Mathematica 9 is now available

Wolfram Library Archive


Courseware Demos MathSource Technical Notes
All Collections Articles Books Conference Proceedings
Title

Derivation of Single-locus Relationship Coefficients Conditional on Marker Information
Author

H. Simianer
Journal / Anthology

Theoretical and Applied Genetics
Year: 1994
Volume: 88
Page range: 548-556
Description

The coefficient of relationship is defined as the correlation between the additive genetic values of two individuals. This coefficient can be defined specifically for a single quantitative trait locus (QTL) and may deviate considerably from the overall expectation if it is taken conditional on information from linked marker loci. Conditional halfsib correlations are derived under a simple genetic model with a biallelic QTL linked to a biallelic marker locus. The conditional relationship coefficients are shown to depend on the recombination rate between the marker and the QTL and the population frequency of the marker alleles, but not on parameters of the QTL, i.e. number and frequency of QTL alleles, degree of dominance etc., not on the (usually unknown) QTL genotype of the sire. Extensions to less simplified cases (multiple alleles at the marker locus and the QTL, two marker loci flanking the QTL) are given. For arbitrary pedigrees, conditional relationship coefficients can also be derived from the conditional gametic covariance matrix suggested by Fernando and Grossman (1989). The connection of these two approaches is discussed. The conditional relationship coefficient can be used for marker-assisted genetic evaluation as well as for the detection of QTL and the estimation of their effects.
Subject

*Science > Biology