1 Getting Started

1.1 Introduction 2

1.1.1 Computers as a Tool ... 2
1.1.2 A Note about Notation and Style 3
1.1.3 Notation and Symbols ... 3

1.2 Arithmetic and Algebra 5

1.2.1 Arithmetic and Notation 5
1.2.2 Algebraic Manipulations 7
1.2.3 PowerExpand .. 10
1.2.4 Simple Rules ... 10
1.2.5 A Homemade Complex Conjugate with SuperStar 11
1.2.6 Immediate and Delayed Substitutions 12
1.2.7 Selecting Parts of Expressions 13
1.2.8 Algebraic Equations ... 13

1.3 Functions and Procedures 15

1.3.1 Built-In Functions .. 15
1.3.2 User-Defined Functions 16
1.3.3 Pure Functions .. 18
1.3.4 Assigning Rules and Restrictions to Functions 19
1.3.5 Module ... 21
1.3.6 rootPlot .. 22

1.4 Packages 24

1.4.1 Loading Packages ... 24
1.4.2 Contexts .. 26
1.4.3 Shadowing .. 27

1.5 Calculus 28

1.5.1 Derivatives and Integrals 28
1.5.2 Differential Equations 30
1.5.3 Changing Variables and Pure Functions 30
1.5.4 Numerical Solutions of Differential Equations 31

1.6 Graphics 33

1.6.1 Using the Plot Command 33
1.6.2 Animated Plots .. 35
1.6.3 Vector Field Plots ... 36
1.6.4 Three-Dimensional Graphics Using Plot3D and ParametricPlot3D 38

1.7 Exercises 40
General Physics

2.1 Introduction 45

2.2 Newtonian Mechanics in Inertial Frames 45

2.2.1 Overview 45

- 2.2.1 Escape Velocity 46
- 2.2.2 Projectile in a Uniform Gravitational Field 48
- 2.2.3 Reflecting Trajectories 53
- 2.2.4 Falling Projectile with Linear Air Resistance Drag 55
- 2.2.5 Falling Projectile with Quadratic Air Resistance Drag 64
- 2.2.6 Rocket with Varying Mass 69
- 2.2.7 Keplerian Orbits 76

2.3 Newtonian Mechanics in Rotating Frames 81

2.3.1 Overview 81

- 2.3.1 Projectile Motion as Measured by an Observer on Earth 81
- 2.3.2 Foucault Pendulum 90

2.4 Electricity and Magnetism 98

2.4.1 Overview 98

- 2.4.1 Charged Disk 99
- 2.4.2 Uniformly Charged Sphere 101
- 2.4.3 Electric Dipole 107
- 2.4.4 Magnetic Vector Potential for a Long Straight Wire 113
- 2.4.5 Motion of a Charged Particle in a Uniform B Field 116
- 2.4.6 Motion of a Charged Particle in a Uniform B Field and Time Varying E Field 119

2.5 Modern Physics 122

- 2.5.1 Carbon Dating 122
- 2.5.2 Stable Isotopes 124
- 2.5.3 The Bohr Atom 129
- 2.5.4 Relativistic Collision 132

2.6 Exercises 133
3 Oscillating Systems

3.1 Introduction 131

3.2 Linear Oscillations 132
 3.2.1 Overview 132
 3.2.2 Initialization of User-Defined Functions 133
 phasePlot: Phase Plot for One-Dimensional System 133
 timePhasePlot: Time Behavior of Phase Plot for a
 One-Dimensional System 133
 3.2.3 Potential and Phase Diagrams for the Linear Oscillator 141
 3.2.4 Damped Linear Oscillator 145
 3.2.5 Damped Harmonic Oscillator and Driving Forces 151

3.3 Small Oscillations 159
 3.3.1 Overview of Small Oscillations and Normal Modes 159
 3.3.2 Initialization of User-Defined Functions for Small Oscillations and
 Normal Modes 160
 Eigenvalues and Eigenvectors for Small Oscillating Systems 160
 3.3.3 Two Coupled Oscillators along a Line 161
 3.3.4 Three Coupled Oscillators along a Line 168
 3.3.5 Three Coupled Oscillators along a Circle 174
 3.3.6 Double Pendulum 178
 3.3.5 Understanding the User-Defined Procedure smallOsc[] 182

3.4 Oscillating Circuits 185
 3.4.1 Overview 185
 3.4.1 Series RC Circuit 185
 3.4.2 Series RL Loop 187
 3.4.3 RLC Loop 190

3.5 Exercises 194
4 Nonlinear Oscillating Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>4.2</td>
<td>Nonlinear Pendulum</td>
<td>195</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Overview</td>
<td>195</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Initialization of User-Defined Functions</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Angle-Time Graph</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Phase Diagram</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Poincaré Diagram</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure to Map the Pendulum to the Interval $-\pi$ and π</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Reduced Angle-Time Graph</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Reduced Phase Diagram</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure for the Pendulum’s Reduced Poincaré Diagram</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Protect User-Defined Procedures</td>
<td>200</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Analytic Solution for the Planar Pendulum</td>
<td>200</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Damped Pendulum</td>
<td>211</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Periodic Solutions for the Driven Pendulum</td>
<td>218</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Looping Solutions for the Driven Pendulum</td>
<td>221</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Chaotic Motion for the Driven Pendulum</td>
<td>225</td>
</tr>
<tr>
<td>4.3</td>
<td>Duffing Equation</td>
<td>233</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Overview</td>
<td>233</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Initializations for the Duffing Equation</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure to Plot the Duffing Displacement Motion</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure to Plot the Duffing Phase</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>User-Defined Procedure to Plot the Duffing Poincaré Map</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Protect User-Defined Procedures</td>
<td>235</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Potential and Phase Diagrams for the Duffing Oscillator</td>
<td>235</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Phase Diagram and Orbits for the Damped Duffing Equation</td>
<td>235</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Driven Duffing Orbits with No Damping</td>
<td>248</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Two Well Driven Duffing Oscillators with Damping</td>
<td>253</td>
</tr>
<tr>
<td>4.4</td>
<td>Exercises</td>
<td>256</td>
</tr>
</tbody>
</table>

Detailed Table of Contents

Page 4

ISBN 0-201-53796-6
5 Discrete Dynamical Systems

5.1 Introduction 258
5.2 Logistic Map 261
 5.2.1 Overview .. 261
 5.2.1 Logistic Map 261
 5.2.2 Logistic Fixed Points 266
 5.2.3 Logistic Cobwebs 271
 5.2.4 Logistic Bifurcations 273
 5.2.5 Logistic Lyapunov Exponent and Entropy 274
5.3 Other Maps 277
 5.3.1 Overview .. 277
 5.3.1 Salmon Map 278
 5.3.2 Sine-Circle Map 282
 5.3.3 Taylor-Greene-Chirikov Map 287
 5.3.4 Henon Map 290
5.4 Fractals 292
 5.4.1 Overview .. 292
 5.4.1 Mandelbrot Set 293
 5.4.2 Julia Set .. 295
5.5 Exercises 297

Lagrangians and Hamiltonians

6.1 Introduction 299

6.2 Lagrangian Problems without Lagrange Multipliers 300

6.2.1 Overview 300

6.2.2 Initialization for Lagrangian Problems 301

6.2.3 Particle Sliding on a Movable Incline 302

6.2.4 Bead Sliding on a Rotating Wire 304

6.2.5 Bead on a Rotating Hoop 309

6.2.6 Spring Mounted on Top of a Carriage 319

6.2.7 Mass Falling through a Hole in a Table 324

6.2.8 Spring Pendulum 329

6.3 Lagrangian Problems with Lagrange Multipliers 338

6.3.1 Overview of Nonholonomic Constraints and Lagrange Multipliers 338

6.3.2 Atwood Machine 338

6.3.3 Hoop Rolling on an Incline 340

6.3.4 Sphere Rolling on a Fixed Sphere 343

6.4 Hamiltonian Problems 347

6.4.1 Overview of Hamilton’s Equations 347

6.4.2 Harmonic Oscillator 349

6.4.3 Nonlinear Oscillator 351

6.4.4 Cylindrical Coordinates 356

6.4.5 Swinging Atwood Machine 360

6.4.6 Spherical Pendulum 364

6.5 Hamilton-Jacobi Problems 368

6.5.1 Overview 368

6.5.2 Harmonic Oscillator 370

6.5.3 Particle in a Constant Gravity Field 373

6.5.4 Kepler’s Problem and Hamilton-Jacobi Equations 375

6.6 Exercises 378
7 Orbiting Bodies

7.1 Introduction 378

7.2 The Two-Body Problem 379

- 7.2.1 Overview .. 379
- 7.2.1 Equivalent One-Body Problem 379
- 7.2.2 Kepler Orbits 385
- 7.2.3 Precessing Ellipse 389
- 7.2.4 Numerical Solution 394

7.3 Restricted Three-Body Problem 398

- 7.3.1 Overview of the Three-Body Problem and Initialization of PMotion and Mgraph 398
- 7.3.2 Problems on the Equal Mass Primaries ($\mu = 1/2$) .. 401
 - 7.3.1 Lagrangian Points for Equal Mass Binaries ($\mu = 1/2$) .. 401
 - 7.3.2 Looping Motion in an Equal Mass Binary System ($\mu = 1/2$) 406
 - 7.3.3 Symmetric Orbits about the y-Axis for $\mu = 1/2$... 413
 - 7.3.4 Mass Exchange between Equal Mass Binaries ... 414
- 7.3.3 Problems on the Sun–Jupiter System ($\mu = .000954$) ... 417
 - 7.3.5 Lagrangian Points for the Sun–Jupiter System ... 417
 - 7.3.6 Numerical Solution for the Trojan Asteroids ... 420
 - 7.3.7 Perturbative Solution for the Trojan Asteroids ... 424
- 7.3.3 Problems on the Earth–Moon System ($\mu = .01215$) .. 429
 - 7.3.8 Lagrangian Points for the Earth–Moon System ... 429
 - 7.3.9 Motion about L[4] in the Earth–Moon System ... 432
 - 7.3.10 Orbit around the Earth and Moon ... 434

7.4 Exercises 436
8 Electrodynamics

8.1 Introduction

Mathematica Commands for All Sections

8.2 Point Charges, Multipoles, and Image Charges

Mathematica Commands for Section 8.1

8.2.1 Overview

8.2.2 Superposition of Point Charges

8.2.3 Point Charges and Grounded Plane

8.2.4 Line Charge and Grounded Plane

8.2.5 Multipole Expansion of a Charge Distribution

8.3 Laplace’s Equation in Cartesian and Cylindrical Coordinates

8.3.1 Overview of Cartesian and Cylindrical Coordinates

8.3.2 Potential in a Rectangular Groove

8.3.3 Rectangular Conduit

8.3.4 Potential Inside a Rectangular Box with Five Sides at Zero Potential

8.3.5 Conducting Cylinder with a Potential on the Surface

8.4 Laplace’s Equation in Spherical Coordinates

8.4.1 Overview of Spherical Coordinates

8.4.2 A Charged Ring

8.4.3 Grounded Sphere in an Electric Field

8.4.5 Sphere with Upper Hemisphere V0 and Lower Hemisphere −V0

8.5 Exercises
Quantum Mechanics

9

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>513</td>
</tr>
<tr>
<td>9.2 One-Dimensional Schrödinger’s Equation</td>
<td>516</td>
</tr>
<tr>
<td>9.2.1 Particle Bound in an Infinite Potential Well</td>
<td>516</td>
</tr>
<tr>
<td>9.2.2 Particle Bound in a Finite Potential Well</td>
<td>519</td>
</tr>
<tr>
<td>9.2.3 Particle Hitting a Finite Step Potential</td>
<td>531</td>
</tr>
<tr>
<td>9.2.4 Particle Propagating Toward a Rectangular Potential</td>
<td>539</td>
</tr>
<tr>
<td>9.2.5 The One-Dimensional Harmonic Oscillator</td>
<td>548</td>
</tr>
<tr>
<td>9.3 Three-Dimensional Schrödinger’s Equation</td>
<td>552</td>
</tr>
<tr>
<td>9.3.1 Three-Dimensional Harmonic Oscillator in Cartesian Coordinates</td>
<td>552</td>
</tr>
<tr>
<td>9.3.2 Schrödinger’s Equation for Spherically Symmetric Potentials</td>
<td>556</td>
</tr>
<tr>
<td>9.3.3 Particle in an Infinite, Spherical Well</td>
<td>561</td>
</tr>
<tr>
<td>9.3.4 Particle in a Finite, Spherical Well</td>
<td>566</td>
</tr>
<tr>
<td>9.3.5 The Hydrogen Atom in Spherical Coordinates</td>
<td>574</td>
</tr>
<tr>
<td>9.4 Exercises</td>
<td>579</td>
</tr>
</tbody>
</table>
10 Relativity and Cosmology

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>579</td>
</tr>
<tr>
<td>10.2</td>
<td>Special Relativity</td>
<td>580</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Overview</td>
<td>580</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Decay of a Particle</td>
<td>582</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Two-Particle Collision</td>
<td>584</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Compton Scattering</td>
<td>587</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Moving Mirror and Generalized Snell’s Law</td>
<td>590</td>
</tr>
<tr>
<td>10.2.5</td>
<td>One-Dimensional Motion of a Relativistic Particle with Constant Acceleration</td>
<td>592</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Two-Dimensional Motion of a Relativistic Particle in a Uniform Electric Field</td>
<td>595</td>
</tr>
<tr>
<td>10.3</td>
<td>General Relativity</td>
<td>599</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Overview</td>
<td>599</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Killing Vectors and Spherical Symmetry</td>
<td>601</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Schwarzschild Solution</td>
<td>605</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Geodesics for the Schwarzschild Metric</td>
<td>610</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Time It Takes to Fall into a Black Hole</td>
<td>614</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Circular Geodesics for the Schwarzschild Metric</td>
<td>618</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Precession of the Perihelion</td>
<td>620</td>
</tr>
<tr>
<td>10.4</td>
<td>Cosmology</td>
<td>625</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Overview of Friedmann, Robertson, and Walker Cosmology</td>
<td>625</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Field Equations for Friedmann–Robertson–Walker Cosmology</td>
<td>627</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Zero-Pressure (Dust) Cosmological Models</td>
<td>632</td>
</tr>
<tr>
<td>10.4.3</td>
<td>The Expansion and Age for the Friedmann–Robertson–Walker Models</td>
<td>637</td>
</tr>
<tr>
<td>10.5</td>
<td>Exercises</td>
<td>643</td>
</tr>
</tbody>
</table>