Grobner Bases in Mathematica 3.0

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Centre Dr.
Champaign IL 61820
danl@wolfram.com

In: TheMathematicalournal6(4): 81-88. 1996.

Grobner bases are used heavily throughout computational mathematics. This article demonstrates new funchitaibbiyati—
ca's GroebnerBasis command and describes two new related functions. As examples, we sh@vdemerBasis can be used tc
rationalize denominators, and how it can be extended from polynomial ideals to modules.

This paper is dedicated to the memory of my friend and colleague Jerry Keiper.

Introduction

Since their invention by Bruno Buchberger more than thirty years ago, Grébner bases have become a pervasive tool in cc
mathematics. This is no surprise, as a Grébner basis generalizes to an arbitrary set of polynomials the notion of trianguls
set of linear polynomials. (See [Adams and Loustaunau 1994; Becker and Weispfenning 1993; Buchberger 1982; Cox
O’Shea 1992] for definitions, theory, and numerous applications.)

Mathematicés GroebnerBasis function has been entirely rewritten for Version 3.0. In previous vers@mebnerBasis took nc
options. Now, one can now control a host of important parameters. The function is also much faster than before. This arti
the new features dbroebnerBasis and introduces the related new functi®fidynomialReduce¢ andMonomialList. We elaboral
on some of the finer points that one would not expect to find in [Wolfram 1996].

Basic definitions

A monomial is a product of powers of variables, suclas z. We will also allow coefficients in the product, such3asy*. Fot
purposes of divisibility, coefficients do not matter (we assume they lie in some field). One monomial is said to divide anc

powers of its variables are no greater than the corresponding powers in the second monomial. Foréxadipidesx®y, but
does not dividex y2. If the powers of the variables are all zero, the monomial is a constant.

A term order on a set of monomials is a total ordering such that constants are lower than any monomials involving variab)
s andt are monomials witls greater in the ordering thanthent s is greater thanr. Another way to view this is via the expon
vectors. To each monomial there corresponds-dnple of exponents) being the number of variables. We order these so that
such tuple containing a nonzero entry is greater ¢faf, ..., 0. This enforces the requirement that variables are larger thar
stants. We furthermore require that (&, ...,a,) is greater than(bi, ...,b,), then (a; +cy, ...,an+Cn) is greater ths
(by + ¢, ..., by + Cp), enforcing the multiplicative requirement above.

A monomialm is said to reduce with respect to a polynomial if the leading monomial of that polynomial divifies example

x?y reduces with respect tBy x+ x+ 3, becausexy divides x*y. The result of this reduction gy — % X2y X+ X+ 3), ot

—§ - % A polynomial is reduced by reducing its monomials, beginning with the greatest and proceeding downward. Ot
a polynomial with respect to a set of polynomials by reducing in turn with respect to each element in that set. A polynorr

reduced once none of its monomials can be reduced.

A set of polynomials generates an ideal. This is the set of all sums of products of polynomials in the original set witl
polynomials. Given a set of polynomials, and a term order on monomials, a Grébner basis for that set, with respect to the
can be defined formally as follows. It is a finite set of polynomials that generates the same ideal, such that for any polynot
the ideal there is a polynomial in the basis whose leading monomial divides the leading monomial of poly. For examp

polynomial ideal generated t§y><2 +Y, XY+ x}, and order terms so that any monomial contairyiiigy greater than all monomii
in x alone (that is, order lexicographically wighgreater tharx). It is not a Grébner basis because the ideal in question cc
y(y>2 +Y) - x(xy? +X) = y?> - %%, and neithex? y nor xy? dividesy?, the lead monomial. In fact, a bit of thought shows tha
cannot be a Grébner basis with respect to any term order, not just the one used above.

Fully reducing a polynomial by the members of a Grébner basis produces a result that cannot be reduced by any elemer
(not just in the basis). The importance of this property cannot be overstated: questions regarding the polynomial ideal, an
can be reduced to problems involving a finite Grobner basis for the ideal. One consequence is that reduction with r

Grdbner basis is canonical. In other words, no matter what order one performs reductions, one gets the same result. The
ideal membership and canonical form were the original impetus for Buchberger’s early work in this field.

Another important application of Grobner bases is the solution of systems of polynomial equations. A lexicographic term «
rise to a basis that is triangular in the sense that each polynomial has a leading term involving a variable at least as
preceding polynomial. To solve a system of polynomial equations, one finds a Grébner basis, extracts roots of the first |
back-substitutes the result into the next polynomial, solves for roots, and so on.

The GroebnerBasis Function

The interface, as before, GroebnerBasigpolys varg|. If the second argument is omitted, the variables are deduced from t
argument exactly as f@olve and related functions.

One can specify the coefficient domain over which to work, e.g. rationals, integers modulo @,patienal function field in son
set of indeterminates. One does this withGefficientDomain andModulus options. Variable ordering is determined by the ¢
in which variables are listed. Term ordering is then specified byvihheomialOrder option e.g.Lexicographic (the default) ¢
DegreeReverselLexicograph.

The time and memory required to calculate a Grobner basis depend very much on the variable ordering, monomial orde
which (if any) variables are regarded as invertible (that is, are field elements in a polynomial ring over a rational function
example, it is typical for degree reverse lexicographic monomial ordering to be faster and to give simpler output than pt
graphic ordering, other things being the same.

To illustrate, we define a function to show the timing of Grébner basis calculations, as well as the number of polynomi
number of terms, the total degree, and the largest coefficient for each polynomial. Note that we store the Grdbner basis

variable$GB to avoid recomputing it in one of the examples below. The examples shown here were run on a 300 MHz Int
sor, under the Linux operating system.

gbstats[polys , vars_, opts___]:=
Modul e[{ti m ng, nunber Pol ys, nunber Terns, total Degrees, w, nmaxcoeffls
timng =First [Ti mi ng[$CB = G oebner Basi s[pol ys, vars, opts]]];
nunber Pol ys = Lengt h[$GB];
nunber Ter ns = Lengt h /@ $GB;
t ot al Degr ees = (Exponent [#1, w] &) /@ ($GB /. Thread[vars -» w]);
maxcoeffs = (N[Max [Abs [Li st ee#l /. Thread[Vari abl es[polys] - 11111 &) /e $GB;
Print [timng, " ", number Polys," polynom al s"];
Tabl eFor m[Tr anspose [{nunber Ter ns, total Degrees, maxcoeff$],
Tabl eHeadi ngs - {None, {"terns"”, "total deg", "max coeffs"}}]]

Here is a set of polynomials from [Cox, Little, and O’Shea 1992]. We will find several Grobner bases for this set.

polys = {x>+y*+2z% -1, x®+y?+2?-1};

gbstats[polys, {X, VY, z}]

0. 09 Second 7 polynom al s

ternms total deg max coeffs
25 12 30.

49 13 108.

53 12 302.

9 5 2.

49 12 192.

6 4 1.

4 3 1.

Suppose we want to find a Grobner basis for this set, regarded as polynomials in the waaadlgsOne way is to treat as
coefficient, so that our coefficients are the field of rational functiorss We can instead treatas a variable with a lower lexic
graphic order tham andy, and continue to work in the polynomial ring over all three variables. Strictly speaking, this latter a

is not equivalent to the former, but, under certain hypotheses, it can be shown that treating parameters as variables
Grobner basis for the ideal regarded as polynomiaksaindy, though possibly with extra polynomials (that is, it is not "minim

It suffices, for example, to order the parameter variable last if the monomial ordering is lexicographic.
The first method will slow down the computation of the Grébner basis because rational function arithmetic must be used, but it gi\

a simpler result. This trade—off is common in Grébner computations. It is influenced by several factors, such as relative difficulty
computing integer vs. polynomial greatest common divisors. Here we show the previous example, bueatitd as a coefficient

parameter rather than a variable.

The first method will slow down the computation of the Grobner basis because rational function arithmetic must be used,
a simpler result. This trade-off is common in Grébner computations. It is influenced by several factors, such as relative ¢
computing integer vs. polynomial greatest common divisors. Here we show the previous example, bureatithl as a coefficie

parameter rather than a variable.

gbstat s[pol ys, {Xx, y}, CoefficientDonain- Rational Functions]

0. 24 Second 2 polynom al s

terms total deg max coeffs
13 12 13.

16 10 77.

The choice of term order can have a substantial effect on time of computation and complexity of the result.

gbstat s[pol ys, {X, y, z}, Monom al O der -» Degr eeRever seLexi cographi c]

0. 01 Second 4 pol ynom al s

terms total deg max coeffs
4 3 1.
6 4 1.
9 5 2.
19 6 3.

Changingy? to y® in the second polynomial makes this a much harder problem for some variable orders.

gbstats[{x®+y*+2z% -1, x®*+y3+22-1}, {x, y, z}]

2. 04 Second 8 pol ynom al s

terms total deg max coeffs
27 15 30.

274 26 5533.

271 25 1.27272x108
9 6 2.

275 25 1.72226 %108
282 25 1. 70255 x 108
6 5 1.

4 3 1.

Finally, note that the even variable order can influence the speed of computation and the complexity of the result. A felicit
of variable order below quickly yields a simple basis.

gbstats[polys, {y, z, x}]

0. 01 Second 2 polynom al s
terms total deg max coeffs
7 6 2.
4 3 1.

One of the settings fdvionomialOrder is EliminationOrder . Here, we use it to eliminate two of the variables from three polyi
als, to get a single polynomial. The second variable list, 8slie specifies the variables that are to be eliminated. (Lexicogi
Grobner bases are an essential tool for algebraic equation solvers, so the similarity between the argGmetisesBasis anc
Solveis no coincidence.)

G oebnerBasis[{-ad-abcx-abey, abcx-ex-2dx* 2x*-cy-abey},
{a, b}, {X, y}, Monom al Order - Elim nati onOr der]
{a?b?c*d?+2ac?d*+a®b3c3de-abc®d’e+2ah®c3d?e+
4a’bcd*e-2a?b?c?de?+a*b*c?de?-2a’b?c?d?e?+a*b*c?d?e? +
2a’b*d*e®’+abcde’-2a’b’cde®-a’b®cd’e®+a’b’de*}
Grobner basis calculations over the rationals are notorious for the size of intermediate coefficients. This next example
$GB

more slowly in the non—-modular case. We will use the Grébner bases generated later, so we save the glolskGaatibleeac
computation below.

polys={-3pqg+2apqg-2bpqg-p°q+2ap’q-3r+2ar-2mr+2bqr+r?
-l+b-m+p-ap+bqg-r+ar, 2-a+2b-2ap, 2-2b+b?>+2m-2bm+2p-3ap+
a’p+2bp-2abp-ap?+a’p?+2b®q-2br+2abr, -2+a-2m+2bqg+2ar};

vars={a, b, p, q, r, m;
prim=Prime[1000];

gbst at s[pol ys, vars, Modul us- prim]

1. 91 Second 7 polynom al s

terms total deg max coeffs
28 10 7795.

118 18 7852.

109 17 7898.

112 17 7821.

3 1 7915.

109 17 7901.

110 17 7879.
gbnod = $GB;

gbst at s[pol ys, vars]

7.75 Second 7 polynom al s

terms total deg max coeffs
28 10 3368.

118 18 3.3837 x10%°
109 17 4. 90541 x 10*¢
112 17 2. 49682 x 10%°
3 0 1.

110 17 4. 53656 x 10%
110 17 1.12421 x10%
gbrat = $GB;

For a given set of polynomials and term order, almost every goim# be "lucky" in the sense that the Grobner basis for tha
regarded as polynomials over the integers modulwill agree (up to multiplication by a unit) with the medreduction of th
Grobner basis for the same polynomial set taken over the rationals. For the example above, we wilPsaeefii@0(is a lucky
prime.
We define a routine to "normalize" so that leading coefficients are one.
| coeffs[polys_, vars_]:=
Map [Fi r st [Monomi al Li st [#, vars]] & polys] /. Thread[vars -» 17];

nmodNor mal i ze[polys_, vars_, p_]:=
Modul e[{l cs =| coef fs[polys, vars], mults}, mults = Map[Power Mod [#, -1, p] & |cs];
Map [Pol ynomi al Mod [#, p] & mults=xpolys]]

nodNor nal i ze[gbnod, vars, prin ==
nodNor mal i ze [Pol ynom al Mod[gbrat, prinm, vars, prim

True

Here is a standard example from the Grobner basis literature. The Grobner basis computation is slow for pure lexicograp
with the variables in the order given.

polys:{—36—165b+45p+355, 35p-27s+25t +40z, -165b?> +25ps-18t +15w+30 z,
15pt -9w+20sz, -11b3+pw+2t z, 3b2—11bs+99w};

vars = {b, t, s, w, p, z};

gbst at s[pol ys, vars]

7. 04 Second 6 pol ynom al s

terms total deg max coeffs

11 10 2.89828 x 10%

11 9 1. 42095 x 10153
11 9 8.41165 x 10*°°
11 9 1. 04655 x 10153
11 9 1.1764 x 1014

11 9 6. 25164 x 10151
gbrat = $GB;

Inexact arithmetic speeds up the process by avoiding huge integers in the course of the computation. Setting
CoefficientDomain to InexactNumbers normalizes Grobner bases over inexact numbers so that the coefficient of the
monomial of each polynomial is one.

gbstats[polys, vars, CoefficientDomai n- | nexact Nunbers]

0. 31 Second 6 pol ynom al s
terms total deg max coeffs

11 10 11. 9205
11 9 9. 94451
11 9 5.46377
11 9 82. 3984
11 9 102. 913
11 9 14. 7663
gbreal = $GB;

We find the list of corresponding coefficients for the exact case and divide to match the normalization.

Chop [N[Expand[gbrat /| coeffs[gbrat, vars]], 100] -gbreal]
{0, 0, 0, 0, O, O}

The list of zeros demonstrates that corresponding polynomials in the two bases agree up to multiplication by constants.
we numericize to aboutOC decimal places and uséathematics default bignum arithmetic. In a future version, the initial pr
sion may be set by the caller.

It should be noted that the realm of Grdbner bases over inexact numbers is poorly understood at present. An expectec
that, due to accumulation of rounding or cancellation error, one may fail to recognize a coefficient of zero. Such failure is
atic because one relies on certain (exact) cancellations to take place during the course of the algorithm. It is quite diffic
against this error when one works with fixed precision arithmetidVAthematicainstead uses significance arithmetic by defat
is not likely to make this mistake: we detect that a coefficient is zero to all reliable (significant) digits. Our model of arit
instead vulnerable to the opposite error; a nonzero coefficient with scale smaller than its apparent accuracy may be miste
(because it has no significant digits). Roughly speaking, the expected result of such a mistake is to obtain an algebraic v
to the one that is desired. In a bad case, one might obtain a variety with a smaller zero set. It might even be that one ¢
intrinsic "condition number" for an ideal, as is already done in numeric linear algebra. How this might interact with v
Buchberger’s algorithm for Grobner basis computation is not known. In anyMatfigematicé inexact Grébnerization is sufl
ciently robust to get a result that agrees with the exact computation in the example above. | remardéthaéthaticamplementa
tion of significance arithmetic is an example of the excellent work of the late Jerry Keiper.

Given an ordering of variables, we can use a matrix of weight vectors to specify a term ordering (see [Robbiano Va85¢miu
ica, any matrix of integer or rational weight vectors can be used, provided it has full row rank and defines a valid term ¢
capability allows for all the orders of "lexicographic type." (In a future release, we may provide even more general ordering

The following weight matrix is an example of a block ordering. That is, a term containing the first two variables is higher
term in only the last two variables. Such orders can always be specified by a weight matrix that is block diagonal. They
lexicographic ordering, wherein every variable comprises a distinct block and we can use the identity matrix as the weight

w = {{1, 1, O, 0}, {1, O, O, O}, {O, O, 1, 1}, {O, O, O, 1}};

pol ys =
{-(47a) -221abx-3aby+11, -x*+66abx-7x+14aby+40, 22x*-138y-13aby};
Groebner Basi s[pol ys, {a, b, x, y}, Monom al Order -» wt]

{1452x + 520y - 9199 x y + 295 x* y - 1932 y?,

-41360 +7238x -210452bx +34034bx?%+6486y -5885by +30960bxy + 414 by?,
24440 - 4277 x + 124358 b x + 13865 x% - 20111 b x% + 60839 b x3 - 90804y - 399648 b x y,
-124358 + 40326 a + 20111 x - 60839 x? + 399648y }

As block orders are compatible with elimination, we can eliminate the variables of the highest block, by listing them sepe
third argument.

Groebner Basi s[pol ys, {a, b}, {x, y}, Monom al Order » w]

{-2304324 + 19691496 a - 42068196 a® - 301295676 ab + 1245260112 a% b +
179856780 a® b + 40232539841 a® b? - 15328247992 a® b - 192238225 a* b? -
76517933885 a% b® + 24572275625 a* b® - 7565816362 a* b* + 2453393514 a° b* |

We obtain a Grobner basis for the "elimination ideal" of the polynomials, that is, the ideal formed by intersecting the ori
with the set of all polynomials in only the remaining variables.

PolynomialReduce
The functionPolynomialReduct is new in Version 3.0. It finds the "normal form" of a given polynomial with respect to a
polynomials, using a process known as generalized division.
Pol ynonmi al Reduce[a+b +ab, {abc-d, ab+bc+ca-e, a+b+c-f}]
{{0, 1, 1-c}, -c+c?+e+f -cf}

PolynomialReducépoly, polylist, vars] returns the list of the generalized quotients and the remainder (the normal form
satisfy the relation

quotientlist.polylist +reminder =poly

The second argument RolynomialReduce may be an individual polynomial rather than a list. If the third argument is omittt
variables will be deduced from the polynomials and ordered according to some internal sorting conRefyiamialReduct
takes same options @oebnerBasis.

If the given list of polynomials is a Grobner basis with respect to the term ordering and underlying coefficient domain, th

PolynomialReduce is canonical. In particular, if we have a polynomial in an ideal, its normal form with respect to a Grébt
of the ideal must be zero. For example:

polys = {x>+y*+2%-1, x*+y?+2z%-1};

ori ggb = G oebnerBasi s[polys, {x, y, z}, Mnoni al Order - Degr eeLexi cographi c];
poly =origgb[5] +y ori ggb[31;

gb = G oebner Basi s[pol ys, {y, z, X}1;

Pol ynom al Reduce[poly, gb, {y, z, x}1[[2]1]
0

A common special case is to write a polynomfaimodulo a second polynomig. One can use eithéPolynomialMod or

PolynomialReduceto do the reduction. An advantage of the latter is that one can specify variable and monomial ordering

Here is a set of examples that came our way in a bug report. The gist is that one can get different results depending on th
variables.

Pol ynoni al Mod [a3 X7 +x*, X2+ a]

2 6

a®-a X

Pol ynoni al Mod [a3 x"+x*+a, X%+ a]

2, x4 _x13

-X“+X

If, say, you want the order to @ x} in the first example (sa will be replaced bx) we can us®olynomialReduce

Pol ynoni al Reduce[a® x” +x*, x? +a, {a, x}][2]
x4 _ x13

There are two situations in whi¢bolynomialMod will likely be the better function to use. The first is when we want to red
polynomial modulo an integer. For the second, say we have a pair of multivariate polyrfoanidlg over the integers and we w
to check whetheg dividesf with a quotient that is also a polynomial over the integers. This problem arises frequently in po
algebra, for example, in implementing polynomial greatest common divisor algorithms. Regardless of variable or termg
divides f precisely whenPolynomialMod[f, g] or PolynomialReducéf, g]([2]] is zero. Both functions need to translate !
arguments to an internal formaPolynomialReduce¢ uses internally a so-called "sparse distributed" polynomial fc
PolynomialMod, in contrast, uses a recursive format. That is, a polynomial is written in descending powers of the leading
with each coefficient itself a polynomial in the remaining variables (see [Stoutmeyer 1984]). It is generally faster to dc
translation and the exact division when working with the recursive form, HealgaomialMod will likely be the better choice f
this type of problem.

The pair of functions&sroebnerBasis andPolynomialReduct effectively supercedeslgebraicRules andReplaceAll. The functior
AlgebraicRules is no longer documented and will not be upgraded in the future. There are several reasons why the new

is an improvement. First, it is much more flexible. It will handle arbitrary term orders rather than just lexicographic. It will w
several coefficient rings. It is much better about not emitting annoying warning messages. It does not require that tt
polynomial list be a Grébner basis. One small disadvantage | am aware of AdgilataicRules encodes a Grobner basis in

internal format. If one must reduce with respect to many polynomials, then the time neeBRetyfiomialReduce to convert ti
internal format can be an issue, albeit usually minor.

Here is a simple example to show h@nmoebnerBasic andPolynomialReducework in place ofAlgebraicRules andReplaceAll.
poly =x3+2y3-32z%2x+7;
polylist = {x>+y*+2z%-1, x®+y?+2%-1};
vars = {X, Y, z};
Ti m ng[gb = G- oebner Basi s[pol ylist, vars];]
{0.09 Second, Nul |}
Ti mi ng[redl = Pol ynom al Reduce[poly, gb, varsl[[2]]]
{0.23 Second, 8-y?+2y%-272-3x2z?}
Tim ng[ar = Al gebrai cRul es[Thread[pol ylist ==0], vars];]
{3.08 Second, Null}
Timng[red2 =poly /. ar]
{0.02 Second, 8-y?+2y®-2%-3x2?}
redl == red2

True

Note that while théReplaceAll works faster thafPolynomialReduce, the time needed to form thdgebraicRulesDate object it
vastly greater than that needed®soebnerBasis

MonomialList

The function MonomialList is also new in Version 3.0. The calling syntax MonomialList[poly, varg or
MonomialList [{poly], poly2 ..}, varg]. It takes the same options @soebnerBasic andPolynomialReduce. If the last argume
is omitted, the variables will be deduced exactly asSimebnerBasic.

poly =3xy+2y2+16yz-22-xy3z2-7x3y-3xyz?+2x2z-62z%2+8x2z?%
vars = {x, y, z};

Mononmi al Li st [pol y, vars]
{—7x3y, -xy®z? -3xyz? 3xy, 8xz% 2xz, 2y? 16yz, —722}

GroebnerBasis provides aSort option, which sorts the variables according to a heuristic designed to improve efficiency
lexicographic term order (this ordering is important for equation solving). The heuristic is a variation on that found ir
Gebauer, and Kredel 1986]. One can see the polynomials in list form, ordered by term order, MouosimialList with Sort se
to True.

vars = {u, v, p, d, Y};

polys = {-50 +u+v, -1600 +p? +2 p u+Uu® +y?,
-10000+g*+2qVv+Vv?+y? -10p-10u+py, -156q-15v+qy};

Monomi al Li st [pol ys, Sort - True]

{{u, v, -50}, {uz, 2pu, p? vy? -1600},

{vz, 2qv, 9%, y?, -10000}, {-10u, py, -10p}, {-15v, qy, -15q}}

One can discern that the variable orderingthasv > {qg, p} > V. It is not clear exactly how and p are ordered. One can obt
the full ordering by the simple trick of adjoining the polynonpat g+ u+ v+ Yy to the list of polynomials. This change will
substantially affect the ordering used by 8@t algorithm. That is, the resulting ordering will be the same unless there i
broken by an internal sort that was altered due to the presence of the new polynomial.

Monomi al Li st [Join[{u+Vv +q+Yy +p}, polys], vars, Sort -» True][[1]]

{u, v, g, p, y}

The result shows a variable orderingafv, p, g, y}. When one forms a lexicographic Grobner basis of the original set of poly
als using this ordering, the largest coefficient basdligits.

gb = G oebner Basi s[pol ys, {u, v, p, q, Y}1;

Log[10., Max[Abs[Fl atten[Monomi al Li st [gb, vars] /. Thread[{u, v, p, q, ¥} >11111]
15. 4866

The order {y, p,a, v, u} will give a basis with a largest coefficient
37
digits. Not surprisingly, it takes a bit longer to compute.

Another use foMonomiallList is as a "distributed" version @ollect. In Version 1 ofMathematica all specified variables we
treated as equals, and so each power product in the given variables was grouped individually with a coefficient (which
number or involve "uncollected" variables). Thus, the polynomial would be represented in distributed form relative to 1
variables. Version 2 changétbllect so that the variables were ordered; it woGlllect with respect to the leading variable,

each coefficient would then be collected with respect to the next variable, and so on. This gives a "recursive" represent
polynomial. Both representations can be useful.

Here, we show two ways to recover the distributed form. The first involves collecting on a list of pattern variables (this fur
also existed in Version 1, in slightly different form, and was lost in Version 2). This method is similar to one described
1994], from which this example is taken

poly=a®-d®+3a?x+3ax?+x3+3a’cy+3a’dy+
6acxy+6adxy+3cx’y+3dx’y+3ac’y?’+6acdy’>+3ad’y?+
3c?xy?+6cdxy?+3d?xy?+c3y®+3c?dy®+3cd?yd+dyd;
dl =Collect [poly, {X"_. *y"_., x _., y"_.}]
a’-d*+3a’x+3ax?+x3+ (3a?c+3a’d)y+ (6ac+6ad)xy+ (3¢c+3d)x?y+
(3ac?+6acd+3ad?)y?+ (3c?+6cd+3d?) xy*+ (c®+3c?d+3cd?+d®)y3
This method will obviously get cumbersome for more variables. One could write code to generate all the power product |
the list could get quite large. Instead, we show the second way to implement a dis@itllgeti usingMonomialList.
d2 = Pl us ee Monomi al Li st [poly, {x, y}, CoefficientDomain- Rational Functi ons]
a®-d®+3a?x+3ax?+x3+ (3a20+3a2d) y+(6ac+6ad)xy+ (3c+3d)x%y+
(3ac?+6acd+3ad?)y?+ (3¢c?2+6cd+3d?) xy?+ (c®+3c?d+3cd?+d?)y3
Collect now takes, as an optional third argument, a function to apply to each collected term. This new feature is quite
example, we can do partial factorization of the coefficients in the previous result.

Col | ect [poly, {x™_. xy”~_., x~_., y~_.}, FactorSquareFree]

a®-d®+3a?x+3ax?+x3+3a% (c+d)y+6a(c+d)xy+
3c+d)x?y+3a(c+d)?y2+3 (c+d)2xy2+ (c+d)3y3

We can obtain the same result usingfManomialList method.

Pl us @e Fact or Squar eFree /@
Monomi al Li st [poly, {x, y}, CoefficientDonain- Rational Functions]

a®-d®+3a’?x+3ax?+x3+3a% (c+d)y+6a(c+d)xy-+
3@c+d)x?y+3a(c+d)?y2+3 (c+d)2xy2+ (c+d)3y3

We could do full factorization, usirfgactor, butFactorSquareFrecis preferable because it uses more efficient technology.

Example: polynomial inversion

We applyGroebnerBasis to the task of rationalizing denominators. Specifically, we define a funettdmomiallnverseMod tha
finds the inverse of a polynomidl modulo another polynomia. The arguments are polynomials in one variable (gpyQthel
variables, if present, are treated as invertible parameters. For an irreducible polymomgdind a polynomiat such that f ==

over the algebraic number rit@x] modulog (x) (or, in the modular case, over the finite fi#ig[x] modulog (x)). The method ce

be found in [Buchberger 1982, p. 204]. For extensions of this method to more general computations in algebraic numbe
[Becker and Weispfenning 1993, chap. 7; Adams and Loustaunau 1994, chap. 2, sec. 6].

The idea is simple. We define a new variablevhich will be the reciprocal of. We compute a Grébner basis for the
{r f —1, g}, using lexicographic order withhigher thanx. The Grobner basis is ordered smallest to largest by term order at
the first polynomial does not contain (This follows from some well-known facts about lexicographic Grébner bases.) .
simply use the second element to solver fiorterms ofx.

Pol ynomi al I nverseMod[f _, g_, x_, p_Integer: 0] : =
Modul e[{r, gb}, gb =G oebnerBasis[{r f -1, g},
{r, x}, Modul us » p, CoefficientDomai n- Rational Functions];
Fi rst [Pol ynom al Mod[r /. Sol ve[gb[2] ==0, r], p]l1]1 /; PrineQ[p] || p ===

The code does not check tHais actually invertible in the ring. That would involve checking that the polynomial g€dinélg is ¢
unit, that is, it is free of the variabke A variation of this code appears in the standard packigbra'PolynomialMod' .

Here is an example over the integers modulo
f = x?2+3x+17-2xy2+5y;
g =11 x2-4x +3;

i nv = Pol ynom al I nverseMd[f, g, X, 7]

1+3x+5y+5y2+2xy?

2+4y +5y214y3.3y4
We check that this result is correct usPglynomialReduce.

Last [Pol ynom al Reduce[invf -1, g, Modulus - 711
0

What we have done is tantamount to rationalizing a denominator. Given an algebraic nwelgan find its minimal polynomig
with RootReduce Then to rationalize a denominatortisve use the fact that the fieR{t) is isomorphic the polynomial rinB|t].
Hence any rational function inis equivalent to a polynomial. BR(t) is also isomorphic t®R[x] / g(X) (that is, the polynomia
overR modulo the polynomiad), with the algebraic numbémapped to the indeterminate This equivalence gives us the me
to usePolynomiallnverseMod.

L _ +2+/3 and we want to represefit) = -1 asa polynomial it over the rationals. Then

t2-2t+7
2V3 *

Root Reduce[(2-Sqrt [3]1)" (-1/3) +2%Sqrt [3]]

For example, sayis

Root [-1871 - 144 51 + 396 1#1% - 4111° - 36 51 + 11° &, 2]
tells us that satisfies the irreducible polynomial
gt) = x8 —36x* — 43 + 396x° — 144x — 1871
SoQ(t) is isomorphic to the rin@[x]/g(x). Thenf (t) is simply the polynomial given by

Pol ynoni al I nver seMbd [x? -2 x + 7, -1871 - 144 x + 396 x* - 4 x> - 36 x* + x®, x]

1633833 + 245649 x - 114933 x? - 26653 x3 + 2605 x* + 741 x5
13537964

Example: The Grobner basis of a module

We show how one can us&roebnerBasis to find the Groébner basis of a module. The interested reader may consult [Ade
Loustaunau 1994, chap. 3; Becker and Weispfenning 1993, chap. 10, sec. 4; Helzer 1995] for further details. Our treatr
similar to that of [Helzer 1995]. We want to find a Grébner basis for a submod#g, afhereA is a polynomial ring in son
indeterminates. As is often done in linear algebra, we could represent elements of this modtiples{a;, a,, ..., an}, where

each entry lies inA. Instead, we lete;, &, ..., &, be n new "coordinate variables" and we represent elemen
e +ae+..+a, €, Withag, a, ..., ay all elements ofA. This difference, while mathematically meaningless, is importa

the task at hand. It turns out that we can treat the new variables as we do all other variables, an@rosbuseasi: to find &
basis for modules.

A Grdbner basis for the "position—over—term" ordering may be obtained as an ordinary Grébner basis where we have the
variables ordered above the ring variables, and we also impose the relations that the product of any (not necessarily dis
coordinate variables is zero. Their purpose is to keep out polynomials that are not linear in the coordinate variables. Ot
with the computation we remove them. This is not the most efficient way to compute a module Grébner basis. It would k
in the Grobnerization algorithm, we could to impose the condition that the least common multiplier between any pair of €
zero if the head terms do not lie the same coordinate. This would necessitate treating coordinate variables differently
variables, and is not implemented\tathematicés GroebnerBasis algorithm. A still more general approach, described in [Be

and Weispfenning 1993, chap. 10, sec. 2-4], would be to implement a "truncated" version of Buchberger’s algorithm, wt
S-polynomials that are homogeneous of degree one in the coordinate variables are utilized. It turns out that the method w
not too far from optimal. While we still forri—polynomials (see any of [Adams and Loustaunau 1994; Becker and Weisp

1993; Buchberger 1982; Cox, Little, and O’Shea, 1992] for the definition of these) for polynomials whose head terms lie i
coordinates, the conditions we impose on the coordinate variables force these extra polynomials to reduce quickly to zero

Note that we could find a Grébner basis for the "term—over—position" ordering of module entries, simply by ordering c
variables after ring variables rather than before them. More exotoc orders could be obtained by use of a weight
MonomialOrder

Complement

MonomialOrder option. Another small subtlety is that we remove the unwanted monomials by mapping them to the emp
flattenning the result. We do not uSemplement because, while it is faster, it will reorder the result. We prefer a Grobner ba
is sorted by ascending term order.

nodul eG oebner Basi s[polys_, vars_, cvars_, opts___]:=

Modul e[{newpol s, rels, | en=Length[cvars], gb, j, k, ruls},

rels =Flatten[Tabl e[cvars[[j 1] *cvars[[k]]l, {j, len}, {(k, j, len}]];
newpol s = Joi n[pol ys, rel s];

gb = G oebner Basi s[newpol s, Joi n[cvars, vars], opts];

rul =Map[(= {}) & rels];

gb=Flatten[gb /. rul;

Col | ect [gh, cvars]]

The example below is taken from [Helzer 1995]. It solves a particular polynomial interpolation problem. We find the Grol
of a certain submodule of the free moduleéAdf whereA is the polynomial rin@)[x, y, z]. The module is generated by

le-e -6, (C+y-1) e, ze&, (Y- D? + 2 - 1) €3, Xe3)
ii={x2+y2-1, z};
ji ={(y-1n?+22-1, x}
gens =Join[{e[l] -e[2] -e[3]}, e[2]ii, e[31]]1;
gb = nodul eG oebner Basi s[gens, {X, y, z}, {e[2], e[3], e[l]}]
{(-2yz+y?z+2z%)e[l], xze[l], (2y-2x?y-y?+x?y?-2y3+y*_272.:2yz%-7%) e[l],
(-x +x3+xy?)e[l], (-3+3x2+2y-2x?y+3y?-2y3-72-2yz?)e[l]+3e[3],
(-3x2-2y+2x?y-3y?+2y3+z2+2yz*)e[l] +3e[2]}

In [Helzer 1995] it is explained that

p = Pol ynonmi al Reduce[e[2] +2 e[3], gb, {e[2], e[3], e[1l], X, y, Zz}]M2D] /. e[1l]»1
, 2y 2xty 2y® z2 2yz?
7. _

+ — +

2 -X +
3 3 y 3 3 3

produces a polynomialp(x,y, 2 such thatp is identically 1 on the unit circle defined by the pair of equat
{x2+y?==1,z==0}, and p is identically 2 on the unit circle (interlocking the first one) given by the pair of eque
{(y= 1%+ 2 == 1, x==0}. We can check this fact.

Pol ynoni al Reduce[p, {x*+y®-1, z}][2]
1

Pol ynoni al Reduce[p, {(y-1)?+2z%-1, x}][2]
2

Acknowledgements

| thank Bruno Buchberger, David Cox, and Troels Petersen for their several helpful comments on earlier drafts of this pape

References

éda_ms, W., and P. Loustaunau. 1994. An Introduction to Grébner Bases, Graduate Studies in Mathematics Vol. 3. American N
ociety.

Becker, T. and V. Weispfenning (with H. Kredel). 1993. Grobner Bases: A Computational Approach to Computer Algebra. Springer-Vv

Boege, W., R. Gebauer, and H. Kredel. 1986. Some examples for solving systems of algebraic equations by calculating Grob
Symbolic Computatiod:83-98.

Buchberger, B. 1982. Grobner Bases: An algorithmic method in polynomial ideal theory. INultidimensional Systems Theory, ch.
Bose, ed. Van Nostrand Reinhold.

Cox, D, J. Little, and D. O’Shea. 1992. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and
Algebra. Springer-Verlag.

Harris, J. 1994. Rearranging expressions by patterns. The Mathematica 4(})r8ar-85.
Helzer, G. 1995. Grdbner bases. The Mathematica Jda()ab7-73.

Helzer, G. 1995. Grobner bases. The Mathematica Jdb(t)ab7—-73.
?&ll)biano, L. 1985. Term orderings on the polynomial ring. In: EUROCAL '85 Vol. Il, 513-517. Springer Lecture Notes in Compute

Stoutemyer, D. 1984. Which polynomial representation is best? Surprises abound! In: Proceedings of the Third Macsyma Users’
Schenectady, NY. 221-243.

Wolfram, S. 1996. The Mathematica Book, 3rd ed. Wolfram Media, Inc.

Biographical sketch

Daniel Lichtblau finished his degree in the math department at the University of Illinois in Auc};]ust of 1991. He found a job about a m
Wolfram Research, Inc, where he has remained holed up ever since, working on several math algorithms in the Mathematica kernel

words of one math professor, "forgotten, but not gone."

