
4 Functional programming

Programming in Mathematica is essentially a matter of writing user-defined functions
that work like mathematical functions; when applied to specific values, they perform
computations producing results. In fact, these functions can operate on arbitrary
expressions, including other functions. This functional style of programming distin-
guishes Mathematica from more traditional procedural languages like C and Fortran,
and a facility at functional programming is essential for taking full advantage of
Mathematica’s powerful language to solve your computational tasks.

4.1 Introduction
Functions are objects that operate on expressions and output unique expressions for each
input. We can think of functions as mathematicians do. For example, here is a definition
for a function of two variables.

In[1]:= f@x_, y_D := Cos@xD + Sin@yD
You can evaluate the function for numeric or symbolic values.

In[2]:= f@π, 1.6D
Out[2]= −0.000426397

In[3]:= f@θ, ρD
Out[3]= Cos@θD + Sin@ρD

Functions can be significantly more complicated objects. Below is a function that
operates on functions. Like the function f above it takes two arguments, but, in this case,
its arguments are a function or expression, and a list containing the variable of integration
and the integration limits.

In[4]:= Integrate@Exp@I π xD, 8x, a, b<D

Out[4]=
� H�� a π − �� b πL
��������������������������������������

π

This particular function can be also be called with a function and a variable.

In[5]:= Integrate@Exp@I π xD, xD

Out[5]= −
� �� π x
�����������������

π

Here is a function that also takes two arguments and operates on functions, but it
returns a graphical object as its value.

In[6]:= PlotASinAx +
è!!!!
2 Sin@xDE, 8x, 0, 2 π<E

1 2 3 4 5 6

-1

-0.5

0.5

1

Out[6]= � Graphics �

Programming involves writing a set of instructions to be applied for some appropri-
ate input. Whereas procedural programs provide a step-by-step set of instructions, func-
tional programming involves the application of functions to their arguments. For example,
here is a traditional procedural approach to switching the elements in a list of pairs.

In[7]:= lis = 88α, 1<, 8β, 2<, 8γ, 3<<
Out[7]= 88α, 1<, 8β, 2<, 8γ, 3<<

In[8]:= temp = lis;

Do@8temp@@i, 1DD, temp@@i, 2DD< = 8lis@@i, 2DD, lis@@i, 1DD<,
8i, 1, Length@lisD<D;

temp

Out[10]= 881, α<, 82, β<, 83, γ<<

We first allocate an empty array temp, of the same size as lis; then we put elements into
temp one by one as we loop over lis; finally we return the value of temp.

Here is a simpler procedure using a structured iteration.

In[11]:= Table@8lis@@i, 2DD, lis@@i, 1DD<, 8i, 1, 3<D
Out[11]= 881, α<, 82, β<, 83, γ<<

76 An Introduction to Programming with Mathematica

And here is a functional approach to solving the same problem.

In[12]:= Map@Reverse, lisD
Out[12]= 881, α<, 82, β<, 83, γ<<

This simple example illustrates several of the key features of functional program-
ming. A functional approach often allows for a more direct implementation of the solution
to many problems, especially when list manipulations are involved. Notice that the proce-
dural approach required setting up a list structure and then looping over the list as i takes
on successive values, whereas the functional approach simply applied the Reverse func-
tion to the list directly.

Up to this point, we have described fairly simple functions and stayed focused on the
built-in functions present in Mathematica. In this chapter we will first take a look at some
of the most powerful and useful functional programming constructs in Mathematica and
then discuss the creation of our own functions, using many of the list and string manipulat-
ing functions discussed earlier. It is well worthwhile to spend time familiarizing yourself
with these functions by playing around with them; for example, create various lists and
apply built-in functions to them. Having a larger vocabulary of built-in functions will not
only make it easier to follow the programs and do the exercises here, but will enhance your
own programming skills as well.

4.2 Functions for manipulating expressions
Three of the most powerful and commonly used functions by experienced Mathematica
programmers are Map, Apply, and Thread. They provide very sophisticated ways of
manipulating expressions in Mathematica. Becoming familiar with them is essential to
functional programming in Mathematica. In this section we will discuss their syntax and
look at some simple examples of their use. We will also briefly look at some related func-
tions (Inner and Outer), which will prove useful in manipulating the structure of your
expressions. These higher-order functions will be used throughout the rest of this book.

4 Functional programming 77

Map

Map applies a function to each element in a list.

In[1]:= MapAHead, 93, 22
�������
7

, π=E

Out[1]= 8Integer, Rational, Symbol<

This is illustrated using an undefined function f and a simple linear list.

In[2]:= Map@f, 8a, b, c<D
Out[2]= 8f@aD, f@bD, f@cD<

More generally, mapping a function f over the expression g[a,b,c] essentially
wraps the function f around each of the elements of g.

In[3]:= Map@f, g@a, b, cDD
Out[3]= g@f@aD, f@bD, f@cDD

So this general computation is identical to Map[f,{a,b,c}], except in that example g is
replaced with List (remember that FullForm[{a,b,c}] is List[a,b,c]).

The real power of the Map function is that you can map any function across any
expression for which that function makes sense. Using the Reverse function with Map,
you can reverse the order of elements in each list of a nested list.

In[4]:= Map@Reverse, 88a, b<, 8c, d<, 8e, f<<D
Out[4]= 88b, a<, 8d, c<, 8f, e<<

The elements in each of the inner lists in a nested list can be sorted.

In[5]:= Map@Sort, 882, 6, 3, 5<, 87, 4, 1, 3<<D
Out[5]= 882, 3, 5, 6<, 81, 3, 4, 7<<

Often, you will need to define your own function to perform some computation on
every element of a list. This is the sort of computation that Map is expressly designed for.
Here is a list of three elements.

In[6]:= vec = 82, π, γ<;
If we wished to square each element and add 1, we could first define a function that per-
forms this computation on its arguments.

In[7]:= f@x_D := x2 + 1

78 An Introduction to Programming with Mathematica

Mapping this function over vec, will then wrap f around each element and evaluate f of
those elements.

In[8]:= Map@f, vecD
Out[8]= 85, 1 + π2, 1 + γ2<

Later in this chapter we will look at even simpler ways of performing such
computations.

Thread and MapThread

The Thread function exchanges operations with arguments that are lists.

In[9]:= Thread@g@8a, b, c<, 8x, y, z<DD
Out[9]= 8g@a, xD, g@b, yD, g@c, zD<

You can accomplish something quite similar with MapThread. It differs from
Thread in that it takes two arguments – the function that you are mapping and a list of
two (or more) lists as arguments of the function. It creates a new list in which the corre-
sponding elements of the old lists are paired (or zipped together).

In[10]:= MapThread@g, 88a, b, c<, 8x, y, z<<D
Out[10]= 8g@a, xD, g@b, yD, g@c, zD<

With Thread, you can fundamentally change the structure of the expressions you
are working with. For example, this threads the Equal function over the two lists given as
its arguments.

In[11]:= Thread@Equal@8a, b, c<, 8x, y, z<DD
Out[11]= 8a
 x, b
 y, c
 z<

In[12]:= Map@FullForm, %D
Out[12]= 8Equal@a, xD, Equal@b, yD, Equal@c, zD<

Here is another example of the use of Thread. We start off with a list of variables
and a list of values.

In[13]:= vars = 8x1, x2, x3, x4, x5<;

In[14]:= values = 81.2, 2.5, 5.7, 8.21, 6.66<;
From these two lists, we create a list of rules.

In[15]:= Thread@Rule@vars, valuesDD
Out[15]= 8x1 → 1.2, x2 → 2.5, x3 → 5.7, x4 → 8.21, x5 → 6.66<

4 Functional programming 79

Notice how we started with a rule of lists and Thread produced a list of rules. In this way,
you might think of Thread as a generalization of Transpose.

Here are a few more examples of MapThread. This raises each element in the first
list to the power given by the corresponding element in the second list.

In[16]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D
Out[16]= 832, 6, 9<

Using Trace, you can view some of the intermediate steps that Mathematica performs in
doing this calculation.

In[17]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D êê Trace
Out[17]= 8MapThread@Power, 882, 6, 3<, 85, 1, 2<<D,

825, 61, 32<, 825, 32<, 861, 6<, 832, 9<, 832, 6, 9<<

Using the List function, the corresponding elements in the three lists are placed in a list
structure (note that Transpose would do the same thing).

In[18]:= MapThread@List, 885, 3, 2<, 86, 4, 9<, 84, 1, 4<<D
Out[18]= 885, 6, 4<, 83, 4, 1<, 82, 9, 4<<

The Listable attribute

Many of the built-in functions that take a single argument have the property that, when a
list is the argument, the function is automatically applied to all of the elements in the list.
In other words, these functions are automatically mapped on to the elements of the list.
For example, the Log function has this attribute.

In[19]:= Log@8a, E, 1<D
Out[19]= 8Log@aD, 1, 0<

This is the same result you get using the Map function.

In[20]:= Map@Log, 8a, E, 1<D
Out[20]= 8Log@aD, 1, 0<

Many of the built-in functions that take two or more arguments have the property
that, when multiple lists are the arguments, the function is automatically applied to all of
the corresponding elements in the list. In other words, these functions are automatically
threaded on to the elements of the list.

In[21]:= 84, 6, 3< + 85, 1, 2<
Out[21]= 89, 7, 5<

80 An Introduction to Programming with Mathematica

This gives the same result as using the Plus function with MapThread.

In[22]:= MapThread@Plus, 884, 6, 3<, 85, 1, 2<<D
Out[22]= 89, 7, 5<

Functions that are either automatically mapped or threaded on to the elements of list
arguments are said to be Listable. Many of Mathematica’s built-in functions have this
Attribute.

In[23]:= Attributes@LogD
Out[23]= 8Listable, NumericFunction, Protected<

In[24]:= Attributes@PlusD
Out[24]= 8Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected<

By default, functions that you define do not have any attributes associated with them. So,
for example, if you define a function g, say, it will not automatically be threaded over a list.

In[25]:= g@88a, b<, 8c, d<<D
Out[25]= g@88a, b<, 8c, d<<D

If you want your function to have the ability to thread over lists, give it the Listable
attribute using SetAttributes.

In[26]:= SetAttributes@g, ListableD

In[27]:= g@88a, b<, 8c, d<<D
Out[27]= 88g@aD, g@bD<, 8g@cD, g@dD<<

Note that clearing a symbol only clears values associated with that symbol. It does not
clear any attributes associated with the symbol.

In[28]:= Clear@gD

In[29]:= ?g

Global`g

Attributes@gD = 8Listable<

To clear attributes, you need to use Remove.

In[30]:= Remove@gD

4 Functional programming 81

Now there is no remaining information associated with g.

In[31]:= ?g

Information::notfound : Symbol g not found. More…

Apply

Whereas Map is used to perform the same operation on each element of an expression,
Apply is used to change the structure of an expression.

In[32]:= Apply@f, g@a, b, cDD
Out[32]= f@a, b, cD

The function f was applied to the expression g[a,b,c] and Apply replaced the head of
g[a,b,c] with f.
If the second argument is a list, applying f to that expression simply replaces its head
(List) with f.

In[33]:= Apply@f, 8a, b, c<D
Out[33]= f@a, b, cD

The following computation shows the same thing, except we are using the internal represen
tation of the list {a,b,c} here to better see how the structure is changed.

In[34]:= Apply@f, List@a, b, cDD
Out[34]= f@a, b, cD

We see that the elements of List are now the arguments of f. Essentially, you should
think of Apply[f ,expr] as replacing the head of expr with f .

In[35]:= Apply@Plus, 81, 2, 3, 4<D
Out[35]= 10

Here, List[1,2,3,4] has been changed to Plus[1,2,3,4] or, in other words, the
head List has been replaced by Plus.

Plus[a,b,c,d] is the internal representation of the sum of these four symbols
that you would normally write a+b+c+d.

In[36]:= Plus@a, b, c, dD
Out[36]= a + b + c + d

82 An Introduction to Programming with Mathematica

This list conversion can be applied to an entire list.

In[37]:= Apply@f, 881, 2, 3<, 85, 6, 7<<D
Out[37]= f@81, 2, 3<, 85, 6, 7<D

This is just vector addition.

In[38]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<D
Out[38]= 86, 8, 10<

One important distinction between Map and Apply that you should be aware of
concerns the level of the expression at which each operate. By default, Map operates at
level 1. That is, in Map[f, expr], f will be applied to each element at the top level of expr.
So, for example, if expr consists of a nested list, f will be applied to each of the sublists, but
not deeper, by default.

In[39]:= Map@f, 88a, b<, 8c, d<<D
Out[39]= 881 + a2, 1 + b2<, 81 + c2, 1 + d2<<

If you wish to apply f at a deeper level, then you have to specify that explicitly using a
third argument to Map.

In[40]:= Map@f, 88a, b<, 8c, d<<, 82<D
Out[40]= 881 + a2, 1 + b2<, 81 + c2, 1 + d2<<

Apply, on the other hand, operates at level 0. That is, in Apply[f, expr], Apply
looks at the part 0 of expr (that is, its Head) and replaces it with f.

In[41]:= Apply@f, 88a, b<, 8c, d<<D
Out[41]= f@8a, b<, 8c, d<D

Again, if you wish to apply f at a different level, then you have to specify that explic-
itly using a third argument to Apply.

In[42]:= Apply@f, 88a, b<, 8c, d<<, 1D
Out[42]= 8f@a, bD, f@c, dD<

For example, to apply Plus to each of the inner lists, you need to specify that Apply will
operate at level 1.

In[43]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<, 81<D
Out[43]= 86, 18<

4 Functional programming 83

If you are a little unsure of what has just happened, consider the following example and,
instead of f, think of Plus.

In[44]:= Apply@f, 881, 2, 3<, 85, 6, 7<<, 81<D
Out[44]= 8f@1, 2, 3D, f@5, 6, 7D<

Inner and Outer

The Outer function applies a function to all of the combinations of the elements in
several lists. This is a generalization of the mathematical outer product.

In[45]:= Outer@f, 8a, b<, 82, 3, 4<D
Out[45]= 88f@a, 2D, f@a, 3D, f@a, 4D<, 8f@b, 2D, f@b, 3D, f@b, 4D<<

Using the List function as an argument, you can create lists of ordered pairs that com-
bine the elements of several lists.

In[46]:= Outer@List, 8a, b<, 82, 3, 4<D
Out[46]= 888a, 2<, 8a, 3<, 8a, 4<<, 88b, 2<, 8b, 3<, 8b, 4<<<

Using Inner, you can thread a function on to several lists and then use the result as the
argument to another function.

In[47]:= Inner@f, 8a, b, c<, 8d, e, f<, gD
Out[47]= g@f@a, dD, f@b, eD, f@c, fDD

This function lets you carry out some interesting operations.

In[48]:= Inner@Times, 8x1, y1, z1<, 8x2, y2, z2<, PlusD
Out[48]= x1 x2 + y1 y2 + z1 z2

In[49]:= Inner@List, 8a, b, c<, 8d, e, f<, PlusD
Out[49]= 8a + b + c, d + e + f<

Looking at these two examples, you can see that Inner is really a generalization of the
mathematical dot product.

In[50]:= Dot@8x1, y1, z1<, 8x2, y2, z2<D
Out[50]= x1 x2 + y1 y2 + z1 z2

84 An Introduction to Programming with Mathematica

Exercises

1. Write a function addPair[{x,y}] that adds the elements in a pair. Then use your
addPair function to sum each pair from the following.

data = 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<<;
Your output should look like {3,5,7,9,11}.

2. Use Apply to add the elements in each pair from a list of pairs of numbers such as in
the previous exercise.

3. A matrix can be rotated by performing a number of successive operations. Rotate the
matrix {{1,2,3},{4,5,6}} clockwise by 90 degrees, obtaining
{{4,1},{5,2},{6,3}}, in two steps. Use TableForm to display the results.

4. While matrices can easily be added using Plus, matrix multiplication is more
complicated. The Dot function, written as a single period, can be used.

In[1]:= 881, 2<, 83, 4<<.8x, y<
Out[1]= 8x + 2 y, 3 x + 4 y<

Perform matrix multiplication on {{1,2},{3,4}} and {x,y} without using Dot.
(This can be done in two or three steps.)

5. FactorInteger[n] returns a nested list of prime factors and their exponents for
the number n.

In[2]:= FactorInteger@3628800D
Out[2]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Use Apply to reconstruct the number from this nested list.

6. Repeat the above exercise but instead use Inner to construct the original number n
from the factorization given by FactorInteger[n].

7. Using Inner, write a function div[vecs,vars] that computes the divergence of an
n-dimensional vector field vecs = 8e1, e2, …, en< dependent upon n variables
vars = 8v1, v2, …, vn<. The divergence is given by the sum of the pairwise partial
derivatives.

∑e1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑v1

+
∑e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑v2

+ … +
∑en
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vn

4 Functional programming 85

4.3 Iterating functions
A commonly performed task in computer science and mathematics is to repeatedly apply a
function to some expression. Iterating functions has a long and rich tradition in the history
of computing. Perhaps the most famous example is Newton’s method for root finding.
Chaos theory rests on studying how iterated functions behave under small perturbations of
their initial conditions or starting values. In this section, we will introduce several func-
tions available in Mathematica for function iteration. In later chapters we will apply these
and other programming constructs to look at some applications of iteration, including
Newton’s method.

The Nest function is used to iterate functions. Here, g is iterated (or applied to) a
four times.

In[1]:= Nest@g, a, 4D
Out[1]= g@g@g@g@aDDDD

The NestList function displays all of the intermediate values of the Nest operation.

In[2]:= NestList@g, a, 4D
Out[2]= 8a, g@aD, g@g@aDD, g@g@g@aDDD, g@g@g@g@aDDDD<

Using a starting value of 0.85, this generates a list of ten iterates of the Cos function.

In[3]:= NestList@Cos, 0.85, 10D
Out[3]= 80.85, 0.659983, 0.790003, 0.703843, 0.76236, 0.723208,

0.749687, 0.731902, 0.743904, 0.73583, 0.741274<

The list elements above are the values of 0.85, Cos[0.85], Cos[Cos[0.85]], and so
on.

In[4]:= 80.85, Cos@0.85D, Cos@Cos@0.85DD, Cos@Cos@Cos@0.85DDD<
Out[4]= 80.85, 0.659983, 0.790003, 0.703843<

In fact, the iterates of the cosine function tend towards a fixed point which can be
obtained with FixedPoint. This function is particularly useful when you do not know
how many iterations to perform on a function whose iterations eventually settle down.

In[5]:= FixedPoint@Cos, 0.85D
Out[5]= 0.739085

Whereas Nest and NestList operate on functions of one variable, Fold and
FoldList generalize this notion by iterating a function of two arguments. In the follow-
ing example, the function f is first applied to a starting value x and the first element from a

86 An Introduction to Programming with Mathematica

list, then this result is used as the first argument of the next iteration, with the second
argument coming from the second element in the list, and so on.

In[6]:= Fold@f, x, 8a, b, c<D
Out[6]= f@f@f@x, aD, bD, cD

If FoldList is used, then you will see all of the intermediate results of the Fold
operation.

In[7]:= FoldList@f, x, 8a, b, c<D
Out[7]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

It is easy to see what is going on with the FoldList function by working with an arith-
metic operator. This generates “running sums.”

In[8]:= FoldList@Plus, 0, 8a, b, c, d<D
Out[8]= 80, a, a + b, a + b + c, a + b + c + d<

In[9]:= FoldList@Plus, 0, 81, 2, 3, 4, 5<D
Out[9]= 80, 1, 3, 6, 10, 15<

Exercises

1. Determine the locations after each step of a ten-step one-dimensional random walk.
(Recall that you have already generated the step directions in Exercise 3 at the end of
Section 3.2.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold, create a function fac[n] that takes in an integer n as argument and
returns the factorial of n; that is, nHn - 1L Hn - 2L ∫3 ÿ 2 ÿ 1.

4 Functional programming 87

4.4 Programs as functions
A computer program is a set of instructions (a recipe) for carrying out a computation.
When a program is evaluated with appropriate inputs, the computation is performed and
the result is returned. In this sense, a program is a mathematical function and the inputs to
a program are the arguments of the function. Executing a program is equivalent to apply-
ing a function to its arguments or, as it is often referred, making a function call.

User-defined functions

While there are a great many built-in functions in Mathematica that can be used to carry
out computations, we invariably find ourselves needing customized functions. For exam-
ple, once we have written a program to compute some values for some particular inputs,
we might want to perform the same set of operations on different inputs. We would
therefore like to create our own user-defined functions that we could then apply in the same
way as we call a built-in function – by entering the function name and specific argument
values. We will start with the proper syntax (or grammar) to use when writing a function
definition.

The function definition looks very much like a mathematical equation: a left-hand
side and a right-hand side separated by a colon-equal sign.

name[arg1 _,arg2 _,…,argn _]:= body

The left-hand side starts with a symbol. This symbol is referred to as the function
name (or sometimes just as the function, as in “the sine function”). The function name is
followed by a set of square brackets, inside of which are a sequence of symbols ending with
blanks. These symbols are referred to as the function argument names, or just the function
arguments.

The right-hand side of a user-defined function definition is called the body of the
function. The body can be either a single expression (a one-liner), or a series of expressions
(a compound function), both of which will be discussed in detail shortly. Argument names
from the left-hand side appear on the right-hand side without blanks. Basically, the right-
hand side is a formula stating what computations are to be done when the function is
called with specific values of the arguments.

When a user-defined function is defined with a delayed assignment (:=), nothing is
returned. Thereafter, calling the function by entering the left-hand side of the function
definition with specific values of the arguments causes the body of the function to be

88 An Introduction to Programming with Mathematica

computed with the specific argument values substituted where the argument names occur.
In other words, when using delayed assignments, the body of your function is only evalu-
ated when the function is called, not when it is first defined.

A simple example of a user-defined function is square which squares a value (it is a
good idea to use a function name that indicates the purpose of the function).

In[1]:= square@x_D := x2

After entering a function definition, you call the function in the same way that a
built-in function is applied to an argument.

In[2]:= square@5D
Out[2]= 25

Building up programs

The ability to use the output of one function as the input of another is one of the keys to
functional programming. A mathematician would call this “composition of functions.” In
Mathematica, this sequential application of several functions is known as a nested function
call. Nested function calls are not limited to using a single function repeatedly, such as with
the built-in Nest and Fold functions.

In[3]:= Cos@Sin@Tan@4.0DDD
Out[3]= 0.609053

To see the above computation more clearly, we can step through the computation.

In[4]:= Tan@4.0D
Out[4]= 1.15782

In[5]:= Sin@%D
Out[5]= 0.915931

In[6]:= Cos@%D
Out[6]= 0.609053

Wrapping the Trace function around the computation lets us see all of the intermediate
expressions that are used in this evaluation.

In[7]:= Trace@Cos@Sin@Tan@4.0DDDD
Out[7]= 888Tan@4.D, 1.15782<, Sin@1.15782D, 0.915931<,

Cos@0.915931D, 0.609053<

4 Functional programming 89

You can read nested functions in much the same way that they are created, starting
with the innermost functions and working towards the outermost functions. For example,
the following expression determines whether all of the elements in a list are even numbers.

In[8]:= Apply@And, Map@EvenQ, 82, 4, 6, 7, 8<DD
Out[8]= False

Let us step through the computation much the same as Mathematica does, from the
inside out.

1. Map the predicate EvenQ to every element in the list {2,4,6,7,8}.

In[9]:= Map@EvenQ, 82, 4, 6, 7, 8<D
Out[9]= 8True, True, True, False, True<

2. Apply the logical function And to the result of the previous step.

In[10]:= Apply@And, %D
Out[10]= False

Finally, here is a definition that can be used on arbitrary lists.

In[11]:= setEvenQ@lis_D := Apply@And, Map@EvenQ, lisDD

In[12]:= setEvenQ@811, 5, 1, 18, 16, 6, 17, 6<D
Out[12]= False

Another, more complicated, example returns the elements in a list of positive num-
bers that are bigger than all of the preceding numbers in the list.

In[13]:= Union@Rest@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDD
Out[13]= 83, 6, 8<

The Trace of the function call shows the intermediate steps of the computation.

In[14]:= Trace@Union@Rest@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDDD
Out[14]= 888FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D,

8Max@0, 3D, 3<, 8Max@3, 1D, Max@1, 3D, 3<,

8Max@3, 6D, 6<, 8Max@6, 5D, Max@5, 6D, 6<,

8Max@6, 4D, Max@4, 6D, 6<, 8Max@6, 8D, 8<,

8Max@8, 7D, Max@7, 8D, 8<, 80, 3, 3, 6, 6, 6, 8, 8<<,

Rest@80, 3, 3, 6, 6, 6, 8, 8<D, 83, 3, 6, 6, 6, 8, 8<<,

Union@83, 3, 6, 6, 6, 8, 8<D, 83, 6, 8<<

90 An Introduction to Programming with Mathematica

This computation can be described as follows:

• The FoldList function is first applied to the function Max, 0, and the list
{3,1,6,5,4,8,7} (look at the Trace of this computation to see what Fold�
List is doing here).

In[15]:= FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D
Out[15]= 80, 3, 3, 6, 6, 6, 8, 8<

• The Rest function is then applied to the result of the previous step to remove the
first element of the list.

In[16]:= Rest@%D
Out[16]= 83, 3, 6, 6, 6, 8, 8<

• Finally, the Union function is applied to the result of the previous step to remove
duplicates.

In[17]:= Union@%D
Out[17]= 83, 6, 8<

Here is the function definition.

In[18]:= maxima@x_D := Union@Rest@FoldList@Max, 0, xDDD
Applying maxima to a list of numbers produces a list of all those numbers that are

larger than any number that comes before it.

In[19]:= maxima@84, 2, 7, 3, 4, 9, 14, 11, 17<D
Out[19]= 84, 7, 9, 14, 17<

Notice that in each of the nested functions described here, the argument of the first
function was explicitly referred to, but the expressions that were manipulated in the
succeeding function calls were not identified other than as the results of the previous steps
(that is, as the results of the preceding function applications).

Here is an interesting application of building up a program with nested functions –
the creation of a deck of cards. (Hint: The suit icons are entered by typing in \[ClubSuit
], \[DiamondSuit], etc.)

4 Functional programming 91

In[20]:= cardDeck = Flatten@
Outer@List, 8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D

Out[20]= 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<, 8♣, 9<, 8♣, 10<,
8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<,

8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<, 8♥, 2<,
8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<, 8♥, 10<,
8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<,

8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

You might think of cardDeck as a name for the expression given on the right-hand side
of the immediate definition, or you might think of cardDeck as defining a function with
zero arguments.

To understand what is going on here, we will build up this program from scratch.
First we form a list of the number and face cards in a suit by combining a list of the num-
bers 2 through 10, Range[2,10], with a four-element list representing the jack, queen,
king, and ace, {J,Q,K,A}.

In[21]:= Join@Range@2, 10D, 8J, Q, K, A<D
Out[21]= 82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<

Now we pair each of the 13 elements in this list with each of the four elements in the list
representing the card suits {♣,♦,♥,♠}. This produces a list of 52 ordered pairs represent-
ing the cards in a deck, where the king of clubs, for example, is represented by {♣,K}).

In[22]:= Outer@List, 8♣, ♦, ♥, ♠<, %D
Out[22]= 888♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<,

8♣, 8<, 8♣, 9<, 8♣, 10<, 8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<<,
88♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<, 8♦, 7<, 8♦, 8<,

8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<<,
88♥, 2<, 8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<,
8♥, 9<, 8♥, 10<, 8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<<,

88♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<, 8♠, 7<, 8♠, 8<,
8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<<

While we now have all of the cards in the deck, they are grouped by suit in a nested list.
We therefore un-nest the list:

In[23]:= Flatten@%, 1D
Out[23]= 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<, 8♣, 9<, 8♣, 10<,

8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<,
8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<, 8♥, 2<,
8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<, 8♥, 10<,
8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<,

8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

Voila!

92 An Introduction to Programming with Mathematica

The step-by-step construction that we used here, applying one function at a time,
checking each function call separately, is a very efficient way to prototype your programs in
Mathematica. We will use this technique again in the next example.

We will perform what is called a perfect shuffle, consisting of cutting the deck in half
and then interleaving the cards from the two halves. Rather than working with the large
list of 52 ordered pairs during the prototyping, we will use a short made-up list. A short list
of an even number of ordered integers is a good choice for the task.

In[24]:= d = Range@6D
Out[24]= 81, 2, 3, 4, 5, 6<

We first divide the list into two equal-sized lists.

In[25]:= Partition@d, Length@dDê 2D
Out[25]= 881, 2, 3<, 84, 5, 6<<

We now want to interleave these two lists to form {1,4,2,5,3,6}. The first step is to
pair the corresponding elements in each of the two lists above. This can be done using the
Transpose function.

In[26]:= Transpose@%D
Out[26]= 881, 4<, 82, 5<, 83, 6<<

We now un-nest the interior lists using the Flatten function. We could flatten our
simple list using Flatten[…], but, since we know that ultimately we will be dealing with
ordered pairs rather than integers, we will use Flatten[…,1] as we did in creating the
card deck.

In[27]:= Flatten@%, 1D
Out[27]= 81, 4, 2, 5, 3, 6<

That does the job. Given this prototype, it is easy to write the actual function to
perform a perfect shuffle on a deck of cards. Notice we have generalized this shuffle to lists
of arbitrary length.

In[28]:= shuffle@lis_D :=

Flatten@Transpose@Partition@lis, Length@lisDê2DD, 1D

In[29]:= shuffle@cardDeckD
Out[29]= 88♣, 2<, 8♥, 2<, 8♣, 3<, 8♥, 3<, 8♣, 4<, 8♥, 4<, 8♣, 5<, 8♥, 5<, 8♣, 6<,

8♥, 6<, 8♣, 7<, 8♥, 7<, 8♣, 8<, 8♥, 8<, 8♣, 9<, 8♥, 9<, 8♣, 10<,
8♥, 10<, 8♣, J<, 8♥, J<, 8♣, Q<, 8♥, Q<, 8♣, K<, 8♥, K<, 8♣, A<, 8♥, A<,
8♦, 2<, 8♠, 2<, 8♦, 3<, 8♠, 3<, 8♦, 4<, 8♠, 4<, 8♦, 5<, 8♠, 5<, 8♦, 6<,

8♠, 6<, 8♦, 7<, 8♠, 7<, 8♦, 8<, 8♠, 8<, 8♦, 9<, 8♠, 9<, 8♦, 10<,
8♠, 10<, 8♦, J<, 8♠, J<, 8♦, Q<, 8♠, Q<, 8♦, K<, 8♠, K<, 8♦, A<, 8♠, A<<

4 Functional programming 93

Let us take this example one step further and construct a function that deals cards
from a card deck. We will construct this function in stages using the prototyping method
we showed earlier.
First we need to define a function that removes a single element from a randomly chosen
position in a list.

In[30]:= removeRand@lis_D :=

Delete@lis, Random@Integer, 81, Length@lisD<DD
The function removeRand first uses the Random function to randomly choose an integer
k between 1 and the length of the list, and then uses the Delete function to remove the
kth element of the list. For example, if a list has 10 elements, an integer between 1 and 10,
say 6, is randomly determined and the element in the sixth position in the list is then
removed from the list.

In[31]:= lis = 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<;
removeRand@lisD

Out[32]= 82, 3, 4, 5, 6, 7, 8, 9, 10<

Now we want to make a function call that applies the removeRand function to the
cardDeck list, then applies the removeRand function to the resulting list, then applies
the removeRand function to the resulting list, and so on, a total of n times. The way to
carry out this operation is with the Nest function.

Nest[removeRand, cardDeck, n]

Lastly, we want the cards that are removed from cardDeck rather than those that remain.

Complement[cardDeck, Nest[removeRand, cardDeck, n]]

Now, we write this up formally into the user-defined deal function.

In[33]:= deal@n_D := Complement@cardDeck, Nest@removeRand, cardDeck, nDD
Let us try it out.

In[34]:= deal@5D
Out[34]= 88♣, 3<, 8♣, K<, 8♦, 2<, 8♥, K<, 8♠, J<<

Not a bad hand!

94 An Introduction to Programming with Mathematica

Exercises

1. One of the games in the Illinois State Lottery is based on choosing n numbers, each
between 0 and 9, with duplicates allowed; in practice, a selection is made from
containers of numbered ping pong balls. We can model this game using a simple
user-defined function, which we will call pick (after the official lottery names of Pick
3 and Pick 4).

In[1]:= pick@n_D := Table@Random@Integer, 80, 9<D, 8n<D

In[2]:= pick@4D
Out[2]= 80, 9, 0, 4<

This program can be generalized to perform random sampling with replacement on any
list. Write a function chooseWithReplacement[lis,n], where lis is the list, n is
the number of elements being chosen and the following is a typical result.

In[3]:= chooseWithReplacement@8a, b, c, d, e, f, g, h<, 3D
Out[3]= 8h, b, f<

2. Write your own user-defined functions using the ToCharacterCode and From�
CharacterCode functions to perform the same operations as StringInsert and
StringDrop.

3. Create a function distance[a,b] that finds the distance between two points a and
b in the plane.

4. Write a user-defined function interleave2 that interleaves the elements of two
lists of unequal length. (You have already seen how to interleave lists of equal length
using Partition earlier in this section.) Your function should take the lists
{1,2,3} and {a,b,c,d} as inputs and return {1,a,2,b,3,c,d}.

5. Write a nested function call that creates a deck of cards and performs a perfect
shuffle on it.

6. Write nested function calls using the ToCharacterCode and FromCharacter�
Code functions to perform the same operations as the built-in StringJoin and
StringReverse functions.

4 Functional programming 95

4.5 Auxiliary functions
There are several major drawbacks to the deal function created in the previous section. In
order to use deal, the definition of removeRand and the value of cardDeck must be
entered before calling deal. It would be much more convenient if we could incorporate
these functions within the deal function definition itself. In the next section, we will show
how this can be done.

Compound functions

The left-hand side of a compound function is the same as that of any user-defined function.
The right-hand side consists of consecutive expressions enclosed in parentheses and
separated by semicolons.

name@arg1 _, arg2 _, …, argn _D := Hexpr1; expr2; …; exprmL

The expressions can be user-defined functions (also known as auxiliary functions),
value declarations, and function calls. When a compound function is evaluated with
particular argument values, these expressions are evaluated in order and the result of the
evaluation of the last expression is returned (by adding a semicolon after exprn, the display
of the final evaluation result can also be suppressed).

We will work with the deal function to illustrate how a compound function is
created. We need the following three expressions.

In[1]:= cardDeck = Flatten@Outer@List,
8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;

In[2]:= removeRand@lis_D :=

Delete@lis, Random@Integer, 81, Length@lisD<DD

In[3]:= deal@n_D := Complement@cardDeck, Nest@removeRand, cardDeck, nDD
The conversion to a compound function is easily done. We will first remove the old
definitions.

In[4]:= Clear@deal, cardDeck, removeRandD

96 An Introduction to Programming with Mathematica

Now we can create and enter the new definition.

In[5]:= deal@n_D := H
cardDeck = Flatten@Outer@List,

8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;
removeRand@lis_D := Delete@lis,
Random@Integer, 81, Length@lisD<DD;

Complement@cardDeck, Nest@removeRand, cardDeck, nDD
L

Let us check that this works.

In[6]:= deal@5D
Out[6]= 88♣, 3<, 8♦, 2<, 8♥, 3<, 8♥, 4<, 8♥, Q<<

A couple of things should be pointed out about the right-hand side of a compound
function definition. Since the expressions on the right-hand side are evaluated in order,
value declarations and auxiliary function definitions should be given before they are used
and the argument names used on the left-hand side of auxiliary function definitions must
differ from the argument names used by the compound function itself.

Finally, when we enter a compound function definition, we are entering not only the
function but also the auxiliary functions and the value declarations. If we then remove the
function definition using Clear, the auxiliary function definitions and value declarations
remain. This can cause a problem if we subsequently try to use the names of these auxiliary
functions and values elsewhere.

So how does the global rule base treat compound functions? When a compound
function definition is entered, a rewrite rule corresponding to the entire definition is
created. Each time the compound function is subsequently called, rewrite rules are created
from the auxiliary function definitions and value declarations within the compound
function.

In[7]:= ?cardDeck

Global`cardDeck

cardDeck = 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<,
8♣, 9<, 8♣, 10<, 8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<,

8♦, 5<, 8♦, 6<, 8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<,
8♦, A<, 8♥, 2<, 8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<,
8♥, 10<, 8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<,

8♠, 6<, 8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

It is considered bad programming practice to leave auxiliary definitions in the global
rule base that are not explicitly needed by the user of your function. In fact, it could
interfere with a user’s workspace and cause unintended problems.

4 Functional programming 97

To prevent these additional rewrite rules from being placed in the global rule base,
you can localize their names by using the Module construct in the compound function
definition. This is what we discuss next.

Localizing names: Module

When a user-defined function is written, it is generally a good idea to isolate the names of
values and functions defined on the right-hand side from the outside world in order to
avoid any conflict with the use of a name elsewhere in the session (for example, cardDeck
might be used elsewhere to represent a pinochle deck). This can be done by wrapping the
right-hand side of the function definition in the built-in Module function.

name@arg
1
 _, arg

2
 _, …, argn _D := Module@8name1, name2 = value, …<,

exprD

The first argument of the Module function is a list of the names we want to localize. If we
wish, we can assign values to these names, as is shown with name2 above (the assigned value
is only an initial value and can be changed subsequently). The list is separated from the
right-hand side by a comma and so the parentheses enclosing the right-hand side of a
compound function are not needed.

We can demonstrate the use of Module with the deal function.

In[8]:= Clear@dealD

In[9]:= deal@n_D := Module@8cardDeck, removeRand<,
cardDeck = Flatten@Outer@List,

8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;
removeRand@lis_D := Delete@lis,
Random@Integer, 81, Length@lisD<DD;

Complement@cardDeck, Nest@removeRand, cardDeck, nDDD
Briefly, when Module is encountered, the symbols that are being localized (card�

Deck and removeRand in the above example) are temporarily given new and unique
names and all occurrences of those symbols in the body of the Module are given those
new names as well. In this way, these unique and temporary names, which are local to the
function will not interfere with any functions outside of the Module.

98 An Introduction to Programming with Mathematica

It is generally a good idea to wrap the right-hand side of all compound function
definitions in the Module function. Another way to avoid conflicts in the use of names of
auxiliary function definitions is to use a function that can be applied without being given a
name. Such functions are called pure functions, which we discuss in Section 4.6.

Localizing values: Block

Occasionally, you will need to localize a value associated with a symbol without localizing
the symbol name itself. For example, you may have a recursive computation that requires
you to temporarily reset the system variable $RecursionLimit. You can do this with
Block, thereby only localizing the value of $RecursionLimit during the evaluation
inside the Block.

In[10]:= Block@8$RecursionLimit = 20<,
x = g@xD

D
$RecursionLimit::reclim :

Recursion depth of 20 exceeded. More…

Out[10]= g@g@

g@g@g@g@g@g@g@g@g@g@g@g@g@g@g@g@Hold@g@xDDDDDDDDDDDDDDDDDDDD

Notice the global value of $RecursionLimit is unchanged.

In[11]:= $RecursionLimit

Out[11]= 256

This construct is similar to what is done for the iterators in Table, Do, Sum, and Prod�
uct.

Module, on the other hand, would create an entirely new symbol, $Recursion�
Limit$nn that would have nothing to do with the global variable $RecursionLimit,
and so Module would be inappropriate for this particular task.

Localizing constants: With

Another scoping construct is available when you simply need to localize constants. If, in
the body of your function, you use a variable that is assigned a constant once and never
changes, then With is the preferred means to localize that constant.

This sets the global variable y to have the value 5.

In[12]:= y = 5;

4 Functional programming 99

Here is a simple function that initializes y as a local constant.

In[13]:= f@x_D := With@8y = x + 1<,
y

D
We see the global symbol is unchanged and it does not interfere with the local symbol y
inside the With.

In[14]:= y

Out[14]= 5

In[15]:= f@2D
Out[15]= 3

Using With, you can initialize local constants with the values of global symbols. For
example:

In[16]:= With@8y = y<,
g@x_D := x + y

D
This shows that the global value for y was inserted inside g.

In[17]:= ?g

Global`g

g@x$_D := x$ + 5

Resetting the global value of y has no effect on the localized y inside the With.

In[18]:= y = 1;

In[19]:= g@5D
Out[19]= 10

Exercises

1. Write a compound function definition for the location of steps taken in an n-step
random walk on a square lattice. Hint: Use the definition for the step increments of
the walk as an auxiliary function.

2. The PerfectSearch function defined in Section 1.1 is impractical for checking
large numbers because it has to check all numbers from 1 through n. If you already

100 An Introduction to Programming with Mathematica

know the perfect numbers below 500, say, it is inefficient to check all numbers from
1 to 1,000 if you are only looking for perfect numbers in the range 500 to 1,000.
Modify searchPerfect so that it accepts two numbers as input and computes all
perfect numbers between the inputs. For example, PerfectSearch[a,b] will
produce a list of all perfect numbers in the range from a to b.

3. Overload the PerfectSearch function to compute all 3-perfect numbers. A 3-per-
fect number is such that the sum of its divisors equals three times the number. For
example, 120 is 3-perfect since it is equal to three times the sum of its divisors.

In[1]:= Apply@Plus, Divisors@120DD
Out[1]= 360

Find the only other 3-perfect number under 1,000.
You can overload PerfectSearch as defined in Exercise 2 above by defining a
three-argument version PerfectSearch[a,b,3].

4. Overload PerfectSearch to find the three 4-perfect numbers less than 2,200,000.

5. Redefine PerfectSearch so that it accepts as input a number k, and two numbers
a and b, and computes all k-perfect numbers in the range from a to b. For example,
PerfectSearch[1,30,2] would compute all 2-perfect numbers in the range
from 1 to 30 and, hence, would output {6,28}.

6. If sHnL is defined to be the sum of the divisors of n, then n is called superperfect if
sHsHnLL = 2 n. Write a function SuperPerfectSearch[a,b] that finds all super-
perfect numbers in the range from a to b.

7. Often in processing files you will be presented with expressions that need to be
converted into a format that can be more easily manipulated inside Mathematica. For
example, a file may contain dates in the form 20030515 to represent May 15 2003.
Mathematica represents its dates as a list {year,month,day,hour,minutes,seconds}.
Write a function convertToDate[n] to convert a number consisting of eight
digits such as 20030515 into a list of the form {2003,5,15}.

In[2]:= convertToDate@20030515D
Out[2]= 82003, 5, 15<

4 Functional programming 101

4.6 Pure functions
A pure function is a function that does not have a name and that can be used “on the spot”;
that is, at the moment it is created. This is often convenient, especially if the function is
only going to be used once or as an argument to a higher-order function, such as Map,
Fold, or Nest. The built-in function Function is used to create a pure function.

The basic form of a pure function is Function[x,body] for a pure function with a
single variable x (any symbol can be used for the variable), and
Function[{x,y,…},body] for a pure function with more than one variable. The body
looks like the right-hand side of a user-defined function definition, with the variables x, y,
…, where argument names would be.

As an example, the square function we created earlier can be written as a pure
function.

In[1]:= Function@z, z2D
Out[1]= Function@z, z2D

There is also a standard input form that can be used in writing a pure function which is
easier to write than the Function notation but can be a bit cryptic to read. The right-
hand side of the function definition is rewritten by replacing the variable by the pound
symbol (#) and ending the expression with the ampersand symbol (&) to indicate that this
is a pure function.

#2 &

If there is more than one variable, #1, #2, and so on are used.
A pure function can be used exactly like more conventional looking functions, by

following the function with the argument values enclosed in square brackets. First we show
the pure function using Function.

In[2]:= Function@z, z2D@6D
Out[2]= 36

Here is the same thing, but using the more cryptic shorthand notation (the parentheses in
the following example are purely for readability and can be omitted if you wish).

In[3]:= H#2 &L@6D
Out[3]= 36

We can, if we wish, give a pure function a name and then use that name to call the function
later. This has the same effect as defining the function in the more traditional manner.

In[4]:= squared = H#2L &;

102 An Introduction to Programming with Mathematica

In[5]:= squared@6D
Out[5]= 36

Pure functions are very commonly used with higher-order functions like Map and
Apply, so before going further, let us first look at a few simple examples of the use of pure
functions.

Here is a list of numbers.

In[6]:= lis = 82, −5, 6.1<;
Now suppose we wished to square each number and then add 1 to it. The pure function
that does this is: #2 + 1 &. So that is what we need to map across this list.

In[7]:= Map@#2 + 1 &, lisD
Out[7]= 85, 26, 38.21<

In the next example we will create a set of data and then use the Select function to
filter out outliers.

In[8]:= data = 824.39001, 29.669, 9.321, 20.8856,

23.4736, 22.1488, 24.7434, 22.1619, 21.1039,

24.8177, 27.1331, 25.8705, 39.7676, 24.7762<
Out[8]= 824.39, 29.669, 9.321, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 39.7676, 24.7762<

A plot of the data shows there are two outliers.

In[9]:= ListPlot@data, PlotStyle → PointSize@.02DD;

2 4 6 8 10 12 14

10

15

20

25

30

35

40

The Select function takes two arguments — the first is the expression from which it will
select elements, and the second argument is a function that must return True or False.
Select[expr,test] will then select those elements from expr that return True when test is
applied to them.

4 Functional programming 103

Suppose we wish to exclude all data points that lie outside of the range 20 to 30.
Then we need a function that returns True if its argument is in that range.

In[10]:= Select@data, 20 ≤ # ≤ 30 &D
Out[10]= 824.39, 29.669, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

A good way to become comfortable with pure functions is to see them in action, so
we will convert some of the functions we defined earlier into pure functions, showing both
the (…#…)& and the Function forms so that you can decide which you prefer to use.

This function tests whether all the elements of a list are even.

In[11]:= areEltsEven@lis_D := Apply@And, Map@EvenQ, lisDD

In[12]:= areEltsEven@82, 4, 5, 8<D
Out[12]= False

Here it is written using pure functions.

In[13]:= Function@lis, Apply@And, Map@EvenQ, lisDDD@82, 4, 5, 8<D
Out[13]= False

In[14]:= HApply@And, Map@EvenQ, #1DDL &@82, 4, 5, 8<D
Out[14]= False

This function returns each element in the list greater than all previous elements.

In[15]:= maxima[x_] := Union[Rest[FoldList[Max, 0, x]]]

In[16]:= maxima@82, 6, 3, 7, 9, 2<D
Out[16]= 82, 6, 7, 9<

Here it is written using pure functions.

In[17]:= Function@x, Union@Rest@FoldList@Max, 0, xDDDD@82, 6, 3, 7, 9, 2<D
Out[17]= 82, 6, 7, 9<

In[18]:= Union@Rest@FoldList@Max, 0, #DDD &@82, 6, 3, 7, 9, 2<D
Out[18]= 82, 6, 7, 9<

We can also create nested pure functions. For example, this maps the pure squaring
function over the three-element list {3,2,7}.

In[19]:= Map@#2 &, 83, 2, 7<D
Out[19]= 89, 4, 49<

104 An Introduction to Programming with Mathematica

When dealing with nested pure functions, the shorthand notation can be used for
each of the pure functions but care needs to be taken to avoid confusion as to which #
variable belongs to which pure function. This can be avoided by using Function, in
which case different variable names can be used.

In[20]:= Function@y, Map@Function@x, x2D, yDD@83, 2, 7<D
Out[20]= 89, 4, 49<

Exercises

1. Write a function to sum the squares of the elements of a numeric list.

2. Write a function to sum the digits of any integer. You will need the IntegerDig�
its function (use ?IntegerDigits, or look up IntegerDigits in the Help
Browser to find out about this function).

3. Using the definition of the distance function from Exercise 3 of Section 4.4, write
a new function diameter[pts] that, given a set of points in the plane, finds the
maximum distance between all pairs of points. Try to incorporate the distance
function into diameter without naming it explicitly; that is, use it as a pure func-
tion. Consider using Distribute to get the set of all pairs of points.

In[1]:= pts = 8p1, p2, p3<;

In[2]:= Distribute@8pts, pts<, ListD
Out[2]= 88p1, p1<, 8p1, p2<, 8p1, p3<, 8p2, p1<,

8p2, p2<, 8p2, p3<, 8p3, p1<, 8p3, p2<, 8p3, p3<<

4. Take the removeRand function defined in Section 4.4 and rewrite it as a pure
function.

In[3]:= removeRand[lis_] :=

Delete[lis, Random[Integer, {1, Length[lis]}]]

5. Convert the deal function developed earlier into one that uses pure functions. Use
the pure function version of the removeRand function from the previous exercise in
your new deal function definition.

6. Create a function RepUnit[n] that generates integers of length n consisting
entirely of 1s. For example RepUnit[7] should produce 1111111.

4 Functional programming 105

7. Create a function chooseWithoutReplacement[lis,n] that is a generalization
of the deal function in that it will work with any list.

8. Write a pure function that moves a random walker from one location on a square
lattice to one of the four adjoining locations with equal probability. For example,
starting at {0,0}, the function should return either {0,1}, {0,-1}, {1,0} or
{-1,0} with equal likelihood. Now, use this pure function with NestList to
generate the list of step locations for an n-step random walk starting at {0,0}.

9. Create a function WordsStartingWith[lis,char] that outputs all those words in
lis that begin with the character char. As a sample list, you can use the dictionary.dat
file that comes with Mathematica.
Here is a platform-independent path to the dictionary file.

In[4]:= wordfile = ToFileName@8$TopDirectory, "Documentation",

"English", "Demos", "DataFiles"<, "dictionary.dat"D
Out[4]= C:\Program Files\Wolfram Research\Mathematica\5.1\

Documentation\English\Demos\DataFiles\dictionary.dat

This reads in the file using ReadList, specifying the type of data we are reading in
as a Word.

In[5]:= words = ReadList@wordfile, WordD;

10. Modify Exercise 9 above so that WordsStartingWith accepts a string of arbitrary
length as its second argument.

11. A naive approach to polynomial arithmetic would require three additions and six
multiplies to carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using
Horner’s method for fast polynomial multiplication, this expression can be repre-
sented as d + xHc + xHb + a xLL, where there are now half as many multiplies. In general,
the number of multiplies for an n-degree polynomial is given by:

In[6]:= Binomial@n + 1, 2D

Out[6]=
1
����
2
n H1 + nL

This, of course, grows quadratically with n, whereas Horner’s method grows linearly.
Create a function Horner[lis,var] that implements Horner’s method for polyno-

mial multiplication. Here is some sample input and the corresponding output that
your function should generate.

106 An Introduction to Programming with Mathematica

In[7]:= Horner@8a, b, c, d<, xD
Out[7]= d + x Hc + x Hb + a xLL

In[8]:= Expand@%D
Out[8]= d + c x + b x2 + a x3

4.7 One-liners
In the simplest version of a user-defined function, there are no value declarations or
auxiliary function definitions; the right-hand side is a single nested function call whose
arguments are the names of the arguments on the left-hand side, without the blanks. These
“one-liners” are fantastically useful and so we will discuss them in the context of three
examples, one from electrical engineering (computing Hamming distance), one from
ancient history (the Josephus problem), and the last a simple and practical problem
(counting change).

Hamming distance

When a code is transmitted over a channel in the presence of noise, errors will often occur.
The task of channel coding is to represent the source information in a manner that mini-
mizes the error probability in decoding. Hamming distance is used in source coding to
represent an information source with the minimum number of symbols. For two lists of
binary symbols, the Hamming distance is defined as the number of nonmatching elements
and so gives a measure of the how well these two lists match up.

Let us first think about how we might determine if two binary symbols are identical.
SameQ[x,y] will return True if x and y are identical.

In[1]:= 8SameQ@0, 0D, SameQ@1, 0D, SameQ@1, 1D<
Out[1]= 8True, False, True<

So we need to thread SameQ over the two lists of binary numbers

In[2]:= MapThread@SameQ, 881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D
Out[2]= 8False, False, True, True, False<

4 Functional programming 107

and then count up the occurrences of False.

In[3]:= Count@%, FalseD
Out[3]= 3

So a first definition of HammingDistance could be accomplished by putting these last
two pieces together.

In[4]:= HammingDistance@lis1_, lis2_D :
Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[5]:= HammingDistance@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D
Out[5]= 3

We might try to solve this problem by a more direct approach. Since we are dealing
with binary information, we could use some of the logical binary operators built into
Mathematica.

Here is our transposed list again.

In[6]:= lis = Transpose@881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D
Out[6]= 881, 0<, 80, 1<, 80, 0<, 81, 1<, 81, 0<<

BitXor[x,y] returns the bitwise XOR of x and y. So if x and y can only be among
the binary integers 0 or 1, BitXor will return 0 whenever they are the same and will
return 1 whenever they are different.

In[7]:= Apply@BitXor, 880, 0<, 81, 0<, 81, 1<<, 81<D
Out[7]= 80, 1, 0<

Here then is BitXor applied to lis.

In[8]:= Apply@BitXor, lis, 81<D
Out[8]= 81, 1, 0, 0, 1<

And here are the number of 1s that occur in that list.

In[9]:= Apply@Plus, %D
Out[9]= 3

Summing up, our function HammingDistance2 first pairs up the lists (Transpose),
then determines which pairs contain different elements (apply BitXor), and finally counts
up the number of 1s (Apply[Plus,…]).

In[10]:= HammingDistance2@lis1_, lis2_D := Apply@Plus,
Apply@BitXor, Transpose@8lis1, lis2<D, 81<D

D

108 An Introduction to Programming with Mathematica

In[11]:= HammingDistance2@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D
Out[11]= 3

Let us compare the running times of these implementations using a large data set, in
this case two lists consisting of one million 0s and 1s.

In[12]:= data1 = Table@Random@IntegerD, 8106<D;

In[13]:= data2 = Table@Random@IntegerD, 8106<D;

In[14]:= Timing@HammingDistance@data1, data2DD
Out[14]= 81.162 Second, 499801<

In[15]:= Timing@HammingDistance2@data1, data2DD
Out[15]= 81.392 Second, 499801<

Although these times do not look too bad, they are in fact too slow for any serious
work with signal processing. The exercises ask you to write an implementation of Hamming
Distance that runs about two orders of magnitude faster than those presented here.

As an aside, the above computations are not a bad check on the built-in random
number generator — we would expect that about one half of the paired up lists would
contain different elements.

The Josephus problem

Flavius Josephus was a Jewish historian during the Roman–Jewish war of the first century
AD. Through his writings comes the following story:

The Romans had chased a group of ten Jews into a cave and were about to attack. Rather than

die at the hands of their enemy, the group chose to commit suicide one by one. Legend has it

though, that they decided to go around their circle of ten individuals and eliminate every other

person until only one was left.

Who was the last to survive? Although a bit macabre, this problem has a definite
mathematical interpretation that lends itself well to a functional style of programming. We
will start by changing the problem a bit (the importance of rewording a problem can
hardly be overstated; the key to most problem-solving resides in turning something we can
not work with into something we can work with). We will restate the problem as follows: n
people are lined up. The first person is moved to the end of the line, the second person is
removed from the line, the third person is moved to the end of the line, and so on until
only one person remains in the line.

4 Functional programming 109

The statement of the problem indicates that there is a repetitive action, performed
over and over again. It involves the use of the RotateLeft function (move the person at
the front of the line to the back of the line) followed by the use of the Rest function
(remove the next person from the line).

In[16]:= Rest@RotateLeft@#DD &@8a, b, c, d<D
Out[16]= 8c, d, a<

At this point it is already pretty clear where this computation is headed. We want to take a
list and, using the Nest function, perform the pure function call (Rest[Rotate�
Left[#])& on the list until only one element remains. A list of n elements will need n - 1
calls. So we can now write the function, to which we give the apt name survivor.

In[17]:= survivor@lis_D :=

Nest@Rest@RotateLeft@#DD &, lis, Length@lisD − 1D
Trying out the survivor function on a list of ten, we see that the fifth position will be
the position of the survivor.

In[18]:= survivor@Range@10DD
Out[18]= 85<

Tracing the applications of RotateLeft in this example gives a very clear picture of what
is going on. The following form of TracePrint shows only the results of the applica-
tions of RotateLeft that occur during evaluation of the expression survivor[�
Range[6]].

In[19]:= TracePrint@survivor@Range@6DD, RotateLeftD
RotateLeft

82, 3, 4, 5, 6, 1<

RotateLeft

84, 5, 6, 1, 3<

RotateLeft

86, 1, 3, 5<

RotateLeft

83, 5, 1<

RotateLeft

81, 5<

Out[19]= 85<

110 An Introduction to Programming with Mathematica

Pocket change

As another example, we will write a program to perform an operation most of us do every
day: calculating how much change we have in our pocket. Suppose we have the following
collection of coins.

In[20]:= coins = 8p, p, q, n, d, d, p, q, q, p<
Out[20]= 8p, p, q, n, d, d, p, q, q, p<

Assume p, n, d, and q represent pennies, nickels, dimes, and quarters, respectively. Let us
start by using the Count function to determine the number of pennies we have.

In[21]:= Count@coins, pD
Out[21]= 4

This works. So let us do the same thing for all of the coin types.

In[22]:= 8Count@coins, pD, Count@coins, nD,
Count@coins, dD, Count@coins, qD<

Out[22]= 84, 1, 2, 3<

Looking at this list, it is apparent that there ought to be a more compact way of
writing the list. If we Map a pure function involving Count and coins on to the list
{p,n,d,q}, it should do the job.

In[23]:= Map@HCount@coins, #1D &L, 8p, n, d, q<D
Out[23]= 84, 1, 2, 3<

Now that we know how many coins of each type we have, we want to calculate how much
change we have. We first do the calculation manually to see what we get for an answer (so
we will know when our program works).

In[24]:= 4 1 + 1 5 + 2 10 + 3 25

Out[24]= 104

From the above computation we see that the lists {4,1,2,3} and {1,5,10,25} are
first multiplied together element-wise and then the elements of the result are added. This
suggests a few possibilities.

In[25]:= Apply@Plus, H84, 1, 2, 3< 81, 5, 10, 25<LD
Out[25]= 104

In[26]:= 84, 1, 2, 3<.81, 5, 10, 25<
Out[26]= 104

4 Functional programming 111

Either of these operations are suitable for the job (to coin a phrase, “there’s not a penny,
nickel, quarter, or dime’s worth of difference”). We will write the one-liner using the first
method.

In[27]:= pocketChange@x_D :=

Apply@Plus, Map@HCount@x, #D &L, 8p, n, d, q<D 81, 5, 10, 25<D

In[28]:= pocketChange@coinsD
Out[28]= 104

Exercises

1. Write a function to compute the Hamming distance of two binary lists (assumed to
be of equal length), using Select and an appropriate predicate function.

2. All of the implementations of Hamming distance discussed so far are a bit slow for
large datasets. You can get a significant speedup in running times by using functions
that are optimized for working with numbers (a topic we discuss in detail in Chapter
8). Write an implementation of Hamming distance using the Total function and
then compare running times with the other versions discussed in this chapter.

3. One of the best ways to learn how to write programs is to practice reading code. We
list below a number of one-liner function definitions along with a very brief explana-
tion of what these user-defined functions do and a typical input and output. Decon-
struct these programs to see what they do and then reconstruct them as compound
functions without any pure functions.
a. Determine the frequencies with which distinct elements appear in a list.

In[1]:= frequencies@lis_D := Map@H8#, Count@lis, #D<L &, Union@lisDD

In[2]:= frequencies@8a, a, b, b, b, a, c, c<D
Out[2]= 88a, 3<, 8b, 3<, 8c, 2<<

b. Divide up a list into parts each of whose lengths are given by the second
argument.

In[3]:= split1@lis_, parts_D :=

HInner@Take@lis, 8#1, #2<D &, Drop@#1, −1D + 1,

Rest@#1D, ListD &L@FoldList@Plus, 0, partsDD

112 An Introduction to Programming with Mathematica

In[4]:= split1@Range@10D, 82, 5, 0, 3<D
Out[4]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

This is the same as the previous program, done in a different way.

In[5]:= split2[lis_, parts_] :=

 Map[(Take[lis, # + {1, 0}])&,

 Partition[FoldList[Plus, 0, parts], 2, 1]]

c. Another game in the Illinois State Lottery is based on choosing n numbers, each
between 0 and s with no duplicates allowed. Write a user-defined function called
lotto (after the official lottery names of Little Lotto and Big Lotto) to perform
sampling without replacement on an arbitrary list. (Note: The difference between
this function and the function chooseWithoutReplacement is that the order
of selection is needed here.)

In[6]:= lotto1@lis_, n_D := HFlatten@
Rest@MapThread@Complement, 8RotateRight@#D, #<, 1DDD &L@

NestList@Delete@#, Random@Integer, 81, Length@#D<DD &,
lis, nDD

In[7]:= lotto1@Range@10D, 5D
Out[7]= 810, 3, 2, 7, 6<

This is the same as the previous program, done in a different way.

In[8]:= lotto2@lis_, n_D := Take@Transpose@Sort@
Transpose@8Table@Random@D, 8Length@lisD<D, lis<DDDP2T, nD

As the split and lotto programs illustrate, user-defined functions can be written
in several ways. The choice as to which version of a program to use has to be based
on efficiency. A program whose development time was shorter and which runs faster
is better than a program which took more time to develop and which runs more
slowly. Although concise Mathematica programs tend to run fastest, when execution

speed is a primary concern (when dealing with very large lists) it is a good idea to
take various programming approaches and perform Timing tests to determine the
fastest program.

4. Use the Timing function to determine when (in terms of the relative sizes of the list
and the number of elements being chosen) it is preferable to use the different ver-
sions of the lotto function.

5. Rewrite the pocketChange function in two different ways — one, using Dot, and
the other using Inner.

4 Functional programming 113

6. Make change with quarters, dimes, nickels, and pennies using the fewest coins.

In[9]:= makeChange@x_D :=

Quotient@FoldList@Mod, x, 825, 10, 5<D, 825, 10, 5, 1<D

In[10]:= makeChange@119D
Out[10]= 84, 1, 1, 4<

7. Write a one-liner to create a list of the step locations of a two-dimensional random
walk that is not restricted to a lattice. Hint: Each step length must be the same, so the
sum of the squares of the x- and y-components of each step should be equal to 1.

8. Write a one-liner version of convertToDate as described in Exercise 7 from
Section 4.5. Consider the built-in function FromDigits.

114 An Introduction to Programming with Mathematica

	4 Functional Programming
	4.1 Introduction
	4.2 Functions for manipulating expressions
	Map
	Thread and MapThread
	The Listable attribute
	Apply
	Inner and Outer
	Exercises

	4.3 Iterating functions
	Exercises

	4.4 Programs as functions
	User-defined functions
	Building up programs
	Exercises

	4.5 Auxiliary functions
	Compound functions
	Localizing names: Module
	Localizing values: Block
	Localizing constants: With
	Exercises

	4.6 Pure functions
	Exercises

	4.7 One-liners
	Hamming distance
	The Josephus problem
	Pocket change
	Exercises

