
April 2005 67IEEE Control Systems Magazine
0272-1708/05/$20.00©2005IEEE

Control System Professional Suite (CSPS), released
in the middle of 2003 by Wolfram Research, Inc.,
provides an object-oriented environment for solv-

ing control and system engineering problems with state-of-
the-art algorithms. This product consists of the Control
System Professional v.2 (CSP2) and Advanced Numerical
Methods (ANM) application packages, which are integrat-
ed into Mathematica and utilize Mathematica’s numeric
and symbolic capabilities.

This review employs a tutorial case study to introduce
some of the main features of CSPS and compare them with
those of some of the MATLAB toolboxes. We focus on the
application of symbolic algebra to control engineering and
demonstrate the use of symbolic computation for defining
control objects, deriving their linearized versions, and
designing control laws in the time and frequency domains.

The features, role, and importance of a symbolic com-
putational environment in control engineering have been
widely recognized (see, for example, the special features
edition of the Computing and Control Engineering Journal
on the use of symbolic algebra computing in control engi-
neering [5]).

Our computations were performed with Mathematica 5,
CSPS applications CSP2 v. 2.0.1 and ANM v. 1.0.1, and the
MATLAB Control Toolbox version 6.5. To compare Mathe-
matica and MATLAB features, the detailed Mathematica
and MATLAB codes are shown.

System Model
We consider a simplified model of a liquid storage vessel
called the one tank system with a time-dependent inlet
flow rate Qin(t). The level h(t) is controlled by the outlet
flow Qout(t) regulated by a control valve c(t) as the actua-
tor (see Figure 1). Extension of this problem to multiple
cascaded tanks is considered in [6].

We derive the model equations using Mathematica.
From the mass balance, the derivative of h(t) is given by

In[1] := ḣ[t] = Qin[t] − Qout[t]
A

.

The outlet flow rate can be expressed in terms of the valve
setting and the water level as

In[2] := Qout[t] = c[t]
√

h[t].

Combining these equations yields a nonlinear differential
equation for the state-variable h(t) given by

In[3] := ḣ[t]

Out[3] = −c[t]
√

h[t] + Qin[t]
A

.

In terms of the general nonlinear model

ẋ = f(x,u),

y = g(x,u),

we have

In[4] := f = ḣ[t]

Out[4] = −c[t]
√

h[t] + Qin[t]
A

,

and

In[5] := x = {h[t]}; y = {h[t]};
u = {Qin[t], c[t]}; g = y;

where, in Mathematica, the curly braces { } denote vectors
(or lists; matrices in Mathematica are lists of lists).

Control System Professional Suite

PRODUCT REVIEW

Béla Paláncz, Zoltán Benyó, and Levente Kovács

Figure 1. Block diagram of the One Tank System. The level
h(t) of the liquid storage tank is influenced by the inlet flow
rate Qin(t) as a disturbance and by the outlet flow rate
Qout(t), which is controlled by the control valve setting c(t)
as the control input. The time constant of the measuring
device is assumed to be small compared to that of the
process.

Qin(t)

Qout(t)

h0(t)h(t)

h(t)
C(t)

Level
Measurement

A—Cross Section Area

Controller

Control Valve

Setpoint

Megan Gillette
Text Box
© 2005 IEEE. Reprinted, with permission, from IEEE Control Systems Magazine, 25(4), 2005

Linearization of the Model
To design a controller for the system, we first linearize the
model. We start by loading the CSP2 application

In[6] := � ControlSystems′.

CSPS Commands
Using the function Linearize, we express the model as a
linear control object in the vicinity of the steady state
(h0, Qin0, c0) using the commands

In[7] := ControlObjectSS =
Linearize[f, g, {{h[t], h0}}, {{Qin[t], Qin0}, {c[t], c0}}],
Out[7] =

StateSpace
[{{

− c0

2 A
√

h0

}}
,

{{
1
A

,−
√

h0
A

}}
, 1, 0, 0

]
.

The linearized state-space system can be represented as

In[8] :=ControlObjectSS/EquationForm

Out[8]//EquationForm =

ẋ =
(
− c0

2 A
√

h0

)
x +

(
1
A

−
√

h0
A

)
u

y = (1)x + (0 0)u.

Here, the variables x(t) and u(t) are deviations from the
equilibrium.

In the MATLAB environment, the linearization can be
carried out numerically in SIMULINK using the function
linmod. This procedure requires the following steps:

● Define an S-function OneTankSFunC.m to describe
the nonlinear model and give the steady state
point.

● Use an S-function block in SIMULINK to create a
model OneTankSystemSFunc.mdl whose input is an
IN block and whose output is an OUT block.

● In MATLAB, apply the function linmod to the
above model using

[A, B, C , D] = linmod(‘OneTankSystemS FunC ’, x0),

where x0 is the steady-state value.
The commands needed to perform these steps are

given below.

Step 1. Create the S-Function OneTankSFunC.m
for the Nonlinear System

function[sys, x0, str, ts] = OneTankSFunC(t, x, u, flag)

% SFUNTMPL General M-file S-function template

% The following is an outline of the general structure of an
% S-function:

switch flag,
case 0, % Initialization

[sys, x0, str, ts] = mdlInitializeSizes;
case 1, % Derivatives

sys = mdlDerivatives(t, x,u);
case 3, % Update

sys = mdlOutputs(t, x,u);
case{2, 4, 9} % GetTimeOfNextVarHit
sys = []; % Unused flags
otherwise % Unexpected flags

error([‘Unhandled flag = ’, num2str(flag)]);
end
% end sfuntmpl

% mdlInitializeSizes-Return the sizes, initial
% conditions, and sample times for the S-function.

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 1;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

% initialize the initial conditions
x0 = [9];

% str is always an empty matrix
str = [];

% initialize the array of sample times
ts = [0 0];
% end mdlInitializeSizes

% mdlDerivatives—Return the derivatives for the
% continuous states.
function sys = mdlDerivatives(t, x, u)

a=10; % the cross-section of the tank
sys(1) = (−u(1) ∗ (x(1)0.5) + u(2))/a;

% end mdlDerivatives

% mdlUpdate—Handle discrete state updates, sample
% time hits, and major time step requirements.
function sys = mdlUpdate(t, x, u)

% end mdlUpdate

April 200568 IEEE Control Systems Magazine

% mdlOutputs—Return the block outputs.
function sys = mdlOutputs(t, x, u)

C = [1];
sys = C ∗ x;

% end mdlOutputs

% mdlGetTimeOfNextVarHit—Return the time of the
% next hit.
function sys = mdlGetTimeOfNextVarHit(t, x, u)

sampleTime = 1; % Ex. set the next hit to be
% one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

% mdlTerminate—Perform any end of simulation tasks.
function sys = mdlTerminate(t, x, u)

sys = [];
% end mdlTerminate

Step 2. Create the SIMULINK Model
for the S-Function
On the SIMULINK side, the S-function block calls the
S-function model OneTankSystemSFunc.mdl created in
MATLAB (Figure 2). In this model, In1 is an input block
and Out1 is an output block. The OneTankSFunC is also a
block, which calls the function created in Step 1.

Step 3. Apply the Linmod Function
Finally, in MATLAB, the linearized model is computed by
calling the linmod function with the name of the SIMULINK
model (without extension) and the steady-state value
(x0 = 9) where the system is linearized as

[A, B, C , D] = linmod(‘OneTankSystemS Func ’, 9).

Control Object Representation
The ability to create different representations of a control
object is an important feature of Mathematica. With this
tool, it is possible to change the form of the control object,
as we now illustrate.

CSPS Commands
In addition to the equation form demonstrated above,
CSPS can display a state-space system in the traditional
textbook form. Our model is given by

In[9] := TraditionalForm[ControlObjectSS]

Out[9]//TraditionalForm =

− c0

2A
√

h0

1
A

−
√

h0
A

1 0 0

S

,

where S in the exponent stands for state space. This form
can be produced by clicking the ControlFormat button in
the ControlFormat palette of CSP2. To represent a state-

space object in the frequency domain, we construct its
transfer function by means of

In[10] := ControlObjectTF =
TransferFunction[s, ControlObjectSS]//Simplify

Out[10] = TransferFunction
[
s,

{{
2
√

h0

c0 + 2 A
√

h0 s
,− 2 h0

c0 + 2 A
√

h0 s

}}]
.

The same object can be represented in the traditional
form, where τ in the exponent stands for frequency
domain, as

In[11] := ControlObjectTF//TraditionalForm

Out[11]//TraditionalForm =
(

2
√

h0

c0 + 2 A
√

h0 s
− 2 h0

c0 + 2 A
√

h0 s

)τ

.

We can obtain a state-space realization of this transfer
function by entering

In[12] :=StateSpace[ControlObjectTF]

//EquationForm

Out[12]//EquationForm =

ẋ =

− c0

2A
√

h0
0

0 − c0

2A
√

h0

x +
(

1 0
0 1

)
u

y =
(

1
A

−
√

h0
A

)

x.

MATLAB Commands
State-space-to-transfer-function and transfer-function-to-
state-space conversions in MATLAB can be implemented
numerically using the functions ss2tf(A, B, C, D) and
tf2ss(num, den). However, custom programs are needed in
the symbolic case. To be understood by the Symbolic
Toolbox embedded in MATLAB, each symbolic variable
must be declared separately as a symbolic object (syms)
in the beginning of the program.

April 2005 IEEE Control Systems Magazine 69

Figure 2. Flow chart of the OneTankSystemFunc.mdl model
as an S-function in SIMULINK.

OneTankSFunC

S-Function
In 1 Out 1

11

To convert from a state-space realization to a transfer
function, one can implement the relation W(s) =
C (s I − A)−1 B + D using the Symbolic Toolbox of MATLAB.
This conversion can be carried out using the commands

syms s real % Symbolic variables
syms c0 real
syms a real
syms h0 real
A = [−c0/(2 ∗ a ∗ sqrt(h0))];
B = [1/a − sqrt(h0)/a];
C = [1];
D = [0 0];
% SS to transfer function symbolically
ControlObjectTF = simplify(C ∗ inv(s ∗ eye(1) − A) ∗ B)

% two transfer functions are obtained

To convert from a transfer function to a state-space realiza-
tion, one can use the function sym2poly, with the commands
[numyuos, denyuos] = numden(ControlObjectTF(1, 1));
% as illustration, the inverse conversion is made only for
% one transfer function
num = numyuos
denyuo = sym2poly(denyuos)
% Transfer function to SS symbolically
n = 2;
% rank of the system
den = denyuo(2 : n)./denyuo(1);
a = [−den; eye(n − 2, n − 1)]
b = eye(n − 1, 1)

% c = num(:, 2 : n) − num(:, 1) ∗ den;
% general formula for C matrix,
% now C is 1x1 matrix (C = [1]).

Control Design in State Space
Let us start by designing a simple proportional controller
in state-space using pole placement. Using Mathematica,
we perform the design in symbolic form.

CSPS Commands
Let p be the desired location of the pole. Then, the con-
troller gains are given by

In[13] := k = StateFeedbackGains[ControlObjectSS,

{p}, ControlInput → 2]

Out[13] =
{
{0},

{
c0 + 2A

√
h0 p

2 h0

}}
.

By specifying ControlInput → 2, only the second compo-
nent of the control vector u(t), namely c(t), depends on
the state vector x(t). The first component of the control
vector Qin(t), which represents the disturbance, does
not depend on x(t).

To verify the correctness of the expression for the
control gain k, we extract the matrices A and B of the lin-
earized equation from the state-space object using the
commands

In[14] :=a = ControlObjectSS[[1]]

Out[14] =
{{

− c0

2A
√

h0

}}
,

In[15] :=b = ControlObjectSS[[2]]

Out[15] =
{{

1
A

,−
√

h0
A

}}
.

Indeed, the eigenvalue of the closed-loop system is given
by

In[16] :=Eigenvalues[a − b.k]//Simplify

Out[16] ={p}.

The functions StateFeedbackGains and Eigenvalues,
which are based on Ackermann's formula, can be used
for higher-order systems but only with one input vari-
able. In the case of multiple inputs, numerical solution
is possible by employing the iterative robust algorithm
of Kautsky-Nichols-Van Dooren implemented in CSPS.

MATLAB Commands
In MATLAB, the pole placement problem must be solved
numerically because the corresponding functions
place() (for MIMO systems) and acker() (for single-input
systems) require the system matrices A and B and the
pole specification in numerical form. The necessary
commands are

c0 = 3;
a = 10; % the cross section of the tank
h0 = 9;
p = −1; % the desired pole
A = [−c0/(2 ∗ a ∗ sqrt(h0))];
B = [1/a − sqrt(h0)/a];
C = [1];
D = [0 0];
% Pole placement design
Ka = place(A,B,p).

Control Design
in the Frequency Domain
To eliminate the deviation between the steady-state level
and the desired level, we employ an integrator in the con-
troller. Starting with the transfer function form of the lin-
earized model, we design a PI controller for the storage
level control in the frequency domain.

April 200570 IEEE Control Systems Magazine

CSPS Commands
The transfer function of the linearized model is given by

In[18] :=ControlObjectTF

=TransferFunction[s, ControlObjectSS]

//Simplify,

Out[18] =TransferFunction
[
s,

{{
2
√

h0

c0 + 2A
√

h0 s
, − 2 h0

c0 + 2A
√

h0 s

}}]
.

The transfer function of the PI controller is

In[19] := pi = TransferFunction
[
s, kp + ki

s

]
,

where kp and ki are proportional and are integrator gains.
These two units are connected according to Figure 3.
Therefore, the transfer function of the closed-loop system
in the traditional form is given by

In[20] := CLControlObjectTF = FeedbackConnect

[ControlObjectTF, pi, {1}, {2}]//Simplify;
In[21] := CLControlObjectTF//TraditionalForm

Out[21]//TraditionalForm =
(

2
√

h0 s

s(c0 + 2A
√

h0 s − 2h0 kp) − 2h0 ki

2h0 s

2h0 ki − s(c0 + 2A
√

h0 s − 2h0 kp)

)τ

,

where the FeedbackConnect() parameter values 1 and 2
mean that the first process output is fed back to the sec-
ond process input.

To determine the gains kp and ki, we equate the coeffi-
cients of like powers of s in the denominator of the first
term and the target polynomial with two poles. This
polynomial is

In[22] := Denominator[%[s]][[1, 1]]

Out[22] = − 2 h0 ki + s(c0 + 2A
√

h0 s − 2 h0 kp).

In Mathematica, the % character denotes the result of the
previous evaluation.

Normalizing this polynomial we get

In[23] :=d1 =Sum[Coefficient[%, s, j] /

Coefficient[%, s, 2] sj, {j, 0, 2}]

Out[23] = s2 −
√

h0 ki

A
+ s(c0 − 2 h0 kp)

2 A
√

h0
.

This polynomial with poles p1 and p2 can be expressed as

In[24] := d2 = (s − p1) (s − p2).

This solution for the integral and proportional gains is
expressed through the desired location of poles of the
closed-loop system, which is given in symbolic form as

In[25] := Solve[CoefficientList[d1 − d2, s] == 0,

{ki, kp}]//Simplify

Out[25] =
{{

ki → − Ap1p2√
h0

, kp → c0 + 2A
√

h0 p1 + 2A
√

h0 p2

2 h0

}}
.

In the case p2 = 0, we obtain the same result from a state-
space design of the proportional controller (see Out[13]).
For higher-order systems, see [6].

MATLAB Commands
In MATLAB, the numerator and denominator can be sepa-
rated by the function numden(), allowing at most one
symbolic variable (such as s), while a function analogous
to Coefficient is not available. Therefore, solutions for ki

and kp can be obtained only if the model parameters are
given numerically. Consequently, PI control design must
be carried out numerically. This procedure requires itera-
tion by computing the phase margin using the Bode plot.
In Mathematica, this information is incorporated in the
proper selection of the poles p1 and p2.

Design of the Optimal Controller
In this section, we design a linear quadratic regulator by
employing the CSP2 functions for solving the Riccati
equation. In addition, different solution techniques
implemented in Advanced Numerical Methods (ANM)
are also applied.

As we have seen, the nonlinear model of the process is
given by

In[27] := Clear[“Global′ ∗”]

April 2005 IEEE Control Systems Magazine 71

Figure 3. Closed-loop model with PI controller in the fre-
quency domain. U1(s) represents the disturbance (inlet flow
rate), while U2(s) is the control input (control valve setting)
and Y(s) is the controlled variable (liquid level).

Controller

Process

U1

U2
Y

−(kp + ki/s)Y

In[28] := f = −c[t]
√

h[t] + Qin[t]
A

.

The input and output state variables are

In[29] := x = {h[t]}; y = {h[t]};
u = {Qin[t], c[t]}; g = y.

The linearized form of the model, in the equation form, is

In[30] :=ControlObjectSS

=Linearize[f, g, {{h[t], h0}},
{{Qin[t], Qin0}, {c[t], c0}}];

In[31] :=ControlObjectSS//EquationForm

Out[31]//EquationForm =

ẋ =
(

− c0

2A
√

h0

)
x +

(
1
A

−
√

h0
A

)

u

y = (1)x + (0 0)u.

We check the controllability of the system using the con-
trollability matrix

In[32] := ControllabilityMatrix[ControlObjectSS]

Out[32] :=
{{

1
A

, −
√

h0
A

}}
.

For a controllable system, the rank of this matrix must be
equal to that of the system matrix; that is,

In[33] :=MatrixRank[%] ==
MatrixRank[ControlObjectSS[[1]]]

Out[33] := True.

Therefore the system is controllable. Alternatively, con-
trollability can be checked by using the built-in function

In[34] :=Controllable[ControlObjectSS]

Out[34] := True.

Since linear-quadratic-regulator design cannot be
performed symbolically, we introduce numerical values

In[35] : = numericalValues

= {A → 10, c0 → 3, Qin0 → 9, h0 → 9}.

We choose matrices q and r such that the resulting gain
matrix is close to the pole assignment design with p = −1.
Suitable values are given by

In[36] :=q = {{1.}};
In[37] :=r = {{1000, 0}, {0, 0.0745}}.

CSPS Commands
The regulator gains are given by

In[38] := LQRegulatorGains

[ControlObjectSS/.numericalValues, q, r]

Out[38] := {{0.0000869372}, {−3.50082}},

where “/.” denotes the Mathematica function ReplaceAll.
Because only the second input is controlled (the first one
is the disturbance), the first gain can be eliminated using

In[39] :=Chop[%, 0.001]

Out[39] := {{0}, {−3.50082}}.

The closed-loop system is thus

In[40] := StateFeedbackConnect[ControlObjectSS/

.numericalValues, %];

and its equation form is

In[41] := % //EquationForm

Out[41]//EquationForm =
ẋ = (−1.10025)x + (0.1 − 0.3)u.

y = (1.)x + (0. 0.)u.

CSPS provides several methods for finding the optimal
gains. Specifically, eigensystem and Schur methods are includ-
ed in the ANM package, which can be loaded by entering

In[42] := � NumericalControlMethods′.

For example, the GeneralizedSchurDecomposition com-
mand is invoked by

In[43] := LQRegulatorGains[ControlObjectSS/

.numericalValues, q, r, SolveMethod

→ GeneralizedSchurDecomposition]

Out[43] = {{0.0000869372}, {−3.50082}},

or the MatrixSign method

In[44] := LQRegulatorGains[ControlObjectSS/

.numericalValues, q, r, SolveMethod

→ MatrixSign]

Out[44] = {{0.0000869372}, {−3.50082}}.

The function LQRegulatorGains calls the Riccati equa-

tion solver and passes the user-supplied option, which in

April 200572 IEEE Control Systems Magazine

this case is SolveMethod. At the same time, the user also

has access to the underlying solvers and can find the opti-

mal gains in a step-by-step fashion. To demonstrate this

feature, we extract the system matrices from the state-

space representation of the control object by means of

In[45] :=ControlObjectSS//TraditionalForm

Out[45]//TraditionalForm =

− c0

2A
√

h0

1
A

−
√

h0
A

1 0 0

S

,

In[46] :=a = % [[1]]

Out[46] =
{{

− c0

2A
√

h0

}}
,

In[47] :=b = %% [[2]]

Out[47] :=
{{

1
A

, −
√

h0
A

}}
.

The numerical values of these matrices are given by

In[48] :=aa = a/.numericalValues

Out[48] = {{−0.05}},
In[49] :=bb = b/.numericalValues

Out[49] = {{0.1, −0.3}}.

The Riccati equation can be solved by means of a num-
ber of methods. For example,

In[50] := RiccatiSolve[aa, bb, q, r,

SolveMethod → SchurDecomposition]

Out[50] = {{0.869372}},
In[51] := RiccatiSolve[aa, bb, q, r, SolveMethod

→ GeneralizedSchurDecomposition]

Out[51] = {{0.869372}},
In[52] := RiccatiSolve[aa, bb, q, r,

SolveMethod → MatrixSign]

Out[52] = {{0.869372}},
In[53] := w = RiccatiSolve[aa, bb, q, r,

SolveMethod → Newton,

InitialGuess → {{1.}}]
Out[53] = {{0.869372}},

In[54] := RiccatiSolve[aa, bb, q, r, SolveMethod

→ GeneralizedEigendecomposition]

Out[54] = {{0.869372}},

which gives the same result.

Even though the built-in CSPS functions are designed

to solve the Riccati equations numerically, for this low-

order system one can use the standard Mathematica

function Solve to produce a symbolic solution using

In[55] := Clear[w].

The Riccati equation is given by

In[56] := req = Transpose[a].{{w}} + {{w}}.a−
{{w}}.b.Inverse[r].Transpose[b].{{w}}
+ q //Simplify

Out[56] =
{{

1. − c0 w

A
√

h0
+ (−0.001 + 0.

√
h0 − 13.4228 h0)w2

A2

}}
.

The two solutions are given by

In[57] := Solve[reg == 0, w]

Out[57] =

w →

0.5A2
(

− 1. c0
A
√

h0
− 1.

√
1. c02+0.004 h0+53.6913 h02

A
√

h0

)

0.001 + 13.4228 h0

,

w →

0.5A2
(

− 1. c0
A
√

h0
+ 1.

√
1. c02+0.004 h0+53.6913 h02

A
√

h0

)

0.001 + 13.4228 h0

.

The stabilizing solution is given by

In[58] := w1 = {{w/. % [[1]]}}
Out[58] =

0.5A2
(

− 1. c0
A
√

h0
− 1.

√
1. c02+0.004h0+53.6913h02

A
√

h0

)

0.001 + 13.4228h0

,

and the antistabilizing solution is

In[59] := w2 = {{w/. %% [[2]]}}
Out[59] =

0.5A2
(

− 1. c0
A
√

h0
+ 1.

√
1. c02+0.004 h0+53.6913h02

A
√

h0

)

0.001 + 13.4228h0

.

To choose between these solutions, we use the numerical
values

April 2005 IEEE Control Systems Magazine 73

In[60] :=w1n = w1/. numericalValues

Out[60] = {{−0.952149}},
In[61] :=w2n = w2/. numericalValues

Out[61] = {{0.869372}}.

The second solution, which gives the positive value, is sta-
bilizing. This solution is returned by CSPS.

As soon as the symbolic solution of the Riccati equation
is known, the gain matrix can be computed in symbolic
form using

K = R−1 BT W,

which is obtained with

In[62] := Inverse[r].Transpose[bb].w2

Out[62] =

0.00005A2
(

− 1. c0
A
√

h0
− 1.

√
1. c02+0.004 h0+53.6913h02

A
√

h0

)

0.001 + 13.4228h0

,

0.00005A2
(

− 1. c0
A
√

h0
+ 1.

√
1. c02+0.004h0+53.6913h02

A
√

h0

)

0.001 + 13.4228h0

,

or numerically,

In[63] :=Inverse[r].Transpose[bb].w2n

Out[63] = {{0.0000869372}, {−3.50082}}.

This gain matrix is also produced by the LQRegulatorGains
function. Of course, it is not generally possible to solve the
Riccati equation for higher-order systems in symbolic form.

MATLAB Commands
Using the Control Toolbox, the Mu--Toolbox, and the Sym-
bolic Toolbox, the LQ control also can be realized in MAT-
LAB numerically and symbolically with at most one
symbolic variable.

Linear-quadratic-regulator design for continuous-time
systems can be carried out using the Control Toolbox
function lqr. This function returns a triple consisting of
the optimal gain matrix K , the solution of the Riccati equa-
tion P, and the vector E containing the eigenvalues of the
closed-loop system. The lqr function requires the system
be in numeric or symbolic form (with at most one symbol-
ic variable) as well as the matrices q and r. Using the func-
tion lqry from the Mu-Toolbox, the linear-quadratic-
regulator design can be carried out with output weighting.

The main advantage of these MATLAB functions is that
the triple (K, P, E) is obtained using a single function.
The MATLAB commands are given by

syms s real
% Declaring symbolic variable s (if we want to work
% symbolically)
c0 = 3;
a = 10; % the cross section of the tank
h0 = 9;
A = [−c0/(2 ∗ a ∗ sqrt(h0))];
B = [1/a − sqrt(h0)/a];
C = [1];
D = [0 0];
% LQR design
q = [1];
r = [1000 0; 0 0.0745];
ControlObjectTF = ss(A, B, C, D);
[KLQ,P,E] = lqr(ControlObjectTF,q, r)
[KLQy, Py, Ey] = lqry(ControlObjectTF, q, r)
% for weighted output.

Additional Features of CSPS
There are many other features of CSPS that are not con-
sidered in this review due to limited space. For example,
CSPS includes interconnections of arbitrary complex sys-
tems, observability matrices and Gramians, observable
subspaces, Kalman and Jordan canonical forms, minimal
and balanced realizations, pole-zero cancellation, similari-
ty transformations, and Kalman filtering.

Additional features in ANM include system identification
in the time and frequency domains, Schur and Hessenberg-
Schur methods for Lyapunov and Sylvester equations, con-
troller-Hessenberg and observer-Hessenberg forms,
constrained and Lyapunov feedback stabilization, full- and
reduced-order state estimation, and model reduction using
the Schur and square-root methods. These features are dis-
cussed and demonstrated in [1] and [2].

The MATLAB toolboxes include some functions that work
with numerical and a single symbolic variable using the Sym-
bolic Toolbox, such as lyap, h2norm, hinfnorm, hinfsyn,
hinffi, tustin, ltru, ltry, and frsp. The Mu-Toolbox offers con-
trol design capabilities based on H2/H∞ spaces and works
mostly numerically, as do the System Identification Toolbox,
Predictive Toolbox, and Nonlinear Control Design Block Set.

In addition, MATLAB can perform interactive simula-
tion using SIMULINK, where systems can be specified in
block diagram form. SIMULINK also includes applications
that demonstrate the capabilities of different toolboxes,
such as the simulation of a one-tank system.

Conclusions
CSPS provides a unique and effective symbolic computa-
tion environment for solving control engineering prob-

April 200574 IEEE Control Systems Magazine

lems, particularly in the case of linear systems. On the con-
trary, in MATLAB, symbolic algebra can be used only in a
limited way, mostly for one variable.

MATLAB approaches control theory problems in a tech-
nical way, while Mathematica offers a didactic approach.
Although both systems are object-oriented, the basic ele-
ment of MATLAB is a matrix, while Mathematica can handle
arbitrary objects using functional programming.

Mathematica works step by step, like a mathematical
reasoning machine. This style makes Mathematica pro-
grams more readable and solutions easier to obtain. Solu-
tions of control problems are also easier to understand. In
addition, the structure of CSPS allows users and developers
to readily customize and extend the built-in algorithms.

In our experience, Mathematica's CSPS has advantages
for education and research, particularly for developing
new control formulas [4]. It is especially useful in real-
time applications, where fast evaluation is important (see,
for example, [3]), whereas MATLAB has advantages for
numerical engineering applications.

Acknowledgments
The authors would like to thank the Hungarian National
Research Fund Grant T042990 and Hungarian Ministry of
Education Grant FKFP 200/2001 for supporting this work.

References
[1] I. Bakshee, Mathematica-Advanced Numerical Methods, 1st ed.
Champaign, IL: Wolfram Research, Inc., 2003.

[2] I. Bakshee, Mathematica-Control System Professional, 2nd ed. Cham-
paign, IL: Wolfram Research, Inc., 2003.

[3] Z. Benyó, B. Paláncz, L. Kovács, and L. Szilágyi, “A fully symbolic
design and modelling of nonlinear glucose control with CSPS of Mathe-
matica,” in Proc. World Congress on Medical Physics and Biomedical
Engineering, Sydney, Australia, 2003 [Online]. Available: http://
library.wolfram.com/infocenter/MathSource/5043/

[4] L. Kovács and B. Paláncz, “Linear and non-linear approach of the
glucose-insulin control using Mathematica,” Periodica Politechnica,

Trans. Autom. Control Compute. Sci., vol. 49, no. 63, pp. 65–70, 2004
[Online]. Available: http://bio.iit.bme.hu/obmk/

[5] N. Munro, “Symbolic algebra computing in control engineering,”
Comput. Contr. Eng. J., vol. 8. no. 2, pp. 50–53, 1997.

[6] B. Paláncz, “Control of cascade system of N noninteracting tanks
using CSPS” [Online]. Available: http://bio.iit.bme.hu/obmk/

Béla Paláncz (palancz@epito.bme.hu) is an associate profes-
sor of computer science at the Technical University of
Budapest, Hungary. He received his D.Sc. from the Hungarian
Academy of Sciences in 1993 and has a background in educa-
tion and research of mathematical modeling and numeric-sym-
bolic computation, including experience at RWTH (Aachen,
Germany), Imperial College (London), and Wolfram Research
(USA). He can be contacted at the Department of Photogram-
metry and Geoinformatics, Budapest University of Technology
and Economics, H-1111 Budapest, Muegyetem rkp.3., Hungary.

Zoltán Benyó received a degree in electrical engineering
from the Technical University of Budapest, Hungary, in 1961.
Since that time, he has taught at the Technical University of
Budapest, first as an assistant professor, then as senior lec-
turer. Since 1994, he has been a professor with the Depart-
ment of Control Engineering and Information Technology. He
teaches courses in process control theory and biomedical
engineering. He has published 180 papers and is the author
of 20 textbooks. He is a member of the IFAC National Com-
mittee and the IEEE EMBS International Program Committee.

Levente Kovács received the M.Sc. degree in electrical
engineering from the University “Politechnica” of
Timisoara, Romania, in 2000. He is currently pursuing a
Ph.D. degree in biomedical engineering at the Department
of Control Engineering and Information Technology,
Budapest University of Technology and Economics, Hun-
gary. His research interests include control theory and
mathematical modeling of physiological systems.

April 2005 IEEE Control Systems Magazine 75

ELEVATED ADVICE
Many people influence our careers, but perhaps none more than our advisors
in graduate school. Such is the case with me, and as I reflect on influential
people and the advice I’ve benefited from over the years, I recall my advisor
Mike Sain relating encounters he had had with various individuals in our field.
I was lucky to experience such an encounter one day in a chance meeting
with a giant in our field. When I was a young professor attending a control
conference, I was surprised to find myself sharing an elevator ride with Nick
Nichols, the renowned inventor of the Nichols chart. Although nervous in the
presence of greatness, I couldn’t let this once-in-a-lifetime opportunity pass by
without seeking some gem of wisdom. So I struck up a brief conversation with
Dr. Nichols and then mustered the courage to ask him the following question:
“If you had one piece of advice for me to teach my control engineering students,
what would it be?” For what seemed like endless seconds we rode upward with-
out any reply coming from the legendary master. Just as we reached the end of
our ride he finally spoke, and this is what he said to me: “Tell your students this:
When you build your controllers, make sure you do it so that when you turn the
knob clockwise, the gain goes up.”

—CSS Past President Stephen Yurkovich © EYEWIRE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

