  esti-

mates.  "ParameterErrors"  is  equivalent  to  the  square  root  of  the  diagonal  elements  of  the

covariance matrix.

"ParameterTable"  and  "ParameterConfidenceIntervalTable"  contain  information  about  the

individual parameter estimates, tests of parameter significance, and confidence intervals.

Here is some data.

In[14]:= data = 888.71, 6.92, 18.89<, 86.05, 5.97, 15.08<, 86.24, 0.99, 5.92<,
88.25, 3.37, 11.39<, 86.58, 8.22, 20.77<, 84.14, 9., 21.09<, 84.35, 9.94, 24.32<,
88.99, 4.47, 13.79<, 82.82, 3.91, 10.68<, 85.14, 0.4, 3.82<<;

This fits a model using both predictor variables.

In[15]:= lm2 = LinearModelFit@data, 8x, y<, 8x, y<D

Out[15]= FittedModelB 1.40308+0.340391 x+2.08429 y F

These are the formatted parameter and parameter confidence interval tables.

In[16]:= lm2@8"ParameterTable", "ParameterConfidenceIntervalTable"<D

Out[16]= :

Estimate Standard Error t Statistic P-Value

1 1.40308 0.595477 2.35622 0.0506221
x 0.340391 0.0782093 4.35231 0.00334539
y 2.08429 0.0496681 41.9643 1.13829µ10-9

,

Estimate Standard Error Confidence Interval

1 1.40308 0.595477 8-0.00500488, 2.81116<
x 0.340391 0.0782093 80.155456, 0.525327<
y 2.08429 0.0496681 81.96684, 2.20174<

>

Here 99% confidence intervals are used in the table.

In[17]:= lm2@"ParameterConfidenceIntervalTable", ConfidenceLevel Ø .99D

Out[17]=

Estimate Standard Error Confidence Interval

1 1.40308 0.595477 8-0.680788, 3.48694<
x 0.340391 0.0782093 80.0666993, 0.614084<
y 2.08429 0.0496681 81.91048, 2.2581<

The Estimate column of these tables is equivalent to "BestFitParameters". The t statistics are

the  estimates  divided  by  the  standard  errors.  Each  p-value  is  the  two-sided  p-value  for  the  t

statistic and can be used to assess whether the parameter estimate is statistically significantly

different from 0. Each confidence interval gives the upper and lower bounds for the parameter

confidence  interval  at  the  level  prescribed  by  the  ConfidenceLevel  option.  The  various

ParameterTable  and  ParameterConfidenceIntervalTable  properties  can  be  used  to  get  the

columns or the unformatted array of values from the table.

Mathematics and Algorithms     339



The Estimate column of these tables is equivalent to "BestFitParameters". The t statistics are

the  estimates  divided  by  the  standard  errors.  Each  p-value  is  the  two-sided  p-value  for  the  t

statistic and can be used to assess whether the parameter estimate is statistically significantly

different from 0. Each confidence interval gives the upper and lower bounds for the parameter

confidence  interval  at  the  level  prescribed  by  the  ConfidenceLevel  option.  The  various

ParameterTable  and  ParameterConfidenceIntervalTable  properties  can  be  used  to  get  the

columns or the unformatted array of values from the table.

"VarianceInflationFactors"  is  used  to  measure  the  multicollinearity  between  basis  func-

tions.  The  ith inflation  factor  is  equal  to  1ëI1 - Ri2M  where  Ri2  is  the  coefficient  of  variation  from

fitting  the  ith basis  function  to  a  linear  function  of  the  other  basis  functions.  With

IncludeConstantBasis -> True, the first inflation factor is for the constant term.

"EigenstructureTable"  gives  the  eigenvalues,  condition  indices,  and  variance  partitions  for

the  nonconstant  basis  functions.  The  Index  column  gives  the  square  root  of  the  ratios  of  the

eigenvalues to the largest eigenvalue. The column for each basis function gives the proportion

of  variation  in  that  basis  function  explained  by  the  associated  eigenvector.

"EigenstructureTablePartitions"  gives  the  values  in  the  variance  partitioning  for  all  basis

functions in the table.

"BetaDifferences" DFBETAS measures of influence on parameter values

"CatcherMatrix" catcher matrix

"CookDistances" list of Cook distances

"CovarianceRatios" COVRATIO measures of observation influence

"DurbinWatsonD" Durbin-Watson d statistic for autocorrelation

"FitDifferences" DFFITS measures of influence on predicted values

"FVarianceRatios" FVARATIO measures of observation influence

"HatDiagonal" diagonal elements of the hat matrix

"SingleDeletionVariances" list of variance estimates with the ith data point omitted

Properties related to influence measures.

Point-wise  measures  of  influence  are  often  employed to  assess  whether  individual  data  points

have  a  large  impact  on  the  fitting.  The hat matrix and  catcher  matrix  play  important  roles  in

such  diagnostics.  The  hat  matrix  is  the  matrix  H  such  that  y` = H y  where  y  is  the  observed 

y`  is  the  predicted  response  vector.  "HatDiagonal"  gives  the  diagonal

elements  of  the hat  matrix.  "CatcherMatrix"  is  the matrix  C  such that  b = C y  where b  is  the

fitted parameter vector.

340     Mathematics and Algorithms



Point-wise  measures  of  influence  are  often  employed to  assess  whether  individual  data  points

have  a  large  impact  on  the  fitting.  The  hat  matrix  and  catcher  matrix  play  important  rolls  in
`

response  vector  and  y`  is  the  predicted  response  vector.  "HatDiagonal"  gives  the  diagonal

elements  of  the hat  matrix.  "CatcherMatrix"  is  the matrix  C  such that  b = C y  where b  is  the

fitted parameter vector.

"FitDifferences"  gives  the  DFFITS  values  that  provide  a  measure  of  influence  of  each  data

point on the fitted or predicted values. The ith DFFITS value is given by hii ê H1 - hiiL rti  where hii

is the ith hat diagonal and rti is the  ith studentized residual.

"BetaDifferences" gives the DFBETAS values that provide measures of influence of each data

point  on  the  parameters  in  the  model.  For  a  model  with  p  parameters,  the  ith element  of

"BetaDifferences"  is a list of length p  with the jth  value giving the measure the of the influ-

ence of data point i on the  jth  parameter in the model. The ith  "BetaDifferences" vector can

be  written  as   9ci1, …, cip= rti ê H1 - hiiL íI⁄j=1
n

⁄k=1
p c jk2 M  where  c jk  is  the  j,kth element of the  catcher

matrix.

"CookDistances" gives the Cook distance measures of leverage given. The ith Cook distance is

given by Hhii ê H1 -hiiL rsi ê p where rsi is the ith standardized residual.

The  ith  element  of  "CovarianceRatios"  is  given  by  Hn - pLp ëIH1 - hiiL Irti2 + n - p - 1MpM  and  the  ith

"FVarianceRatios"  value  is  equal  to   s` HiL
2
íJs

` 2
H1 - hiiL N  where  s`HiL

2  is  the  ith  single  deletion

variance.

The Durbin|Watson d statistic "DurbinWatsonD" is used for testing the existence of a first-order

autoregressive  process.  The  d  statistic  is  equivalent  to  ⁄i=1
n-1 Hri+1 - riL2 ë⁄i=1

n ri2  where  ri  is  the

ithresidual.

This plots the Cook distances for the bivariate model.

In[18]:= ListPlot@lm2@"CookDistances"D, Filling Ø 0D

Out[18]=

Mathematics and Algorithms     341

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7



"MeanPredictionBands" confidence bands for mean predictions

"MeanPredictionConfidenceInteÖ
rvals"

confidence intervals for the mean predictions

"MeanPredictionConfidenceInteÖ
rvalTable"

table of confidence intervals for the mean predictions

"MeanPredictionConfidenceInteÖ
rvalTableEntries"

unformatted array of values from the table

"MeanPredictionErrors" standard errors for mean predictions

"PredictedResponse" fitted values for the data

"SinglePredictionBands" confidence bands based on single observations

"SinglePredictionConfidenceInÖ
tervals"

confidence intervals for the predicted response of single 
observations

"SinglePredictionConfidenceInÖ
tervalTable"

table of confidence intervals for the predicted response of 
single observations

"SinglePredictionConfidenceInÖ
tervalTableEntries"

unformatted array of values from the table

"SinglePredictionErrors" standard errors for the predicted response of single 
observations

Properties of predicted values.

Tabular  results  for  confidence  intervals  are  given  by  "MeanPredictionConfidenceIntervalÖ

Table "  and  "SinglePredictionConfidenceIntervalTable".  These  include  the  observed  and

predicted  responses,  standard  error  estimates,  and  confidence  intervals  for  each  point.  Mean

prediction  confidence  intervals  are  often  referred  to  simply  as  confidence  intervals  and  single

prediction confidence intervals are often referred to as prediction intervals.

"MeanPredictionBands"  and  "SinglePredictionBands"  give  functions  of  the  predictor

variables.

342     Mathematics and Algorithms



Here is the mean prediction table.

In[19]:= lm2@"MeanPredictionConfidenceIntervalTable"D

Out[19]=

Observed Predicted Standard Error Confidence Interval

18.89 18.7912 0.272818 818.1461, 19.4363<
15.08 15.9057 0.155811 815.5372, 16.2741<
5.92 5.59057 0.262819 84.9691, 6.21204<
11.39 11.2354 0.236917 810.6751, 11.7956<
20.77 20.7757 0.215751 820.2656, 21.2859<
21.09 21.5709 0.271392 820.9292, 22.2127<
24.32 23.6016 0.295281 822.9034, 24.2999<
13.79 13.78 0.269774 813.1421, 14.4179<
10.68 10.5126 0.315597 89.76629, 11.2588<
3.82 3.9864 0.306026 83.26277, 4.71004<

This gives the 90% mean prediction intervals.

In[20]:= lm2@"MeanPredictionConfidenceIntervals", ConfidenceLevel Ø .9D

Out[20]= 8818.2743, 19.3081<, 815.6105, 16.2009<, 85.09263, 6.0885<,
810.7865, 11.6842<, 820.367, 21.1845<, 821.0567, 22.0851<, 823.0422, 24.1611<,
813.2689, 14.2911<, 89.91464, 11.1105<, 83.40661, 4.56619<<

"AdjustedRSquared" R2 adjusted for the number of model parameters

"AIC" Akaike Information Criterion

"BIC" Bayesian Information Criterion

"RSquared" coefficient of determination R2

Goodness of fit measures.

Goodness of fit measures are used to assess how well a model fits or to compare models. The

coefficient  of  determination  "RSquared"  is  the  ratio  of  the  model  sum of  squares  to  the  total

sum of squares. "AdjustedRSquared" penalizes for the number of parameters in the model and

is given by 1 -H n-1
n-p

L H1 - R2L.

"AIC" and "BIC" are likelihood-based goodness of fit measures. Both are equal to -2 times the

log-likelihood  for  the  model  plus  k p  where  p  is  the  number  of  parameters  to  be  estimated

including the estimated variance. For "AIC" k is 2, and for "BIC" k is logHnL.

Mathematics and Algorithms     343



Generalized Linear Models

The linear model can be seen as a model where each response value y is an observation from a

normal  distribution  with  mean  value  y` = b0 + b1 f1 + b2 f2 +.  The  generalized  linear  model

extends to models of the form y` = g-1 Hb0 + b1 f1 + b2 f2 + …L with each y assumed to be an obser-

vation from a distribution of known exponential family form with mean y`  and g being an invert-

ible function over the support of the exponential family. Models of this sort can be obtained via

GeneralizedLinearModelFit.

GeneralizedLinearModelFit@
8y1,y2,…<,8 f1, f2,…<,xD

obtain a generalized linear model with basis functions fi 
and a single predictor variable x

GeneralizedLinearModelFit@
88x11,x12,…,y1<,8x21,x22,…,y2<<,
8 f1, f2,…<,8x1,x2,…<D

obtain a generalized linear model of multiple predictor 
variables xi

GeneralizedLinearModelFit@
8m,v<D

obtain a generalized linear model based on a design matrix 
m and response vector v

Generalized linear model fitting.

The invertible function g is called the link function and the linear combination b0 + b1 f1 + b2 f2 +

is referred to as the linear predictor. Common special cases include the linear regression model

with the identity link function and Gaussian or normal exponential family distribution, logit and

probit  models  for  probabilities,  Poisson models  for  count  data,  and gamma and inverse Gaus-

sian models. 

The  error  variance  is  a  function  of  the  prediction  y`  and  is  defined  by  the  distribution  up  to  a

constant  f,  which  is  referred  to  as  the  dispersion  parameter.  The  error  variance  for  a  fitted

value  y`  can  be  written  as  f
`
vHy`L,  where  f

`
 is  an  estimate  of  the  dispersion  parameter  obtained

from the  observed and predicted  response values,  and vHy`L  is  the  variance function  associated

with the exponential family evaluated at the value y`.

This fits a linear regression model.

In[21]:= glm1 = GeneralizedLinearModelFit@Sqrt@Range@10DD, x, xD

Out[21]= FittedModelB 0.973709+0.231476 x F

344     Mathematics and Algorithms



This fits a canonical gamma regression model to the same data.

In[22]:= glm2 = GeneralizedLinearModelFit@
Sqrt@Range@10DD, x, x, ExponentialFamily Ø "Gamma"D

Out[22]= FittedModelB
1

0.742193-á20à x
F

Here are the functional forms of the models.

In[23]:= Map@Normal, 8glm1, glm2<D

Out[23]= :0.973709 + 0.231476 x,
1

0.742193 - 0.0467911 x
>

Logit and probit models are common binomial models for probabilities. The link function for the

logit model is logJ y
1-y

N and the link for the probit model is the inverse CDF for a standard normal

distribution  2 erf-1H2 y - 1L.  Models  of  this  type  can  be  fitted  via  GeneralizedLinearModelFit

with  ExponentialFamily -> "Binomial"  and  the  appropriate  LinkFunction  or  via

LogitModelFit and ProbitModelFit.

LogitModelFit@data, funs,varsD obtain a logit model with basis functions funs and predictor 
variables vars

LogitModelFit@8m,v<D obtain a logit model based on a design matrix m and 
response vector v

ProbitModelFit@data, funs,varsD obtain a probit model fit to data

ProbitModelFit@8m,v<D obtain a probit model fit to a design matrix m and response 
vector v

Logit and probit model fitting.

Parameter  estimates  are  obtained  via  iteratively  reweighted  least  squares  with  weights

obtained  from  the  variance  function  of  the  assumed  distribution.  Options  for

GeneralizedLinearModelFit  include  options  for  iteration  fitting  such  as  PrecisionGoal,

options for model specification such as LinkFunction, and options for further analysis such as

ConfidenceLevel.

Mathematics and Algorithms     345



option name default value
AccuracyGoal Automatic the accuracy sought
ConfidenceLevel 95ê100 confidence level to use for parameters and 

predictions
CovarianceEstimatorFunctÖ

ion
"ExpectedInforÖ

mation"
estimation method for the parameter 
covariance matrix

DispersionEstimatorFunctÖ
ion Automatic function for estimating the dispersion 

parameter
ExponentialFamily Automatic exponential family distribution for y
IncludeConstantBasis True whether to include a constant basis function
LinearOffsetFunction None known offset in the linear predictor
LinkFunction Automatic link function for the model
MaxIterations Automatic maximum number of iterations to use
NominalVariables None variables considered as nominal or 

categorical
PrecisionGoal Automatic the precision sought
Weights Automatic weights for data elements
WorkingPrecision Automatic precision used in internal computations

Options for GeneralizedLinearModelFit .

The  options  for  LogitModelFit  and  ProbitModelFit  are  the  same  as  for

GeneralizedLinearModelFit  except  that  ExponentialFamily  and  LinkFunction  are  defined

by the logit or probit model and so are not options to LogitModelFit and ProbitModelFit.

ExponentialFamily  can  be  "Binomial",  "Gamma",  "Gaussian",  "InverseGaussian",

"Poisson", or "QuasiLikelihood". Binomial models are valid for responses from 0 to 1. Pois-

son models are valid for non-negative integer responses. Gaussian or normal models are valid

for real responses. Gamma and inverse Gaussian models are valid for positive responses. Quasi-

likelihood  models  define  the  distributional  structure  in  terms  of  a  variance  function  vHmL  such

that  the  log  of  the  quasi-likelihood  function  for  the  ith  data  point  is  given  by  Ÿyi
yi
` yi-m

f vHmL
„ m.  The

variance  function  for  a  "QuasiLikelihood"  model  can  be  optionally  set  via

ExponentialFamily -> 8"QuasiLikelihood", "VarianceFunction" Ø fun<  where  fun  is  a  pure

function to be applied to fitted values. 

DispersionEstimatorFunction  defines  a  function  for  estimating  the  dispersion  parameter  f.

The estimate f
`
 is analogous to s` 2 in linear and nonlinear regression models.

ExponentialFamily,  IncludeConstantBasis,  LinearOffsetFunction,  LinkFunction,

NominalVariables,  and Weights  all  define  some aspect  of  the model  structure and optimiza-

tion criterion and can only be set within GeneralizedLinearModelFit. All other options can be

set  either  within  GeneralizedLinearModelFit  or  passed  to  the  FittedModel  object  when

obtaining  results  and  diagnostics.  Options  set  in  evaluations  of  FittedModel  objects  take

precedence over settings given to GeneralizedLinearModelFit  at the time of the fitting.

346     Mathematics and Algorithms



ExponentialFamily,  IncludeConstantBasis,  LinearOffsetFunction,  LinkFunction,

NominalVariables,  and Weights  all  define  some aspect  of  the model  structure and optimiza-

tion criterion and can only be set within GeneralizedLinearModelFit. All other options can be

set  either  within  GeneralizedLinearModelFit  or  passed  to  the  FittedModel  object  when

obtaining  results  and  diagnostics.  Options  set  in  evaluations  of  FittedModel  objects  take

precedence over settings given to GeneralizedLinearModelFit  at the time of the fitting.

This gives 95% and 99% confidence intervals for the parameters in the gamma model.

In[24]:= 8glm2@"ParameterConfidenceIntervals"D,
glm2@"ParameterConfidenceIntervals", ConfidenceLevel Ø .99D<

Out[24]= 8880.62891, 0.855475<, 8-0.0616093, -0.0319729<<,
880.593314, 0.891071<, 8-0.0662656, -0.0273166<<<

"BestFit" fitted function

"BestFitParameters" parameter estimates

"Data" the input data or design matrix and response vector

"DesignMatrix" design matrix for the model

"Function" best fit pure function

"LinearPredictor" fitted linear combination

"Response" response values in the input data

Properties related to data and the fitted function.

"BestFitParameters"  gives the parameter estimates for the basis functions.  "BestFit"  gives

the  fitted  function  g-1 Hb0
`

+ b1
`
f1 + b2

`
f2 + …L,  and "LinearPredictor"  gives  the  linear  combina-

tion b0
`

+ b1
`
f1 + b2

`
f2 + …. "DesignMatrix" is the design or model matrix for the basis functions.

"Deviances" deviances

"DevianceTable" deviance table

"DevianceTableDegreesOfFreedom
"

degrees of freedom differences from the table

"DevianceTableDeviances" deviance differences from the table

"DevianceTableEntries" unformatted array of values from the table

"DevianceTableResidualDegreesÖ
OfFreedom"

residual degrees of freedom from the table

"DevianceTableResidualDeviancÖ
es"

residual deviances from the table

Mathematics and Algorithms     347



"EstimatedDispersion" estimated dispersion parameter

"NullDeviance" deviance for the null model

"NullDegreesOfFreedom" degrees of freedom for the null model

"ResidualDeviance" difference between the model deviance and null deviance

"ResidualDegreesOfFreedom" difference between the model degrees of freedom and null 
degrees of freedom

Properties related to dispersion and model deviances.

Deviances  and  deviance  tables  generalize  the  model  decomposition  given  by  analysis  of  vari-

ance in linear models. The deviance for a single data point is 2 f
`
ImHyL - mHy

`
LM where m is the log-

likelihood function for the fitted model.  "Deviances"  gives a list  of  the deviance values for all

data  points.  The  sum  of  all  deviances  gives  the  model  deviance.  The  model  deviance  can  be

decomposed as sums of squares are in an ANOVA table for linear models.

Here is some data with two predictor variables.

In[31]:= glmdata = 883.58, 1.83, 0.21<, 83.58, 4.47, 0.17<, 83.58, 3.11, 0.19<,
83.58, 4.2, 0.18<, 83.58, 2.83, 0.2<, 84.01, 2.53, 0.19<, 84.01, 3.63, 0.18<,
84.01, 3.93, 0.17<, 84.01, 4.05, 0.17<, 84.01, 1.33, 0.22<,
82.01, 3.46, 0.22<, 82.01, 1.77, 0.25<, 82.01, 2.44, 0.23<, 82.01, 2.39, 0.25<,
82.01, 3.78, 0.2<, 83.59, 3.49, 0.19<, 83.59, 3.82, 0.19<, 83.59, 3.05, 0.2<,
83.59, 4.51, 0.17<, 83.59, 3.37, 0.18<, 82.62, 1.42, 0.25<, 82.62, 3.9, 0.19<,
82.62, 2.51, 0.21<, 82.62, 4.59, 0.18<, 82.62, 4.28, 0.19<<;

This fits the data to an inverse Gaussian model.

In[32]:= glm3 = GeneralizedLinearModelFit@glmdata,
8x, y<, 8x, y<, ExponentialFamily Ø "InverseGaussian"D

Out[32]= FittedModelB
1

-0.852313+á18à x+á18à y
F

Here is the deviance table for the model.

In[33]:= glm3@"DevianceTable"D

Out[33]=

DF Deviance Residual DF Residual Deviance

24 1.79112
x 1 0.782767 23 1.00835
y 1 0.913425 22 0.0949267

As  with  sums of  squares,  deviances  are  additive.  The  Deviance  column of  the  table  gives  the

increase in the model deviance when the given basis function is added. The Residual Deviance

column  gives  the  difference  between  the  model  deviance  and  the  deviance  for  the  submodel

containing all previous terms in the table. For large samples, the increase in deviance is approxi-

mately c2 distributed with degrees of freedom equal to that for the basis function in the table.

"NullDeviance" is the deviance for the null model, the constant model equal to the mean of all

observed responses for models including a constant or g-1 H0L if a constant term is not included.

348     Mathematics and Algorithms



"NullDeviance" is the deviance for the null model, the constant model equal to the mean of all

observed responses for models including a constant or g-1 H0L if a constant term is not included.

As with "ANOVATable", a number of properties are included to extract the columns or unformat-

ted array of entries from "DevianceTable".

"AnscombeResiduals" Anscombe residuals

"DevianceResiduals" deviance residuals

"FitResiduals" difference between actual and predicted responses

"LikelihoodResiduals" likelihood residuals

"PearsonResiduals" Pearson residuals

"StandardizedDevianceResiduals
"

standardized deviance residuals

"StandardizedPearsonResiduals" standardized Pearson residuals

"WorkingResiduals" working residuals

Types of residuals.

"FitResiduals"  is  the  list  of  residuals,  differences  between  the  observed  and  predicted

responses. Given the distributional assumptions, the magnitude of the residuals is expected to

change  as  a  function  of  the  predicted  response  value.  Various  types  of  scaled  residuals  are

employed in the analysis of generalized linear models.

If di and ri = yi - y
`
i are the deviance and residual for the ith data point, the ith deviance residual is

given  by  rdi = di sgnHri L.  The  ith  Pearson  residual  is  defined  as  rpi = riì vHy` iL  where  v  is  the

variance  function  for  the  exponential  family  distribution.  Standardized  deviance  residuals  and

standardized Pearson residuals include division by f
`
H1 - hiiL  where hii  is the ithdiagonal of the

hat  matrix.  "LikelihoodResiduals"  values  combine  deviance  and  Pearson  residuals.  The  ith

likelihood residual is given by  sgnHri L Irdi2 + hii rpi2 ëH1 - hiiLMëf
`

.

"AnscombeResiduals"  provide a transformation of the residuals toward normality, so a plot of

these residuals should be expected to look roughly like white noise. The ith  Anscombe residual

can be written as  vHy` iL
3

ì vHy` iL Ÿỳi

yiJ vHmL
3

N
-1

„ m.

"WorkingResiduals" gives the residuals from the last step of the iterative fitting. The ith  work-

ing residual can be obtained as ri
∂gHmL
∂m

 evaluated at m = y` i.

Mathematics and Algorithms     349



"WorkingResiduals" gives the residuals from the last step of the iterative fitting. The ith  work-

ing residual can be obtained as ri
∂gHmL
∂m

 evaluated at m = y` i.

This plots the residuals and Anscombe residuals for the inverse Gaussian model.

In[41]:= Map@ListPlot@Ò, Filling Ø 0D &, glm3@8"FitResiduals", "AnscombeResiduals"<DD

Out[41]=

"CorrelationMatrix" asymptotic parameter correlation matrix

"CovarianceMatrix" asymptotic parameter covariance matrix

"ParameterConfidenceIntervals" parameter confidence intervals

"ParameterConfidenceIntervalTÖ
able"

table of confidence interval information for the fitted 
parameters

"ParameterConfidenceIntervalTÖ
ableEntries"

unformatted array of values from the table

"ParameterConfidenceRegion" ellipsoidal parameter confidence region

"ParameterTableEntries" unformatted array of values from the table

"ParameterErrors" standard errors for parameter estimates

"ParameterPValues" p-values for parameter z-statistics

"ParameterTable" table of fitted parameter information

"ParameterZStatistics" z-statistics for parameter estimates

Properties and diagnostics for parameter estimates.

"CovarianceMatrix" gives the covariance between fitted parameters and is very similar to the

definition  for  linear  models.  With  CovarianceEstimatorFunction -> "ExpectedInformation"

the  expected  information  matrix  obtained  from  the  iterative  fitting  is  used.  The  matrix  is

f
`
HXW XN

-1
 where X is the design matrix, and W  is the diagonal matrix of weights from the final

stage  of  the  fitting.  The  weights  include  both  weights  specified  via  the  Weights  option

and  the  weights  associated  with  the  distribution's  variance  function.  With

CovarianceEstimatorFunction -> "ObservedInformation" the matrix is given by -f I-1  where

I  is  the observed Fisher information matrix,  which is  the Hessian of  the log-likelihood function

with respect to parameters of the model.

350     Mathematics and Algorithms

:

5 10 15 20 25

-0.005

0.005

0.010

,

5 10 15 20 25

-0.05

0.05

0.10

>



"CovarianceMatrix" gives the covariance between fitted parameters and is very similar to the

definition  for  linear  models.  With  CovarianceEstimatorFunction -> "ExpectedInformation"

the  expected  information  matrix  obtained  from  the  iterative  fitting  is  used.  The  matrix  is

f
`
HXW XN

-1
 where X is the design matrix, and W  is the diagonal matrix of weights from the final

stage  of  the  fitting.  The  weights  include  both  weights  specified  via  the  Weights  option

CovarianceEstimatorFunction -> "ObservedInformation" the matrix is given by -f I-1  where 

I  is  the observed Fisher information matrix,  which is  the Hessian of  the log-likelihood function

with respect to parameters of the model.

"CorrelationMatrix"  is  the  associated  correlation  matrix  for  the  parameter  estimates.

"ParameterErrors" is equivalent to the square root of the diagonal elements of the covariance

matrix.  "ParameterTable"  and  "ParameterConfidenceIntervalTable"  contain  information

about  the  individual  parameter  estimates,  tests  of  parameter  significance,  and  confidence

intervals.  The  test  statistics  for  generalized  linear  models  asymptotically  follow  normal

distributions.

"CookDistances" list of Cook distances

"HatDiagonal" diagonal elements of the hat matrix

Properties related to influence measures.

"CookDistances"  and "HatDiagonal"  extend the leverage measures from linear regression to

generalized  linear  models.  The  hat  matrix  from  which  the  diagonal  elements  are  extracted  is

defined using the final weights of the iterative fitting.

The Cook distance  measures  of  leverage are  defined as  in  linear  regression with  standardized

residuals  replaced  by  standardized  Pearson  residuals.  The  ith Cook  distance  is  given  by

Hhii ê H1 -hiiL rspi ê p where rspi is the ith standardized Pearson residual.

"PredictedResponse" fitted values for the data

Properties of predicted values.

"AdjustedLikelihoodRatioIndex" Ben-Akiva and Lerman's adjusted likelihood ratio index

"AIC" Akaike Information Criterion

"BIC" Bayesian Information Criterion

"CoxSnellPseudoRSquared" Cox and Snell's pseudo R2

"CraggUhlerPseudoRSquared" Cragg and Uhler's pseudo R2

"EfronPseudoRSquared" Efron's pseudo R2

"LikelihoodRatioIndex" McFadden's likelihood ratio index

Mathematics and Algorithms     351



"LikelihoodRatioStatistic" likelihood ratio

"LogLikelihood" log-likelihood for the fitted model

"PearsonChiSquare" Pearson's c2 statistic

Goodness of fit measures.

"LogLikelihood" is the log-likelihood for the fitted model. "AIC" and "BIC" are penalized log-

likelihood measures 2  + k p where  is the log-likelihood for the fitted model, p is the number of

parameters  estimated  including  the  dispersion  parameter,  and  k  is  2  for  "AIC"  and  logHnL  for

"BIC" for a model of n data points. "LikelihoodRatioStatistic" is given by 2 H - 0L where 0
is the log-likelihood for the null model.

A  number  of  the  goodness  of  fit  measures  generalize  R2  from  linear  regression  as  either  a

measure of  explained variation  or  as  a  likelihood-based measure.  "CoxSnellPseudoRSquared"

is  given  by  1 - I‰0-M
2ên.  "CraggUhlerPseudoRSquared"  is  a  scaled  version  of  Cox  and  Snell's

measure J1 - I‰0-M
2ên
NíJ1 - I‰0 M

2ên
N.  "LikelihoodRatioIndex"  involves the ratio of  log-likelihoods

1 -  ê0, and "AdjustedLikelihoodRatioIndex" adjusts by penalizing for the number of parame-

ters  1 - H - pL ê0.  "EfronPseudoRSquared"  uses  the  sum of  squares  interpretation  of  R2  and  is

given as 1 -⁄i=1
n ri2 ë⁄i=1

n Hyi - yL2 where ri is the ith residual and y is the mean of the responses yi.

"PearsonChiSquare" is equal to ⁄i=1
n rpi2  where the rpi are Pearson residuals.

Nonlinear Models

A nonlinear least-squares model is an extension of the linear model where the model need not

be a  linear  combination of  basis  function.  The errors  are  still  assumed to  be independent  and

normally distributed. Models of this type can be fitted using the NonlinearModelFit function.

NonlinearModelFit@
8y1,y2,…<, form,8b1,…<,xD

obtain a nonlinear model of the function form with parame -
ters bi and a single parameter predictor variable x

NonlinearModelFit@
88x11,…,y1<,8x21,…,y2<<,
form,8b1,…<,8x1,…<D

obtain a nonlinear model as a function of multiple predictor 
variables xi

NonlinearModelFit@data,
8 form,cons<,8b1,…<,8x1,…<D

obtain a nonlinear model subject to the constraints cons

Nonlinear model fitting.

Nonlinear models have the form y` = f Ix1, …, xi, b1, …, b jM where y`  is the fitted or predicted value,

the  bi  are  parameters  to  be  fitted,  and  the  xi  are  predictor  variables.  As  with  any  nonlinear

optimization  problem,  a  good  choice  of  starting  values  for  the  parameters  may  be  necessary.

Starting values can be given using the same parameter specifications as for FindFit.

352     Mathematics and Algorithms



Nonlinear models have the form y` = f Ix1, …, xi, b1, …, b jM where y`  is the fitted or predicted value,

the  bi  are  parameters  to  be  fitted,  and  the  xi  are  predictor  variables.  As  with  any  nonlinear

optimization  problem,  a  good  choice  of  starting  values  for  the  parameters  may  be  necessary.

Starting values can be given using the same parameter specifications as for FindFit.

This fits a nonlinear model to a sequence of square roots.

In[25]:= nlm = NonlinearModelFit@Array@Sqrt, 20D, Log@a + b xD, 8a, b<, xD

Out[25]= FittedModelB Log@-0.748315+2.76912 xD F

Options for model fitting and for model analysis are available.

option name default value
AccuracyGoal Automatic the accuracy sought
ConfidenceLevel 95ê100 confidence level to use for parameters and 

predictions
EvaluationMonitor None expression to evaluate whenever expr is 

evaluated
MaxIterations Automatic maximum number of iterations to use
Method Automatic method to use
PrecisionGoal Automatic the precision sought
StepMonitor None the expression to evaluate whenever a step 

is taken
VarianceEstimatorFunction Automatic function for estimating the error variance
Weights Automatic weights for data elements
WorkingPrecision Automatic precision used in internal computations

Options for NonlinearModelFit.

General numeric options such as AccuracyGoal, Method, and WorkingPrecision  are the same

as for FindFit.

The Weights  option specifies weight values for weighted nonlinear regression. The optimal fit is

for a weighted sum of squared errors.

All  other options can be relevant to computation of results after the initial fitting. They can be

set  within  NonlinearModelFit  for  use  in  the  fitting  and  to  specify  the  default  settings  for

results obtained from the FittedModel  object. These options can also be set within an already

constructed  FittedModel  object  to  override  the  option  values  originally  given  to

NonlinearModelFit.

Mathematics and Algorithms     353



"BestFit" fitted function

"BestFitParameters" parameter estimates

"Data" the input data

"Function" best fit pure function

"Response" response values in the input data

Properties related to data and the fitted function.

Basic  properties  of  the  data  and  fitted  function  for  nonlinear  models  behave  like  the  same

properties  for  linear  and  generalized  linear  models  with  the  exception  that

"BestFitParameters" returns a rule as is done for the result of FindFit.

This gives the fitted function and rules for the parameter estimates.

In[26]:= nlm@8"BestFit", "BestFitParameters"<D

Out[26]= 8Log@-0.748315 + 2.76912 xD, 8a Ø -0.748315, b Ø 2.76912<<

Many  diagnostics  for  nonlinear  models  extend  or  generalize  concepts  from  linear  regression.

These extensions often rely on linear approximations or large sample approximations.

"FitResiduals" difference between actual and predicted responses

"StandardizedResiduals" fit residuals divided by the standard error for each residual

"StudentizedResiduals" fit residuals divided by single deletion error estimates

Types of residuals.

As in linear regression, "FitResiduals" gives the differences between the observed and fitted

values  8y1 - y
`
1, y2 - y

`
2, …<,  and  "StandardizedResiduals"  and  "StudentizedResiduals"  are

scaled forms of these differences. 

The  ith  standardized  residual  is  Hyi - y
`
iL ê s

`2
H1 - hiiL ê wi  where  s`2  is  the  estimated  error

variance, hii  is  the ith  diagonal  element of  the hat matrix,  and wi  is  the weight for the ith  data

point,  and  the  ith  studentized  residual  is  obtained  by  s`2  replacing  with  the  ith  single  deletion

variance  s`HiL
2.  For  nonlinear  models  a  first-order  approximation  is  used  for  the  design  matrix,

which is needed to compute the hat matrix.

354     Mathematics and Algorithms



"ANOVATable" analysis of variance table

"ANOVATableDegreesOfFreedom" degrees of freedom from the ANOVA table

"ANOVATableEntries" unformatted array of values from the table

"ANOVATableMeanSquares" mean square errors from the table

"ANOVATableSumsOfSquares" sums of squares from the table

"EstimatedVariance" estimate of the error variance

Properties related to the sum of squared errors.

"ANOVATable"  provides  a  decomposition  of  the  variation  in  the  data  attributable  to  the  fitted

function and to the errors or residuals.

This gives the ANOVA table for the nonlinear model.

In[27]:= nlm@"ANOVATable"D

Out[27]=

DF SS MS

Model 2 208.604 104.302
Error 18 1.39635 0.0775748
Uncorrected Total 20 210.
Corrected Total 19 19.8654

The uncorrected total sums of squares gives the sum of squared responses, while the corrected

total gives the sum of squared differences between the responses and their mean value.

"CorrelationMatrix" asymptotic parameter correlation matrix

"CovarianceMatrix" asymptotic parameter covariance matrix

"ParameterBias" estimated bias in the parameter estimates

"ParameterConfidenceIntervals" parameter confidence intervals

"ParameterConfidenceIntervalTÖ
able"

table of confidence interval information for the fitted 
parameters

"ParameterConfidenceIntervalTÖ
ableEntries"

unformatted array of values from the table

"ParameterConfidenceRegion" ellipsoidal parameter confidence region

"ParameterErrors" standard errors for parameter estimates

"ParameterPValues" p-values for parameter t statistics

"ParameterTable" table of fitted parameter information

"ParameterTableEntries" unformatted array of values from the table

"ParameterTStatistics" t statistics for parameter estimates

Properties and diagnostics for parameter estimates.

"CovarianceMatrix"  gives the approximate covariance between fitted parameters. The matrix

is s` 2 HXW XN
-1

 where s` 2 is the variance estimate, X is the design matrix for the linear approxima-

tion to the model, and W  is the diagonal matrix of weights. "CorrelationMatrix" is the associ-

ated  correlation  matrix  for  the  parameter  estimates.  "ParameterErrors"  is  equivalent  to  the

square root of the diagonal elements of the covariance matrix.

Mathematics and Algorithms     355



"CovarianceMatrix"  gives the approximate covariance between fitted parameters. The matrix

is s` 2 HXW XN
-1

 where s` 2 is the variance estimate, X is the design matrix for the linear approxima-

tion to the model, and W  is the diagonal matrix of weights. "CorrelationMatrix" is the associ-

ated  correlation  matrix  for  the  parameter  estimates.  "ParameterErrors"  is  equivalent  to  the

square root of the diagonal elements of the covariance matrix.

"ParameterTable"  and  "ParameterConfidenceIntervalTable"  contain  information  about  the

individual  parameter  estimates,  tests  of  parameter  significance,  and  confidence  intervals

obtained using the error estimates.

"CurvatureConfidenceRegion" confidence region for curvature diagnostics

"FitCurvatureTable" table of curvature diagnostics

"FitCurvatureTableEntries" unformatted array of values from the table

"MaxIntrinsicCurvature" measure of maximum intrinsic curvature

"MaxParameterEffectsCurvature" measure of maximum parameter effects curvature

Curvature diagnostics.

The first-order approximation used for many diagnostics is equivalent to the model being linear

in the parameters. If the parameter space near the parameter estimates is sufficiently flat, the

linear  approximations  and  any  results  that  rely  on  first-order  approximations  can  be  deemed

reasonable.  Curvature  diagnostics  are  used  to  assess  whether  the  approximate  linearity  is

reasonable. "FitCurvatureTable" is a table of curvature diagnostics.

"MaxIntrinsicCurvature" and "MaxParameterEffectsCurvature" are scaled measures of the

normal  and  tangential  curvatures  of  the  parameter  spaces  at  the  best-fit  parameter  values.

"CurvatureConfidenceRegion" is a scaled measure of the radius of curvature of the parameter

space at the best-fit parameter values. If the normal and tangential curvatures are small rela-

tive to the value of the "CurvatureConfidenceRegion", the linear approximation is considered

reasonable.  Some rules  of  thumb suggest  comparing the values directly,  while  others  suggest

comparing with half the "CurvatureConfidenceRegion".

Here is the curvature table for the nonlinear model.

In[28]:= nlm@"FitCurvatureTable"D

Out[28]=

Curvature

Max Intrinsic 0.109997
Max Parameter Effects 0.311792
95. % Confidence Region 0.530405

356     Mathematics and Algorithms



"HatDiagonal" diagonal elements of the hat matrix

"SingleDeletionVariances" list of variance estimates with the ith data point omitted

Properties related to influence measures.

The hat matrix is the matrix H such that y` = H y where y is the observed response vector and y` is

the  predicted  response  vector.  "HatDiagonal"  gives  the  diagonal  elements  of  the  hat  matrix.

As with other properties, H uses the design matrix for the linear approximation to the model. 

The  ith element  of  "SingleDeletionVariances"  is  equivalent  to  IHn - pLs` - ri2 ëH1 - hiiLMë Hn - p - 1L

where n is the number of data points, p is the number of parameters, hii  is the ith  hat diagonal,

s
` is the variance estimate for the full dataset, and ri is the  ith residual.

"MeanPredictionBands" confidence bands for mean predictions

"MeanPredictionConfidenceInteÖ
rvals"

confidence intervals for the mean predictions

"MeanPredictionConfidenceInteÖ
rvalTable"

table of confidence intervals for the mean predictions

"MeanPredictionConfidenceInteÖ
rvalTableEntries"

unformatted array of values from the table

"MeanPredictionErrors" standard errors for mean predictions

"PredictedResponse" fitted values for the data

"SinglePredictionBands" confidence bands based on single observations

"SinglePredictionConfidenceInÖ
tervals"

confidence intervals for the predicted response of single 
observations

"SinglePredictionConfidenceInÖ
tervalTable"

table of confidence intervals for the predicted response of 
single observations

"SinglePredictionConfidenceInÖ
tervalTableEntries"

unformatted array of values from the table

"SinglePredictionErrors" standard errors for the predicted response of single 
observations

Properties of predicted values.

Tabular  results  for  confidence  intervals  are  given  by

"MeanPredictionConfidenceIntervalTable"  and  "SinglePredictionConfidenceIntervalÖ

Table ".  These results are analogous to those for linear models obtained via LinearModelFit,

again with first-order approximations used for the design matrix.

"MeanPredictionBands"  and  "SinglePredictionBands"  give  functions  of  the  predictor

variables.

Mathematics and Algorithms     357



"MeanPredictionBands"  and  "SinglePredictionBands"  give  functions  of  the  predictor

variables.

Here the fitted function and mean prediction bands are obtained.

In[29]:= 8fit@x_D, mp@x_D< = nlm@8"BestFit", "MeanPredictionBands"<D

Out[29]= :Log@-0.748315 + 2.76912 xD,

:-2.10092
0.382399 - 0.165343 x + 0.0443921 x2

H0.748315 - 2.76912 xL2
+ Log@-0.748315 + 2.76912 xD,

2.10092
0.382399 - 0.165343 x + 0.0443921 x2

H0.748315 - 2.76912 xL2
+ Log@-0.748315 + 2.76912 xD>>

This plots the fitted curve and confidence bands.

In[30]:= Plot@8fit@xD, mp@xD<, 8x, 1, 20<D

Out[30]=

"AdjustedRSquared" R2 adjusted for the number of model parameters

"AIC" Akaike Information Criterion

"BIC" Bayesian Information Criterion

"RSquared" coefficient of determination R2

Goodness of fit measures.

"AdjustedRSquared", "AIC", "BIC", and "RSquared" are all direct extensions of the measures

as  defined  for  linear  models.  The  coefficient  of  determination  "RSquared"  is  the  ratio  of  the

model  sum  of  squares  to  the  total  sum  of  squares.  "AdjustedRSquared"  penalizes  for  the

number of parameters in the model and is given by 1 - H
n-1
n-p

L H1 - R2L.

"AIC"  and "BIC"  are equal to -2  times the log-likelihood for the model plus k p  where p  is the

number of parameters to be estimated including the estimated variance. For "AIC"  k  is 2, and

for "BIC" k is logHnL.

Approximate Functions and Interpolation

358     Mathematics and Algorithms

10 15 20

1

2

3

4



Approximate Functions and Interpolation

In many kinds of numerical computations, it  is convenient to introduce approximate functions.

Approximate functions can be thought of as generalizations of ordinary approximate real num-

bers. While an approximate real number gives the value to a certain precision of a single numeri -

cal quantity, an approximate function gives the value to a certain precision of a quantity which

depends on one or more parameters. Mathematica uses approximate functions, for example, to

represent  numerical  solutions  to  differential  equations  obtained  with  NDSolve,  as  discussed  in

"Numerical Differential Equations". 

Approximate  functions  in  Mathematica  are  represented  by  InterpolatingFunction  objects.

These objects work like the pure functions discussed in "Pure Functions". The basic idea is that

when  given  a  particular  argument,  an  InterpolatingFunction  object  finds  the  approximate

function value that corresponds to that argument. 

The  InterpolatingFunction  object  contains  a  representation  of  the  approximate  function

based  on  interpolation.  Typically  it  contains  values  and  possibly  derivatives  at  a  sequence  of

points.  It  effectively  assumes  that  the  function  varies  smoothly  between  these  points.  As  a

result,  when  you  ask  for  the  value  of  the  function  with  a  particular  argument,  the

InterpolatingFunction object can interpolate to find an approximation to the value you want. 

Interpolation@8 f1, f2,…<D construct an approximate function with values fi at succes -
sive integers

Interpolation@88x1, f1<,8x2, f2<,…<D

construct an approximate function with values fi at points xi

Constructing approximate functions. 

Here is a table of the values of the sine function. 

In[1]:= Table@8x, Sin@xD<, 8x, 0, 2, 0.25<D

Out[1]= 880., 0.<, 80.25, 0.247404<, 80.5, 0.479426<, 80.75, 0.681639<,
81., 0.841471<, 81.25, 0.948985<, 81.5, 0.997495<, 81.75, 0.983986<, 82., 0.909297<<

This constructs an approximate function which represents these values. 

In[2]:= sin = Interpolation@%D

Out[2]= InterpolatingFunction@880., 2.<<, <>D

The approximate function reproduces each of the values in the original table. 

Mathematics and Algorithms     359



The approximate function reproduces each of the values in the original table. 

In[3]:= sin@0.25D

Out[3]= 0.247404

It also allows you to get approximate values at other points. 

In[4]:= sin@0.3D

Out[4]= 0.2955

In this case the interpolation is a fairly good approximation to the true sine function. 

In[5]:= Sin@0.3D

Out[5]= 0.29552

You  can  work  with  approximate  functions  much  as  you  would  with  any  other  Mathematica

functions. You can plot approximate functions, or perform numerical operations such as integra-

tion or root finding. 

If you give a non-numerical argument, the approximate function is left in symbolic form. 

In[6]:= sin@xD

Out[6]= InterpolatingFunction@880., 2.<<, <>D@xD

Here is a numerical integral of the approximate function. 

In[7]:= NIntegrate@sin@xD^2, 8x, 0, Pi ê 2<D

Out[7]= 0.78531

Here is the same numerical integral for the true sine function. 

In[8]:= NIntegrate@Sin@xD^2, 8x, 0, Pi ê 2<D

Out[8]= 0.785398

A plot of the approximate function is essentially indistinguishable from the true sine function. 

In[9]:= Plot@sin@xD, 8x, 0, 2<D

Out[9]=

If  you  differentiate  an  approximate  function,  Mathematica  will  return  another  approximate

function that represents the derivative. 

360     Mathematics and Algorithms

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0



If  you  differentiate  an  approximate  function,  Mathematica  will  return  another  approximate

function that represents the derivative. 

This finds the derivative of the approximate sine function, and evaluates it at p ê6.

In[10]:= sin'@Pi ê 6D

Out[10]= 0.865372

The result is close to the exact one. 

In[11]:= N@Cos@Pi ê 6DD

Out[11]= 0.866025

InterpolatingFunction  objects contain all the information Mathematica needs about approxi-

mate functions. In standard Mathematica output format, however, only the part that gives the

domain of  the InterpolatingFunction  object  is  printed explicitly.  The lists  of  actual  parame-

ters used in the InterpolatingFunction object are shown only in iconic form. 

In standard output format, the only part of an InterpolatingFunction object printed 
explicitly is its domain. 

In[12]:= sin

Out[12]= InterpolatingFunction@880., 2.<<, <>D

If you ask for a value outside of the domain, Mathematica prints a warning, then uses extrapola- 
tion to find a result.

In[13]:= sin@3D

InterpolatingFunction::dmval :
Input value 83< lies outside the range of data in the interpolating function. Extrapolation will be used. à

Out[13]= 0.0155471

The more information you give about the function you are trying to approximate, the better the

approximation Mathematica constructs can be. You can, for example, specify not only values of

the function at a sequence of points, but also derivatives. 

Interpolation@888x1<, f1,df1,ddf1,…<,…<D

construct an approximate function with specified deriva -
tives at points xi

Constructing approximate functions with specified derivatives. 

Mathematics and Algorithms     361



This interpolates through the values of the sine function and its first derivative.

In[14]:= sind = Interpolation@Table@88x<, Sin@xD, Cos@xD<, 8x, 0, 2, 0.25<DD

Out[14]= InterpolatingFunction@880., 2.<<, <>D

This finds a better approximation to the derivative than the previous interpolation.

In[15]:= sind'@Pi ê 6D

Out[15]= 0.865974

Interpolation  works by fitting polynomial curves between the points you specify. You can use

the option InterpolationOrder  to specify the degree of these polynomial  curves. The default

setting is InterpolationOrder -> 3, yielding cubic curves. 

This makes a table of values of the cosine function. 

In[16]:= tab = Table@8x, Cos@xD<, 8x, 0, 6<D;

This creates an approximate function using linear interpolation between the values in the table. 

In[17]:= Interpolation@tab, InterpolationOrder -> 1D

Out[17]= InterpolatingFunction@880, 6<<, <>D

The approximate function consists of a collection of straight-line segments. 

In[18]:= Plot@%@xD, 8x, 0, 6<D

Out[18]=

With the default setting InterpolationOrder -> 3, cubic curves are used, and the function 
looks smooth. 

In[19]:= Plot@Evaluate@Interpolation@tabDD@xD, 8x, 0, 6<D

Out[19]=

Increasing  the  setting  for  InterpolationOrder  typically  leads  to  smoother  approximate  func-

tions. However, if you increase the setting too much, spurious wiggles may develop.  

362     Mathematics and Algorithms

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0



ListInterpolation@88 f11, f12,…<,8 f21,…<,…<D

construct an approximate function from a two-dimensional 
grid of values at integer points

ListInterpolation@list,88xmin,xmax<,8ymin,ymax<<D

assume the values are from an evenly spaced grid with the 
specified domain

ListInterpolation@list,88x1,x2,…<,8y1,y2,…<<D

assume the values are from a grid with the specified grid 
lines

Interpolating multidimensional arrays of data. 

This interpolates an array of values from integer grid points. 

In[20]:= ListInterpolation@Table@1.5 ê Hx^2 + y^3L, 8x, 10<, 8y, 15<DD

Out[20]= InterpolatingFunction@881., 10.<, 81., 15.<<, <>D

Here is the value at a particular position. 

In[21]:= %@6.5, 7.2D

Out[21]= 0.00360759

Here is another array of values. 

In[22]:= tab = Table@1.5 ê Hx^2 + y^3L, 8x, 5.5, 7.2, .2<, 8y, 2.3, 8.9, .1<D;

To interpolate this array you explicitly have to tell Mathematica the domain it covers. 

In[23]:= ListInterpolation@tab, 885.5, 7.2<, 82.3, 8.9<<D

Out[23]= InterpolatingFunction@885.5, 7.2<, 82.3, 8.9<<, <>D

ListInterpolation  works  for  arrays  of  any  dimension,  and  in  each  case  it  produces  an

InterpolatingFunction object which takes the appropriate number of arguments.

This interpolates a three-dimensional array. 

In[24]:= ListInterpolation@Array@Ò1^2 + Ò2^2 - Ò3^2 &, 810, 10, 10<DD;

The resulting InterpolatingFunction object takes three arguments. 

In[25]:= %@3.4, 7.8, 2.6D

Out[25]= 65.64

Mathematica can handle not only purely numerical approximate functions, but also ones which

involve symbolic parameters. 

Mathematics and Algorithms     363



Mathematica can handle not only purely numerical approximate functions, but also ones which

involve symbolic parameters. 

This generates an InterpolatingFunction that depends on the parameters a and b. 

In[26]:= sfun = ListInterpolation@81 + a, 2, 3, 4 + b, 5<D

Out[26]= InterpolatingFunction@881, 5<<, <>D

This shows how the interpolated value at 2.2 depends on the parameters. 

In[27]:= sfun@2.2D êê Simplify

Out[27]= 2.2 - 0.048 a - 0.032 b

With the default setting for InterpolationOrder used, the value at this point no longer 
depends on a. 

In[28]:= sfun@3.8D êê Simplify

Out[28]= 3.8 + 0.864 b

In working with approximate functions, you can quite often end up with complicated combina-

tions of InterpolatingFunction  objects. You can always tell Mathematica to produce a single

InterpolatingFunction  object  valid  over  a  particular  domain  by  using

FunctionInterpolation. 

This generates a new InterpolatingFunction object valid in the domain 0 to 1. 

In[29]:= FunctionInterpolation@x + sin@x^2D, 8x, 0, 1<D

Out[29]= InterpolatingFunction@880., 1.<<, <>D

This generates a nested InterpolatingFunction object. 

In[30]:= ListInterpolation@83, 4, 5, sin@aD, 6<D

Out[30]= InterpolatingFunction@881, 5<<, <>D

This produces a pure two-dimensional InterpolatingFunction object. 

In[31]:= FunctionInterpolation@a^2 + %@xD, 8x, 1, 3<, 8a, 0, 1.5<D

Out[31]= InterpolatingFunction@881., 3.<, 80., 1.5<<, <>D

364     Mathematics and Algorithms



FunctionInterpolation@expr,8x,xmin,xmax<D

construct an approximate function by evaluating expr with 
x ranging from xmin to xmax

FunctionInterpolation@expr,8x,xmin,xmax<,8y,ymin,ymax<,…D

construct a higher-dimensional approximate function

Constructing approximate functions by evaluating expressions. 

Discrete Fourier Transforms

A common operation in analyzing various kinds of data is to find the discrete Fourier transform

(or spectrum) of a list of values. The idea is typically to pick out components of the data with

particular frequencies or ranges of frequencies.

Fourier@8u1,u2,…,un<D discrete Fourier transform

InverseFourier@8v1,v2,…,vn<D inverse discrete Fourier transform

Discrete Fourier transforms. 

Here is some data, corresponding to a square pulse.

In[1]:= 8-1, -1, -1, -1, 1, 1, 1, 1<

Out[1]= 8-1, -1, -1, -1, 1, 1, 1, 1<

Here is the discrete Fourier transform of the data. It involves complex numbers. 

In[2]:= Fourier@%D

Out[2]= 80. + 0. Â, -0.707107 - 1.70711 Â, 0. + 0. Â, -0.707107 - 0.292893 Â,
0. + 0. Â, -0.707107 + 0.292893 Â, 0. + 0. Â, -0.707107 + 1.70711 Â<

Here is the inverse discrete Fourier transform. 

In[3]:= InverseFourier@%D

Out[3]= 8-1., -1., -1., -1., 1., 1., 1., 1.<

Fourier works whether or not your list of data has a length which is a power of two. 

In[4]:= Fourier@81, -1, 1<D

Out[4]= 80.57735 + 0. Â, 0.57735 - 1. Â, 0.57735 + 1. Â<

Mathematics and Algorithms     365



This generates a list of 200 elements containing a periodic signal with random noise added. 

In[5]:= data = Table@N@Sin@30 µ 2 Pi n ê 200D + HRandomReal@D - 1 ê 2LD, 8n, 200<D;

The data looks fairly random if you plot it directly. 

In[6]:= ListLinePlot@dataD

Out[6]=
50 100 150 200

-1.5

-1.0

-0.5

0.5

1.0

1.5

The discrete Fourier transform, however, shows a strong peak at 30 + 1, and a symmetric peak 
at 201 - 30, reflecting the frequency component of the original signal near 30 ê200. 

In[7]:= ListLinePlot@Abs@Fourier@dataDD, PlotRange -> AllD

Out[7]=

50 100 150 200

1

2

3

4

5

6

7

In Mathematica, the discrete Fourier transform vs  of a list ur  of length n is by default defined to

be 1

n
⁄r=1
n ur e2 p i Hr-1L Hs-1Lên. Notice that the zero frequency term appears at position 1 in the result-

ing list. 

The  inverse  discrete  Fourier  transform  ur  of  a  list  vs  of  length  n  is  by  default  defined  to  be
1

n
⁄s=1
n vs e-2 p i Hr-1L Hs-1Lên. 

In  different  scientific  and technical  fields  different  conventions are often used for  defining dis-

crete  Fourier  transforms.  The  option  FourierParameters  allows  you  to  choose  any  of  these

conventions you want.

366     Mathematics and Algorithms



common 
convention

setting discrete Fourier transform inverse discrete Fourier transform

Mathematica 
default

80,1< 1
n1ê2

⁄r=1
n ur e2 p i Hr-1L Hs-1Lên

1
n1ê2

⁄s=1
n vs e-2 p i Hr-1L Hs-1Lên

data analysis 8-1,1< 1
n ⁄r=1

n ur e2 p i Hr-1L Hs-1Lên ⁄s=1
n vs e-2 p iHr-1L Hs-1Lên

signal processing 81,-1< ⁄r=1
n ur e-2 p iHr-1L Hs-1Lên

1
n ⁄s=1

n vs e2 p i Hr-1L Hs-1Lên

general case 8a,b< 1
nH1-aLê2

⁄r=1
n ur e2 p i bHr-1L Hs-1Lên

1
nH1+aLê2

⁄s=1
n vs e-2 p i b Hr-1L Hs-1Lên

Typical settings for FourierParameters with various conventions. 

Fourier@88u11,u12,…<,8u21,u22,…<,…<D

two-dimensional discrete Fourier transform

Two-dimensional discrete Fourier transform. 

Mathematica  can  find  discrete  Fourier  transforms  for  data  in  any  number  of  dimensions.  In  n

dimensions,  the  data  is  specified  by  a  list  nested  n  levels  deep.  Two-dimensional  discrete

Fourier transforms are often used in image processing. 

One issue with the usual discrete Fourier transform for real data is that the result is complex-

valued. There are variants of real discrete Fourier transforms that have real results. Mathemat-

ica has commands for computing the discrete cosine transform and the discrete sine transform.

FourierDCT@listD Fourier discrete cosine transform of a list of real numbers

FourierDST@listD Fourier discrete sine transform of a list of real numbers

Discrete real Fourier transforms.

Here is some data, corresponding to a square pulse.

In[8]:= pulse = 8-1, -1, -1, -1, -1, 1, 1, 1, 1, 1<

Out[8]= 8-1, -1, -1, -1, -1, 1, 1, 1, 1, 1<

Here is the Fourier discrete cosine transform of the data.

In[9]:= FourierDCT@pulseD

Out[9]= 90., -2.02147, 3.29753µ10-17, 0.696552, -5.68065µ10-17,

-0.447214, -4.12723µ10-17, 0.354911, 4.76294µ10-17, -0.32017=

Mathematics and Algorithms     367



Here is the Fourier discrete sine transform of the data.

In[10]:= FourierDST@pulseD

Out[10]= 98.03365µ10-17, -2.04667, -3.85062µ10-17, -9.37835µ10-18,

0., -0.781758, 9.84259µ10-17, 4.4886µ10-17, 5.83679µ10-17, -0.632456=

There  are  four  types  each  of  Fourier  discrete  sine  and  cosine  transforms  typically  in  use,

denoted  by  number  or  sometimes  roman numeral  as  in  "DCTII"  for  the  discrete  cosine  trans-

form of type 2.

FourierDCT@list,mD Fourier discrete cosine transform of type m

FourierDST@list,mD Fourier discrete sine transform of type m

Discrete real Fourier transforms of different types.

The default is type 2 for both FourierDCT and FourierDST.

Mathematica  does  not  need  InverseFourierDCT  or  InverseFourierDST  functions  because

FourierDCT  and FourierDST  are their own inverses when used with the appropriate type. The

inverse transforms for types 1, 2, 3, 4 are types 1, 3, 2, 4, respectively.

Check that the type 3 transform is the inverse of the type 2 transform.

In[11]:= FourierDCT@FourierDCT@pulse, 2D, 3D

Out[11]= 8-1., -1., -1., -1., -1., 1., 1., 1., 1., 1.<

The discrete real transforms are convenient to use for data or image compression.

Here is data that might be like a front or an edge.

In[12]:= data = Table@ArcTan@x - 100D, 8x, 1., 200.<D;
ListLinePlot@dataD

Out[12]=

368     Mathematics and Algorithms

50 100 150 200

-1.5

-1.0

-0.5

0.5

1.0

1.5



The discrete cosine transform has most of the information in the first few modes.

In[13]:= dct = FourierDCT@dataD;
ListLinePlot@dct, PlotRange Ø AllD

Out[13]=

Reconstruct the front from only the first 20 modes (1/10 of the original data size). The oscilla-
tions are a consequence of the truncation and are known to show up in image processing 
applications as well.

In[14]:= tdata = FourierDCT@PadRight@Take@dct, 20D, 200, 0D, 3D;
ListLinePlot@8data, tdata<D

Out[14]=

Convolutions and Correlations

Convolution and correlation are central  to  many kinds of  operations on lists  of  data.  They are

used in such areas as signal and image processing, statistical data analysis, approximations to

partial differential equations, as well as operations on digit sequences and power series.

In  both  convolution  and  correlation  the  basic  idea  is  to  combine  a  kernel  list  with  successive

sublists  of  a  list  of  data.  The  convolution  of  a  kernel  Kr  with  a  list  us  has  the  general  form

⁄rKrus-r, while the correlation has the general form ⁄rKrus+r. 

ListConvolve@kernel,listD form the convolution of kernel with list

ListCorrelate@kernel,listD form the correlation of kernel with list

Convolution and correlation of lists. 

This forms the convolution of the kernel 8x, y< with a list of data. 

In[1]:= ListConvolve@8x, y<, 8a, b, c, d, e<D

Out[1]= 8b x + a y, c x + b y, d x + c y, e x + d y<

Mathematics and Algorithms     369

50 100 150 200

-10

-5

5

50 100 150 200

-1.5

-1.0

-0.5

0.5

1.0

1.5



This forms the correlation. 

In[2]:= ListCorrelate@8x, y<, 8a, b, c, d, e<D

Out[2]= 8a x + b y, b x + c y, c x + d y, d x + e y<

In this case reversing the kernel gives exactly the same result as ListConvolve. 

In[3]:= ListCorrelate@8y, x<, 8a, b, c, d, e<D

Out[3]= 8b x + a y, c x + b y, d x + c y, e x + d y<

This forms successive differences of the data. 

In[4]:= ListCorrelate@8-1, 1<, 8a, b, c, d, e<D

Out[4]= 8-a + b, -b + c, -c + d, -d + e<

In forming sublists to combine with a kernel, there is always an issue of what to do at the ends

of  the  list  of  data.  By  default,  ListConvolve  and  ListCorrelate  never  form  sublists  which

would "overhang" the ends of the list of data. This means that the output you get is normally

shorter than the original list of data. 

With an input list of length 6, the output is in this case of length 4. 

In[5]:= ListCorrelate@81, 1, 1<, Range@6DD

Out[5]= 86, 9, 12, 15<

In practice one often wants to get output that is as long as the original list of data. To do this

requires  including  sublists  that  overhang  one  or  both  ends  of  the  list  of  data.  The  additional

elements  needed  to  form  these  sublists  must  be  filled  in  with  some  kind  of  "padding".  By

default,  Mathematica  takes  copies  of  the  original  list  to  provide  the  padding,  thus  effectively

treating the list as being cyclic. 

ListCorrelate@kernel,listD do not allow overhangs on either side (result shorter 
than list)

ListCorrelate@kernel,list,1D allow an overhang on the right (result same length as list)

ListCorrelate@kernel,list,-1D allow an overhang on the left (result same length as list)

ListCorrelate@kernel,list,8-1,1<D allow overhangs on both sides (result longer than list)

ListCorrelate@kernel,list,8kL,kR<D allow particular overhangs on left and right

Controlling how the ends of the list of data are treated. 

370     Mathematics and Algorithms



The default involves no overhangs. 

In[6]:= ListCorrelate@8x, y<, 8a, b, c, d<D

Out[6]= 8a x + b y, b x + c y, c x + d y<

The last term in the last element now comes from the beginning of the list. 

In[7]:= ListCorrelate@8x, y<, 8a, b, c, d<, 1D

Out[7]= 8a x + b y, b x + c y, c x + d y, d x + a y<

Now the first term of the first element and the last term of the last element both involve 
wraparound. 

In[8]:= ListCorrelate@8x, y<, 8a, b, c, d<, 8-1, 1<D

Out[8]= 8d x + a y, a x + b y, b x + c y, c x + d y, d x + a y<

In the general case ListCorrelate@kernel, list, 8kL, kR<D is set up so that in the first element of

the result, the first element of list appears multiplied by the element at position kL  in kernel, and

in  the last  element  of  the result,  the last  element  of  list  appears  multiplied  by the element  at

position kR  in kernel. The default case in which no overhang is allowed on either side thus corre-

sponds to ListCorrelate@kernel, list, 81, -1<D. 

With a kernel of length 3, alignments 8-1, 2< always make the first and last elements of the 
result the same. 

In[9]:= ListCorrelate@8x, y, z<, 8a, b, c, d<, 8-1, 2<D

Out[9]= 8c x + d y + a z, d x + a y + b z, a x + b y + c z, b x + c y + d z, c x + d y + a z<

For many kinds of data, it is convenient to assume not that the data is cyclic, but rather that it

is padded at either end by some fixed element, often 0, or by some sequence of elements. 

ListCorrelate@kernel,list,klist,pD pad with element p

ListCorrelate@kernel,list,klist,8p1,p2,…<D

pad with cyclic repetitions of the pi

ListCorrelate@kernel,list,klist,listD pad with cyclic repetitions of the original data

Controlling the padding for a list of data. 

This pads with element p. 

In[10]:= ListCorrelate@8x, y<, 8a, b, c, d<, 8-1, 1<, pD

Out[10]= 8p x + a y, a x + b y, b x + c y, c x + d y, d x + p y<

A common case is to pad with zero. 

Mathematics and Algorithms     371



A common case is to pad with zero. 

In[11]:= ListCorrelate@8x, y<, 8a, b, c, d<, 8-1, 1<, 0D

Out[11]= 8a y, a x + b y, b x + c y, c x + d y, d x<

When the padding is indicated by 8p, q<, the list 8a, b, c< overlays 8…, p, q, p, q, …< with 
a p aligned under the a. 

In[12]:= ListCorrelate@8x, y, z<, 8a, b, c<, 8-1, 1<, 8p, q<D

Out[12]= 8p x + q y + a z, q x + a y + b z, a x + b y + c z, b x + c y + q z, c x + q y + p z<

Different  choices  of  kernel  allow  ListConvolve  and  ListCorrelate  to  be  used  for  different

kinds of computations. 

This finds a moving average of data. 

In[13]:= ListCorrelate@81, 1, 1< ê 3, 8a, b, c, d, e<D

Out[13]= :
a

3
+
b

3
+
c

3
,
b

3
+
c

3
+
d

3
,
c

3
+
d

3
+
e

3
>

Here is a Gaussian kernel. 

In[14]:= kern = Table@Exp@-n^2 ê 100D ê Sqrt@2. PiD, 8n, -10, 10<D;

This generates some "data". 

In[15]:= data = Table@BesselJ@1, xD + 0.2 RandomReal@D, 8x, 0, 10, .1<D;

Here is a plot of the data. 

In[16]:= ListPlot@dataD

Out[16]= 

This convolves the kernel with the data. 

In[17]:= ListConvolve@kern, dataD;

372     Mathematics and Algorithms

20 40 60 80 100
-0.2

0.2

0.4

0.6



The result is a smoothed version of the data. 

In[18]:= ListPlot@%D

Out[18]=

20 40 60 80
-1

1

2

3

You can use ListConvolve and ListCorrelate to handle symbolic as well as numerical data. 

This forms the convolution of two symbolic lists. 

In[19]:= ListConvolve@8a, b, c<, 8u, v, w<, 81, -1<, 0D

Out[19]= 8a u, b u + a v, c u + b v + a w, c v + b w, c w<

The result corresponds exactly with the coefficients in the expanded form of this product of 
polynomials. 

In[20]:= Expand@Ha + b x + c x^2L Hu + v x + w x^2LD

Out[20]= a u + b u x + a v x + c u x2 + b v x2 + a w x2 + c v x3 + b w x3 + c w x4

ListConvolve and ListCorrelate work on data in any number of dimensions. 

This imports image data from a file. 

In[21]:= g = ReadList@"ExampleDataêfish.data", Number, RecordLists -> TrueD;

Here is the image. 

In[22]:= Graphics@Raster@gDD

Out[22]=

Mathematics and Algorithms     373



This convolves the data with a two-dimensional kernel. 

In[23]:= ListConvolve@881, 1, 1<, 81, -8, 1<, 81, 1, 1<<, gD;

This shows the image corresponding to the data. 

In[24]:= Graphics@Raster@%DD

Out[24]=

Cellular Automata

Cellular  automata provide a  convenient  way to  represent  many kinds  of  systems in  which the

values of cells in an array are updated in discrete steps according to a local rule. 

CellularAutomaton@rnum,init,tD evolve rule rnum from init for t steps

Generating a cellular automaton evolution. 

This starts with the list given, then evolves rule 30 for 4 steps. 

In[1]:= CellularAutomaton@30, 80, 0, 0, 1, 0, 0, 0<, 4D

Out[1]= 880, 0, 0, 1, 0, 0, 0<, 80, 0, 1, 1, 1, 0, 0<,
80, 1, 1, 0, 0, 1, 0<, 81, 1, 0, 1, 1, 1, 1<, 80, 0, 0, 1, 0, 0, 0<<

This shows 100 steps of rule 30 evolution from random initial conditions. 

In[2]:= ArrayPlot@CellularAutomaton@30, RandomInteger@1, 250D, 100DD

Out[2]=

374     Mathematics and Algorithms



8a1,a2,…< explicit list of values ai

88a1,a2,…<,b< values ai superimposed on a b background

88a1,a2,…<,blist< values ai superimposed on a background of repetitions of 
blist

8888a11,a12,…<,8d1<<,…<,blist< values aij at offsets di

Ways of specifying initial conditions for one-dimensional cellular automata. 

If you give an explicit list of initial values, CellularAutomaton will take the elements in this list

to correspond to all the cells in the system, arranged cyclically. 

The right neighbor of the cell at the end is the cell at the beginning. 

In[4]:= CellularAutomaton@30, 81, 0, 0, 0, 0<, 1D

Out[4]= 881, 0, 0, 0, 0<, 81, 1, 0, 0, 1<<

It is often convenient to set up initial conditions in which there is a small "seed" region, superim-

posed on a constant "background". By default, CellularAutomaton automatically fills in enough

background  to  cover  the  size  of  the  pattern  that  can  be  produced  in  the  number  of  steps  of

evolution you specify. 

This shows rule 30 evolving from an initial condition containing a single black cell. 

In[5]:= ArrayPlot@CellularAutomaton@30, 881<, 0<, 100DD

Out[5]=

Mathematics and Algorithms     375



This shows rule 30 evolving from an initial condition consisting of a 81, 1< seed on a back-
ground of repeated 81, 0, 1, 1< blocks. 

In[6]:= ArrayPlot@CellularAutomaton@30, 881, 1<, 81, 0, 1, 1<<, 100DD

Out[6]=

Particularly  in  studying  interactions  between  structures,  you  may  sometimes  want  to  specify

initial conditions for cellular automata in which certain blocks are placed at particular offsets. 

This sets up an initial condition with black cells at offsets ±40. 

In[7]:= ArrayPlot@CellularAutomaton@30, 88881<, 8-40<<, 881<, 840<<<, 0<, 100DD

Out[7]=

n k = 2, r = 1, elementary rule

8n,k< general nearest-neighbor rule with k colors

8n,k,r< general rule with k colors and range r

8n,8k,1<< k-color nearest-neighbor totalistic rule

8n,8k,1<,r< k-color range r totalistic rule

8n,8k,8wt1,wt2,…<<,r< rule in which neighbor i is assigned weight wti

9n,kspec,98off1<,8off2<,…,9offs=== rule with neighbors at specified offsets

8lhs1->rhs1,lhs2->rhs2,…< explicit replacements for lists of neighbors 

8 fun,8<,rspec< rule obtained by applying function fun to each neighbor list

Specifying rules for one-dimensional cellular automata. 

In the simplest cases, a cellular automaton allows k possible values or "colors" for each cell, and

has  rules  that  involve  up  to  r  neighbors  on  each  side.  The  digits  of  the  "rule  number"  n  then

specify  what  the  color  of  a  new  cell  should  be  for  each  possible  configuration  of  the

neighborhood.

376     Mathematics and Algorithms



In the simplest cases, a cellular automaton allows k possible values or "colors" for each cell, and

has  rules  that  involve  up  to  r  neighbors  on  each  side.  The  digits  of  the  "rule  number"  n  then

specify  what  the  color  of  a  new  cell  should  be  for  each  possible  configuration  of  the

neighborhood.

This evolves a single neighborhood for 1 step. 

In[8]:= CellularAutomaton@30, 81, 1, 0<, 1D

Out[8]= 881, 1, 0<, 81, 0, 0<<

Here are the 8 possible neighborhoods for a k = 2, r = 1 cellular automaton. 

In[9]:= Tuples@81, 0<, 3D

Out[9]= 881, 1, 1<, 81, 1, 0<, 81, 0, 1<, 81, 0, 0<, 80, 1, 1<, 80, 1, 0<, 80, 0, 1<, 80, 0, 0<<

This shows the new color of the center cell for each of the 8 neighborhoods. 

In[10]:= Map@CellularAutomaton@30, Ò, 1D@@2, 2DD &, %D

Out[10]= 80, 0, 0, 1, 1, 1, 1, 0<

For rule 30, this sequence corresponds to the base-2 digits of the number 30. 

In[11]:= FromDigits@%, 2D

Out[11]= 30

This runs the general k = 3, r = 1 rule with rule number 921408. 

In[12]:= ArrayPlot@CellularAutomaton@8921 408, 3, 1<, 881<, 0<, 100DD

Out[12]=

For  a  general  cellular  automaton  rule,  each  digit  of  the  rule  number  specifies  what  color  a

different possible neighborhood of 2 r + 1  cells should yield. To find out which digit  corresponds 

r = 1  cellular  automaton,  the  number  is  obtained  from  the  list  of  elements  neig  in  the

neighborhood by neig.8k^2, k, 1<. 

Mathematics and Algorithms     377



to which neighborhood, one effectively treats the cells in a neighborhood as digits in a number. 

For  an  r = 1  cellular  automaton,  the  number  is  obtained  from  the  list  of  elements  neig  in  the

neighborhood by neig.8k^2, k, 1<. 

It is sometimes convenient to consider totalistic cellular automata, in which the new value of a

cell depends only on the total of the values in its neighborhood. One can specify totalistic cellu-

lar  automata  by  rule  numbers  or  "codes"  in  which  each  digit  refers  to  neighborhoods  with  a

given total value, obtained for example from neig.81, 1, 1<. 

In  general,  CellularAutomaton  allows  one  to  specify  rules  using  any  sequence  of  weights.

Another choice sometimes convenient is 8k, 1, k<, which yields outer totalistic rules. 

This runs the k = 3, r = 1 totalistic rule with code number 867. 

In[13]:= ArrayPlot@CellularAutomaton@8867, 83, 1<, 1<, 881<, 0<, 100DD

Out[13]=

Rules  with  range  r  involve  all  cells  with  offsets  -r  through  +r.  Sometimes  it  is  convenient  to

think  about  rules  that  involve  only  cells  with  specific  offsets.  You  can  do  this  by  replacing  a

single r with a list of offsets. 

Any k = 2  cellular automaton rule can be thought of as corresponding to a Boolean function. In

the  simplest  case,  basic  Boolean  functions  like  And  or  Nor  take  two  arguments.  These  are

conveniently specified in a cellular automaton rule as being at offsets 880<, 81<<. Note that for

compatibility with handling higher-dimensional cellular automata, offsets must always be given

in lists, even for one-dimensional cellular automata. 

This generates the truth table for 2-cell-neighborhood rule number 7, which turns out to be the 
Boolean function Nand. 

In[14]:= Map@CellularAutomaton@87, 2, 880<, 81<<<, Ò, 1D@@2, 2DD &,
881, 1<, 81, 0<, 80, 1<, 80, 0<<D

Out[14]= 80, 1, 1, 1<

Rule numbers provide a highly compact way to specify cellular automaton rules. But sometimes

it  is  more  convenient  to  specify  rules  by  giving  an  explicit  function  that  should  be  applied  to

each possible neighborhood. 

378     Mathematics and Algorithms



Rule numbers provide a highly compact way to specify cellular automaton rules. But sometimes

it  is  more  convenient  to  specify  rules  by  giving  an  explicit  function  that  should  be  applied  to

each possible neighborhood. 

This runs an additive cellular automaton whose rule adds all values in each neighborhood 
modulo 4. 

In[15]:= ArrayPlot@CellularAutomaton@8Mod@Apply@Plus, ÒD, 4D &, 8<, 1<, 881<, 0<, 100DD

Out[15]=

The function is given the step number as a second argument.

In[16]:= ArrayPlot@CellularAutomaton@8Mod@Total@ÒD + Ò2, 4D &, 8<, 1<, 881<, 0<, 100DD

Out[16]=

When you specify rules by functions, the values of cells need not be integers.

In[17]:= ArrayPlot@CellularAutomaton@8Mod@1 ê 2 Apply@Plus, ÒD, 1D &, 8<, 1<, 881<, 0<, 100DD

Out[17]=

They can even be symbolic. 

In[18]:= Simplify@
CellularAutomaton@8Mod@Apply@Plus, ÒD, 2D &, 8<, 1<, 88a<, 0<, 2D, a œ IntegersD

Out[18]= 880, 0, a, 0, 0<, 80, Mod@a, 2D, Mod@a, 2D, Mod@a, 2D, 0<, 8Mod@a, 2D, 0, Mod@a, 2D, 0, Mod@a, 2D<<

Mathematics and Algorithms     379



CellularAutomaton@rnum,init,tD evolve for t steps, keeping all steps

CellularAutomaton@
rnum,init,88t<<D

evolve for t steps, keeping only the last step

CellularAutomatonA
rnum,init,9spect=E

keep only steps specified by spect

CellularAutomaton@rnum,initD evolve rule for one step, giving only the last step

Selecting which steps to keep. 

This runs rule 30 for 5 steps, keeping only the last step. 

In[19]:= CellularAutomaton@30, 881<, 0<, 885<<D

Out[19]= 881, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1<<

This keeps the last 2 steps. 

In[20]:= CellularAutomaton@30, 881<, 0<, 884, 5<<D

Out[20]= 880, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0<, 81, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1<<

This gives 1 step. 

In[21]:= CellularAutomaton@30, 80, 0, 1, 0, 0<D

Out[21]= 80, 1, 1, 1, 0<

The  step  specification  spect  works  very  much  like  taking  elements  from  a  list  with  Take.  One

difference,  though,  is  that  the  initial  condition  for  the  cellular  automaton  is  considered  to  be

step 0. Note that any step specification of the form 8…< must be enclosed in an additional list. 

u steps 0 through u

8u< step u

8u1,u2< steps u1 through u2
8u1,u2,du< steps u1, u1 + du, …

Cellular automaton step specifications. 

This evolves for 100 steps, but keeps only every other step. 

In[22]:= ArrayPlot@CellularAutomaton@30, 881<, 0<, 880, 100, 2<<DD

Out[22]=

380     Mathematics and Algorithms



CellularAutomaton@rnum,init,tD keep all steps, and all relevant cells

CellularAutomatonArnum,init,9spect,specx=E

keep only specified steps and cells

Selecting steps and cells to keep. 

Much as you can specify which steps to keep in a cellular automaton evolution, so also you can

specify  which  cells  to  keep.  If  you  give  an  initial  condition  such  as  8a1, a2, …<, blist,  then  ai  is

taken to have offset 0 for the purpose of specifying which cells to keep. 

All all cells that can be affected by the specified initial condition

Automatic all cells in the region that differs from the background 
(default)

0 cell aligned with beginning of aspec

x cells at offsets up to x on the right

-x cells at offsets up to x on the left

8x< cell at offset x to the right

8-x< cell at offset x to the left

8x1,x2< cells at offsets x1 through x2
8x1,x2,dx< cells x1, x1 + dx, …

Cellular automaton cell specifications. 

This keeps all steps, but drops cells at offsets more than 20 on the left. 

In[23]:= ArrayPlot@CellularAutomaton@30, 881<, 0<, 8100, 8-20, 100<<DD

Out[23]=

Mathematics and Algorithms     381



This keeps just the center column of cells. 

In[24]:= CellularAutomaton@30, 881<, 0<, 820, 80<<D

Out[24]= 881<, 81<, 80<, 81<, 81<, 81<, 80<, 80<, 81<,
81<, 80<, 80<, 80<, 81<, 80<, 81<, 81<, 80<, 80<, 81<, 80<<

If  you  give  an  initial  condition  such  as  88a1, a2, …<, blist<,  then  CellularAutomaton  will  always

effectively  do  the  cellular  automaton  as  if  there  were  an  infinite  number  of  cells.  By  using  a

specx  such as  8x1, x2<  you can tell  CellularAutomaton  to  include only  cells  at  specific  offsets  x1

through x2  in its output.  CellularAutomaton  by default  includes cells  out just far enough that

their values never simply stay the same as in the background blist. 

In  general,  given  a  cellular  automaton  rule  with  range  r,  cells  out  to  distance  rt  on  each  side

could in principle be affected in the evolution of the system. With specx being All, all these cells

are  included;  with  the  default  setting  of  Automatic,  cells  whose  values  effectively  stay  the

same as in blist are trimmed off. 

By default, only the parts that are not constant black are kept. 

In[25]:= ArrayPlot@CellularAutomaton@225, 881<, 0<, 100DD

Out[25]=

382     Mathematics and Algorithms



Using All for specx includes all cells that could be affected by a cellular automaton with this 
range. 

In[26]:= ArrayPlot@CellularAutomaton@225, 881<, 0<, 8100, All<DD

Out[26]=

CellularAutomaton generalizes quite directly to any number of dimensions. Above two dimen-

sions,  however,  totalistic  and  other  special  types  of  rules  tend  to  be  more  useful,  since  the

number of entries in the rule table for a general rule rapidly becomes astronomical. 

8n,k,8r1,r2,…,rd<< d-dimensional rule with H2 r1 + 1Lä H2 r2 + 1Lä…ä H2 rd + 1L 
neighborhood

8n,8k,1<,81,1<< two-dimensional 9-neighbor totalistic rule

8n,8k,880,1,0<,81,1,1<,80,1,0<<<,81,1<<

two-dimensional 5-neighbor totalistic rule

8n,8k,880,k,0<,8k,1,k<,80,k,0<<<,81,1<<

two-dimensional 5-neighbor outer totalistic rule

Higher-dimensional rule specifications. 

This is the rule specification for the two-dimensional 9-neighbor totalistic cellular automaton 
with code 797. 

In[27]:= code797 = 8797, 82, 1<, 81, 1<<;

This gives steps 0 and 1 in its evolution. 

In[28]:= CellularAutomaton@code797, 8881<<, 0<, 1D

Out[28]= 8880, 0, 0<, 80, 1, 0<, 80, 0, 0<<, 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<<

Mathematics and Algorithms     383



This shows step 70 in the evolution. 

In[29]:= ArrayPlot@First@CellularAutomaton@code797, 8881<<, 0<,
8870<<DDD

Out[29]=

This shows all steps in a slice along the x axis. 

In[30]:= ArrayPlot@Map@First,
CellularAutomaton@code797, 8881<<, 0<,

870, 80<, All<DDD

Out[30]=

384     Mathematics and Algorithms



Mathematical Functions

Naming Conventions

Mathematical  functions  in  Mathematica  are  given  names  according  to  definite  rules.  As  with

most  Mathematica  functions,  the names are  usually  complete  English  words,  fully  spelled  out.

For  a  few  very  common  functions,  Mathematica  uses  the  traditional  abbreviations.  Thus  the

modulo function, for example, is Mod, not Modulo. 

Mathematical functions that are usually referred to by a person's name have names in Mathemat -

ica  of  the form PersonSymbol.  Thus,  for  example,  the Legendre polynomials  PnHxL  are denoted

LegendreP@n, xD.  Although  this  convention  does  lead  to  longer  function  names,  it  avoids  any

ambiguity or confusion. 

When  the  standard  notation  for  a  mathematical  function  involves  both  subscripts  and  super-

scripts,  the  subscripts  are  given  before  the  superscripts  in  the  Mathematica  form.  Thus,  for

example, the associated Legendre polynomials PnmHxL are denoted LegendreP@n, m, xD.

Generic and Non-Generic Cases

This gives a result for the integral of xn that is valid for almost all values of n. 

In[1]:= Integrate@x^n, xD

Out[1]=
x1+n

1 + n

For the special case of x-1, however, the correct result is different. 

In[2]:= Integrate@x^-1, xD

Out[2]= Log@xD

The  overall  goal  of  symbolic  computation  is  typically  to  get  formulas  that  are  valid  for  many

possible values of the variables that appear in them. It is however often not practical to try to

get formulas that are valid for absolutely every possible value of each variable. 

Mathematics and Algorithms     385



Mathematica always replaces 0 ê x by 0. 

In[3]:= 0 ê x

Out[3]= 0

If x is equal to 0, however, then the true result is not 0. 

In[4]:= 0 ê 0

Power::infy : Infinite expression
1

0
encountered. à

¶::indet : Indeterminate expression 0ComplexInfinity encountered. à

Out[4]= Indeterminate

This construct treats both cases, but would be quite unwieldy to use. 

In[5]:= If@x != 0, 0, IndeterminateD

Out[5]= If@x ≠ 0, 0, IndeterminateD

If  Mathematica  did  not  automatically  replace  0 ê x  by  0,  then few symbolic  computations  would

get  very  far.  But  you  should  realize  that  the  practical  necessity  of  making  such  replacements

can cause misleading results to be obtained when exceptional values of parameters are used. 

The basic operations of Mathematica are nevertheless carefully set up so that whenever possi-

ble the results obtained will be valid for almost all values of each variable. 

x2  is not automatically replaced by x. 
In[6]:= Sqrt@x^2D

Out[6]= x2

If it were, then the result here would be -2, which is incorrect. 

In[7]:= % ê. x -> -2

Out[7]= 2

This makes the assumption that x is a positive real variable, and does the replacement. 

In[8]:= Simplify@Sqrt@x^2D, x > 0D

Out[8]= x

Numerical Functions

386     Mathematics and Algorithms



Numerical Functions

IntegerPart@xD integer part of x

FractionalPart@xD fractional part of x

Round@xD integer Xx\ closest to x

Floor@xD greatest integer dxt not larger than x

Ceiling@xD least integer `xp not smaller than x

Rationalize@xD rational number approximation to x

Rationalize@x,dxD rational approximation within tolerance dx

Functions relating real numbers and integers.

x IntegerPart@xD FractionalPart@xD Round@xD Floor@xD Ceiling@xD
2.4 2 0.4 2 2 3
2.5 2 0.5 2 2 3
2.6 2 0.6 3 2 3
-2.4 -2 -0.4 -2 -3 -2
-2.5 -2 -0.5 -2 -3 -2
-2.6 -2 -0.6 -3 -3 -2

Extracting integer and fractional parts. 

IntegerPart@xD and FractionalPart@xD can be thought of as extracting digits to the left and

right of the decimal point. Round@xD is often used for forcing numbers that are close to integers

to  be  exactly  integers.  Floor@xD  and  Ceiling@xD  often  arise  in  working  out  how  many  ele-

ments there will be in sequences of numbers with non-integer spacings. 

Sign@xD 1 for x > 0, -1 for x < 0

UnitStep@xD 1 for x ¥ 0, 0 for x < 0

Abs@xD absolute value †x§ of x

Clip@xD x clipped to be between -1 and +1

Rescale@x,8xmin,xmax<D x rescaled to run from 0 to 1

Max@x1,x2,…D  or Max@8x1,x2,…<,…D

the maximum of x1, x2, … 

Min@x1,x2,…D  or Min@8x1,x2,…<,…D

the minimum of x1, x2, …

Numerical functions of real variables. 

Mathematics and Algorithms     387



x+Iy the complex number x + i y 

Re@zD the real part Re z 

Im@zD the imaginary part Im z 

Conjugate@zD the complex conjugate z* or z  

Abs@zD the absolute value †z§ 

Arg@zD the argument f such that z = †z§ eif 

Numerical functions of complex variables.

Piecewise Functions

Boole@exprD give 1 if expr is True, and 0 if it is False

Turning conditions into numbers. 

Boole@exprD is a basic function that turns True and False  into 1 and 0. It is sometimes known

as the characteristic function or indicator function. 

This gives the area of a unit disk. 

In[1]:= Integrate@Boole@x^2 + y^2 <= 1D, 8x, -1, 1<, 8y, -1, 1<D

Out[1]= p

Piecewise@88val1,cond1<,8val2,cond2<,…<D

give the first vali for which condi is True

Piecewise@88val1,cond1<,…<,valD give val if all condi are False

Piecewise functions. 

It is often convenient to have functions with different forms in different regions. You can do this

using Piecewise.

388     Mathematics and Algorithms



This plots a piecewise function. 

In[2]:= Plot@Piecewise@88x^2, x < 0<, 81 - x, x > 0<<D, 8x, -1, 1<D

Out[2]= 

Piecewise  functions  appear  in  systems  where  there  is  discrete  switching  between  different

domains. They are also at the core of many computational methods, including splines and finite

elements. Special cases include such functions as Abs, UnitStep, Clip, Sign, Floor  and Max.

Mathematica handles piecewise functions in both symbolic and numerical situations. 

This generates a square wave.

In[3]:= Plot@UnitStep@Sin@xDD, 8x, 0, 30<D

Out[3]=

Here is the integral of the square wave.

In[4]:= Integrate@UnitStep@Sin@xDD, 8x, 0, 30<D

Out[4]= 5 p

Pseudorandom Numbers

Mathematica  has  three  functions  for  generating  pseudorandom  numbers  that  are  distributed

uniformly over a range of values.

RandomInteger@D 0 or 1 with probability 1
2

RandomInteger@8imin,imax<D an integer between imin and imax, inclusive

RandomInteger@imaxD an integer between 0 and imax, inclusive

Mathematics and Algorithms     389

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0



RandomReal@ D a real number between 0 and 1

RandomReal@8xmin, xmax<D a real number between xmin and xmax

RandomReal@xmaxD a real number between 0 and xmax

RandomComplex@D a complex number in the unit square

RandomComplex@8zmin,zmax<D a complex number in the rectangle defined by zmin and zmax

RandomComplex@zmaxD a complex number in the rectangle defined by 0 and zmax

Pseudorandom number generation.

RandomReal@range,nD , RandomComplex@range,nD , RandomInteger@range,nD

a list of n pseudorandom numbers from the given range

RandomReal@range,8n1,n2,…<D , 
RandomComplex@range,8n1,n2,…<D , RandomInteger@range,8n1,n2,…<D

an n1×n2×… array of pseudorandom numbers

Generating tables of pseudorandom numbers.

This will give 0 or 1 with equal probability.

In[1]:= RandomInteger@D

Out[1]= 1

This gives a pseudorandom complex number.

In[2]:= RandomComplex@D

Out[2]= 0.2597 + 0.789124 Â

This gives a list of 10 pseudorandom integers between 0 and 9 (inclusive).

In[3]:= RandomInteger@80, 9<, 10D

Out[3]= 87, 8, 0, 7, 5, 5, 1, 4, 2, 3<

This gives a matrix of pseudorandom reals between 0 and 1.

In[4]:= RandomReal@1, 83, 3<D

Out[4]= 880.798457, 0.90866, 0.0501389<, 80.254316, 0.428327, 0.734689<, 80.293283, 0.628561, 0.463396<<

RandomReal and RandomComplex allow you to obtain pseudorandom numbers with any precision.

390     Mathematics and Algorithms



option name default value

WorkingPrecision MachinePrecisÖ
ion

precision to use for real or complex num -
bers 

Changing the precision for pseudorandom numbers.

Here is a 30-digit pseudorandom real number in the range 0 to 1.

In[5]:= RandomReal@WorkingPrecision Ø 30D

Out[5]= 0.592425435593582531459708475075

Here is a list of four 20-digit pseudorandom complex numbers.

In[6]:= RandomComplex@8-1 - I, 1 + I<, 4, WorkingPrecision Ø 20D

Out[6]= 80.90904993322285593741 + 0.12394429399708576389 Â,
-0.32862367115658248044 - 0.99682159655818692192 Â,
0.28641328852741506413 + 0.19292256786947586951 Â,
0.59587180971009053802 + 0.83133753157739276902 Â<

If you get arrays of pseudorandom numbers repeatedly, you should get a "typical" sequence of

numbers, with no particular pattern. There are many ways to use such numbers. 

One common way to use pseudorandom numbers is  in  making numerical  tests of  hypotheses.

For  example,  if  you  believe  that  two  symbolic  expressions  are  mathematically  equal,  you  can

test this by plugging in "typical" numerical values for symbolic parameters, and then comparing

the numerical results. (If you do this, you should be careful about numerical accuracy problems

and about functions of complex variables that may not have unique values.)

Here is a symbolic equation. 

In[7]:= Sqrt@x^2D ã Abs@xD

Out[7]= x2 ã Abs@xD

Substituting in a random numerical value shows that the equation is not always True. 

In[8]:= % ê. x -> RandomComplex@D

Out[8]= False

Other common uses of  pseudorandom numbers include simulating probabilistic  processes,  and

sampling large spaces of possibilities. The pseudorandom numbers that Mathematica generates

for a range of numbers are always uniformly distributed over the range you specify. 

RandomInteger,  RandomReal  and  RandomComplex  are  unlike  almost  any  other  Mathematica

functions  in  that  every  time  you  call  them,  you  potentially  get  a  different  result.  If  you  use

them in a calculation, therefore, you may get different answers on different occasions. 

Mathematics and Algorithms     391



RandomInteger,  RandomReal  and  RandomComplex  are  unlike  almost  any  other  Mathematica

functions  in  that  every  time  you  call  them,  you  potentially  get  a  different  result.  If  you  use

them in a calculation, therefore, you may get different answers on different occasions. 

The sequences that  you get  from RandomInteger,  RandomReal  and RandomComplex  are  not  in

most senses "truly random", although they should be "random enough" for practical purposes.

The  sequences  are  in  fact  produced  by  applying  a  definite  mathematical  algorithm,  starting

from a particular "seed". If you give the same seed, then you get the same sequence. 

When Mathematica starts up, it takes the time of day (measured in small fractions of a second)

as the seed for the pseudorandom number generator.  Two different Mathematica  sessions will

therefore almost always give different sequences of pseudorandom numbers.

If you want to make sure that you always get the same sequence of pseudorandom numbers,

you can explicitly give a seed for the pseudorandom generator, using SeedRandom. 

SeedRandom@D reseed the pseudorandom generator, with the time of day

SeedRandom@sD reseed with the integer s

Pseudorandom number generator seed.

This reseeds the pseudorandom generator. 

In[9]:= SeedRandom@143D

Here are three pseudorandom numbers. 

In[10]:= RandomReal@1, 83<D

Out[10]= 80.110762, 0.364563, 0.163681<

If you reseed the pseudorandom generator with the same seed, you get the same sequence of 
pseudorandom numbers. 

In[11]:= SeedRandom@143D; RandomReal@1, 83<D

Out[11]= 80.110762, 0.364563, 0.163681<

Every single time RandomInteger, RandomReal  or RandomComplex  is called, the internal state of

the pseudorandom generator that it uses is changed. This means that subsequent calls to these

functions  made in  subsidiary  calculations  will  have an effect  on  the  numbers  returned in  your

main calculation. To avoid any problems associated with this, you can localize this effect of their

use by doing the calculation inside of BlockRandom.

392     Mathematics and Algorithms



BlockRandom@exprD evaluates expr with the current state of the pseudorandom 
generators localized

Localizing the effects of using RandomInteger, RandomReal or RandomComplex.

By localizing the calculation inside BlockRandom , the internal state of the pseudorandom 
generator is restored after generating the first list. 

In[12]:= 8BlockRandom@8RandomReal@D, RandomReal@D<D, 8RandomReal@D, RandomReal@D<<

Out[12]= 880.952312, 0.93591<, 80.952312, 0.93591<<

Many  applications  require  random  numbers  from  non-uniform  distributions.  Mathematica  has

many distributions built  into the system. You can give a distribution with appropriate parame-

ters instead of a range to RandomInteger or RandomReal.

RandomInteger@distD , RandomReal@distD

a pseudorandom number distributed by the random distribu -
tion dist

RandomInteger@dist,nD , RandomReal@dist,nD

a list of n pseudorandom numbers distributed by the 
random distribution dist

RandomInteger@dist,8n1,n2,…<D , RandomReal@dist,8n1,n2,…<D

an n1×n2×… array of pseudorandom numbers distributed 
by the random distribution dist

Generating pseudorandom numbers with non-uniform distributions.

This generates 12 integers distributed by the Poisson distribution with mean 3.

In[13]:= RandomInteger@PoissonDistribution@3D, 12D

Out[13]= 84, 3, 1, 3, 2, 2, 5, 3, 5, 2, 1, 3<

This generates a 4×4 matrix of real numbers using the standard normal distribution.

In[14]:= RandomReal@NormalDistribution@D, 84, 4<D

Out[14]= 881.17681, -0.774733, -1.74139, 1.3577<, 8-1.261, 0.0408214, 0.989022, 2.80942<,
8-1.27146, 1.63037, 1.98221, 0.403135<, 81.00722, -0.927379, 0.747369, -2.28065<<

This generates five high-precision real numbers distributed normally with mean 2 and standard 
deviation 4.

In[15]:= RandomReal@NormalDistribution@2, 4D, 5, WorkingPrecision Ø 32D

Out[15]= 8-3.7899344407106290701062146195097,
-1.1607986070402381009885236231751, 12.042079595098604792470496688453,
2.3508651879131153670572237267418, 5.0287452449413463045300577818173<

An additional  use of pseudorandom numbers is for selecting from a list.  RandomChoice  selects

with replacement and RandomSample samples without replacement.

Mathematics and Algorithms     393



An additional  use of pseudorandom numbers is for selecting from a list.  RandomChoice  selects

with replacement and RandomSample samples without replacement.

RandomChoice@list, nD choose n items at random from list

RandomChoice@list,8n1,n2,…<D an n1×n2×… array of values chosen randomly from list

RandomSample@list, nD a sample of size n from list 

Selecting at random.

Choose 10 items at random from the digits 0 through 9.

In[16]:= RandomChoice@Range@0, 9D, 10D

Out[16]= 88, 8, 3, 5, 3, 5, 0, 8, 4, 1<

Chances  are  very  high  that  at  least  one  of  the  choices  was  repeated  in  the  output.  That  is

because when an element is chosen, it is immediately replaced. On the other hand, if you want

to select from an actual set of elements, there should be no replacement.

Sample 10 items at random from the digits 0 through 9 without replacement. The result is a 
random permutation of the digits.

In[17]:= RandomSample@Range@0, 9D, 10D

Out[17]= 87, 9, 2, 5, 3, 4, 1, 8, 0, 6<

Sample 10 items from a set having different frequencies for each digit.

In[18]:= RandomSample@80, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9<, 10D

Out[18]= 86, 6, 7, 8, 9, 7, 2, 2, 9, 9<

Integer and Number Theoretic Functions

Mod@k,nD k modulo n (remainder from dividing k by n)

Quotient@m,nD the quotient of m and n (truncation of m ê n)

QuotientRemainder@m,nD a list of the quotient and the remainder

Divisible@m,nD test whether m is divisible by n

CoprimeQ@n1,n2,…D test whether the ni are pairwise relatively prime

GCD@n1,n2,…D the greatest common divisor of n1, n2, …

394     Mathematics and Algorithms



LCM@n1,n2,…D the least common multiple of n1, n2, …
KroneckerDelta@n1,n2,…D the Kronecker delta dn1 n2… equal to 1 if all the ni are equal, 

and 0 otherwise

IntegerDigits@n,bD the digits of n in base b

IntegerExponent@n,bD the highest power of b that divides n

Some integer functions.

The remainder on dividing 17 by 3. 

In[1]:= Mod@17, 3D

Out[1]= 2

The integer part of 17/3. 

In[2]:= Quotient@17, 3D

Out[2]= 5

Mod also works with real numbers. 

In[3]:= Mod@5.6, 1.2D

Out[3]= 0.8

The result from Mod always has the same sign as the second argument. 

In[4]:= Mod@-5.6, 1.2D

Out[4]= 0.4

For any integers a and b, it is always true that b * Quotient@a, bD + Mod@a, bD is equal to a. 

Mod@k,nD result in the range 0 to n - 1
Mod@k,n,1D result in the range 1 to n

Mod@k,n,-nê2D result in the range `-n ê 2p to d+n ê 2t
Mod@k,n,dD result in the range d to d + n - 1

Integer remainders with offsets. 

Particularly  when  you  are  using  Mod  to  get  indices  for  parts  of  objects,  you  will  often  find  it

convenient to specify an offset. 

Mathematics and Algorithms     395



This effectively extracts the 18th part of the list, with the list treated cyclically. 

In[5]:= Part@8a, b, c<, Mod@18, 3, 1DD

Out[5]= c

The greatest  common divisor  function GCD@n1, n2, …D  gives the largest  integer that  divides all

the  ni  exactly.  When  you  enter  a  ratio  of  two  integers,  Mathematica  effectively  uses  GCD  to

cancel out common factors and give a rational number in lowest terms.

The least common multiple function LCM@n1, n2, …D gives the smallest integer that contains all

the factors of each of the ni. 

The largest integer that divides both 24 and 15 is 3. 

In[6]:= GCD@24, 15D

Out[6]= 3

The  Kronecker  delta  function  KroneckerDelta@n1, n2, …D  is  equal  to  1  if  all  the  ni  are  equal,

and is 0 otherwise. dn1 n2…  can be thought of as a totally symmetric tensor. 

This gives a totally symmetric tensor of rank 3. 

In[7]:= Array@KroneckerDelta, 83, 3, 3<D

Out[7]= 8881, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0<, 80, 1, 0<, 80, 0, 0<<, 880, 0, 0<, 80, 0, 0<, 80, 0, 1<<<

FactorInteger@nD a list of the prime factors of n, and their exponents

Divisors@nD a list of the integers that divide n

Prime@kD the kth prime number

PrimePi@xD the number of primes less than or equal to x

PrimeQ@nD give True if n is a prime, and False otherwise

PrimeNu@nD the number of distinct primes nHnL in n

PrimeOmega@nD the number of prime factors counting multiplicities WHnL in 
n.

LiouvilleLambda@nD the Liouville function lHnL

MangoldtLambda@nD the von Mandgoldt function LHnL

FactorIntegerAn,GaussianIntegers->TrueE

396     Mathematics and Algorithms

a list of the Gaussian prime factors of the Gaussian integer 
n, and their exponents



PrimeQAn,GaussianIntegers->TrueE

give True if n is a Gaussian prime, and False otherwise

Integer factoring and related functions.

This gives the factors of 24 as 23, 31. The first element in each list is the factor; the second is its 
exponent. 

In[8]:= FactorInteger@24D

Out[8]= 882, 3<, 83, 1<<

Here are the factors of a larger integer. 

In[9]:= FactorInteger@111111111111111111D

Out[9]= 883, 2<, 87, 1<, 811, 1<, 813, 1<, 819, 1<, 837, 1<, 852579, 1<, 8333667, 1<<

You should realize that according to current mathematical thinking, integer factoring is a funda-

mentally  difficult  computational  problem.  As  a  result,  you  can  easily  type  in  an  integer  that

Mathematica will not be able to factor in anything short of an astronomical length of time. But

as long as the integers you give are less than about 50 digits long, FactorInteger  should have

no trouble. And in special cases it will be able to deal with much longer integers.

Here is a rather special long integer. 

In[10]:= 30!

Out[10]= 265252859812191058636308480000000

Mathematica can easily factor this special integer. 

In[11]:= FactorInteger@%D

Out[11]= 882, 26<, 83, 14<, 85, 7<, 87, 4<, 811, 2<, 813, 2<, 817, 1<, 819, 1<, 823, 1<, 829, 1<<

Although Mathematica may not be able to factor a large integer, it can often still  test whether

or not the integer is a prime. In addition, Mathematica has a fast way of finding the kth  prime

number. 

It is often much faster to test whether a number is prime than to factor it. 

In[12]:= PrimeQ@234242423D

Out[12]= False

Here is a plot of the first 100 primes. 

Mathematics and Algorithms     397



Here is a plot of the first 100 primes. 

In[13]:= ListPlot@Table@Prime@nD, 8n, 100<DD

Out[13]=

20 40 60 80 100

100

200

300

400

500

This is the millionth prime. 

In[14]:= Prime@1 000000D

Out[14]= 15485863

Particularly in number theory, it is often more important to know the distribution of primes than

their actual values. The function PrimePi@xD gives the number of primes pHxL that are less than

or equal to x. 

This gives the number of primes less than a billion. 

In[15]:= PrimePi@10^9D

Out[15]= 50847534

PrimeNu gives the number of distinct primes.

In[16]:= PrimeNu@10^9D

Out[16]= 2

PrimeOmega gives the number of prime factors counting multiplicities WHnL in n.

In[17]:= PrimeOmega@10^9D

Out[17]= 18

Liouville's function gives H-1Lk where k is the number of prime factors counting multiplicity.
In[18]:= 8LiouvilleLambda@3^5D, LiouvilleLambda@2 µ 3^5D<

Out[18]= 8-1, 1<

The Mangoldt function returns the log of prime power base or zero when composite.

In[19]:= 8MangoldtLambda@3^5D, MangoldtLambda@2 µ 3^5D<

Out[19]= 8Log@3D, 0<

By  default,  FactorInteger  allows  only  real  integers.  But  with  the  option  setting

GaussianIntegers -> True, it also handles Gaussian integers, which are complex numbers with

integer real and imaginary parts. Just as it is possible to factor uniquely in terms of real primes,

it  is  also  possible  to  factor  uniquely  in  terms of  Gaussian  primes.  There  is  nevertheless  some

potential ambiguity in the choice of Gaussian primes. In Mathematica,  they are always chosen

to have positive real parts, and non-negative imaginary parts, except for a possible initial factor

of -1 or ± i.

398     Mathematics and Algorithms



By  default,  FactorInteger  allows  only  real  integers.  But  with  the  option  setting

GaussianIntegers -> True, it also handles Gaussian integers, which are complex numbers with

integer real and imaginary parts. Just as it is possible to factor uniquely in terms of real primes,

it  is  also  possible  to  factor  uniquely  in  terms of  Gaussian  primes.  There  is  nevertheless  some

potential ambiguity in the choice of Gaussian primes. In Mathematica,  they are always chosen

to have positive real parts, and non-negative imaginary parts, except for a possible initial factor

of -1 or ± i.

Over the Gaussian integers, 2 can be factored as H-iL H1 + iL2. 
In[20]:= FactorInteger@2, GaussianIntegers -> TrueD

Out[20]= 88-Â, 1<, 81 + Â, 2<<

Here are the factors of a Gaussian integer. 

In[21]:= FactorInteger@111 + 78 I, GaussianIntegers -> TrueD

Out[21]= 882 + Â, 1<, 83, 1<, 820 + 3 Â, 1<<

PowerMod@a,b,nD the power ab modulo n

DirichletCharacter@k, j,nD the Dirichlet character c8k, j<HnL

EulerPhi@nD the Euler totient function fHnL

MoebiusMu@nD the Möbius function mHnL

DivisorSigma@k,nD the divisor function skHnL

DivisorSum@n, formD the sum of form@iD for all i that divide n

DivisorSum@n, form,condD the sum for only those divisors for which cond@iD gives 
True

JacobiSymbol@n,mD the Jacobi symbol J n
m
N

ExtendedGCD@n1,n2,…D the extended GCD of n1, n2, …
MultiplicativeOrder@k,nD the multiplicative order of k modulo n

MultiplicativeOrder@k,n,8r1,r2,…<D

the generalized multiplicative order with residues ri

CarmichaelLambda@nD the Carmichael function lHnL

PrimitiveRoot@nD a primitive root of n

Some functions from number theory.

The modular power function  PowerMod@a, b, nD  gives exactly the same results as Mod@a^b, nD

for b > 0. PowerMod  is much more efficient, however, because it avoids generating the full form

of a^b. 

Mathematics and Algorithms     399



The modular power function  PowerMod@a, b, nD  gives exactly the same results as Mod@a^b, nD

for b > 0. PowerMod  is much more efficient, however, because it avoids generating the full form

of a^b. 

You  can  use  PowerMod  not  only  to  find  positive  modular  powers,  but  also  to  find  modular

inverses.  For  negative  b,  PowerMod@a, b, nD  gives,  if  possible,  an  integer  k  such  that

k a-b ª 1 mod n. (Whenever such an integer exists, it is guaranteed to be unique modulo n.) If no

such integer k exists, Mathematica leaves PowerMod unevaluated. 

PowerMod is equivalent to using Power, then Mod, but is much more efficient. 

In[22]:= PowerMod@2, 13451, 3D

Out[22]= 2

This gives the modular inverse of 3 modulo 7. 

In[23]:= PowerMod@3, -1, 7D

Out[23]= 5

Multiplying the inverse by 3 modulo 7 gives 1, as expected. 

In[24]:= Mod@3 %, 7D

Out[24]= 1

This finds the smallest non-negative integer x so that x2 is equal to 3 mod 11. 

In[25]:= PowerMod@3, 1 ê 2, 11D

Out[25]= 5

This verifies the result. 

In[26]:= ModA52, 11E

Out[26]= 3

This returns all integers less than 11 which satisfy the relation. 

In[27]:= PowerModList@3, 1 ê 2, 11D

Out[27]= 85, 6<

400     Mathematics and Algorithms



If d does not have a square root modulo n, PowerMod@d, nD will remain unevaluated and 
PowerModList will return an empty list. 

In[28]:= PowerMod@3, 1 ê 2, 5D

PowerMod::root : The equation x^2 = 3 Hmod 5L has no integer solutions.

Out[28]= PowerModB3,
1

2
, 5F

In[29]:= PowerModList@3, 1 ê 2, 5D

Out[29]= 8<

This checks that 3 is not a square modulo 5. 

In[30]:= ModA80, 1, 2, 3, 4<2, 5E

Out[30]= 80, 1, 4, 4, 1<

Even for a large modulus, the square root can be computed fairly quickly. 

In[31]:= PowerModA2, 1 ê 2, 1064 + 57E êê Timing

Out[31]= 80.01, 876504467496681643735926111996546100401033611976777074909122865<

PowerMod@d, nD also works for composite n. 

In[32]:= PowerModA3, 1 ê 2, 113E

Out[32]= 578

There  are  fHkL  distinct  Dirichlet  characters  for  a  given  modulus  k,  as  labeled  by  the  index  j.

Different conventions can give different orderings for the possible characters.

DirichletCharacter works for very large numbers.

In[33]:= DirichletCharacter@20!, 300, 23D

Out[33]= ‰
Â p

9

The Euler totient function fHnL gives the number of integers less than n that are relatively prime

to n. An important relation (Fermat's little theorem) is that af HnL ª 1 mod n for all a relatively prime

to n. 

The Möbius  function  mHnL  is  defined to  be  H-1Lk  if  n  is  a  product  of  k  distinct  primes,  and 0  if  n

contains a squared factor (other than 1). An important relation is the Möbius inversion formula,

which states that if gHnL =⁄d n f HdL for all n, then f HnL =⁄d n mHdL gHn êdL, where the sums are over all

positive integers d that divide n.

The  divisor  function  skHnL  is  the  sum of  the  kth  powers  of  the  divisors  of  n.  The  function  s0HnL

gives the total number of divisors of n, and is variously denoted dHnL, nHnL and tHnL. The function

s1HnL, equal to the sum of the divisors of n, is often denoted sHnL. 

Mathematics and Algorithms     401



The  divisor  function  skHnL  is  the  sum of  the  kth  powers  of  the  divisors  of  n.  The  function  s0HnL

gives the total number of divisors of n, and is variously denoted dHnL, nHnL and tHnL. The function

s1HnL, equal to the sum of the divisors of n, is often denoted sHnL. 

For prime n, fHnL = n - 1. 

In[34]:= EulerPhi@17D

Out[34]= 16

The result is 1, as guaranteed by Fermat’s little theorem. 

In[35]:= PowerMod@3, %, 17D

Out[35]= 1

This gives a list of all the divisors of 24. 

In[36]:= Divisors@24D

Out[36]= 81, 2, 3, 4, 6, 8, 12, 24<

s0HnL gives the total number of distinct divisors of 24. 

In[37]:= DivisorSigma@0, 24D

Out[37]= 8

The  function  DivisorSum@n, formD  represents  the  sum  of  form@iD  for  all  i  that  divide  n.

DivisorSum@n, form, condD includes only those divisors for which cond@iD gives True.

This gives a list of sums for the divisors of five positive integers. 

In[38]:= Table@DivisorSum@n, Ò &D, 8n, 5<D

Out[38]= 81, 3, 4, 7, 6<

This imposes the condition that the value of each divisor i must be less than 6.

In[39]:= Table@DivisorSum@n, Ò &, Ò < 6 &D, 8n, 11, 15<D

Out[39]= 81, 10, 1, 3, 9<

The Jacobi symbol JacobiSymbol@n, mD reduces to the Legendre symbol J n
m
N when m is an odd

prime. The Legendre symbol is equal to zero if n is divisible by m; otherwise it is equal to 1 if n is

a quadratic residue modulo the prime m, and to -1 if it is not. An integer n relatively prime to m 

is said to be a quadratic residue modulo m if there exists an integer k such that k2 ª nmodm. The

full Jacobi symbol is a product of the Legendre symbols J n
pi
N for each of the prime factors pi such

that m =¤i pi. 

402     Mathematics and Algorithms



The Jacobi symbol JacobiSymbol@n, mD reduces to the Legendre symbol J n
m
N when m is an odd

prime. The Legendre symbol is equal to zero if n is divisible by m; otherwise it is equal to 1 if n is

is said to be a quadratic residue modulo m if there exists an integer k such that k2 ª nmodm. The 

full Jacobi symbol is a product of the Legendre symbols J n
pi
N for each of the prime factors pi such

that m =¤i pi. 

The  extended  GCD  ExtendedGCD@n1, n2, …D  gives  a  list  8g, 8r1, r2, …<<  where  g  is  the  greatest

common divisor of the ni, and the ri are integers such that g = r1 n1 + r2 n2 + …. The extended GCD

is important in finding integer solutions to linear Diophantine equations.

The first number in the list is the GCD of 105 and 196. 

In[40]:= ExtendedGCD@105, 196D

Out[40]= 87, 8-13, 7<<

The second pair of numbers satisfies g = r m + s n. 

In[41]:= -13 105 + 7 µ 196

Out[41]= 7

The multiplicative order function MultiplicativeOrder@k, nD gives the smallest integer m such

that km ª 1 mod n. Then m is known as the order of k modulo n. The notation ordnHkL is occasionally

used. 

The  generalized  multiplicative  order  function  MultiplicativeOrder@k, n, 8r1, r2, …<D  gives

the  smallest  integer  m  such  that  km ª ri mod n  for  some i.  MultiplicativeOrder@k, n, 8-1, 1<D

is  sometimes  known  as  the  suborder  function  of  k  modulo  n,  denoted  sordnHkL.

MultiplicativeOrder@k, n, 8a<D  is  sometimes known as the discrete log of  a  with respect to

the base k modulo n.

The Carmichael function or least universal exponent lHnL gives the smallest integer m such that

km ª 1 mod n for all integers k relatively prime to n.

ContinuedFraction@x,nD generate the first n terms in the continued fraction represen -
tation of x

FromContinuedFraction@listD reconstruct a number from its continued fraction 
representation

Rationalize@x,dxD find a rational approximation to x with tolerance dx

Continued fractions. 

Mathematics and Algorithms     403



This generates the first 10 terms in the continued fraction representation for p. 

In[42]:= ContinuedFraction@Pi, 10D

Out[42]= 83, 7, 15, 1, 292, 1, 1, 1, 2, 1<

This reconstructs the number represented by the list of continued fraction terms. 

In[43]:= FromContinuedFraction@%D

Out[43]=
1146408

364913

The result is close to p. 

In[44]:= N@%D

Out[44]= 3.14159

This gives directly a rational approximation to p. 

In[45]:= Rationalize@Pi, 1 ê 1000D

Out[45]=
201

64

Continued fractions appear in many number theoretic settings. Rational numbers have terminat-

ing  continued  fraction  representations.  Quadratic  irrational  numbers  have  continued  fraction

representations that become repetitive. 

ContinuedFraction@xD the complete continued fraction representation for a 
rational or quadratic irrational number

QuadraticIrrationalQ@xD test whether x is a quadratic irrational

RealDigits@xD the complete digit sequence for a rational number

RealDigits@x,bD the complete digit sequence in base b

Complete representations for numbers. 

The continued fraction representation of 79  starts with the term 8, then involves a sequence 
of terms that repeat forever. 

In[46]:= ContinuedFraction@Sqrt@79DD

Out[46]= 88, 81, 7, 1, 16<<

404     Mathematics and Algorithms



This reconstructs 79  from its continued fraction representation. 
In[47]:= FromContinuedFraction@%D

Out[47]= 79

This number is a quadratic irrational. 

In[48]:= QuadraticIrrationalQ@ Sqrt@79DD

Out[48]= True

This shows the recurring sequence of decimal digits in 3/7. 

In[49]:= RealDigits@3 ê 7D

Out[49]= 8884, 2, 8, 5, 7, 1<<, 0<

FromDigits reconstructs the original number. 

In[50]:= FromDigits@%D

Out[50]=
3

7

Continued  fraction  convergents  are  often  used  to  approximate  irrational  numbers  by  rational

ones. Those approximations alternate from above and below, and converge exponentially in the

number of  terms.  Furthermore,  a  convergent  p êq  of  a  simple continued fraction is  better  than

any other rational approximation with denominator less than or equal to q.

Convergents@xD give a list of rational approximations of x

Convergents@x,nD give only the first n approximations

Continued fraction convergents. 

This gives a list of rational approximations of 101/9801, derived from its continued fraction 
expansion.

In[51]:= Convergents@ 101 ê 9801 D

Out[51]= :0,
1

97
,

25

2426
,

101

9801
>

This lists only the first 10 convergents.

In[52]:= Convergents@ 10201 ê 96059601, 10 D

Out[52]= :0,
1

9416
,

1

9417
,

3

28250
,

16

150667
,

19

178917
,

92

866335
,

203

1911587
,

498

4689509
,

701

6601096
>

This lists successive rational approximations to p, until the numerical precision is exhausted.

Mathematics and Algorithms     405



This lists successive rational approximations to p, until the numerical precision is exhausted.

In[53]:= Convergents@ N@ Pi D D

Out[53]= :3,
22

7
,
333

106
,
355

113
,
103993

33102
,
104348

33215
,
208341

66317
,

312689

99532
,
833719

265381
,
1146408

364913
,
4272943

1360120
,
5419351

1725033
,
80143857

25510582
>

With an exact irrational number, you have to explicitly ask for a certain number of terms.

In[54]:= Convergents@ Pi, 10 D

Out[54]= :3,
22

7
,
333

106
,
355

113
,
103993

33102
,
104348

33215
,
208341

66317
,
312689

99532
,
833719

265381
,
1146408

364913
>

LatticeReduce@8v1 v2,…<D a reduced lattice basis for the set of integer vectors vi

HermiteDecomposition@8v1,v2,…<D the echelon form for the set of integer vectors vi

Functions for integer lattices.

The lattice  reduction function LatticeReduce@8v1, v2, …<D  is  used in  several  kinds  of  modern

algorithms.  The basic  idea is  to  think  of  the  vectors  vk  of  integers  as  defining a  mathematical

lattice. Any vector representing a point in the lattice can be written as a linear combination of

the  form  ⁄ck vk,  where  the  ck  are  integers.  For  a  particular  lattice,  there  are  many  possible

choices  of  the  "basis  vectors"  vk.  What  LatticeReduce  does  is  to  find  a  reduced  set  of  basis

vectors vk for the lattice, with certain special properties. 

Three unit vectors along the three coordinate axes already form a reduced basis. 

In[55]:= LatticeReduce@881, 0, 0<, 80, 1, 0<, 80, 0, 1<<D

Out[55]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This gives the reduced basis for a lattice in four-dimensional space specified by three vectors. 

In[56]:= l = LatticeReduce@881, 0, 0, 12345<, 80, 1, 0, 12435<, 80, 0, 1, 12354<<D

Out[56]= 88-1, 0, 1, 9<, 89, 1, -10, 0<, 885, -143, 59, 6<<

Notice  that  in  the  last  example,  LatticeReduce  replaces  vectors  that  are  nearly  parallel  by

vectors that are more perpendicular. In the process, it finds some quite short basis vectors. 

For a matrix m, HermiteDecomposition gives matrices u and r such that u is unimodular, u.m = r,

and r  is  in  reduced row echelon  form.  In  contrast  to  RowReduce,  pivots  may be  larger  than 1

because there are no fractions in the ring of  integers.  Entries above a pivot are minimized by

subtracting appropriate multiples of the pivot row. 

406     Mathematics and Algorithms



For a matrix m, HermiteDecomposition gives matrices u and r such that u is unimodular, u.m = r,

and r  is  in  reduced row echelon  form.  In  contrast  to  RowReduce,  pivots  may be  larger  than 1

because there are no fractions in the ring of  integers.  Entries above a pivot are minimized by

subtracting appropriate multiples of the pivot row. 

In this case, the original matrix is recovered because it was in row echelon form.

In[57]:= 8u, r< = HermiteDecomposition@lD

Out[57]= 8881371, 143, 1<, 81381, 144, 1<, 81372, 143, 1<<,
881, 0, 0, 12345<, 80, 1, 0, 12435<, 80, 0, 1, 12354<<<

This satisfies the required identities. 

In[58]:= 8Abs@Det@uDD ã 1, u.l ã r<

Out[58]= 8True, True<

Here the second matrix has some pivots larger than 1, and nonzero entries over pivots.

In[59]:= HermiteDecomposition@88-2, 1, 1<, 85, 9, 4<, 8-4, 2, -11<<D

Out[59]= 8882, 1, 0<, 83, 2, 1<, 82, 0, -1<<, 881, 11, 6<, 80, 23, 0<, 80, 0, 13<<<

DigitCount@n,b,dD the number of d digits in the base-b representation of n

Digit count function. 

Here are the digits in the base-2 representation of the number 77. 

In[60]:= IntegerDigits@77, 2D

Out[60]= 81, 0, 0, 1, 1, 0, 1<

This directly computes the number of ones in the base-2 representation. 

In[61]:= DigitCount@77, 2, 1D

Out[61]= 4

The plot of the digit count function is self-similar.

In[62]:= ListLinePlot@Table@DigitCount@n, 2, 1D, 8n, 128<DD

Out[62]=

20 40 60 80 100 120

2

3

4

5

6

7

Mathematics and Algorithms     407



BitAnd@n1,n2,…D bitwise AND of the integers ni

BitOr@n1,n2,…D bitwise OR of the integers ni

BitXor@n1,n2,…D bitwise XOR of the integers ni

BitNot@nD bitwise NOT of the integer n

BitLength@nD number of binary bits in the integer n

BitSet@n,kD set bit k to 1 in the integer n

BitGet@n,kD get bit k from the integer n

BitClear@n,kD set bit k to 0 in the integer n

BitShiftLeft@n,kD shift the integer n to the left by k bits, padding with zeros

BitShiftRight@n,kD shift to the right, dropping the last k bits

Bitwise operations. 

Bitwise  operations  act  on  integers  represented  as  binary  bits.  BitAnd@n1, n2, …D  yields  the

integer whose binary bit representation has ones at positions where the binary bit representa-

tions of all of the ni have ones. BitOr@n1, n2, …D yields the integer with ones at positions where

any of the ni  have ones. BitXor@n1, n2D yields the integer with ones at positions where n1  or n2

but not both have ones. BitXor@n1, n2, …D has ones where an odd number of the ni have ones. 

This finds the bitwise AND of the numbers 23 and 29 entered in base 2. 

In[63]:= BaseForm@BitAnd@2^^10111, 2^^11101D, 2D

Out[63]//BaseForm= 101012

Bitwise operations are used in various combinatorial algorithms. They are also commonly used

in manipulating bitfields in low-level computer languages. In such languages, however, integers

normally have a limited number of digits, typically a multiple of 8. Bitwise operations in Mathe-

matica in effect allow integers to have an unlimited number of digits. When an integer is nega-

tive, it is taken to be represented in two's complement form, with an infinite sequence of ones

on the left. This allows BitNot@nD to be equivalent simply to -1 - n. 

SquareFreeQ@nD give True if n does not contain a squared factor, False 
otherwise

Testing for a squared factor. 

SquareFreeQ@nD  checks  to  see  if  n  has  a  square  prime  factor.  This  is  done  by  computing

MoebiusMu@nD and seeing if the result is zero; if it is, then n is not squarefree, otherwise it is.

Computing  MoebiusMu@nD  involves  finding  the  smallest  prime  factor  q  of  n.  If  n  has  a  small

prime factor (less than or equal to 1223), this is very fast. Otherwise, FactorInteger  is used to

find q. 

408     Mathematics and Algorithms



SquareFreeQ@nD  checks  to  see  if  n  has  a  square  prime  factor.  This  is  done  by  computing

MoebiusMu@nD and seeing if the result is zero; if it is, then n is not squarefree, otherwise it is.

Computing  MoebiusMu@nD  involves  finding  the  smallest  prime  factor  q  of  n.  If  n  has  a  small

prime factor (less than or equal to 1223), this is very fast. Otherwise, FactorInteger  is used to

find q. 

This product of primes contains no squared factors. 

In[64]:= SquareFreeQ@2 µ 3 µ 5 µ 7D

Out[64]= True

The square number 4 divides 60. 

In[65]:= SquareFreeQ@60D

Out[65]= False

SquareFreeQ  can handle large integers. 

In[66]:= SquareFreeQA2101 - 1E

Out[66]= True

NextPrime@nD give the smallest prime larger than n

RandomPrime@8min,max<D return a random prime number between min and max

RandomPrime@maxD return a random prime number less than or equal to max

RandomPrime@8min,max<,nD return n random prime numbers between min and max

RandomPrime@max,nD return n random prime numbers less than or equal to max

Finding prime numbers. 

NextPrime@nD finds the smallest prime p such that p > n. For n less than 20 digits, the algorithm

does a direct search using PrimeQ on the odd numbers greater than n. For n with more than 20

digits, the algorithm builds a small sieve and first checks to see whether the candidate prime is

divisible  by  a  small  prime  before  using  PrimeQ.  This  seems  to  be  slightly  faster  than  a  direct

search.

This gives the next prime after 10. 

In[67]:= NextPrime@10D

Out[67]= 11

Mathematics and Algorithms     409



Even for large numbers, the next prime can be computed rather quickly. 

In[68]:= NextPrimeA10100E êê Timing

Out[68]= 80.06,
10000000000000000000000000000000000000000000000000000000000000000000000000000000000Ö
000000000000000267<

This gives the largest prime less than 34. 

In[69]:= -NextPrime@-34D

Out[69]= 31

For  RandomPrime@8min, max<D  and  RandomPrime@maxD,  a  random  prime  p  is  obtained  by  ran-

domly selecting from a prime lookup table if max is small and by a random search of integers in

the range if max is large. If no prime exists in the specified range, the input is returned unevalu-

ated with an error message. 

Here is a random prime between 10 and 100. 

In[70]:= RandomPrime@810, 100<D

Out[70]= 79

PrimePowerQ@nD determine whether n is a positive integer power of a 
rational prime

Testing for involving prime powers. 

The algorithm for PrimePowerQ  involves first computing the least prime factor p  of n  and then

attempting  division  by  n  until  either  1  is  obtained,  in  which  case  n  is  a  prime  power,  or  until

division is no longer possible, in which case n is not a prime power. 

Here is a number that is a power of a single prime. 

In[71]:= PrimePowerQ@12167D

Out[71]= True

Over the GaussianIntegers this is a prime power. 

In[72]:= PrimePowerQ@H1 + IL^3D

Out[72]= True

410     Mathematics and Algorithms



ChineseRemainder@list1,list2D give the smallest non-negative integer r with 
Mod@r, list2D == list1

Solving simultaneous congruences. 

The Chinese remainder theorem states that a certain class of simultaneous congruences always

has  a  solution.  ChineseRemainder@list1, list2D  finds  the  smallest  non-negative  integer  r  such

that  Mod@r, list2D  is  list1.  The  solution  is  unique  modulo  the  least  common  multiple  of  the  ele-

ments of list2. 

This means that 244 ª 0 mod 4, 244 ª 1 mod 9, and 244 ª 2 mod 121. 

In[73]:= ChineseRemainder@80, 1, 2<, 84, 9, 121<D

Out[73]= 244

This confirms the result. 

In[74]:= Mod@244, 84, 9, 121<D

Out[74]= 80, 1, 2<

Longer lists are still quite fast. 

In[75]:= ChineseRemainder@Range@20D, Prime@Range@20DDD

Out[75]= 169991099649125127278835143

PrimitiveRoot@nD give a primitive root of n, where n is a prime power or 
twice a prime power

Computing primitive roots. 

PrimitiveRoot@nD  returns  a  generator  for  the  group  of  numbers  relatively  prime  to  n  under

multiplication mod n.  This  has a generator if  and only if  n  is  2,  4,  a power of  an odd prime, or

twice a power of an odd prime. If n is a prime or prime power, the least positive primitive root

will be returned. 

Here is a primitive root of 5. 

In[76]:= PrimitiveRoot@5D

Out[76]= 2

Mathematics and Algorithms     411



This confirms that it does generate the group. 

In[77]:= SortAModA2Range@4D, 5EE

Out[77]= 81, 2, 3, 4<

Here is a primitive root of a prime power. 

In[78]:= PrimitiveRootA10933E

Out[78]= 5

Here is a primitive root of twice a prime power. 

In[79]:= PrimitiveRootA2 55E

Out[79]= 3127

If the argument is composite and not a prime power or twice a prime power, the function does 
not evaluate. 

In[80]:= PrimitiveRoot@11 µ 13D

Out[80]= PrimitiveRoot@143D

SquaresR@d,nD give the number of representations of an integer n as a 
sum of d squares

PowersRepresentations@n,k,pD give the distinct representations of the integer n as a sum 
of k non-negative pth integer powers

Representing an integer as a sum of squares or other powers. 

Here are the representations of 101 as a sum of 3 squares. 

In[81]:= PowersRepresentations@101, 3, 2D

Out[81]= 880, 1, 10<, 81, 6, 8<, 82, 4, 9<, 84, 6, 7<<

412     Mathematics and Algorithms



Combinatorial Functions

n! factorial nHn - 1L Hn - 2Lµ…µ1
n!! double factorial nHn - 2L Hn - 4Lµ…

Binomial@n,mD binomial coefficient 
n
m = n ! ê @m ! Hn -mL !D

Multinomial@n1,n2,…D multinomial coefficient Hn1 + n2 + …L ! ê Hn1 ! n2 ! …L

CatalanNumber@nD Catalan number cn

Hyperfactorial@nD hyperfactorial 11 22 ... nn

BarnesG@nD Barnes G-function 1 ! 2 ! ... Hn - 2L !
Subfactorial@nD number of derangements of n objects

Fibonacci@nD Fibonacci number Fn

Fibonacci@n,xD Fibonacci polynomial FnHxL

LucasL@nD Lucas number Ln

LucasL@n,xD Lucas polynomial LnHxL

HarmonicNumber@nD harmonic number Hn

HarmonicNumber@n,rD harmonic number Hn
r of order r

BernoulliB@nD Bernoulli number Bn

BernoulliB@n,xD Bernoulli polynomial BnHxL

NorlundB@n,aD Nörlund polynomial BnHaL 

NorlundB@n,a,xD generalized Bernoulli polynomial BnHaLHxL 

EulerE@nD Euler number En

EulerE@n,xD Euler polynomial EnHxL

StirlingS1@n,mD Stirling number of the first kind SnHmL

StirlingS2@n,mD Stirling number of the second kind n
HmL

BellB@nD Bell number Bn

BellB@n,xD Bell polynomial BnHxL

PartitionsP@nD the number pHnL of unrestricted partitions of the integer n

IntegerPartitions@nD partitions of an integer

PartitionsQ@nD the number qHnL of partitions of n into distinct parts

Signature@8i1,i2,…<D the signature of a permutation

Combinatorial functions.

The factorial function n ! gives the number of ways of ordering n objects. For non-integer n, the

numerical value of n ! is obtained from the gamma function, discussed in "Special Functions". 

Mathematics and Algorithms     413



The factorial function n ! gives the number of ways of ordering n objects. For non-integer n, the

numerical value of n ! is obtained from the gamma function, discussed in "Special Functions". 

The  binomial  coefficient  Binomial@n, mD  can  be  written  as  
n
m = n ! ê @m ! Hn -mL !D.  It  gives  the

number of  ways of  choosing m  objects  from a collection of  n  objects,  without  regard to order.

The Catalan numbers,  which appear in various tree enumeration problems, are given in terms

of binomial coefficients as cn =
2 n
n

ìHn + 1L. 

The subfactorial Subfactorial@nD gives the number of permutations of n objects that leave no

object  fixed.  Such  a  permutation  is  called  a  derangement.  The  subfactorial  is  given  by

n !⁄k=0
n H-1Lk ëk !.

The  multinomial  coefficient  Multinomial@n1, n2, …D,  denoted  HN; n1, n2, …, nmL = N! ê

Hn1 ! n2 ! … nm !L, gives the number of ways of partitioning N  distinct objects into m sets of sizes ni

(with N =⁄i=1
m ni).

Mathematica gives the exact integer result for the factorial of an integer. 

In[1]:= 30!

Out[1]= 265252859812191058636308480000000

For non-integers, Mathematica evaluates factorials using the gamma function. 

In[2]:= 3.6!

Out[2]= 13.3813

Mathematica can give symbolic results for some binomial coefficients. 

In[3]:= Binomial@n, 2D

Out[3]=
1

2
H-1 + nL n

This gives the number of ways of partitioning 6 + 5 = 11 objects into sets containing 6 and 5 
objects. 

In[4]:= Multinomial@6, 5D

Out[4]= 462

414     Mathematics and Algorithms



The result is the same as 
11
6

. 

In[5]:= Binomial@11, 6D

Out[5]= 462

The  Fibonacci  numbers  Fibonacci@nD  satisfy  the  recurrence  relation  Fn = Fn-1 + Fn-2  with

F1 = F2 = 1. They appear in a wide range of discrete mathematical problems. For large n, Fn êFn-1

approaches the golden ratio.  The Lucas  numbers  LucasL@nD  satisfy  the  same recurrence rela-

tion as the Fibonacci numbers do, but with initial conditions L1 = 1 and L2 = 3. 

The Fibonacci polynomials Fibonacci@n, xD appear as the coefficients of tn  in the expansion of

tëI1 - x t - t2M =⁄n=0
¶ Fn HxL tn .

The harmonic numbers HarmonicNumber@nD are given by Hn =⁄i=1
n 1 ê i; the harmonic numbers of

order  r  HarmonicNumber@n, rD  are  given  by  Hn
HrL =⁄i=1

n 1ë ir.  Harmonic  numbers  appear  in  many

combinatorial estimation problems, often playing the role of discrete analogs of logarithms. 

The  Bernoulli  polynomials  BernoulliB@n, xD  satisfy  the  generating  function  relation

t ex t ê Het - 1L =⁄n=0
¶ BnHxL tn ên ! . The Bernoulli numbers BernoulliB@nD are given by Bn = BnH0L. The Bn

appear as the coefficients of the terms in the Euler|Maclaurin summation formula for approximat -

ing integrals. The Bernoulli numbers are related to the Genocchi numbers by Gn = 2 H1 - 2nL Bn. 

Numerical  values  for  Bernoulli  numbers  are  needed  in  many  numerical  algorithms.  You  can

always get  these numerical  values by first  finding exact  rational  results  using BernoulliB@nD,

and then applying N. 

The  Euler  polynomials  EulerE@n, xD  have  generating  function  2 ex t ê Het + 1L =⁄n=0
¶ EnHxL tn ên ! ,  and

the Euler numbers EulerE@nD are given by En = 2n EnJ
1
2
N. 

The  Nörlund  polynomials  NorlundB@n, aD  satisfy  the  generating  function  relation

ta ê Het - 1La =⁄n=0
¶ BnHaL tn ên ! .  The  Nörlund  polynomials  give  the  Bernoulli  numbers  when  a = 1.  For

other positive integer values of a, the Nörlund polynomials give higher-order Bernoulli numbers.

The generalized Bernoulli polynomials NorlundB@n, a, xD  satisfy the generating function relation

ta ex t ê Het - 1La =⁄n=0
¶ BnHaLHxL tn ên ! . 

Mathematics and Algorithms     415



This gives the second Bernoulli polynomial B2HxL. 

In[6]:= BernoulliB@2, xD

Out[6]=
1

6
- x + x2

You can also get Bernoulli polynomials by explicitly computing the power series for the generat-
ing function. 

In[7]:= Series@t Exp@x tD ê HExp@tD - 1L, 8t, 0, 4<D

Out[7]= 1 + -
1

2
+ x t +

1

12
I1 - 6 x + 6 x2M t2 +

1

12
Ix - 3 x2 + 2 x3M t3 +

1

720
I-1 + 30 x2 - 60 x3 + 30 x4M t4 + O@tD5

BernoulliB@nD gives exact rational-number results for Bernoulli numbers. 

In[8]:= BernoulliB@20D

Out[8]= -
174611

330

Stirling numbers show up in many combinatorial enumeration problems. For Stirling numbers of

the  first  kind  StirlingS1@n, mD,  H-1Ln-m SnHmL  gives  the  number  of  permutations  of  n  elements

which contain exactly m  cycles.  These Stirling numbers satisfy the generating function relation

x Hx - 1L … Hx - n + 1L =⁄m=0
n SnHmL xm.  Note  that  some  definitions  of  the  SnHmL  differ  by  a  factor  H-1Ln-m

from what is used in Mathematica. 

Stirling numbers of the second kind StirlingS2@n, mD, sometimes denoted n
HmL, give the num-

ber  of  ways  of  partitioning  a  set  of  n  elements  into  m  non-empty  subsets.  They  satisfy  the

relation xn =⁄m=0
n n

HmL x Hx - 1L ... Hx -m + 1L. 

The  Bell  numbers  BellB@nD  give  the  total  number  of  ways  that  a  set  of  n  elements  can  be

partitioned  into  non-empty  subsets.  The  Bell  polynomials  BellB@n, xD  satisfy  the  generating

function relation eHet-1L x =⁄n=0
¶ BnHxL

tn

n!
.

The partition function  PartitionsP@nD  gives the number of ways of writing the integer n  as a

sum of positive integers, without regard to order. PartitionsQ@nD gives the number of ways of

writing n as a sum of positive integers, with the constraint that all the integers in each sum are

distinct.

416     Mathematics and Algorithms



IntegerPartitions@nD gives a list of the partitions of n, with length PartitionsP@nD.

This gives a table of Stirling numbers of the first kind. 

In[9]:= Table@StirlingS1@5, iD, 8i, 5<D

Out[9]= 824, -50, 35, -10, 1<

The Stirling numbers appear as coefficients in this product. 

In[10]:= Expand@Product@x - i, 8i, 0, 4<DD

Out[10]= 24 x - 50 x2 + 35 x3 - 10 x4 + x5

Here are the partitions of 4.

In[11]:= IntegerPartitions@4D

Out[11]= 884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

The number of partitions is given by PartitionsP@4D.

In[12]:= Length@%D ã PartitionsP@4D

Out[12]= True

This gives the number of partitions of 100, with and without the constraint that the terms 
should be distinct. 

In[13]:= 8PartitionsQ@100D, PartitionsP@100D<

Out[13]= 8444793, 190569292<

The partition function pHnL increases asymptotically like e n . Note that you cannot simply use 
Plot to generate a plot of a function like PartitionsP  because the function can only be 
evaluated with integer arguments. 

In[14]:= ListPlot@Table@N@Log@PartitionsP@nDDD, 8n, 100<DD

Out[14]=

20 40 60 80 100

5

10

15

Most of the functions here allow you to count various kinds of combinatorial objects. Functions

like IntegerPartitions and Permutations allow you instead to generate lists of various combi-

nations of elements. 

The signature function Signature@8i1, i2, …<D gives the signature of a permutation. It is equal

to +1 for even permutations (composed of an even number of transpositions), and to -1 for odd

permutations. The signature function can be thought of as a totally antisymmetric tensor, Levi-

Civita symbol or epsilon symbol.

Mathematics and Algorithms     417



The signature function Signature@8i1, i2, …<D gives the signature of a permutation. It is equal

to +1 for even permutations (composed of an even number of transpositions), and to -1 for odd

permutations. The signature function can be thought of as a totally antisymmetric tensor, Levi-

Civita symbol or epsilon symbol.

ClebschGordan@
8 j1,m1<,8 j2,m2<,8 j,m<D

Clebsch-Gordan coefficient

ThreeJSymbol@
8 j1,m1<,8 j2,m2<,8 j3,m3<D

Wigner 3-j symbol

SixJSymbol@8 j1, j2, j3<,8 j4, j5, j6<D Racah 6-j symbol

Rotational coupling coefficients. 

Clebsch|Gordan coefficients and n-j symbols arise in the study of angular momenta in quantum

mechanics,  and  in  other  applications  of  the  rotation  group.  The  Clebsch|Gordan  coefficients

ClebschGordan@8 j1, m1<, 8 j2, m2<, 8 j, m<D  give the coefficients in the expansion of the quan-

tum mechanical angular momentum state j, m\ in terms of products of states j1, m1\ j2, m2\. 

The 3-j symbols  or Wigner coefficients  ThreeJSymbol@8 j1, m1<, 8 j2, m2<, 8 j3, m3<D  are a more

symmetrical  form  of  Clebsch|Gordan  coefficients.  In  Mathematica,  the  Clebsch|Gordan  coeffi-

cients are given in terms of 3-j symbols by Cm1 m2 m3
j1 j2 j3 = H-1Lm3+ j1- j2 2 j3 + 1

j1
m1

j2
m2

j3
-m3

. 

The  6-j  symbols  SixJSymbol@8 j1, j2, j3<, 8 j4, j5, j6<D  give  the  couplings  of  three  quantum

mechanical angular momentum states. The Racah coefficients are related by a phase to the 6-j

symbols. 

You can give symbolic parameters in 3-j symbols. 

In[15]:= ThreeJSymbol@8j, m<, 8j + 1 ê 2, -m - 1 ê 2<, 81 ê 2, 1 ê 2<D

Out[15]= -

H-1L-j+m 1+j+m

1+3 j+2 j2

2

418     Mathematics and Algorithms



Elementary Transcendental Functions

Exp@zD exponential function ez

Log@zD logarithm logeHzL

Log@b,zD logarithm logbHzL to base b

Log2@zD , Log10@zD logarithm to base 2 and 10

Sin@zD , Cos@zD , Tan@zD , Csc@zD , Sec@zD , Cot@zD

trigonometric functions (with arguments in radians)

ArcSin@zD , ArcCos@zD , ArcTan@zD , ArcCsc@zD , ArcSec@zD , ArcCot@zD

inverse trigonometric functions (giving results in radians)

ArcTan@x,yD the argument of x + iy

Sinh@zD , Cosh@zD , Tanh@zD , Csch@zD , Sech@zD , Coth@zD

hyperbolic functions

ArcSinh@zD , ArcCosh@zD , ArcTanh@zD , ArcCsch@zD , ArcSech@zD , ArcCoth@zD

inverse hyperbolic functions

Sinc@zD sinc function sinHzL êz
Haversine@zD haversine function havHzL

InverseHaversine@zD inverse haversine function hav-1HzL

Gudermannian@zD Gudermannian function gdHzL

InverseGudermannian@zD inverse Gudermannian function gd-1HzL

Elementary transcendental functions.

Mathematica gives exact results for logarithms whenever it can. Here is log2 1024. 

In[1]:= Log@2, 1024D

Out[1]= 10

You can find the numerical values of mathematical functions to any precision. 

In[2]:= N@Log@2D, 40D

Out[2]= 0.6931471805599453094172321214581765680755

This gives a complex number result. 

In[3]:= N@Log@-2DD

Out[3]= 0.693147 + 3.14159 Â

Mathematica can evaluate logarithms with complex arguments. 

Mathematics and Algorithms     419



Mathematica can evaluate logarithms with complex arguments. 

In[4]:= N@Log@2 + 8 IDD

Out[4]= 2.10975 + 1.32582 Â

The arguments of trigonometric functions are always given in radians.

In[5]:= Sin@Pi ê 2D

Out[5]= 1

You can convert from degrees by explicitly multiplying by the constant Degree. 

In[6]:= N@Sin@30 DegreeDD

Out[6]= 0.5

Here is a plot of the hyperbolic tangent function. It has a characteristic "sigmoidal" form. 

In[7]:= Plot@Tanh@xD, 8x, -8, 8<D

Out[7]=

The  haversine  function  Haversine@zD  is  defined  by  sin2Hz ê2L.  The  inverse  haversine  function

InverseHaversine@zD is defined by 2 sin-1I z M. The Gudermannian function Gudermannian@zD is

defined as  gdHzL = 2 tan-1HezL - p

2
.  The  inverse  Gudermannian function  InverseGudermannian@zD  is

defined  by  gd-1HzL = log@tanHz ê2 + p ê4LD.  The  Gudermannian  satisfies  such  relations  as

sinhHzL = tan@gdHxLD. The sinc function Sinc@zD is the Fourier transform of a square signal.

There  are  a  number  of  additional  trigonometric  and  hyperbolic  functions  that  are  sometimes

used.  The  versine  function  is  sometimes  encountered  in  the  literature  and  simply  is

versHzL = 2 havHzL.  The coversine  function is defined as coversHzL = 1 - sinHzL.  The complex exponential

eix is sometimes written as cisHxL.

420     Mathematics and Algorithms

-5 5

-1.0

-0.5

0.5

1.0



Functions That Do Not Have Unique Values

When you ask for the square root s of a number a, you are effectively asking for the solution to

the equation s2 = a. This equation, however, in general has two different solutions. Both s = 2 and

s = -2  are, for example, solutions to the equation s2 = 4.  When you evaluate the "function" 4 ,

however, you usually want to get a single number, and so you have to choose one of these two

solutions. A standard choice is that x  should be positive for x > 0. This is what the Mathemat-

ica function Sqrt@xD does.

The need to make one choice from two solutions means that Sqrt@xD cannot be a true inverse

function for x^2. Taking a number, squaring it, and then taking the square root can give you a

different number than you started with. 

4  gives +2, not -2. 
In[1]:= Sqrt@4D

Out[1]= 2

Squaring and taking the square root does not necessarily give you the number you started with. 

In[2]:= Sqrt@H-2L^2D

Out[2]= 2

When you evaluate -2 i ,  there are again  two possible  answers:  -1 + i  and 1 - i.  In  this  case,

however, it is less clear which one to choose. 

There is in fact no way to choose z  so that it is continuous for all complex values of z. There

has to be a "branch cut"~a line in the complex plane across which the function z  is discontinu-

ous. Mathematica adopts the usual convention of taking the branch cut for z  to be along the

negative real axis.

This gives 1 - i, not -1 + i. 

In[3]:= N@Sqrt@-2 IDD

Out[3]= 1. - 1. Â

Mathematics and Algorithms     421



The branch cut in Sqrt along the negative real axis means that values of Sqrt@zD with z just 
above and below the axis are very different. 

In[4]:= 8Sqrt@-2 + 0.1 ID, Sqrt@-2 - 0.1 ID<

Out[4]= 80.0353443 + 1.41466 Â, 0.0353443 - 1.41466 Â<

Their squares are nevertheless close. 

In[5]:= %^2

Out[5]= 8-2. + 0.1 Â, -2. - 0.1 Â<

The discontinuity along the negative real axis is quite clear in this three-dimensional picture of 
the imaginary part of the square root function. 

In[6]:= Plot3D@Im@Sqrt@x + I yDD, 8x, -4, 4<, 8y, -4, 4<D

Out[6]=

When you find an nth  root  using z1ên,  there are,  in  principle,  n  possible  results.  To get  a single

value,  you  have  to  choose  a  particular  principal  root.  There  is  absolutely  no  guarantee  that

taking the nth root of an nth power will leave you with the same number. 

This takes the tenth power of a complex number. The result is unique. 

In[7]:= H2.5 + IL^10

Out[7]= -15781.2 - 12335.8 Â

There are 10 possible tenth roots. Mathematica chooses one of them. In this case it is not the 
number whose tenth power you took. 

In[8]:= %^H1 ê 10L

Out[8]= 2.61033 - 0.660446 Â

There  are  many  mathematical  functions  which,  like  roots,  essentially  give  solutions  to  equa-

tions.  The logarithm function and the inverse trigonometric  functions  are  examples.  In  almost

all cases, there are many possible solutions to the equations. Unique "principal" values neverthe- 

422     Mathematics and Algorithms



less  have  to  be  chosen  for  the  functions.  The  choices  cannot  be  made  continuous  over  the

whole complex plane. Instead, lines of discontinuity, or branch cuts, must occur. The positions

of these branch cuts are often quite arbitrary. Mathematica makes the most standard mathemati-

cal choices for them.

Sqrt@zD  and z^s H-¶, 0L for Re s > 0, H-¶, 0D for Re s § 0 (s not an integer)

Exp@zD none

Log@zD H-¶, 0D
trigonometric functions none

ArcSin@zD  and ArcCos@zD H-¶, -1L and H+1, +¶L

ArcTan@zD H-i¶, -iD and Hi, i¶D

ArcCsc@zD  and ArcSec@zD H-1, +1L
ArcCot@zD @-i, +iD
hyperbolic functions none

ArcSinh@zD H-i¶, -iL and H+i, +i¶L

ArcCosh@zD H-¶, +1L
ArcTanh@zD H-¶, -1D and @+1, +¶L

ArcCsch@zD H-i, iL
ArcSech@zD H-¶, 0D and H+1, +¶L

ArcCoth@zD @-1, +1D

Some branch-cut discontinuities in the complex plane.

ArcSin is a multiple-valued function, so there is no guarantee that it always gives the "inverse" 
of Sin. 

In[9]:= ArcSin@Sin@4.5DD

Out[9]= -1.35841

Values of ArcSin@zD on opposite sides of the branch cut can be very different. 

In[10]:= 8ArcSin@2 + 0.1 ID, ArcSin@2 - 0.1 ID<

Out[10]= 81.51316 + 1.31888 Â, 1.51316 - 1.31888 Â<

Mathematics and Algorithms     423



A three-dimensional picture, showing the two branch cuts for the function sin-1HzL. 
In[11]:= Plot3D@Im@ArcSin@x + I yDD, 8x, -4, 4<, 8y, -4, 4<D

Out[11]=

Mathematical Constants

I i = -1

Infinity ¶

Pi p > 3.14159

Degree p ê180: degrees to radians conversion factor

GoldenRatio f = J1 + 5 Ní2 > 1.61803

E e > 2.71828

EulerGamma Euler's constant g > 0.577216

Catalan Catalan's constant C > 0.915966

Khinchin Khinchin's constant K > 2.68545

Glaisher Glaisher's constant A > 1.28243

Mathematical constants.

Euler’s  constant  EulerGamma  is  given  by  the  limit  g = limmØ¶ J⁄k=1
m 1

k
- logmN.  It  appears  in  many

integrals,  and  asymptotic  formulas.  It  is  sometimes  known  as  the  Euler-Mascheroni  constant,

and denoted C.

Catalan’s  constant  Catalan  is  given by the sum ⁄k=0
¶ H-1Lk H2 k + 1L-2.  It  often appears  in  asymp-

totic estimates of combinatorial functions. It is variously denoted by C, K, or G. 

Khinchin’s  constant  Khinchin  (sometimes  called  Khintchine's  constant)  is  given  by

¤s=1
¶ J1 + 1

s Hs+2L
N
log2 s. It gives the geometric mean of the terms in the continued fraction representa-

tion for a typical real number.  

Glaisher’s  constant  Glaisher  A  (sometimes  called  the  Glaisher-Kinkelin  constant)  satisfies

log HAL = 1
12

- z£ H-1L,  where z  is  the Riemann zeta  function.  It  appears  in  various  sums and inte-

grals, particularly those involving gamma and zeta functions.

424     Mathematics and Algorithms



Glaisher’s  constant  Glaisher  A  (sometimes  called  the  Glaisher-Kinkelin  constant)  satisfies

log HAL = 1
12

- z£ H-1L,  where z  is  the Riemann zeta  function.  It  appears  in  various  sums and inte-

grals, particularly those involving gamma and zeta functions.

Mathematical constants can be evaluated to arbitrary precision. 

In[1]:= N@EulerGamma, 40D

Out[1]= 0.5772156649015328606065120900824024310422

Exact computations can also be done with them. 

In[2]:= IntegerPart@GoldenRatio^100D

Out[2]= 792070839848372253126

Orthogonal Polynomials

LegendreP@n,xD Legendre polynomials PnHxL

LegendreP@n,m,xD associated Legendre polynomials PnmHxL

SphericalHarmonicY@l,m,q,fD spherical harmonics Yl
mHq, fL

GegenbauerC@n,m,xD Gegenbauer polynomials Cn
HmL

HxL

ChebyshevT@n,xD
, ChebyshevU@n,xD

Chebyshev polynomials TnHxL and UnHxL of the first and 
second kinds

HermiteH@n,xD Hermite polynomials HnHxL

LaguerreL@n,xD Laguerre polynomials LnHxL

LaguerreL@n,a,xD generalized Laguerre polynomials LnaHxL

ZernikeR@n,m,xD Zernike radial polynomials RnHmLHxL

JacobiP@n,a,b,xD Jacobi polynomials PnHa,bLHxL

Orthogonal polynomials.

Legendre  polynomials  LegendreP@n, xD  arise  in  studies  of  systems  with  three-dimensional

spherical symmetry. They satisfy the differential  equation I1 - x2M y££ - 2 x y£ + nHn + 1L y = 0,  and the

orthogonality relation Ÿ-1
1 PmHxL PnHxL „ x = 0 for m ≠ n. 

The associated Legendre polynomials  LegendreP@n, m, xD  are obtained from derivatives of the

Legendre  polynomials  according  to  PnmHxL = H-1Lm I1 - x2Mmê2 dm @PnHxLD êd xm.  Notice  that  for  odd  inte-

gers m § n,  the PnmHxL  contain powers of 1 - x2 ,  and are therefore not strictly polynomials. The

PnmHxL reduce to PnHxL when m = 0. 

Mathematics and Algorithms     425



The associated Legendre polynomials  LegendreP@n, m, xD  are obtained from derivatives of the

Legendre  polynomials  according  to  PnmHxL = H-1Lm I1 - x2Mmê2 dm @PnHxLD êd xm.  Notice  that  for  odd  inte-

gers m § n,  the PnmHxL  contain powers of 1 - x2 ,  and are therefore not strictly polynomials. The

PnmHxL reduce to PnHxL when m = 0. 

The  spherical  harmonics  SphericalHarmonicY@l, m, q, fD  are  related  to  associated  Legendre

polynomials.  They  satisfy  the  orthogonality  relation  ‡ Yl
mHq, fL Y l£

m£

Hq, fL „w = 0  for  l ≠ l£  or  m ≠m£,

where d w represents integration over the surface of the unit sphere. 

This gives the algebraic form of the Legendre polynomial P8HxL. 

In[1]:= LegendreP@8, xD

Out[1]=
1

128
I35 - 1260 x2 + 6930 x4 - 12012 x6 + 6435 x8M

The integral Ÿ-1
1 P7HxL P8HxL d x gives zero by virtue of the orthogonality of the Legendre polynomi-

als. 
In[2]:= Integrate@LegendreP@7, xD LegendreP@8, xD, 8x, -1, 1<D

Out[2]= 0

Integrating the square of a single Legendre polynomial gives a nonzero result. 

In[3]:= Integrate@LegendreP@8, xD^2, 8x, -1, 1<D

Out[3]=
2

17

High-degree Legendre polynomials oscillate rapidly. 

In[4]:= Plot@LegendreP@10, xD, 8x, -1, 1<D

Out[4]=

The associated Legendre "polynomials" involve fractional powers. 

In[5]:= LegendreP@8, 3, xD

Out[5]=
3465

8
1 - x2 I-1 + x2M I3 x - 26 x3 + 39 x5M

"Special Functions" discusses the generalization of Legendre polynomials to Legendre functions, 
which can have non-integer degrees. 

426     Mathematics and Algorithms

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0



"Special Functions" discusses the generalization of Legendre polynomials to Legendre functions, 
which can have non-integer degrees. 

In[6]:= LegendreP@8.1, 0D

Out[6]= 0.268502

Gegenbauer polynomials GegenbauerC@n, m, xD can be viewed as generalizations of the Legen-

dre  polynomials  to  systems  with  Hm + 2L-dimensional  spherical  symmetry.  They  are  sometimes

known as ultraspherical polynomials. 

GegenbauerC@n, 0, xD is always equal to zero. GegenbauerC@n, xD is however given by the limit

limmØ0CnHmLHxLëm. This form is sometimes denoted CnH0LHxL. 

Series  of  Chebyshev  polynomials  are  often  used  in  making  numerical  approximations  to  func-

tions.  The  Chebyshev  polynomials  of  the  first  kind  ChebyshevT@n, xD  are  defined  by

TnHcos qL = cosHn qL.  They  are  normalized  so  that  TnH1L = 1.  They  satisfy  the  orthogonality  relation

Ÿ-1
1 TmHxL TnHxL I1 - x2M-1ê2 „ x = 0 for m ≠ n. The TnHxL also satisfy an orthogonality relation under sum-

mation at discrete points in x corresponding to the roots of TnHxL. 

The  Chebyshev  polynomials  of  the  second  kind  ChebyshevU@n, zD  are  defined  by

Un Hcos qL = sin@Hn + 1L qD êsin q.  With  this  definition,  UnH1L = n + 1.  The  Un  satisfy  the  orthogonality

relation Ÿ-1
1 UmHxLUnHxL I1 - x2M1ê2 „ x = 0 for m ≠ n. 

The  name  "Chebyshev"  is  a  transliteration  from  the  Cyrillic  alphabet;  several  other  spellings,

such as "Tschebyscheff", are sometimes used. 

Hermite  polynomials  HermiteH@n, xD  arise  as  the  quantum-mechanical  wave  functions  for  a

harmonic oscillator. They satisfy the differential equation y££ - 2 x y£ + 2 n y = 0, and the orthogonal-

ity  relation Ÿ-¶
¶ HmHxLHnHxL e-x

2
„ x = 0  for  m ≠ n.  An alternative form of  Hermite polynomials  some-

times used is HenHxL = 2-nê2 HnJxí 2 N (a different overall normalization of the HenHxL is also some-

times used). 

The Hermite polynomials are related to the parabolic cylinder functions or Weber functions DnHxL

by DnHxL = 2-nê2 e-x2ë4 HnJxí 2 N.

Mathematics and Algorithms     427



This gives the density for an excited state of a quantum-mechanical harmonic oscillator. The 
average of the wiggles is roughly the classical physics result. 

In[7]:= Plot@HHermiteH@6, xD Exp@-x^2 ê 2DL^2, 8x, -6, 6<D

Out[7]=

Generalized  Laguerre  polynomials  LaguerreL@n, a, xD  are  related  to  hydrogen  atom  wave

functions in quantum mechanics. They satisfy the differential  equation x y££ + Ha + 1 - xL y£ + n y = 0,

and  the  orthogonality  relation  Ÿ0
¶Lma HxL LnaHxL xa e-x „ x = 0  for  m ≠ n.  The  Laguerre  polynomials

LaguerreL@n, xD correspond to the special case a = 0.

You can get formulas for generalized Laguerre polynomials with arbitrary values of a. 

In[8]:= LaguerreL@2, a, xD

Out[8]=
1

2
I2 + 3 a + a2 - 4 x - 2 a x + x2M

Zernike radial polynomials ZernikeR@n, m, xD are used in studies of aberrations in optics. They

satisfy the orthogonality relation Ÿ0
1RnHmLHxL Rk

HmLHxL x „ x = 0 for n ≠ k. 

Jacobi  polynomials  JacobiP@n, a, b, xD  occur  in  studies  of  the  rotation  group,  particularly  in

quantum mechanics.  They  satisfy  the  orthogonality  relation  Ÿ-1
1 PmHa,bLHxL PnHa,bLHxL H1 - xLa H1 + xLb „ x = 0

for  m ≠ n.  Legendre,  Gegenbauer,  Chebyshev  and  Zernike  polynomials  can  all  be  viewed  as

special cases of Jacobi polynomials. The Jacobi polynomials are sometimes given in the alterna-

tive form GnHp, q, xL = n ! G Hn + pL êG H2 n + pL PnHp-q,q-1LH2 x - 1L. 

Special Functions

Mathematica  includes all  the common special  functions of mathematical physics found in stan-

dard handbooks. We will discuss each of the various classes of functions in turn.

One point you should realize is that in the technical literature there are often several conflicting

definitions of  any particular  special  function.  When you use a special  function in Mathematica,

therefore,  you should  be sure  to  look at  the definition  given here to  confirm that  it  is  exactly

what you want. 

428     Mathematics and Algorithms

-6 -4 -2 2 4 6

5000

10 000

15 000

20 000

25 000



One point you should realize is that in the technical literature there are often several conflicting 

definitions of  any particular  special  function.  When you use a special  function in Mathematica,

therefore,  you should  be sure  to  look at  the definition  given here to  confirm that  it  is  exactly

what you want. 

Mathematica gives exact results for some values of special functions. 

In[1]:= Gamma@15 ê 2D

Out[1]= 
135135 p

128

No exact result is known here. 

In[2]:= Gamma@15 ê 7D

Out[2]= GammaB
15

7
F

A numerical result, to arbitrary precision, can nevertheless be found. 

In[3]:= N@%, 40D

Out[3]= 1.069071500448624397994137689702693267367

You can give complex arguments to special functions. 

In[4]:= Gamma@3 + 4 ID êê N

Out[4]= 0.00522554 - 0.172547 Â

Special functions automatically get applied to each element in a list. 

In[5]:= Gamma@83 ê 2, 5 ê 2, 7 ê 2<D

Out[5]= :
p

2
,
3 p

4
,
15 p

8
>

Mathematica knows analytical properties of special functions, such as derivatives. 

In[6]:= D@Gamma@xD, 8x, 2<D

Out[6]= Gamma@xD PolyGamma@0, xD2 + Gamma@xD PolyGamma@1, xD

You can use FindRoot to find roots of special functions. 

In[7]:= FindRoot@BesselJ@0, xD, 8x, 1<D

Out[7]= 8x Ø 2.40483<

Special functions in Mathematica can usually be evaluated for arbitrary complex values of their

arguments.  Often,  however,  the  defining  relations  given  in  this  tutorial  apply  only  for  some

special choices of arguments. In these cases, the full function corresponds to a suitable exten-

sion or "analytic continuation" of these defining relations. Thus, for example, integral representa-

tions  of  functions  are  valid  only  when  the  integral  exists,  but  the  functions  themselves  can

usually be defined elsewhere by analytic continuation. 

Mathematics and Algorithms     429



Special functions in Mathematica can usually be evaluated for arbitrary complex values of their

arguments.  Often,  however,  the  defining  relations  given  in  this  tutorial  apply  only  for  some

special choices of arguments. In these cases, the full function corresponds to a suitable exten-

sion or "analytic continuation" of these defining relations. Thus, for example, integral representa- 

tions  of  functions  are  valid  only  when  the  integral  exists,  but  the  functions  themselves  can

usually be defined elsewhere by analytic continuation. 

As  a  simple  example  of  how the domain  of  a  function  can be extended,  consider  the  function

represented by the sum ⁄k=0
¶ xk. This sum converges only when x < 1. Nevertheless, it is easy

to show analytically that for any x,  the complete function is equal to 1 ê H1 - xL.  Using this form,

you can easily find a value of the function for any x, at least so long as x ≠ 1. 

Gamma and Related Functions

Beta@a,bD Euler beta function BHa, bL
Beta@z,a,bD incomplete beta function BzHa, bL

BetaRegularized@z,a,bD regularized incomplete beta function IHz, a, bL
Gamma@zD Euler gamma function GHzL

Gamma@a,zD incomplete gamma function GHa, zL
Gamma@a,z0,z1D generalized incomplete gamma function GHa, z0L - GHa, z1L

GammaRegularized@a,zD regularized incomplete gamma function QHa, zL
InverseBetaRegularized@s,a,bD

inverse beta function

InverseGammaRegularized@a,sD inverse gamma function

Pochhammer@a,nD Pochhammer symbol HaLn

PolyGamma@zD digamma function yHzL

PolyGamma@n,zD nth derivative of the digamma function yHnLHzL

LogGamma@zD Euler log-gamma function log GHzL

LogBarnesG@zD logarithm of Barnes G-function logGHzL

BarnesG@zD Barnes G-function GHzL

Hyperfactorial@nD hyperfactorial function HHnL

Gamma and related functions.

The  Euler  gamma  function  Gamma@zD  is  defined  by  the  integral  GHzL = Ÿ0
¶tz-1 e-t d t.  For  positive

integer n, GHnL = Hn - 1L ! . GHzL can be viewed as a generalization of the factorial function, valid for

complex arguments z.

430     Mathematics and Algorithms



The  Euler  gamma  function  Gamma@zD  is  defined  by  the  integral  GHzL = Ÿ0
¶tz-1 e-t d t.  For  positive

integer n, GHnL = Hn - 1L ! . GHzL can be viewed as a generalization of the factorial function, valid for

complex arguments z.

There  are  some  computations,  particularly  in  number  theory,  where  the  logarithm  of  the

gamma  function  often  appears.  For  positive  real  arguments,  you  can  evaluate  this  simply  as

Log@Gamma@zDD.  For  complex  arguments,  however,  this  form  yields  spurious  discontinuities.

Mathematica  therefore includes the separate function LogGamma@zD,  which yields the logarithm

of the gamma function with a single branch cut along the negative real axis.

The Euler beta function Beta@a, bD is BHa, bL = GHaL GHbL êGHa + bL = Ÿ0
1ta-1 H1 - tLb-1 d t. 

The  Pochhammer  symbol  or  rising  factorial  Pochhammer@a, nD  is

HaLn = aHa + 1L …Ha + n - 1L = GHa + nL êGHaL.  It  often  appears  in  series  expansions  for  hypergeometric

functions. Note that the Pochhammer symbol has a definite value even when the gamma func-

tions which appear in its definition are infinite.

The  incomplete  gamma  function  Gamma@a, zD  is  defined  by  the  integral  GHa, zL = Ÿz
¶ta-1 e-t d t.

Mathematica  includes  a  generalized  incomplete  gamma  function  Gamma@a, z0, z1D  defined  as

Ÿz0
z1 ta-1 e-t d t. 

The alternative incomplete gamma function gHa, zL can therefore be obtained in Mathematica as

Gamma@a, 0, zD. 

The  incomplete  beta  function  Beta@z, a, bD  is  given  by  BzHa, bL = Ÿ0
zta-1 H1 - tLb-1 d t.  Notice  that  in

the incomplete beta function, the parameter z  is  an upper  limit  of  integration, and appears as

the first argument of the function. In the incomplete gamma function, on the other hand, z is a

lower limit of integration, and appears as the second argument of the function.

In certain cases, it is convenient not to compute the incomplete beta and gamma functions on

their  own,  but  instead  to  compute  regularized  forms  in  which  these  functions  are  divided  by

complete  beta  and  gamma  functions.  Mathematica  includes  the  regularized  incomplete  beta

function BetaRegularized@z, a, bD defined for most arguments by IHz, a, bL = BHz, a, bL êBHa, bL, but

taking  into  account  singular  cases.  Mathematica  also  includes  the  regularized  incomplete

gamma  function  GammaRegularized@a, zD  defined  by  QHa, zL = GHa, zL êGHaL,  with  singular  cases

taken into account. 

The  incomplete  beta  and  gamma functions,  and  their  inverses,  are  common  in  statistics.  The

inverse beta function  InverseBetaRegularized@s, a, bD  is the solution for z  in s = IHz, a, bL.  The

inverse  gamma  function  InverseGammaRegularized@a, sD  is  similarly  the  solution  for  z  in

s =QHa, zL. 

Mathematics and Algorithms     431



The  incomplete  beta  and  gamma functions,  and  their  inverses,  are  common  in  statistics.  The 

inverse beta function  InverseBetaRegularized@s, a, bD  is the solution for z  in s = IHz, a, bL.  The

inverse  gamma  function  InverseGammaRegularized@a, sD  is  similarly  the  solution  for  z  in

s =QHa, zL. 

Derivatives  of  the  gamma  function  often  appear  in  summing  rational  series.  The  digamma

function  PolyGamma@zD  is  the  logarithmic  derivative  of  the  gamma  function,  given  by

yHzL = G£HzL êGHzL.  For  integer  arguments,  the  digamma  function  satisfies  the  relation

yHnL = -g + Hn-1,  where  g  is  Euler's  constant  (EulerGamma  in  Mathematica)  and  Hn  are  the  har-

monic numbers.

The  polygamma  functions  PolyGamma@n, zD  are  given  by  yHnLHzL = dn yHzL êd zn.  Notice  that  the

digamma  function  corresponds  to  yH0LHzL.  The  general  form  yHnLHzL  is  the  Hn + 1Lth,  not  the  nth,

logarithmic  derivative  of  the  gamma  function.  The  polygamma  functions  satisfy  the  relation

yHnLHzL = H-1Ln+1 n !⁄k=0
¶ 1ëHz + kLn+1.  PolyGamma@n, zD  is  defined  for  arbitrary  complex  n  by  fractional

calculus analytic continuation.

BarnesG@zD  is  a  generalization  of  the  Gamma  function  and  is  defined  by  its  functional  identity

BarnesG@z + 1D = Gamma@zD BarnesG@zD, where the third derivative of the logarithm of BarnesG

is positive for positive z. BarnesG is an entire function in the complex plane.

LogBarnesG@zD  is  a  holomorphic  function  with  a  branch  cut  along  the  negative  real-axis  such

that Exp@LogBarnesG@zDD = BarnesG@zD.

Hyperfactorial@nD is a generalization of ¤k=1
n kk to the complex plane.

Many exact results for gamma and polygamma functions are built into Mathematica. 

In[1]:= PolyGamma@6D

Out[1]= 
137

60
- EulerGamma

Here is a contour plot of the gamma function in the complex plane. 

In[2]:= ContourPlot@Abs@Gamma@x + I yDD, 8x, -3, 3<, 8y, -2, 2<, PlotPoints -> 50D

432     Mathematics and Algorithms



Zeta and Related Functions

DirichletL@k, j,sD Dirichlet L-function LHc, sL

LerchPhi@z,s,aD Lerch's transcendent FHz, s, aL
PolyLog@n,zD polylogarithm function LinHzL

PolyLog@n,p,zD Nielsen generalized polylogarithm function Sn,pHzL

RamanujanTau@nD Ramanujan t function t HnL

RamanujanTauL@nD Ramanujan t Dirichlet L function L HsL

RamanujanTauTheta@nD Ramanujan t theta function q HtL

RamanujanTauZ@nD Ramanujan t Z function Z HtL

RiemannSiegelTheta@tD Riemann|Siegel function JHtL

RiemannSiegelZ@tD Riemann|Siegel function ZHtL

StieltjesGamma@nD Stieltjes constants gn

Zeta@sD Riemann zeta function zHsL

Zeta@s,aD generalized Riemann zeta function zHs, aL
HurwitzZeta@s,aD Hurwitz zeta function zHs, aL
HurwitzLerchPhi@z,s,aD Hurwitz|Lerch transcendent FHz, s, aL

Zeta and related functions. 

The Dirichlet-L function DirichletL@k, j, sD is implemented as LHc, sL =⁄n=1
¶ cHnL n-s  (for Re HsL > 1)

where cHnL is a Dirichlet character with modulus k and index j.

The Riemann zeta function Zeta@sD is defined by the relation z HsL =⁄k=1
¶ k-s  (for s > 1). Zeta func-

tions with integer arguments arise in evaluating various sums and integrals. Mathematica gives

exact results when possible for zeta functions with integer arguments.

There is an analytic continuation of zHsL for arbitrary complex s ≠ 1. The zeta function for complex

arguments  is  central  to  number  theoretic  studies  of  the  distribution  of  primes.  Of  particular

importance are the values on the critical line Re HsL = 1
2
. 

In  studying  zJ 1
2
+ i tN,  it  is  often  convenient  to  define  the  two  Riemann|Siegel  functions

RiemannSiegelZ@tD  and  RiemannSiegelTheta@tD  according  to  ZHtL = ei J HtL zJ 1
2
+ i tN  and

JHtL = Im log GJ 1
4
+ i tí2N - t logHpL ê2 (for t real). Note that the Riemann|Siegel functions are both real

as long as t is real. 

The Stieltjes constants StieltjesGamma@nD are generalizations of Euler's constant which appear

in the series expansion of  zHsL  around its  pole at  s = 1;  the coefficient  of  H1 - sLn  is  gn ên !.  Euler's

constant is g0. 

Mathematics and Algorithms     433



The Stieltjes constants StieltjesGamma@nD are generalizations of Euler's constant which appear

in the series expansion of  zHsL  around its  pole at  s = 1;  the coefficient  of  H1 - sLn  is  gn ên !.  Euler's

constant is g0. 

The  generalized  Riemann  zeta  function  Zeta@s, aD  is  implemented  as  zHs, aL =⁄k=0
¶ IHk + aL2M

-sê2
,

where any term with k + a = 0 is excluded.

The Hurwitz zeta function HurwitzZeta@s, aD is implemented as zHs, aL =⁄k=0
¶ Hk + aL-s.

The  Ramanujan  t  Dirichlet  L  function  RamanujanTauL@sD  is  defined  by  L HsL =⁄n=1
¶ tHnL

ns
 (for

Re HsL > 6),  with  coefficients  RamanujanTau@nD.  In  analogy  with  the  Riemann  zeta  function,  it  is

again convenient to define the functions RamanujanTauZ@tD and RamanujanTauTheta@tD.

Here is the numerical approximation for LH6, 2, 1.0 + ÂL.

In[77]:= DirichletL@6, 2, 1. + ÂD

Out[77]= 0.978008 + 0.0954731 Â

Here is a three-dimensional picture of the real part of a Dirichlet L-function.

In[4]:= Plot3D@ReüDirichletL@6, 2, u + Â vD, 8u, -5, 5<, 8v, -10, 10<, Mesh Ø None,
PlotStyle Ø Directive@Opacity@0.7D, Green, Specularity@10DD, BoxRatios Ø 81, 1, 2<D

Out[4]=

Mathematica gives exact results for z H2 nL. 
In[1]:= Zeta@6D

Out[1]= 
p6

945

434     Mathematics and Algorithms

–10

–10

10

10

0

0 0
5

–5



Here is a three-dimensional picture of the Riemann zeta function in the complex plane. 

In[14]:= Plot3D@Abs@Zeta@x + I yDD, 8x, -3, 3<, 8y, 2, 35<D

Out[14]=

This is a plot of the absolute value of the Riemann zeta function on the critical line Re z = 1
2
. You 

can see the first few zeros of the zeta function. 
In[15]:= Plot@Abs@Zeta@1 ê 2 + I yDD, 8y, 0, 40<D

Out[15]=

This is a plot of the absolute value of the Ramanujan t L function on its critical line Re z = 6. 

In[4]:= Plot@Abs@RamanujanTauL@6 + I yDD, 8y, 0, 20<D

Out[4]=

The  polylogarithm  functions  PolyLog@n, zD  are  given  by  LinHzL =⁄k=1
¶ zk ëkn.  The  polylogarithm

function  is  sometimes  known  as  Jonquière's  function.  The  dilogarithm  PolyLog@2, zD  satisfies

Li2HzL = Ÿz
0logH1 - tL ê t „ t.  Sometimes  Li2H1 - zL  is  known  as  Spence's  integral.  The  Nielsen  general-

ized  polylogarithm  functions  or  hyperlogarithms  PolyLog@n, p, zD  are  given  by

Sn,pHzL = H-1Ln+p-1 ëHHn - 1L ! p !L Ÿ0
1logn-1HtL logpH1 - ztL ê t „ t.  Polylogarithm  functions  appear  in  Feynman

diagram integrals in elementary particle physics, as well as in algebraic K-theory.

Mathematics and Algorithms     435

Sn,pHzL = H-1Ln+p-1 ëHHn - 1L ! p !L Ÿ0
1logn-1HtL logpH1 - ztL ê t „ t.  Polylogarithm  functions  appear  in  Feynman

diagram integrals in elementary particle physics, as well as in algebraic K-theory.

10 20 30 40

0.5

1.0

1.5

2.0

2.5

3.0

5 10 15 20

0.5

1.0

1.5

2.0



The  polylogarithm  functions  PolyLog@n, zD  are  given  by  LinHzL =⁄k=1
¶ zk ëkn.  The  polylogarithm

function  is  sometimes  known  as  Jonquière's  function.  The  dilogarithm  PolyLog@2, zD  satisfies

Li2HzL = Ÿz
0logH1 - tL ê t „ t.  Sometimes  Li2H1 - zL  is  known  as  Spence's  integral.  The  Nielsen  general-

Sn,pHzL = H-1Ln+p-1 ëHHn - 1L ! p !L Ÿ0
1logn-1HtL logpH1 - ztL ê t „ t.  Polylogarithm  functions  appear  in  Feynman 

diagram integrals in elementary particle physics, as well as in algebraic K-theory.

The  Lerch  transcendent  LerchPhi@z, s, aD  is  a  generalization  of  the  zeta  and  polylogarithm

functions,  given  by  FHz, s, aL =⁄k=0
¶ zkíIHa + kL2M

sê2
,  where  any  term with  a + k = 0  is  excluded.  Many

sums of reciprocal powers can be expressed in terms of the Lerch transcendent. For example,

the Catalan beta function bHsL =⁄k=0
¶ H-1Lk H2 k + 1L-s can be obtained as 2-s F J-1, s, 1

2
N.

The  Lerch  transcendent  is  related  to  integrals  of  the  Fermi|Dirac  distribution  in  statistical

mechanics by Ÿ0
¶ks ëIek-m + 1M „ k = em GHs + 1LFH-em, s + 1, 1L. 

The Lerch transcendent can also be used to evaluate Dirichlet L-series which appear in number

theory.  The  basic  L-series  has  the  form  LHs, cL =⁄k=1
¶ cHkL k-s,  where  the  "character"  cHkL  is  an

integer function with period m.  L-series of  this  kind can be written as sums of  Lerch functions

with z a power of e2 p iêm.

LerchPhi@z, s, a, DoublyInfinite -> TrueD gives the doubly infinite sum ⁄k=-¶
¶ zkíIHa + kL2M

sê2
. 

The  Hurwitz|Lerch  transcendent  HurwitzLerchPhi@z, s, aD  generalizes  HurwitzZeta@s, aD  and

is defined by FHz, s, aL =⁄k=0
¶ zk ëHHa + kLsL.

ZetaZero@kD the kth zero of the zeta function zHzL on the critical line

ZetaZero@k,x0D the kth zero above height x0

Zeros of the zeta function. 

ZetaZero@1D represents the first nontrivial zero of z HzL. 

In[1]:= Zeta@ZetaZero@1DD

Out[1]= 0

This gives its numerical value.

In[2]:= N@ZetaZero@1DD

Out[2]= 0.5 + 14.1347 Â

436     Mathematics and Algorithms



This gives the first zero with height greater than 15.

In[3]:= N@ZetaZero@1, 15DD

Out[3]= 0.5 + 21.022 Â

Exponential Integral and Related Functions

CosIntegral@zD cosine integral function CiHzL
CoshIntegral@zD hyperbolic cosine integral function ChiHzL
ExpIntegralE@n,zD exponential integral En HzL

ExpIntegralEi@zD exponential integral EiHzL
LogIntegral@zD logarithmic integral liHzL
SinIntegral@zD sine integral function SiHzL
SinhIntegral@zD hyperbolic sine integral function ShiHzL

Exponential integral and related functions. 

Mathematica has two forms of exponential integral: ExpIntegralE and ExpIntegralEi.

The exponential integral function ExpIntegralE@n, zD is defined by EnHzL = Ÿ1
¶e-z t ê tn „ t. 

The second exponential  integral  function  ExpIntegralEi@zD  is  defined by EiHzL = -Ÿ-z
¶e-t ê t „ t  (for

z > 0), where the principal value of the integral is taken. 

The  logarithmic  integral  function  LogIntegral@zD  is  given  by  liHzL = Ÿ0
zd t ê log t  (for  z > 1),  where

the  principal  value  of  the  integral  is  taken.  liHzL  is  central  to  the  study  of  the  distribution  of

primes in number theory. The logarithmic integral function is sometimes also denoted by LiHzL.

In some number theoretic applications, liHzL is defined as Ÿ2
zd t ê log t, with no principal value taken.

This differs from the definition used in Mathematica by the constant liH2L.

The  sine  and  cosine  integral  functions  SinIntegral@zD  and  CosIntegral@zD  are  defined  by

SiHzL = Ÿ0
zsinHtL ê t „ t  and  CiHzL = -Ÿz

¶cosHtL ê t „ t.  The  hyperbolic  sine  and  cosine  integral  functions

SinhIntegral@zD  and  CoshIntegral@zD  are  defined  by  ShiHzL = Ÿ0
zsinhHtL ê t „ t  and

ChiHzL = g + logHzL + Ÿ0
z
HcoshHtL - 1L ê t „ t.

Mathematics and Algorithms     437



Error Function and Related Functions

Erf@zD error function erfHzL
Erf@z0,z1D generalized error function erfHz1L - erfHz0L

Erfc@zD complementary error function erfcHzL
Erfi@zD imaginary error function erfiHzL
FresnelC@zD Fresnel integral C HzL

FresnelS@zD Fresnel integral SHzL

InverseErf@sD inverse error function

InverseErfc@sD inverse complementary error function

Error function and related functions. 

The  error  function  Erf@zD  is  the  integral  of  the  Gaussian  distribution,  given  by

erfHzL = 2ë p Ÿ0
ze-t2 d t.  The  complementary  error  function  Erfc@zD  is  given  simply  by

erfcHzL = 1 - erfHzL. The imaginary error function Erfi@zD is given by erfiHzL = erfHizL ê i. The generalized

error function Erf@z0, z1D is defined by the integral 2ë p Ÿz0
z1e-t2 d t. The error function is central

to many calculations in statistics.

The  inverse  error  function  InverseErf@sD  is  defined  as  the  solution  for  z  in  the  equation

s = erfHzL.  The  inverse  error  function  appears  in  computing  confidence  intervals  in  statistics  as

well as in some algorithms for generating Gaussian random numbers.

Closely  related  to  the  error  function  are  the  Fresnel  integrals  FresnelC@zD  defined  by

CHzL = Ÿ0
zcosIp t2 ë2M d t  and  FresnelS@zD  defined  by  SHzL = Ÿ0

zsinIp t2 ë2M d t.  Fresnel  integrals  occur  in

diffraction theory.

Bessel and Related Functions

AiryAi@zD and AiryBi@zD Airy functions AiHzL and BiHzL
AiryAiPrime@zD and AiryBiPrime@zD

derivatives of Airy functions Ai£HzL and Bi£HzL

BesselJ@n,zD and BesselY@n,zD

438     Mathematics and Algorithms

Bessel functions JnHzL and YnHzL



BesselI@n,zD and BesselK@n,zD

modified Bessel functions In HzL and Kn HzL

KelvinBer@n,zD  and KelvinBei@n,zD

Kelvin functions bernHzL and beinHzL

KelvinKer@n,zD  and KelvinKei@n,zD

Kelvin functions kernHzL and keinHzL

HankelH1@n,zD  and HankelH2@n,zD

Hankel functions Hn
H1LHzL and Hn

H2LHzL

SphericalBesselJ@n,zD  and SphericalBesselY@n,zD

spherical Bessel functions jnHzL and ynHzL

SphericalHankelH1@n,zD  and SphericalHankelH2@n,zD

spherical Hankel functions hnH1LHzL and hnH2LHzL

StruveH@n,zD and StruveL@n,zD

Struve function HnHzL and modified Struve function LnHzL

Bessel and related functions. 

The Bessel functions BesselJ@n, zD and BesselY@n, zD are linearly independent solutions to the

differential equation z2 y££ + z y£ + Iz2 - n2M y = 0. For integer n, the JnHzL are regular at z = 0, while the

YnHzL have a logarithmic divergence at z = 0.

Bessel functions arise in solving differential equations for systems with cylindrical symmetry.

JnHzL  is  often  called  the  Bessel  function  of  the  first  kind,  or  simply  the  Bessel  function.  YnHzL  is

referred  to  as  the  Bessel  function  of  the  second  kind,  the  Weber  function,  or  the  Neumann

function (denoted NnHzL).

The Hankel functions (or Bessel functions of the third kind) HankelH1@n, zD and HankelH2@n, zD

give  an  alternative  pair  of  solutions  to  the  Bessel  differential  equation,  related  according  to

Hn
H1,2LHzL = JnHzL ± iYnHzL.

The  spherical  Bessel  functions  SphericalBesselJ@n, zD  and  SphericalBesselY@n, zD,  as  well

as  the  spherical  Hankel  functions  SphericalHankelH1@n, zD  and  SphericalHankelH2@n, zD,

arise in studying wave phenomena with spherical symmetry. These are related to the ordinary 

fnHzL = p ê2 ì z F
n+

1

2

HzL,  where f  and F  can be j  and J,  y  and Y,  or hi  and H i.  For

integer n, spherical Bessel functions can be expanded in terms of elementary functions by using

FunctionExpand. 

Mathematics and Algorithms     439



The  spherical  Bessel  functions  SphericalBesselJ@n, zD  and  SphericalBesselY@n, zD,  as  well

as  the  spherical  Hankel  functions  SphericalHankelH1@n, zD  and  SphericalHankelH2@n, zD,

functions by fnHzL = p ê2 ì z F
n+

1

2

HzL,  where f  and F  can be j  and J,  y  and Y,  or hi  and H i.  For

integer n, spherical Bessel functions can be expanded in terms of elementary functions by using

FunctionExpand. 

The modified Bessel functions BesselI@n, zD and BesselK@n, zD are solutions to the differential

equation z2 y££ + z y£ - Iz2 + n2M y = 0. For integer n, InHzL is regular at z = 0; KnHzL always has a logarith-

mic divergence at z = 0. The InHzL are sometimes known as hyperbolic Bessel functions.

Particularly  in  electrical  engineering,  one  often  defines  the  Kelvin  functions  KelvinBer@n, zD,

KelvinBei@n, zD,  KelvinKer@n, zD  and  KelvinKei@n, zD.  These  are  related  to  the  ordinary

Bessel functions by bernHzL + i beinHzL = en p i JnIz e-p iê4M, kernHzL + i keinHzL = e-n p iê2 KnIz ep iê4M.

The Airy functions AiryAi@zD and AiryBi@zD are the two independent solutions AiHzL and BiHzL to

the differential  equation y££ - z y = 0.  AiHzL  tends to zero for  large positive z,  while  BiHzL  increases

unboundedly. The Airy functions are related to modified Bessel functions with one-third-integer

orders. The Airy functions often appear as the solutions to boundary value problems in electro-

magnetic  theory and quantum mechanics.  In many cases the derivatives of  the Airy  functions

AiryAiPrime@zD and AiryBiPrime@zD also appear.

The Struve function StruveH@n, zD appears in the solution of the inhomogeneous Bessel equa-

tion which for integer n  has the form z2 y££ + z y£ + Iz2 - n2M y = 2
p

zn+1

H2 n-1L!!
; the general solution to this

equation  consists  of  a  linear  combination  of  Bessel  functions  with  the  Struve  function  HnHzL

added.  The  modified  Struve  function  StruveL@n, zD  is  given  in  terms  of  the  ordinary  Struve

function by LnHzL = -i e-i n pê2 HnHzL. Struve functions appear particularly in electromagnetic theory.

Here is a plot of J0I x M. This is a curve that an idealized chain hanging from one end can form 
when you wiggle it. 

In[16]:= Plot@BesselJ@0, Sqrt@xDD, 8x, 0, 50<D

Out[16]=

440     Mathematics and Algorithms

The  spherical  Bessel  functions  SphericalBesselJ@n, zD  and  SphericalBesselY@n, zD,  as  well

as  the  spherical  Hankel  functions  SphericalHankelH1@n, zD  and  SphericalHankelH2@n, zD

10 20 30 40 50

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0



Mathematica generates explicit formulas for half-integer-order Bessel functions. 

In[2]:= BesselK@3 ê 2, xD

Out[2]= 

‰-x p

2
J1 +

1

x
N

x

The Airy function plotted here gives the quantum-mechanical amplitude for a particle in a 
potential that increases linearly from left to right. The amplitude is exponentially damped in the 
classically inaccessible region on the right. 

In[17]:= Plot@AiryAi@xD, 8x, -10, 10<D

Out[17]=

BesselJZero@n,kD the kth zero of the Bessel function JnHzL

BesselJZero@n,k,x0D the kth zero greater than x0

BesselYZero@n,kD the kth zero of the Bessel function YnHzL

BesselYZero@n,k,x0D the kth zero greater than x0

AiryAiZero@kD the kth zero of the Airy function Ai HzL

AiryAiZero@k,x0D the kth zero less than x0

AiryBiZero@kD the kth zero of the Airy function Bi HzL

AiryBiZero@k,x0D the kth zero less than x0

Zeros of Bessel and Airy functions. 

BesselJZero@1, 5D represents the fifth zero of J1 HzL. 

In[18]:= BesselJ@1, BesselJZero@1, 5DD

Out[18]= 0

This gives its numerical value. 

In[19]:= N@BesselJZero@1, 5DD

Out[19]= 16.4706

Legendre and Related Functions

Mathematics and Algorithms     441

Legendre and Related Functions

-10 -5 5 10

-0.4

-0.2

0.2

0.4



Spheroidal Functions

SpheroidalS1@n,m,g,zD  and SpheroidalS2@n,m,g,zD

radial spheroidal functions Sn,mH1L Hg, zL and Sn,mH2L Hg, zL

SpheroidalS1Prime@n,m,g,zD  and SpheroidalS2Prime@n,m,g,zD

z derivatives of radial spheroidal functions

SpheroidalPS@n,m,g,zD  and SpheroidalQS@n,m,g,zD

angular spheroidal functions PSn,mHg, zL and QSn,mHg, zL

SpheroidalPSPrime@n,m,g,zD  and SpheroidalQSPrime@n,m,g,zD

z derivatives of angular spheroidal functions

SpheroidalEigenvalue@n,m,gD spheroidal eigenvalue of degree n and order m

Spheroidal functions.

The  radial  spheroidal  functions  SpheroidalS1@n, m, g, zD  and  SpheroidalS2@n, m, g, zD  and

angular  spheroidal  functions  SpheroidalPS@n, m, g, zD  and  SpheroidalQS@n, m, g, zD  appear

in solutions to the wave equation in spheroidal regions. Both types of functions are solutions to

the  equation  I1 - z2M y″ - 2 zy£ + Jl + g2I1 - z2M - m2

1-z2
N yã 0.  This  equation  has  normalizable  solutions

only  when  l  is  a  spheroidal  eigenvalue  given  by  SpheroidalEigenvalue@n, m, gD.  The

spheroidal functions also appear as eigenfunctions of finite analogs of Fourier transforms.

SpheroidalS1  and  SpheroidalS2  are  effectively  spheroidal  analogs  of  the  spherical  Bessel

functions  jnHzL  and  ynHzL,  while  SpheroidalPS  and  SpheroidalQS  are  effectively  spheroidal

analogs  of  the  Legendre  functions  PnmHzL  and  Qn
mHzL.  g2 > 0  corresponds  to  a  prolate  spheroidal

geometry, while g2 < 0 corresponds to an oblate spheroidal geometry.

function g z range name

PSn,mHg, hL QSn,mHg, hL g h -1 § h § 1 angular prolate

Sn,mH1L Hg, zL Sn,mH2L Hg, zL g z z ¥ 1 radial prolate

PSn,mH-Â g, hL QSn,mH-Â g, hL -Â g h -1 § h § 1 angular oblate

Sn,mH1L H-Â g, zL Sn,mH2L H-Â g, zL -Â g Â z z ¥ 0 radial oblate

Many  different  normalizations  for  spheroidal  functions  are  used  in  the  literature.  Mathematica

uses the Meixner|Schäfke normalization scheme.

442     Mathematics and Algorithms



Angular spheroidal functions can be viewed as deformations of Legendre functions.

In[1]:= Series@SpheroidalPS@n, 0, g, hD, 8g, 0, 3<D

Out[1]= LegendreP@n, hD + -
H-1 + nL n LegendreP@-2 + n, hD

2 H-1 + 2 nL2 H1 + 2 nL
+

H1 + nL H2 + nL LegendreP@2 + n, hD

2 H1 + 2 nL H3 + 2 nL2
g2 + O@gD3

This plots angular spheroidal functions for various spheroidicity parameters.

In[2]:= Plot@8SpheroidalPS@3, 0, 0, hD,
SpheroidalPS@3, 0, 3, hD, SpheroidalPS@3, 0, 5, hD<, 8h, -1, 1<D

Out[2]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Angular spheroidal functions PSn,0 Hg, hL for integers n ¥ 0 are eigenfunctions of a band-limited 
Fourier transform.

In[3]:= Integrate@SpheroidalPS@3, 0, g, hD Exp@Â w g hD, 8h, -1, 1<D

Out[3]= -2 Â SpheroidalPS@3, 0, g, wD SpheroidalS1@3, 0, g, 1D

The Mathieu functions are a special case of spheroidal functions.

An angular spheroidal function with m =
1
2
 gives Mathieu angular functions.

In[4]:= SpheroidalPS@1 ê 2, 1 ê 2, c, zD

Out[4]= MathieuCBMathieuCharacteristicAB1,
c2

4
F,

c2

4
, ArcCos@zDFì K p I1 - z2M

1ë4
O

Legendre and Related Functions

LegendreP@n,zD Legendre functions of the first kind PnHzL

LegendreP@n,m,zD associated Legendre functions of the first kind PnmHzL

LegendreQ@n,zD Legendre functions of the second kind QnHzL

LegendreQ@n,m,zD associated Legendre functions of the second kind Qn
mHzL

Legendre and related functions. 

The  Legendre  functions  and  associated  Legendre  functions  satisfy  the  differential  equation

I1 - z2M y££ - 2 z y£ + An Hn + 1L -m2 ëI1 - z2ME y = 0.  The  Legendre  functions  of  the  first  kind,

LegendreP@n, zD  and  LegendreP@n, m, zD,  reduce  to  Legendre  polynomials  when  n  and  m  are

integers.  The Legendre functions  of  the  second kind  LegendreQ@n, zD  and LegendreQ@n, m, zD

give  the  second  linearly  independent  solution  to  the  differential  equation.  For  integer  m  they

have  logarithmic  singularities  at  z = ±1.  The  PnHzL  and  QnHzL  solve  the  differential  equation  with

m = 0. 

Mathematics and Algorithms     443



The  Legendre  functions  and  associated  Legendre  functions  satisfy  the  differential  equation

I1 - z2M y££ - 2 z y£ + An Hn + 1L -m2 ëI1 - z2ME y = 0.  The  Legendre  functions  of  the  first  kind,

LegendreP@n, zD  and  LegendreP@n, m, zD,  reduce  to  Legendre  polynomials  when  n  and  m  are

integers.  The Legendre functions  of  the  second kind  LegendreQ@n, zD  and LegendreQ@n, m, zD

give  the  second  linearly  independent  solution  to  the  differential  equation.  For  integer  m  they

have  logarithmic  singularities  at  z = ±1.  The  PnHzL  and  QnHzL  solve  the  differential  equation  with

m = 0. 

Legendre functions arise in studies of quantum-mechanical scattering processes. 

LegendreP@n,m,zD  or LegendreP@n,m,1,zD

type 1 function containing I1 - z2Mmê2

LegendreP@n,m,2,zD type 2 function containing H1 + zLmê2 ëH1 - zLmê2

LegendreP@n,m,3,zD type 3 function containing H1 + zLmê2 ëH-1 + zLmê2

Types of Legendre functions. Analogous types exist for LegendreQ. 

Legendre functions of  type 1  and Legendre functions of  type 2  have different  symbolic  forms,

but the same numerical values. They have branch cuts from -¶ to -1 and from +1 to +¶. Legen-

dre functions of type 3, sometimes denoted n
mHzL and n

mHzL, have a single branch cut from -¶ to

+1. 

Toroidal  functions  or  ring  functions,  which  arise  in  studying  systems  with  toroidal  symmetry,

can be expressed in terms of the Legendre functions P
n-

1

2

m
HcoshhL and Q

n-
1

2

m
HcoshhL.

Conical functions can be expressed in terms of P
-
1

2
+i p

m
HcosqL and Q

-
1

2
+i p

m
HcosqL.

When you use the function LegendreP@n, xD with an integer n, you get a Legendre polynomial.

If you take n to be an arbitrary complex number, you get, in general, a Legendre function. 

In  the  same  way,  you  can  use  the  functions  GegenbauerC  and  so  on  with  arbitrary  complex

indices  to  get  Gegenbauer  functions,  Chebyshev functions,  Hermite  functions,  Jacobi  functions

and Laguerre functions. Unlike for associated Legendre functions, however, there is no need to

distinguish different types in such cases.

444     Mathematics and Algorithms



Hypergeometric Functions and Generalizations

Hypergeometric0F1@a,zD hypergeometric function 0 F1H; a; zL

Hypergeometric0F1Regularized@a,zD

regularized hypergeometric function 0 F1H; a; zL êGHaL

Hypergeometric1F1@a,b,zD Kummer confluent hypergeometric function 1 F1Ha; b; zL
Hypergeometric1F1Regularized@a,b,zD

regularized confluent hypergeometric function 
1 F1Ha; b; zL êGHbL

HypergeometricU@a,b,zD confluent hypergeometric function UHa, b, zL
WhittakerM@k,m,zD  and WhittakerW@k,m,zD

Whittaker functions Mk,mHzL and Wk,mHzL

ParabolicCylinderD@n,zD parabolic cylinder function DnHzL

Confluent hypergeometric functions and related functions. 

Many of the special functions that we have discussed so far can be viewed as special cases of

the confluent hypergeometric function Hypergeometric1F1@a, b, zD.

The  confluent  hypergeometric  function  can  be  obtained  from  the  series  expansion

1 F1Ha; b; zL = 1 + az êb + a Ha + 1L êb Hb + 1L z2 ë2 ! + =⁄k=0
¶ HaLk ê HbLk zk ëk ! .  Some  special  results  are

obtained  when  a  and  b  are  both  integers.  If  a < 0,  and  either  b > 0  or  b < a,  the  series  yields  a

polynomial with a finite number of terms. 

If  b  is zero or a negative integer, then 1 F1Ha; b; zL  itself  is infinite. But the regularized confluent

hypergeometric  function  Hypergeometric1F1Regularized@a, b, zD  given  by  1 F1Ha; b; zL êGHbL  has

a finite value in all cases. 

Among  the  functions  that  can  be  obtained  from  1 F1  are  the  Bessel  functions,  error  function,

incomplete gamma function, and Hermite and Laguerre polynomials. 

The  function  1 F1Ha; b; zL  is  sometimes  denoted  FHa; b; zL  or  MHa, b, zL.  It  is  often  known  as  the

Kummer function.

The  1 F1  function  can  be  written  in  the  integral  representation

1 F1Ha; b; zL = GHbL ê @GHb - aL GHaLD Ÿ0
1ezt ta-1 H1 - tLb-a-1 d t. 

The  1 F1  confluent  hypergeometric  function  is  a  solution  to  Kummer’s  differential  equation

z y££ + Hb - zL y£ - a y = 0, with the boundary conditions 1 F1Ha; b; 0L = 1 and ∂ @1 F1Ha; b; zLD ê∂z z=0 = a êb. 

Mathematics and Algorithms     445



The  1 F1  confluent  hypergeometric  function  is  a  solution  to  Kummer’s  differential  equation

z y££ + Hb - zL y£ - a y = 0, with the boundary conditions 1 F1Ha; b; 0L = 1 and ∂ @1 F1Ha; b; zLD ê∂z z=0 = a êb. 

The  function  HypergeometricU@a, b, zD  gives  a  second  linearly  independent  solution  to  Kum-

mer's equation. For Re b > 1 this function behaves like z1-b  for small z. It has a branch cut along

the negative real axis in the complex z plane.

The function UHa, b, zL has the integral representation UHa, b, zL = 1 êGHaL Ÿ0
¶e-z t ta-1 H1 + tLb-a-1 d t. 

UHa, b, zL, like 1 F1Ha; b; zL, is sometimes known as the Kummer function. The U  function is some-

times denoted by Y. 

The Whittaker functions WhittakerM@k, m, zD and WhittakerW@k, m, zD give a pair of solutions

to the normalized Kummer differential equation, known as Whittaker's differential equation. The

Whittaker  function  Mk, m  is  related  to  1 F1  by  Mk, mHzL = e-zê2 z1ê2+m 1 F1J
1
2
+ m - k; 1 + 2 m; zN.  The  second

Whittaker function Wk, m obeys the same relation, with 1 F1 replaced by U.

The  parabolic  cylinder  functions  ParabolicCylinderD@n, zD  are  related  to  the  Hermite  func-

tions by DnHzL = 2-nê2 e-Hzê2L2 ä HnJzí 2 N.

The  Coulomb  wave  functions  are  also  special  cases  of  the  confluent  hypergeometric  function.

Coulomb  wave  functions  give  solutions  to  the  radial  Schrödinger  equation  in  the  Coulomb

potential  of  a  point  nucleus.  The  regular  Coulomb  wave  function  is  given  by

FLHh, rL = CLHhL rL+1 e-i r 1 F1HL + 1 - i h; 2 L + 2; 2 i rL, where CLHhL = 2L e-phê2 GHL + 1 + i hL êGH2 L + 2L.

Other  special  cases  of  the  confluent  hypergeometric  function  include  the  Toronto  functions

THm, n, rL,  Poisson|Charlier  polynomials  rnHn, xL,  Cunningham functions  wn,mHxL  and Bateman func-

tions knHxL. 

A  limiting  form  of  the  confluent  hypergeometric  function  which  often  appears  is

Hypergeometric0F1@a, zD. This function is obtained as the limit 0 F1H; a; zL = limqØ¶ 1 F1Hq; a; z êqL. 

The 0 F1  function has the series expansion 0 F1H; a; zL =⁄k=0
¶ 1 ê HaLk zk ëk ! and satisfies the differential

equation z y££ + a y£ - y = 0. 

Bessel functions of the first kind can be expressed in terms of the 0 F1 function. 

446     Mathematics and Algorithms



Hypergeometric2F1@a,b,c,zD hypergeometric function 2 F1Ha, b; c; zL
Hypergeometric2F1Regularized@a,b,c,zD

regularized hypergeometric function 2 F1Ha, b; c; zL êGHcL

HypergeometricPFQA9a1,…,ap=,9b1,…,bq=,zE

generalized hypergeometric function p FqHa; b; zL

HypergeometricPFQRegularizedA9a1,…,ap=,9b1,…,bq=,zE

regularized generalized hypergeometric function

MeijerGA98a1,…,an<,9an+1,…,ap==,98b1,…,bm<,9bm+1,…,bq==,zE

Meijer G function

AppellF1@a,b1,b2,c,x,yD Appell hypergeometric function of two variables 
F1Ha; b1, b2; c; x, yL

Hypergeometric functions and generalizations. 

The  hypergeometric  function  Hypergeometric2F1@a, b, c, zD  has  series  expansion

2 F1Ha, b; c; zL =⁄k=0
¶ HaLk HbLk ê HcLk zk ëk ! .  The  function  is  a  solution  of  the  hypergeometric  differential

equation zH1 - zL y££ + @c - Ha + b + 1L zD y£ - a b y = 0.

The hypergeometric function can also be written as an integral: 2 F1Ha, b; c; zL = GHcL ê @GHbL GHc - bLD µ

Ÿ0
1tb-1 H1 - tLc-b-1 H1 - t zL-a d t. 

The hypergeometric function is also sometimes denoted by F, and is known as the Gauss series

or the Kummer series.

The Legendre functions, and the functions which give generalizations of other orthogonal polyno-

mials, can be expressed in terms of the hypergeometric function. Complete elliptic integrals can

also be expressed in terms of the 2 F1 function.

The Riemann P function, which gives solutions to Riemann's differential equation, is also a 2 F1
function.

Mathematics and Algorithms     447



The  generalized  hypergeometric  function  or  Barnes  extended  hypergeometric

function  HypergeometricPFQ@8a1, …, ap<, 8b1, …, bq<, zD  has  series  expansion

p FqHa; b; zL =‚
k=0

¶
Ha1Lk ... HapLk
Hb1Lk ... HbqLk

zk

k!
. 

The  Meijer  G  function  MeijerGA98a1, …, an<, 9an + 1, …, ap==, 88b1, …, bm<, 8bm + 1, … ,   

bq<<, zD  is  defined  by  the  contour  integral  representation

Gp q
m n z

a1, …, ap
b1, …, bq

= 1
2 p i Ÿ GH1 - a1 - sL …GH1 - an - sL µGHb1 + sL …GHbm + sLë IGHan+1 + sL …GIap + sM

GH1 - bm+1 - sL …GI1 - bq - sMM z-s ds,  where  the  contour  of  integration  is  set  up  to  lie  between  the

poles  of  GH1 - ai - sL  and the poles  of  GHbi + sL.  MeijerG  is  a  very general  function whose special

cases cover most of the functions discussed in the past few sections. 

The  Appell  hypergeometric  function  of  two  variables  AppellF1@a, b1, b2, c, x, yD  has  series

expansion  F1 Ha; b1, b2; c; x, yL =⁄m=0
¶ ⁄n=0

¶ HaLm+n Hb1Lm Hb2Ln ê Hm ! n ! HcLm+nL xm yn.  This  function  appears  for

example in integrating cubic polynomials to arbitrary powers.

The Product Log Function

ProductLog@zD product log function WHzL

The product log function.

The  product  log  function  gives  the  solution  for  w  in  z = w ew.  The  function  can  be  viewed  as  a

generalization of a logarithm. It can be used to represent solutions to a variety of transcenden-

tal equations. The tree generating function for counting distinct oriented trees is related to the

product log by THzL = -WH-zL.

448     Mathematics and Algorithms



Elliptic Integrals and Elliptic Functions

Even more so than for other special functions, you need to be very careful about the arguments

you give to elliptic integrals and elliptic functions. There are several incompatible conventions in

common use, and often these conventions are distinguished only by the specific names given to

arguments or by the presence of separators other than commas between arguments. 

† Amplitude f (used by Mathematica, in radians)
† Argument u (used by Mathematica): related to amplitude by f = amHuL

† Delta amplitude DHfL: DHfL = 1 -m sin2HfL
† Coordinate x: x = sinHfL
† Characteristic n (used by Mathematica in elliptic integrals of the third kind)
† Parameter m (used by Mathematica): preceded by », as in IHf mL
† Complementary parameter m1: m1 = 1 -m
† Modulus k: preceded by comma, as in IHf, kL; m = k2 
† Modular angle a: preceded by \ , as in IHf \aL; m = sin2HaL 
† Nome q: preceded by comma in q functions; q = exp@-pKH1 -mL êK 8mLD = expHi p w£ êwL 
† Invariants g2, g3 (used by Mathematica) 

† Half-periods w, w£: g2 = 60 ⁄r, s
£ w-4, g3 = 140 ⁄r, s

£ w-6, where w = 2 rw + 2 sw£ 

† Ratio of periods t: t = w£ êw 

† Discriminant D: D = g2
3 - 27 g32 

† Parameters of curve a, b (used by Mathematica) 
† Coordinate y (used by Mathematica): related by y2 = x3 + a x2 + b x 

Common argument conventions for elliptic integrals and elliptic functions. 

JacobiAmplitude@u,mD give the amplitude f corresponding to argument u and 
parameter m

EllipticNomeQ@mD give the nome q corresponding to parameter m

InverseEllipticNomeQ@qD give the parameter m corresponding to nome q

WeierstrassInvariants@8w,w£<D

give the invariants 8g2, g3< corresponding to the half-
periods 8w, w£<

WeierstrassHalfPeriods@8g2,g3<D

give the half-periods 8w, w£< corresponding to the invari-
ants 8g2, g3<

Converting between different argument conventions. 

Elliptic Integrals

Mathematics and Algorithms     449



Elliptic Integrals

EllipticK@mD complete elliptic integral of the first kind K HmL

EllipticF@f,mD elliptic integral of the first kind FHf mL

EllipticE@mD complete elliptic integral of the second kind E HmL

EllipticE@f,mD elliptic integral of the second kind E Hf mL

EllipticPi@n,mD complete elliptic integral of the third kind P Hn mL

EllipticPi@n,f,mD elliptic integral of the third kind P Hn; f mL

JacobiZeta@f,mD Jacobi zeta function Z Hf mL

Elliptic integrals. 

Integrals of the form Ÿ RHx, yL „ x, where R is a rational function, and y2 is a cubic or quartic polyno -

mial in x, are known as elliptic integrals. Any elliptic integral can be expressed in terms of the

three standard kinds of Legendre-Jacobi elliptic integrals. 

The  elliptic  integral  of  the  first  kind  EllipticF@f, mD  is  given  for  -p ê2 < f < p ê2  by

FHf mL = Ÿ0
f
A1 -m sin2HqLE

-1ê2
„q= Ÿ0

sin HfL
AI1 - t2M I1 -m t2ME-1ê2 „ t.  This  elliptic  integral  arises  in  solving

the equations of motion for a simple pendulum. It is sometimes known as an incomplete elliptic

integral of the first kind.

Note that the arguments of the elliptic integrals are sometimes given in the opposite order from

what is used in Mathematica. 

The complete elliptic integral of the first kind EllipticK@mD is given by KHmL = F I
p

2
mM. Note that

K  is used to denote the complete elliptic integral of the first kind, while F is used for its incom-

plete  form. In  many applications,  the parameter  m  is  not  given explicitly,  and KHmL  is  denoted

simply  by  K.  The  complementary  complete  elliptic  integral  of  the  first  kind  K£HmL  is  given  by

KH1 -mL. It is often denoted K£. K  and i K£  give the "real" and "imaginary" quarter-periods of the

corresponding Jacobi elliptic functions discussed in "Elliptic Functions". 

The  elliptic  integral  of  the  second  kind  EllipticE@f, mD  is  given  for  -p ê2 < f < p ê2  by

EHf mL = Ÿ0
f
A1 -m sin2HqLE

1ê2
„q= Ÿ0

sin HfL
I1 - t2M-1ê2 I1 -m t2M1ê2 „ t.

The complete elliptic  integral  of  the second kind  EllipticE@mD  is  given by EHmL = E I
p

2
mM.  It  is

often denoted E. The complementary form is E£HmL = EH1 -mL. 

The Jacobi zeta function JacobiZeta@f, mD is given by ZHf mL = EHf mL - EHmL FHf mL êKHmL. 

450     Mathematics and Algorithms



The Jacobi zeta function JacobiZeta@f, mD is given by ZHf mL = EHf mL - EHmL FHf mL êKHmL. 

The Heuman lambda function is given by L0Hf mL = FHf 1 -mL êKH1 -mL + 2
p
KHmL ZHf 1 -mL.

The  elliptic  integral  of  the  third  kind  EllipticPi@n, f, mD  is  given  by

PHn; f mL = Ÿ0
f
I1 - n sin2HqLM

-1
A1 -m sin2HqLE

-1ê2
„q.

The complete elliptic integral of the third kind EllipticPi@n, mD is given by PHn mL = PIn; p

2
mM. 

Here is a plot of the complete elliptic integral of the second kind EHmL. 

In[1]:= Plot@EllipticE@mD, 8m, 0, 1<D

Out[1]=

0.2 0.4 0.6 0.8 1.0

1.1

1.2

1.3

1.4

1.5

Here is KHaL with a = 30È. 
In[2]:= EllipticK@Sin@30 DegreeD^2D êê N

Out[2]= 1.68575

The elliptic integrals have a complicated structure in the complex plane. 

In[1]:= Plot3D@Im@EllipticF@px + I py, 2DD, 8px, 0.5, 2.5<, 8py, -1, 1<, PlotPoints -> 60D

Out[1]=

Mathematics and Algorithms     451



Elliptic Functions

JacobiAmplitude@u,mD amplitude function amHu mL

JacobiSN@u,mD , JacobiCN@u,mD , etc.

Jacobi elliptic functions snHu mL, etc.

InverseJacobiSN@v,mD , InverseJacobiCN@v,mD , etc.

inverse Jacobi elliptic functions sn-1Hv mL, etc.

EllipticTheta@a,u,qD theta functions JaHu, qL (a = 1, …, 4)

EllipticThetaPrime@a,u,qD derivatives of theta functions Ja
£ Hu, qL (a = 1, …, 4)

SiegelTheta@t,sD Siegel theta function QHt, sL
SiegelTheta@v,t,sD Siegel theta function Q@vD Ht, sL
WeierstrassP@u,8g2,g3<D Weierstrass elliptic function ƒHu; g2, g3L

WeierstrassPPrime@u,8g2,g3<D

derivative of Weierstrass elliptic function ƒ£Hu; g2, g3L

InverseWeierstrassP@p,8g2,g3<D

inverse Weierstrass elliptic function

WeierstrassSigma@u,8g2,g3<D Weierstrass sigma function sHu; g2, g3L

WeierstrassZeta@u,8g2,g3<D Weierstrass zeta function zHu; g2, g3L

Elliptic and related functions. 

Rational  functions  involving  square  roots  of  quadratic  forms  can  be  integrated  in  terms  of

inverse trigonometric functions. The trigonometric functions can thus be defined as inverses of

the functions obtained from these integrals. 

By  analogy,  elliptic  functions  are  defined  as  inverses  of  the  functions  obtained  from  elliptic

integrals. 

The amplitude  for Jacobi elliptic functions JacobiAmplitude@u, mD  is  the inverse of the elliptic

integral of the first kind. If u = FHf mL, then f = amHu mL. In working with Jacobi elliptic functions,

the argument m is often dropped, so amHu mL is written as amHuL.

The  Jacobi  elliptic  functions  JacobiSN@u, mD  and  JacobiCN@u, mD  are  given  respectively  by

snHuL = sinHfL  and  cnHuL = cosHfL,  where  f = amHu mL.  In  addition,  JacobiDN@u, mD  is  given  by

dnHuL = 1 -m sin2HfL = DHfL.

452   Mathematics and Algorithms



There  are  a  total  of  twelve  Jacobi  elliptic  functions  JacobiPQ@u, mD,  with  the  letters  P  and  Q

chosen  from  the  set  S,  C,  D  and  N.  Each  Jacobi  elliptic  function  JacobiPQ@u, mD  satisfies  the

relation pqHuL = pnHuL êqnHuL, where for these purposes nnHuL = 1. 

There  are  many  relations  between  the  Jacobi  elliptic  functions,  somewhat  analogous  to  those

between trigonometric functions. In limiting cases, in fact, the Jacobi elliptic functions reduce to

trigonometric  functions.  So,  for  example,  snHu 0L = sinHuL,  snHu 1L = tanhHuL,  cnHu 0L = cosHuL,

cnHu 1L = sechHuL, dnHu 0L = 1 and dnHu 1L = sechHuL. 

The notation PqHuL is often used for the integrals Ÿ0
upq2HtL „ t. These integrals can be expressed in

terms of the Jacobi zeta function defined in "Elliptic Integrals". 

One of the most important properties of elliptic functions is that they are doubly periodic in the

complex values of their arguments. Ordinary trigonometric functions are singly periodic, in the

sense  that  f Hz + swL = f HzL  for  any  integer  s.  The  elliptic  functions  are  doubly  periodic,  so  that

f Hz + rw + sw£L = f HzL for any pair of integers r and s. 

The Jacobi elliptic functions snHu mL, etc. are doubly periodic in the complex u plane. Their peri-

ods  include  w = 4KHmL  and  w£ = 4 iKH1 -mL,  where  K  is  the  complete  elliptic  integral  of  the  first

kind. 

The choice of p and q in the notation pqHu mL  for Jacobi elliptic functions can be understood in

terms of the values of the functions at the quarter periods K and i K£. 

This shows two complete periods in each direction of the absolute value of the Jacobi elliptic 

function snJu 1
3
N. 

In[3]:= ContourPlot@Abs@JacobiSN@ux + I uy, 1 ê 3DD,
8ux, 0, 4 EllipticK@1 ê 3D<, 8uy, 0, 4 EllipticK@2 ê 3D<D

Out[3]=

0 1 2 3 4 5 6 7
0

2

4

6

8

Mathematics and Algorithms     453



Also  built  into  Mathematica  are  the  inverse  Jacobi  elliptic  functions  InverseJacobiSN@v, mD,

InverseJacobiCN@v, mD,  etc.  The inverse  function  sn-1Hv mL,  for  example,  gives  the  value  of  u

for which v = snHu mL. The inverse Jacobi elliptic functions are related to elliptic integrals.

The  four  theta  functions  JaHu, qL  are  obtained  from  EllipticTheta@a, u, qD

by  taking  a  to  be  1,  2,  3  or  4.  The  functions  are

defined  by:  J1Hu, qL = 2 q1ê4⁄n=0
¶ H-1Ln qn Hn+1L sin @H2 n + 1L uD,  J2Hu, qL = 2 q1ê4⁄n=0

¶ qn Hn+1L cos @H2 n + 1L uD,

J3Hu, qL = 1 + 2 ⁄n=1
¶ qn2 cosH2 n uL,  J4Hu, qL = 1 + 2 ⁄n=1

¶ H-1Ln qn2 cosH2 n uL.  The  theta  functions  are  often

written  as  JaHuL  with  the  parameter  q  not  explicitly  given.  The  theta  functions  are  sometimes

written in  the form JHu mL,  where m  is  related to  q  by q = exp @-pKH1 -mL êKHmLD.  In  addition,  q  is

sometimes replaced by t, given by q = ei pt. All the theta functions satisfy a diffusion-like differen-

tial equation ∂2 JHu, tLë∂u2 = 4 p i ∂JHu, tL ê∂t. 

The Siegel theta function SiegelTheta@t, sD with Riemann square modular matrix t of dimen-

sion p and vector s generalizes the elliptic theta functions to complex dimension p. It is defined

by QHt, sL =⁄n expHÂ pHn.t.n + 2 n.sLL,  where n  runs over all  p-dimensional integer vectors. The Siegel

theta  function  with  characteristic  SiegelTheta@n, t, sD  is  defined  by

QHn, t, sL =⁄n expHÂ pHHn + aL.t.Hn + aL + 2 Hn + aL.Hs + bLLL, where the characteristic n is a pair of p-dimen-

sional vectors 8a, b<.

The Jacobi elliptic functions can be expressed as ratios of the theta functions. 

An  alternative  notation  for  theta  functions  is  QHu mL = J4Hv mL,  Q1Hu mL = J3Hv mL,  HHu mL = J1HvL,

H1Hu mL = J2HvL, where v = p u ê2KHmL. 

The Neville theta functions can be defined in terms of the theta functions as JsHuL = 2KHmL J1Hv mL ê

pJ1
£ H0 mL,  JcHuL = J2Hv mL êJ2H0 mL,  JdHuL = J3Hv mL êJ3H0 mL,  JnHuL = J4Hv mL êJ4H0 mL,  where  v = p u ê2KHmL.

The Jacobi elliptic functions can be represented as ratios of the Neville theta functions. 

The Weierstrass elliptic function WeierstrassP@u, 8g2, g3<D can be considered as the inverse of

an  elliptic  integral.  The  Weierstrass  function  ƒHu; g2, g3L  gives  the  value  of  x  for  which

u = Ÿ¶
x
I4 t3 - g2 t - g3M

-1ê2
„ t.  The  function  WeierstrassPPrime@u, 8g2, g3<D  is  given  by

ƒ£Hu; g2, g3L =
∂

∂u
ƒHu; g2, g3L. 

The Weierstrass functions are also sometimes written in terms of their fundamental half-periods

w and w£, obtained from the invariants g2 and g3 using WeierstrassHalfPeriods@8u, 8g2, g3<D. 

The  function  InverseWeierstrassP@p, 8g2, g3<D  finds  one  of  the  two  values  of  u  for  which

p = ƒHu; g2, g3L.  This value always lies in the parallelogram defined by the complex number half-

periods w and w£. 

454     Mathematics and Algorithms



The  function  InverseWeierstrassP@p, 8g2, g3<D  finds  one  of  the  two  values  of  u  for  which

p = ƒHu; g2, g3L.  This value always lies in the parallelogram defined by the complex number half-

periods w and w£. 

InverseWeierstrassP@8p, q<, 8g2, g3<D finds the unique value of u for which p = ƒHu; g2, g3L and

q = ƒ£Hu; g2, g3L.  In  order  for  any  such  value  of  u  to  exist,  p  and  q  must  be  related  by

q2 = 4 p3 - g2 p - g3. 

The  Weierstrass  zeta  function  WeierstrassZeta@u, 8g2, g3<D  and  Weierstrass  sigma  function

WeierstrassSigma@u, 8g2, g3<D  are  related  to  the  Weierstrass  elliptic  functions  by

z£Hz; g2, g3L = -ƒHz; g2, g3L and s£Hz; g2, g3L êsHz; g2, g3L = zHz; g2, g3L. 

The  Weierstrass  zeta  and  sigma  functions  are  not  strictly  elliptic  functions  since  they  are  not

periodic. 

Elliptic Modular Functions

DedekindEta@tD Dedekind eta function hHtL

KleinInvariantJ@tD Klein invariant modular function JHtL

ModularLambda@tD modular lambda function lHtL

Elliptic modular functions. 

The modular lambda function ModularLambda@tD relates the ratio of half-periods t = w£ êw to the

parameter according to m = lHtL. 

The  Klein  invariant  modular  function  KleinInvariantJ@tD  and  the  Dedekind  eta  function

DedekindEta@tD satisfy the relations D = g2
3 ëJHtL = H2 pL12 h24HtL. 

Modular elliptic functions are defined to be invariant under certain fractional linear transforma-

tions of their arguments. Thus for example lHtL is invariant under any combination of the trans-

formations t Ø t + 2 and t Ø t ê H1 - 2 tL. 

Mathematics and Algorithms     455



Generalized Elliptic Integrals and Functions

ArithmeticGeometricMean@a,bD the arithmetic-geometric mean of a and b

EllipticExp@u,8a,b<D generalized exponential associated with the elliptic curve 
y2 = x3 + a x2 + bx

EllipticLog@8x,y<,8a,b<D generalized logarithm associated with the elliptic curve 
y2 = x3 + a x2 + bx

Generalized elliptic integrals and functions. 

The  definitions  for  elliptic  integrals  and  functions  given  above  are  based  on  traditional  usage.

For modern algebraic geometry, it is convenient to use slightly more general definitions. 

The  function  EllipticLog@8x, y<, 8a, b<D  is  defined  as  the  value  of  the  integral
1
2 Ÿ¶

x
It3 + a t2 + b tM-1ê2 „ t, where the sign of the square root is specified by giving the value of y such

that  y = x3 + a x2 + b x .  Integrals  of  the  form  Ÿ¶
x
It2 + a tM-1ê2 „ t  can  be  expressed  in  terms  of  the

ordinary  logarithm  (and  inverse  trigonometric  functions).  You  can  think  of  EllipticLog  as

giving  a  generalization  of  this,  where  the  polynomial  under  the  square  root  is  now  of  degree

three. 

The  function  EllipticExp@u, 8a, b<D  is  the  inverse  of  EllipticLog.  It  returns  the  list  8x, y<

that  appears in  EllipticLog.  EllipticExp  is  an elliptic  function,  doubly periodic  in  the com-

plex u plane. 

ArithmeticGeometricMean@a, bD gives the arithmetic-geometric mean (AGM) of two numbers a

and b. This quantity is central to many numerical algorithms for computing elliptic integrals and

other functions. For positive reals a and b the AGM is obtained by starting with a0 = a, b0 = b, then

iterating the transformation an+1 =
1
2
Han + bnL, bn+1 = an bn  until an = bn to the precision required. 

456     Mathematics and Algorithms



Mathieu and Related Functions

MathieuC@a,q,zD even Mathieu functions with characteristic value a and 
parameter q

MathieuS@b,q,zD odd Mathieu functions with characteristic value b and 
parameter q

MathieuCPrime@a,q,zD
 and MathieuSPrime@b,q,zD

z derivatives of Mathieu functions

MathieuCharacteristicA@r,qD characteristic value ar for even Mathieu functions with 
characteristic exponent r and parameter q

MathieuCharacteristicB@r,qD characteristic value br for odd Mathieu functions with 
characteristic exponent r and parameter q

MathieuCharacteristicExpone-
nt

@

a,qD

characteristic exponent r for Mathieu functions with charac -
teristic value a and parameter q

Mathieu and related functions. 

The  Mathieu  functions  MathieuC@a, q, zD  and  MathieuS@a, q, zD  are  solutions  to  the  equation

y££ + @a - 2 q cos H2 zLD y = 0.  This equation appears in many physical  situations that involve elliptical

shapes or periodic potentials. The function MathieuC  is defined to be even in z, while MathieuS

is odd.

When q = 0 the Mathieu functions are simply cos I a zM and sin I a zM. For nonzero q, the Mathieu

functions  are  only  periodic  in  z  for  certain  values  of  a.  Such  Mathieu  characteristic  values  are

given by MathieuCharacteristicA@r, qD and MathieuCharacteristicB@r, qD with r an integer

or rational number. These values are often denoted by ar and br. 

For integer r, the even and odd Mathieu functions with characteristic values ar  and br  are often

denoted c er Hz, qL and s er Hz, qL, respectively. Note the reversed order of the arguments z and q. 

According to Floquet’s theorem any Mathieu function can be written in the form ei r z f HzL, where

f HzL  has  period  2 p  and  r  is  the  Mathieu  characteristic  exponent

MathieuCharacteristicExponent@a, qD.  When  the  characteristic  exponent  r  is  an  integer  or

rational number, the Mathieu function is therefore periodic. In general, however, when r is not a

real integer, ar and br turn out to be equal. 

Mathematics and Algorithms     457



This shows the first five characteristic values ar as functions of q. 

In[1]:= Plot@Evaluate@Table@MathieuCharacteristicA@r, qD, 8r, 0, 4<DD, 8q, 0, 15<D

Out[1]=
2 4 6 8 10 12 14

-20

-10

10

20

Working with Special Functions

automatic evaluation exact results for specific arguments

N@expr,nD numerical approximations to any precision

D@expr,xD exact results for derivatives

N@D@expr,xDD numerical approximations to derivatives

Series@expr,8x,x0,n<D series expansions

Integrate@expr,xD exact results for integrals

NIntegrate@expr,xD numerical approximations to integrals

FindRoot@expr==0,8x,x0<D numerical approximations to roots

Some common operations on special functions. 

Most special functions have simpler forms when given certain specific arguments. Mathematica

will automatically simplify special functions in such cases. 

Mathematica automatically writes this in terms of standard mathematical constants. 

In[1]:= PolyLog@2, 1 ê 2D

Out[1]=
p2

12
-
Log@2D2

2

Here again Mathematica reduces a special case of the Airy function to an expression involving 
gamma functions. 

In[2]:= AiryAi@0D

Out[2]=
1

32ë3 GammaB 2

3
F

For  most  choices  of  arguments,  no  exact  reductions  of  special  functions  are  possible.  But  in

such  cases,  Mathematica  allows  you  to  find  numerical  approximations  to  any  degree  of  preci-

sion. The algorithms that are built into Mathematica cover essentially all values of parameters~

real and complex~for which the special functions are defined. 

458     Mathematics and Algorithms



For  most  choices  of  arguments,  no  exact  reductions  of  special  functions  are  possible.  But  in

such  cases,  Mathematica  allows  you  to  find  numerical  approximations  to  any  degree  of  preci-

sion. The algorithms that are built into Mathematica cover essentially all values of parameters~

real and complex~for which the special functions are defined. 

There is no exact result known here. 

In[3]:= AiryAi@1D

Out[3]= AiryAi@1D

This gives a numerical approximation to 40 digits of precision. 

In[4]:= N@AiryAi@1D, 40D

Out[4]= 0.1352924163128814155241474235154663061749

The result here is a huge complex number, but Mathematica can still find it. 

In[5]:= N@AiryAi@1000 IDD

Out[5]= -4.780266637767027µ106472 + 3.674920907226875µ106472 Â

Most special functions have derivatives that can be expressed in terms of elementary functions

or  other  special  functions.  But  even  in  cases  where  this  is  not  so,  you  can  still  use  N  to  find

numerical approximations to derivatives.

This derivative comes out in terms of elementary functions. 

In[6]:= D@FresnelS@xD, xD

Out[6]= SinB
p x2

2
F

This evaluates the derivative of the gamma function at the point 3. 

In[7]:= Gamma‘@3D

Out[7]= 2
3

2
- EulerGamma

There is no exact formula for this derivative of the zeta function. 

In[8]:= Zeta‘@PiD

Out[8]= Zeta£@pD

Mathematics and Algorithms     459



Applying N gives a numerical approximation. 

In[9]:= N@%D

Out[9]= -0.167603

Mathematica incorporates a vast amount of knowledge about special functions~including essen-

tially all the results that have been derived over the years. You access this knowledge whenever

you do operations on special functions in Mathematica. 

Here is a series expansion for a Fresnel function. 

In[10]:= Series@FresnelS@xD, 8x, 0, 15<D

Out[10]=
p x3

6
-

p3 x7

336
+

p5 x11

42240
-

p7 x15

9676800
+ O@xD16

Mathematica knows how to do a vast range of integrals involving special functions. 

In[11]:= Integrate@AiryAi@xD^2, 8x, 0, Infinity<D

Out[11]=
1

32ë3 GammaB 1

3
F
2

One  feature  of  working  with  special  functions  is  that  there  are  a  large  number  of  relations

between different functions, and these relations can often be used in simplifying expressions. 

FullSimplify@exprD try to simplify expr using a range of transformation rules

Simplifying expressions involving special functions. 

This uses the reflection formula for the gamma function. 

In[12]:= FullSimplify@Gamma@xD Gamma@1 - xDD

Out[12]= p Csc@p xD

This makes use of a representation for Chebyshev polynomials. 

In[13]:= FullSimplify@ChebyshevT@n, zD - k Cos@n ArcCos@zDDD

Out[13]= -H-1 + kL Cos@n ArcCos@zDD

The Airy functions are related to Bessel functions. 

In[14]:= FullSimplify@3 AiryAi@1D + Sqrt@3D AiryBi@1DD

Out[14]= 2 BesselIB-
1

3
,
2

3
F

460     Mathematics and Algorithms



FunctionExpand@exprD try to expand out special functions

Manipulating expressions involving special functions. 

This expands the Gauss hypergeometric function into simpler functions. 

In[15]:= FunctionExpand@Hypergeometric2F1@1 ê 2, 3 ê 2, 3, xDD

Out[15]=
16 H2 - xL EllipticE@xD

3 p x2
+
16 H-2 + 2 xL EllipticK@xD

3 p x2

Here is an example involving Bessel functions. 

In[16]:= FunctionExpand@BesselY@n, I xDD

Out[16]= -
2 HÂ xL-n xn BesselK@n, xD

p
+ BesselI@n, xD I-HÂ xL-n xn + HÂ xLn x-n Cos@n pDM Csc@n pD

In this case the final result does not even involve PolyGamma. 

In[17]:= FunctionExpand@Im@PolyGamma@0, 3 IDDD

Out[17]=
1

6
+
1

2
p Coth@3 pD

This finds an expression for a derivative of the Hurwitz zeta function. 

In[18]:= FunctionExpand@Derivative@1, 0D@ZetaD@-1, 4DD

Out[18]=
1

12
+ 2 Log@2D + 3 Log@3D - Log@GlaisherD

Mathematics and Algorithms     461






