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Gröbner bases are used heavily throughout computational mathematics. This article demonstrates new functionality of Mathemati−
ca’s GroebnerBasis command and describes two new related functions. As examples, we show how GroebnerBasis can be used to 
rationalize denominators, and how it can be extended from polynomial ideals to modules.

This paper is dedicated to the memory of my friend and colleague Jerry Keiper.

Introduction

Since their invention by Bruno Buchberger more than thirty years ago, Gröbner bases have become a pervasive tool in computational
mathematics. This is no surprise, as a Gröbner basis generalizes to an arbitrary set of polynomials the notion of triangularization of a
set  of  linear polynomials. (See [Adams and Loustaunau 1994; Becker and Weispfenning 1993; Buchberger 1982; Cox, Little, and
O’Shea 1992] for definitions, theory, and numerous applications.)

Mathematica’s GroebnerBasis function has been entirely rewritten for Version 3.0. In previous versions, GroebnerBasis took no
options. Now, one can now control a host of important parameters. The function is also much faster than before. This article explains
the new features of GroebnerBasis and introduces the related new functions PolynomialReduce and MonomialList . We elaborate
on some of the finer points that one would not expect to find in [Wolfram 1996].

Basic definitions

A monomial is a product of powers of variables, such as x2 y3 z. We will also allow coefficients in the product, such as 3 x y4. For
purposes of divisibility, coefficients do not matter (we assume they lie in some field). One monomial is said to divide another if the

powers of  its  variables are no greater than the corresponding powers in the second monomial.  For example,  x2 y divides x3 y,  but

does not divide x y3. If the powers of the variables are all zero, the monomial is a constant.

A term order on a set of monomials is a total ordering such that constants are lower than any monomials involving variables, and if r,

s and t are monomials with s greater in the ordering than r, then t s is greater than t r. Another way to view this is via the exponent

vectors. To each monomial there corresponds an n−tuple of exponents, n being the number of variables. We order these so that every

such tuple containing a nonzero entry is greater than H0, 0, ..., 0L. This enforces the requirement that variables are larger than con−

stants.  We  furthermore  require  that  if  Ha1, ..., anL  is  greater  than  Hb1, ..., bnL,  then  Ha1 + c1, ..., an + cnL  is  greater  than

Hb1 + c1, ..., bn + cnL, enforcing the multiplicative requirement above.

A monomial m is said to reduce with respect to a polynomial if the leading monomial of that polynomial divides m.  For example,

x2 y  reduces  with  respect  to  2 y x+ x + 3,  because  x y  divides  x2 y.  The  result  of  this  reduction  is  x2 y - ���
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. A polynomial is reduced by reducing its monomials, beginning with the greatest and proceeding downward. One reduces

a polynomial with respect to a set of polynomials by reducing in turn with respect to each element in that set. A polynomial is fully
reduced once none of its monomials can be reduced.

A  set  of  polynomials  generates  an  ideal.  This  is  the  set  of  all  sums  of  products  of  polynomials  in  the  original  set  with  arbitrary
polynomials. Given a set of polynomials, and a term order on monomials, a Gröbner basis for that set, with respect to the term order,
can be defined formally as follows. It is a finite set of polynomials that generates the same ideal, such that for any polynomial poly in
the ideal  there is  a  polynomial  in  the basis whose leading monomial  divides the leading monomial  of  poly.  For example take the

polynomial ideal generated by 9y x2
+ y, x y2

+ x=, and order terms so that any monomial containing y is greater than all monomials

in  x alone (that  is,  order lexicographically with y greater than x).  It  is  not  a  Gröbner basis  because the ideal  in  question contains

y Iy x2
+ yM - x Ix y2

+ xM = y2
- x2,  and neither x2 y nor x y2  divides y2,  the lead monomial. In fact, a bit of thought shows that this

cannot be a Gröbner basis with respect to any term order, not just the one used above.

Fully reducing a polynomial by the members of a Gröbner basis produces a result that cannot be reduced by any element in the ideal
(not just in the basis). The importance of this property cannot be overstated: questions regarding the polynomial ideal, an infinite set,
can  be  reduced  to  problems  involving  a  finite  Gröbner  basis  for  the  ideal.  One  consequence  is  that  reduction  with  respect  to  a
Gröbner basis is canonical. In other words, no matter what order one performs reductions, one gets the same result. The problems of



can  be  reduced  to  problems  involving  a  finite  Gröbner  basis  for  the  ideal.  One  consequence  is  that  reduction  with  respect  to  a
Gröbner basis is canonical. In other words, no matter what order one performs reductions, one gets the same result. The problems of
ideal membership and canonical form were the original impetus for Buchberger’s early work in this field.

Another important application of Gröbner bases is the solution of systems of polynomial equations. A lexicographic term order gives
rise  to  a  basis  that  is  triangular  in  the  sense  that  each  polynomial  has  a  leading  term involving  a  variable  at  least  as  high  as  the
preceding polynomial. To solve a system of polynomial equations, one finds a Gröbner basis, extracts roots of the first polynomial,
back−substitutes the result into the next polynomial, solves for roots, and so on.

The GroebnerBasis Function

The interface, as before, is GroebnerBasis@polys, varsD. If the second argument is omitted, the variables are deduced from the first

argument exactly as for Solve and related functions.

One can specify the coefficient domain over which to work, e.g. rationals, integers modulo a prime p, rational function field in some

set of indeterminates. One does this with the CoefficientDomain and Modulus options. Variable ordering is determined by the order

in  which  variables are listed.  Term ordering is  then  specified  by  the  MonomialOrder  option  e.g.  Lexicographic (the  default)  or

DegreeReverseLexicographic.

The time and memory required to calculate a Gröbner basis depend very much on the variable ordering, monomial ordering, and on
which (if any) variables are regarded as invertible (that is, are field elements in a polynomial ring over a rational function field). For
example, it is typical for degree reverse lexicographic monomial ordering to be faster and to give simpler output than pure lexico−
graphic ordering, other things being the same. 

To illustrate, we define a function to show the timing of Gröbner basis calculations, as well as the number of polynomials and the
number of terms, the total degree, and the largest coefficient for each polynomial. Note that we store the Gröbner basis in a global

variable $GB to avoid recomputing it in one of the examples below. The examples shown here were run on a 300 MHz Intel proces−
sor, under the Linux operating system.

gbstats@polys_, vars_, opts___D :=

Module@8timing, numberPolys , numberTerms , totalDegrees , w, maxcoeffs<,
timing = First@Timing@$GB = GroebnerBasis@polys, vars, optsDDD;
numberPolys = Length@$GBD;
numberTerms = Length �� $GB;
totalDegrees = HExponent@ð1, wD &L �� H$GB �. Thread@vars ® wDL;
maxcoeffs = HN@Max@Abs@List �� ð1 �. Thread@Variables@polysD ® 1DDDD &L �� $GB;
Print@timing, " ", numberPolys ," polynomials "D;
TableForm@Transpose@8numberTerms , totalDegrees , maxcoeffs<D,
TableHeadings ® 8None, 8"terms", "total deg", "max coeffs"<<DD

Here is a set of polynomials from [Cox, Little, and O’Shea 1992]. We will find several Gröbner bases for this set.

polys = 9x5 + y4 + z3 - 1, x3 + y2 + z2 - 1=;

gbstats@polys, 8x, y, z<D

0.09 Second 7 polynomials

terms total deg max coeffs
25 12 30.
49 13 108.
53 12 302.
9 5 2.
49 12 192.
6 4 1.
4 3 1.

Suppose we want to find a Gröbner basis for this set, regarded as polynomials in the variables x and y.  One way is to treat z as a

coefficient, so that our coefficients are the field of rational functions in z. We can instead treat z as a variable with a lower lexico−

graphic order than x and y, and continue to work in the polynomial ring over all three variables. Strictly speaking, this latter approach

is  not  equivalent  to  the  former,  but,  under  certain  hypotheses,  it  can  be  shown  that  treating  parameters  as  variables  still  gives  a
Gröbner basis for the ideal regarded as polynomials in x and y, though possibly with extra polynomials (that is, it is not "minimal").

It suffices, for example, to order the parameter variable last if the monomial ordering is lexicographic.

The first method will slow down the computation of the Gröbner basis because rational function arithmetic must be used, but it gives
a simpler result. This trade−off is common in Gröbner computations. It is influenced by several factors, such as relative difficulty of
computing integer vs. polynomial greatest common divisors. Here we show the previous example, but with z treated as a coefficient

parameter rather than a variable.



The first method will slow down the computation of the Gröbner basis because rational function arithmetic must be used, but it gives
a simpler result. This trade−off is common in Gröbner computations. It is influenced by several factors, such as relative difficulty of
computing integer vs. polynomial greatest common divisors. Here we show the previous example, but with z treated as a coefficient

parameter rather than a variable.

gbstats@polys, 8x, y<, CoefficientDomain ® RationalFunctionsD

0.24 Second 2 polynomials

terms total deg max coeffs
13 12 13.
16 10 77.

The choice of term order can have a substantial effect on time of computation and complexity of the result.

gbstats@polys, 8x, y, z<, MonomialOrder ® DegreeReverseLexicographicD

0.01 Second 4 polynomials

terms total deg max coeffs
4 3 1.
6 4 1.
9 5 2.
19 6 3.

Changing y2 to y3 in the second polynomial makes this a much harder problem for some variable orders. 

gbstatsA9x5 + y4 + z3 - 1, x3 + y3 + z2 - 1=, 8x, y, z<E

2.04 Second 8 polynomials

terms total deg max coeffs
27 15 30.
274 26 5533.

271 25 1.27272´108

9 6 2.

275 25 1.72226´108

282 25 1.70255´108

6 5 1.
4 3 1.

Finally, note that the even variable order can influence the speed of computation and the complexity of the result. A felicitous choice
of variable order below quickly yields a simple basis.

gbstats@polys, 8y, z, x<D

0.01 Second 2 polynomials

terms total deg max coeffs
7 6 2.
4 3 1.

One of the settings for MonomialOrder  is EliminationOrder . Here, we use it to eliminate two of the variables from three polynomi−

als, to get a single polynomial. The second variable list, as in Solve, specifies the variables that are to be eliminated. (Lexicographic

Gröbner bases are an essential tool for algebraic equation solvers, so the similarity between the arguments of  GroebnerBasis and

Solve is no coincidence.)

GroebnerBasisA9-a d - a b c x- a b e y, a b c x- e x - 2 d x2, 2 x2 - c y - a b e y=,

8a, b<, 8x, y<, MonomialOrder ® EliminationOrderE

9a2 b2 c4 d2 + 2 a c2 d4 + a3 b3 c3 d e - a b c3 d2 e + 2 a3 b3 c3 d2 e +
4 a2 b c d4 e - 2 a2 b2 c2 d e2 + a4 b4 c2 d e2 - 2 a2 b2 c2 d2 e2 + a4 b4 c2 d2 e2 +

2 a3 b2 d4 e2 + a b c d e3 - 2 a3 b3 c d e3 - a3 b3 c d2 e3 + a2 b2 d e4=

Gröbner basis  calculations over  the rationals are notorious for  the size of  intermediate coefficients.  This next  example runs much

$GB



Gröbner basis  calculations over  the rationals are notorious for  the size of  intermediate coefficients.  This next  example runs much

more slowly in the non−modular case. We will use the Gröbner bases generated later, so we save the global variable $GB after each
computation below.

polys = 9-3 p q + 2 a p q- 2 b p q- p2 q + 2 a p2 q - 3 r + 2 a r - 2 m r + 2 b q r+ r2,

-1 + b - m + p - a p + b q - r + a r, 2- a + 2 b - 2 a p, 2- 2 b + b2 + 2 m - 2 b m + 2 p - 3 a p +

a2 p + 2 b p - 2 a b p- a p2 + a2 p2 + 2 b2 q - 2 b r + 2 a b r, -2 + a - 2 m + 2 b q + 2 a r=;

vars = 8a, b, p, q, r, m<;

prim = Prime@1000D;

gbstats@polys, vars, Modulus® primD

1.91 Second 7 polynomials

terms total deg max coeffs
28 10 7795.
118 18 7852.
109 17 7898.
112 17 7821.
3 1 7915.
109 17 7901.
110 17 7879.

gbmod = $GB;

gbstats@polys, varsD

7.75 Second 7 polynomials

terms total deg max coeffs
28 10 3368.

118 18 3.3837´1010

109 17 4.90541´1046

112 17 2.49682´1030

3 0 1.

110 17 4.53656´1044

110 17 1.12421´1045

gbrat = $GB;

For a given set of polynomials and term order, almost every prime p will be "lucky" in the sense that the Gröbner basis for that set,

regarded as  polynomials  over  the  integers modulo  p,  will  agree (up  to  multiplication by  a  unit)  with  the  mod p reduction of  the

Gröbner basis for the same polynomial set taken over the rationals. For the example above, we will see that Prime@1000D is a lucky
prime.

We define a routine to "normalize" so that leading coefficients are one.

lcoeffs@polys_, vars_D :=

Map@First@MonomialList@ð, varsDD &, polysD �. Thread@vars ® 1D;

modNormalize@polys_, vars_, p_D :=

Module@8lcs = lcoeffs@polys, varsD, mults<, mults = Map@PowerMod@ð, -1, pD &, lcsD;
Map@PolynomialMod@ð, pD &, mults*polysDD

modNormalize@gbmod, vars, primD �

modNormalize@PolynomialMod@gbrat, primD, vars, primD
True

Here is a standard example from the Gröbner basis literature. The Gröbner basis computation is slow for pure lexicographic ordering
with the variables in the order given.

polys = 9-36 - 165 b+ 45 p + 35 s, 35 p- 27 s + 25 t + 40 z, -165 b2 + 25 p s- 18 t + 15 w + 30 z,

15 p t- 9 w + 20 s z, -11 b3 + p w + 2 t z, 3 b2 - 11 b s+ 99 w=;



vars = 8b, t, s, w, p, z<;

gbstats@polys, varsD

7.04 Second 6 polynomials

terms total deg max coeffs

11 10 2.89828´1032

11 9 1.42095´10153

11 9 8.41165´10150

11 9 1.04655´10153

11 9 1.1764´10154

11 9 6.25164´10151

gbrat = $GB;

Inexact  arithmetic  speeds  up  the  process  by  avoiding  huge  integers  in  the  course  of  the  computation.  Setting  the  option
CoefficientDomain to  InexactNumbers normalizes  Gröbner  bases  over  inexact  numbers  so  that  the  coefficient  of  the  leading
monomial of each polynomial is one.

gbstats@polys, vars, CoefficientDomain® InexactNumbersD

0.31 Second 6 polynomials

terms total deg max coeffs
11 10 11.9205
11 9 9.94451
11 9 5.46377
11 9 82.3984
11 9 102.913
11 9 14.7663

gbreal = $GB;

We find the list of corresponding coefficients for the exact case and divide to match the normalization.

Chop@N@Expand@gbrat�lcoeffs@gbrat, varsDD, 100D - gbrealD

80, 0, 0, 0, 0, 0<

The list of zeros demonstrates that corresponding polynomials in the two bases agree up to multiplication by constants. At present,
we numericize to about 100 decimal places and use Mathematica’s default bignum arithmetic. In a future version, the initial preci−
sion may be set by the caller.

It  should be noted that the realm of Gröbner bases over inexact numbers is poorly understood at present. An expected difficulty is
that, due to accumulation of rounding or cancellation error, one may fail to recognize a coefficient of zero. Such failure is problem−
atic because one relies on certain (exact) cancellations to take place during the course of the algorithm. It is quite difficult to guard
against this error when one works with fixed precision arithmetic. As Mathematica instead uses significance arithmetic by default, it
is not likely to make this mistake: we detect that a coefficient is zero to all reliable (significant) digits. Our model of arithmetic is
instead vulnerable to the opposite error; a nonzero coefficient with scale smaller than its apparent accuracy may be mistaken for zero
(because it has no significant digits). Roughly speaking, the expected result of such a mistake is to obtain an algebraic variety "near"
to the one that is desired. In a bad case, one might obtain a variety with a smaller zero set. It might even be that one can define an
intrinsic  "condition  number"  for  an  ideal,  as  is  already  done  in  numeric  linear  algebra.  How  this  might  interact  with  variants  of
Buchberger’s algorithm for Gröbner basis computation is not  known. In  any case,  Mathematica’s  inexact Gröbnerization is suffi−
ciently robust to get a result that agrees with the exact computation in the example above. I remark that the Mathematica implementa−
tion of significance arithmetic is an example of the excellent work of the late Jerry Keiper.

Given an ordering of variables, we can use a matrix of weight vectors to specify a term ordering (see [Robbiano 1985]). In Mathemat−
ica, any matrix of integer or rational weight vectors can be used, provided it has full row rank and defines a valid term order. This
capability allows for all the orders of "lexicographic type." (In a future release, we may provide even more general orderings.)

The following weight matrix is an example of a block ordering. That is, a term containing the first two variables is higher than any
term in only the last two variables. Such orders can always be specified by a weight matrix that is block diagonal. They generalize
lexicographic ordering, wherein every variable comprises a distinct block and we can use the identity matrix as the weight matrix.



wt = 881, 1, 0, 0<, 81, 0, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<<;

polys =

9-H47 aL - 221 a b x- 3 a b y+ 11, -x2 + 66 a b x- 7 x + 14 a b y+ 40, 22 x2 - 138 y- 13 a b y=;

GroebnerBasis@polys, 8a, b, x, y<, MonomialOrder ® wtD

91452 x3 + 520 y - 9199 x y + 295 x2 y - 1932 y2,
-41360 + 7238 x - 210452 b x + 34034 b x2 + 6486 y - 5885 b y + 30960 b x y + 414 b y2,

24440 - 4277 x + 124358 b x + 13865 x2 - 20111 b x2 + 60839 b x3 - 90804 y - 399648 b x y,

-124358 + 40326 a + 20111 x - 60839 x2 + 399648 y=

As block orders are compatible with elimination, we can eliminate the variables of the highest block, by listing them separately as a
third argument.

GroebnerBasis@polys, 8a, b<, 8x, y<, MonomialOrder ® wtD

9-2304324 + 19691496 a - 42068196 a2 - 301295676 a b + 1245260112 a2 b +
179856780 a3 b + 40232539841 a2 b2 - 15328247992 a3 b2 - 192238225 a4 b2 -

76517933885 a3 b3 + 24572275625 a4 b3 - 7565816362 a4 b4 + 2453393514 a5 b4=

We obtain a Gröbner basis for the "elimination ideal" of the polynomials, that is, the ideal formed by intersecting the original ideal
with the set of all polynomials in only the remaining variables.

PolynomialReduce

The function PolynomialReduce is new in Version 3.0.  It  finds the "normal form" of a given polynomial with respect to a list of
polynomials, using a process known as generalized division.

PolynomialReduce@a + b + a b, 8a b c - d, a b+ b c + c a - e, a + b + c - f<D

980, 1, 1 - c<, -c + c2 + e + f - c f=

PolynomialReduce@poly, polylist, varsD  returns the  list  of  the  generalized quotients  and  the  remainder (the  normal  form).  These
satisfy the relation

quotientlist.polylist + remainder = poly

The second argument to PolynomialReduce may be an individual polynomial rather than a list. If the third argument is omitted, the

variables  will  be  deduced  from  the  polynomials  and  ordered  according  to  some  internal  sorting  convention.  PolynomialReduce

takes same options as GroebnerBasis.

If the given list of polynomials is a Gröbner basis with respect to the term ordering and underlying coefficient domain, the result of
PolynomialReduce is canonical. In particular, if we have a polynomial in an ideal, its normal form with respect to a Gröbner basis
of the ideal must be zero. For example:

polys = 9x5 + y4 + z3 - 1, x3 + y2 + z2 - 1=;

origgb = GroebnerBasis@polys, 8x, y, z<, MonomialOrder ® DegreeLexicographicD;

poly = origgbP5T + y origgbP3T;

gb = GroebnerBasis@polys, 8y, z, x<D;

PolynomialReduce@poly, gb, 8y, z, x<D@@2DD
0

A  common  special  case  is  to  write  a  polynomial  f  modulo  a  second  polynomial  g.  One  can  use  either  PolynomialMod  or

PolynomialReduce to do the reduction. An advantage of the latter is that one can specify variable and monomial ordering explicitly.
Here is a set of examples that came our way in a bug report. The gist is that one can get different results depending on the ordering of
variables.

PolynomialModAa3 x7 + x4, x2 + aE

a2 - a6 x



PolynomialModAa3 x7 + x4 + a, x2 + aE

-x2 + x4 - x13

If, say, you want the order to be 8a, x< in the first example (so a will be replaced by x) we can use PolynomialReduce:

PolynomialReduceAa3 x7 + x4, x2 + a, 8a, x<EP2T

x4 - x13

There are two situations in which PolynomialMod will likely be the better function to use. The first is when we want to reduce a

polynomial modulo an integer. For the second, say we have a pair of multivariate polynomials f  and g over the integers and we wish

to check whether g divides f  with a quotient that is also a polynomial over the integers. This problem arises frequently in polynomial

algebra, for example, in implementing polynomial greatest common divisor algorithms. Regardless of  variable or term ordering, g

divides  f  precisely  when  PolynomialMod@ f , gD  or  PolynomialReduce@ f , gD@@2DD  is  zero.  Both  functions  need  to  translate  their

arguments  to  an  internal  format.  PolynomialReduce uses  internally  a  so−called  "sparse  distributed"  polynomial  format.

PolynomialMod, in contrast, uses a recursive format. That is, a polynomial is written in descending powers of the leading variable,
with  each  coefficient  itself  a  polynomial  in  the  remaining variables (see  [Stoutmeyer 1984]).  It  is  generally  faster  to  do  both  the
translation and the exact division when working with the recursive form, hence PolynomialMod will likely be the better choice for
this type of problem.

The pair of functions GroebnerBasis and PolynomialReduce effectively supercedes AlgebraicRules and ReplaceAll. The function

AlgebraicRules is no longer documented and will not be upgraded in the future. There are several reasons why the new technology
is an improvement. First, it is much more flexible. It will handle arbitrary term orders rather than just lexicographic. It will work over
several  coefficient  rings.  It  is  much  better  about  not  emitting  annoying  warning  messages.  It  does  not  require  that  the  reducing
polynomial  list  be a Gröbner basis.  One small  disadvantage I  am aware of  is  that  AlgebraicRules encodes a Gröbner basis in  an

internal format. If  one must  reduce with respect to  many polynomials,  then the time needed for PolynomialReduce to  convert  to
internal format can be an issue, albeit usually minor.

Here is a simple example to show how GroebnerBasis and PolynomialReduce work in place of AlgebraicRules and ReplaceAll.

poly = x3 + 2 y3 - 3 z2 x + 7;

polylist = 9x5 + y4 + z3 - 1, x3 + y2 + z2 - 1=;

vars = 8x, y, z<;

Timing@gb = GroebnerBasis@polylist, varsD;D
80.09 Second, Null<

Timing@red1 = PolynomialReduce@poly, gb, varsD@@2DDD

90.23 Second, 8 - y2 + 2 y3 - z2 - 3 x z2=

Timing@ar = AlgebraicRules@Thread@polylist � 0D, varsD;D
83.08 Second, Null<

Timing@red2 = poly �. arD

90.02 Second, 8 - y2 + 2 y3 - z2 - 3 x z2=

red1 � red2

True

Note that while the ReplaceAll works faster than PolynomialReduce,  the time needed to form the AlgebraicRulesData object is

vastly greater than that needed by GroebnerBasis.



MonomialList

The  function  MonomialList  is  also  new  in  Version  3.0.  The  calling  syntax  is  MonomialList @poly, varsD  or

MonomialList @8poly1, poly2, ...<, varsD. It takes the same options as GroebnerBasis and PolynomialReduce. If the last argument

is omitted, the variables will be deduced exactly as for GroebnerBasis.

poly = 3 x y + 2 y2 + 16 y z- z2 - x y3 z2 - 7 x3 y - 3 x y z2 + 2 x z - 6 z2 + 8 x z2;

vars = 8x, y, z<;

MonomialList@poly, varsD

9-7 x3 y, -x y3 z2, -3 x y z2, 3 x y, 8 x z2, 2 x z, 2 y2, 16 y z, -7 z2=

GroebnerBasis provides a  Sort  option,  which  sorts  the  variables  according to  a  heuristic  designed  to  improve efficiency  for  the
lexicographic  term  order  (this  ordering  is  important  for  equation  solving).  The  heuristic  is  a  variation  on  that  found  in  [Boege,
Gebauer, and Kredel 1986]. One can see the polynomials in list form, ordered by term order, by using MonomialList  with Sort set

to True.

vars = 8u, v, p, q, y<;

polys = 9-50 + u + v, -1600 + p2 + 2 p u + u2 + y2,

-10 000 + q2 + 2 q v + v2 + y2, -10 p - 10 u + p y, -15 q - 15 v + q y=;

MonomialList@polys, Sort® TrueD

98u, v, -50<, 9u2, 2 p u, p2, y2, -1600=,

9v2, 2 q v, q2, y2, -10000=, 8-10 u, p y, -10 p<, 8-15 v, q y, -15 q<=

One can discern that the variable ordering has u > v > 8q, p< > y. It is not clear exactly how q and p are ordered. One can obtain

the full  ordering by the simple trick of  adjoining the polynomial p + q + u + v + y to  the list  of  polynomials. This change will  not

substantially  affect  the  ordering used  by  the  Sort  algorithm.  That  is,  the  resulting ordering will  be  the  same unless  there  is  a  tie
broken by an internal sort that was altered due to the presence of the new polynomial.

MonomialList@Join@8u + v + q + y + p<, polysD, vars, Sort® TrueD@@1DD
8u, v, q, p, y<

The result shows a variable ordering of 8u, v, p, q, y<. When one forms a lexicographic Gröbner basis of the original set of polynomi−

als using this ordering, the largest coefficient has 16 digits.

gb = GroebnerBasis@polys, 8u, v, p, q, y<D;

Log@10., Max@Abs@Flatten@MonomialList@gb, varsD �. Thread@8u, v, p, q, y< ® 1DDDDD
15.4866

The  order  8y, p, q, v, u<  will  give  a  basis  with  a  largest  coefficient  of
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digits. Not surprisingly, it takes a bit longer to compute.

Another use for MonomialList  is  as a "distributed" version of  Collect.  In  Version 1 of  Mathematica,  all  specified variables were
treated as equals, and so each power product in the given variables was grouped individually with a coefficient (which could be a
number  or  involve  "uncollected"  variables).  Thus,  the  polynomial  would  be  represented in  distributed form relative  to  the  list  of
variables. Version 2 changed Collect so that the variables were ordered; it would Collect with respect to the leading variable, and
each coefficient would then be collected with respect to the next variable, and so on. This gives a "recursive" representation of the
polynomial. Both representations can be useful.

Here, we show two ways to recover the distributed form. The first involves collecting on a list of pattern variables (this functionality
also existed in Version 1, in slightly different form, and was lost in Version 2). This method is similar to one described in [Harris
1994], from which this example is taken



poly = a3 - d3 + 3 a2 x + 3 a x2 + x3 + 3 a2 c y + 3 a2 d y +

6 a c x y+ 6 a d x y+ 3 c x2 y + 3 d x2 y + 3 a c2 y2 + 6 a c d y2 + 3 a d2 y2 +

3 c2 x y2 + 6 c d x y2 + 3 d2 x y2 + c3 y3 + 3 c2 d y3 + 3 c d2 y3 + d3 y3;

d1 = Collect@poly, 8x^_.*y^_., x^_., y^_.<D

a3 - d3 + 3 a2 x + 3 a x2 + x3 + I3 a2 c + 3 a2 dM y + H6 a c + 6 a dL x y + H3 c + 3 dL x2 y +
I3 a c2 + 6 a c d + 3 a d2M y2 + I3 c2 + 6 c d + 3 d2M x y2 + Ic3 + 3 c2 d + 3 c d2 + d3M y3

This method will obviously get cumbersome for more variables. One could write code to generate all the power product patterns, as
the list could get quite large. Instead, we show the second way to implement a distributed Collect, using MonomialList .

d2 = Plus �� MonomialList@poly, 8x, y<, CoefficientDomain ® RationalFunctionsD

a3 - d3 + 3 a2 x + 3 a x2 + x3 + I3 a2 c + 3 a2 dM y + H6 a c + 6 a dL x y + H3 c + 3 dL x2 y +
I3 a c2 + 6 a c d + 3 a d2M y2 + I3 c2 + 6 c d + 3 d2M x y2 + Ic3 + 3 c2 d + 3 c d2 + d3M y3

Collect now takes, as an optional third argument, a function to apply to each collected term. This new feature is quite useful. For
example, we can do partial factorization of the coefficients in the previous result.

Collect@poly, 8x^_.*y^_., x^_., y^_.<, FactorSquareFreeD

a3 - d3 + 3 a2 x + 3 a x2 + x3 + 3 a2 Hc + dL y + 6 a Hc + dL x y +
3 Hc + dL x2 y + 3 a Hc + dL2 y2 + 3 Hc + dL2 x y2 + Hc + dL3 y3

We can obtain the same result using the MonomialList  method.

Plus �� FactorSquareFree ��

MonomialList@poly, 8x, y<, CoefficientDomain ® RationalFunctionsD

a3 - d3 + 3 a2 x + 3 a x2 + x3 + 3 a2 Hc + dL y + 6 a Hc + dL x y +
3 Hc + dL x2 y + 3 a Hc + dL2 y2 + 3 Hc + dL2 x y2 + Hc + dL3 y3

We could do full factorization, using Factor, but FactorSquareFree is preferable because it uses more efficient technology.

Example: polynomial inversion

We apply GroebnerBasis to the task of rationalizing denominators. Specifically, we define a function PolynomialInverseMod that

finds the inverse of  a polynomial f  modulo another polynomial g.  The arguments are polynomials in one variable (say,  x).  Other

variables, if present, are treated as invertible parameters. For an irreducible polynomial g, we find a polynomial r  such that r f == 1

over the algebraic number ring Q@xD modulo g HxL (or, in the modular case, over the finite field Zp@xD modulo g HxL). The method can

be found in [Buchberger 1982, p. 204]. For extensions of this method to more general computations in algebraic number fields, see
[Becker and Weispfenning 1993, chap. 7; Adams and Loustaunau 1994, chap. 2, sec. 6].

The  idea  is  simple.  We  define  a  new  variable  r,  which  will  be  the  reciprocal  of  f .  We  compute  a  Gröbner  basis  for  the  set

8r f - 1, g<, using lexicographic order with r  higher than x. The Gröbner basis is ordered smallest to largest by term order and only

the  first  polynomial  does  not  contain  r.  (This  follows  from  some  well−known  facts  about  lexicographic  Gröbner  bases.)  So,  we

simply use the second element to solve for r in terms of x.

PolynomialInverseMod@f_, g_, x_, p_Integer: 0D :=

Module@8r, gb<, gb = GroebnerBasis@8r f - 1, g<,
8r, x<, Modulus ® p, CoefficientDomain ® RationalFunctionsD;

First@PolynomialMod@r �. Solve@gbP2T == 0, rD, pDDD �; PrimeQ@pD ÈÈ p === 0

The code does not check that f  is actually invertible in the ring. That would involve checking that the polynomial gcd of f  and g is a

unit, that is, it is free of the variable x. A variation of this code appears in the standard package Algebra‘PolynomialMod‘ .

Here is an example over the integers modulo 7.

f = x2 + 3 x + 17 - 2 x y2 + 5 y;

g = 11 x2 - 4 x + 3;



inv = PolynomialInverseMod@f, g, x, 7D

��������������������������������������������������������������

1 + 3 x + 5 y + 5 y2 + 2 x y2

2 + 4 y + 5 y2 + 4 y3 + 3 y4

We check that this result is correct using PolynomialReduce.

Last@PolynomialReduce@inv f- 1, g, Modulus® 7DD
0

What we have done is tantamount to rationalizing a denominator. Given an algebraic number t we can find its minimal polynomial g

with RootReduce. Then to rationalize a denominator in t we use the fact that the field RHtL is isomorphic the polynomial ring R@tD.
Hence any rational function in t  is equivalent to a polynomial. But RHtL  is also isomorphic to R@xD � gHxL  (that is, the polynomials

over R modulo the polynomial g), with the algebraic number t mapped to the indeterminate x. This equivalence gives us the means

to use PolynomialInverseMod.

For example, say t is �������������������������
1

"#####################
2-
�!!!!!!

3
3

+ 2
�!!!!!

3  and we want to represent f HtL = �������������������
1

t2-2 t+7
 as a polynomial in t over the rationals. Then

RootReduce@H2 - Sqrt@3DL^H-1�3L + 2*Sqrt@3DD

RootA-1871 - 144 ð1 + 396 ð12 - 4 ð13 - 36 ð14 + ð16 &, 2E

tells us that t satisfies the irreducible polynomial

gHtL = x6
- 36x4

- 4 x3
+ 396x2

- 144x - 1871

So QHtL is isomorphic to the ring Q@xD �gHxL. Then f  HtL is simply the polynomial given by

PolynomialInverseModAx2 - 2 x + 7, -1871 - 144 x+ 396 x2 - 4 x3 - 36 x4 + x6, xE

���������������������������������������������������������������������������������������������������������������������������������������������������������

1633833 + 245649 x - 114933 x2 - 26653 x3 + 2605 x4 + 741 x5

13537964

Example: The Gröbner basis of a module

We show how one can use GroebnerBasis to find the Gröbner basis of a module. The interested reader may consult [Adams and
Loustaunau 1994, chap. 3; Becker and Weispfenning 1993, chap.  10, sec. 4; Helzer 1995] for further details. Our treatment will be
similar to  that  of  [Helzer 1995].  We want  to  find a Gröbner basis for a submodule of  An,  where A  is  a  polynomial ring in some
indeterminates. As is  often done in  linear algebra,  we could  represent elements of  this  module as  n−tuples 8a1, a2, ..., an<,  where

each  entry  lies  in  A.  Instead,  we  let  e1,  e2,  ...,  en  be  n  new  "coordinate  variables"  and  we  represent  elements  as

a1 e1 + a2 e2 + ...+ an en, with a1, a2, ..., an all elements of A. This difference, while mathematically meaningless, is important for

the task at hand. It turns out that we can treat the new variables as we do all other variables, and just use GroebnerBasis to find a
basis for modules.

A Gröbner basis for the "position−over−term" ordering may be obtained as an ordinary Gröbner basis where we have the coordinate
variables ordered above the ring variables, and we also impose the relations that the product of any (not necessarily distinct) pair of
coordinate variables is zero. Their purpose is to keep out polynomials that are not linear in the coordinate variables. Once finished
with the computation we remove them. This is not the most efficient way to compute a module Gröbner basis. It would be better if,
in the Gröbnerization algorithm, we could to impose the condition that the least common multiplier between any pair of elements is
zero  if  the  head  terms do  not  lie  the  same coordinate.  This  would  necessitate  treating coordinate variables differently  from other
variables, and is not implemented in Mathematica’s GroebnerBasis algorithm. A still more general approach, described in [Becker

and Weispfenning 1993, chap. 10, sec. 2−4], would be to implement a "truncated" version of Buchberger’s algorithm, wherein only

S−polynomials that are homogeneous of degree one in the coordinate variables are utilized. It turns out that the method we will use is

not too far from optimal. While we still form S−polynomials (see any of [Adams and Loustaunau 1994; Becker and Weispfenning
1993; Buchberger 1982; Cox, Little, and O’Shea, 1992] for the definition of these) for polynomials whose head terms lie in different
coordinates, the conditions we impose on the coordinate variables force these extra polynomials to reduce quickly to zero.

Note  that  we  could  find  a  Gröbner  basis  for  the  "term−over−position"  ordering of  module  entries,  simply  by  ordering coordinate
variables  after  ring  variables  rather  than  before  them.  More  exotoc  orders  could  be  obtained  by  use  of  a  weight  matrix  as
MonomialOrder  option. Another small subtlety is that we remove the unwanted monomials by mapping them to the empty list and

Complement



variables  after  ring  variables  rather  than  before  them.  More  exotoc  orders  could  be  obtained  by  use  of  a  weight  matrix  as
MonomialOrder  option. Another small subtlety is that we remove the unwanted monomials by mapping them to the empty list and

flattenning the result. We do not use Complement because, while it is faster, it will reorder the result. We prefer a Gröbner basis that
is sorted by ascending term order.

moduleGroebnerBasis@polys_, vars_, cvars_, opts___D :=

Module@8newpols, rels, len= Length@cvarsD, gb, j, k, ruls<,
rels = Flatten@Table@cvars@@jDD*cvars@@kDD, 8j, len<, 8k, j, len<DD;
newpols = Join@polys, relsD;
gb = GroebnerBasis@newpols, Join@cvars, varsD, optsD;
rul = Map@Hð ¦ 8<L &, relsD;
gb = Flatten@gb �. rulD;
Collect@gb, cvarsDD

The example below is taken from [Helzer 1995]. It solves a particular polynomial interpolation problem.  We find the Gröbner basis

of a certain submodule of the free module of A3, where A is the polynomial ring Q@x, y, zD. The module is generated by

9e1 - e2 - e3, Ix2
+ y2

- 1M e2, ze2, IHy - 1L2 + z2
- 1M e3, xe3=

ii = 9x2 + y2 - 1, z=;

jj = 9Hy - 1L2 + z2 - 1, x=;

gens = Join@8e@1D - e@2D - e@3D<, e@2D ii, e@3D jjD;

gb = moduleGroebnerBasis@gens, 8x, y, z<, 8e@2D, e@3D, e@1D<D

9I-2 y z + y2 z + z3M e@1D, x z e@1D, I2 y - 2 x2 y - y2 + x2 y2 - 2 y3 + y4 - z2 + 2 y z2 - z4M e@1D,

I-x + x3 + x y2M e@1D, I-3 + 3 x2 + 2 y - 2 x2 y + 3 y2 - 2 y3 - z2 - 2 y z2M e@1D + 3 e@3D,
I-3 x2 - 2 y + 2 x2 y - 3 y2 + 2 y3 + z2 + 2 y z2M e@1D + 3 e@2D=

In [Helzer 1995] it is explained that

p = PolynomialReduce@e@2D + 2 e@3D, gb, 8e@2D, e@3D, e@1D, x, y, z<DP2T �. e@1D ® 1

2 - x2 - ��������
2 y

3
+ ��������������

2 x2 y

3
- y2 + ����������

2 y3

3
+ ������

z2

3
+ ��������������

2 y z2

3

produces  a  polynomial  p Hx, y, zL  such  that  p  is  identically  1  on  the  unit  circle  defined  by  the  pair  of  equations

9x2
+ y2

== 1, z == 0=,  and  p  is  identically  2  on  the  unit  circle  (interlocking  the  first  one)  given  by  the  pair  of  equations

9Hy - 1L2 + z2
== 1, x == 0=. We can check this fact.

PolynomialReduceAp, 9x2 + y2 - 1, z=EP2T

1

PolynomialReduceAp, 9Hy - 1L2 + z2 - 1, x=EP2T

2
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