
1 An introduction to Mathematica

Mathematica is a very large and seemingly complex system. It contains hundreds of
functions for performing various tasks in science, mathematics, and engineering,
including computing, programming, data analysis, knowledge representation, and
visualization of information. In this introductory chapter, we introduce the elementary
operations in Mathematica and give a sense of its computational and programming
breadth and depth. In addition, we give some basic information that users of Mathemat-
ica need to know, such as how to start Mathematica, how to get out of it, how to enter
simple inputs and get answers, and finally how to use Mathematica’s documentation to
get answers to questions about the system.

1.1 A brief overview of Mathematica

Numerical computations

Mathematica has been aptly described as a sophisticated calculator. With it you can enter
mathematical expressions and compute their values.

In[1]:= Sin@.86D − Log@πD ikjj1 +
.08
����������
12

y
{zz
12

Out[1]= −0.481899

You can store values in memory.

In[2]:= rent = 350

Out[2]= 350

In[3]:= food = 175

Out[3]= 175

In[4]:= heat = 83

Out[4]= 83

In[5]:= rent + food + heat

Out[5]= 608

Yet Mathematica differs from calculators and simple computer programs in its ability to
calculate exact results and to compute to an arbitrary degree of precision.

In[6]:=
1

�������
15

+
1

�������
35

+
1

�������
63

Out[6]=
1
����
9

In[7]:= 2500

Out[7]= 3273390607896141870013189696827599152216642046043064789483291�

368096133796404674554883270092325904157150886684127560071009�

217256545885393053328527589376

In[8]:= N@π, 500D
Out[8]= 3.14159265358979323846264338327950288419716939937510582097494�

459230781640628620899862803482534211706798214808651328230664�

709384460955058223172535940812848111745028410270193852110555�

964462294895493038196442881097566593344612847564823378678316�

527120190914564856692346034861045432664821339360726024914127�

372458700660631558817488152092096282925409171536436789259036�

001133053054882046652138414695194151160943305727036575959195�

309218611738193261179310511854807446237996274956735188575272�

48912279381830119491

Symbolic computations

One of the more powerful features of Mathematica is its ability to manipulate and compute
with symbolic expressions. For example, you can factor polynomials and simplify trigono-
metric expressions.

In[9]:= Factor@x5 − 1D
Out[9]= H−1 + xL H1 + x + x2 + x3 + x4L

In[10]:= TrigReduce@Sin@θD3D
Out[10]=

1
����
4
H3 Sin@θD − Sin@3 θDL

2 An Introduction to Programming with Mathematica

You can simplify expressions using assumptions about variables contained in those expres-
sions. For example, if k is assumed to be an integer, sinH2 p k + xL simplifies to sinHxL.

In[11]:= Simplify@Sin@2 π k + xD, k ∈ IntegersD
Out[11]= Sin@xD

This computes the conditions for which a general quadratic polynomial will have both
roots equal to each other.

In[12]:= Reduce@∃x,a x2+b x+c==0 H ∀y,a y2+b y+c==0 x == yL, 8a, b, c<D
Out[12]= Ha � 0 && b ≠ 0L »» Ha � 0 && b c ≠ 0L »» i

k
jja ≠ 0 && c �

b2
���������
4 a

y
{
zz

You can create functions that are defined piecewise.

In[13]:= Piecewise@ 881, x � 0<<, Sin@xDê xD
Out[13]=

lom
no
1 x � 0
Sin@xD
��������������

x
True

The knowledge base of Mathematica includes algorithms for solving polynomial equations,
and computing integrals.

In[14]:= Solve@x3 − a x + 1 == 0, xD

Out[14]= 99x →
H 2

����
3
L1ê3 a

��

I−9 +
è!!!!3 è!!!!!!!!!!!!!!!!!!!!!

27 − 4 a3 M1ê3
+
I−9 +

è!!!!3 è!!!!!!!!!!!!!!!!!!!!!
27 − 4 a3 M1ê3

��
21ê3 32ê3

=,

9x → −
I1 + �

è!!!!3 M a
���

22ê3 31ê3 I−9 +
è!!!!3 è!!!!!!!!!!!!!!!!!!!!!

27 − 4 a3 M1ê3
−

I1 − �
è!!!!3 M I−9 +

è!!!!3 è!!!!!!!!!!!!!!!!!!!!!
27 − 4 a3 M1ê3

���
2 21ê3 32ê3

=,

9x → −
I1 − �

è!!!!3 M a
���

22ê3 31ê3 I−9 +
è!!!!3 è!!!!!!!!!!!!!!!!!!!!!

27 − 4 a3 M1ê3
−

I1 + �
è!!!!3 M I−9 +

è!!!!3 è!!!!!!!!!!!!!!!!!!!!!
27 − 4 a3 M1ê3

���
2 21ê3 32ê3

==

In[15]:= ‡ 1
���������������
1 + x4

 �x

Out[15]=
1

��������������
4 è!!!!2

 I−2 ArcTanA1 −
è!!!!
2 xE + 2 ArcTanA1 +

è!!!!
2 xE −

LogA−1 +
è!!!!2 x − x2E + LogA1 +

è!!!!2 x + x2EM

1 An introduction to Mathematica 3

Graphics

The ability to visualize functions or sets of data often allows us greater insight into their
structure and properties. Mathematica provides a wide range of graphing capabilities.
These include two- and three-dimensional plots of functions or data sets, contour and
density plots of functions of two variables, bar charts, histograms and pie charts of data
sets, and many packages designed for specific graphical purposes. In addition, the Mathemat-
ica programming language allows you to construct graphical images “from the ground up”
using primitive elements, as we will see in Chapter 9.

Here is a simple two-dimensional plot of the function sinIx +
è!!!!2 sinHx2LM.

In[16]:= PlotASinAx +
è!!!!
2 Sin@x2DE, 8x, −π, π<E

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Out[16]= � Graphics �

You can combine two or more plots in a single graphic by enclosing them inside curly
braces.

In[17]:= Plot@8Sin@xD, Sin@2 xD<, 8x, 0, 2 π<D;

1 2 3 4 5 6

-1

-0.5

0.5

1

4 An Introduction to Programming with Mathematica

Here is a plot of the sinc function, given in the previous section.

In[18]:= Plot@Piecewise@ 881, x � 0<<, Sin@xDêxD, 8x, −2 π, 2 π<D;

-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1

Here is a surface of constant negative curvature, represented parametrically by the three
functions r, s, and t. This surface is often referred to as Dini’s surface.

In[19]:= ρ = Cos@φD Sin@θD;
σ = Sin@φD Sin@θD;
τ = 0.2 φ + Cos@θD + LogATanA θ

����
2
EE;

In[22]:= ParametricPlot3D@8ρ, σ, τ<, 8φ, 0, 4 π<, 8θ, .05, 1<, Axes → False,

Boxed → False, PlotPoints → 30, AspectRatio → 1.75D;

1 An introduction to Mathematica 5

Working with data

The ability to plot and visualize data is extremely important in engineering and all of the
social, natural, and physical sciences. Mathematica can import and export data from other
applications, plot the data in a variety of forms, and be used to perform numerical analysis
on the data.

The file dataset.m contains pairs of data points, in this case representing body
mass vs. heat production for 13 different animals. The data are given as (m, r), where m
represents the mass of the animal and r the heat production in kcal per day. First we set up
a platform independent path to the file and then import that file.

In[23]:= datafile = ToFileName@8$BaseDirectory,
"Applications", "IPM3", "DataFiles"<, "dataset.m"D

Out[23]= C:\Documents and Settings\All Users\Application Data\

Mathematica\Applications\IPM3\DataFiles\dataset.m

In[24]:= data = Import@datafile, "Table"D
Out[24]= 880.06099, 6.95099<, 80.403, 28.189<,

80.62199, 41.1<, 82.50999, 120.799<,
82.95999, 147.9<, 83.33, 182.8<, 88.19999, 368.8<,
828.1999, 981.299<, 857.4, 1303.29<, 872.2999, 1512.5<,
8340.199, 7100.29<, 8711, 10101.1<, 85000., 29894.9<<

You can immediately plot the data using the ListPlot function.

In[25]:= ListPlot@data, PlotStyle → PointSize@.02DD;

200 400 600 800

2500

5000

7500

10000

12500

15000

17500

6 An Introduction to Programming with Mathematica

This plots the data on log–log axes.

In[26]:= logplot = ListPlot@Log@dataD, PlotStyle → PointSize@.02DD;

-2 2 4 6 8

4

6

8

10

You can then fit a straight line to the log-data by performing a linear least squares fit. In
this example, we are fitting to the model a + m x, where a and m are the parameters to be
determined in the model with variable x.

In[27]:= f = FindFit@Log@dataD, a + m x, 8a, m<, xD
Out[27]= 8a → 4.15437, m → 0.761465<

Here is a plot of the linear fit function.

In[28]:= fplot = Plot@a + m x ê. f, 8x, −3, 9<D;

-2 2 4 6 8

4

6

8

10

1 An introduction to Mathematica 7

Finally, you can see how well the fitted function approximates the log plot by combining
these last two graphics.

In[29]:= Show@fplot, logplotD;

-2 2 4 6 8

4

6

8

10

Programming

With a copy of The Mathematica Book (Wolfram 2003) or one of the many tutorial books
(see, for example, Glynn and Gray 1999) describing the vast array of computational tasks
that can be performed with Mathematica, it would seem you can compute just about
anything you might want. But that impression is mistaken. There are simply more kinds of
calculations than could possibly be included in a single program. Whether you are inter-
ested in computing bowling scores or finding the mean square distance of a random walk
on a torus, Mathematica does not have a built-in function to do everything that a user could
possibly want. What it does have – and what really makes it the amazingly useful tool it is –
is the capability for users to define their own functions. This is called programming, and it
is what this book is all about.

Sometimes, the programs you create will be succinct and focused on a very specific
task. Mathematica possesses a rich set of tools that enable you to quickly and naturally
translate the statement of a problem into a program. For example, the following program
defines a test for perfect numbers, numbers that are equal to the sum of their proper
divisors.

In[30]:= PerfectQ@n_D := Apply@Plus, Divisors@nDD == 2 n

We then define another function that selects those numbers from a range of integers that
pass this PerfectQ test.

In[31]:= PerfectSearch@n_D := Select@Range@nD, PerfectQD

8 An Introduction to Programming with Mathematica

This then finds all perfect numbers less than 1,000,000.

In[32]:= PerfectSearch@106D
Out[32]= 86, 28, 496, 8128<

Here are two functions for representing regular polygons. The first defines the
vertices of a regular n-gon, while the second uses those vertices to create a polygon graph-
ics object that can then be displayed with the built-in Show function.

In[33]:= vertices@n_Integer, r_: 1D :=

TableA9r CosA 2 α π
�������������
n

E, r SinA 2 α π
�������������
n

E=, 8α, 0, n − 1<E
In[34]:= RegularPolygon@n_D :=

Graphics@Line@vertices@nD ê. 8a_, b__< → 8a, b, a<D,
AspectRatio → AutomaticD

In[35]:= Show@RegularPolygon@5DD

Out[35]= � Graphics �

As another example of a succinct program, here is an iterative function that imple-
ments the well-known Newton method for root finding.

In[36]:= NewtonZero@f_, xi_D := NestWhileAikjjj# −
f@#D

����������������
f'@#D

y
{zzz &, xi, Unequal, 2E

In[37]:= g@x_D := x3 − 2 x2 + 1

In[38]:= NewtonZero@g, 2.0D
Out[38]= 1.61803

Of course, sometimes the task at hand requires a more involved program, stretching
across several lines (or even pages) of code. For example, here is a slightly longer program
to compute the score of a game of bowling, given a list of the number of pins scored by
each ball.

1 An introduction to Mathematica 9

In[39]:= BowlingScore@pins_D :=

Module@8score<, score@8x_, y_, z_<D := x + y + z;

score@810, y_, z_, r___<D := 10 + y + z + score@8y, z, r<D;
score@8x_, y_, z_, r___<D :=

x + y + z + score@8z, r<D ê; x + y == 10;

score@8x_, y_, r___<D := x + y + score@8r<D ê; x + y < 10;

score@If@pinsP−2T + pinsP−1T ≥ 10, pins, Append@pins, 0DDDD
Here is the computation for a “perfect” game – 12 strikes in a row.

In[40]:= BowlingScore@810, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10<D
Out[40]= 300

These examples use a variety of programming styles: functional programming,
rule-based programming, the use of anonymous functions, and more. We do not expect
you to understand the examples in this section at this point – that is why we wrote this
book! What you should understand is that in many ways Mathematica is designed to be as
broadly useful as possible and that there are many calculations for which Mathematica does
not have a built-in function, so, to make full use of its many capabilities, you will some-
times need to program. The main purpose of this book is to show you how.

Another purpose is to teach you the basic principles of programming. These princi-
ples – making assignments, defining rules, using conditionals, recursion, and iteration – are
applicable (with great differences in detail, to be sure) to all other programming languages.

Symbolic and interactive documents

In addition to the computational tools that Mathematica provides for what many profession-
als associate with technical computing, it also contains tools for creating and modifying the
user interface to such tasks. These tools include hyperlinks for jumping to other locations
within a document or across files, buttons to perform tasks that you might normally
associate with a command-line interface, and tools to modify and manipulate the appear-
ance and functionality of your Mathematica notebooks directly. In this section we will give
a few short examples of what is possible, waiting until Chapter 10 for a methodical look at
how to program these elements.

The first example takes the code necessary to display a polyhedron and puts it in a
button. The two lines of code that could be evaluated normally in a notebook first load a
package and then display an icosahedron in the notebook.

In[41]:= Needs@"Graphics`Polyhedra`"D

10 An Introduction to Programming with Mathematica

In[42]:= Show@Stellate@Polyhedron@IcosahedronDDD

Out[42]= � Graphics3D �

Here is a short program that creates a button containing the above two expressions.

Cell[BoxData[
 ButtonBox[
 RowBox[{"Stellate", " ", "Icosahedron"}],
 ButtonFunction:>CompoundExpression[
 Needs["Graphics`Polyhedra`"],
 Show[Stellate[Polyhedron[Icosahedron]]]
],
 ButtonEvaluator->Automatic],
 "Input",
 Active->True]

The formatted version of the above cell can be displayed by choosing Show Expression

from the Format menu. When you do that, it will look like the following:

Stellate Icosahedron

Clicking the button will cause the Mathematica code in the ButtonFunction to be
immediately evaluated and the following graphics will then be displayed in your notebook.

Functions are available to jump around to different parts of a Mathematica notebook
and perform various actions. Here is a short piece of code that creates a button which,
upon being clicked, moves the selection to the next cell and then evaluates that cell.

1 An introduction to Mathematica 11

Cell[TextData[{
 Cell[BoxData[
 ButtonBox["EVALUATE",
 ButtonFunction:>FrontEndExecute[{
 FrontEnd`SelectionMove[
 ButtonNotebook[], All, ButtonCell],
 FrontEnd`SelectionMove[
 ButtonNotebook[], Next, Cell],
 FrontEnd`SelectionEvaluate[
 ButtonNotebook[]]}],
 Active->True]]],
 StyleBox[" MATHEMATICA INPUT"]
}], "Text"]

The formatted version of the above cell can be displayed by choosing Show Expression

from the Format menu. When you do that, it will look somewhat like the following
(although we have removed some of the text formatting above to improve readability of the
code). Clicking the EVALUATE button will cause the input cell immediately following to
be selected and then evaluated.

EVALUATE MATHEMATICA INPUT

In[43]:= 3 H4 + 5L
Out[43]= 27

The following example demonstrates how you can use Mathematica functions to
perform some of the user interface actions that you would normally associate with key-
board and mouse events. By using such techniques, you can create a specific set of actions
that will follow certain evaluations. For example, if you were creating an electronic quiz for
your students, you could include “hint” buttons within your class notebooks that would
open a new notebook with hints and suggestions upon clicking.

This creates a new notebook that contains three cells – a Section cell, a Text cell,
and an Input cell. Upon evaluation, the NotebookPut command below will cause a new
notebook to appear, containing the three specified cells. The screen shots below show
what appears in the user interface after evaluating each of the preceding inputs.

12 An Introduction to Programming with Mathematica

In[44]:= nb = NotebookPut@
Notebook@8
Cell@"Symbolic and Interactive Documents", "Section"D,
Cell@"Cells and notebooks are Mathematica expressions.",

"Text"D,
Cell@"Integrate@Sin@xDêCos@xD,xD", "Input"D
<DD

Out[44]= NotebookObject@�Untitled−1	D

This moves the selection bar past the last cell in the above notebook.

In[45]:= SelectionMove@nb, Next, Cell, 4D

1 An introduction to Mathematica 13

We then select the most previous cell.

In[46]:= SelectionMove@nb, Previous, CellD

Finally, we evaluate the selected cell.

In[47]:= SelectionEvaluate@nbD

In Chapter 10 we will give a detailed discussion of how to modify and manipulate the
user interface through the use of the symbolic programming techniques that are discussed
throughout this book.

14 An Introduction to Programming with Mathematica

1.2 Using Mathematica
Before you can do any serious work, you will need to know how to get a Mathematica
session started, how to stop it, and how to get out of trouble when you get into it. These
procedures depend somewhat on the system you are using. You should read the system-spe-
cific information that came with your copy of Mathematica; and you may need to consult a
local Mathematica guru if our advice here is not applicable to your system.

Getting into and out of Mathematica

The most commonly used interface is often referred to as a notebook interface in which
the user creates and works in interactive documents. Personal computers running Win-
dows, Macintosh operating systems, Linux, and most flavors of Unix all support this
graphical user interface, which normally starts up automatically when you begin your
Mathematica session.

There are some situations where you may want to start up Mathematica from a
command prompt and issue commands directly through that interface, bypassing the
notebook interface entirely. For example, you may have a very long computation that you
need to run in batch mode. Typically, Mathematica is started up on these systems by typing
math at a command prompt. We will not discuss using Mathematica through a command
prompt any further. If you are interested in this mode you should consult the documenta-
tion that came with your copy of Mathematica.

Starting Mathematica and first computations
To start Mathematica you will have to find and then double-click on the Mathematica icon
on your computer, which will look something like this:

The computer will then load parts of Mathematica into its memory and soon a blank
window will appear on the screen. This window is the visual interface to a Mathematica
notebook and it has many features that are useful to the user.

Notebooks allow you to write text, perform computations, write and run programs,
and create graphics all in one document. Notebooks also have many of the features of
common word processors, so those familiar with word processing will find the notebook
interface easy to learn. In addition, the notebook provides features for outlining material
which you may find useful for giving talks and demonstrations.

1 An introduction to Mathematica 15

When a blank notebook first appears on the screen (either from just starting Mathe-
matica or from selecting New in the File menu), you can start typing immediately. For
example, if you type N[Pi,200] press ˜ÎÛÏ (hold down the Shift key while pressing
the Enter key) to evaluate an expression. Mathematica will evaluate the result and print the
200-decimal digit approximation to p on the screen.

Notice that when you evaluate an expression in a notebook, Mathematica adds input
and output prompts. In the example notebook above, these are denoted In[1]:= and
Out[1]=. These prompts can be thought of as markers (or labels) that you can refer to
during your Mathematica session.

16 An Introduction to Programming with Mathematica

You should also note that when you started typing Mathematica placed a bracket on
the far right side of the window that enclosed the cell that you were working in. These cell
brackets are helpful for organizational purposes within the notebook. Double-clicking on
cell brackets will open any collapsed cells, or close any open cells as can be seen in the
previous screen shot.

Double-clicking on the cell bracket containing the 1.1 A Brief Overview of Mathe-
matica cell will open the cell to display its contents:

Using cell brackets in this manner allows you to organize your work in an orderly
manner, as well as to outline material. For a complete description of cell brackets and
many other interface features, you should consult the documentation that came with your
version of Mathematica.

For information on other features such as saving, printing, and editing notebooks,
consult the manuals that came with your version of Mathematica.

Entering input
New input can be entered whenever there is a horizontal line that runs across the width of
the notebook. If one is not present where you wish to place an input cell, move the cursor
up and down until it changes to a horizontal bar and then click the mouse once. A horizon-
tal line should now appear across the width of the window. You can immediately start
typing and an input cell will be created.

1 An introduction to Mathematica 17

Input can be entered exactly as it appears in this book. To get Mathematica to evalu-
ate an expression that you have entered, press ˜-ÎÛÏ; that is, hold down the Shift key
and then press the Enter key.

You can enter mathematical expressions in a traditional looking two-dimensional
format using either palettes for quick entry of template expressions, or keyboard equiva-
lents. For example, the following expression can be entered by using the Basic Input
palette, or through a series of keystrokes. For details of inputting mathematical expres-
sions, read your user documentation or read the section on 2D Expression Input in the
Help Browser.

In[1]:= ‡ 1
���������������
1 − x3

 �x

Out[1]=
ArcTanA 1+2 x

�����������è!!!!!
3

E
������������������������������������è!!!!3

−
1
����
3
Log@−1 + xD +

1
����
6
Log@1 + x + x2D

As noted previously, Mathematica enters the In and Out prompts for you. You do
not type these prompts. You will see them after you evaluate your input.

You can refer to the result of the previous calculation using the symbol %.

In[2]:= 264

Out[2]= 18446744073709551616

In[3]:= % + 1

Out[3]= 18446744073709551617

You can also refer to the result of any earlier calculation using its Out[i] label or,
equivalently, %i.

In[4]:= Out@1D

Out[4]=
ArcTanA 1+2 x

�����������è!!!!!
3

E
������������������������������������è!!!!3

−
1
����
3
Log@−1 + xD +

1
����
6
Log@1 + x + x2D

In[5]:= %2

Out[5]= 18446744073709551616

Ending a Mathematica session
To end your Mathematica session, choose Exit from the File menu. You will be prompted
to save any unsaved open notebooks.

18 An Introduction to Programming with Mathematica

Getting out of trouble
From time to time, you will type an input which will cause Mathematica to misbehave in
some way, perhaps by just going silent for a long time (if, for example, you have inadvert-
ently asked it to do something very difficult) or perhaps by printing out screen after screen
of not terribly useful information. In this case, you can try to “interrupt” the calculation.
How you do this depends on your computer’s operating system:

• Macintosh: type ·Î.Ï (the Command key and the period) and then type a

• Windows 95/98/NT/2000/XP: type ‡Î.Ï (the Alt key and the period)

• Unix: type ‚-Î.Ï and then type a and then Á

These attempts to stop the computation will sometimes fail. If after waiting a reason-
able amount of time (say, a few minutes), Mathematica still seems to be stuck, you will have
to “kill the kernel.” (Before attempting to kill the kernel, try to convince yourself that the
computation is really in a loop from which it will not return and that it is not just an
intensive computation that requires a lot of time.) Killing the kernel is accomplished by
selecting Quit Kernel from the Kernel menu. The kernel can then be restarted without
killing the front end by first selecting Start Kernel ≈ Local under the Kernel menu, or you
can simply evaluate a command in a notebook and a new kernel should start up
automatically.

The syntax of inputs

You can enter mathematical expressions in a linear syntax using arithmetic operators
common to almost all computer languages.

In[6]:= 39ê13
Out[6]= 3

Alternately, you can enter this expression in the traditional form by typing 39, ‚Î/Ï, then
13.

In[7]:=
39
�������
13

Out[7]= 3

The caret (^) is used for exponentiation.

In[8]:= 2^5

Out[8]= 32

1 An introduction to Mathematica 19

You can enter this expression in a more traditional typeset form by typing 2, ‚Î^Ï, and
then 5.

In[9]:= 25

Out[9]= 32

Mathematica includes several different ways of entering typeset expressions, either
directly from the keyboard as we did above, or via palettes available from the File menu.
Below is a brief table showing some of the more commonly used typeset expressions and
how they are entered through the keyboard. You should read your documentation and
become comfortable using these input interfaces so that you can easily enter the kinds of
expressions in this book.

Expression FullForm Keyboard shortcut

x2 SuperscriptBox@x, 2D x‚Î6Ï, 2
xi SubscriptBox@x, iD x‚Î − Ï, i
x
ÅÅÅÅÅy FractionBox@x, yD x‚Îê Ï, y
è!!!!x SqrtBox@xD ‚Î2Ï, x
x ¥ y GreaterEqual@x, yD xÂ >=Â, y

Table 1.1: Entering typeset expressions

You can indicate multiplication by simply putting a space between the two factors, as
in mathematics. You can also use the asterisk (*) for that purpose, as is traditional in most
computer languages.

In[10]:= 2 5

Out[10]= 10

In[11]:= 2∗ 5

Out[11]= 10

Mathematica also gives operations the same precedence as in mathematics. In particu-
lar, multiplication and division have a higher precedence than addition and subtraction, so
that 3 + 4 * 5 equals 23 and not 35.

In[12]:= 3 + 4 5

Out[12]= 23

20 An Introduction to Programming with Mathematica

Functions are also written as they are in mathematics books, except that function
names are capitalized and their arguments are enclosed in square brackets.

In[13]:= Factor@x5 − 1D
Out[13]= H−1 + xL H1 + x + x2 + x3 + x4L

Almost all of the built-in functions are spelled out in full, as in the above example.
The exceptions to this rule are well-known abbreviations such as D for differentiation,
Sqrt for square roots, Log for logarithms, and Det for the determinant of a matrix.
Spelling out the name of a function in full is quite useful when you are not sure whether a
function exists to perform a particular task. For example, if we wanted to compute the
conjugate of a complex number, an educated guess would be:

In[14]:= Conjugate@3 + 4 �D
Out[14]= 3 − 4 �

Whereas square brackets [and] are used to enclose the arguments to functions,
curly braces { and } are used to indicate a list or range of values. Lists are a basic data type
in Mathematica and are used to represent vectors and matrices (and tensors of any dimen-
sion), as well as additional arguments to functions such as in Plot and Integrate.

In[15]:= 8a, b, c<.8x, y, z<
Out[15]= a x + b y + c z

In[16]:= PlotASinAx +
è!!!!
2 Sin@xDE, 8x, −2 π, 2 π<E;

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

In[17]:= Integrate[Cos[x], {x, a, b}]

Out[17]= −Sin@aD + Sin@bD

In the Plot example, the list {x,-2π,2π} indicates that the function
sinIx +

è!!!!2 sinHxLM is to be plotted over an interval as x takes on values from -2 p to 2 p.
The Integrate expression above is equivalent to the mathematical expression

Ÿa
bcosHxL „ x.

1 An introduction to Mathematica 21

Mathematica has very powerful list-manipulating capabilities that will be explored in
detail in Chapter 3.

When you end an expression with a semicolon (;), Mathematica computes its value
but does not display it. This is very helpful when the result of the expression would be very
long and you do not need to see it. In the following example, we first create a list of the
integers from 1 to 10,000, suppressing their display with the semicolon, and then compute
their sum and average.

In[18]:= nums = Range@10000D;
In[19]:= Apply[Plus, nums]

Out[19]= 50005000

In[20]:=
%

������������������������������������
Length@numsD

Out[20]=
10001
����������������

2

An expression can be entered on multiple lines, but only if Mathematica can tell that
it is not finished after the first line. For example, you can enter 3* on one line and 4 on the
next.

In[21]:= 3 *

4

Out[21]= 12

But you cannot enter 3 on the first line and *4 on the second.

In[22]:= 3

*4

Out[22]= 3

If you use parentheses, you can avoid this problem.

In[23]:= (3

 *4)

Out[23]= 12

With the notebook interface, you can input as many lines as you like within an input
cell; Mathematica will evaluate them all when you enter ˜ÎÛÏ still obeying the rules
stated above for any incomplete lines.

22 An Introduction to Programming with Mathematica

Finally, you can enter a comment – some words that are not evaluated – by entering
the words between (* and *).

In[24]:= D[Sin[x], (* differentiate Sin[x] *)

 {x, 1}] (* with respect to x once *)

Out[24]= Cos@xD

Alternate input syntax

There are several different ways to write expressions in Mathematica. Usually, you will
simply use the traditional notation, fun[x], for example. But you should be aware of
several alternatives to this syntax that are widely used.

Here is an example using the standard function notation for writing a function with
one argument.

In[25]:= N@πD
Out[25]= 3.14159

This uses a prefix operator.

In[26]:= N@π

Out[26]= 3.14159

Here is a postfix operator notation.

In[27]:= π êê N
Out[27]= 3.14159

For functions with two arguments, you can use an infix notation. The following
expression is identical to N[π,30].

In[28]:= π ∼N∼30

Out[28]= 3.14159265358979323846264338328

Finally, many people prefer to use a more traditional syntax when entering and
working with mathematical expressions. You can compute an integral using standard
Mathematica syntax.

In[29]:= Integrate@1êSin@xD, xD
Out[29]= −LogACosA x

����
2
EE + LogASinA x

����
2
EE

1 An introduction to Mathematica 23

The same integral, represented in a more traditional manner, can be entered from palettes
or keyboard shortcuts.

In[30]:= ‡ 1
�������������������
Sin@xD �x

Out[30]= −LogACosA x
����
2
EE + LogASinA x

����
2
EE

Many mathematical functions have traditional symbols associated with their opera-
tions and when available, these can be used instead of the fully spelled-out names. For
example, you can compute the intersection of two sets using the Intersection function.

In[31]:= Intersection@8a, b, c, d, e<, 8b, f, a, z<D
Out[31]= 8a, b<

Or you can do the same computation using more traditional notation.

In[32]:= 8a, b, c, d, e< › 8b, f, a, z<
Out[32]= 8a, b<

To learn how to enter these and other notations quickly, either from palettes or
directly from the keyboard using shortcuts, refer to the 2D Expression Input section in the
Front End category of the Help Browser.

The front end and the kernel

When you work in Mathematica you are actually working with two separate programs.
They are referred to as the front end and the kernel. The front end is the user interface. It
consists of the notebooks that you work in together with the menu system, palettes (which
are really just notebooks), and any element that accepts input from the keyboard or mouse.
The kernel is the program that does the calculations. So a typical operation between the
user (you) and Mathematica consists of the following steps, where the program that is
invoked in each step is indicated in parentheses:

• enter input in the notebook (front end)

• send input to the kernel to be evaluated by pressing ˜-Û (front end)

• kernel does the computation and sends it back to the front end (kernel)

• result is displayed in the notebook (front end)

There is one remaining piece that we have not yet mentioned; that is MathLink.
Since the kernel and front end are two separate programs, a means of communication is

24 An Introduction to Programming with Mathematica

necessary for these two programs to “talk” to each other. That communication protocol is
called MathLink and it comes bundled with Mathematica. It operates behind the scenes,
completely transparent to the user.

MathLink is a very general communications protocol that is not limited to front end
– kernel communication, but can also be used to set up communication between the front
end and other programs on your computer, programs like compiled C and Fortran code. It
can also be used to connect a kernel to a word processor or spreadsheet or many other
programs.

MathLink programming is beyond the scope of this book, but if you are interested,
there are several books and articles that discuss it (see the References at the end of this
book).

Errors

In the course of using and programming in Mathematica, you will encounter various sorts
of errors, some obvious, some very subtle, some easily rectified, and others not. We have
already mentioned that it is possible to send Mathematica into an infinite loop from which
it cannot return. In this section, we discuss those situations where Mathematica does finish
the computation, but without giving you the answer you expected.

Perhaps the most frequent error you will make is misspelling the name of a function.
Here is an illustration of the kind of thing that will usually happen in this case.

In[33]:= Sine@1.5D
General::spell :

Possible spelling error: new symbol name "Sine" is

similar to existing symbols 8Line, Sin, Sinh<. More…

Out[33]= Sine@1.5D

Whenever you type a name that is close to an existing name, Mathematica will print a
warning message like the one above. You may often use such names intentionally, in which
case these messages can be annoying. In that case, it is best to turn off the warnings.

In[34]:= Off@General::spellD
Now, Mathematica will not report that function names might be misspelled; and,

when it can not find a definition associated with a misspelled function, it returns your
input unevaluated.

In[35]:= Intergate@x2, xD
Out[35]= Intergate@x2, xD

1 An introduction to Mathematica 25

 You can turn these spell warnings back on by evaluating On[General::spell].

In[36]:= On@General::spellD
Having your original expression returned unevaluated – as if this were perfectly

normal – is a problem you will often run into. Aside from misspelling a function name, or
simply using a function that does not exist, another case where this occurs is when you give
the wrong number of arguments to a function, especially to a user-defined function. For
example, the BowlingScore function takes a single list argument; if we accidentally leave
out the list braces, then we are actually giving BowlingScore 12 arguments.

In[37]:= BowlingScore@10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10D
Out[37]= BowlingScore@10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10D

Of course, some kinds of inputs cause genuine error messages. Syntax errors, as
shown above, are one example. The built-in functions are designed to usually warn you of
such errors in input. In the first example below, we have supplied the Log function with an
incorrect number of arguments (it expects one or two arguments only). In the second
example, FactorInteger operates on integers only and so the real number argument
causes the error condition.

In[38]:= Log@2, 16, 3D
Log::argt : Log called with 3

arguments; 1 or 2 arguments are expected. More…

Out[38]= Log@2, 16, 3D

In[39]:= FactorInteger@12.5D
FactorInteger::facn : Argument 12.5` in

FactorInteger@12.5D is not an exact number. More…

Out[39]= FactorInteger@12.5D

Getting help

Mathematica contains a vast array of documentation that you can access in a variety of
ways. It is also designed so that you can create new documentation for your own functions
and program in such a way that users of your programs can get help in exactly the same
way as they would for Mathematica’s built-in functions.

If you are aware of the name of a function but are unsure of its syntax or what it does,
the easiest way to find out about it is to evaluate ?function. For example, here is the
usage message for ParametricPlot.

26 An Introduction to Programming with Mathematica

In[40]:= ?ParametricPlot

ParametricPlot@8fx, fy<, 8u, umin, umax<D produces a parametric

plot of a curve with x and y coordinates fx and fy generated

as a function of t. ParametricPlot@88fx, fy<, 8gx, gy<, ... <,
8u, umin, umax<D plots several parametric curves. More…

Also, if you were not sure of the spelling of a command (Integrate, for example),
you could type the following to display all built-in functions that start with Integ.

In[41]:= ?Integ*

System`

Integer IntegerExponent IntegerQ Integrate

IntegerDigits IntegerPart Integers

Clicking on one of these links will produce a short usage statement about that
function. For example, if you were to click on the Integrate link, here is what would be
displayed in your notebook.

Integrate@f, xD gives the indefinite integral of f with respect

to x. Integrate@f, 8x, xmin, xmax<D gives the definite

integral of f with respect to x from xmin to xmax. Integrate@
f, 8x, xmin, xmax<, 8y, ymin, ymax<D gives a multiple

definite integral of f with respect to x and y. More…

Clicking the More… hyperlink would take you directly to the Help Browser where a
much more detailed explanation of this function can be found.

You can also get help by highlighting any Mathematica function and pressing the F1

key on your keyboard. This will take you directly into the documentation for that function
in the Help Browser.

The Help Browser

Mathematica contains a very useful addition to the help system called the Help Browser.
The Help Browser allows you to search for functions easily and it provides extensive
documentation and examples.

To start the Help Browser, select Help Browser… under the Help menu. You should
quickly see something like the following:

1 An introduction to Mathematica 27

Notice the eight category tabs near the top of the Help Browser window. Choosing
the Add-ons & Links tab will give you access to all of the packages that come with each
implementation of Mathematica. Similarly, choosing The Mathematica Book tab will give
you access to the entire Mathematica book that ships with each professional version of
Mathematica.

Suppose you were looking for information about three-dimensional parametric
graphics. First click the Built-in Functions tab, then select Graphics and Sound on the left,
then 3D Plots and finally ParametricPlot3D. The Help Browser should look like this:

Notice that in the main window, the Help Browser has displayed information about
the ParametricPlot3D function. This is identical to the usage message you would get
if you entered ?ParametricPlot3D.

28 An Introduction to Programming with Mathematica

Alternatively, you could have clicked the Master Index tab and searched for “Paramet-
ricPlot3D” or even simply “parametric” and then browsed through the index to find what
you were looking for.

Many additional features are available in the Help Browser and you are advised to
consult your documentation for a complete list and description.

1 An introduction to Mathematica 29

30 An Introduction to Programming with Mathematica

	1 An introduction to Mathematica
	1.1 A brief overview of Mathematica
	Numerical computations
	Symbolic computations
	Graphics
	Working with data
	Programming
	Symbolic and interactive documents

	1.2 Using Mathematica
	Getting into and out of Mathematica
	The syntax of inputs
	Alternate input syntax
	The front end and the kernel
	Errors
	Getting help
	The Help Browser

