
MathLink

Reference Guide
Mathematica Version 2.2

Second edition

First printing

Mathematica and MathLink are registered trademarks of Wolfram Research, Inc.

Unix is a registered trademark of AT&T.

Macintosh is a trademark of Apple Computer, Inc.

MPW is a trademark of Apple Computer, Inc.

Think C is a trademark of Symantec Corporation.

All other product names are trademarks of their producers.

Copyright 1991–1993 by Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright holder.

Wolfram Research is the holder of the copyright to the Mathematica software system described in this document, including without
limitation such aspects of the system as its code, structure, sequence, organization, “look and feel”, programming language and compi-
lation of command names. Use of the system unless pursuant to the terms of a license granted by Wolfram Research or as otherwise
authorized by law is an infringement of the copyright.

Wolfram Research, Inc. makes no representations, express or implied, with respect to this documentation or the software it describes,
including without limitations, any implied warranties of merchantability or fitness for a particular purpose, all of which are expressly dis-
claimed. Usersshould be aware that included in the terms and conditions under which Wolfram Research is willing to license Mathematica is
a provision that Wolfram Research and its distribution licensees, distributors and dealers shall in no event be liable for any indirect, inciden-
tal or consequential damages, and that liability for direct damages shall be limited to the amount of the purchase price paid for Mathematica.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and
omissions. Wolfram Research shall not be responsible under any circumstances for providing information on or corrections to errors and
omissions discovered at any time in this document or the software it describes, whether or not they are aware of the errors or omissions.
Wolfram Research does not recommend the use of the software described in this document for applications in which errors or omissions
could threaten life, injury or significant loss.

796.3.9.1993

What Is MathLink?

MathLink is a communication protocol for Mathematica; that is, a way of sending data and com-
mands back and forth between Mathematica and other programs. MathLink is easy to use for any-
one who is familiar with Mathematica and another programming language. Your version of the
MathLink library is most easily used from C programs. Future versions will include additional
support for other languages.

What Can I Use It For?

To call custom code from Mathematica

To call Mathematica as a subprogram from another program

To call Mathematica from Mathematica

To develop an application program that communicates with Mathematica

The programs that you link to Mathematica can range from very simple routines to perform a
particular kind of calculation to sophisticated front ends for Mathematica to applications that can
act on data generated by Mathematica or can use Mathematica to perform advanced calculations
or to create a graphic representation of the external application’s data.

This guide gives you an introduction to MathLink along with a handy reference for the Math-
Link functions you can use in your programs. Try the examples to see how Mathematica can work
hand in hand with an outside program.

Before you read this manual to learn about MathLink for the first time, you ought to be famil-
iar with the C language. If C is new to you, or you need to refresh your knowledge of it, refer to
a basic C text, such as Kernighan and Ritchie’s The C Programming Language. You will also need
to understand the general structure of Mathematica expressions; for this you can refer to Sections
2.1 and A.1 of Mathematica: A System for Doing Mathematics by Computer, Second Edition.

Where Can I Find More Information?

There is more information on new and experimental features of MathLink for Version 2.2 of Math-
ematica in the technical report Major New Features in Mathematica Version 2.2. This document is in-

cluded in all copies of Mathematica and all Mathematica 2.2 upgrades. You should keep it handy
if you want to create advanced MathLink applications.

Major New Features in Mathematica Version 2.2 can also be found in the form of a text file in the
Documents subdirectory or folder in your Mathematica distribution.

In the C header file mathlink�h, you will find helpful comments along with declarations of
the MathLink library functions, packet types, data types, error codes, and device information se-
lectors supported for the current version of MathLink.

Note that many of the functions declared in mathlink�h are for MathLink’s internal use and
therefore are not documented in this guide or in Major New Features in Mathematica Version 2.2.

If you have Mathematica 2.2 for Macintosh systems, you will find important information about
using MathLink in the README file on the MathLink disk in your Mathematica distribution.

Table of Contents

1 Introduction . 1

2 Using External Functions from Inside Mathematica . 3
How to Install Functions from an External Program � An Illustrative Example � Using Lists as Arguments and
Return Values � How to Debug an Installable Program � Requests for Mathematica Evaluations within an Exter-
nal Function � Note on Memory Allocation � Advanced Topic: Using Multiple Instances of an External Program
� Install Command Summary � Further Information in This Guide

3 How Expressions Are Sent over MathLink . 16
Expressions and Packets � How an External Program Reads or Writes an Expression � MathLink Functions Built
into Mathematica and the MathLink Library

4 Using MathLink in Your C Programs . 19
Basic Pieces of C Programming for MathLink � MathLink Header File � Link Variable Declarations � Opening a
Link � Put and Get Functions �Disowning Strings and Arrays � Putting and Getting Composite Expressions �Al-
ternative C Types for Numbers �Data Type Checking �Moving from One Expression to the Next �Closing a Link

5 Running Mathematica as a Subprogram . 29
MathLink Mode �An Example of an External Program That Runs Mathematica in MathLink Mode � What Math-
ematica Does When in MathLink Mode � Other Ways to Call Mathematica from an External Program

6 Using a Link Manually from Inside Mathematica . 34
Opening a Link � Write and Read Commands � Closing a Link �Other MathLink-related Commands

7 More about Opening a MathLink Connection . 37
Connection Parameters � Examples of Parameter Settings �Default Behavior �Using Install with Listen and Con-
nect Modes � Use of Standard Input and Output � Using Mathematica through a Peer-to-Peer Connection

8 Link Status and Interrupt Functions . 44
Error Functions and Conditions � MLReady and MLFlush � Interrupting a Calculation over MathLink

9 Putting and Getting Data in Text Form . 48
Textual-Interface Functions in the MathLink Library �When to Use the Text Format

10 Listing of MathLink Library Functions . 51

11 Listing of Mathematica’s Built-in MathLink Functions . 66

Appendix: Using MathLink with Other Programming Languages . 71

Table of MathLink Functions . 72

1 Introduction 1

1 Introduction

MathLink is a general mechanism for exchanging mathematical expressions between Mathemat-
ica and other programs. Mathematica supports MathLink communication through many built-in
functions and a library of MathLink routines that can be used in external C language programs
(or any program that can call a C function library).

You can use MathLink to call an external program and send data and commands to it from in-
side Mathematica, or to call Mathematica from an external program. You can also use MathLink to
connect Mathematica to a front end program that handles the user interface, or you can use Math-
Link to exchange expressions between two concurrent Mathematica sessions.

One way to use MathLink is to take functions defined in an external program and install them
into Mathematica, where you can use them in expressions just as if they were Mathematica func-
tions. It is very easy to use MathLink in this way, because the communication details are taken
care of by Mathematica’s Install function and the compiling tools provided with MathLink.
Chapter 2 tells you how to use these tools to link C programs with Mathematica.

For more general applications of MathLink, you might want to learn some of the details of how
MathLink works. You can write external programs that call MathLink library functions to initial-
ize MathLink connections, to send and receive data, and to close the connections. You can also
use corresponding commands for performing these operations from Mathematica. This reference
guide explains the usage of these functions. Several examples are included to show MathLink
functions in a working context, and listings of MathLink functions are included for easy reference
in Chapters 10 and 11.

Chapter 3 is an overview of how data are sent back and forth through MathLink. It explains
the general sequence of C function calls that put expressions to MathLink or get expressions from
MathLink.

Chapter 4 introduces you to the basic high-level functions you can use in your programs to
open links and conduct MathLink dialogs with Mathematica. A few very simple example pro-
grams are included.

Chapters 5 and 6 describe two ways to have Mathematica talk over MathLink. Chapter 5 ex-
plains how Mathematica behaves when it is accessed in MathLink mode from another program.
Chapter 6 talks about the specific MathLink operations that you can perform manually from in-
side Mathematica.

MathLink can use various data transport systems: on Unix systems, it can use pipes or TCP,
and on Macintosh systems, it can use TCP or PPC (program-to-program communication, a Sys-
tem 7 feature). A process can be linked with another process on the same or a different machine.
You can use MathLink not only between a main program and a subprogram, but between pro-
cesses that are running independently as peers. Chapter 7 explains the choices and gives exam-
ples that use the different link modes.

2 MathLink Reference Guide

Chapter 8 covers the functions for checking MathLink error conditions. It also discusses how
you can make an external program respond to an interruption request from Mathematica. These
issues are important in all but the simplest communication tasks.

Chapter 9 rounds out the description of MathLink with some routines that represent MathLink
expression elements as text rather than as various C types. You will be able to use MathLink for
many purposes without these functions, but you will need them to deal with numbers that can-
not be represented as C-type numbers.

Several examples in this guide are based on example programs provided on magnetic media
with Mathematica or with the MathLink Developer’s Kit. Try some of these examples as you go
through this guide. Also refer to the README files on your distribution media for specific in-
formation on running the examples on your system.

Future versions of MathLink will provide support for other programming languages in addi-
tion to C. However, the current version of the MathLink library can be used with other languages,
provided that your programs call MathLink library functions via an appropriate interface. See
the Appendix on page 71 for some discussion of the issues involved in using MathLink with a
language other than C.

2 Using External Functions from Inside Mathematica 3

2 Using External Functions from Inside
Mathematica

Mathematica provides a simple way to use MathLink to call functions within an external program
and receive results back. When you build an external program and link it up with Mathematica
as described in this chapter, your external functions become functions defined in Mathematica,
which you can use in expressions just like any other Mathematica function.

How to Install Functions from an External Program

To use functions from an external C program in Mathematica, you should compile the program
using the special tools provided with Mathematica or the MathLink Developer’s Kit, then use
Install��program�� inside Mathematica. Here is a step-by-step summary of the procedure.

Write the external function or functions as a C program.

Write a MathLink template file associating each external function with a Mathematica pattern.

Process and compile with mcc (Unix versions only) or mprep.

Use Install��name�� in Mathematica, specifying the name of your compiled external pro-
gram.

Access the functions from Mathematica by the names given in the template file.

When you are done using the installed functions, remove them by using Uninstall�link�,
specifying the LinkObject expression that was returned by Install.

An Illustrative Example

The best way to understand what you need to do in each step of an external program installa-
tion is to see how it is done for a simple example. This section will illustrate the procedure by
referring to an external program for adding two integers.

Writing the external functions

Begin by writing a C program consisting of one or more functions that you want to install,
along with the function main, which should include the function call MLMain�argc� argv�. The
argc/argv pair usually should be the argument list values passed to main by the operating envi-
ronment. (The argument list may specify optional parameters for the MathLink connection, but
in many cases, no arguments need to be supplied.)

4 MathLink Reference Guide

Here is the program file for the addtwo external function.

�include �mathlink�h�

int addtwo�i� j�
int i� j�

�
return i�j�

	

int main�argc� argv�
int argc�
char
argv� ��

�
return MLMain�argc� argv��

	

addtwo�c�

MLMain is a function that will be generated for you when you run the MathLink compiling
tool, mcc (provided with Unix versions only), or the template file processor mprep (provided
with Unix and Macintosh versions). MLMain takes care of opening the MathLink connection and
sending and receiving data.

The argument list passed to MLMain may include certain parameters that tell MathLink what
kind of connection to use. To learn what these connection parameters can be, see page 37. For
most purposes, you can let the argument list be empty.

The C source file should include the MathLink header file mathlink�h.

The template file

A MathLink template file specifies the correspondence of function names and argument types
between your external functions and their Mathematica forms. A template file matches specific
Mathematica patterns with the external functions and arguments that should be used in evaluat-
ing expressions that fit those patterns. The template filename should end with the extension .tm.

The set of specifications for a single external function is called a template entry. A template
file should have one template entry for each external function being installed.

The following table lists the kinds of specifications that can appear in a template file.

2 Using External Functions from Inside Mathematica 5

�Begin� beginning of template entry

�Function� f source code name of the external function

�Pattern� f�x�type� y�type� ����

Mathematica pattern for which the external function is to
be used

�Arguments� 	x� y� ���
 Mathematica list of the arguments to be passed to the
external function

�ArgumentTypes� 	mtype1� mtype2� ���

list of the data types of the arguments

�ReturnType� mtype data type of the return value from the external function

�End� end of template entry

�Evaluate� expr Mathematica input to be evaluated when the external
program is started

�� text comment

Template file keywords.

Here is a template file identifying the external addtwo function with the Mathematica object
AddTwo when it is applied to two integers.

Begin
Function addtwo
Pattern AddTwo�i�Integer� j�Integer�
Arguments �i� j	
ArgumentTypes �Integer� Integer	
ReturnType Integer
End

addtwo�tm�

The �Begin� and �End� lines delimit the template entry for a single external function. Here
is what each line in the template entry means.

�Function� addtwo gives the name of the function in the external program.

�Pattern� AddTwo�i�Integer� j�Integer� gives the Mathematica pattern for the expres-
sions that should be evaluated by a call of the external function. The external function will not be
called for expressions that fail to match this pattern completely. For example, with the addtwo
program installed, Mathematica would return the expression AddTwo��� Pi� unchanged, since
the symbolic second argument does not fit the pattern.

6 MathLink Reference Guide

�Arguments� 	i� j
 lists the Mathematica objects that are to be passed as arguments to the
external function. In this case, they correspond to blanks in the �Pattern� line. Generally, how-
ever, the arguments can be any Mathematica expressions that evaluate to the appropriate types.

�ArgumentTypes� 	Integer� Integer
 specifies the data types that the external function
will expect to see in the call packet that is sent by Mathematica. If Mathematica sends an argu-
ment of the wrong type and it cannot be converted to the correct type, the external function will
return �Failed. You should be able to avoid this by requiring suitable types in the �Pattern�
line. The number of argument types must match the number of arguments.

�ReturnType� is the type of the result that will be sent back to Mathematica. It must correspond
to the type returned by the function in your program, or it should be set to Manual if the external
function explicitly calls MathLink library routines to send the return expression to Mathematica.

The following table lists the type names that can be used in a template’s �ArgumentTypes� or
�ReturnType� line, and shows what kinds of Mathematica data and C types they correspond to.

Template type Example in Mathematica Corresponding C type(s)

Integer � int

Real ���� double

IntegerList 	�� ��� �
 int � (values) and long (list length)

RealList 	����� ���� ��� ��
 double � and long

String �hello� char �

Symbol x char �

Manual none

Note: TheIntegerList andRealList types are not allowed as return types;
use theManual return type to return lists.

Data types to use as �ArgumentTypes�or �ReturnType� in template entries.

Note: The template file and the C source file can be combined into one file with the exten-
sion �tm . The template file processor will turn the template entries into C code and leave your
C code unchanged.

Compiling and installing the external functions

To build an installable external program, you should process the template file into a C module
that takes care of the MathLink details, then compile this module and link it with your C func-
tions and the MathLink library. Mathematica gives you tools to make this process easy.

2 Using External Functions from Inside Mathematica 7

A program called mprep takes the template file as input and produces a C file that gives the
MathLink interface between your external functions and Mathematica. It is then a simple matter
to compile the external program, following the usual procedure for your compiler.

On Unix systems, you can run a compiling script mcc, which will call mprep for you and then
finish the compilation by calling cc with appropriate arguments.

To compile the addtwo program on a Unix system, you would type

mcc addtwo�c addtwo�tm �o addtwo

to use the C source file addtwo�c and the template file addtwo�tm. The �o indicates that the fol-
lowing argument, addtwo, should be used as the name of the executable output file.

On Macintosh systems, there is no mcc, but there are versions of mprep for the Think C and
MPW compilers. You would first process your template file with the appropriate version of
mprep, then run your compiler on the output source file along with the C source file(s) that contain
your function definitions. See the README file in your MathLink distribution for more information.

Installing and using the external functions in Mathematica

Inside Mathematica, use Install��name�� to install an external program. The Install mech-
anism opens a link to the external program and creates definitions in your Mathematica session
for the functions that will be evaluated externally. These definitions use a Mathematica function
named ExternalCall to carry out the communication details.

The output from Install is a LinkObject link identifier. If you assign this link object to a
variable, you can conveniently close the link later. For example, the external functions installed
via the link addlink can be removed by typing Uninstall�addlink�.

Installing the “addtwo” program.

Connect to and install the
external program.

In����� addlink � Install��addtwo��

Out���� LinkObject�addtwo� �� ��

In����� AddTwo�����

Out���� �

The function AddTwo was
defined when the external
program was installed.

In����� �AddTwo
Global	AddTwo

AddTwo�i
Integer� j
Integer� ��
ExternalCall�LinkObject��addtwo�� �� ���
CallPacket��� i� j���

Notice that the definition is
used for integer arguments only.

In����� AddTwo��	
� ��

Out���� AddTwo����� ��

8 MathLink Reference Guide

Uninstall removes all
definitions for external
functions and closes the link.

In����� Uninstall�addlink�

Using Lists as Arguments and Return Values

You might want to pass a list of numbers as an argument to an external function, or receive a list
as a result. For list arguments, you can use the types IntegerList and RealList in your tem-
plate file’s �ArgumentTypes�. Lists as return values have to be handled differently, by specify-
ing a Manual type and putting explicit MathLink library calls into your external function to send
the list. The example in this section uses lists both as arguments and as return values. It also in-
troduces the use of �Evaluate� specifications to define usage messages for an installed function.

The external program for the following example defines two functions: a function bitand
that performs a bitwise “and” operation on two integers to produce an integer, and a function
complements that takes a list of integers and returns a list containing the bitwise complement of
each integer in the argument list.

�include �mathlink�h�

int bitand�x� y�
int x� y�

�
return�x � y��

	

void complements�px� nx�
int px� ��
long nx�

�
int i�
for�i � �� i � nx� i���

px�i� � � px�i� �
MLPutIntegerList�stdlink� px� nx��

	

int main�argc� argv�
int argc�
char
argv� ��

�
return MLMain�argc� argv��

	

bitops�c�

Notice that the complements function produces a list of integers as the result. A list has to be
sent back to Mathematica manually, that is, by writing the appropriate MathLink call into the pro-
gram. In this case, the MathLink call is MLPutIntegerList�stdlink� px� nx� where px is the
name of the integer array and nx is the number of integers to be put. The argument stdlink is
a global link variable identifying the link to Mathematica. Other MathLink functions for manu-

2 Using External Functions from Inside Mathematica 9

ally writing various types of data to a link are described in the section “Put and Get Functions”
in Chapter 4.

The first element of an array in C has index 0. Note that the same element in Mathematica form
is referred to as part 1 of the list.

Here is the template file for this external program. It comprises two template entries.

Begin
Function bitand
Pattern BitAnd�x�Integer� y�Integer�
Arguments �x� y	
ArgumentTypes �Integer� Integer	
ReturnType Integer
End

Evaluate BitAndusage � �BitAnd�x� y� gives the bitwise conjunction of
two integers x and y��

Begin
Function complements
Pattern BitComplements�x�List�
Arguments �x	
ArgumentTypes �IntegerList	
ReturnType Manual
End

Evaluate
BitComplementsusage �

�BitComplements��x��x�����	� generates a list of the
bitwise complements of the integers xi��

bitops�tm�

The template file contains two template entries. One entry associates the external function
bitand with the Mathematica function BitAnd, and the other associates the external function
complements with the Mathematica function BitComplements. Along with the template entries,
there are also two �Evaluate� specifications. An �Evaluate� specification calls for the given
Mathematica input to be evaluated when the external program is installed. In this template file,
the �Evaluate� expressions set usage messages for the functions that are being installed.

An �Evaluate� specification can extend over several lines, as long as all lines after the first
are indented and no blank lines intervene.

�Evaluate� expressions are evaluated in the order they are given. Those that come before a
template entry are evaluated before the external function definition is made, and those that come
after a template entry are evaluated after the function is defined.

Notice that BitComplements is given a return type of Manual, because the external function
complements uses an explicit MathLink call to return the result. Manual tells the MathLink tem-
plate file processor not to try to send the C function’s return value (which in this case is void)
back to Mathematica.

10 MathLink Reference Guide

After compiling and installing the bitops program, you will be able to use two new functions
in Mathematica: BitAnd and BitComplements.

Installing the “bitops” program.

Install the program. In����� bitlink � Install��bitops���

The operator �� is used to enter
numbers in a nondecimal base.

In����� BitAnd������������� ������������

Out���� ���

In����� BaseForm��� ��

Out�����BaseForm� ����������
�

On this machine, the bitwise
complement of an integer x is
equal to �1 � x.

In����� BitComplements���� �� ���

Out�����BaseForm� ��� ��� ���

LinkPatterns gives a list of
the patterns defined by this
installed program.

In����� LinkPatterns�bitlink�

Out���� BitAnd�x
Integer� y
Integer��
BitComplements�x
List��

In����� �BitAnd
BitAnd�x� y� gives the bitwise conjunction
of two integers x and y�

In����� �BitComplements
BitComplements�x��x������� generates a list
of the bitwise complements of the integers xi�

How to Debug an Installable Program

The previous examples in this chapter have used what is called a parent-child connection, in which
Mathematica, as the parent process, starts up an external process and then connects to it via Math-
Link. It is also possible for Mathematica to connect to an external process that is already running
independently of Mathematica. This kind of connection is called a peer-to-peer connection. If you
want to run your external program inside an interactive debugger, you will likely prefer to use
a peer-to-peer connection to link Mathematica to the external process.

The general method is to start Mathematica and the debugger separately, and to use the appro-
priate link modes to establish a peer-to-peer connection between Mathematica and your external
program. To do this, first use LinkOpen��name�� LinkMode��Listen� in Mathematica, where
name should be an appropriate port name for your data transport protocol. (You may omit name
to let LinkOpen choose a valid port name for you.) Then use your debugger to start your exter-
nal program, supplying the parameters �linkmode connect �linkname name as arguments
to the external program. The name parameter should match the link name returned by LinkOpen.
MathLink’s connection modes are discussed further in Chapter 7.

2 Using External Functions from Inside Mathematica 11

You may use whatever debugger you are accustomed to in your C programming environ-
ment; the following table lists some commonly used debugging tools for various programming
environments.

Unix systems gdb, dbx

Macintosh MPW SourceBug, SADE

Macintosh Think C Think C’s integrated debugger

Commonly used debuggers.

The following example illustrates how gdb would be used to debug an installed external pro-
gram on a Unix system. Other debuggers in other environments can be used similarly.

To rebuild the addtwo program (see page 4) on a Unix system with debugging information
and without deleting the C code generated, use the �g option to mcc.

Unix session.

unix� mcc �g addtwo	c addtwo	tm �o addtwo

Now you may run addtwo from within the debugger, set breakpoints, examine program vari-
ables, and generally observe and affect the execution of your code.

Mathematica session on Unix host "moose".

Create a listening port. In����� addlink � LinkOpen�������� LinkMode��Listen�

Out���� LinkObject������moose� �� ��

Unix session.

Start a debugger, targeting the
addtwo program.

unix� gdb addtwo
���

Set a breakpoint at your C
function.

�gdb� break addtwo
Breakpoint � at �x����� file addtwo�c� line ��

Run the program with
arguments specifying the link
mode and port name.

�gdb� run �linkmode connect �linkname ����
Starting program� �users�shawn�mlsamples�addtwo

Mathematica session.

Install by referring to the link
object returned by LinkOpen.

In����� Install�addlink��

AddTwo��� �� causes your C
function to be called.

In����� AddTwo��� ��

Unix session.

The breakpoint was reached
and the program halted.

Bpt �� addtwo �i��� j��� �addtwo�c line ��
� return i�j�

12 MathLink Reference Guide

You may now examine
program variables, etc.

�gdb� print i�j
�� � �
���

The debugger command cont
causes execution to continue.

�gdb� cont
Continuing�

Mathematica session.

Out���� �

This example used a TCP port named ����; you should use an appropriate port number
or name on your system. If you omit the name argument when you open the listening link,
LinkOpen will generally choose a valid port name for you.

Requests for Mathematica Evaluations within an External Function

MLEvaluate�stdlink� �text��
evaluate the specified text as Mathematica input from
within an external function

Sending requests back to Mathematica. The stdlinkargument specifies the link to Mathematica in installable programs
that use the standard MLMain routine. If you customize a program to use a different link, you may replace stdlinkwith
another value.

An external function can send an evaluation request to Mathematica while it is in the process of
handling a call from Mathematica. The function MLEvaluate can be used in installable programs
to send such a request. MLEvaluate�stdlink� �text�� sends text as an input string to Mathe-
matica. Mathematica returns an expression wrapped with the head ReturnPacket. This expres-
sion should be read by using the “MLGet” functions described in Chapter 4.

An alternative way to send an expression to Mathematica for evaluation is to use MLPut func-
tions to build up and send the expresssion wrapped in an EvaluatePacket head. The basic
MLPut functions are listed in Chapter 4.

Do not confuse MLEvaluate with the �Evaluate� specification that may appear in a template
file. �Evaluate� requests in the MathLink template file perform evaluations in Mathematica at
the time the external program is installed, and do not generate ReturnPacket results.

Note on Memory Allocation

Note that pointers returned from your C functions or passed to MLPut functions are not freed by
MathLink. So, for example, if one of your functions returns a symbol or string, the pointer re-
turned will not be freed. If you place the return value in static storage or reuse dynamically allo-
cated storage, then this is exactly the behavior you need. If, however, you need to dynamically

2 Using External Functions from Inside Mathematica 13

allocate storage that needs to be reclaimed, you should specify a Manual return type, allocate the
needed storage, call the necessary MLPut functions, deallocate the storage, and return void.

Advanced Topic: Using Multiple Instances of an External Program

For some applications, you might want to use more than one instance of an external program at
the same time. A textbook example of such an application is a histogram-plotting program that
defines functions to add values to a histogram and to plot the histogram. If you want to work
with several histograms at the same time, you need to install several instances of the program
and to be able to tell the functions which instance you are working with.

In order to make it possible to call a function in a particular installed copy of an external pro-
gram, include the argument ThisLink in the �Pattern� line of the external function’s template
entry. During the installation of an external program, ThisLink is bound to the MathLink link
object created for that installation. To use the installed function, you will give the specific link
object as an argument in place of ThisLink.

The following example shows how to use this technique to define an external “counter”.

Evaluate BeginPackage��counter���

Begin
Function AddToCounter
Pattern AddToCounter�ThisLink� n�Integer�
Arguments �n	
ArgumentTypes �Integer	
ReturnType Integer
End

Evaluate AddToCounterusage � �AddToCounter�ck� n� adds n to the counter
ck and returns the accumulated value��

Evaluate EndPackage� �

int counter � ��

int AddToCounter�n�
int n�

�
counter �� n�
return counter�

	

int main�argc� argv�
int argc�
char
argv� ��

�
return MLMain�argc� argv��

	

counter�tm�

14 MathLink Reference Guide

Note that for this example, the template entry and the external function’s C code are combined
in a single file. When this file is processed by mcc or mprep, the template specifications are first
converted into C code to set up the external function interface, while the C code that is already
there is left as is. The resulting C source file is compiled to create the installable program.

Assuming you have compiled the program and given it the name counter, you can install
multiple copies in Mathematica as illustrated in the following sample session.

Installing two copies of the “counter” program.

Install the first instance of the
“counter”.

In����� cnt� � Install��counter���

Install another one. In����� cnt� � Install��counter���

When called with a link object
as a first argument,
AddToCounter sends a
message to the corresponding
instance of the external
program.

In����� AddToCounter�cnt�� ���

Out���� ��

In����� AddToCounter�cnt�� ���

Out���� ��

In����� AddToCounter�cnt�� ���

Out���� ��

The full information for
AddToCounter shows that
there are two definitions,
specific to the two different
links.

In����� ��AddToCounter
AddToCounter��usage � AddToCounter�ck� n� adds n to
the counter ck and returns the accumulated value�

AddToCounter�LinkObject��counter�� �� ��� n
Integer� ��
ExternalCall�LinkObject��counter�� �� ���
CallPacket��� n���

AddToCounter�LinkObject��counter�� �� ��� n
Integer� ��
ExternalCall�LinkObject��counter�� �� ���
CallPacket��� n���

2 Using External Functions from Inside Mathematica 15

Install Command Summary

Here is a summary of the built-in functions that are used in connection with installable programs,
as discussed in this chapter.

Install��command�� open and install an external program that contains
functions set up to be called via MathLink

Install�link� install a previously opened link

Uninstall�link� close the link to an external program and remove the
rules for functions defined in it

LinkPatterns�link� give the list of all patterns to call functions in the external
program

Mathematica functions for handling installable programs.

Further Information in This Guide

These examples give some good beginning guidelines for designing external programs that can
be called from Mathematica. If you want to use MathLink in a wider range of applications or want
to become familiar with the MathLink function calls you can use in an external program, refer to
the later chapters of this guide.

Most of the examples in this chapter have used a default connection mode by which the exter-
nal program was launched as a subprogram from Mathematica. It is also possible to use Install
to connect to an external program that has been started independently. This peer-to-peer method
is particularly useful for debugging the external program, as shown on page 10. Chapter 7 has a
more general discussion of how different connection modes are used.

16 MathLink Reference Guide

3 How Expressions Are Sent over MathLink

Expressions and Packets

All data sent via MathLink are in the form of Mathematica expressions. Any Mathematica expres-
sion can be sent through MathLink.

Expressions sent over MathLink may convey many different kinds of information. For exam-
ple, an expression sent from Mathematica to an external program might be a result of a calcula-
tion, a warning message, or graphics display data.

To make it easy for an external program to know what kind of information it is getting, Math-
ematica can generate output in the form of “packets”. A packet is an expression that contains a
particular kind of information, wrapped with a head that identifies what type of information is
enclosed. Mathematica uses packets automatically when you run it in “MathLink mode”, which
is the usual mode for running Mathematica as a subprogram from an external program or front
end. An external program that receives packet output from Mathematica can read the packet type
first and then dispatch to a function written to handle that type of packet. MathLink mode and
packet types are discussed in more detail in Chapter 5.

How an External Program Reads or Writes an Expression

To an external program, Mathematica expressions sent over MathLink are sequences of data ele-
ments arranged in a specific order. There are five types of data element, representing integers,
real numbers, symbols, strings, and composite expressions, respectively.

A composite expression is an expression that is built from one or more subexpressions. A
composite expression can be written head�arg1� arg2� . . . � argn�, with a head expression head
and zero or more argument expressions argi.

Composite expressions can also be referred to as nonatomic expressions. Integers, real numbers,
symbols, and strings are atomic expressions, or atoms.

An atomic expression can be read or written with a single MathLink function call. A compos-
ite expression generally takes several function calls to read or write.

When a composite expression is written to or read from MathLink, the number of arguments
is established first, so that the receiving program knows how many parts will follow. Then the
head of the expression is written or read, followed by each of the arguments in turn.

3 How Expressions Are Sent over MathLink 17

For example, the expression b�� � � a c could be put onto a link by the following se-
quence of C program statements.

MLPutFunction�alink� �Plus�� ��� �
 Composite� � arguments
�
�
 Head Symbol Plus
�

MLPutFunction�alink� �Power�� ��� �
 Arg� Composite� � arguments
�
�
 Head Symbol Power
�

MLPutSymbol�alink� �b��� �
 Arg� Symbol b
�
MLPutInteger�alink� ��� �
 Arg� Integer �
�

MLPutFunction�alink� �Times�� ��� �
 Arg� Composite� � arguments
�
�
 Head Symbol Times
�

MLPutInteger�alink� ���� �
 Arg� Integer ��
�
MLPutSymbol�alink� �a��� �
 Arg� Symbol a
�
MLPutSymbol�alink� �c��� �
 Arg� Symbol c
�

A sequence of C statements for sending the expression b�� � � a c.

As this example shows, the parts of a composite expression can themselves be composite ex-
pressions. Each part is completely described, including all of its subexpressions, before the next
part starts.

Complex numbers of the form a � b I and rational numbers of the form n�d are represented
in MathLink as Complex�a� b� and Rational�n� d� respectively.

A basic set of MathLink functions for putting and getting data is described in Chapter 4.

MathLink Functions Built into Mathematica and the MathLink Library

The MathLink functions built into Mathematica and included in the MathLink library implement
MathLink communication over various transport systems. The Unix version supports commu-
nication via pipes or TCP; Macintosh versions support TCP or PPC (program-to-program com-
munication, a feature of System 7). MathLink can be used to exchange data between Mathemat-
ica and external programs, between a Mathematica kernel and a front end, or between one kernel
and another. The MathLink library functions provide an interface between the elements of Math-
ematica expressions and external programming data types.

The MathLink library has put and get routines for the atomic data types that make up expres-
sions: integers, real numbers, symbols, and strings. Each of these types is represented in your
programs by a suitable native C type. There are also put and get functions to handle composite
expressions, and functions that transfer a list of integers or a list of real numbers with a single
call. All of these are described in Chapter 4.

The MathLink library also supplies routines for representing any element of data as a string of
ASCII text (see Chapter 9). These are especially useful in communicating numbers whose size or
precision is too great to be represented using native C numeric types.

Depending on how you use MathLink, you might have little or no direct use for the MathLink
functions that are built into Mathematica. If you use MathLink to install external functions, you

18 MathLink Reference Guide

might only be interested in the functions Install, LinkPatterns, and Uninstall, which are
described in Chapter 2.

If you call Mathematica as a subprogram, using MathLink mode, in which Mathematica auto-
matically reads expressions from the external program and writes results back, you do not need
to use any of the built-in MathLink functions explicitly.

If you want to carry out MathLink operations manually from within Mathematica, however,
you will need to be familiar with several functions that open and close links, write to and read
from a link, and control link operation in various ways. You can refer to Chapter 6 to learn about
these functions.

4 Using MathLink in Your C Programs 19

4 Using MathLink in Your C Programs

Basic Pieces of C Programming for MathLink

This chapter presents the basic building blocks for using MathLink in C, which are as follows.

The MathLink header file and the link variable declarations

The MathLink library function for opening a link

The MathLink library functions for putting data to or getting data from a link

The MathLink library functions for checking the type of incoming data elements

The MathLink library functions for concluding an outgoing expression or handling a new in-
coming expression

The MathLink library function for closing a link

Here is a sample program that uses all of these elements.

Sample program.

Include the MathLink header
file.

�include �mathlink�h�
�include �stdio�h�

int main�argc� argv�
int argc� char argv� ��

Declare a link variable. MLINK alink�

char response�

Open a link. alink � MLOpen�argc� argv��
if�alink �� NULL� return ��

Put data on the link. MLPutSymbol�alink� ��Version���
Terminate the outgoing
expression.

MLEndPacket�alink��

Check incoming expressions. while �MLNextPacket�alink� !� RETURNPKT�
MLNewPacket�alink��

Check the type of the current
data element.

if �MLGetType�alink� �� MLTKSTR�

Get data from the link. MLGetString�alink� "response��
printf� ��s#n�� response��

� else
printf��Error��output is not a string�#n���

�
MLPutFunction�alink� �Exit�� ���
MLEndPacket�alink��

Close the link. MLClose�alink��
return ��

�

20 MathLink Reference Guide

This chapter does not cover all of the functions in the MathLink library, but describes a basic
set that will be enough for many simple applications. More MathLink functions are described in
Chapters 8 and 9.

MathLink Header File

mathlink�h header file to include in all C source files that use
MathLink functions

The MathLink header file.

Include the header file mathlink�h in any source file that uses functions from the MathLink li-
brary. This header file can be found in the Mathematica Source�Includes subdirectory in Unix
versions, or in the MPW or Think C folder in the MathLink Developer’s Kit for Macintosh com-
puters.

Link Variable Declarations

MLINK link� declare a variable that will hold a pointer to a link data
structure

Link variable declaration.

Every time a program opens a link, the connection function will return an object of type MLINK.
An MLINK variable is a pointer to the link data structure that is created to manage communica-
tion over a MathLink connection. Every time you access the connection, you have to identify the
link by passing the MLINK object as the first argument to a MathLink function.

4 Using MathLink in Your C Programs 21

Opening a Link

MLOpen�argc� argv� open a MathLink connection and return an MLINK-type
link pointer

Opening a link from a C program.

MLOpen is a general function for opening a MathLink connection. It takes the familiar command-
line argument list types as arguments: the first argument is an argument count, and the second
is a null-terminated array of strings. These arguments can be the same values that are passed
to main by the operating system. This allows you to specify connection parameters in the com-
mand line when you start up your program.

The connection parameters are discussed in Chapter 7. In many cases, you will need to spec-
ify only one parameter or none at all; for instance, no parameters need to be supplied in an in-
stallable program that will be launched from inside Mathematica. External programs that launch
Mathematica can do so by passing the command-line arguments �linkname �mathcommand� to
MLOpen, where mathcommand is the appropriate command string for starting a Mathematica ker-
nel on your system. (For Unix versions this is usually �math �mathlink�; for Macintosh ver-
sions consult the README file in the MathLink Developer’s Kit.)

In programs written to be used with Install, you do not need to call MLOpen; just include
the function call MLMain�argc� argv� and it will call MLOpen for you.

Besides opening a link, MLMain sets things up so that the installed functions are automatically
called when the corresponding patterns are evaluated, and so that the results are passed back to
Mathematica.

The MLMain function is automatically written when you process a MathLink template file with
mcc or mprep.

Put and Get Functions

The MathLink library has a large number of functions for writing data to or reading it from a link.
The following table shows a basic set of these functions. These include puts and gets of each of
Mathematica’s atomic data types and of composite expressions.

22 MathLink Reference Guide

Functions for putting and getting numbers, symbols, and strings

MLPutInteger�link� inum� MLGetInteger�link� �inum�

MLPutReal�link� rnum� MLGetReal�link� �rnum�

MLPutSymbol�link� string� MLGetSymbol�link� �string�
MLDisownSymbol�link� string�

MLPutString�link� string� MLGetString�link� �string�
MLDisownString�link� string�

Functions for putting and getting composite expressions

MLPutFunction�link� string� count� MLGetFunction�link� �string� �count�
MLDisownSymbol�link� string�

MLPutNext�link� MLTKFUNC� MLGetNext�link� or MLGetType�link�
MLPutArgCount�link� count� MLGetArgCount�link� �count�

Argument types for the above functions

MLINK link�
long count�
char �string�
int inum�
double rnum�

MLTKFUNC is an integer constant defined inmathlink�h.

Basic set of C functions for putting and getting data via MathLink. The appropriate argument types are as indicated at
the bottom of the table. Note that some MLGet functions must be followed by MLDisown functions to allow MathLink to
reuse the memory in which the received data were stored.

The functions in the first section of this table handle the atomic data types. These data types
represent expressions that cannot be broken down into any smaller expressions.

The functions in the second section of the table are used to handle composite expressions,
which are expressions that can be written as a head expression followed by a sequence of parts
in square brackets. In most cases, you will work with composite expressions whose heads are
simply symbols; for example, f�a� b� c� is a composite expression with head f. You can use
MLPutFunction or MLGetFunction to put or get the head and argument count for this kind of
expression, then continue with the argument expressions, one after another.

The functions MLPutNext, MLPutArgCount, MLGetNext, MLGetType, and MLGetArgCount are
used for composite expressions whose heads are not symbols. For more information, see the sec-
tion “Putting and Getting Composite Expressions” on page 24.

MLDisown functions should be used in tandem with some of the MLGet functions in order to
manage memory properly. After your program has finished looking at a character string re-

4 Using MathLink in Your C Programs 23

turned by MLGetString, MLGetSymbol, or MLGetFunction, it should call MLDisownString or
MLDisownSymbol with the string as the second argument. This is discussed further in the fol-
lowing section, “Disowning Strings and Arrays”.

MathLink also provides functions for putting or getting a list of integers or a list of real num-
bers with a single function call.

Functions for putting and getting lists of numbers

MLPutIntegerList�link� iarray� count� MLGetIntegerList�link� �iarray� �count�
MLDisownIntegerList�link� iarray� count�

MLPutRealList�link� rarray� count� MLGetRealList�link� �rarray� �count�
MLDisownRealList�link� rarray� count�

Argument types for the above functions

MLINK link�
long count�
int �iarray�
double �rarray�

Putting and getting lists of numbers. Arguments should have the types indicated at the bottom of the table.

If your program uses the integer or real list input/output functions, remember that element 0
of a C array corresponds to part 1 in the Mathematica list representation.

MathLink’s input/output functions can be expected to coerce data from one type to another
when necessary and possible. That is, integers can be read as floating-point numbers and the
other way around. Also, any data type can be read as a string.

Disowning Strings and Arrays

The functions MLGetString, MLGetSymbol, MLGetFunction, MLGetIntegerList, and
MLGetRealList store received data in an area reserved for MathLink’s use and return pointers
into this memory area. Your program should not write to this memory; it should simply exam-
ine the data or copy them to another location. Then it should call the corresponding MLDisown
function, as listed in the tables in the previous section.

The MLDisown functions tell MathLink that you are done looking at the data returned by a pre-
vious MLGet function, so that MathLink can reuse the memory it allocated for the data.

24 MathLink Reference Guide

Putting and Getting Composite Expressions

To represent an expression that is nonatomic, which means that it can be written head� . . . �, usu-
ally with a sequence of arguments within the brackets, MathLink uses the composite expression
data type. After this type is specified, the argument count is given; then comes the head of the
expression, followed by the arguments (if any), one after another.

Usually, the head of an expression is a symbol. In this case, you can put or get
the data type, the argument count and the head of the expression with the single call
MLPutFunction�link� symbol� count� or MLGetFunction�link� �symbol� �count�. For exam-
ple, MLPutFunction�alink� �Plus�� �� tells MathLink that a function of two arguments will
follow and that the head of the function is Plus. You would follow this by putting the argument
parts. The expression a � b, whose full form is Plus�a� b�, could be sent as follows.

MLPutFunction�alink� �Plus�� ���

MLPutSymbol�alink� �a���
MLPutSymbol�alink� �b���

Sending the expression a � b from a C program.

The same expression could be read from a link by a sequence similar to the following.

MLGetFunction�alink� �fname� �nargs��
process�name�fname��
MLDisownSymbol�alink� fname��

MLGetSymbol�alink� �sym��
process�symbol�sym��
MLDisownSymbol�alink� sym��

MLGetSymbol�alink� �sym��
process�symbol�sym��
MLDisownSymbol�alink� sym��

Reading the expression a � b in a C program.

Note that when you use MLGetFunction to get a function name, you may read or copy the
function name string returned by MLGetFunction, but you should not write to it, and when you
are done referencing the string, you should call MLDisownSymbol to disown it.

For expressions whose heads are not symbols, but instead are themselves composite expres-
sions, you need to use a sequence of calls in place of MLPutFunction or MLGetFunction.

To write such a composite expression to a link, use MLPutNext�link� MLTKFUNC�, then
MLPutArgCount�link� count�, and then the appropriate sequence of put calls to put the head of
the expression, followed by the arguments.

4 Using MathLink in Your C Programs 25

For example, the head of Derivative����f� is Derivative���, and this head applies to the
single argument f. Derivative����f� would be sent by the following sequence of calls.

MLPutNext�alink� MLTKFUNC�� �
 MLTKFUNC is the composite data type�
�
MLPutArgCount�alink� ��� �
 Head and � argument to follow�
�

MLPutFunction�alink� �Derivative�� ��� �
 These two lines put the head�
�
MLPutInteger�alink� ��� �
 namely� Derivative����
�

MLPutSymbol�alink� �f��� �
 This line puts the argument f�
�

Sending an expression whose head is not a symbol.

Similarly, when receiving such an expression from a link, you would first read the data type
withMLGetNext�link� or MLGetType�link�—either of which would return the value MLTKFUNC—
then you would use MLGetArgCount�link� �count�, and then further MLGet calls to get the ex-
pression’s head and arguments.

MLGetNext and MLGetType are generally useful for checking the type of any incoming data
element; this is discussed further on page 26. MLPutNext, MLGetNext, and MLGetType are also
used for handling atomic data in terms of a general text representation; see Chapter 9.

Alternative C Types for Numbers

The input/output functions mentioned earlier for integers and real numbers represent these
numbers as C types int and double, respectively. Alternatively, you may choose to use the C
types short or long for integers, and you may use float or long double for real numbers.

To put or get a number using one of these alternative types, simply use the MLPut or MLGet
function from the following list with the appropriate type designation in place of Integer or
Real in the function name. Aside from the difference in the numeric argument’s type, the syn-
tax is the same as that used for MLPutInteger or MLGetInteger.

MLPutShortInteger MLGetShortInteger

MLPutLongInteger MLGetLongInteger

MLPutFloat MLGetFloat

MLPutDouble MLGetDouble

MLPutLongDouble MLGetLongDouble

Input/output functions for alternative C numeric types. The argument syntax for these functions is similar to the syntax
shown for MLPutInteger, MLPutReal, etc., on page 22.

In current versions, MLPutReal and MLGetReal are equivalent to MLPutDouble and
MLGetDouble, but the definitions of MLGetReal and MLPutReal might differ in some future ver-
sions of MathLink.

26 MathLink Reference Guide

Data Type Checking

MLGetNext�link� return the type of the next data element to be read from
the link (always go to a new data element)

MLGetType�link� return the type of the current data element being read
from the link (go to a new data element only if the most
recent element has been completely read)

Functions for checking incoming data types.

Before you read data from a link, you can use MLGetNext or MLGetType to find out what kind
of data element is coming. These functions return an integer constant corresponding to the data
type of an incoming element.

MLGetNext always looks at a new data element. It skips past any data element that has al-
ready been looked at by any MLGet call.

MLGetType is like MLGetNext except that it does not skip ahead to a new data element un-
less the previous element has been completely read. Therefore it can be called repeatedly for the
same element.

The data type codes returned by MLGetNext and MLGetType are listed in the following table.

MLTKSTR Mathematica string

MLTKSYM Mathematica symbol

MLTKINT integer

MLTKREAL real number

MLTKFUNC Mathematica composite expression

MLTKERROR (== 0) error getting data type

Predefined constants corresponding to data types.

The code for reading a complicated expression may look like the following.

���
switch �MLGetType�link�� �
case MLTKSTR

MLGetString�link� �s��
process�string�s��
MLDisownString�link� s��
break�

case MLTKINT
MLGetInteger�link� �n��
process�integer�n��

4 Using MathLink in Your C Programs 27

break�
���
case MLTKFUNC

MLGetArgCount�link� �count��
���
break�

default
���

	

C code segment for reading part of a complicated expression.

MLCheckFunction�link� string� �count�
check whether the element to be read next is a composite
expression whose head is the symbol string; if so, return
the argument count as count

Function for checking incoming function expression.

If you are expecting a composite expression with a certain function name at its head, you can
check for this function name with MLCheckFunction�link� string� �count�. This function re-
turns 0 if the data on the link do not match the function name you expected. If the data do match,
MLCheckFunction returns nonzero and stores the argument count of the expression in the loca-
tion specified by �count.

Moving from One Expression to the Next

MLEndPacket�link� mark the end of an outgoing expression

MLNewPacket�link� discard what is left of the current incoming expression

MLNextPacket�link� identify the type of the next incoming packet

Functions involving the boundary between one complete expression and another.

When writing to a link, you should call the MathLink function MLEndPacket each time you fin-
ish putting a complete expression onto the link. MLEndPacket should be used for any complete
top-level expression (but not for a subexpression of a larger expression), whether or not it has a
head that is a Mathematica packet name.

When reading from a link, you can call MLNewPacket in the middle of reading an expression
to discard the remainder of that expression and go to the beginning of the next top-level expres-
sion. MLNewPacket can be used whether or not incoming expressions are in packet format.

When reading expressions that are in packet format, you can use MLNextPacket at the begin-
ning of each incoming expression to determine what kind of packet it is. MLNextPacket returns

28 MathLink Reference Guide

an integer constant corresponding to the packet type. It returns 0 and sets the MathLink error
condition if the head of the received expression is not a legal packet name.

Packet format is normally used for all expressions sent by Mathematica when it runs as a sub-
program in MathLink mode. MathLink mode and the packet types recognized by MLNextPacket
are described in Chapter 5.

Using MLNextPacket, you can easily construct a C switch statement that dispatches to a dif-
ferent part of your program for each packet type.

���

switch �MLNextPacket�link�� �
case INPUTPKT

MLGetString�link� �s��
take�input�s��
MLDisownString�link� s��
break�

���
case MESSAGEPKT

MLGetSymbol�link� �sym��
MLGetString�link� �s��
process�message�n��
MLDisownSymbol�link� sym��
MLDisownString�link� s��
break�

���
case RETURNPKT

read�expression�link��
���
break�

default
���

	

Typical C code for processing a packet.

MLNextPacket checks that you are at the beginning of a packet and uses MLGetFunction to
read the packet head. Subsequent MLGet calls read the arguments of the expression. It is an er-
ror to call MLNextPacket before all the subexpressions of the current packet have been read.

Closing a Link

MLClose�link� disconnect the link

Terminating a link from a C program.

Use MLClose�link� to close a link. Your program must close all links it has opened before termi-
nating.

5 Running Mathematica as a Subprogram 29

5 Running Mathematica as a Subprogram

MathLink Mode

When Mathematica is started in MathLink mode by another process, all expressions sent via Math-
Link from Mathematica to the parent process have heads that specify a packet type. For ex-
ample, TextPacket�string� represents text, as produced by the Mathematica function Print.
MessagePacket�symbol�name� represents a Mathematica warning message. The result of a cal-
culation is given in the form ReturnPacket�expr� or ReturnTextPacket�expr�.

InputPacket�string� INPUTPKT prompt for input, as generated by
Mathematica’s Input function

TextPacket�string� TEXTPKT text output from Mathematica, as
produced by Print

ReturnPacket�expr� RETURNPKT result of a calculation

ReturnTextPacket�string� RETURNTEXTPKT formatted text representation of a
result

MessagePacket�symbol� string� MESSAGEPKT Mathematica message identifier
(symbol��string)

CallPacket�integer� list� CALLPKT request to invoke the external
function numbered integer, with
arguments in list

InputNamePacket�string� INPUTNAMEPKT name to be assigned to the next
input (usually In�n���)

OutputNamePacket�string� OUTPUTNAMEPKT name to be assigned to the next
output (usually Out�n��)

DisplayPacket�string� DISPLAYPKT part of a PostScript graphic
description

DisplayEndPacket�string� DISPLAYENDPKT end of graphic description

SyntaxPacket�integer� SYNTAXPKT position at which a syntax error
was detected in the input line

MenuPacket�integer� string� MENUPKT a number specifying a particular
menu (e.g., the interrupt menu)
and a prompt string

Packet names, type codes returned by MLNextPacket, and description of enclosed expression(s).

30 MathLink Reference Guide

Typically several types of packets are generated for a single evaluation.

When a message is generated, the message packet is normally followed by a text packet giv-
ing the full text of the error message.

Menu packets are generated when Mathematica wants input to tell it how to proceed in spe-
cial circumstances when there are several options, such as when you interrupt a calculation. In
a menu packet, a menu number of 0 indicates that the previous menu selection was invalid. If
this is the case, the menu packet is followed by a text packet giving detailed instructions.

You will probably want to use MathLink mode if you have written a program that will call
Mathematica as a subprogram, particularly if your program is designed to be a front end for Math-
ematica. To start a Mathematica kernel in MathLink mode on a Unix system, you should specify
the option �mathlink in the math command line. If you have a Macintosh computer, refer to the
README file in the MathLink Developer’s Kit for information on starting a Mathematica kernel
in MathLink mode.

An Example of an External Program That Runs Mathematica in
MathLink Mode

Here is a simple example of a C program that is designed to run Mathematica in MathLink
mode. When the program is run in a Unix environment with the command-line arguments
�linkname �math �mathlink�, it launches Mathematica and has it calculate the sum of two in-
tegers. (The way in which argc and argv are supplied is system dependent; for Macintosh sys-
tems you should follow the addinteger�c example or other examples provided in the MathLink
Developer’s Kit.)

�include �stdio�h�
�include �mathlink�h�

int main�argc� argv�
int argc�
char
argv� ��

�
int i� j� sum�
MLINK link�

printf��Two integers�n�t���
scanf���d �d�� �i� �j��

link � MLOpen�argc� argv��
if �link �� NULL� return ��

�
 Send Plus�i� j�
�
MLPutFunction�link� �Plus�� ���

MLPutInteger�link� i��
MLPutInteger�link� j��

MLEndPacket�link��

�
 skip any packets before the first ReturnPacket
�
while �MLNextPacket�link� �� RETURNPKT� MLNewPacket�link��

5 Running Mathematica as a Subprogram 31

�
 inside the ReturnPacket we expect an integer
�
MLGetInteger�link� �sum��

printf��sum � �d�n�� sum��

�
 quit Mathematica then close the link
�
MLPutFunction�link� �Exit�� ���
MLEndPacket�link��
MLClose�link��
return ��

	

addinteger�c�

What Mathematica Does When in MathLink Mode

In the MathLink mode main loop, Mathematica reads an expression from MathLink, evaluates it,
and writes results back to MathLink. The usual standard input and output channels are replaced
by the link object �ParentLink. Therefore, a user cannot interact directly with Mathematica when
it is in this mode.

In MathLink mode, all output data are wrapped with appropriate packet heads. The re-
sult of a calculation is wrapped in ReturnPacket (or ReturnTextPacket, if the input expres-
sion has the head Enter; see the following paragraph). Other kinds of output have different
heads. For example, the Mathematica function Print writes its data to �ParentLink wrapped
with TextPacket. Similarly, Message sends data inside MessagePacket, and Display sends
data inside DisplayPacket. (Note: Display for a single picture can produce a sequence
of DisplayPackets; to mark the end of the picture, the last data packet is wrapped with
DisplayEndPacket.)

If your external program is to act as a complete front end to Mathematica, then you will prob-
ably want to define several kinds of requests that you can send to Mathematica. You can imple-
ment different requests by wrapping expressions in functions that specify what to do with the
expressions inside. A special case is the Enter function; if Mathematica receives the expression
Enter��string��, it interprets string as an input expression and completely processes it. The pro-
cessing includes incrementing the line number and sending input and output labels. The final
result generated by Enter is converted into a string and sent as a ReturnTextPacket.

Enter��string�� perform complete processing of the string as Mathematica
input, sending output through MathLink to the parent
process or front end

Special form of input to Mathematica in MathLink mode.

You can easily see the form of output produced by Mathematica in MathLink mode by starting
a Mathematica subprocess from within a normal interactive Mathematica session.

32 MathLink Reference Guide

This sort of experiment can help you get a better idea of what Mathematica does when it runs in
MathLink mode, as well as letting you try out some MathLink operations manually from a Mathe-
matica session. The built-in MathLink functions used in this example are described in Chapter 6.

Running a Mathematica subprocess from within Mathematica.

Start another copy of
Mathematica in mathlink
mode. Assign the link object to
the symbol link.

In����� link � LinkOpen��math �mathlink �noinit��

Out���� LinkObject�math �mathlink �noinit� �� ��

First the child process sends an
input prompt label.

In����� LinkRead�link�

Out���� InputNamePacket�In����� �

Send 2+2, without first
evaluating it locally.

In����� LinkWriteHeld�link� Hold������

In����� LinkRead�link�

The result is wrapped in
ReturnPacket.

Out���� ReturnPacket���

The expression 1�0 will
generate a warning message.

In����� LinkWriteHeld�link� Hold������

A message packet comes first. In����� LinkRead�link�

Out���� MessagePacket�Power� infy�

The text of the message follows. In����� LinkRead�link�

Out���� TextPacket�

� � �
Power��infy� Infinite expression � encountered�

�
The return packet comes last. In�$��� LinkRead�link�

Out�$�� ReturnPacket�ComplexInfinity�

Now send an input string
wrapped in Enter.

In����� LinkWrite�link�
Enter��Factor��x� � �x � ���� �

In response, Mathematica first
sends an output label.

In������ LinkRead�link�

Out����� OutputNamePacket�Out���� �

The result computed from the
Enter expression comes in the
form of a string wrapped in
ReturnTextPacket.

In������ LinkRead�link�

Out����� ReturnTextPacket���� � x� ��� � � x��

5 Running Mathematica as a Subprogram 33

Here is the new input prompt. In������ LinkRead�link�

Out����� InputNamePacket�In����� �

In the example, the command-line switch �noinit is used to suppress startup messages. Try
it without this switch to see what happens. You may find that the second Mathematica process
sends you a few extra packets before it sends the first input name packet.

Notice that the line number in the child session is incremented and input/output labels gen-
erated only when an Enter expression is processed.

Other Ways to Call Mathematica from an External Program

You do not have to use MathLink mode to call Mathematica from an external program. If you start
Mathematica and an external program independently and then create a peer-to-peer connection
between them, you can handle reads and writes to the external program manually from within
Mathematica. Another alternative is to launch Mathematica from within an external program, but
with a special init�m file or a batch input file giving specific Mathematica commands for estab-
lishing and maintaining communication with the parent program.

These methods require careful application of Mathematica’s built-in MathLink functions and
correct use of MathLink connection parameters when you open your links. Mathematica’s built-in
MathLink functions are discussed in Chapter 6. To learn how to establish different kinds of con-
nections, see the discussion of link parameters in Chapter 7.

You might also find it useful to put Mathematica into MathLink mode after establishing a peer-
to-peer connection with an external program. There is an example on page 42 that does this.

34 MathLink Reference Guide

6 Using a Link Manually from Inside
Mathematica

The previous chapters in this guide describe two ways to have Mathematica handle MathLink com-
munication automatically. When you install an external program by the method of Chapter 2, its
functions are automatically invoked when you evaluate certain expressions within Mathematica;
and when you call Mathematica in MathLink mode from an external program, Mathematica auto-
matically uses MathLink to read input and write output to the external program.

For more general applications, you might want to handle a link manually within an interac-
tive Mathematica session by using built-in functions for MathLink communication. These func-
tions are discussed in this chapter.

Opening a Link

LinkOpen��name�� LinkMode��mode� LinkProtocol��protocol� LinkHost��host�
open a link to the external program indicated by name,
using the specified link parameters

Opening a link from Mathematica.

LinkOpen is Mathematica’s built-in analog to the MathLink library function MLOpen (see page 21).
Like MLOpen, it opens a link according to link parameters that tell it how to establish a connec-
tion and what to connect to. The link name parameter is given as an argument to LinkOpen; this
is the name of an external program to be launched or the name of a communication port to be
used in making a connection. The other parameters are specified as options. LinkOpen assumes
default values for parameters that are not supplied.

The link name argument can be omitted if you are opening a link in Listen mode and you
want MathLink to pick a port name for you.

The LinkMode option can be set to Launch, ParentConnect, Listen, or Connect.
LinkProtocol can be set to �TCP� or �pipes� in Unix versions, and to to �TCP� or �PPC� in
Macintosh versions (PPC is the program-to-program communication protocol built into Macin-
tosh System 7). LinkHost is used when the other partner in the communication is located on
another machine, in which case LinkHost is set to a string giving the remote host’s name. The
various link parameters are discussed further in Chapter 7.

LinkOpen returns a Mathematica link object, which has the form LinkObject��name��
serialno� channo�. The second argument, serialno, is a unique “serial number”, which specifies
which invocation of LinkOpen this particular link is associated with. By including a serial num-
ber in the link object, Mathematica allows you to run several copies of the same external process,

6 Using a Link Manually from Inside Mathematica 35

and deal with each one separately. The third argument, channo, is a “channel number”; MathLink
uses it internally.

LinkOpen is called internally when you use Install to launch an external program, as de-
scribed in Chapter 2.

The link object returned by LinkOpen should be stored in a variable; you will have to supply
it as the first argument in subsequent operations on the link.

Write and Read Commands

The MathLink input/output commands built into Mathematica are LinkWrite, LinkWriteHeld,
LinkRead, and LinkReadHeld.

LinkWrite�link� expr� write expr to the link

LinkWriteHeld�link� Hold�expr��
write expr to the link without evaluating it

LinkRead�link� read an expression from the link

LinkReadHeld�link� read an expression from the link and wrap it in Hold to
keep it unevaluated

Writing to or reading from a link in Mathematica.

Each of these commands writes or reads one Mathematica expression.

LinkWriteHeld or LinkReadHeld will send or receive an expression without evaluating it.
LinkWriteHeld takes an expression wrapped in Hold and writes it to the link without the Hold.
LinkReadHeld receives an expression and wraps it in Hold.

Closing a Link

LinkClose�link� close the link

Closing a link from Mathematica.

LinkClose�link� is Mathematica’s built-in command for closing a link. For external programs
that you have linked to Mathematica by using the Install function, you may close the link by
entering Uninstall�link�.

36 MathLink Reference Guide

Other MathLink-related Commands

These other MathLink-related commands are built into Mathematica.

LinkReadyQ�link� returns True if data are immediately available to be read
from the link

LinkError�link� returns the MathLink error status of the link and the
corresponding error message string

LinkInterrupt�link� interrupts a calculation being performed by an installed
external program or a second Mathematica process (see
page 46)

�LinkSupported is True for versions of Mathematica that support MathLink

�ParentLink the link object being served by the Mathematica main
loop, or Null if not in MathLink mode

Links� � returns a list of the currently active links

Some other MathLink functions built into Mathematica.

LinkReadyQ allows you to test for incoming data on a link before attempting to read. This al-
lows you to have Mathematica do other things instead of blocking and waiting for data to arrive.

LinkError gives you the error status of a link.

LinkInterrupt will interrupt a calculation in an external program if the program has certain
special interrupt-handling functions built in. Installed external functions that were built with mcc
and mprep are generally able to respond to LinkInterrupt; see page 46 for more on this topic.

LinkReadyQ, LinkError, and LinkInterrupt are related to the MathLink library functions
MLReady, MLError, and MLPutMessage, which are described in Chapter 8.

�ParentLink is a global variable that determines whether Mathematica operates in MathLink
mode and if so, what link it takes input from. Page 42 has an example showing the effect of set-
ting �ParentLink manually.

7 More about Opening a MathLink Connection 37

7 More about Opening a MathLink
Connection

Connection Parameters

In your C programs that use MathLink, the parameters in the argument list you pass to MLOpen
or MLMain tell MathLink what kind of connection you want to create and where to find the other
partner in the communication. MLOpen looks for the following sequences.

�linkname name gives the name of the entity to connect to; this may be a
port name or a program command line

�linkmode mode gives the mode of opening the link; this must be Listen,
Connect, Launch, or ParentConnect (these can be entered
with capital or lower-case letters)

�linkprotocol protocol specifies the data transfer protocol to be used; choices are
TCP (Unix or Macintosh systems), PPC (Macintosh), and
pipes (Unix)

�linkhost hostname identifies the machine on which the other partner to the
link is to be found

Connection parameters taken by MLOpen.

When you open a link in Mathematica, you give the link name as an argument to LinkOpen
or Install, and you may give the mode, protocol, and host by setting the options LinkMode,
LinkProtocol, and LinkHost.

LinkOpen��name�� LinkMode��mode� LinkProtocol��protocol� LinkHost��host�

Install��name�� LinkMode��mode� LinkProtocol��protocol� LinkHost��host�

Specifying connection parameters when opening a link in Mathematica. For most purposes, you do not need to specify
all of the options.

In most cases, it is not necessary to specify all four of the link parameters; MLOpen or LinkOpen
will try to infer the correct values for missing parameters. It may also check the environment
and prompt the user for more information if necessary. Note that some combinations of param-
eters are not valid. For example, you cannot open a link in Connect or Listen mode using the
“pipes” protocol.

38 MathLink Reference Guide

Mode

MathLink provides two methods for establishing a connection between two processes. In one
case a parent process creates and connects to a child process; in the other, the two processes are
started independently and act as peers.

The relationship that each process has to its partner when the connection is being established
is called its link mode. For parent-child connections, the parent uses Launch mode and the child
uses ParentConnect mode; for peer-to-peer connections one process uses Listen mode and the
other uses Connect mode. Once a connection has been established, no further reference needs to
be made to the link mode.

Name

A parent process that wants to launch a child process must provide a filename to launch. For
peer-to-peer connections, one side must create a named port and listen for connection requests,
and the other side must name the port it wishes to connect to. So, when establishing a MathLink
connection, a name must be given as well as a mode.

A port is an operating system resource used for communication. Ports are named so that one
port can call and connect to another by name. The format of a port’s name is determined by the
underlying interprocess communication protocol. For example, a TCP port name is a positive
integer (such as ���), whereas a PPC port name is an arbitrary word (such as otherProgram).

If the link mode is Listen and the link name is not specified, MLOpen or LinkOpen will select
an arbitrary valid port name.

Protocol

On Unix systems, MathLink connections may operate through pipes or over TCP. On Macintosh
systems, MathLink can run over PPC or TCP. PPC stands for program-to-program communica-
tion, a feature that is built into Macintosh System 7.

Not all of these protocols are supported for every link mode on a given system. Therefore, the
choice of link mode alone may be enough to determine which protocol is used.

Host

If the link name given to MLOpen or LinkOpen refers to a communication port on another com-
puter, the link host parameter must be specified to identify the other host machine.

7 More about Opening a MathLink Connection 39

Examples of Parameter Settings

A C program running on a machine called spider that executes this code:

MLINK link�
int argc �
char
argv� � � �

��linkmode�� �listen��
��linkname�� �������
��linkprotocol�� �TCP��
� 	�

link � MLOpen�argc� argv��

Opening a link from C in Listen mode.

will accept and establish a connection with a Mathematica session that evaluates the following in-
put.

In���� LinkOpen�������� LinkMode��Connect�
LinkProtocol���TCP�� LinkHost���spider��

Opening a link from Mathematica in Connect mode.

A Mathematica session that evaluates this input:

In���� link � LinkOpen��prog�� LinkMode��Launch�

Opening a link from Mathematica in Launch mode.

will start and connect to a C program named prog if that program executes the following state-
ments.

MLINK link�
int argc � �
char
argv� � � ���linkmode�� �parentconnect�� �	�
link � MLOpen�argc� argv��

Opening a link from C in ParentConnect mode.

Note that the function MLOpen is designed to take command-line arguments. So, rather than
constructing argc and argv in the text of your program as in the foregoing examples, you would
likely use the command-line arguments passed to your main function by the runtime environ-
ment. Also notice that the link name parameter is the only argument to the Mathematica function
LinkOpen. The other parameters appear as options.

Default Behavior

Actually, MLOpen and LinkOpen provide a great deal of default behavior if some or all of the link
parameters are not specified. In particular, if the link mode is not specified it will be set to Launch
if a link name is given, or to ParentConnect if not. Then the link protocol, if not specified, is chosen

40 MathLink Reference Guide

to be some default based on the link mode. The link host, if not given, is chosen to be “this” com-
puter. If no link name is specified, one will be chosen for you, or you may be asked to provide one.

If no information at all is provided via argc and argv, MLOpen will ask the environment in
some system-dependent way if it can provide any information beyond what it passed to main.
Finally, if the environment provides no information and MLOpen can determine that this process
was launched by a user rather than a candidate parent process, it asks the user for help. Other-
wise, MLOpen assumes the ParentConnect mode.

Using Install with Listen and Connect Modes

Here is an example in which the external program addtwo listens on port “5000” and waits for a
connection request. Mathematica then connects to this port to install addtwo.

External environment.

Start the addtwo program from
outside of Mathematica, and
have it listen on port “5000”.

addtwo �linkmode listen �linkname ����

Mathematica session.

Supply the port name as the
argument to Install.

In����� addlink � Install�������� LinkMode��Connect�

Out���� LinkObject������spider� �� ��

In����� AddTwo��� ��

Out���� �

In����� Uninstall�addlink�

Out���� �����spider

In the following example, the listening port is created by Mathematica. Once the connection is
established, the two examples are indistinguishable. Use whichever you find more convenient.

Mathematica session.

Create a link in Listen mode on
port “5000”.

In����� link � Install�������� LinkMode��Listen�

External environment.

Start the external program and
have it use Connect mode to
connect to port “5000”.

addtwo �linkmode connect �linkname ����

Mathematica session.

Out���� LinkObject������spider� �� ��

In����� AddTwo��� ��

Out���� �

7 More about Opening a MathLink Connection 41

In����� Uninstall�link�

Out���� �����spider

Use of Standard Input and Output

In Unix environments, a program launched by MathLink cannot use standard terminal input and
output because the standard input and output channels (stdin and stdout) are used by Math-
Link for communication with the parent program. However, the child program can use stderr
for its output, or it can open a terminal file independently for input and output that avoids the
MathLink channels.

If you use Listen and Connect modes to establish a peer-to-peer connection between Mathe-
matica and another program, then you are free to use stdin and stdout as you wish in the ex-
ternal program.

Using Mathematica through a Peer-to-Peer Connection

In the following example, two Mathematica processes establish and communicate through a peer-
to-peer connection. This allows both processes to run as interactive sessions.

Session “A”.

Rename the Mathematica
prompts for clarity.

In����� �Unprotect�In� Out��
Format�In� � ASideIn� Format�Out� � ASideOut��

ASideIn����� linkToB � LinkOpen�������moose��
LinkMode��Listen�

ASideOut���� LinkObject������moose� �� ��

Session “B”.

In����� �Unprotect�In� Out��
Format�In� � BSideIn� Format�Out� � BSideOut��

BSideIn����� linkToA � LinkOpen�������moose��
LinkMode��Connect�

BSideOut���� LinkObject������moose� �� ��

Session “A”.

Send an expression from “A” to
“B”.

ASideIn����� LinkWrite�linkToB� N�Pi��

Session “B”.

BSideIn����� LinkRead�linkToA�

BSideOut���� ������������$���

42 MathLink Reference Guide

Send an expression from “B” to
“A”.

BSideIn����� LinkWrite�linkToA� Sqrt����

Session “A”.

ASideIn����� LinkRead�linkToB�

ASideOut���� ��������$�������

You should notice that the processes operate as peers and that expressions sent over the link are
not wrapped in packet heads, because neither copy of Mathematica was started in MathLink mode.

You may want to switch Mathematica into MathLink mode after establishing a peer-to-peer con-
nection with another process. To do so, simply set �ParentLink equal to the link object attached
to the other process.

Watch what happens in this example when �ParentLink in session “A” is set to linkToB.
From session “B”, the newly subordinated “A” side now acts as if it were started in MathLink
mode. From the “A” side, it appears as if the setting of �ParentLink does not return (it actually
returns its output to session “B”). When �ParentLink is subsequently set to Null, the two sides
again act as peers.

Session “A” continued.

Tell “A” to go into MathLink
mode serving session “B”.

ASideIn����� �ParentLink � linkToB

Session “B”.

Session “B” receives the output
from ASideIn�!�.

BSideIn����� LinkRead�linkToA�

BSideOut���� OutputNamePacket�ASideOut�����

BSideIn����� LinkRead�linkToA�

BSideOut���� ReturnTextPacket�LinkObject������moose� �� ���

BSideIn����� LinkRead�linkToA�

BSideOut���� InputNamePacket�ASideIn������

Send an expression for simple
evaluation.

BSideIn�$��� LinkWriteHeld�linkToA� Hold������

BSideIn����� LinkRead�linkToA�

BSideOut���� ReturnPacket���

Send an input string for full
processing.

BSideIn������ LinkWrite�linkToA� Enter��������

BSideIn������ LinkRead�linkToA�

BSideOut����� OutputNamePacket�ASideOut�����

7 More about Opening a MathLink Connection 43

Note that the result is sent in a
return text packet.

BSideIn������ LinkRead�linkToA�

BSideOut����� ReturnTextPacket���

BSideIn������ LinkRead�linkToA�

BSideOut����� InputNamePacket�ASideIn������

BSideIn������ LinkWriteHeld�linkToA�
Hold��ParentLink � Null��

Session “A”.

ASideIn�$���

Notice that the first assignment to �ParentLink resulted in “full processing”. That is, an out-
put prompt was produced, the answer was written in a ReturnTextPacket, the line number
was incremented, and an input prompt was produced. Subsequent expressions sent from ses-
sion “B” are not given full processing unless they are sent as input strings wrapped in Enter.
Compare the results of BSideIn��� and BSideIn���� to see the difference between full pro-
cessing and simple evaluation.

In the following example, the addinteger program from page 30 is rerun using a peer-to-
peer connection.

Mathematica session.

Open a listening link. For
Listen mode, LinkOpen can
choose a port name for you.

In����� link � LinkOpen�LinkMode��Listen�

Out���� LinkObject������spider� �� ��

External environment.

Start addinteger from
outside of Mathematica.

addinteger �linkmode connect �linkname ����
�linkhost spider

Type the input. ���� �

Mathematica session.

From Mathematica, see what
was sent.

In����� LinkReadHeld�link�

Out���� Hold�� � ��

Cooperate by sending back the
result. (In MathLink mode, of
course, Mathematica would eval-
uate the expression and return
the result without your help.)

In����� LinkWrite�link� ReturnPacket�ReleaseHold�����

External environment.

sum � �

44 MathLink Reference Guide

8 Link Status and Interrupt Functions

Error Functions and Conditions

Many kinds of errors can occur while you are putting or getting data via MathLink. Whenever
an error occurs, the MathLink function you have called returns 0, and MathLink goes into an in-
active state, in which MathLink functions have no effect and always return 0.

MLError�link� indicate whether an error has occurred since
MLClearError was last called, and if so, what kind

MLClearError�link� clear a MathLink error

MLErrorMessage�link� a text string describing the current error

Error functions.

To find out whether an error has occurred on a particular MathLink link, and what kind of er-
ror it was, you can call the function MLError. MLError will return the same value repeatedly un-
til you call MLClearError. MLError returns MLEOK (== 0) if no error has occurred, and returns a
nonzero error code otherwise.

When you are trying to read and store a complicated data structure with MathLink, it is some-
times convenient to avoid checking the return value from each MathLink function you call, and
instead to call MLError when you are finished, to see if any errors in fact occurred. The fact that
MathLink functions become inactive after any error occurs makes this a fairly safe procedure.

The following code segments illustrate two ways to read a list of two real numbers with error
checking.

MLCheckFunction�alink� �List�� �len��
if �len �� �� ERROR�
MLGetReal�alink� �x��
MLGetReal�alink� �y��
if �MLError�alink�� ERROR�

Code for reading a list of two reals from MathLink.

MLGetRealList�alink� �rvec� �len��
if �MLError�alink� "" len �� �� ERROR�
use�list�rvec� len��
MLDisownRealList�alink� rvec� len��

Another way to read a list of two reals.

8 Link Status and Interrupt Functions 45

MLEOK (== 0) no error has occurred

MLEDEAD an unrecoverable error has occurred; the other side may
have exited

MLEGBAD inconsistent data were encountered in the stream

MLEGSEQ an MLGet function was called out of sequence

MLEPBTK a bad data type was passed to MLPutNext

MLEPSEQ an MLPut function was called out of sequence

MLEPBIG more data were put to the stream using MLPutData than
was indicated by MLPutSize

MLEOVFL machine integer overflow in MLGetInteger

MLEMEM not enough space to allocate memory for a string

MLEACCEPT failure to accept a connection

MLECONNECT connection has not yet been established with partner

MLECLOSED link closed by other side; you may still get undelivered
data

MLEPUTENDPACKET unexpected or missing call of MLEndPacket

MLENEXTPACKET MLNextPacket called while the current expression has
unread data

MLEUNKNOWNPACKET MLNextPacket read in an unknown packet head

MLEGETENDPACKET unexpected end of expression

MLEABORT a put or get was aborted before affecting the link

Error codes.

MLReady and MLFlush

If your program makes an MLGet call when there are no data waiting on the link, your program
blocks until more data arrive. When new data arrive from Mathematica, the get operation pro-
ceeds, and your program continues. If, on the other hand, incoming data arrive before your pro-
gram asks for them, MathLink buffers the data until the next MLGet call, which can immediately
process the data in the buffer.

If you want to find out whether data are waiting before you call an MLGet function, you should
use MathLink’s MLReady function. MLReady returns nonzero when the incoming buffer has data,

46 MathLink Reference Guide

and 0 when it has none. If no incoming data are present, you may have your program perform
other operations for a while before testing again.

MLReady�link� returns nonzero if data are ready to be read from link
immediately

MLFlush�link� transmit immediately any outgoing data that are
currently buffered on link

Functions for checking incoming data and flushing outgoing data.

Also, data being sent from your program to Mathematica are buffered, so that they may be col-
lected and transmitted in an efficient manner. Occasionally you might want to make sure that all
buffered data are sent before your program proceeds further. This is called flushing the buffer.
To flush the outgoing data buffer for a link, call the MathLink function MLFlush�link�.

Interrupting a Calculation over MathLink

Mathematica can send an interrupt to an installed external program to abort the current opera-
tion. This happens, for example, when the user pressesControl�C orCommand�� and chooses
abort from the interrupt menu. The result is that the global variable MLAbort is asynchronously
set to � in the external program.

In your installable C programs, any function that takes more than a moment to execute should
periodically check the value of MLAbort. If it is set, the function should clean up and return as
quickly as possible. If the function has a manual return type, it should put the symbol �Aborted
on the link to Mathematica (usually stdlink) before returning. Otherwise, it can return any
value. MLAbort is reset to 0 before processing begins on the next call.

Interrupt key (Control�C or Command��), then abort

abort a calculation being done by an installed external
function from Mathematica

LinkInterrupt�link� abort a calculation in another Mathematica process (if it is
running in MathLink mode)

Interrupting a linked process from Mathematica.

LinkInterrupt�link� is a Mathematica command that is called internally when you abort an
external calculation. You would not type it in yourself in such a case. (You could try to type it
in while the external calculation was in progress, but it would not be evaluated until the calcu-
lation was complete.)

8 Link Status and Interrupt Functions 47

However, it can be useful to type in LinkInterrupt�link� if you are running a second Mathe-
matica process as a subprogram from within a Mathematica session; in this case, LinkInterrupt
can interrupt a calculation being performed by the second Mathematica process.

An external program that runs Mathematica in MathLink mode can interrupt a Mathematica cal-
culation by making the call MLPutMessage�link� MLInterruptMessage�.

MLPutMessage�link� MLInterruptMessage�

interrupt Mathematica from an external program

Interrupting Mathematica from an external program.

48 MathLink Reference Guide

9 Putting and Getting Data in Text Form

For most purposes, the MathLink functions described in Chapter 4 are sufficient for sending and
receiving any expression you want to send or receive, as long as your data fit in C’s native types.
However, in some special cases, you may need a general way to transmit some data in the form of
arbitrarily long text sequences. MathLink has textual interface functions that allow you to do this.

Textual-Interface Functions in the MathLink Library

MathLink’s textual interface represents each atomic data object (integer, real number, symbol, or
string) as a data string composed of ASCII characters, with an associated data type. To put an ele-
ment in text form, you must first use MLPutNext to give the type, then MLPutSize to specify the
size in bytes of the data string, then one or more MLPutData calls to put the data string itself. Be-
tweenMLPutData calls, you can call MLBytesToPut to check how many more bytes are left to put.

Several MLPutData calls can be used to put data for a single atom, provided the total length is
equal to that specified by MLPutSize.

MLPutNext�link� type� specify the type of the data to follow; type is an integer
equal to one of the data type codes listed on page 49

MLPutSize�link� count� specify the length in bytes of the data string

MLPutData�link� string� count�
put count bytes from string onto the link

MLBytesToPut�link� �count�
find out the number of bytes that still need to be put and
store this number in count

Putting data as text. In all cases, link is of type MLINK and count is of type long.

To receive an element in text form, you must first check its type by calling MLGetNext or
MLGetType, then you can read the data by using one or more MLGetData calls. Before you call
MLGetData, you may call MLBytesToGet to find out how many bytes of data remain to be read.

9 Putting and Getting Data in Text Form 49

MLGetNext�link�
or MLGetType�link� check the type of the next data element from link (type

MLINK); MLGetNext will always advance to a new
element, but MLGetType only advances if the previous
element has been completely read

MLGetData�link� buff� max� �count�
read at most (long) max bytes from link into (char �)
buff; write the number of bytes actually read to count

MLBytesToGet�link� �count�
find out the number of bytes that remain to be gotten and
store this number in count

Getting data as text. In all cases, link is of type MLINK and count is of type long.

Note the difference between MLGetNext and MLGetType. MLGetNext gets the type of the next
expression in the MathLink data stream, discarding any data not yet read before it; it returns this
type as an integer constant. MLGetType gets the type of the current elementary expression in the
MathLink data stream; it does not discard data or move on to the next element, and therefore a
program can call MLGetType several times for the same data element.

The data types used by MLPutNext, MLGetNext, and MLGetType are specified as integer con-
stants. These values are defined in the MathLink header file mathlink�h.

MLTKSTR Mathematica string

MLTKSYM Mathematica symbol

MLTKINT integer

MLTKREAL real number

MLTKFUNC Mathematica composite expression

Predefined constants corresponding to data types.

Note that text data are never immediately associated with the composite expression type
MLTKFUNC. The next put call after MLPutNext�link� MLTKFUNC� would be an MLPutArgCount
call; and when MLGetNext or MLGetType returns MLTKFUNC, the next get call would be
MLGetArgCount or MLGetFunction. See “Putting and Getting Composite Expressions” on
page 24.

50 MathLink Reference Guide

When to Use the Text Format

The main reason to use the textual format is to get more flexibility in dealing with big numbers
and long strings. For example, the integer

123456789123456789123456789123456789

is probably too big to fit into a machine word of your computer. Therefore it cannot be passed to
MLPutInteger, but you can send it over MathLink by using the following sequence.

MLPutNext�alink� MLTKINT��
MLPutSize�alink� � L��
MLPutData�alink� �����! #$%����! #$%����! #$%����! #$%�� � L�

Sending a very long integer through MathLink.

When you receive long strings over MathLink, you can process parts of them independently.
In some cases you may need to process only the beginning of the string and ignore the rest. The
textual-interface functions described in this chapter are more efficient for this than MLGetString,
which may allocate a buffer for the whole string and read it there. The following example illus-
trates this technique.

if �MLGetType�link� �� MLTKSTR� �
long len� truelen�
char buff�BUFSIZ��

while�MLBytesToGet�link� �len�� len � �� �
if �len � BUFSIZ� len � BUFSIZ�
MLGetData�link� buff� len� �truelen��
assert�len �� truelen��
if �ProcessData�buff� �� ProcessingDone� �

MLGetNext�link��
break�

	
	

	

Processing a long string with a small buffer.

Here ProcessData is a function that processes the partial string and returns ProcessingDone
when it decides that no more data in this string present any interest.

To send numbers using MLPutData, use text strings consisting of ASCII digits. Floating-point
numbers are given in the traditional scientific notation accepted in programming languages like
C and Fortran. For example, 6�626� 10�34 is written as �����e��.

10 Listing of MathLink Library Functions 51

10 Listing of MathLink Library Functions

MLBytesToGet

int MLBytesToGet�link� countptr�
MLINK link�
long �countptr�

MLBytesToGet�link� �count� determines how many bytes remain to be read in the
textual representation of the current element and writes this number to the long variable
count.
See page 48. See also: MLGetNext, MLGetType, MLGetData.

MLBytesToPut

int MLBytesToPut�link� countptr�
MLINK link�
long �countptr�

MLBytesToPut�link� �count� determines how many bytes remain to be written in the
textual representation of the current element and writes this number to the long variable
count.
See page 48. See also: MLPutNext, MLPutSize, MLPutData.

MLCheckFunction

int MLCheckFunction�link� string� countptr�
MLINK link�
char �string�
long �countptr�

MLCheckFunction�link� string� �count� reads a function name and argument count
from the specified link and compares the function name with string. If the name of the
function matches string, MLCheckFunction returns nonzero and writes the argument
count to the long variable count.
MLCheckFunction returns 0 if the function name currently waiting on the link does not match string, or if the
current MathLink data element is not of the MLTKFUNC type. If an error has occurred, it can be identified by
calling MLError. See page 27. See also: MLError.

MLClearError

int MLClearError�link�
MLINK link�

MLClearError�link� clears the MathLink error condition for link, if possible.
See page 44. See also: MLError.

52 MathLink Reference Guide

MLClose

void MLClose�link�
MLINK link�

MLClose�link� closes the link.
A program must close all links that it has opened before terminating. When MLClose is called, any buffered
outgoing data are flushed, that is, sent to the other partner (if its end of the link is still open). See page 28.

See also: MLOpen.

MLDisownIntegerList

void MLDisownIntegerList�link� ptr� count�
MLINK link�
int �ptr�
long count�

MLDisownIntegerList�link� ptr� count� allows MathLink to recycle memory it has pre-
viously allocated for temporary storage of a list of integers read by MLGetIntegerList.
The values of ptr and count should correspond to values returned by MLGetIntegerList.
MLDisownIntegerListdoes not return any error codes. Calling MLDisownIntegerListwith a pointer that
was not returned by MLGetIntegerList results in unpredictable behavior. See page 23. See also:
MLGetIntegerList.

MLDisownRealList

void MLDisownRealList�link� ptr� count�
MLINK link�
double �ptr�
long count�

MLDisownRealList�link� ptr� count� allows MathLink to recycle memory it has
previously allocated for temporary storage of a list of real numbers (of type double) read
by MLGetRealList. The values of ptr and count should correspond to values returned by
MLGetRealList.
MLDisownRealListdoes not return any error codes. CallingMLDisownRealListwith a pointer that was not
returned by MLGetRealList results in unpredictable behavior. See page 23. See also: MLGetRealList.

MLDisownString

void MLDisownString�link� ptr�
MLINK link�
char �ptr�

MLDisownString�link� ptr� allows MathLink to recycle memory it has previously
allocated for temporary storage of a string read by MLGetString. The value of ptr should
correspond to a value returned by MLGetString.
MLDisownStringdoes not return any error codes. Calling MLDisownStringwith a pointer that was not
returned by MathLink from a previous MLGetString results in unpredictable behavior. See page 22. See
also: MLGetString.

10 Listing of MathLink Library Functions 53

MLDisownSymbol

void MLDisownSymbol�link� ptr�
MLINK link�
char �ptr�

MLDisownSymbol�link� ptr� allows MathLink to recycle memory it has previously
allocated for temporary storage of a string read by MLGetSymbol. The value of ptr should
correspond to a value returned by MLGetSymbol.
MLDisownSymboldoes not return any error codes. Calling MLDisownSymbolwith a pointer that was not
returned by MathLink from a previous MLGetSymbolhas unpredictable results. See pages 22 and 24. See
also: MLGetSymbol.

MLEndPacket

int MLEndPacket�link�
MLINK link�

MLEndPacket�link� marks the end of an expression sent to link.
MLEndPacket should be called after each expression is put on the link; it is needed for MathLink’s internal
mechanisms. See page 27.

MLError

int MLError�link�
MLINK link�

MLError�link� returns an integer code identifying the most recent MathLink error that
has been encountered on link.
If no error has occurred for this link, or if no error has occurred since MLClearErrorwas called, MLError
returns MLEOK, which is equal to 0. The MathLink error codes are shown in the following list.

MLEOK no error has occurred (equal to �)
MLEDEAD an unrecoverable error has occurred; the other side may have exited
MLEGBAD inconsistent data were encountered in the stream
MLEGSEQ an MLGet function was called out of sequence
MLEPBTK a bad data type was passed to MLPutNext

MLEPSEQ an MLPut function was called out of sequence
MLEPBIG bytes put by MLPutData exceeded number indicated by MLPutSize

MLEOVFL machine integer overflow in MLGetInteger

MLEMEM not enough space to allocate memory for a string
MLEACCEPT failure to accept a connection
MLECONNECT connection has not yet been established with partner
MLECLOSED link closed by other side; you may still get undelivered data
MLEPUTENDPACKET unexpected or missing call of MLEndPacket
MLENEXTPACKET MLNextPacket called while the current expression has unread data
MLEUNKNOWNPACKET MLNextPacket read in an unknown packet head
MLEGETENDPACKET unexpected end of expression
MLEABORT a put or get was aborted before affecting the link

See page 44. See also: MLClearError, MLErrorMessage.

54 MathLink Reference Guide

MLErrorMessage

char �MLErrorMessage�link��

MLErrorMessage�link� returns a text string describing the most recent MathLink error
that has occurred on link.
See page 44. See also: MLError.

MLFlush

int MLFlush�link�
MLINK link�

MLFlush�link� transmits immediately any data buffered for sending over the connection
specified by link.
MLFlush returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred, it
can be identified by calling MLError. See page 46.

MLGetArgCount

int MLPutArgCount�link� countptr�
MLINK link�
long �countptr�

MLGetArgCount�link� �count� reads the argument count for an expression being read
from link and writes this number to the long variable count.
This call can be used after an MLGetNextor MLGetType call returns the value MLTKFUNC. The argument
count should always be followed by the MathLink representation of the head of a Mathematica expression; the
head is followed immediately by a sequence of parts (if there are any). The count value returned by
MLGetArgCount tells a receiving program how many parts it should expect to find. See pages 22 and 25.

See also: MLGetNext, MLGetType.

MLGetData

int MLGetData�link� buff� max� countptr�
MLINK link�
char �buff�
long max�
long �countptr�

MLGetData�link� buff� max� �count� gets a variable number of bytes from link, placing
them in buffer buff. The argument max is the maximum number of characters that will be
read. The number of bytes actually read is returned in the long variable count.
MLGetData returns nonzero if it is successful, or 0 if an error has occurred. If an error has occurred, it can be
identified by calling MLError. See page 48. See also: MLError.

10 Listing of MathLink Library Functions 55

MLGetDouble

int MLGetDouble�link� dptr�
MLINK link�
double �dptr�

MLGetDouble�link� �dnum� reads a real number from the MathLink connection specified
by link and writes its C double representation to the variable dnum.
MLGetDouble returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. MLGetDoubleperforms the same function as MLGetReal.

See page 25. See also: MLGetFloat, MLGetLongDouble, MLGetReal, MLError.

MLGetFloat

int MLGetFloat�link� fptr�
MLINK link�
float �fptr�

MLGetFloat�link� �fnum� reads a real number from the MathLink connection specified
by link and writes its C float representation to the variable fnum.
MLGetFloat returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred,
it can be identified by calling MLError. See page 25. See also: MLGetDouble, MLGetLongDouble,
MLGetReal, MLError.

MLGetFunction

int MLGetFunction�link� stringptr� countptr�
MLINK link�
char ��stringptr�
long �countptr�

MLGetFunction�link� �stringvar� �count� reads a Mathematica function name and argu-
ment count from the MathLink connection specified by link. It stores the function name as
a string and writes the string’s address to stringvar. It writes the argument count to count.
When the calling program has finished copying or examining the function name, it
should call MLDisownSymbol to allow the memory to be reused for other operations.
MLGetFunction returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLErroror a related function. The calling program may examine or
copy the contents of the returned function name string, but it should not alter or free the string, because it resides
in the link’s internally managed memory pool. If no errors occur, MLGetFunction�link	
string	
count��
has the same effect as MLGetNext�link��MLGetArgCount�link	
count�� MLGetSymbol�link	
string��
MLGetFunctiondoes not advance the MathLink data stream if the current data element is not a composite

expression element. See pages 22 and 24. See also: MLDisownSymbol, MLError.

56 MathLink Reference Guide

MLGetInteger

int MLGetInteger�link� iptr�
MLINK link�
int �iptr�

MLGetInteger�link� �inum� reads an integer from the MathLink connection specified by
link and writes its C int representation to the variable inum.
MLGetInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 22. See also: MLGetShortInteger,
MLGetLongInteger, MLError.

MLGetIntegerList

int MLGetIntegerList�link� vectorptr� countptr�
MLINK link�
int ��vectorptr�
long �countptr�

MLGetIntegerList�link� �vector� �count� receives a list of integers from the MathLink
connection specified by link, stores them as an array of ints, and writes a pointer to the
received data to the int � variable vector. The length of the received list is written to the
long variable count.
When the calling program has finished copying or examining the vector, it should call MLDisownIntegerList
to make the memory available for reuse by the link. The calling program should not alter the contents of the
vector created by MLGetIntegerList, because the vector resides in the link’s internally managed memory
pool. See page 23. See also: MLDisownIntegerList.

MLGetLongDouble

int MLGetLongDouble�link� ldptr�
MLINK link�
long double �ldptr�

MLGetLongDouble�link� �ldnum� reads a real number from the MathLink connection
specified by link and writes its C long double representation to the variable ldnum.
MLGetLongDouble returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 25. See also: MLGetDouble, MLGetFloat,
MLGetReal, MLError.

MLGetLongInteger

int MLGetLongInteger�link� lptr�
MLINK link�
long �lptr�

MLGetLongInteger�link� �lnum� reads an integer from the MathLink connection
specified by link and writes its C long representation to the variable lnum.
MLGetLongInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 25. See also: MLGetShortInteger,
MLGetInteger, MLError.

10 Listing of MathLink Library Functions 57

MLGetNext

int MLGetNext�link�
MLINK link�

MLGetNext�link� returns the type of the next element in the expression currently being
read from link.
The “next” element always means an element that has not yet been examined by any MathLink get call. If a
preceding element has been examined but not completely read, it will be discarded. To check the type of a
partially read element without advancing to the following element, call MLGetType. The possible data
element types are

MLTKSTR Mathematica string
MLTKSYM Mathematica symbol
MLTKINT integer
MLTKREAL real number
MLTKFUNC composite expression (having a head and zero or more arguments)
MLTKERROR error getting type

MLGetNext returns MLTKERROR (== 0) if an error has occurred. If an error has occurred, it can be identified by
calling MLError. See pages 22, 25, 26 and 48. See also: MLError, MLGetType, MLBytesToGet, MLGetData.

MLGetReal

int MLGetReal�link� rptr�
MLINK link�
double �rptr�

MLGetReal�link� �rnum� reads a real number from the MathLink connection specified
by link and writes its C double representation to the variable rnum.
MLGetReal returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred,
it can be identified by calling MLError. See pages 22 and 25. See also: MLGetDouble, MLGetFloat,
MLGetLongDouble, MLError.

MLGetRealList

int MLGetRealList�link� vectorptr� countptr�
MLINK link�
double ��vectorptr�
long �countptr�

MLGetRealList�link� �vector� �count� receives a list of real numbers from link, stores
them as an array of doubles, and writes a pointer to the received data to the double �
variable vector. The length of the received list is written to the long variable count.
When the calling program has finished copying or examining the vector, it should call MLDisownRealList to
make the memory available for reuse by the link. The calling program should not alter the contents of the
vector created by MLGetRealList, because the vector resides in the link’s internally managed memory pool.
MLGetRealList returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has

occurred, it can be identified by calling MLError. See page 23. See also: MLDisownRealList,
MLGetIntegerList.

58 MathLink Reference Guide

MLGetShortInteger

int MLGetShortInteger�link� sptr�
MLINK link�
short �sptr�

MLGetShortInteger�link� �snum� reads an integer from the MathLink connection
specified by link and writes its C short representation to the variable snum.
MLGetShortInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 25. See also: MLGetInteger,
MLGetLongInteger, MLError.

MLGetString

int MLGetString�link� stringptr�
MLINK link�
char ��stringptr�

MLGetString�link� �stringvar� receives a Mathematica character string from link.
MLGetString stores the string in the link’s private memory area and writes a pointer to
that string to the variable stringvar.
MLGetString returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. When the calling program has finished copying or
examining the string, it should call MLDisownString to allow the memory to be reused for other operations.

The calling program should not alter the contents of the received string, because it resides in the link’s
internally managed memory pool. The following code fragment reads a string from the link, copies it to the
program’s data pool where it can be manipulated, and then informs MathLink that it is safe to free the string.

char mathlink�string�
char my�string�����
if ��MLGetString�thelink	
mathlink�string�� error�handler���
strncpy�my�string	 mathlink�string	 ����
MLDisownString�thelink	 mathlink�string��

See page 22. See also: MLDisownString, MLError.

MLGetSymbol

int MLGetSymbol�link� stringptr�
MLINK link�
char ��stringptr�

MLGetSymbol�link� �stringvar� receives a Mathematica symbol from link. MLGetSymbol
stores the symbol as a string in the link’s private memory area and writes a pointer to
that string to the variable stringvar.
MLGetSymbol returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. When the calling program has finished copying or
examining the string, it should call MLDisownString to allow the memory to be reused for other operations.

The calling program should not alter the contents of the received string, because it resides in the link’s
internally managed memory pool. A Mathematica symbol is a sequence of characters naming a certain object;
it is distinct from a Mathematica string. Special symbols like + or * are not carried over MathLink as such, but are
expressed as functions with alphabetical names like Plus and Times. See page 22. See also: MLGetString,
MLDisownString, MLError.

10 Listing of MathLink Library Functions 59

MLGetType

int MLGetType�link�
MLINK link�

MLGetType�link� returns the current element type in the MathLink data stream.
The possible data element types are

MLTKSTR Mathematica string
MLTKSYM Mathematica symbol
MLTKINT integer
MLTKREAL real number
MLTKFUNC composite expression (having a head and zero or more arguments)
MLTKERROR error getting type

MLGetType returns MLTKERROR (== 0) if an error has occurred. If an error has occurred, it can be identified by
calling MLError. The difference between MLGetType and MLGetNext is that MLGetNext always looks ahead
to a fresh data element, that is, one that has not been examined by any get call. MLGetTypewill stay at the data
element that was last accessed if it was not read completely. Therefore MLGetType can be called more than once
for the same data element. See pages 22, 25, 26 and 48. See also: MLError, MLGetNext.

MLMain

int MLMain�argc� argv�
int argc�
char �argv� ��

MLMain�argc� argv� sets up communication between an installable program and
Mathematica. It opens a MathLink connection using the link parameters specified in argv, if
any, and goes into a loop to await the arrival of call packets from Mathematica.
MLMain is not a MathLink library function; it is generated by the utility program mprep to implement the external
function calls specified in a MathLink template file. It is linked into an installable program when you run mcc or
when you supply the source file generated by mprep to your C compiler along with your external function
module. MLMain calls MLOpenwith arguments argc and argv. See pages 3 and 37. See also: MLOpen.

MLNewPacket

int MLNewPacket�link�
MLINK link�

MLNewPacket�link� discards the remaining data in the expression currently being read
from link.
See page 27. See also: MLNextPacket.

60 MathLink Reference Guide

MLNextPacket

int MLNextPacket�link�
MLINK link�

MLNextPacket�link� reads the head of the packet expression presently waiting to be read
from link and returns an integer code corresponding to the packet type.
The packet heads recognized by MLNextPacketand the corresponding packet type codes are as follows.

Packet head Packet type Description
InputPacket INPUTPKT Request for input, as generated by Input function
TextPacket TEXTPKT Text output from Mathematica, as produced by Print

ReturnPacket RETURNPKT Result of a calculation
ReturnTextPacket RETURNTEXTPKT Formatted text representation of a result
MessagePacket MESSAGEPKT Mathematica message identifier (symbol��name)
CallPacket CALLPKT Request to invoke an external function
InputNamePacket INPUTNAMEPKT Name of next input cell in a Notebook (e.g., In�����)
OutputNamePacket OUTPUTNAMEPKT Name of next output cell in a Notebook (e.g., Out����)
SyntaxPacket SYNTAXPKT Position at which a syntax error was detected
MenuPacket MENUPKT “Menu number” and prompt string
DisplayPacket DISPLAYPKT String of PostScript sent as part of a graphic
DisplayEndPacket DISPLAYENDPKT Last string of PostScript code in a graphic

If the head of the current expression does not match any of these packet types, MLNextPacket returns 0.
See page 27. See also: MLNewPacket.

MLOpen

MLINK MLOpen�argc� argv�
int argc�
char �argv� ��

MLOpen�argc� argv� opens a MathLink connection, returning a pointer to a link data struc-
ture. The arguments are an argument count argc and an array of character strings argv.
MLOpen scans the argument list for the following parameters.

�linkmode mode Launch, ParentConnect, Listen, or Connect
�linkprotocol protocol data transport mechanism (e.g., “TCP”, “PPC ”, “pipes”)
�linkname name name of communication partner (a command line or port name)
�linkhost hostname machine where partner is to be found

MLOpen is not sensitive to upper and lower case in the parameter list. MLOpen returns a value of type
MLINK, which is a pointer to the MathLink structure for the connection, or NULL if there is an error. MLOpen is
called by MLMain in installable programs that are created by the utilities mcc and mprep. Note that MLOpen
does not modify the contents of argc or argv, so if the calling function checks argc/argv for other arguments, it
should be able to deal with the presence of MLOpen parameters, usually by ignoring them. See pages 21 and
37. See also: MLMain.

10 Listing of MathLink Library Functions 61

MLPutArgCount

int MLPutArgCount�link� count�
MLINK link�
long count�

MLPutArgCount�link� count� gives the argument count for a composite expression
being sent over link.
An MLPutArgCount call should follow the call MLPutNext�link	 MLTKFUNC�. See pages 22 and 24. See
also: MLPutNext.

MLPutData

int MLPutData�link� buff� count�
MLINK link�
char �buff�
int count�

MLPutData�link� buff� count� writes count bytes from buffer buff to link.
MLPutData returns nonzero if it is successful, or 0 if an error has occurred. If an error has occurred, it can be
identified by calling MLError. MLPutData is part of MathLink’s textual interface, by which an arbitrary data
element can be represented as a text sequence. One or more MLPutData calls may follow calls of MLPutNext
and MLPutSize. See page 48. See also: MLPutNext, MLPutSize.

MLPutDouble

int MLPutDouble�link� dnum�
MLINK link�
double dnum�

MLPutDouble�link� dnum� writes the real number represented by dnum to the MathLink
connection specified by link.
MLPutDouble returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. MLPutDoubleperforms the same function as MLPutReal.

See page 25. See also: MLPutReal, MLPutFloat, MLPutLongDouble, MLError.

MLPutFloat

int MLPutFloat�link� fnum�
MLINK link�
double fnum�

MLPutFloat�link� fnum� writes the real number represented by fnum to the MathLink
connection specified by link.
MLPutFloat returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred,
it can be identified by calling MLError. See page 25. See also: MLPutReal, MLPutDouble,
MLPutLongDouble, MLError.

62 MathLink Reference Guide

MLPutFunction

int MLPutFunction�link� string� count�
MLINK link�
char �string�
long count�

MLPutFunction�link� string� count� places the function name represented by string
and the argument count count on the MathLink connection specified by link.
MLPutFunction returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by by calling MLError. See pages 22 and 24. See also: MLError.

MLPutInteger

int MLPutInteger�link� inum�
MLINK link�
int inum�

MLPutInteger�link� inum� writes the integer represented by inum to the MathLink
connection specified by link.
MLPutInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it may be identified by calling MLError. See page 22. See also: MLPutShortInteger,
MLPutLongInteger, MLError.

MLPutIntegerList

int MLPutIntegerList�link� vector� count�
MLINK link�
int �vector�
long count�

MLPutIntegerList�link� vector� count�writes a list of count integers from vector to link.
MLPutIntegerList returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See pages 8 and 23. See also: MLError.

MLPutLongInteger

int MLPutLongInteger�link� lnum�
MLINK link�
long lnum�

MLPutLongInteger�link� lnum� writes the integer represented by lnum to the MathLink
connection specified by link.
MLPutLongInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it may be identified by calling MLError. See page 25. See also: MLPutInteger,
MLPutShortInteger, MLError.

10 Listing of MathLink Library Functions 63

MLPutLongDouble

int MLPutLongDouble�link� ldnum�
MLINK link�
long double ldnum�

MLPutLongDouble�link� ldnum� writes the real number represented by ldnum to the
MathLink connection specified by link.
MLPutLongDouble returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 25. See also: MLPutReal, MLPutFloat,
MLPutDouble, MLError.

MLPutMessage

int MLPutMessage�link� messagecode�
MLINK link�
int messagecode�

MLPutMessage�link� MLInterruptMessage� sends a request to Mathematica to
interrupt the current calculation.
The nature of the “interrupt request” is a MathLink implementation detail which might vary from version to
version. MLInterruptMessage is an integer constant defined in the MathLink header file mathlink�h. Other
message codes are reserved for MathLink internal use or future development. See page 47. See also:
Mathematica built-in function LinkInterrupt.

MLPutNext

int MLPutNext�link� dtype�
MLINK link�
int dtype�

MLPutNext�link� dtype� identifies the type of data element that is to be sent over link.
The data types are identified by integer codes. The possible values for dtype are as follows.

MLTKSTR Mathematica string
MLTKSYM Mathematica symbol
MLTKINT integer
MLTKREAL real number
MLTKFUNC composite expression (having a head and zero or more arguments)

A call of MLPutNextshould be followed by calls of MLPutSize and MLPutData for the first four data types, or
by a call of MLPutArgCount for the MLTKFUNC type. Most data elements can be sent without calling
MLPutNext, by using the specific put functions MLPutInteger, MLPutReal, etc. However, MLPutNextmust be
used to put expressions whose heads are not mere symbols (e.g., Derivative����f�). MLPutNext is used
along with MLPutSize and MLPutData to put data in textual form. MLPutNext returns nonzero if the
operation is successful, or 0 if an error has occurred. If an error has occurred, it can be identified by calling
MLError. See pages 22, 24 and 48. See also: MLPutInteger, MLPutReal, MLPutSymbol, MLPutString,
MLPutFunction, MLPutArgCount, MLPutSize, MLPutData.

64 MathLink Reference Guide

MLPutReal

int MLPutReal�link� rnum�
MLINK link�
double rnum

MLPutReal�link� rnum� writes the real number represented by rnum to the MathLink
connection specified by link.
MLPutReal returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred,
it can be identified by calling MLError. See page 22. See also: MLPutDouble, MLPutFloat,
MLPutLongDouble, MLError.

MLPutRealList

int MLPutRealList�link� vector� count�
MLINK link�
double �vector�
long count�

MLPutRealList�link� vector� count� writes a list of count real numbers from vector to
link.
MLPutRealList returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. See page 23. See also: MLError.

MLPutShortInteger

int MLPutShortInteger�link� snum�
MLINK link�
int snum�

MLPutShortInteger�link� snum� writes the integer represented by snum to the
MathLink connection specified by link.
MLPutShortInteger returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it may be identified by calling MLError. See page 25. See also: MLPutInteger,
MLPutLongInteger, MLError.

MLPutSize

int MLPutSize�link� count�
MLINK link�
long count�

MLPutSize�link� count� defines the textual size in bytes of a data element being written
to link.
To put a data element in textual form, your program should first call MLPutNext to give the type of the data ele-
ment, then MLPutSize to give its size in bytes, then MLPutDatato give the value of the data element in text form.
MLPutSize returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has occurred,

it may be identified by calling MLError. See page 48. See also: MLPutNext, MLPutData, MLBytesToPut.

10 Listing of MathLink Library Functions 65

MLPutString

int MLPutString�link� string�
MLINK link�
char �string�

MLPutString�link� string� writes the Mathematica character string represented by string
to the MathLink connection specified by link.
MLPutString returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. The string is assumed to reside in memory allocated by the
calling program; it will not be altered or freed by MLPutString. See page 22. See also: MLError.

MLPutSymbol

int MLPutSymbol�link� string�
MLINK link�
char �string�

MLPutSymbol�link� string� writes the Mathematica symbol represented by string to the
MathLink connection specified by link.
MLPutSymbol returns nonzero if the operation is successful, or 0 if an error has occurred. If an error has
occurred, it can be identified by calling MLError. The string is assumed to reside in memory allocated by the
calling program; it will not be altered or freed by MLPutSymbol. A Mathematica symbol is a sequence of
characters naming a certain object; it is distinct from a Mathematica string. Special symbols like + or * are not
carried over MathLink as such, but are expressed as functions with alphabetical names (like Plus and Times).

See page 22. See also: MLError.

MLReady

int MLReady�link�
MLINK link�

MLReady�link� returns nonzero if there are data ready to be read from the connection
specified by link, and returns 0 if not.
See page 46. See also: Mathematica built-in function LinkReadyQ.

66 MathLink Reference Guide

11 Listing of Mathematica’s Built-in
MathLink Functions

Enter

Enter��string��, in MathLink mode only, processes the input �string� and sends results
back to the parent program.
Mathematica responds to Enter��string��by sending a sequence of packets back to the calling program or front
end. The returned packets generally include an OutputNamePacket, followed by a ReturnTextPacketor
SyntaxPacket expression, and finally an InputNamePacket to set up for the next input. See page 31.

Install

Install��name�� launches or connects to the external program specified by �name� and
installs Mathematica definitions to call functions in the external program.
The Mathematica definitions set up by Install are typically specified in the MathLink template file that is used
to create the external program. The �name� argument can be the name of a program file or the name of a port
through which MathLink will communicate with an external program. Install accepts the options
LinkMode, LinkProtocol, and LinkHost, which have the meanings given under LinkOpen. Install
returns a LinkObject expression representing the new link. LinkPatterns�link�gives a list of the patterns
defined when the specified link was set up. You can remove these definitions and close the link to the
external program by calling Uninstall�link�. If you call Install��command��multiple times with the
same command, the later calls will overwrite definitions set up by earlier ones, unless ThisLink is included in
the template argument list, or the definitions depend on the values of global variables that have changed.

See pages 3, 7 and 40. See also: LinkOpen, Uninstall, ThisLink.

LinkClose

LinkClose�link� closes a previously opened MathLink connection.
See page 35. See also: LinkOpen.

LinkError

LinkError�link� returns error information for link in the form
	errorNumber� errorExplanation
.
See page 36. See also: MathLink library functions MLError, MLErrorMessage.

11 Listing of Mathematica’s Built-in MathLink Functions 67

LinkHost

LinkHost is an option to LinkOpen or Install. It gives the name of the host computer
on which the other partner to the link is to be found.
If LinkHost is not specified, LinkOpen assumes that the partner is located on the same computer as
Mathematica. See page 37. See also: LinkOpen, Install, LinkMode, LinkProtocol.

LinkInterrupt

LinkInterrupt�link� interrupts a calculation in an installed external program
connected over link.
LinkInterrupt can be executed while Mathematica is waiting for an external program to finish a calculation by
pressing the interrupt key (usually Control-C or Command-.) and then choosing “abort” from the interrupt
menu. LinkInterrupt�link� sets MLAbort to 1 in an installed external program. LinkInterrupt can
also be used from one Mathematica process to interrupt a second Mathematica process that is running in
MathLink mode with �ParentLinkpointing to the first process. See pages 36 and 46.

LinkMode

LinkMode is an option to LinkOpen or Install that sets the mode of the connection.
The possible modes are as follows.

Launch start up a child process and link to it
ParentConnect establish a link to the parent process
Listen listen on a port and wait for other process to link up
Connect connect to a listening port established by another process

Launch and ParentConnect modes are used for the two sides in a parent-child connection. Listen and Connect
modes are used for the two sides in a peer-to-peer connection. See page 37. See also: LinkOpen, Install,
LinkProtocol, LinkHost.

LinkObject

LinkObject�name� serialno� channo� represents a link to an external process started
using LinkOpen or Install.
A LinkObject expression is generated by a successful LinkOpenor Install command. It must be supplied as
the first argument to the MathLink functions that are used to communicate over the link. For convenience,
assign the link object returned by LinkOpenor Install to a variable to be used as the link argument. The
serialno argument specifies which invocation of LinkOpenor Install created this particular link. channo is a
“channel number”; MathLink uses it internally. See pages 7 and 34. See also: LinkOpen, Install.

68 MathLink Reference Guide

LinkOpen

LinkOpen��name�� returns a MathLink connection to the external program specified by
name.
The �name� argument can be the name of a program file or the name of a port through which MathLink will
communicate with an external program. LinkOpen accepts the following options.

Option Default Description
LinkHost �� machine where partner is to be found
LinkMode Automatic Launch, ParentConnect, Listen, or Connect
LinkProtocol Automatic data transport mechanism (e.g., “TCP”, “PPC ”, “pipes”)

LinkOpen takes its argument and the given options and passes them as connection parameter arguments to
the MathLink function MLOpen. LinkOpen returns a Mathematica link object, which has the form
LinkObject��name�	 serialno	 channo�. The serialno argument specifies which invocation of LinkOpen the
link is associated with. The link object returned by LinkOpenshould be stored in a variable; you will have to
supply it as the first argument in subsequent operations on the link. You can use LinkOpen repeatedly to run
several copies of the same external process, which can be dealt with separately by reference to the distinct link
objects associated with them. channo is a “channel number”; MathLink uses it internally. See pages 34 and
39. See also: LinkObject, LinkClose, Install; MathLink library function MLOpen.

LinkPatterns

LinkPatterns�link� gives a list of the patterns defined in the installed program that is
accessed via link.
See pages 10 and 15. See also: Install.

LinkProtocol

LinkProtocol is an option to LinkOpen or Install that tells MathLink what data
transport mechanism the connection should use.
The choices available for LinkProtocoldepend on the type of system you are using and what connection
mode you use. See also: LinkOpen, Install, LinkMode, LinkHost.

LinkRead

LinkRead�link� reads an expression via MathLink from link.
See page 35. See also: LinkReadHeld, LinkReadyQ.

LinkReadHeld

LinkReadHeld�link� reads an expression via MathLink from link and returns it wrapped
in Hold.
See page 35. See also: LinkRead, LinkReadyQ.

LinkReadyQ

LinkReadyQ�link� returns True if link has incoming data ready.
See page 36. See also:LinkRead, LinkReadHeld.

11 Listing of Mathematica’s Built-in MathLink Functions 69

Links

Links� � returns a list of all active MathLink links.
See page 36. See also: LinkOpen, LinkClose.

LinkWrite

LinkWrite�link� expr� writes expr via MathLink to link.
See page 35. See also: LinkWriteHeld.

LinkWriteHeld

LinkWriteHeld�link� Hold�expr�� writes expr (without the Hold) via MathLink to link.
If the second argument to LinkWriteHeld is not an expression wrapped in Hold, and does not evaluate to an
expression wrapped in Hold, LinkWriteHeldgives an error message and no expression is sent. See page 35.

See also: LinkWrite.

ThisLink

In a MathLink template entry’s �Pattern� line, ThisLink stands for the link object that is
created when the external program is installed. It allows you to install and use separate
copies of a single external program.
If the pattern specified for an external function includes ThisLink, you must include the appropriate link object
as an argument in place of ThisLink to access the function. If you have installed two or more instances of an
external program, the use of a link object argument allows you to tell Mathematica which copy of the function to
use. While Install is linking Mathematica to an external program, ThisLink is temporarily set to the
LinkObject expression that has been assigned to that particular instance of the external program. See page
13. See also: Install, LinkObject.

Uninstall

Uninstall�link� closes the link to an installed external program, and removes
Mathematica definitions set up for that link by Install.
The argument of Uninstall is the link object representing a MathLink connection to an external program, as
returned by Install. Uninstall�link� calls Unset to remove definitions for the patterns listed in
LinkPatterns�link�. See page 3. See also: Install, LinkObject.

�LinkSupported

�LinkSupported is True if MathLink can be used in the version of Mathematica you are
running, and is False otherwise.
�LinkSupported is True in Unix-based and Macintosh versions, and for most systems that support
multitasking. See page 36.

70 MathLink Reference Guide

�ParentLink

�ParentLink is the link object through which Mathematica communicates with a front
end when it is called in MathLink mode.
�ParentLink is assigned implicitly when Mathematica is started with the �mathlinkcommand-line option. It
can also be assigned explicitly. Assigning �ParentLink to Null resets to terminal mode. See pages 31 and 42.

Appendix: Using MathLink with Other Programming Languages 71

Appendix: Using MathLink with Other
Programming Languages

In order to call MathLink library functions from a language other than C, you need to understand
two concepts. The first concept, called data representation, is the way a type in a language is rep-
resented at the machine level. The second concept is the language-specific calling conventions,
which dictate how a called function manipulates its arguments.

Both the data representations and the calling conventions of a language are discussed in the
compiler’s documentation. Sometimes this information is provided in an appendix to the refer-
ence manual. Other times, there is a separate user’s guide that contains a section providing this
information.

The supplied MathLink libraries are always compiled with the native C compiler on Unix
workstations. For Macintosh systems, MathLink libraries have been compiled for the Think C
and MPW environments. In order to allow MathLink libraries to be called from a language other
than C, you can use one of two solutions, depending on the situation.

If the target language contains data representations and calling conventions that closely match
those of C, it might be possible to call the MathLink library directly from your program.

If the target language is not able to use the C compiler’s calling conventions, or if the data rep-
resentation is very different from C, you will need to write a series of interlude functions in
either C or assembly language that allow the target language to call the MathLink functions.

Data representations vary between languages; for example, a string in C is commonly a null-
terminated array of characters. In other languages, a string might be a length and an array of
characters, which need not be null-terminated.

Some computers have multiple real number formats. For example, a Macintosh supports both
an 80-bit and a 64-bit real. The target language might use a different real number format than C.
Virtually all systems provide conversion functions when this is the case. Additionally, the target
language may provide a method to declare all machine level types of real numbers.

MathLink makes extensive use of pointers in its operation. Not all languages support point-
ers in a manner as flexible as does C, but in many languages where this is nonstandard, such as
Fortran, vendors often provide a pointer syntax for compatibility with C.

Calling conventions differ widely between compiler vendors. Traditionally, C compilers use
the stack for this purpose. Fortran compilers do not always use the stack for compatibility with
the Fortran 66 standard, or they might use the stack to pass a pointer into static storage.

Whatever the situation, you will need to make extensive use of the target compiler’s docu-
mentation, as well as the documentation of your native C compiler.

72 MathLink Reference Guide

Table of MathLink Functions

MathLink library Mathematica

Opening a link MLOpen LinkOpen

Installed function interface Install
Uninstall
LinkPatterns

MLMain (created by mprep)
MLEvaluate (created by mprep)

Closing a link MLClose LinkClose

Writing data to link LinkWrite
LinkWriteHeld

MLPutInteger
MLPutShortInteger
MLPutLongInteger
MLPutReal
MLPutDouble
MLPutLongDouble
MLPutFloat
MLPutString
MLPutSymbol
MLPutFunction
MLPutIntegerList
MLPutRealList

MLPutNext
MLPutArgCount
MLPutSize
MLBytesToPut
MLPutData

MLEndPacket

Reading data from link LinkRead
LinkReadHeld

MathLink Reference Guide 73

Reading data from link, continued MLGetInteger
MLGetShortInteger
MLGetLongInteger
MLGetReal
MLGetDouble
MLGetLongDouble
MLGetFloat
MLGetString
MLGetSymbol
MLGetFunction
MLGetRealList
MLGetIntegerList
MLCheckFunction
MLDisownIntegerList
MLDisownRealList
MLDisownString
MLDisownSymbol

MLGetType
MLGetNext
MLGetArgCount
MLBytesToGet
MLGetData

MLNextPacket

MLNewPacket

MathLink buffer status MLReady LinkReadyQ
MLFlush

Error condition MLError LinkError
MLErrorMessage
MLClearError

Urgent data MLPutMessage LinkInterrupt

Other functions and variables Links
�ParentLink
Enter
LinkObject
ThisLink
�LinkSupported

74 MathLink Reference Guide

Index

“A” and “B” Mathematica sessions, 41

&Aborted, 46

Aborting a calculation, 46

addinteger, 30, 43

AddToCounter, 13

addtwo, 4, 11, 40

Allocation of memory, 12

Alternative numeric types, 25

functions for transmitting, 25

Applications, MathLink, 1

Arbitrary-precision numbers, 50

argc, 21, 39

Argument count, argc, 21, 39

of an expression, 16

Argument list, 21, 39

Arguments template keyword, 5

Arguments of an expression, 16, 28

ArgumentTypes template keyword, 5, 6

argv, 21, 39

Arrays of numbers, 9, 23

ASCII, 48, 50

Atoms, 16, 17, 21, 22, 48

BaseForm, 10

Begin template keyword, 5

Beginning of packet, 27

BeginPackage, 13

Big numbers, 50

BitAnd, 9

bitand, 8

BitComplements, 9

bitops, 8

Breakpoints, 11

Buffer functions, 46

Calling external functions, 3

CallPacket, 29

Cell names, for Notebook, 29

Checking, data types, 26

packet type, 27

Checking a function, MLCheckFunction, 27

Closing a link, in C program, 28

in Mathematica, 35

Coercion of data types, 23

Command-., 46

Communication between two Mathematica processes, 31,

41

Compiler, 7

Compiling an installable program, 6

complements, 8

Complete processing, 43

Complex numbers, 17

Composite expressions, 16, 17, 21, 22

putting and getting, 24

Connect mode, 11, 38, 39, 40, 41, 43

Connection, creating in C program, 21

creating in Mathematica, 34

Connection parameters, 21, 37

76 Index

Control-C, 46

counter, 13

Data elements, 16

Data string, 48

Data transport protocol, 1, 17, 38

Data type codes, 26, 49

Data types, 6, 17, 21, 23, 24, 45, 48

checking, 26

codes, 26

Dead link, 45

Debugger, 11

Debugging an external program, 10

Derivative ('), 25

Discarding the current packet, 27

Disowning strings and arrays, 23

Dispatching, by data type, 26

by packet type, 16, 28

Display, 31

DisplayEndPacket, 29, 31

DisplayPacket, 29, 31

Dynamically allocated storage, 12

End template keyword, 5

End of packet, 27

EndPackage, 13

Enter, 31, 66

Error codes, 45

Error functions, 44

Errors, 28, 44

Evaluate template keyword, 5, 9, 12

EvaluatePacket, 12

Evaluating an expression from an external function, 12

Evaluating an input string, 12

Examples, “A” and “B” Mathematica sessions, 41

addinteger, 30, 43

addtwo, 4, 11, 40

bitops, 8

running one Mathematica process from another, 31

Expression, termination, 27

Expression structure, 16

Expressions, MathLink representation, 16

External functions, installing, 1, 3, 21

Floating-point numbers, textual representation, 50

Format, 41

Front end, 30, 31

Full processing, 43

Function template keyword, 5

Functions, installing external, 1, 3

gdb, 11

Getting, big numbers and long strings, 50

composite expressions, 24

data in text form, 48, 49

Getting data as text, functions for, 49

Graphics, 29

Head, 16

Header file, 4, 20

Histogram plotting, 13

Hold, 32, 35, 42, 43

Host, link parameter, 38, 43

In, 29, 41

Inactive state, 44

Input, 29

Input to Mathematica, 29

InputNamePacket, 29

InputPacket, 29

Install, 1, 3, 7, 10, 14, 15, 40, 66

Installable program, 3, 46

Installed functions, Mathematica commands for, 15

Installing external functions, 1, 3, 21

Integer, 6, 9, 13

IntegerList, 6, 9

Interrupting, functions and commands for, 46

Interrupting a calculation, 29, 46, 47

Kernel, 30

Launch mode, 38, 39

Library, MathLink, 1, 17

Line number, 43

Link host, 37, 38, 43

Index 77

Link mode, 1, 10, 34, 37, 38

Connect, 11, 38, 39, 40, 41, 43

Launch, 38, 39

Listen, 11, 38, 39, 40, 41, 43

ParentConnect, 38, 39

Link name, 11, 21, 30, 37, 38, 40, 43

Link opening, in C program, 21

in Mathematica, 34

Link parameters, 37

Link protocol, 37, 38

Link variable, declaration in C, 20

in Mathematica, 31, 32, 34

LinkClose, 35, 66

LinkError, 36, 66

LinkHost, 34, 37, 39, 67

Linking two Mathematica processes, 31, 41

LinkInterrupt, 36, 46, 67

LinkMode, 11, 34, 37, 39, 40, 41, 43, 67

LinkObject, 7, 11, 32, 34, 40, 41, 42, 67

LinkOpen, 11, 32, 34, 39, 41, 43, 68

options, 39

LinkPatterns, 10, 15, 68

LinkProtocol, 34, 37, 39, 68

LinkRead, 32, 35, 41, 68

LinkReadHeld, 35, 43, 68

LinkReadyQ, 36, 68

Links, 36, 69

&LinkSupported, 36, 69

LinkWrite, 35, 41, 43, 69

LinkWriteHeld, 32, 35, 42, 69

List data, 8

Listen mode, 11, 38, 39, 40, 41, 43

Lists, of integers, 23

of real numbers, 23

Lists of numbers, functions for transmitting, 23

Long strings, 50

Macintosh systems, 1, 7, 30, 71

main, 13

Main loop, in installable program, 3

MathLink mode, 31

Manual, 6, 9, 13

Manual control of a link, in Mathematica, 34

math �mathlink, 21, 30, 32

Mathematica, expression structure, 16

functions for using MathLink, 34

kernel, 30

linked to Mathematica, 31, 41

prompt, 41

MathLink, applications, 1

Developer’s Kit, 3, 30

functions, 17, 19

library, 17

private memory, 23

MathLink mode, 1, 16, 29, 42

mathlink�h, 4, 8, 13, 20

mcc, 3, 4, 11, 21

�g option, 11

Memory allocation, 12, 23

Menu number, 29

MenuPacket, 29

Message, 31

MessagePacket, 29, 31, 32

Messages, 29

MLAbort, 46

MLBytesToGet, 48, 49, 50, 51

MLBytesToPut, 48, 51

MLCheckFunction, 27, 44, 51

MLClearError, 44, 51

MLClose, 28, 31, 52

MLDisown functions, 22, 23

MLDisownIntegerList, 23, 52

MLDisownRealList, 23, 44, 52

MLDisownString, 22, 52

MLDisownSymbol, 22, 24, 53

MLEndPacket, 27, 30, 45, 53

MLError, 44, 53

MLErrorMessage, 44, 54

MLEvaluate, 12

MLFlush, 46, 54

MLGet functions, 12, 22, 28, 45

MLGetArgCount, 22, 25, 54

MLGetData, 48, 49, 50, 54

MLGetDouble, 25, 55

MLGetFloat, 25, 55

MLGetFunction, 22, 24, 28, 55

MLGetInteger, 22, 31, 45, 56

MLGetIntegerList, 23, 56

78 Index

MLGetLongDouble, 25, 56

MLGetLongInteger, 25, 56

MLGetNext, 22, 25, 26, 48, 49, 50, 57

MLGetReal, 22, 25, 44, 57

MLGetRealList, 23, 44, 57

MLGetShortInteger, 25, 58

MLGetString, 22, 50, 58

MLGetSymbol, 22, 58

MLGetType, 22, 25, 26, 48, 49, 50, 59

MLINK, 20

MLMain, 3, 8, 13, 21, 37, 59

MLNewPacket, 27, 31, 59

MLNextPacket, 27, 31, 45, 60

MLOpen, 21, 30, 37, 39, 60

MLPut functions, 12, 45

MLPutArgCount, 22, 24, 61

MLPutData, 45, 48, 50, 61

MLPutDouble, 25, 61

MLPutFloat, 25, 61

MLPutFunction, 22, 24, 30, 62

MLPutInteger, 22, 30, 62

MLPutIntegerList, 8, 23, 62

MLPutLongDouble, 25, 63

MLPutLongInteger, 25, 62

MLPutMessage, 47, 63

MLPutNext, 22, 24, 45, 48, 63

MLPutReal, 22, 64

MLPutRealList, 23, 64

MLPutShortInteger, 25, 64

MLPutSize, 45, 48, 64

MLPutString, 22, 65

MLPutSymbol, 22, 65

MLReady, 46, 65

MLTKERROR, 26

MLTKFUNC, 22, 25, 26, 49

MLTKINT, 26, 49

MLTKREAL, 26, 49

MLTKSTR, 26, 49, 50

MLTKSYM, 26, 49

Mode, Connect, 11, 38, 39, 40, 41, 43

Launch, 38, 39

link, 1, 10, 34, 37, 38

Listen, 11, 38, 39, 40, 41, 43

MathLink mode, 1, 16, 29, 42

ParentConnect, 38, 39

mprep, 3, 4, 7, 21

Multiple instances of an external program, 13

Name, link parameter, 38, 40, 43

�noinit, 32

Nonatomic expression, 24

Opening a link, in C program, 21, 39

in Mathematica, 34, 39

Out (�), 29, 41

Out-of-sequence MathLink function calls, 45

OutputNamePacket, 29

Packet, 16, 42, 45

heads, 45

termination, 27

type, 29

type checking, 27

Packet heads and codes, 29

Packets and expressions, transition functions, 27

Parameters, connection, 21, 37

link, 37

Parent process, 29

Parent-child connection, 10, 38, 41

ParentConnect mode, 38, 39

&ParentLink, 31, 36, 42, 43, 70

Parts of an expression, 16

Pattern template keyword, 5, 13

Peer-to-peer connection, 10, 38, 41, 42, 43

Pipes, 1

Plus (�), 24

Pointers, 12

Port, 38

Port name, 39

PostScript, 29

PPC, 1, 38

Print, 29, 31

Private memory, MathLink, 23

Index 79

Programs, calling external, 3

installable, 3

installing external, 1

Prompt, 29, 41, 43

Protocol, link parameter, 38

underlying data transport, 1, 17

Put and get functions, alternative numeric types, 25

basic data types, 22

lists of numbers, 23

Putting, big numbers and long strings, 50

composite expressions, 24

data in text form, 48

Putting data as text, functions for, 48

Rational numbers, 17

Read-only memory, 23

Reading, big numbers and long strings, 50

composite expressions, 24

data in text form, 48

expressions in Mathematica, 35

Reading and writing to link, Mathematica commands for,

35

Real, 6

RealList, 6

Receiving, big numbers and long strings, 50

composite expressions, 24

data in text form, 48

expressions in Mathematica, 35

Requesting a Mathematica evaluation in an external

function, 12

Requests to Mathematica, 31

Result of a calculation, 29

Return value, 44

Return value of external function, 9

ReturnPacket, 12, 29, 31, 32, 43

ReturnTextPacket, 29, 31, 43

ReturnType template keyword, 5, 6

Reusing memory, 12, 23

Running external programs from Mathematica, 3

Running Mathematica as a subprogram, 29

Scientific notation, 50

Sending, an evaluation request to Mathematica, 12

big numbers and long strings, 50

composite expressions, 24

data in text form, 48

expressions from Mathematica, 35

requests to Mathematica, 31

Socket, 38

Socket name, 39

Standard error, 41

Standard input, 41

Standard output, 41

Static storage, 12

stderr, 41

stdin, 41

stdlink, 8, 12, 46

stdout, 41

String, 6

Structure of expression, 16

switch, 26, 28

Symbol, 6

Syntax errors, 29

SyntaxPacket, 29

TCP, 1, 38, 39, 40

Template entry, 9

Template file, 3, 4, 9, 21

Template keywords, 5

Terminal file, 41

Termination, 28

Text form, putting data in, 48

Text output, 29

TextPacket, 29, 31, 32

ThisLink, 13, 69

Transmitting alternative numeric types, functions for, 25

Transmitting data, basic functions for, 22

Transmitting lists of numbers, functions for, 23

Type checking, functions for, 26

Uninstall, 3, 7, 15, 40, 69

Unix systems, 1, 7, 11, 41

Unprotect, 41

Usage messages for installed functions, 14

Uses, MathLink, 1

80 Index

Writing, big numbers and long strings, 50

composite expressions, 24

data in text form, 48

expressions from Mathematica, 35

&Aborted, 46

&LinkSupported, 36, 69

&ParentLink, 31, 36, 42, 43, 70

