
4 Functional programming

Programming in Mathematica  is essentially  a matter of writing user-defined functions
that  work  like  mathematical  functions;  when  applied to  specific  values,  they  perform
computations  producing  results.  In  fact,  these  functions  can  operate  on  arbitrary
expressions,  including  other  functions.  This  functional  style  of  programming  distin-
guishes  Mathematica  from more traditional  procedural  languages  like  C and Fortran,
and  a  facility  at  functional  programming  is  essential  for  taking  full  advantage  of
Mathematica’s powerful language to solve your computational tasks.

4.1 Introduction
Functions  are objects  that  operate on expressions and output  unique expressions for each
input.  We can think of functions  as mathematicians  do.  For example,  here is  a definition
for a function of two variables.

In[1]:= f@x_, y_D := Cos@xD + Sin@yD
You can evaluate the function for numeric or symbolic values.

In[2]:= f@π, 1.6D
Out[2]= −0.000426397

In[3]:= f@θ, ρD
Out[3]= Cos@θD + Sin@ρD

Functions  can  be  significantly  more  complicated  objects.  Below  is  a  function  that
operates on functions. Like the function f above it takes two arguments, but, in this case,
its arguments are a function or expression, and a list containing the variable of integration
and the integration limits.

In[4]:= Integrate@Exp@I π xD, 8x, a, b<D

Out[4]=
� H�� a π − �� b πL
��������������������������������������

π



This particular function can be also be called with a function and a variable.

In[5]:= Integrate@Exp@I π xD, xD

Out[5]= −
� �� π x
�����������������

π

Here  is  a  function  that  also  takes  two  arguments  and  operates  on  functions,  but  it
returns a graphical object as its value.

In[6]:= PlotASinAx +
è!!!!
2  Sin@xDE, 8x, 0, 2 π<E
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Out[6]= � Graphics �

Programming involves writing a set of instructions to be applied for some appropri-
ate  input.  Whereas  procedural  programs  provide  a  step-by-step  set  of  instructions,  func-
tional programming involves the application of functions to their arguments. For example,
here is a traditional procedural approach to switching the elements in a list of pairs.

In[7]:= lis = 88α, 1<, 8β, 2<, 8γ, 3<<
Out[7]= 88α, 1<, 8β, 2<, 8γ, 3<<

In[8]:= temp = lis;

Do@8temp@@i, 1DD, temp@@i, 2DD< = 8lis@@i, 2DD, lis@@i, 1DD<,
8i, 1, Length@lisD<D;

temp

Out[10]= 881, α<, 82, β<, 83, γ<<

We first allocate an empty array temp, of the same size as lis; then we put elements into
temp one by one as we loop over lis; finally we return the value of temp.

Here is a simpler procedure using a structured iteration.

In[11]:= Table@8lis@@i, 2DD, lis@@i, 1DD<, 8i, 1, 3<D
Out[11]= 881, α<, 82, β<, 83, γ<<
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And here is a functional approach to solving the same problem.

In[12]:= Map@Reverse, lisD
Out[12]= 881, α<, 82, β<, 83, γ<<

This  simple  example  illustrates  several  of  the  key  features  of  functional  program-
ming. A functional approach often allows for a more direct implementation of the solution
to many problems, especially when list manipulations are involved. Notice that the proce-
dural approach required setting up a list structure and then looping over the list as i takes
on  successive  values,  whereas the functional  approach  simply  applied  the Reverse  func-
tion to the list directly.

Up to this point, we have described fairly simple functions and stayed focused on the
built-in functions present in Mathematica.  In this chapter we will first take a look at some
of  the  most  powerful  and  useful  functional  programming  constructs  in  Mathematica  and
then discuss the creation of our own functions, using many of the list and string manipulat-
ing  functions  discussed  earlier.  It  is  well  worthwhile  to  spend  time  familiarizing  yourself
with  these  functions  by  playing  around  with  them;  for  example,  create  various  lists  and
apply built-in functions to them. Having a larger vocabulary of built-in functions will not
only make it easier to follow the programs and do the exercises here, but will enhance your
own programming skills as well.

4.2 Functions for manipulating expressions
Three  of  the  most  powerful  and  commonly  used  functions  by  experienced  Mathematica
programmers  are  Map,  Apply,  and  Thread.  They  provide  very  sophisticated  ways  of
manipulating  expressions  in  Mathematica.  Becoming  familiar  with  them  is  essential  to
functional  programming  in  Mathematica.  In  this  section  we  will  discuss  their  syntax  and
look at some simple examples of their use. We will also briefly look at some related func-
tions  (Inner  and Outer),  which will  prove  useful  in manipulating  the structure  of  your
expressions. These higher-order functions will be used throughout the rest of this book.
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Map

Map applies a function to each element in a list. 

In[1]:= MapAHead, 93, 22
�������
7

, π=E

Out[1]= 8Integer, Rational, Symbol<

This is illustrated using an undefined function f  and a simple linear list.

In[2]:= Map@f, 8a, b, c<D
Out[2]= 8f@aD, f@bD, f@cD<

More  generally,  mapping  a  function  f  over  the  expression  g[a,b,c]  essentially
wraps the function f around each of the elements of g.

In[3]:= Map@f, g@a, b, cDD
Out[3]= g@f@aD, f@bD, f@cDD

So this general computation is identical to Map[f,{a,b,c}], except in that example g is
replaced with List (remember that FullForm[{a,b,c}] is List[a,b,c]).

The  real  power  of  the  Map  function  is  that  you  can  map  any  function  across  any
expression  for  which that  function  makes  sense.  Using  the  Reverse  function  with  Map,
you can reverse the order of elements in each list of a nested list.

In[4]:= Map@Reverse, 88a, b<, 8c, d<, 8e, f<<D
Out[4]= 88b, a<, 8d, c<, 8f, e<<

The elements in each of the inner lists in a nested list can be sorted.

In[5]:= Map@Sort, 882, 6, 3, 5<, 87, 4, 1, 3<<D
Out[5]= 882, 3, 5, 6<, 81, 3, 4, 7<<

Often, you will need to define your  own function to perform some computation on
every element of a list. This is the sort of computation that Map is expressly designed for.
Here is a list of three elements.

In[6]:= vec = 82, π, γ<;
If  we wished to square each element and add 1, we could first define a function that per-
forms this computation on its arguments.

In[7]:= f@x_D := x2 + 1
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Mapping this function over vec,  will then wrap f  around each element and evaluate f of
those elements.

In[8]:= Map@f, vecD
Out[8]= 85, 1 + π2, 1 + γ2<

Later  in  this  chapter  we  will  look  at  even  simpler  ways  of  performing  such
computations.

Thread and MapThread

The Thread function exchanges operations with arguments that are lists.

In[9]:= Thread@g@8a, b, c<, 8x, y, z<DD
Out[9]= 8g@a, xD, g@b, yD, g@c, zD<

You  can  accomplish  something  quite  similar  with  MapThread.  It  differs  from
Thread  in that it  takes  two arguments  – the function that  you are mapping and a list  of
two (or  more) lists  as  arguments  of the function. It  creates a new list  in which the corre-
sponding elements of the old lists are paired (or zipped together).

In[10]:= MapThread@g, 88a, b, c<, 8x, y, z<<D
Out[10]= 8g@a, xD, g@b, yD, g@c, zD<

With  Thread,  you  can  fundamentally  change  the  structure  of  the  expressions  you
are working with. For example, this threads the Equal function over the two lists given as
its arguments.

In[11]:= Thread@Equal@8a, b, c<, 8x, y, z<DD
Out[11]= 8a 
 x, b 
 y, c 
 z<

In[12]:= Map@FullForm, %D
Out[12]= 8Equal@a, xD, Equal@b, yD, Equal@c, zD<

Here is  another example of the use of Thread.  We start  off  with a list  of  variables
and a list of values. 

In[13]:= vars = 8x1, x2, x3, x4, x5<;

In[14]:= values = 81.2, 2.5, 5.7, 8.21, 6.66<;
From these two lists, we create a list of rules.

In[15]:= Thread@Rule@vars, valuesDD
Out[15]= 8x1 → 1.2, x2 → 2.5, x3 → 5.7, x4 → 8.21, x5 → 6.66<
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Notice how we started with a rule of lists and Thread  produced a list of rules. In this way,
you might think of Thread as a generalization of Transpose.

Here are a few more examples of MapThread.  This raises each element in the first
list to the power given by the corresponding element in the second list.

In[16]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D
Out[16]= 832, 6, 9<

Using Trace,  you can view some of the intermediate steps that  Mathematica  performs in
doing this calculation.

In[17]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D êê Trace
Out[17]= 8MapThread@Power, 882, 6, 3<, 85, 1, 2<<D,

825, 61, 32<, 825, 32<, 861, 6<, 832, 9<, 832, 6, 9<<

Using the List function, the corresponding elements in the three lists are placed in a list
structure (note that Transpose would do the same thing).

In[18]:= MapThread@List, 885, 3, 2<, 86, 4, 9<, 84, 1, 4<<D
Out[18]= 885, 6, 4<, 83, 4, 1<, 82, 9, 4<<

The Listable attribute

Many of the built-in functions that take a single argument have the property that, when a
list is the argument, the function is automatically applied to all of the elements in the list.
In  other  words,  these  functions  are  automatically  mapped  on  to  the  elements  of  the  list.
For example, the Log function has this attribute.

In[19]:= Log@8a, E, 1<D
Out[19]= 8Log@aD, 1, 0<

This is the same result you get using the Map function.

In[20]:= Map@Log, 8a, E, 1<D
Out[20]= 8Log@aD, 1, 0<

Many  of  the  built-in  functions  that  take  two  or  more  arguments  have  the  property
that,  when multiple lists  are the arguments, the function is automatically  applied to all of
the  corresponding  elements  in  the  list.  In  other  words,  these  functions  are  automatically
threaded on to the elements of the list.

In[21]:= 84, 6, 3< + 85, 1, 2<
Out[21]= 89, 7, 5<
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This gives the same result as using the Plus function with MapThread.

In[22]:= MapThread@Plus, 884, 6, 3<, 85, 1, 2<<D
Out[22]= 89, 7, 5<

Functions that are either automatically mapped or threaded on to the elements of list
arguments  are  said  to  be  Listable.  Many  of  Mathematica’s  built-in  functions  have  this
Attribute. 

In[23]:= Attributes@LogD
Out[23]= 8Listable, NumericFunction, Protected<

In[24]:= Attributes@PlusD
Out[24]= 8Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected<

By default, functions that you define do not have any attributes associated with them. So,
for example, if you define a function g, say, it will not automatically be threaded over a list.

In[25]:= g@88a, b<, 8c, d<<D
Out[25]= g@88a, b<, 8c, d<<D

If  you  want  your  function  to  have  the  ability  to  thread  over  lists,  give  it  the  Listable
attribute using SetAttributes.

In[26]:= SetAttributes@g, ListableD

In[27]:= g@88a, b<, 8c, d<<D
Out[27]= 88g@aD, g@bD<, 8g@cD, g@dD<<

Note  that  clearing  a  symbol  only  clears  values  associated  with  that  symbol.  It  does  not
clear any attributes associated with the symbol.

In[28]:= Clear@gD

In[29]:= ?g

Global`g

Attributes@gD = 8Listable<

To clear attributes, you need to use Remove.

In[30]:= Remove@gD
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Now there is no remaining information associated with g.

In[31]:= ?g

Information::notfound :  Symbol g not found. More…

Apply

Whereas  Map  is  used  to  perform  the  same  operation  on  each  element  of  an  expression,
Apply is used to change the structure of an expression.

In[32]:= Apply@f, g@a, b, cDD
Out[32]= f@a, b, cD

The function f was applied to the expression g[a,b,c] and Apply replaced the head of
g[a,b,c] with f.
If  the  second  argument  is  a  list,  applying  f  to  that  expression  simply  replaces  its  head
(List) with f.

In[33]:= Apply@f, 8a, b, c<D
Out[33]= f@a, b, cD

The following computation shows the same thing, except we are using the internal represen
tation of the list {a,b,c} here to better see how the structure is changed.

In[34]:= Apply@f, List@a, b, cDD
Out[34]= f@a, b, cD

We  see  that  the  elements  of  List  are  now  the  arguments  of  f.  Essentially,  you  should
think of Apply[f ,expr] as replacing the head of expr with f . 

In[35]:= Apply@Plus, 81, 2, 3, 4<D
Out[35]= 10

Here,  List[1,2,3,4]  has  been  changed  to  Plus[1,2,3,4]  or,  in  other  words,  the
head List has been replaced by Plus. 

Plus[a,b,c,d]  is  the  internal  representation  of  the  sum  of  these  four  symbols
that you would normally write a+b+c+d.

In[36]:= Plus@a, b, c, dD
Out[36]= a + b + c + d
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This list conversion can be applied to an entire list.

In[37]:= Apply@f, 881, 2, 3<, 85, 6, 7<<D
Out[37]= f@81, 2, 3<, 85, 6, 7<D

This is just vector addition.

In[38]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<D
Out[38]= 86, 8, 10<

One  important  distinction  between  Map  and  Apply  that  you  should  be  aware  of
concerns  the  level  of  the  expression  at  which  each  operate.  By  default,  Map  operates  at
level 1. That is, in Map[f, expr], f will be applied to each element at the top level of expr.
So, for example, if expr consists of a nested list, f will be applied to each of the sublists, but
not deeper, by default.

In[39]:= Map@f, 88a, b<, 8c, d<<D
Out[39]= 881 + a2, 1 + b2<, 81 + c2, 1 + d2<<

If  you  wish  to  apply  f  at  a  deeper  level,  then  you  have  to  specify  that  explicitly  using  a
third argument to Map.

In[40]:= Map@f, 88a, b<, 8c, d<<, 82<D
Out[40]= 881 + a2, 1 + b2<, 81 + c2, 1 + d2<<

Apply,  on  the other  hand,  operates  at  level 0.  That  is,  in Apply[f, expr],  Apply
looks at the part 0 of expr (that is, its Head) and replaces it with f.

In[41]:= Apply@f, 88a, b<, 8c, d<<D
Out[41]= f@8a, b<, 8c, d<D

Again, if you wish to apply f at a different level, then you have to specify that explic-
itly using a third argument to Apply.

In[42]:= Apply@f, 88a, b<, 8c, d<<, 1D
Out[42]= 8f@a, bD, f@c, dD<

For example, to apply Plus to each of the inner lists, you need to specify that Apply will
operate at level 1.

In[43]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<, 81<D
Out[43]= 86, 18<
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If  you are  a  little  unsure  of  what  has  just  happened,  consider  the following example and,
instead of f, think of Plus.

In[44]:= Apply@f, 881, 2, 3<, 85, 6, 7<<, 81<D
Out[44]= 8f@1, 2, 3D, f@5, 6, 7D<

Inner and Outer

The  Outer  function  applies  a  function  to  all  of  the  combinations  of  the  elements  in
several lists. This is a generalization of the mathematical outer product.

In[45]:= Outer@f, 8a, b<, 82, 3, 4<D
Out[45]= 88f@a, 2D, f@a, 3D, f@a, 4D<, 8f@b, 2D, f@b, 3D, f@b, 4D<<

Using the List  function as an argument,  you can create lists  of  ordered pairs  that  com-
bine the elements of several lists.

In[46]:= Outer@List, 8a, b<, 82, 3, 4<D
Out[46]= 888a, 2<, 8a, 3<, 8a, 4<<, 88b, 2<, 8b, 3<, 8b, 4<<<

Using Inner,  you can thread a function on to several lists  and then use the result as  the
argument to another function.

In[47]:= Inner@f, 8a, b, c<, 8d, e, f<, gD
Out[47]= g@f@a, dD, f@b, eD, f@c, fDD

This function lets you carry out some interesting operations.

In[48]:= Inner@Times, 8x1, y1, z1<, 8x2, y2, z2<, PlusD
Out[48]= x1 x2 + y1 y2 + z1 z2

In[49]:= Inner@List, 8a, b, c<, 8d, e, f<, PlusD
Out[49]= 8a + b + c, d + e + f<

Looking  at  these  two  examples,  you  can  see  that  Inner  is  really  a  generalization of  the
mathematical dot product.

In[50]:= Dot@8x1, y1, z1<, 8x2, y2, z2<D
Out[50]= x1 x2 + y1 y2 + z1 z2
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Exercises

1. Write a function addPair[{x,y}] that adds the elements in a pair. Then use your 
addPair function to sum each pair from the following.

data = 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<<;
Your output should look like {3,5,7,9,11}.

2. Use Apply to add the elements in each pair from a list of pairs of numbers such as in 
the previous exercise.

3. A matrix can be rotated by performing a number of successive operations. Rotate the 
matrix {{1,2,3},{4,5,6}} clockwise by 90 degrees, obtaining 
{{4,1},{5,2},{6,3}}, in two steps. Use TableForm to display the results.

4. While matrices can easily be added using Plus, matrix multiplication is more 
complicated. The Dot function, written as a single period, can be used.

In[1]:= 881, 2<, 83, 4<<.8x, y<
Out[1]= 8x + 2 y, 3 x + 4 y<

Perform matrix multiplication on {{1,2},{3,4}} and {x,y} without using Dot. 
(This can be done in two or three steps.)

5. FactorInteger[n] returns a nested list of prime factors and their exponents for 
the number n.

In[2]:= FactorInteger@3628800D
Out[2]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Use Apply to reconstruct the number from this nested list.

6. Repeat the above exercise but instead use Inner to construct the original number n 
from the factorization given by FactorInteger[n].

7. Using Inner, write a function div[vecs,vars] that computes the divergence of an 
n-dimensional vector field vecs = 8e1, e2, …, en< dependent upon n variables 
vars = 8v1, v2, …, vn<. The divergence is given by the sum of the pairwise partial 
derivatives.

∑e1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑v1

+
∑e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑v2

+ … +
∑en
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vn
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4.3 Iterating functions
A commonly performed task in computer science and mathematics is to repeatedly apply a
function to some expression. Iterating functions has a long and rich tradition in the history
of  computing.  Perhaps  the  most  famous  example  is  Newton’s  method  for  root  finding.
Chaos theory rests on studying how iterated functions behave under small perturbations of
their  initial  conditions  or  starting  values.  In  this  section,  we  will  introduce  several  func-
tions  available in Mathematica  for  function iteration.  In later  chapters  we will apply  these
and  other  programming  constructs  to  look  at  some  applications  of  iteration,  including
Newton’s method.

The Nest  function is  used to iterate functions. Here, g  is iterated (or applied to) a
four times.

In[1]:= Nest@g, a, 4D
Out[1]= g@g@g@g@aDDDD

The NestList function displays all of the intermediate values of the Nest operation.

In[2]:= NestList@g, a, 4D
Out[2]= 8a, g@aD, g@g@aDD, g@g@g@aDDD, g@g@g@g@aDDDD<

Using a starting value of 0.85, this generates a list of ten iterates of the Cos function.

In[3]:= NestList@Cos, 0.85, 10D
Out[3]= 80.85, 0.659983, 0.790003, 0.703843, 0.76236, 0.723208,

0.749687, 0.731902, 0.743904, 0.73583, 0.741274<

The list elements above are the values of 0.85, Cos[0.85], Cos[Cos[0.85]], and so
on.

In[4]:= 80.85, Cos@0.85D, Cos@Cos@0.85DD, Cos@Cos@Cos@0.85DDD<
Out[4]= 80.85, 0.659983, 0.790003, 0.703843<

In  fact,  the  iterates  of  the  cosine  function  tend  towards  a  fixed  point  which  can  be
obtained  with  FixedPoint.  This  function  is  particularly  useful  when you  do  not  know
how many iterations to perform on a function whose iterations eventually settle down.

In[5]:= FixedPoint@Cos, 0.85D
Out[5]= 0.739085

Whereas  Nest  and  NestList  operate  on  functions  of  one  variable,  Fold  and
FoldList generalize this notion by iterating a function of two arguments. In the follow-
ing example, the function f is first applied to a starting value x and the first element from a
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list,  then  this  result  is  used  as  the  first  argument  of  the  next  iteration,  with  the  second
argument coming from the second element in the list, and so on.

In[6]:= Fold@f, x, 8a, b, c<D
Out[6]= f@f@f@x, aD, bD, cD

If  FoldList  is  used,  then  you  will  see  all  of  the  intermediate  results  of  the  Fold
operation.

In[7]:= FoldList@f, x, 8a, b, c<D
Out[7]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

It  is easy to see what is going on with the FoldList  function by working with an arith-
metic operator. This generates “running sums.”

In[8]:= FoldList@Plus, 0, 8a, b, c, d<D
Out[8]= 80, a, a + b, a + b + c, a + b + c + d<

In[9]:= FoldList@Plus, 0, 81, 2, 3, 4, 5<D
Out[9]= 80, 1, 3, 6, 10, 15<

Exercises

1. Determine the locations after each step of a ten-step one-dimensional random walk. 
(Recall that you have already generated the step directions in Exercise 3 at the end of 
Section 3.2.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold, create a function fac[n] that takes in an integer n as argument and 
returns the factorial of n; that is, nHn - 1L Hn - 2L ∫3 ÿ 2 ÿ 1.
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4.4 Programs as functions
A  computer  program  is  a  set  of  instructions  (a  recipe)  for  carrying  out  a  computation.
When a program is evaluated with appropriate  inputs,  the computation  is  performed and
the result is returned. In this sense, a program is a mathematical function and the inputs to
a program are the arguments of the function. Executing a program is equivalent to apply-
ing a function to its arguments or, as it is often referred, making a function call.

User-defined functions

While there are a great  many built-in  functions  in Mathematica  that  can be used to carry
out  computations,  we  invariably  find  ourselves  needing  customized  functions.  For  exam-
ple,  once we have written a  program to  compute  some values  for  some particular  inputs,
we  might  want  to  perform  the  same  set  of  operations  on  different  inputs.  We  would
therefore like to create our own user-defined functions that we could then apply in the same
way as we call  a built-in  function  –  by entering the function name and specific argument
values.  We will start with the proper syntax (or grammar) to use when writing a function
definition.

The  function  definition  looks  very  much  like  a  mathematical  equation:  a  left-hand
side and a right-hand side separated by a colon-equal sign.

name[arg1 _,arg2 _,…,argn _]:= body

The  left-hand  side  starts  with  a  symbol.  This  symbol  is  referred  to  as  the  function
name  (or sometimes just  as  the function, as  in “the sine function”).  The function name is
followed by a set of square brackets, inside of which are a sequence of symbols ending with
blanks.  These  symbols  are  referred  to  as  the  function  argument  names,  or  just  the  function
arguments.

The  right-hand  side  of  a  user-defined  function  definition  is  called  the  body  of  the
function. The body can be either a single expression (a one-liner), or a series of expressions
(a compound function), both of which will be discussed in detail shortly. Argument names
from the left-hand side appear on the right-hand side without blanks. Basically, the right-
hand  side  is  a  formula  stating  what  computations  are  to  be  done  when  the  function  is
called with specific values of the arguments. 

When a user-defined function is  defined with a delayed assignment (:=),  nothing is
returned.  Thereafter,  calling  the  function  by  entering  the  left-hand  side  of  the  function
definition  with  specific  values  of  the  arguments  causes  the  body  of  the  function  to  be
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computed with the specific argument values substituted where the argument names occur.
In other words, when using delayed assignments, the body of your function is only evalu-
ated when the function is called, not when it is first defined.

A simple example of a user-defined function is square which squares a value (it is a
good idea to use a function name that indicates the purpose of the function).

In[1]:= square@x_D := x2

After  entering  a  function  definition,  you  call  the  function  in  the  same  way  that  a
built-in function is applied to an argument.

In[2]:= square@5D
Out[2]= 25

Building up programs

The ability to use the output of one function as the input of another is one of the keys to
functional  programming. A mathematician would  call  this  “composition  of  functions.”  In
Mathematica,  this  sequential  application  of  several  functions  is  known  as  a  nested  function
call. Nested function calls are not limited to using a single function repeatedly, such as with
the built-in Nest and Fold functions.

In[3]:= Cos@Sin@Tan@4.0DDD
Out[3]= 0.609053

To see the above computation more clearly, we can step through the computation.

In[4]:= Tan@4.0D
Out[4]= 1.15782

In[5]:= Sin@%D
Out[5]= 0.915931

In[6]:= Cos@%D
Out[6]= 0.609053

Wrapping the Trace  function around the computation lets us see all of the intermediate
expressions that are used in this evaluation.

In[7]:= Trace@Cos@Sin@Tan@4.0DDDD
Out[7]= 888Tan@4.D, 1.15782<, Sin@1.15782D, 0.915931<,

Cos@0.915931D, 0.609053<
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You can read nested functions  in much the same way that  they are created, starting
with the innermost functions and working towards the outermost functions. For example,
the following expression determines whether all of the elements in a list are even numbers.

In[8]:= Apply@And, Map@EvenQ, 82, 4, 6, 7, 8<DD
Out[8]= False

Let us step through the computation  much the same as Mathematica does, from the
inside out.

1. Map the predicate EvenQ to every element in the list {2,4,6,7,8}.

In[9]:= Map@EvenQ, 82, 4, 6, 7, 8<D
Out[9]= 8True, True, True, False, True<

2. Apply the logical function And to the result of the previous step.

In[10]:= Apply@And, %D
Out[10]= False

Finally, here is a definition that can be used on arbitrary lists.

In[11]:= setEvenQ@lis_D := Apply@And, Map@EvenQ, lisDD

In[12]:= setEvenQ@811, 5, 1, 18, 16, 6, 17, 6<D
Out[12]= False

Another,  more complicated,  example returns the elements in a list  of  positive num-
bers that are bigger than all of the preceding numbers in the list.

In[13]:= Union@Rest@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDD
Out[13]= 83, 6, 8<

The Trace of the function call shows the intermediate steps of the computation.

In[14]:= Trace@Union@Rest@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDDD
Out[14]= 888FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D,

8Max@0, 3D, 3<, 8Max@3, 1D, Max@1, 3D, 3<,

8Max@3, 6D, 6<, 8Max@6, 5D, Max@5, 6D, 6<,

8Max@6, 4D, Max@4, 6D, 6<, 8Max@6, 8D, 8<,

8Max@8, 7D, Max@7, 8D, 8<, 80, 3, 3, 6, 6, 6, 8, 8<<,

Rest@80, 3, 3, 6, 6, 6, 8, 8<D, 83, 3, 6, 6, 6, 8, 8<<,

Union@83, 3, 6, 6, 6, 8, 8<D, 83, 6, 8<<
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This computation can be described as follows:

• The  FoldList  function  is  first  applied  to  the  function  Max,  0,  and  the  list
{3,1,6,5,4,8,7}  (look  at  the  Trace  of  this  computation  to  see  what  Fold�
List is doing here).

In[15]:= FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D
Out[15]= 80, 3, 3, 6, 6, 6, 8, 8<

• The Rest function is then applied to the result of the previous step to remove the
first element of the list.

In[16]:= Rest@%D
Out[16]= 83, 3, 6, 6, 6, 8, 8<

• Finally,  the Union  function is  applied to the result  of the previous step to remove
duplicates.

In[17]:= Union@%D
Out[17]= 83, 6, 8<

Here is the function definition.

In[18]:= maxima@x_D := Union@Rest@FoldList@Max, 0, xDDD
Applying maxima  to a list  of  numbers produces  a list  of  all  those  numbers that are

larger than any number that comes before it.

In[19]:= maxima@84, 2, 7, 3, 4, 9, 14, 11, 17<D
Out[19]= 84, 7, 9, 14, 17<

Notice that in each of the nested functions described here, the argument of the first
function  was  explicitly  referred  to,  but  the  expressions  that  were  manipulated  in  the
succeeding function calls were not identified other than as the results of the previous steps
(that is, as the results of the preceding function applications).

Here is  an interesting application of building up a program with nested functions  –
the creation of a deck of cards. (Hint: The suit icons are entered by typing in \[ClubSuit
], \[DiamondSuit], etc.)
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In[20]:= cardDeck = Flatten@
Outer@List, 8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D

Out[20]= 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<, 8♣, 9<, 8♣, 10<,
8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<,

8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<, 8♥, 2<,
8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<, 8♥, 10<,
8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<,

8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

You might think of cardDeck  as a name for the expression given on the right-hand side
of the immediate definition, or you might think of cardDeck as defining a function with
zero arguments.

To  understand  what  is  going  on  here,  we  will  build  up  this  program from scratch.
First we form a list of the number and face cards in a suit by combining a list of the num-
bers  2 through 10, Range[2,10],  with a four-element list  representing the jack,  queen,
king, and ace, {J,Q,K,A}.

In[21]:= Join@Range@2, 10D, 8J, Q, K, A<D
Out[21]= 82, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A<

Now we pair each of the 13 elements in this list with each of the four elements in the list
representing the card suits {♣,♦,♥,♠}. This produces a list of 52 ordered pairs represent-
ing the cards in a deck, where the king of clubs, for example, is represented by {♣,K}). 

In[22]:= Outer@List, 8♣, ♦, ♥, ♠<, %D
Out[22]= 888♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<,

8♣, 8<, 8♣, 9<, 8♣, 10<, 8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<<,
88♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<, 8♦, 7<, 8♦, 8<,

8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<<,
88♥, 2<, 8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<,
8♥, 9<, 8♥, 10<, 8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<<,

88♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<, 8♠, 7<, 8♠, 8<,
8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<<

While we now have all  of  the cards in the deck, they are grouped by suit  in a nested list.
We therefore un-nest the list:

In[23]:= Flatten@%, 1D
Out[23]= 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<, 8♣, 9<, 8♣, 10<,

8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<, 8♦, 5<, 8♦, 6<,
8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<, 8♦, A<, 8♥, 2<,
8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<, 8♥, 10<,
8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<, 8♠, 6<,

8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

Voila! 
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The  step-by-step  construction  that  we  used  here,  applying  one  function  at  a  time,
checking each function call separately, is a very efficient way to prototype your programs in
Mathematica. We will use this technique again in the next example.

We will perform what is called a perfect shuffle, consisting of cutting the deck in half
and  then interleaving the  cards  from the  two  halves.  Rather  than  working  with  the large
list of 52 ordered pairs during the prototyping, we will use a short made-up list. A short list
of an even number of ordered integers is a good choice for the task.

In[24]:= d = Range@6D
Out[24]= 81, 2, 3, 4, 5, 6<

We first divide the list into two equal-sized lists.

In[25]:= Partition@d, Length@dDê 2D
Out[25]= 881, 2, 3<, 84, 5, 6<<

We now want to interleave these two lists to form {1,4,2,5,3,6}.  The first step is to
pair the corresponding elements in each of the two lists above. This can be done using the
Transpose function.

In[26]:= Transpose@%D
Out[26]= 881, 4<, 82, 5<, 83, 6<<

We  now  un-nest  the  interior  lists  using  the  Flatten  function.  We  could  flatten  our
simple list using Flatten[…], but, since we know that ultimately we will be dealing with
ordered pairs  rather than integers, we will use Flatten[…,1]  as  we did in creating the
card deck.

In[27]:= Flatten@%, 1D
Out[27]= 81, 4, 2, 5, 3, 6<

That  does  the  job.  Given  this  prototype,  it  is  easy  to  write  the  actual  function  to
perform a perfect shuffle on a deck of cards. Notice we have generalized this shuffle to lists
of arbitrary length.

In[28]:= shuffle@lis_D :=

Flatten@Transpose@Partition@lis, Length@lisDê2DD, 1D

In[29]:= shuffle@cardDeckD
Out[29]= 88♣, 2<, 8♥, 2<, 8♣, 3<, 8♥, 3<, 8♣, 4<, 8♥, 4<, 8♣, 5<, 8♥, 5<, 8♣, 6<,

8♥, 6<, 8♣, 7<, 8♥, 7<, 8♣, 8<, 8♥, 8<, 8♣, 9<, 8♥, 9<, 8♣, 10<,
8♥, 10<, 8♣, J<, 8♥, J<, 8♣, Q<, 8♥, Q<, 8♣, K<, 8♥, K<, 8♣, A<, 8♥, A<,
8♦, 2<, 8♠, 2<, 8♦, 3<, 8♠, 3<, 8♦, 4<, 8♠, 4<, 8♦, 5<, 8♠, 5<, 8♦, 6<,

8♠, 6<, 8♦, 7<, 8♠, 7<, 8♦, 8<, 8♠, 8<, 8♦, 9<, 8♠, 9<, 8♦, 10<,
8♠, 10<, 8♦, J<, 8♠, J<, 8♦, Q<, 8♠, Q<, 8♦, K<, 8♠, K<, 8♦, A<, 8♠, A<<
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Let  us  take  this  example  one  step  further  and  construct  a  function  that  deals  cards
from a card deck. We will construct this function in stages using the prototyping method
we showed earlier.
First we need to define a function that removes a single element from a randomly chosen
position in a list.

In[30]:= removeRand@lis_D :=

Delete@lis, Random@Integer, 81, Length@lisD<DD
The function removeRand first uses the Random function to randomly choose an integer
k  between 1 and the length of the list, and then uses the Delete  function to remove the
kth element of the list. For example, if a list has 10 elements, an integer between 1 and 10,
say  6,  is  randomly  determined  and  the  element  in  the  sixth  position  in  the  list  is  then
removed from the list.

In[31]:= lis = 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<;
removeRand@lisD

Out[32]= 82, 3, 4, 5, 6, 7, 8, 9, 10<

Now  we  want  to  make  a  function  call  that  applies  the  removeRand  function  to  the
cardDeck  list,  then applies  the removeRand  function to  the resulting list,  then applies
the removeRand  function to the resulting list, and so on, a total  of n  times. The way to
carry out this operation is with the Nest function.

Nest[removeRand, cardDeck, n]

Lastly, we want the cards that are removed from cardDeck rather than those that remain.

Complement[cardDeck, Nest[removeRand, cardDeck, n]]

Now, we write this up formally into the user-defined deal function.

In[33]:= deal@n_D := Complement@cardDeck, Nest@removeRand, cardDeck, nDD
Let us try it out.

In[34]:= deal@5D
Out[34]= 88♣, 3<, 8♣, K<, 8♦, 2<, 8♥, K<, 8♠, J<<

Not a bad hand!
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Exercises

1. One of the games in the Illinois State Lottery is based on choosing n numbers, each 
between 0 and 9, with duplicates allowed; in practice, a selection is made from 
containers of numbered ping pong balls. We can model this game using a simple 
user-defined function, which we will call pick (after the official lottery names of Pick 
3 and Pick 4).

In[1]:= pick@n_D := Table@Random@Integer, 80, 9<D, 8n<D

In[2]:= pick@4D
Out[2]= 80, 9, 0, 4<

This program can be generalized to perform random sampling with replacement on any 
list. Write a function chooseWithReplacement[lis,n], where lis is the list, n is 
the number of elements being chosen and the following is a typical result.

In[3]:= chooseWithReplacement@8a, b, c, d, e, f, g, h<, 3D
Out[3]= 8h, b, f<

2. Write your own user-defined functions using the ToCharacterCode and From�
CharacterCode functions to perform the same operations as StringInsert and 
StringDrop.

3. Create a function distance[a,b] that finds the distance between two points a and 
b in the plane. 

4. Write a user-defined function interleave2 that interleaves the elements of two 
lists of unequal length. (You have already seen how to interleave lists of equal length 
using Partition earlier in this section.) Your function should take the lists 
{1,2,3} and {a,b,c,d} as inputs and return {1,a,2,b,3,c,d}.

5. Write a nested function call that creates a deck of cards and performs a perfect 
shuffle on it.

6. Write nested function calls using the ToCharacterCode and FromCharacter�
Code functions to perform the same operations as the built-in StringJoin and 
StringReverse functions.
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4.5 Auxiliary functions
There are several major drawbacks to the deal function created in the previous section. In
order  to  use  deal,  the  definition of  removeRand  and  the  value of  cardDeck  must  be
entered before calling deal.  It  would  be much more convenient if  we could  incorporate
these functions within the deal function definition itself. In the next section, we will show
how this can be done.

Compound functions

The left-hand side of a compound function is  the same as that of any user-defined function.
The  right-hand  side  consists  of  consecutive  expressions  enclosed  in  parentheses  and
separated by semicolons.

name@arg1 _, arg2 _, …, argn _D := Hexpr1; expr2; …; exprmL

The  expressions  can  be  user-defined  functions  (also  known  as  auxiliary  functions),
value  declarations,  and  function  calls.  When  a  compound  function  is  evaluated  with
particular  argument  values,  these  expressions  are evaluated  in  order and  the result  of  the
evaluation of the last expression is returned (by adding a semicolon after exprn, the display
of the final evaluation result can also be suppressed).

We  will  work  with  the  deal  function  to  illustrate  how  a  compound  function  is
created. We need the following three expressions.

In[1]:= cardDeck = Flatten@Outer@List,
8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;

In[2]:= removeRand@lis_D :=

Delete@lis, Random@Integer, 81, Length@lisD<DD

In[3]:= deal@n_D := Complement@cardDeck, Nest@removeRand, cardDeck, nDD
The  conversion  to  a  compound  function  is  easily  done.  We  will  first  remove  the  old
definitions.

In[4]:= Clear@deal, cardDeck, removeRandD
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Now we can create and enter the new definition.

In[5]:= deal@n_D := H
cardDeck = Flatten@Outer@List,

8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;
removeRand@lis_D := Delete@lis,
Random@Integer, 81, Length@lisD<DD;

Complement@cardDeck, Nest@removeRand, cardDeck, nDD
L

Let us check that this works.

In[6]:= deal@5D
Out[6]= 88♣, 3<, 8♦, 2<, 8♥, 3<, 8♥, 4<, 8♥, Q<<

A couple  of things  should  be pointed  out  about  the right-hand side of a compound
function  definition.  Since  the  expressions  on  the  right-hand  side  are  evaluated  in  order,
value  declarations  and  auxiliary  function  definitions  should  be  given  before  they  are  used
and the argument  names used on the left-hand side of  auxiliary  function definitions  must
differ from the argument names used by the compound function itself.

Finally, when we enter a compound function definition, we are entering not only the
function but also the auxiliary functions and the value declarations. If we then remove the
function  definition using Clear,  the auxiliary  function definitions  and value declarations
remain. This can cause a problem if we subsequently try to use the names of these auxiliary
functions and values elsewhere.

So  how  does  the  global  rule  base  treat  compound  functions?  When  a  compound
function  definition  is  entered,  a  rewrite  rule  corresponding  to  the  entire  definition  is
created. Each time the compound function is subsequently called, rewrite rules are created
from  the  auxiliary  function  definitions  and  value  declarations  within  the  compound
function.

In[7]:= ?cardDeck

Global`cardDeck

cardDeck = 88♣, 2<, 8♣, 3<, 8♣, 4<, 8♣, 5<, 8♣, 6<, 8♣, 7<, 8♣, 8<,
8♣, 9<, 8♣, 10<, 8♣, J<, 8♣, Q<, 8♣, K<, 8♣, A<, 8♦, 2<, 8♦, 3<, 8♦, 4<,

8♦, 5<, 8♦, 6<, 8♦, 7<, 8♦, 8<, 8♦, 9<, 8♦, 10<, 8♦, J<, 8♦, Q<, 8♦, K<,
8♦, A<, 8♥, 2<, 8♥, 3<, 8♥, 4<, 8♥, 5<, 8♥, 6<, 8♥, 7<, 8♥, 8<, 8♥, 9<,
8♥, 10<, 8♥, J<, 8♥, Q<, 8♥, K<, 8♥, A<, 8♠, 2<, 8♠, 3<, 8♠, 4<, 8♠, 5<,

8♠, 6<, 8♠, 7<, 8♠, 8<, 8♠, 9<, 8♠, 10<, 8♠, J<, 8♠, Q<, 8♠, K<, 8♠, A<<

It is considered bad programming practice to leave auxiliary definitions in the global
rule  base  that  are  not  explicitly  needed  by  the  user  of  your  function.  In  fact,  it  could
interfere with a user’s workspace and cause unintended problems.
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To prevent these additional  rewrite rules  from being placed in the global  rule base,
you  can  localize  their  names  by  using  the  Module  construct  in  the  compound  function
definition. This is what we discuss next.

Localizing names: Module

When a user-defined function is written, it is generally a good idea to isolate the names of
values  and  functions  defined  on  the  right-hand  side  from  the  outside  world  in  order  to
avoid any conflict with the use of a name elsewhere in the session (for example, cardDeck
might be used elsewhere to represent a pinochle deck). This can be done by wrapping the
right-hand side of the function definition in the built-in Module function.

name@arg
1
 _, arg

2
 _, …, argn _D := Module@8name1, name2 = value, …<,

exprD

The first argument of the Module function is a list of the names we want to localize. If we
wish, we can assign values to these names, as is shown with name2 above (the assigned value
is  only  an  initial  value  and  can  be  changed  subsequently).  The  list  is  separated  from the
right-hand  side  by  a  comma  and  so  the  parentheses  enclosing  the  right-hand  side  of  a
compound function are not needed.

We can demonstrate the use of Module with the deal function.

In[8]:= Clear@dealD

In[9]:= deal@n_D := Module@8cardDeck, removeRand<,
cardDeck = Flatten@Outer@List,

8♣, ♦, ♥, ♠<, Join@Range@2, 10D, 8J, Q, K, A<DD, 1D;
removeRand@lis_D := Delete@lis,
Random@Integer, 81, Length@lisD<DD;

Complement@cardDeck, Nest@removeRand, cardDeck, nDDD
Briefly,  when Module  is  encountered,  the symbols  that  are being localized (card�

Deck  and  removeRand  in  the  above  example)  are  temporarily  given  new  and  unique
names  and  all  occurrences  of  those  symbols  in  the  body  of  the  Module  are  given  those
new names as well. In this way, these unique and temporary names, which are local to the
function will not interfere with any functions outside of the Module.
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It  is  generally  a  good  idea  to  wrap  the  right-hand  side  of  all  compound  function
definitions in the Module function. Another way to avoid conflicts in the use of names of
auxiliary function definitions is to use a function that can be applied without being given a
name. Such functions are called pure functions, which we discuss in Section 4.6.

Localizing values: Block

Occasionally,  you will need to localize a value  associated with a symbol without localizing
the symbol name itself.  For example, you may have a recursive computation that requires
you  to  temporarily  reset  the  system  variable  $RecursionLimit.  You  can  do  this  with
Block,  thereby  only  localizing  the  value  of  $RecursionLimit  during  the  evaluation
inside the Block.

In[10]:= Block@8$RecursionLimit = 20<,
x = g@xD

D
$RecursionLimit::reclim :  

Recursion depth of 20 exceeded. More…

Out[10]= g@g@

g@g@g@g@g@g@g@g@g@g@g@g@g@g@g@g@Hold@g@xDDDDDDDDDDDDDDDDDDDD

Notice the global value of $RecursionLimit is unchanged.

In[11]:= $RecursionLimit

Out[11]= 256

This construct is similar to what is done for the iterators in Table, Do, Sum, and Prod�
uct. 

Module,  on  the  other  hand,  would  create  an  entirely  new symbol,  $Recursion�
Limit$nn  that  would  have  nothing  to  do  with  the global  variable $RecursionLimit,
and so Module would be inappropriate for this particular task.

Localizing constants: With

Another  scoping  construct  is  available  when you  simply  need to  localize  constants.  If,  in
the  body  of  your  function,  you  use  a  variable  that  is  assigned  a  constant  once  and  never
changes, then With is the preferred means to localize that constant.

This sets the global variable y to have the value 5.

In[12]:= y = 5;
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Here is a simple function that initializes y as a local constant.

In[13]:= f@x_D := With@8y = x + 1<,
y

D
We see the global  symbol  is unchanged and it  does not interfere with the local  symbol y
inside the With.

In[14]:= y

Out[14]= 5

In[15]:= f@2D
Out[15]= 3

Using  With,  you  can  initialize  local  constants  with  the  values  of  global  symbols.  For
example:

In[16]:= With@8y = y<,
g@x_D := x + y

D
This shows that the global value for y was inserted inside g.

In[17]:= ?g

Global`g

g@x$_D := x$ + 5

Resetting the global value of y has no effect on the localized y inside the With.

In[18]:= y = 1;

In[19]:= g@5D
Out[19]= 10

Exercises

1. Write a compound function definition for the location of steps taken in an n-step 
random walk on a square lattice. Hint: Use the definition for the step increments of 
the walk as an auxiliary function. 

2. The PerfectSearch function defined in Section 1.1 is impractical for checking 
large numbers because it has to check all numbers from 1 through n. If you already 
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know the perfect numbers below 500, say, it is inefficient to check all numbers from 
1 to 1,000 if you are only looking for perfect numbers in the range 500 to 1,000. 
Modify searchPerfect so that it accepts two numbers as input and computes all 
perfect numbers between the inputs. For example, PerfectSearch[a,b] will 
produce a list of all perfect numbers in the range from a to b.

3. Overload the PerfectSearch function to compute all 3-perfect numbers. A 3-per-
fect number is such that the sum of its divisors equals three times the number. For 
example, 120 is 3-perfect since it is equal to three times the sum of its divisors.

In[1]:= Apply@Plus, Divisors@120DD
Out[1]= 360

Find the only other 3-perfect number under 1,000.
You can overload PerfectSearch as defined in Exercise 2 above by defining a 
three-argument version PerfectSearch[a,b,3].

4. Overload PerfectSearch to find the three 4-perfect numbers less than 2,200,000.

5. Redefine PerfectSearch so that it accepts as input a number k, and two numbers 
a and b, and computes all k-perfect numbers in the range from a to b. For example, 
PerfectSearch[1,30,2] would compute all 2-perfect numbers in the range 
from 1 to 30 and, hence, would output {6,28}.

6. If sHnL is defined to be the sum of the divisors of n, then n is called superperfect if 
sHsHnLL = 2 n. Write a function SuperPerfectSearch[a,b] that finds all super-
perfect numbers in the range from a to b.

7. Often in processing files you will be presented with expressions that need to be 
converted into a format that can be more easily manipulated inside Mathematica. For 
example, a file may contain dates in the form 20030515 to represent May 15 2003. 
Mathematica represents its dates as a list {year,month,day,hour,minutes,seconds}. 
Write a function convertToDate[n] to convert a number consisting of eight 
digits such as 20030515 into a list of the form {2003,5,15}.

In[2]:= convertToDate@20030515D
Out[2]= 82003, 5, 15<
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4.6 Pure functions
A pure function is a function that does not have a name and that can be used “on the spot”;
that  is,  at  the moment  it  is  created.  This  is  often convenient, especially  if  the function is
only  going  to  be  used  once  or  as  an  argument  to  a  higher-order  function,  such  as  Map,
Fold, or Nest. The built-in function Function is used to create a pure function.

The basic form of a pure function is Function[x,body] for a pure function with a
single  variable  x  (any  symbol  can  be  used  for  the  variable),  and
Function[{x,y,…},body]  for  a  pure  function  with  more  than  one  variable.  The  body
looks  like the right-hand side of a user-defined function definition, with the variables x, y,
…, where argument names would be.

As  an  example,  the  square  function  we  created  earlier  can  be  written  as  a  pure
function.

In[1]:= Function@z, z2D
Out[1]= Function@z, z2D

There  is  also  a  standard  input  form that  can  be used  in  writing a  pure function which is
easier  to  write than  the Function  notation  but  can  be  a  bit  cryptic  to  read.  The right-
hand  side  of  the  function  definition  is  rewritten  by  replacing  the  variable  by  the  pound
symbol (#) and ending the expression with the ampersand symbol (&) to indicate that this
is a pure function.

#2 &

If there is more than one variable, #1, #2, and so on are used.
A  pure  function  can  be  used  exactly  like  more  conventional  looking  functions,  by

following the function with the argument values enclosed in square brackets. First we show
the pure function using Function.

In[2]:= Function@z, z2D@6D
Out[2]= 36

Here is the same thing, but using the more cryptic shorthand notation (the parentheses in
the following example are purely for readability and can be omitted if you wish).

In[3]:= H#2 &L@6D
Out[3]= 36

We can, if we wish, give a pure function a name and then use that name to call the function
later. This has the same effect as defining the function in the more traditional manner.

In[4]:= squared = H#2L &;
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In[5]:= squared@6D
Out[5]= 36

Pure  functions  are  very  commonly  used  with  higher-order  functions  like  Map  and
Apply, so before going further, let us first look at a few simple examples of the use of pure
functions.

Here is a list of numbers.

In[6]:= lis = 82, −5, 6.1<;
Now suppose  we wished to square  each number and then add 1 to it.  The pure function
that does this is: #2 + 1 &. So that is what we need to map across this list.

In[7]:= Map@#2 + 1 &, lisD
Out[7]= 85, 26, 38.21<

In the next example we will create a set of data and then use the Select function to
filter out outliers.

In[8]:= data = 824.39001, 29.669, 9.321, 20.8856,

23.4736, 22.1488, 24.7434, 22.1619, 21.1039,

24.8177, 27.1331, 25.8705, 39.7676, 24.7762<
Out[8]= 824.39, 29.669, 9.321, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 39.7676, 24.7762<

A plot of the data shows there are two outliers.

In[9]:= ListPlot@data, PlotStyle → PointSize@.02DD;
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The Select function takes two arguments — the first is the expression from which it will
select elements, and the second argument is  a function that must return True  or False.
Select[expr,test] will then select those elements from expr that return True when test is
applied to them.
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Suppose  we  wish  to  exclude  all  data  points  that  lie  outside  of  the  range  20  to  30.
Then we need a function that returns True if its argument is in that range. 

In[10]:= Select@data, 20 ≤ # ≤ 30 &D
Out[10]= 824.39, 29.669, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

A good way to become comfortable with pure functions  is to see them in action, so
we will convert some of the functions we defined earlier into pure functions, showing both
the (…#…)& and the Function forms so that you can decide which you prefer to use.

This function tests whether all the elements of a list are even.

In[11]:= areEltsEven@lis_D := Apply@And, Map@EvenQ, lisDD

In[12]:= areEltsEven@82, 4, 5, 8<D
Out[12]= False

Here it is written using pure functions.

In[13]:= Function@lis, Apply@And, Map@EvenQ, lisDDD@82, 4, 5, 8<D
Out[13]= False

In[14]:= HApply@And, Map@EvenQ, #1DDL &@82, 4, 5, 8<D
Out[14]= False

This function returns each element in the list greater than all previous elements.

In[15]:= maxima[x_] := Union[Rest[FoldList[Max, 0, x]]]

In[16]:= maxima@82, 6, 3, 7, 9, 2<D
Out[16]= 82, 6, 7, 9<

Here it is written using pure functions.

In[17]:= Function@x, Union@Rest@FoldList@Max, 0, xDDDD@82, 6, 3, 7, 9, 2<D
Out[17]= 82, 6, 7, 9<

In[18]:= Union@Rest@FoldList@Max, 0, #DDD &@82, 6, 3, 7, 9, 2<D
Out[18]= 82, 6, 7, 9<

We can also create nested pure functions. For example, this maps the pure squaring
function over the three-element list {3,2,7}.

In[19]:= Map@#2 &, 83, 2, 7<D
Out[19]= 89, 4, 49<
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When  dealing  with  nested  pure  functions,  the  shorthand  notation  can  be  used  for
each  of  the  pure  functions  but  care  needs  to  be  taken  to  avoid  confusion  as  to  which  #
variable  belongs  to  which  pure  function.  This  can  be  avoided  by  using  Function,  in
which case different variable names can be used.

In[20]:= Function@y, Map@Function@x, x2D, yDD@83, 2, 7<D
Out[20]= 89, 4, 49<

Exercises

1. Write a function to sum the squares of the elements of a numeric list.

2. Write a function to sum the digits of any integer. You will need the IntegerDig�
its function (use ?IntegerDigits, or look up IntegerDigits in the Help 
Browser to find out about this function).

3. Using the definition of the distance function from Exercise 3 of Section 4.4, write 
a new function diameter[pts] that, given a set of points in the plane, finds the 
maximum distance between all pairs of points. Try to incorporate the distance 
function into diameter without naming it explicitly; that is, use it as a pure func-
tion. Consider using Distribute to get the set of all pairs of points.

In[1]:= pts = 8p1, p2, p3<;

In[2]:= Distribute@8pts, pts<, ListD
Out[2]= 88p1, p1<, 8p1, p2<, 8p1, p3<, 8p2, p1<,

8p2, p2<, 8p2, p3<, 8p3, p1<, 8p3, p2<, 8p3, p3<<

4. Take the removeRand function defined in Section 4.4 and rewrite it as a pure 
function.

In[3]:= removeRand[lis_] := 

Delete[lis, Random[Integer, {1, Length[lis]}]]

5. Convert the deal function developed earlier into one that uses pure functions. Use 
the pure function version of the removeRand function from the previous exercise in 
your new deal function definition.

6. Create a function RepUnit[n] that generates integers of length n consisting 
entirely of 1s. For example RepUnit[7] should produce 1111111.
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7. Create a function chooseWithoutReplacement[lis,n] that is a generalization 
of the deal function in that it will work with any list.

8. Write a pure function that moves a random walker from one location on a square 
lattice to one of the four adjoining locations with equal probability. For example, 
starting at {0,0}, the function should return either {0,1}, {0,-1}, {1,0} or 
{-1,0} with equal likelihood. Now, use this pure function with NestList to 
generate the list of step locations for an n-step random walk starting at {0,0}.

9. Create a function WordsStartingWith[lis,char] that outputs all those words in 
lis that begin with the character char. As a sample list, you can use the dictionary.dat 
file that comes with Mathematica.
Here is a platform-independent path to the dictionary file.

In[4]:= wordfile = ToFileName@8$TopDirectory, "Documentation",

"English", "Demos", "DataFiles"<, "dictionary.dat"D
Out[4]= C:\Program Files\Wolfram Research\Mathematica\5.1\

Documentation\English\Demos\DataFiles\dictionary.dat

This reads in the file using ReadList, specifying the type of data we are reading in 
as a Word.

In[5]:= words = ReadList@wordfile, WordD;

10. Modify Exercise 9 above so that WordsStartingWith accepts a string of arbitrary 
length as its second argument.

11. A naive approach to polynomial arithmetic would require three additions and six 
multiplies to carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using 
Horner’s method for fast polynomial multiplication, this expression can be repre-
sented as d + xHc + xHb + a xLL, where there are now half as many multiplies. In general, 
the number of multiplies for an n-degree polynomial is given by:

In[6]:= Binomial@n + 1, 2D

Out[6]=
1
����
2
n H1 + nL

This, of course, grows quadratically with n, whereas Horner’s method grows linearly. 
Create a function Horner[lis,var] that implements Horner’s method for polyno-

mial multiplication. Here is some sample input and the corresponding output that 
your function should generate.
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In[7]:= Horner@8a, b, c, d<, xD
Out[7]= d + x Hc + x Hb + a xLL

In[8]:= Expand@%D
Out[8]= d + c x + b x2 + a x3

4.7 One-liners
In  the  simplest  version  of  a  user-defined  function,  there  are  no  value  declarations  or
auxiliary  function  definitions;  the  right-hand  side  is  a  single  nested  function  call  whose
arguments are the names of the arguments on the left-hand side, without the blanks. These
“one-liners”  are  fantastically  useful  and  so  we  will  discuss  them  in  the  context  of  three
examples,  one  from  electrical  engineering  (computing  Hamming  distance),  one  from
ancient  history  (the  Josephus  problem),  and  the  last  a  simple  and  practical  problem
(counting change).

Hamming distance

When a code is transmitted over a channel in the presence of noise, errors will often occur.
The task of channel coding is to represent the source information in a manner that mini-
mizes  the  error  probability  in  decoding.  Hamming  distance  is  used  in  source  coding  to
represent  an  information  source  with  the  minimum number  of  symbols.  For  two  lists  of
binary symbols, the Hamming distance is defined as the number of nonmatching elements
and so gives a measure of the how well these two lists match up.

Let us first think about how we might determine if two binary symbols are identical.
SameQ[x,y] will return True if x and y are identical.

In[1]:= 8SameQ@0, 0D, SameQ@1, 0D, SameQ@1, 1D<
Out[1]= 8True, False, True<

So we need to thread SameQ over the two lists of binary numbers

In[2]:= MapThread@SameQ, 881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D
Out[2]= 8False, False, True, True, False<
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and then count up the occurrences of False.

In[3]:= Count@%, FalseD
Out[3]= 3

So  a  first  definition  of  HammingDistance  could  be  accomplished  by  putting  these  last
two pieces together.

In[4]:= HammingDistance@lis1_, lis2_D :
Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[5]:= HammingDistance@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D
Out[5]= 3

We might try to solve this problem by a more direct approach. Since we are dealing
with  binary  information,  we  could  use  some  of  the  logical  binary  operators  built  into
Mathematica.

Here is our transposed list again.

In[6]:= lis = Transpose@881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D
Out[6]= 881, 0<, 80, 1<, 80, 0<, 81, 1<, 81, 0<<

BitXor[x,y] returns the bitwise XOR of x and y. So if x and y can only be among
the  binary  integers  0  or  1,  BitXor  will  return  0  whenever  they  are  the  same  and  will
return 1 whenever they are different.

In[7]:= Apply@BitXor, 880, 0<, 81, 0<, 81, 1<<, 81<D
Out[7]= 80, 1, 0<

Here then is BitXor applied to lis.

In[8]:= Apply@BitXor, lis, 81<D
Out[8]= 81, 1, 0, 0, 1<

And here are the number of 1s that occur in that list.

In[9]:= Apply@Plus, %D
Out[9]= 3

Summing  up,  our  function  HammingDistance2  first  pairs  up  the  lists  (Transpose),
then determines which pairs contain different elements (apply BitXor), and finally counts
up the number of 1s (Apply[Plus,…]).

In[10]:= HammingDistance2@lis1_, lis2_D := Apply@Plus,
Apply@BitXor, Transpose@8lis1, lis2<D, 81<D

D
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In[11]:= HammingDistance2@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D
Out[11]= 3

Let us compare the running times of these implementations using a large data set, in
this case two lists consisting of one million 0s and 1s.

In[12]:= data1 = Table@Random@IntegerD, 8106<D;

In[13]:= data2 = Table@Random@IntegerD, 8106<D;

In[14]:= Timing@HammingDistance@data1, data2DD
Out[14]= 81.162 Second, 499801<

In[15]:= Timing@HammingDistance2@data1, data2DD
Out[15]= 81.392 Second, 499801<

Although these times do not  look too  bad,  they are in fact  too slow for any serious
work with signal processing. The exercises ask you to write an implementation of Hamming
Distance that runs about two orders of magnitude faster than those presented here.

As  an  aside,  the  above  computations  are  not  a  bad  check  on  the  built-in  random
number  generator  —  we  would  expect  that  about  one  half  of  the  paired  up  lists  would
contain different elements.

The Josephus problem

Flavius Josephus was a Jewish historian during the Roman–Jewish war of the first century
AD. Through his writings comes the following story:

The Romans had chased a group of ten Jews into a cave and were about to attack. Rather than 

die at the hands of their enemy, the group chose to commit suicide one by one. Legend has it 

though, that they decided to go around their circle of ten individuals and eliminate every other 

person until only one was left. 

Who  was  the  last  to  survive?  Although  a  bit  macabre,  this  problem  has  a  definite
mathematical interpretation that lends itself well to a functional style of programming. We
will  start  by  changing  the  problem  a  bit  (the  importance  of  rewording  a  problem  can
hardly be overstated; the key to most problem-solving resides in turning something we can
not work with into something we can work with). We will restate the problem as follows: n
people are lined up. The first person is moved to the end of the line, the second person is
removed from the line,  the third person  is  moved to the end of  the line,  and so  on until
only one person remains in the line.
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The statement  of  the  problem  indicates  that  there is  a  repetitive  action,  performed
over and over again. It involves the use of the RotateLeft function (move the person at
the  front  of  the  line  to  the  back  of  the  line)  followed  by  the  use  of  the  Rest  function
(remove the next person from the line).

In[16]:= Rest@RotateLeft@#DD &@8a, b, c, d<D
Out[16]= 8c, d, a<

At this point it is already pretty clear where this computation is headed. We want to take a
list  and,  using  the  Nest  function,  perform  the  pure  function  call  (Rest[Rotate�
Left[#])& on the list until only one element remains. A list of n elements will need n - 1
calls. So we can now write the function, to which we give the apt name survivor.

In[17]:= survivor@lis_D :=

Nest@Rest@RotateLeft@#DD &, lis, Length@lisD − 1D
Trying out  the survivor  function on a list  of  ten,  we see that  the fifth position will be
the position of the survivor.

In[18]:= survivor@Range@10DD
Out[18]= 85<

Tracing the applications of RotateLeft in this example gives a very clear picture of what
is  going  on.  The  following  form of  TracePrint  shows  only  the  results  of  the  applica-
tions  of  RotateLeft  that  occur  during  evaluation  of  the  expression  survivor[�
Range[6]].

In[19]:= TracePrint@survivor@Range@6DD, RotateLeftD
RotateLeft

82, 3, 4, 5, 6, 1<

RotateLeft

84, 5, 6, 1, 3<

RotateLeft

86, 1, 3, 5<

RotateLeft

83, 5, 1<

RotateLeft

81, 5<

Out[19]= 85<

110 An Introduction to Programming with Mathematica



Pocket change

As another example, we will write a program to perform an operation most of us do every
day:  calculating how much change we have in our pocket.  Suppose we have the following
collection of coins.

In[20]:= coins = 8p, p, q, n, d, d, p, q, q, p<
Out[20]= 8p, p, q, n, d, d, p, q, q, p<

Assume p,  n,  d,  and q  represent pennies,  nickels,  dimes, and quarters,  respectively. Let  us
start by using the Count function to determine the number of pennies we have.

In[21]:= Count@coins, pD
Out[21]= 4

This works. So let us do the same thing for all of the coin types.

In[22]:= 8Count@coins, pD, Count@coins, nD,
Count@coins, dD, Count@coins, qD<

Out[22]= 84, 1, 2, 3<

Looking  at  this  list,  it  is  apparent  that  there  ought  to  be  a  more  compact  way  of
writing  the  list.  If  we  Map  a  pure  function  involving  Count  and  coins  on  to  the  list
{p,n,d,q}, it should do the job.

In[23]:= Map@HCount@coins, #1D &L, 8p, n, d, q<D
Out[23]= 84, 1, 2, 3<

Now that we know how many coins of each type we have, we want to calculate how much
change we have. We first do the calculation manually  to see what we get for an answer (so
we will know when our program works).

In[24]:= 4 1 + 1 5 + 2 10 + 3 25

Out[24]= 104

From  the  above  computation  we  see  that  the  lists  {4,1,2,3}  and  {1,5,10,25}  are
first multiplied together element-wise and then the elements of the result are added. This
suggests a few possibilities.

In[25]:= Apply@Plus, H84, 1, 2, 3< 81, 5, 10, 25<LD
Out[25]= 104

In[26]:= 84, 1, 2, 3<.81, 5, 10, 25<
Out[26]= 104
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Either of these operations  are suitable  for the job (to coin a phrase, “there’s not a penny,
nickel, quarter, or dime’s worth of difference”). We will write the one-liner using the first
method.

In[27]:= pocketChange@x_D :=

Apply@Plus, Map@HCount@x, #D &L, 8p, n, d, q<D 81, 5, 10, 25<D

In[28]:= pocketChange@coinsD
Out[28]= 104

Exercises

1. Write a function to compute the Hamming distance of two binary lists (assumed to 
be of equal length), using Select and an appropriate predicate function.

2. All of the implementations of Hamming distance discussed so far are a bit slow for 
large datasets. You can get a significant speedup in running times by using functions 
that are optimized for working with numbers (a topic we discuss in detail in Chapter 
8). Write an implementation of Hamming distance using the Total function and 
then compare running times with the other versions discussed in this chapter.

3. One of the best ways to learn how to write programs is to practice reading code. We 
list below a number of one-liner function definitions along with a very brief explana-
tion of what these user-defined functions do and a typical input and output. Decon-
struct these programs to see what they do and then reconstruct them as compound 
functions without any pure functions.
a. Determine the frequencies with which distinct elements appear in a list.

In[1]:= frequencies@lis_D := Map@H8#, Count@lis, #D<L &, Union@lisDD

In[2]:= frequencies@8a, a, b, b, b, a, c, c<D
Out[2]= 88a, 3<, 8b, 3<, 8c, 2<<

b. Divide up a list into parts each of whose lengths are given by the second 
argument.

In[3]:= split1@lis_, parts_D :=

HInner@Take@lis, 8#1, #2<D &, Drop@#1, −1D + 1,

Rest@#1D, ListD &L@FoldList@Plus, 0, partsDD
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In[4]:= split1@Range@10D, 82, 5, 0, 3<D
Out[4]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

This is the same as the previous program, done in a different way.

In[5]:= split2[lis_, parts_] := 

   Map[(Take[lis, # + {1, 0}])&,

      Partition[FoldList[Plus, 0, parts], 2, 1]]

c. Another game in the Illinois State Lottery is based on choosing n numbers, each 
between 0 and s with no duplicates allowed. Write a user-defined function called 
lotto (after the official lottery names of Little Lotto and Big Lotto) to perform 
sampling without replacement on an arbitrary list. (Note: The difference between 
this function and the function chooseWithoutReplacement is that the order 
of selection is needed here.)

In[6]:= lotto1@lis_, n_D := HFlatten@
Rest@MapThread@Complement, 8RotateRight@#D, #<, 1DDD &L@

NestList@Delete@#, Random@Integer, 81, Length@#D<DD &,
lis, nDD

In[7]:= lotto1@Range@10D, 5D
Out[7]= 810, 3, 2, 7, 6<

This is the same as the previous program, done in a different way.

In[8]:= lotto2@lis_, n_D := Take@Transpose@Sort@
Transpose@8Table@Random@D, 8Length@lisD<D, lis<DDDP2T, nD

As the split and lotto programs illustrate, user-defined functions can be written 
in several ways. The choice as to which version of a program to use has to be based 
on efficiency. A program whose development time was shorter and which runs faster 
is better than a program which took more time to develop and which runs more 
slowly. Although concise Mathematica programs tend to run fastest, when execution 

speed is a primary concern (when dealing with very large lists) it is a good idea to 
take various programming approaches and perform Timing tests to determine the 
fastest program.

4. Use the Timing function to determine when (in terms of the relative sizes of the list 
and the number of elements being chosen) it is preferable to use the different ver-
sions of the lotto function.

5. Rewrite the pocketChange function in two different ways — one, using Dot, and 
the other using Inner.
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6. Make change with quarters, dimes, nickels, and pennies using the fewest coins.

In[9]:= makeChange@x_D :=

Quotient@FoldList@Mod, x, 825, 10, 5<D, 825, 10, 5, 1<D

In[10]:= makeChange@119D
Out[10]= 84, 1, 1, 4<

7. Write a one-liner to create a list of the step locations of a two-dimensional random 
walk that is not restricted to a lattice. Hint: Each step length must be the same, so the 
sum of the squares of the x- and y-components of each step should be equal to 1.

8. Write a one-liner version of convertToDate as described in Exercise 7 from 
Section 4.5. Consider the built-in function FromDigits.
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